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Chapter 1

Introduction

D. J. Benson and J. F. Carlson pointed out in 1986 ([3]) that while the tensor

product of modules is one of the most frequently used constructions in integral and

modular representation theory, few techniques were known at the time for attacking

the problem of decomposing a tensor product into a direct sum of indecomposables.

The general question remains poorly understood today.

The representation ring a(RG) or a(G) of a finite group G provides one context

for studying the decomposition question. Representation rings were first studied

systematically by J. A. Green ([6]), who showed that a(G) is semisimple when G

is a cyclic p-group and the base field k is of characteristic p. To quote Benson and

Carlson,

Much subsequent work has centered on the semisimplicity question in

the form: “Does the Green ring have (nonzero) nilpotent elements?”

At the time, it was known that when the base ring is a field k of characteristic p,

the representation ring a(G) contains nilpotent elements unless its p-Sylow subgroup

is cyclic (in which case Green’s result applies) or an elementary abelian 2-group

(where the question appears to be open when the rank is at least 3).

The current paper is largely inspired by the work of Benson and Carlson in

[3], which puts earlier investigations (e.g. Zemanek [9], [10]) into a general context.

They present a uniform method of construction of nilpotent elements of a(G) for

many groups G, using the modules of type Lζ associated to cohomology elements
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ζ ∈ Hn(G, k). The following theorem is one of the main results used in [3], and shows

how the modules of type Lζ link group cohomology to modular representation theory:

Theorem 1.1 (Carlson) Suppose M is a finitely generated kG-module. Let

ζ̂: Ωnk → k be a representative of ζ ∈ Hn(G, k), and let Lζ = Ker(ζ̂). Then

the element ζ is sent to zero under the map

H∗(G, k) = Ext∗kG(k, k)
⊗M−−−→ Ext∗kG(M, M)

if and only if:

Ω−1Lζ ⊗ M ∼= M ⊕ Ωn−1M ⊕ (projective)

Proof: The version here is stated and proven in [2, proposition 5.9.5]. A more

general version is stated and proven in [3, theorem 3.3]. �

The first of the two equivalent conditions in the theorem holds if and only if

cup product with ζ is identically zero on Ext∗kG(M, M); we say that the cohomology

element ζ annihilates Ext∗kG(M, M) in this situation. Developing the notion further,

Carlson and Peng [5] call a homogeneous cohomology element ζ productive if it

annihilates Ext∗kG(Lζ , Lζ); it is known that if p is odd, all cohomology elements of

even degree are productive.

Theorem 1.1 allows us to construct nilpotents of a(G) in many cases. Given a

productive cohomology element ζ ∈ Hn(G, k) of even degree, if it so happens that

Lζ is of period two, then by theorem 1.1 its tensor square decomposes as

Lζ ⊗ Lζ
∼= Lζ ⊕ ΩLζ ⊕ (projective)

so its core Lζ ⊕ ΩLζ is of period one. In other words, modulo the ideal of a(G)

generated by projectives, we have congruences

[Lζ ]
2 ≡ [Lζ ].[ΩLζ ] ≡ [ΩLζ ]

2
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and it follows that the element µ = [Lζ ] − [ΩLζ ] is nilpotent of degree 2 modulo

projectives. If dimk(Lζ) = dimk(ΩLζ), µ is nilpotent of degree two in a(G), and

otherwise some linear combination of µ and classes of projective modules is nilpotent

of degree two. One can find productive cohomology elements ζ associated to modules

Lζ of period two when G = Z/(pr)×Z/(ps) and p is odd, as well as in certain cases

when p = 2; a similar approach works when G is a dihedral 2-group. All the examples

discussed in [3] are constructed in this way.

As far as the author is aware, the only progress on the nilpotence question pub-

lished after [3] appears in the thesis of J. Heldner [7]. Working in the representation

ring a(D8) of the dihedral group of order 8, he constructs several classes of nilpo-

tent elements, including some of nilpotence degree three, whose constituent modules

are not of type Lζ , but which are otherwise similar to previous examples. Modulo

projectives, these nilpotent elements can be expressed in the form µ = [M ] − [ΩM ]

where M is an indecomposable module of period two. In the cases where µ is of

nilpotence degree two, there is a decomposition

M ⊗ M ∼= N ⊕ ΩN ⊕ (projective)

for some indecomposable module N ; in the cases where µ is of nilpotence degree

three, M ⊗ M has no such decomposition, but we have

M⊗3 ∼= N ⊕ ΩN ⊕ (projective)

for some indecomposable N .

The constructions of Zemanek, Benson and Carlson, and Heldner can be seen as

relying on a phenomenon of degeneration of periodicity of periodic modules under

tensor powers. We will make this notion precise later, but give the sense of it here.

Suppose an indecomposable kG-module M is of period two, but that the core of

M ⊗ M is of period one. If we define γ = [k] − [Ωk] ∈ a(G), then modulo the ideal
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generated by the isomorphism classes of projective kG-modules, γ.[M ] �≡ 0 , but

γ.[M ]2 ≡ 0; it follows that µ = γ.[M ] is nilpotent of degree two modulo projectives,

and some linear combination of µ and isomorphism classes of projectives is nilpotent

of degree 2 in a(G). More generally, but for essentially the same reason, if M and

the cores of the tensor powers M ⊗M up to M⊗n−1 are all of period two, while the

core of M⊗n is of period one, then a linear combination of γ.[M ] and isomorphism

classes of projectives is nilpotent of degree n.

We take the point of view that the phenomenon of degeneration of periodicity

and its implications for decompositions of tensor products are the real subjects of

interest; constructing nilpotent elements and understanding them is an approach to

this goal. Most known examples of nilpotents in a(G) are consequences of theorem

1.1, which has important applications in other areas of modular representation theory

and group cohomology. The only previously published constructions which do not

rely on this theorem in some guise are Heldner’s [7], where the proofs are computer-

assisted and full non-computational proofs do not appear to be known. Some of our

methods appear to hold out the possibility of providing full proofs for Heldner’s

results, and we discuss this prospect in chapter 14.

Considering representation rings and the nilpotence question from this perspec-

tive, one may ask whether similar phenomena occur for other notions of periodicity,

such as periodicity in cohomology relative to a subgroup H of G. The answer is ‘yes’.

One example of this is described in [3]: given a short exact sequence of groups

0 → G′′ → G → G′ → 0

and a nilpotent µ = [Lζ ] − [ΩLζ ] in a(G′), the inflation

infG,G′(µ) = [infG,G′(Lζ)] − [infG,G′(ΩLζ)]
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of µ to G is not of the form [M ] − [ΩM ] but rather of the form [M ] − [ΩG′′M ].

We will introduce another class of nilpotents of this sort; in our case, translation in

relative projectivity will prove to be intrinsic to the construction.

We construct a family of elements of nilpotence degree three in the representation

ring of the group G = Z/3 × Z/3 over a field k of characteristic 3. These elements

are of the form µ = [M ] − [ΩHM ], where H is a cyclic subgroup of G and where M

exhibits degeneration of periodicity relative to H under tensor powers. The elements

µ appear to be the first known nilpotents of degree three for odd p, although as we

point out in chapter 8, one can construct nilpotents of a(G) of arbitrarily high degree

if one takes G of sufficiently high rank, and thus the question of nilpotence degree

should be seen as meaningful only relative to the rank of the group. The modules

used in this construction are kernels of surjective homomorphisms from modules of

type Lζ to H-projective modules, and exhibit properties similar to those of modules

of type Lζ ; in the process of proving nilpotence of µ we establish some analogues of

theorem 1.1 for these modules. Stronger results in this direction seem possible, as

we also discuss in chapter 14.

We follow the example of Benson and Carlson and present our results in a context

compatible with their work. Our method uses periodicity in relative cohomology

rather than ordinary cohomology; to fully develop the analogy with past results, we

begin with results on nilpotents in arbitrary commutative rings, and later situate

the various constructions for a(G) in that context. By itself, our construction may

not seem warrant this level of generality; however, we believe that the methods

developed in this paper will be applicable to a number of other problems, and the

generality will be useful to this work in the long run. Again, we will say more on the

matter in chapter 14.



Chapter 2

Generalities

By k, we will always denote a field of characteristic p; we make no other assumptions

about k. By k× we mean k − {0}, the group of multiplicative units of k. By G, we

will always mean a finite group.

If H is a subgroup of G, we will denote the restriction of a kG-module M to

H by M↓H ; more generally, if we wish to stress that a particular module N is a

kH-module, we will call it NH . Thus, kG denotes the trivial kG-module whereas kH

is the trivial kH-module. Similarly, given an element x ∈ M of a kG-module M , we

will write 〈x〉 or 〈x〉G for the kG-submodule of M generated by x and 〈x〉H for the

kH-submodule of M↓H generated by x.

We use the notation ⊕(projective) to indicate direct sum with some otherwise

unspecified projective kG-module.

We refer to Benson ([1], [2]) for standard background material. The following

results will be used frequently.

Lemma 2.1 Suppose 0 → M1 → M2 → M3 → 0 is a short exact sequence of

kG-modules of finite k-dimension. If M2
∼= M1 ⊕ M3, the sequence splits; i.e., it

represents the zero element of Ext1
kG(M3, M1).

Proof: See [1, lemma 2.6.2]. �

Lemma 2.2 If G is a p-group and M is a kG-module with minimal generating set

{m1, m2, · · · , mn}, then any choice of values {f(m1), f(m2), · · · , f(mn)} in k defines

a kG-homomorphism f : M → k.

6
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Proof: Any map f : M → k factors through M/Rad(M), and the images of the

generating set span M/Rad(M). �

If M and N are kG-modules, the tensor product M ⊗k N can be given a kG-

module structure by letting the elements g of G act diagonally:

g(m ⊗k n) = gm ⊗k gn

Since we will rarely use any other type of tensor product, we will usually drop the

subscript and write M ⊗ N when we mean M ⊗k N .

Proposition 2.3 Let k be a field, G any group, g ∈ G, and γ = g − 1 ∈ kG. If M

and N are kG-modules and m ∈ M and n ∈ N , then we can describe the action of γ

on the tensor product M⊗N by the identity γ(m⊗n) = γm⊗n+m⊗γn+γm⊗γn.

In particular, if γm = 0, then γ(m ⊗ n) = m ⊗ γn.

