Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

The representation ring a(G) of a finite group G provides a context in which to study the behavior of the module category under tensor product. Much work has been devoted to the semisimplicity question for representation rings, byt studying the existence and degree of nilpotents in a(G). In this paper, we construct a nilpotent of degree 3 in the representation ring a(Z/3 x Z/3), apparently the first explicit construction of such an element in odd characteristic. We make a number of observations on the general nilpotence question, and discuss applications of techniques developed in this paper to related questions.

Details

PDF

Statistics

from
to
Export
Download Full History