Proof: Elements of G act diagonally on tensor products, so

γ(m ⊗ n) = g(m ⊗ n) − m ⊗ n

= (γ + 1)m ⊗ (γ + 1)n − m ⊗ n

= γm ⊗ γn + m ⊗ γn + γm ⊗ n

which proves the first assertion. The second assertion follows immediately. �

Working with p-groups in characteristic p involves several key simplifications in

the general theory:

Lemma 2.4 Suppose G is a p-group and k is a field of characteristic p.

i) There is only one simple kG-module, the one-dimensional trivial representation

kG.

ii) The regular representation kGkG is the only projective indecomposable kG-

module up to isomorphism, and every projective kG-module is free.
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iii) The projective indecomposable module is the projective cover of the simple

module kG, and has one-dimensional head and socle.

Proof: See [1], section 3.14. �



Chapter 3

Duality, Restriction, and Induction

All material in this chapter is standard and included for reference. Again, for full

discussion and proofs, we refer to Benson [1].

Definition 3.1 If M is a kG-module with underlying k-vector space V on which the

action of G is given by φ: G → GL(V ), we define the dual module M∗ to be:

M∗ = Homk(M, k)

The module M∗ may be viewed as a left kG-module via the following action:

φ∗: G → GL(V ∗),

φ∗(g) = (φ(g−1))t

In other words, g ∈ G acts on f ∈ Homk(M, k) via (gf)(m) = f(g−1m).

Proposition 3.2 Let M and N be kG-modules.

i) Homk(M, N) ∼= M∗ ⊗ N .

ii) If G is a p-group, then HomkG(M, N) ∼= Soc(M∗ ⊗ N).

iii) (M ⊗ N)∗ ∼= M∗ ⊗ N∗.

Proof: i) See [1], section 3.1.

ii) If we denote by MG the space of G-fixed points of a module M , then by part

i) we have:

HomkG(M, N) = Homk(M, N)G

9
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= (M∗ ⊗ N)G

= Soc(M∗ ⊗ N)

iii) The isomorphism holds for the underlying vector spaces, and commutes with

the action of G since G acts diagonally on tensor products. �

If H is a subgroup of G and M is a kG-module, the restriction M↓H of M to

H is just the module M viewed as a kH-module via the embedding of kH in kG.

Equally important is the induced module N↑G of a kH-module to G:

Definition 3.3 Let H be a subgroup of G and let N be a kH-module. We define the

induced module N↑G to be:

N↑G = kG ⊗kH N

An alternate and equivalent way to view N↑G is to write

N↑G =
⊕

g′∈G/H

g′ ⊗ N

where the sum runs over a set of coset representatives of H in G. The action of G

can then be given explicitly: g(g′ ⊗ n) = g′′ ⊗ hn, where g′′ is the representative of

the coset of gg′ and g′′h = gg′.

The next proposition gathers a list of standard results relating tensor products,

induction, restriction, and homomorphism groups for kH- and kG-modules.

Proposition 3.4 Let H be a subgroup of G. Let N be a kH-module and let M be a

kG-module.

i) HomkH(N, M↓H) ∼= HomkG(N↑G, M) as vector spaces.

ii) HomkH(M↓H , N) ∼= HomkG(M, N↑G) as vector spaces.

iii) (N ⊗ M↓H)↑G ∼= N↑G ⊗ M as kG-modules.

Proof: See [1], section 3.3. �
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Remark 3.5 Induction and restriction are both functorial, and these functors are

adjoint to one another. This relationship, which is given explicitly in parts i) and ii)

of the previous proposition, is often referred to as Frobenius reciprocity.

The isomorphisms of Frobenius reciprocity can easily be made explicit:

Definition 3.6 Let H be a subgroup of G, let N be a kH-module, and let M be a

kG-module. Define θN ∈ HomkHb
(N↑G↓H , N) to be the following map:

θN : N↑G↓H → N

θN : 1G ⊗ n 
→ n

g ⊗ n 
→ 0 ∀g ∈ G/H, g �= 1G

Define T̂ rH,G to be the map:

T̂ rH,G: HomkH(M↓H , N) → HomkG(M, N↑G)

T̂ rH,G(f)(m) =
∑

g∈G/H

g ⊗ f(g−1m)

Lemma 3.7 Let M be a kG-module, let N be a kH-module, and let θN and T̂ rH,G be

defined as above. Composing homomorphisms in HomkG(M, N↑G) with θN induces

an isomorphism:

HomkG(M, N↑G)
θN◦−−−→ HomkH(M↓H , N)

f −−−→ θN ◦ f

and applying T̂ rH,G to homomorphisms in HomkH(M↓H , N) induces an isomor-

phism:

HomkHb
(M↓H , N)

T̂ rH,G−−−→ HomkG(M, N↑G)

f ′ −−−→ T̂ rH,G(f ′)

Proof: Given f ∈ HomkG(M, N↑G), one may compute directly that that

T̂ rH,G(θN ◦ f)(m) = f(m) for all m ∈ M, and likewise given f ′ ∈ HomkH(M↓G, N),

that (θN ◦ T̂ rH,G(f ′))(m) = f ′(m) for all m ∈ M. �
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Remark 3.8 This proves part ii) of proposition 3.4. The proof of part i) is similar.

Theorem 3.9 (Green’s indecomposability theorem) Suppose H is a normal

subgroup of G such that G/H is a p-group, and M is an absolutely indecomposable

kH-module (i.e. k′ ⊗k M is indecomposable for all extension fields k′ of k). Then

M↑G is absolutely indecomposable.

Proof: See [1], section 3.13. �



Chapter 4

Cohomology, Relative Cohomology, and Translation

We assume standard results on ordinary cohomology, and only give a few results

and definitions which we will use heavily.

Definition 4.1 Let M be an arbitrary kG-module. We define the core of M to be

the smallest direct summand M ′ of M such that M = M ′ ⊕P where P is projective.

By Krull-Schmidt, the core of a module is well-defined up to isomorphism.

Definition 4.2 Let M be any kG-module, let P be a projective kG-module, and let

ρM : P → M be a surjective kG-homomorphism. We define the translate ΩM to be

the core of ker(ρ), so there is a short exact sequence

0 −−−→ ΩM ⊕ P ′ −−−→ P
ρ−−−→ M −−−→ 0

where P ′ is projective. By Krull-Schmidt, the translate ΩM is unique up to isomor-

phism, and we may as well assume that we have a short exact sequence

0 → ΩM → P → M → 0

since any projective (therefore injective) summand P ′ in the first term can be split

off.

We define higher-order translates inductively by setting ΩnM = Ω(Ωn−1M).

We define translates of negative degree by defining Ω−1M to be the core of the

cokernel of a monomorphism ι: M → I where I is an injective kG-module.

13
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Since group algebras are symmetric algebras, injective modules are the same as

projective modules, and it follows that

Proposition 4.3 Let M and N be non-projective indecomposable kG-modules.

i) The translations Ω and Ω−1 act as inverses up to isomorphism: Ω−1(ΩM) ∼=
Ω(Ω−1M) ∼= M .

ii) The translation ΩnM is isomorphic to the core of Ωnk ⊗ M .

iii) Translation respects tensor products up to stable isomorphism: The core of

M ⊗ ΩnN and the core of ΩnM ⊗ N are both isomorphic to Ωn(M ⊗ N).

iv) Translation respects direct sums: Ωn(M ⊕ N) ∼= ΩnM ⊕ ΩnN .

Proof: i) Consider the following short exact sequence:

0 → ΩM → P → M → 0

Since projective modules are injective and vice versa, M = Ω−1(ΩM) by definition,

and a similar argument shows that Ω(Ω−1M) ∼= M .

ii) Given a short exact sequence

0 → Ωk → P → k → 0

tensoring with M yields a short exact sequence:

0 → Ωk ⊗ M → P ⊗ M → k ⊗ M → 0

Since P ⊗M is projective and k⊗M ∼= M, we have shown that the core of Ωk ⊗M

is isomorphic to ΩM . The result follows by induction.

iii) The proof of ii) generalizes immediately; the tensor product of M with a

sequence

0 → ΩN → P → N → 0
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produces a sequence

0 → M ⊗ ΩN → M ⊗ P → M ⊗ N → 0

with projective middle term, so the core of M ⊗ ΩN is Ω(M ⊗ N), and the same

argument applies to ΩM ⊗ N . Again, the result follows by induction.

iv) The direct sum of the complexes

0 → ΩM → P → M → 0

0 → ΩN → P → N → 0

yields the sequence:

0 → ΩM ⊕ ΩN → P ⊕ P ′ → M ⊕ N → 0

Induction finishes the proof. �

Lemma 4.4 Let H be a subgroup of G, let M be a kG-module and let N be a kH-

module. Translation respects restriction and induction up to stable isomorphism:

(ΩM)↓H = Ω(M↓H) ⊕ (projective)

(ΩN)↑G = Ω(N↑G) ⊕ (projective)

Proof: Let P be a projective kG-module and let ρM : P → M be surjective. Since

P is projective, the restriction P↓H is a projective kH-module, and the restriction

of ρM to H is still surjective, so

Ω(M)↓H = ker(ρM )↓H
∼= Ω(M↓H) ⊕ (projective)

which proves the first isomorphism.

Let P ′ be a projective kH-module and let ρN : P ′ → N be surjective. Define a

map ρN :

ρ̂N : P ′↑G → N↑G

ρ̂N =
∑

g∈G/H

g ⊗ ρN
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Then P ′↑G is a projective kG-module, ρ̂N is surjective, and one may verify directly

that ker(ρ̂N ) ∼= ker(ρN)↑G. This proves the second isomorphism. �

Definition 4.5 If it so happens that ΩnM ∼= M and n is the smallest positive

exponent for which this isomorphism holds, we say that M is periodic of period n,

or simply n-periodic.

Definition 4.6 A kG-homomorphism f : M → N is said to factor through a pro-

jective module if there exists a projective kG-module P and kG-homomorphisms

f ′: M → P and f ′′: P → N such that f = f ′′ ◦ f ′. By PHomkG(M, N) ⊂
HomkG(M, N) we denote the subgroup of kG-homomorphisms factoring through

a projective module. By StHomkG(M, N), the group of stable homomorphisms, we

mean the quotient HomkG(M, N)/PHomkG(M, N).

Lemma 4.7 Let M and N be kG-modules and let n be any integer. We get the

following isomorphism:

StHomkG(M, N) ∼= StHomkG(ΩnM, ΩnN)

Proof: Let f be a kG-homomorphism f : M → N, and choose sequences

0 −−−→ ΩM −−−→ P
ρM−−−→ M −−−→ 0

0 −−−→ ΩN −−−→ P ′ ρN−−−→ N −−−→ 0

with projective middle terms. We can lift f to a map Ω̃f by chasing elements around

the following diagram:

0 −−−→ ΩM −−−→ P
ρM−−−→ M −−−→ 0

Ω̂f

� � f

�
0 −−−→ ΩN −−−→ P ′ ρN−−−→ N −−−→ 0

The map Ω̃f is not unique, but we claim that two such liftings will differ by a

map factoring through a projective. Since P is projective, the map f ◦ ρM : P → N
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lifts to a map f̂ : P → P ′ which induces the map Ω̃f : ΩM → ΩN. If we choose a

different lifting f̂ ′: P → P ′ of f, inducing a different map Ω̃f ′: ΩM → ΩN , then

since ρN ◦ f̂ = ρN ◦ f̂ ′, the difference f̂ − f̂ ′ is killed by composition with ρN . It

follows that f̂ − f̂ ′ sends P into ΩN , and so Ω̃f − Ω̃f ′, which is just the restriction

of f̂ − f̂ ′ to ΩM , factors through P . The lift Ω̃f thus corresponds to a well-defined

element Ωf ∈ StHomkG(ΩM, ΩN) The lemma then follows from 4.3 and induction

on n. �

Remark 4.8 The previous lemma amounts to the observation that while the trans-

lation operation Ω(−) is not a functor on the module category, it defines one on the

stable module category, the category whose objects are kG-modules and whose arrows

are stable homomorphisms.

We now give a very short sketch of the important definitions and results we will

use concerning the groups Extn
kG(M, N).

Definition 4.9 Let M be a kG-module. A projective resolution PM of M is a long

exact sequence of the form

· · · −−−→ P2
δ2−−−→ P1

δ1−−−→ P0

where the modules Pn are all projective and such that P0/Im(δ1) ∼= M .

Definition 4.10 Let M and N be kG-modules, and let PM be a projective resolution

of M . Applying the functor HomkG(−, N) to PM yields a cochain complex:

HomkG(P0, N)
ε0−−−→ HomkG(P1, N)

ε1−−−→ HomkG(P2, N) −−−→ · · ·

We define the groups Extn
kG(M, N) to be the cohomology groups of this sequence:

Extn
kG(M, N) = Hn(HomkG(PM , N), ε∗)
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There are two other interpretations of the groups Extn
kG(M, N) that we will use.

First, if n > 0 and ζ is an element of Extn
kG(M, N), we may associate ζ with an

equivalence class of n-fold extensions of N by M , that is, equivalence classes of

exact sequences of the following form:

0 → N → Mn−1 → Mn−2 → · · · → M0 → M → 0

In particular, an element ζ of Ext1
kG(M, N) defines a short exact sequence 0 → N →

M ′ → M → 0, and the middle term M ′ is entirely determined by the element ζ .

Finally, since truncating a projective resolution PM of a kG-module M gives

rise to an n-fold extension of ΩnM by M for every n > 0, elements of Ext-groups

may be identified with stable homomorphisms via the so-called dimension shifting

isomorphisms:

Proposition 4.11 Let M and N be kG-modules, and let n > 0. We have the fol-

lowing isomorphisms:

Extn
kG(M, N) ∼= StHomkG(ΩnM, N) ∼= StHomkG(M, Ω−nN)

Proof: Given an element ζ ∈ Extn
kG(M, N), choose a representative n-fold exten-

sion:

Cζ : 0 → N → Mn−1 → · · · → M0 → M → 0

We can then lift the identity homomorphism on M to construct a diagram

0 −−−→ ΩnM −−−→ Pn−1 −−−→ · · · −−−→ P0
ρM−−−→ M −−−→ 0

ζ̂

� � � ∥∥∥
0 −−−→ N −−−→ Mn−1 −−−→ · · · −−−→ M0 −−−→ M −−−→ 0

where the existence of ζ̂: ΩnM → N is guaranteed since the modules Pi are pro-

jective. Proving that this procedure is well-defined and yields an isomorphism
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Extn
kG(M, N) ∼= StHomkG(ΩnM, N) is an extended diagram chase which we omit.

Then by 4.3 and 4.7,

StHomkG(ΩnM, N) ∼= StHomkG(M, Ω−nN)

and we are done. �

A version of Frobenius reciprocity holds for Extn
kG(−,−):

Proposition 4.12 (Eckmann-Shapiro) Let H be a subgroup of G. Let N be a

kH-module and let M be a kG-module.

i) Extn
kH(N, M↓H) ∼= Extn

kG(N↑G, M) as vector spaces.

ii) Extn
kH(M↓H , N) ∼= Extn

kG(M, N↑G) as vector spaces.

Proof: See [1], sections 2.8 and 3.3. �

Corollary 4.13 Let H be a subgroup of G. Let N be a kH-module and let M be a

kG-module. We have the following isomorphisms of vector spaces:

StHomkH(M↓H , N) ∼= StHomkG(M, N↑G)

PHomkH(M↓H , N) ∼= PHomkG(M, N↑G)

StHomkH(N, M↓H) ∼= StHomkG(N↑G, M)

PHomkH(N, M↓H) ∼= PHomkG(N↑G, M)

Proof: The isomorphisms for StHom follow by applying 4.4 and 4.7 to the pre-

vious result. The same relations hold for Hom, and so hold for the kernel PHom by

a dimension count. More concretely, given

f ∈ PHomkG(M, N↑G)

it is clear that the Frobenius correspondent

θN ◦ f ∈ PHomkH(M↓H , N)
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factors through a projective, so the isomorphisms of 3.7 induce the first two isomor-

phisms here. �

Lemma 4.14 Let H be a cyclic group and let M be an indecomposable kH-module.

A kH-homomorphism f : ΩkH → M factors through a projective if and only if it is

not surjective.

Proof: Observe that any indecomposable kH-module is a uniserial quotient of

the indecomposable projective kH-module, so

StHomkH(Ωk, M) = StHomkH(k, Ω−1M)

is one-dimensional. Since k is simple,

StHomkH(k, Ω−1M) = HomkH(k, Ω−1M)

and a map in HomkH(k, Ω−1M) is clearly nonzero if and only if it is injective; the

result follows from dimension shifting. �

Suppose M and M ′ are kG-modules, P and P ′ are projective kG-modules,

ιM : M → P is a monomorphism and ρM ′ : P ′ → M ′ is an epimorphism. Given

any kG-homomorphism f : M → M ′, we can use ρM ′ to construct an epimorphism

f ′: P ′⊕M → M ′ which is stably equivalent to f ; likewise, we can use ιM to construct

a monomorphism f ′′: M → M ′ ⊕ P with f ′′ stably equivalent to f . We thus have

short exact sequences

0 → M ′′ → P ′ ⊕ M → M ′ → 0

0 → M → M ′ ⊕ P → X → 0

and a diagram chase shows that X ∼= Ω−1M ′′. Expanding this idea, we may observe

that, given any short exact sequence

0 −−−→ M ′′ g−−−→ M ⊕ (projective)
f−−−→ M ′ −−−→ 0
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where the modules M ′′, M and M ′ have no projective direct summands, we have

short exact sequences

0 −−−→ M
f−−−→ M ′ ⊕ (projective) −−−→ Ω−1M ′′ −−−→ 0

0 −−−→ ΩM ′ −−−→ M ′′ ⊕ (projective)
g−−−→ M −−−→ 0

and so on, where we identify f and g with their stable equivalence classes. This

kind of transformation of a short exact sequence is often called moving around the

triangle, where the ‘triangle’ refers to the sequence

M ′′ g−−−→ M
f−−−→ M ′ −−−→ Ω−1M ′′

in the stable module category.

Most of the concepts and constructions we have discussed above fit into the

context of the theory of ordinary cohomology of the module category of kG. Next, we

discuss the theory of cohomology relative to a subgroup H , where we have analogues

for much of this material.

Definition 4.15 If a kG-module M is a direct summand of N↑G for some kH-

module N , we say that M is relatively projective with respect to H , projective rela-

tive to H, or just relatively H-projective. In keeping with the notation ⊕(projective)

set previously, we will write ⊕(H−projective) to indicate direct sum with a module

relatively projective with respect to a subgroup H of G.

Definition 4.16 A kG-homomorphism f : M → N is H-split if its restriction to H

can be written as a composition f↓H = f ′′ ◦ f ′ where f ′ is a split kH-epimorphism

and f ′′ is a split kH-monomorphism.

Lemma 4.17 Let H be a subgroup of G. Let M and M ′ be kG-modules and let M ′

be projective relative to H. Then M ⊗ M ′ is projective relative to H.
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Proof: There is some kH-module N such that M ′ is a direct summand of N↑G.

Then M ⊗ M ′ is a direct summand of:

M ⊗ N↑G = (M↓H ⊗ N)↑G

�

Definition 4.18 A relatively H-projective resolution or H-projective resolution XM

or (XM , δ) of a kG-module M is a long exact sequence of the form

· · · −−−→ X2
δ2−−−→ X1

δ1−−−→ X0

where the modules Xn are all projective relative to H and all the maps δn are H-split.

Proposition 4.19 Let H be a subgroup of G, and let M be an indecomposable kG-

module. Define a map ρ by:

ρ: M↓H↑G → M,

ρ: g ⊗ m 
→ gm

Then ρ: M↓H↑G → M is the beginning of an H-projective resolution of M , and thus

every kG-module has an H-projective resolution.

Proof: The module M↓H↑G is H-projective by definition, the map ρ is surjective,

and the map M↓H → M↓H↑G↓H sending m ∈ M to 1G⊗M gives an explicit splitting

of the restriction of ρ to H , so ρ is H-split. �

This construction provides the basis of a cohomology theory in which most stan-

dard notions have H-relative analogues. In particular, by the core of a module M

relative to H , we mean the smallest direct summand M ′ of M for which there exists

a direct sum decomposition M = M ′ ⊕ M ′′ where M ′′ is H-projective; by Krull-

Schmidt-Azumaya, the core relative to H is well-defined up to isomorphism. By the
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translate ΩHM of M relative to H , we mean the core relative to H of the kernel of

δ1 for some relatively H-projective resolution (XM , δ); the translate ΩHM is well-

defined up to isomorphism independent of the choice of resolution, and we can make

the following definition:

Definition 4.20 If it so happens that Ωn
HM ∼= M and n is the smallest positive

exponent for which this isomorphism holds, we say that M is periodic of period n

with respect to H or simply n-periodic with respect to H.

Proposition 4.21 Suppose M is a kG-module, and H is a normal subgroup of G

with G/H cyclic. If M↓H is projective, then we have:

M ⊕ (projective) ∼= Ω2M ⊕ (projective)

Proof: See [1], corollary 3.5.3. �

Remark 4.22 For group algebras kG, projectivity relative to the trivial subgroup

{1G} is equivalent to projectivity, and ordinary cohomology is the same thing as

cohomology relative to {1G}. Every result about relative cohomology thus applies

equally to ordinary cohomology.



Chapter 5

Inflation

Definition 5.1 Let

0 −−−→ G′ −−−→ G
φ−−−→ G′′ → 0

be a short exact sequence of finite groups, and let M be a kG′′-module. The surjection

G
φ−−−→ G′′

makes M into a kG-module via g.m = φ(g)m for m ∈ M . When we regard M

as a kG-module in this manner, we call it the inflation of M to G and denote it

infG,G′′(M).

Lemma 5.2 Let G = H × H ′ be a p-group such that H is cyclic.

i) Let M be an indecomposable kH-module. We have the following isomorphisms:

M↑G ∼= infG,H(M) ⊗ kH↑G ∼= infG,H(M) ⊗ infG,H′(kH ′)

Soc(M↑G) ∼= Soc(infG,H(M))

ii) Let M and N be kH-modules. Then there is an isomorphism:

HomkH(M, N) ∼= HomkG(infG,H(M), infG,H(N))

iii) Every indecomposable relatively H-projective module is of the form M↑G for

some indecomposable kH-module M .

24
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Proof: i) By 3.4, infG,H(M) ⊗ kH↑G ∼= (infG,H(M)↓H ⊗ kH)↑G. Then by 6.1,

infG,H(M)↓H
∼= M, giving the first isomorphism. Since H is normal, kH↑G ∼=

infG,H′(kH ′), providing the second isomorphism. Finally, since

HomkG(kG, M↑G) ∼= HomkH(kH , M)

by Frobenius reciprocity, and

HomkH(kH , M) ∼= HomkG(kG, infG,H(M))

we get the isomorphism of socles as stated.

ii) Since H ′ acts trivially on infG,H(M) and infG,H(N), every kH-homomorphism

in HomkH(M, N) may be regarded as a kG-homomorphism between the inflations.

iii) Since H is cyclic, every indecomposable kH-module is absolutely indecom-

posable, and Green’s indecomposability criterion applies. �

Proposition 5.3 Let G = H × H ′, let M be a kH-module and let N be a kH ′-

module. Then we have the following algebra isomorphisms:

EndkG(infG,H(M) ⊗ infG,H′(N))

∼= EndkG(infG,H(M)) ⊗ EndkG(infG,H′(N))

∼= EndkH(M) ⊗ EndkH′(N)

Proof: For the sake of readability, we define M̂ and N̂ by:

M̂ = infG,H(M)

N̂ = infG,H′(N)

It is clear that there is an inclusion of algebras of the form:

EndkG(M̂) ⊗ EndkG(N̂) ⊆ EndkG(M̂ ⊗ N̂)
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We will show that these algebras are of the same dimension over k, and thus iso-

morphic. Recall that by MG we mean the set of elements of M fixed by the action

of G, and that HomkG(M1, M2) = (Homk(M1, M2))
G = (M∗

1 ⊗ M2)
G for any two

kG-modules M1, M2. We then have the following isomorphisms of vector spaces:

EndkG(M̂ ⊗ N̂) = HomkG(M̂ ⊗ N̂, M̂ ⊗ N̂)

= (Homk(M̂ ⊗ N̂, M̂ ⊗ N̂))G

= ((M̂ ⊗ N̂)∗ ⊗ (M̂ ⊗ N̂))G

= (M̂∗ ⊗ M̂ ⊗ N̂∗ ⊗ N̂)G

= (Homk(M̂, M̂) ⊗ Homk(N̂ , N̂))G

= (Endk(M̂) ⊗ Endk(N̂))G

An element of a module M is stabilized by G if and only if it is stabilized by H and

by H ′, so MG = MH ∩ MH′
. We may thus write

(Endk(M̂) ⊗ Endk(N̂))G = (Endk(M̂) ⊗ Endk(N̂))H

∩ (Endk(M̂) ⊗ Endk(N̂))H′

as subsets of Endk(M̂) ⊗ Endk(N̂).

Since H ′ acts trivially on M̂, all k-endomorphisms of M̂ are kH ′-endomorphisms,

and similarly every kH-endomorphism of M̂ is a kG-endomorphism. Likewise, k-

endomorphisms of N̂ are kH-endomorphisms and kH ′-endomorphisms of N̂ are kG-

endomorphisms. We thus have:

(Endk(M̂) ⊗ Endk(N̂))H ∩ (Endk(M̂) ⊗ Endk(N̂))H′

= EndkG(M̂) ⊗ Endk(N̂) ∩ Endk(M̂) ⊗ EndkG(N̂)

= EndkG(M̂) ⊗ EndkG(N̂)

Therefore, EndkG(M̂ ⊗ N̂) ∼= EndkG(M̂)⊗EndkG(N̂) as vector spaces, which proves

the first isomorphism. The second isomorphism is a consequence of 5.2. �
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Corollary 5.4 Let k be algebraically closed, let G = H ×H ′, let M be a kH-module

and let N be a kH ′-module. If M and N are indecomposable, then infG,H(M) ⊗
infG,H′(N) is an indecomposable kG-module.

Proof: Since the base field k is algebraically closed, a kG-module is inde-

composable if and only if its endomorphism algebra is local, so EndkH(M) and

EndkH′(N) are local. By the previous proposition, EndkG(infG,H(M)⊗infG,H′(N)) ∼=
EndkH(M)⊗ EndkH′(N) is a tensor product of local rings, thus local, and therefore

infG,H(M) ⊗ infG,H′(N) is indecomposable. �



Chapter 6

Representation Rings

Given a group G and base field k, the representation ring a(G) or a(kG) is the ring

whose generators are isomorphism classes [M ] of kG-modules M , with relations:

[M ] + [N ] = [M ⊕ N ]

[M ].[N ] = [M ⊗ N ]

The usual properties of direct sum and tensor product show that a(G) is a commuta-

tive ring with identity 1a(G) = [kG] and zero 0a(G) = [0G]. As an additive group, a(G)

is the free abelian group generated by the isomorphism classes of indecomposable

kG-modules, since the Krull-Schmidt-Azumaya theorem holds for kG; every element

can be written uniquely as a finite sum

∑
ni[Mi]

with coefficients ni ∈ Z and all Mi indecomposable. We will need to consider other

coefficient rings for the representation ring, and in accordance with standard notation

we define the following extended representation rings:

A(G) = C ⊗�a(G)

a(G)� = Q ⊗�a(G)

a(G)p = Z[1/p] ⊗� a(G)

One may also introduce various ideals and subrings of a(G). Given a subgroup

H of G, we denote by a(G, H) the ideal of a(G) generated by the relatively H-

projective modules; by a0(G, H), we mean the ideal generated by elements of the

28
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form [M2] − [M1] − [M3] for all H-split short exact sequences 0 → M1 → M2 →
M3 → 0. In particular, if G is a p-group and H is the trivial subgroup, then a(G, H)

is the ideal generated by isomorphism classes of projective modules, and a0(G, H) is

the ideal of elements for which
∑

ni dimk(Mi) = 0. In keeping with the notation for

extended representation rings, we will write a(G, H)p for Z[1/p]⊗�a(G, H), A(G, H)

for C ⊗�a(G, H), and so on.

If H is a subgroup of G, the induction and restriction functors induce maps

indG
H : a(H) → a(G) and resG

H : a(G) → a(H). The restriction map resG
H is a ring map,

while the induction map indG
H is a map of abelian groups whose image is an ideal.

If G′ is a quotient of a finite group G, any kG′-module may be regarded as a

kG-module by inflation; this induces an inclusion of rings infG,G′: a(G′) → a(G).

Given a direct product of groups G = H × H ′, we have the following result:

Proposition 6.1 Let G = H × H ′ be a group. The map

resG
H ◦ infG,H : a(H) → a(H)

is an isomorphism of rings.

Proof: Let ιH : H → G be the natural inclusion and ρH : G → H be the natural

projection associated to the given product; the composition ρH ◦ ιH : H → H is the

identity on H by definition. If M is any k(H)-module, resG
H ◦ infG,H(M) is isomorphic

to M , and the result follows. �

Abusing notation slightly, the previous proposition lets us view a(H) and a(H ′)

as subrings of a(G). We may think of a(H) as generated by those kG-modules on

which H ′ acts trivially, and likewise we may think of a(H ′) as generated by the

modules on which H acts trivially. In this view, the intersection a(H)∩a(H ′) is thus

just the additive subgroup of a(G) generated by [kG], and the next result follows:
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Proposition 6.2 Let k be algebraically closed, and let G = H × H ′. The map

φ: a(H) ⊗� a(H ′) → a(G),

φ([M ] ⊗� [N ]) 
→ [infG,H(M)][infG,H′(N)]

of abelian groups is a monomorphism of rings.

Proof: The underlying additive group of a representation ring is the free abelian

group generated by isomorphism classes of indecomposable modules. Let M be an

indecomposable kH-module and let N be an indecomposable kH ′-module, so [M ] is

an element of the generating set of the additive group of a(H) and [N ] is an element of

the generating set of the additive group of a(H ′). Then by 5.4, infG,H(M)⊗infG,H′(N)

is indecomposable, and so [infG,H(M)][infG,H′(N)] is an element of the generating

set of the additive group of a(G). Thus φ is a monomorphism of abelian groups. On

the other hand, φ is clearly a homomorphism of rings, and we are done. �

Remark 6.3 In fact, the previous result is true for arbitrary base fields by a standard

result that states that if k′ is an extension field of k and M and N are kG-modules,

that M ∼= N if and only if M ⊗k k′ ∼= N ⊗k k′.

Corollary 6.4 Let G = H × H ′ and let x ∈ a(H) and y ∈ a(H ′) be nonzero. Then

the product (infG,H(x))(infG,H′(y)) ∈ a(G) is nonzero.

Proof: The element x ⊗� y ∈ a(H) ⊗� a(H ′) is zero if and only if x = 0 or

y = 0. �

There exist a variety of results on direct sum decompositions of representation

rings; we will need the following version of a theorem of Dress:

Proposition 6.5 (Dress) The representation ring a(G)p has a direct sum decompo-

sition:

a(G)p = a(G, H)p ⊕ a0(G, H)p
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Proof: See [1, theorem 5.7.1]. �

Benson and Parker prove a similar result:

Proposition 6.6 The representation ring A(G) has a direct sum decomposition:

A(G) = Im(indG
H) ⊕ Ker(resG

H)

Proof: See [1, corollary 5.4.11]. �

Note that Im(indG
H) is generated by isomorphism classes of relatively H-free

modules, so Im(indG
H) ⊆ a(G, H) and therefore a0(G, H) ⊆ Ker(resG

H). In the cases

of interest to us, these inclusions are equalities, and so the results give identical

decompositions:

Proposition 6.7 Let G = H × H ′ be a p-group such that H is cyclic. The repre-

sentation ring a(G)p has a direct sum decomposition

a(G)p = eHa(G)p ⊕ e′Ha(G)p

where eH = 1
|G:H| [kH↑G] and e′H = [k] − eH .

Furthermore, we have the following equalities:

eHa(G)p = a(G, H)p = Im(indG
H)

e′Ha(G)p = a0(G, H)p = Ker(resG
H)

Proof: Since kH↑G↓H is a direct sum of |G : H| copies of the trivial representation

kH , the isomorphism kH↑G ⊗ kH↑G ∼= (kH↑G↓H ⊗ kH)↑G shows that the product

kH↑G ⊗ kH↑G is isomorphic to a direct sum of |G : H| copies of kH↑G; it follows

that eH is idempotent. It is clear that eH ∈ a(G, H)p, so eHa(G)p ⊆ a(G, H)p; on

the other hand, by 5.2, if M is a relatively H-projective kG-module, it is of the

form M = N↑G for some kH-module N . Then by 5.2, M ∼= infG,H(N) ⊗ kH↑G, so
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[M ] = |G : H|eH [infG,H(N)]. Thus a(G, H)p ⊆ eHa(G)p, so a(G, H)p = eHa(G)p.

The rest follows immediately. �

In the general case, where these ideals do not coincide, we will use eH and e′H to

refer to the orthogonal idempotents associated to the ideals a(G, H)p and a0(G, H)p.

Many of the arguments we will make would be much cleaner if it were true that

ΩHk ⊗ M ∼= ΩHM , but in general we only have equivalence modulo relatively H-

projective direct summands. One way around this problem is to work modulo the

ideal a(G, H) and lift; proposition 6.7 implies that we may as well work inside the

ideal a0(G, H) instead, and the next lemma makes this explicit:

Lemma 6.8 Let H be a subgroup of G, let M be an indecomposable kG-module

not projective relative to H, and let e′H be the idempotent associated to the ideal

a0(G, H)p. Then [ΩHk]e′H [M ] = e′H [ΩHM ].

Proof: Since ΩHk ⊗ M ∼= ΩHM ⊕ (H−projective), we have

[ΩHk]e′H [M ] = e′H [ΩHk ⊗ M ]

= e′H [ΩHM ⊕ (H−projective)]

= e′H [ΩHM ]

and we are done. �



Chapter 7

Symmetric and Alternating Powers

Let T = 〈σ|σ2 = 1〉 be a cyclic group. Given a kG-module M , the group T acts on

the product M ⊗ M by:

σ(x ⊗ y) = y ⊗ x

If the characteristic of the base field k is odd or zero, the group algebra kT has

primitive orthogonal idempotents e = 1
2
(1 + σ), e′ = 1

2
(1 − σ). These idempotents

define a splitting

M ⊗ M = S2(M) ⊕ Λ2(M)

where the symmetric square S2(M) = e(M ⊗M) is the +1 eigenspace of the action

of T and spanned by elements of the form 1
2
(x ⊗ y + y ⊗ x) and the alternating

square Λ2(M) = e′(M ⊗M) is the −1 eigenspace of the action, spanned by elements

1
2
(x ⊗ y − y ⊗ x).

More generally, if C is a complex of kG-modules, T acts on C ⊗ C via

σ(x ⊗ y) = (−1)deg(x)deg(y)y ⊗ x

and provides a splitting C⊗C = S2(C)⊕Λ2(C). Furthermore, the Künneth formula

H(C ⊗ C) ∼= H(C) ⊗ H(C) implies that:

H(S2(C)) = S2(H(C ⊗ C)

H(Λ2(C)) = Λ2(H(C ⊗ C))
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Lemma 7.1 Let G be a p-group and let k be a field of characteristic p �= 2. If n is

an even integer, then S2(Ωnk) = Ω2nk ⊕ (projective) and Λ2(Ωnk) is projective; if n

is odd, then Λ2(Ωnk) = Ω2nk ⊕ (projective) and S2(Ωnk) is projective.

Proof: Given any kG-module M of dimension m, we have dimk(S
2(M)) = m(m+

1)/2 and dimk(Λ
2(M)) = m(m − 1)/2. We also have an isomorphism Ωnk ⊗ Ωnk ∼=

Ω2n⊕(projective), where Ω2n is indecomposable and dimk(Ω
2nk) ≡ 1 mod p; it follows

that any direct summand of Ωnk ⊗ Ωnk is projective if and only if its dimension is

divisible by p. If n is even, dimk(Ω
nk) ≡ 1 mod p, so dimk(Λ

2(Ωnk)) ≡ 0 mod p and

Λ2(Ωnk) is projective. If n is odd, dimk(Ω
nk) ≡ −1 mod p, so dimk(S

2(Ωnk)) ≡ 0

mod p and S2(Ωnk) is projective. The rest follows immediately. �

If H is a normal subgroup of G, the module ΩHk is just the inflation from G/H

to G of ΩkG/H , and we get the following corollary:

Corollary 7.2 Let G be a p-group with normal subgroup H and let k be a field of

characteristic p �= 2. If n is an even integer, then S2(Ωn
Hk) = Ω2n

H k⊕(H−projective)

and Λ2(Ωn
Hk) is projective relative to H; if n is odd, then Λ2(Ωn

Hk) = Ω2n
H k ⊕

(H−projective) and S2(Ωn
Hk) is projective relative to H. In these decompositions,

all H-projective indecomposable summands are of the form kH↑G.

Proof: Since ΩHk = infG,H(ΩkG/H), applying the previous lemma to ΩnkG/H

and inflating the results to G proves the corollary. �

Proposition 7.3 Let M and N be kG-modules. The symmetric and alternating

squares of the tensor product M ⊗ N may be decomposed as:

S2(M ⊗ N) ∼= S2(M) ⊗ S2(N) ⊕ Λ2(M) ⊗ Λ2(N)

Λ2(M ⊗ N) ∼= S2(M) ⊗ Λ2(N) ⊕ Λ2(M) ⊗ S2(N)
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Proof: It is clear that we have the following decomposition:

(M ⊗ N) ⊗ (M ⊗ N) ∼= (M ⊗ M) ⊗ (N ⊗ N)

We have decompositions

(M ⊗ N) ⊗ (M ⊗ N) = S2(M ⊗ N) ⊕ Λ2(M ⊗ N)

(M ⊗ M) ⊗ (N ⊗ N) = (S2(M) ⊕ Λ2(M)) ⊗ (S2(N) ⊕ Λ2(N))

Matching the +1 and −1 eigenspaces of the action of T to these decompositions

yields the formulas of the proposition. �

Corollary 7.4 Let M be a kG-module and let H be a normal subgroup of G. If n

is an even integer, we have isomorphisms

S2(ΩnM) ∼= Ω2n(S2(M)) ⊕ (projective)

Λ2(ΩnM) ∼= Ω2n(Λ2(M)) ⊕ (projective)

S2(Ωn
HM) ∼= Ω2n

H (S2(M)) ⊕ (H−projective)

Λ2(Ωn
HM) ∼= Ω2n

H (Λ2(M)) ⊕ (H−projective)

and if n is odd, we have isomorphisms

S2(ΩnM) ∼= Ω2n(Λ2(M)) ⊕ (projective)

Λ2(ΩnM) ∼= Ω2n(S2(M)) ⊕ (projective)

S2(Ωn
HM) ∼= Ω2n

H (Λ2(M)) ⊕ (H−projective)

Λ2(Ωn
HM) ∼= Ω2n

H (S2(M)) ⊕ (H−projective)

Proof: Since Ωnk ⊗ M ∼= ΩnM ⊕ (projective) and Ωn
Hk ⊗ M ∼= Ωn

HM ⊕
(H−projective), the result follows directly from 7.1, 7.2, and 7.3. �
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Remark 7.5 Generalizing this approach, one may observe that if M is a module

for any Hopf k-algebra, the symmetric group Sn acts naturally on the tensor power

module M⊗n by permuting the tensor basis, and any decomposition

1 =
∑

ej ∈ kSn

of the identity element of kSn into orthogonal idempotents yields a direct sum decom-

position

M⊗n =
⊕

ej(M
⊗n)

of the tensor power. This approach provides many of the strongest general results

known on tensor decomposition.



Chapter 8

Nilpotent Elements of Commutative Rings

In this chapter, we develop a context in which we will be able to present our results

and those of earlier papers in a uniform manner. Recall that lemma 6.8 shows that

the action of the translation operation ΩH(−) on elements of a0(G, H)p is equiva-

lent to multiplication by [ΩHk]. The following definition abstracts this approach to

periodicity.

Definition 8.1 Let R be a commutative ring and let r1, r2 ∈ R. We will say that

r2 is of period n with respect to r1, or n-periodic relative to r1, if n is the smallest

positive integer such that rn
1 r2 = r2.

The next lemma makes explicit the connection between periodicity in the sense

of the preceding definition, periodicity of a module, and periodicity of a module

relative to a subgroup.

Lemma 8.2 Let M be a kG-module, let H be a subgroup of G, and let e be the

idempotent in a(G) such that ea(G) = a0(G, H). Then M is periodic of period n

relative to H if and only if e[M ] ∈ a(G) is periodic of period n with respect to [ΩHk].

Proof: This is a direct consequence of 6.8 and the preceding definition. �

Note that if r2 is n-periodic relative to r1, then any positive power ri
2 is of period

at most n with respect to r1.

The following result gives us a general construction and method of proof for

nilpotent elements.
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Proposition 8.3 Let R be a commutative ring and let r1, r2 ∈ R be elements such

that r2 is of period two with respect to r1 and n is the smallest positive integer such

that rn
2 is of period one with respect to r1. Then the element ν = r2−r1r2 is nilpotent

of degree at most n. Provided that 2 ∈ R is not a zero divisor, ν is of nilpotence

degree n.

Proof: First, note that r2 − r1r2 �= 0, since r2 is not of period one relative to r1.

On the other hand, we can factor ν = (1 − r1)r2 and write

νn = ((1 − r1)r2)
n

= (1 − r1)
nrn

2

= (1 − r1)
n−1(1 − r1)r

n
2

= (1 − r1)
n−10

= 0

since rn
2 = r1r

n
2 by assumption. Finally, if 2 is not a zero divisor, consider the element

s = 1
2
(1 − r1), adjoining 1

2
to R if necessary. This element acts as an idempotent on

any element r ∈ R of period two with respect to r1, in the sense that s2r = sr:

s2r = (1
2
(1 − r1))

2r

= 1
4
(1 − 2r1 + r2

1)r

= 1
4
(r − 2r1r + r2

1r)

= 1
4
(2r − 2r1r)

= 1
2
(1 − r1)r

= sr

By induction, if r is of period two with respect to r1, then sir = sr for all positive

integers i. Furthermore, for any r ∈ R, it is clear that sr = 0 if and only if r is of



39

period 1 with respect to r1. It follows that (sr2)
j = srj

2 �= 0 for j < n, and likewise

νj �= 0 for j < n, since ν = 2sr2. Thus ν is of nilpotence degree n. �

Remark 8.4 Every nilpotent described in [3] and [7], which is to say every published

example known to the author, may be viewed as an example of this construction. In

[3], let r1 = [Ωk] or, in a few cases, r1 = [Ω̃R]; then r2 = e1G
[Lζ ] is of period two

with respect to r1 and r2
2 is of period one with respect to r1. In [7], take r1 = [Ωk]

and r2 = e1G
[M ], where M is any one of the modules Heldner uses.

The next propositions describe a way to use nilpotents of low degree to construct

nilpotents of higher degree.

Proposition 8.5 Let R be a commutative ring, let r1, r2 ∈ R be elements of nilpo-

tence degrees n1 and n2 respectively such that rn1−1
1 rn2−1

2 �= 0. Then the element

ν = r1 + r2 is of nilpotence degree at most n1 + n2 − 1. If (n1 + n2 − 2)! is not a zero

divisor in R, then ν is of nilpotence degree n1 + n2 − 1.

Proof: First, it is clear that νn1+n2−1 = 0, since every term in the binomial

expansion of (r1 + r2)
n1+n2−1 is a multiple of either rn1

1 or rn2
2 . Next, assume that

(n1 + n2)! is not a zero divisor in R, and consider νn1+n2−2 = (r1 + r2)
n1+n2−2.

Expanding the right hand side of the equality, we note that only one term in the

resulting sum is not a multiple of either rn1
1 = 0 or of rn2

2 = 0; we thus have

νn1+n2−2 =
(

n1+n2−2
n1−1

)
nn1−1

1 nn2−1
2 , which is nonzero by assumption. �

The previous result may be extended to arbitrary finite sums of nilpotents; the

proof is straightforward and omitted:

Proposition 8.6 Let R be a commutative ring, and let r1, r2, · · · , rm ∈ R be of

nilpotence degrees n1, n2, · · · , nm respectively. Suppose that Πm
i=1r

ni−1
i �= 0, and that

(
∑m

i=1 ni−1)! is not a zero divisor in R. Then the element ν =
∑m

i=1 ri is of nilpotence

degree (
∑m

i=1 ni) − m + 1.
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Some attention has been given to the question of how high the nilpotence degree

of a nilpotent element of a(G) can be; the next result implies that one may construct

a nilpotent element of arbitrarily high degree, provided that one is willing to use an

elementary abelian group of arbitrarily high rank in the process.

Proposition 8.7 Let k be a field, and let G1 and G2 be arbitrary finite groups. Let

x1 ∈ a(G1) be of nilpotence degree n1 and x2 ∈ a(G2) be of nilpotence degree n2.

Then, identifying x1 and x2 with their inflations to a(G), the element ν = x1 +

x2 ∈ a(G1 × G2) is of nilpotence degree n1 + n2 − 1. More generally, given x1 ∈
a(G1), x2 ∈ a(G2), · · · , xm ∈ a(Gm) of nilpotence degrees n1, n2, · · · , nm respectively,

and G =
∏m

i=1 Gi, the element ν =
∑m

i=1 xi ∈ a(G) is nilpotent of nilpotence degree

(
∑m

i=1 ni) − m + 1.

Proof: In the first case, the product xn1−1
1 xn2−1

2 is nonzero by corollary 6.4, and

the result follows immediately from proposition 8.5. Extending the result to the

second case is straightforward. �



Chapter 9

Modules for Z/p × Z/p

Our arguments will use modules constructed by generators and relations. We start

constructing them here.

Let p be an odd prime.

Definition 9.1 Let G = 〈a, b|ap = bp = [a, b] = 1〉 be the elementary abelian group

of order p2, and let Ha = 〈a〉 and Hb = 〈b〉. Let α = a − 1 and β = b − 1 ∈ kG,

so that αp = βp = 0, and α and β generate Rad(kG). By Vi we will mean the

indecomposable kHb-module of dimension i, so that V1 = kHb
, Vp−1 = ΩkHb

, and

Vp = kHb as a kHb-module. By Di we will mean the induced module Vi↑G.

Lemma 9.2 i) The module Di is a self-dual, indecomposable, relatively Hb-

projective module of dimension ip, and its head Di/Rad(Di) and socle Soc(Di)

are one-dimensional.

ii) There are isomorphisms of the form:

Di
∼= infG,Hb

(Vi) ⊗ kHb
↑G,

Di↓Hb
∼=

p⊕
j=1

Vi,

Di↓Ha
∼=

i⊕
j=1

kHa

iii) If x is any generator of Di, then Soc(Di) is generated by βi−1αp−1x.
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Proof: i) Since kH is cyclic, every kH-module is self-dual and every indecom-

posable kH-module is absolutely indecomposable and uniserial. Now apply 5.2, and

observe that

dimk(HomkG(k, Di)) = dimk(HomkG(Di, k)) = 1

by 3.4.

ii) The isomorphisms follow directly from 5.2 and 3.4.

iii) Since the head Di/Rad(Di) is one-dimensional, the module Di is generated by

a single element. If x is such an element, then βi−1αp−1x is annihilated by Rad(kG),

so it must lie in Soc(Di), which is one-dimensional, and so βi−1αp−1x spans it. �

Since G is a p-group, the free (left) kG-module kGkG is indecomposable. Since

Rad(kG) = Ωk is generated by α and β, we get an easy explicit presentation:

Lemma 9.3 There is an isomorphism of the form:

Ωk ∼= 〈u1, u2|βp−1u1, α
p−1u2, αu1 − βu2〉

Proof: The elements u1 and u2 encode the relations on α and β respectively, and

α 
→ u1

β 
→ u2

gives the isomorphism. �

We will also need a presentation for Ω−1k:

Lemma 9.4 There is an isomorphism of the form:

Ω−1k ∼= 〈v|αp−1βp−1v〉

Proof: This follows directly from the fact that Ω−1k ∼= kG/Soc(kG). �

We will deal with the operations Ω of translation and ΩHb
of translation rel-

ative to Hb in what follows. In some respects, translation relative to Hb is easier
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to work with. Since Hb is normal, the module ΩHb
k can be expressed as an infla-

tion infG,G/Hb
(ΩkG/Hb

). Because the quotient group G/Hb
∼= Ha is cyclic, we know

that ΩkG/Hb
⊗ ΩkG/Hb

= kG/Hb
⊕ (projective) and Ω2kG/Hb

= kG/Hb
; it follows that

Ω2
Hb

kG = kG. As an important consequence, we have the following result:

Lemma 9.5 If M is an indecomposable kG-module and not projective relative to

Hb, then M is periodic relative to Hb of period one or two.

Proof: By proposition 7.2, Ω2
Hb

M is a direct summand of Ω2
Hb

k⊗M = k⊗M ∼= M,

and similarly Ω−2
Hb

(Ω2
Hb

M) ∼= M is a summand of Ω−2
Hb

k ⊗ Ω2
Hb

M = k ⊗ Ω2
Hb

M ∼=
Ω2

Hb
M , so M ∼= Ω2

Hb
M . �

Using the presentation for Ωk as the beginning of a projective resolution of k,

we can construct a presentation for Ω2k:

Lemma 9.6 There is an isomorphism of the form:

Ω2k ∼= 〈w1, w2, w3|βw1, αw3, αw1 − βp−1w2, βw3 − αp−1w2〉

Proof: Let 〈û1〉⊕〈û2〉 be a projective cover of Ωk so that, using the presentation

of the previous lemma, û1 
→ u1 and û2 
→ u2. Then the elements w1, w2 and w3

correspond to the generators βp−1u1,−αp−1u2, and αu1 − βu2 of the kernel of the

cover. �

If ζ ∈ Hn(G, k), then ζ can be represented by a unique homomorphism ζ̂ : Ωnk →
k, and such a map allows us to associate a unique module Lζ = Ker(ζ̂) to ζ.

We wish to consider a particular subset of the modules of type Lζ associated to

cohomology elements of degree 2. We use the presentation of Ω2k given in 9.1.

Definition 9.7 Given λ ∈ k, define ζ̂(λ) ∈ HomkG(Ω2k, k) by:

ζ̂(λ)(w1) = 0
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ζ̂(λ)(w2) = −λ

ζ̂(λ)(w3) = 1

By 2.2, ζ̂(λ) extends to a kG-homomorphism. We then define L(λ) = Ker(ζ̂).

It is clear that L(λ) is the module of type Lζ associated to the cohomology

element cls(ζ̂(λ)) ∈ H2(G, k).

Lemma 9.8 There is an isomorphism of the form:

L(λ) ∼= 〈l1, l2|βl1, β
p−1l2 − αl1 − λβp−2αp−1l2〉

Proof: Since it is the kernel of the map ζ̂(λ), the module L(λ) is generated by

the elements w1 and w2 +λw3 in Ω2(k). Setting l1 = w1 and l2 = w2 +λw3 gives the

presentation. �

Proposition 9.9 Let λ ∈ k× and let L = L(λ) using the presentation in lemma

9.8. The restrictions L↓Ha and L↓Hb
have decompositions

L↓Ha = 〈l1〉Ha ⊕
p−2⊕
i=0

〈βil2〉Ha

L↓Hb
= 〈l1〉Hb

⊕
p−1⊕
i=0

〈αil2〉Hb

where

〈l1〉Ha
∼= 〈βil2〉Ha

∼= kHa for 1 ≤ i ≤ p − 1

〈l1〉Hb
∼= kHb

〈αil2〉Hb
∼= kHb for 1 ≤ i < p − 1

〈αp−1l2〉Hb
∼= ΩkHb

Proof: Follows directly from the presentation. �
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Lemma 9.10 Let λ ∈ k× and let L = L(λ) as in 9.8. The map

γ: L → k

γ: l1 
→ 1k

γ: l2 
→ 0

defines a short exact sequence:

0 −−−→ Ω−1k −−−→ L
γ−−−→ k −−−→ 0

Proof: The kernel of γ is generated by the element l2. By the relations, the

annihilator of l2 is the socle of kG, so 〈l2〉 ∼= kG/Soc(kG) ∼= Ω−1k; the rest is

clear. �



Chapter 10

The Classes M(−,−; i)

As in the previous chapter, G = Z/p × Z/p and k is of characteristic p > 2. By L

we will mean any module of the form L(λ) for λ ∈ k× with the presentation given

in lemma 9.8. Recall that if 1 ≤ i ≤ p, we defined Vi to be the indecomposable

kHb-module of dimension i, and Di to be the induced module Vi↑G. We will also

need to use the kHb-maps θVi
: Di → Vi as defined in 3.6.

In this chapter, we define classes of modules M(−,−; i) which arise as kernels of

maps L(λ) → Di.

Let us consider HomkG(L, Di). Since

HomkG(L, Di) ∼= HomkHb
(L↓Hb

, Vi)

by 3.4, and all indecomposable kHb-modules are uniserial, applying proposition 9.9

shows that HomkG(L, Di) is (p+1)-dimensional and the stable homomorphism group

StHomkG(L, Di) is two-dimensional.

Given any homomorphism f ∈ HomkG(L, Di), the values f(l1) and f(βi−1αp−1l2)

determine the stable class of h, as the next set of results demonstrate.

Lemma 10.1 Let f ∈ HomkG(L, Di), let 1 ≤ i < p− 1 and let x generate Di. Then

f(l1) = µβi−1αp−1x and f(βi−1αp−1l2) = νβi−1αp−1x for some µ, ν ∈ k The map f

is surjective if and only if ν �= 0.

Proof: By 9.2, βi−1αp−1x generates Soc(Di). Since

αl1 = βp−1l2 − λβp−2αp−1l2
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is a multiple of βp−2, and βp−2 annihilates Di, it follows that f(αl1) = 0, and so

αf(l1) = 0. Furthermore, βf(l1) = f(βl1) = f(0) = 0. The image f(l1) is thus

annihilated by Rad(kG), and must therefore lie in Soc(Di), and so be a multiple of

βi−1αp−1x.

Similarly, f(βi−1αp−1l2) is annihilated by Rad(kG), so it too lies in Soc(Di) and

is a multiple of βi−1αp−1x.

Finally, if ν �= 0, then

βi−1αp−1f(l2) = f(βi−1αp−1l2)

= νβi−1αp−1x

which implies that f(l2) − νx lies in Rad(Di), and so f(l2) generates Di. If ν = 0,

then f(l2) itself lies in Rad(Di); since f(l1) lies in Soc(Di) ⊆ Rad(Di), the image of

f lies in the radical and so h cannot be surjective. �

Remark 10.2 The proof of the previous proposition shows that, for computations

that only depend on the stable class of f, we might as well assume that f(l2) = νx if

f(βi−1αp−1l2) = νβi−1αp−1x.

Proposition 10.3 Any two maps f, f ′ ∈ HomkG(L, Di) are stably equivalent if and

only if f(l1) = f ′(l1) and f(βi−1αp−1l2) = f ′(βi−1αp−1l2).

Proof: Suppose (f − f ′)(l1) = (f − f ′)(βi−1αp−1l2) = 0. Then θVi
◦ (f − f ′) ∈

HomkHb
(M↓Hb

, Vi) also kills l1 and βi−1αp−1l2. But by proposition 9.9, θVi
◦ (f − f ′)

then kills 〈l1〉Hb
∼= kHb

, and its restriction to the summand 〈αp−1l2〉Hb
∼= ΩkHb

is

not surjective and thus factors through a projective by 4.14; since its restriction to

the non-projective part of L↓Hb
factors through a projective, the whole map factors

through a projective. By 3.4, f − f ′ factors through a projective as well, and so f

is stably equivalent to f ′. Conversely, if f − f ′ does not kill l1 or βi−1αp−1l2, then

θVi
◦ (f − f ′) does not factor through a projective, and so neither does f − f ′. �
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Corollary 10.4 For any choice of values µ, ν ∈ k, there is a map f ∈ HomkG(L, Di)

for which f(l1) = µβi−1αp−1x and f(βi−1αp−1l2) = νβi−1αp−1x.

Proof: Given any map f ∈ HomkG(L, Di), its stable equivalence class is entirely

determined by the values of f(l1) and f(βi−1αp−1l2), and the stable homomorphism

group StHomkG(L, Di) is two-dimensional. �

Definition 10.5 Let λ1, λ2 ∈ k be nonzero, let 1 ≤ i < p− 1, let L = L(λ2) and let

x be a generator of Di. Choose f ∈ HomkG(L, Di) so that f(l1) = −λ1β
i−1αp−1x and

f(βi−1αp−1l2) = βi−1αp−1x. By M(λ1, λ2; i), we shall mean Ker(f). By proposition

10.3, M(λ1, λ2; i) is well-defined, and by lemma 10.1 f is surjective, so we have a

short exact sequence:

0 → M(λ1, λ2; i) → L → Di → 0

We will refer to the set of modules {M(λ1, λ2; i)}λ1,λ2∈k× as M(−,−; i). The case

where i = p−2 will be of special interest. By M(λ1, λ2) we will mean M(λ1, λ2; p−2),

and by M(−,−) we will mean the set {M(λ1, λ2)}λ1,λ2∈k×.

As a submodule of L(λ2), M(λ1, λ2; i) is generated by elements m1 = l1 +

λ1β
i−1αp−1l2 and m2 = βil2. Since L(λ2)↓Ha is a free kHa-module of rank p, and

Di↓Ha is a free kHa-module of rank i, M(λ1, λ2; i)↓Ha is a free kHa-module of

rank p − i. It is straightforward to verify that β acts on M(λ1, λ2; i) by βm1 =

λ1α
p−1m2, β

p−i−1m2 = αm1 + λ2β
p−i−2αp−1m2.

Proposition 10.6 Let λ1, λ2 ∈ k×, let 1 ≤ i < p − 1 and let M = M(λ1, λ2; i). We

have decompositions

M↓Hb
= 〈m1〉Hb

⊕
p−2⊕
j=0

〈αjm2〉Hb

M↓Ha = 〈m1〉Ha ⊕
p−i−1⊕
j=0

〈βjm2〉Ha
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where we have:

〈m1〉Hb
∼= Vp−i

〈αjm2〉Hb
∼= Vp−i for 0 ≤ j < p − 2

〈m1〉Ha
∼= 〈βjm2〉Ha

∼= kHa form 0 ≤ j ≤ p − i − 2

Proof: First, βp−i−1m1 = λ1β
p−2αp−1l2 �= 0 but βp−im1 = 0, so 〈m1〉Hb

∼= Vp−i.

We know from the decomposition of L↓Hb
that 〈αjl2〉Hb

∼= kHb for 0 ≤ j < p − 1,

so 〈αjm2〉Hb
= 〈αjβil2〉Hb

∼= Vp−i for 0 ≤ j < p − 1. Since βp−i−1m1 = λ1β
p−2αp−1l2

does not lie in
⊕p−2

j=0〈αjm2〉Hb
, we get the direct sum decomposition as claimed.

The decomposition of M↓Ha is easier; we need only observe that h is a surjective

map from the free kHa-module L↓Ha of rank p to the free kHa-module Di↓Ha of rank

i; then M↓Ha is a free kHa-module of rank p − i and the given elements constitute

a minimal generating set. �

The particular case where i = p − 2 motivates the following definition:

Definition 10.7 Let λ1 and λ2 be arbitrary elements of k×. We define β(λ1, λ2) to

be the following 2 × 2 matrix with entries in kHa:

β(λ1, λ2) =


 0 α

λ1α
p−1 λ2α

p−1




Remark 10.8 This definition gives a presentation of the module M(λ1, λ2) in terms

of how β acts on the underlying free kHa-module on the generators m1 and m2. We

will find this presentation convenient for some computations.

Proposition 10.9 Let λ1 and λ2 be arbitrary elements of k×, and let 1 ≤ i < p−1.

The module M = M(λ1, λ2; i) is indecomposable.

Proof: By 10.6, we know that M(λ1, λ2)↓Hb
decomposes as the direct sum of

p copies of Vp−i, and M↓Ha is a free kHa-module of rank p − i. The dimension of
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any direct summand of M must therefore be a multiple of both p and p − i. Since

dimk(M) = p(p − i), it follows that M has no proper direct summands. �

Proposition 10.10 Let λ1 and λ2 be arbitrary elements of k×, and let 1 ≤ i < p−1.

The module M = M(λ1, λ2; i) is periodic of period 2.

Proof: Since MHa is free, and G/Ha
∼= Hb is cyclic, proposition 4.21 states that

M has period one or two. If M were of period one, there would exist a short exact

sequence of the form

0 → M → P → M → 0

with projective middle term, and thus 2 dimk(M) would be a multiple of p2 =

dimk(kG). Since 0 < dimk(M) = p(p − i) < p2, and p is odd, this is impossible,

thus M is not of period one. �

Proposition 10.11 Let λ1, λ
′
1, λ2, and λ′

2 be nonzero elements of k. Let M =

M(λ1, λ2) and M ′ = M(λ′
1, λ

′
2). Then

dimk(HomkG(M, M ′)) =

{ 2p if λ1 �= λ′
1,

2p + 1 if λ1 = λ′
1 and λ2 �= λ′

2,

2p + 2 if λ1 = λ′
1 and λ2 = λ′

2.

Proof: By 10.6, M↓Ha and M ′↓Ha are free kHa-modules of rank 2. Let us pick

generators m1, m2 and m′
1, m

′
2 of M and M ′ be pairs of kHa-generators on which

β acts via the matrices β(λ1, λ2) and β(λ′
1, λ

′
2) respectively. We may then realize

HomkHa(M, M ′) as the group of 2×2 matrices with elements in End(kHa). Since kHa

is a commutative ring, kHa
∼= End(kHa), with the isomorphism sending x ∈ kHa to

multiplication by x. Using this identification, we may write any kHa-homomorphism

f ∈ HomkHa(M, M ′) as a matrix

f =


 f11 f12

f21 f22



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with entries fij in kHa, and any such matrix defines a kHa-homomorphism. Since

dimk(kHa) = p, we see that dimk HomkHa(M, M ′) = 4p.

Any given kHa-homomorphism f is a kG-homomorphism if and only if it com-

mutes with the action of β; in terms of the corresponding matrices, f is a kG-

homomorphism if and only if we have:

β(λ′
1, λ

′
2)f − fβ(λ1, λ2) = 0

If we set

R1 = αf21 − λ1α
p−1f12

R2 = αf22 − αf11 − λ2α
p−1f12

R3 = λ′
1α

p−1f11 + λ′
2α

p−1f21 − λ1α
p−1f22

R4 = λ′
1α

p−1f12 + λ′
2α

p−1f22 − αf21 − λ2α
p−1f22

then the set of kG-homomorphisms in HomkHa(M, M ′) can be seen as the set of

solutions to the equations R1 = R2 = R3 = R4 = 0.

If we write

f11 =

p−1∑
j=0

f11,jα
j,

f12 =

p−1∑
j=0

f12,jα
j,

f21 =

p−1∑
j=0

f21,jα
j,

f22 =

p−1∑
j=0

f22,jα
j

then it is easy to see that the condition R1 = 0 is equivalent to the conditions

f21,j = 0, 0 ≤ j < p − 2,

f21,p−2 + λ1f12,1 = 0
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on the coefficients of f21 and f12, and thus is equivalent to p − 1 independent linear

relations. By a similar argument, the condition R2 = 0 imposes p−1 linear relations

on the coefficients of a kG-homomorphism f ; these relations are independent of one

another and of those imposed by R1 = 0, since f21 does not appear in R2 and f22

does not appear in R1.

Next, since αp−2R1 = αp−1f21 = 0, the relation R3 simplifies to:

R3 = λ′
1α

p−1f11 − λ1α
p−1f22 = 0

If λ1 = λ′
1, R3 is a multiple of αp−2R2, and thus redundant, and otherwise it imposes

a single additional linear relation.

Finally, adding R1 to R4 yields a relation:

R′
4 = λ′

1α
p−1f12 + λ′

2α
p−1f22 − λ1α

p−1f12 − λ2α
p−1f22

= (λ′
1 − λ1)α

p−1f12 + (λ′
2 − λ2)α

p−1f22

If λ′
1 = λ1 and λ′

2 = λ2, then R′
4 is zero and imposes no relations; otherwise it

imposes a single additional linear relation.

We conclude that HomkG(M, M ′) is the subspace of solutions to a set of 2p,

2p − 1 or 2p − 2 linearly independent linear equations on the 4p-dimensional space

HomkHa(M, M ′), and the result follows. �

Corollary 10.12 If M = M(λ1, λ2) and M ′ = M(λ′
1, λ

′
2) are modules in M(−,−),

then M ∼= M ′ if and only if λ1 = λ′
1 and λ2 = λ′

2.

Proof: Clear. �

We now show that the class M(−,−) is closed under translation relative to Hb.

Proposition 10.13 Let M = M(λ1, λ2). Then ΩHb
(M) ∼= M(λ1,−λ2).



53

Proof: We prove the result by constructing the natural Hb-projective cover

ρ: M↓Hb
↑G � M

ρ: g ⊗ m 
→ gm

of M, restricting ρ to a direct summand of M↓Hb
↑G, and analyzing the kernel of the

restriction.

By proposition 10.6, we have the following:

M↓Hb
= 〈m1〉Hb

⊕
p−2⊕
j=0

〈αjm2〉Hb

∼=
p−1⊕
j=0

V2

It follows that there is a corresponding decomposition of the induced module:

M↓Hb
↑G = 〈1G ⊗ m1〉G ⊕

p−2⊕
j=0

〈1G ⊗ αjm2〉G

Let ρ′ denote the restriction of ρ to 〈1G ⊗ m1〉G ⊕ 〈1G ⊗ m2〉G.

By definition, ρ(1G ⊗ m1) = m1 and ρ(1G ⊗ m2) = m2 generate M , so ρ′ is sur-

jective, thus Hb-split. The kernel of ρ′ has generators corresponding to the relations

on m1 and m2; that is, Ker(ρ′) is generated by the following elements:

m′
1 = β(1G ⊗ m1) − λ1α

p−1(1G ⊗ m2),

m′
2 = −β(1G ⊗ m2) + λ2α

p−1(1G ⊗ m2) + α(1G ⊗ m1)

(The motivation for our choice of signs will become clear in the next step.)

Since M↓Ha is a free kHa-module on two generators and

〈1G ⊗ m1〉G↓Ha ⊕ 〈1G ⊗ m2〉G↓Ha

is a free kHa-module with four generators, Ker(ρ′)↓Ha is a free kHa-module on two

generators. It is straightforward to then check that β acts on m′
1 and m′

2 as the
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matrix β(λ1,−λ2), so Ker(ρ′) ∼= M(λ1,−λ2). On the other hand, ρ′ is an Hb-split

surjection from an Hb-projective module onto M , so the Hb-core of Ker(ρ) is ΩH(M).

Since M(λ1,−λ2) is indecomposable, we conclude that ΩH(M) = M(λ1,−λ2). �

Proposition 10.14 Let M = M(λ1, λ2). Then M∗ ∼= M(−λ1,−λ2).

Proof: Let α′ = a−1 − 1. Given f ∈ M∗ = Homk(M, k) and m ∈ M , we have:

(α′f)(m) = (a−1f)(m) − f(m)

= f(am) − f(m)

= f(αm)

Likewise, if we let β ′ = b−1 − 1, then (β ′f)(m) = f(βm).

The elements αim1 and αim2 for 0 ≤ i < p form a k-basis of M. We will

write (αim1)
∗ and (αim2)

∗ for the elements of the dual basis of M∗. By an easy

computation, we have that α′(αimj)
∗ = (αi−1mj)

∗ for 1 ≤ i < p and j = 1, 2. It

follows that the elements (αp−1m1)
∗ and (αp−1m2)

∗ generate M∗ as a kHa-module,

and the relations on m1 and m2 imply the following relations on (αp−1m1)
∗ and

(αp−1m2)
∗ :

β ′(αp−1m1)
∗ = (αp−2m2)

∗

= α′(αp−1m2)
∗,

β ′(αp−1m2)
∗ = λ1(m1)

∗ + λ2(m1)
∗

= λ1α
′p−1

(αp−1m1)
∗ + λ2α

′p−1
(αp−1m2)

∗

We would like to present M∗ using generators m′
1 and m′

2 with relations expressed

in terms of α and β rather than α′ and β ′. To this end, observe that α′ = −a−1α and

α′p−1 = αp−1; similar relations hold for β ′. Furthermore, since M↓Hb
is a direct sum

of two-dimensional uniserial modules, so is M∗↓Hb
, and it follows that β ′ = −b−1β
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acts identically to −β on M∗. Taking these facts into account, we may rewrite the

relations as follows:

−β(αp−1m1)
∗ = −a−1α(αp−1m2)

∗,

−β(αp−1m2)
∗ = λ1α

p−1(αp−1m1)
∗ + λ2α

p−1(αp−1m2)
∗

Now set m′
1 = a−1(αp−1m2)

∗ + λ2α
p−2(αp−1m1)

∗ and m′
2 = (αp−1m1)

∗. The ele-

ments m′
1 and m′

2 also generate M∗ as a kHa-module, and the previous relations are

equivalent to:

βm′
1 = −λ1α

p−1m′
2,

βm′
2 = αm′

1 − λ2α
p−1m′

2

These are precisely the relations for M(−λ1,−λ2), proving the result. �

Proposition 10.15 Let λ1, λ2 ∈ k be nonzero, and let M = M(λ1, λ2). Then the

modules M, ΩHb
(M), and M∗ are pairwise nonisomorphic.

Proof: This is an immediate consequence of corollary 10.12 and propositions

10.13 and 10.14. �



Chapter 11

Tensor Powers of Complexes

We continue to use all notation as in the previous chapter.

Proposition 11.1 There is a split short exact sequence of the form:

0 −−−→ S2(Ω−1(k)) −−−→ S2(L)
γ′−−−→ L −−−→ 0

We may choose a split map φ: L → S2(L) for this sequence so that γ′ ◦φ = idL, and

so that φ(l1) = l1 ⊗ l1 + βp−1y and φ(αp−1l2) = αp−1l2 ⊗ l1 + l1 ⊗ αp−1l2 + βy′ for

y, y′ ∈ S2(Ω−1k).

Proof: Let γ: L → k, γ(l1) = 1, γ(l2) = 0 be as in lemma 9.10, so we have a short

exact sequence:

0 −−−→ Ω−1k −−−→ L
γ−−−→ k −−−→ 0

We truncate this sequence to obtain a complex

C: 0 −−−→ L
γ−−−→ k −−−→ 0

with homology Ω−1k in degree 1. Taking the antisymmetric square and simplifying

yields a complex

Λ2(C): 0 −−−→ S2(L)
γ′−−−→ L −−−→ Λ2(k) −−−→ 0

with homology S2(Ω−1k) in degree 2, where γ′ is the restriction of the map γ′(x⊗y) =

γ(x)y to S2(L). Since Λ2(k) = 0, we have an exact sequence

0 −−−→ S2(Ω−1k) −−−→ S2(L)
γ′−−−→ L −−−→ 0

56
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as desired.

The module S2(Ω−1k) is projective by lemma 7.1, so the sequence splits and there

exists a map φ: L → S2(L) such that γ′ ◦φ = idL. Since γ′(l1 ⊗ l1) = γ(l1)l1 = l1, we

have γ′(l1⊗l1−φ(l1)) = 0, so φ(l1) = l1⊗l1+z for some z ∈ S2(Ω−1k). Furthermore,

since β kills l1, it kills l1⊗l1 by 2.3 and φ(l1), so βz = 0. Since S2(Ω−1k) is projective,

its restriction to Hb is projective, and thus there must exist some y ∈ S2(Ω−1k) such

that βp−1y = z. Similarly,

γ′(αp−1l2 ⊗ l1 + l1 ⊗ αp−1l2) = αp−1l2

so

φ(αp−1l2) = αp−1l2 ⊗ l1 + l1 ⊗ αp−1l2 + z′

for some z′ ∈ S2(Ω−1k). Then since βl1 = 0 and βp−1αp−1l2 = 0, applying 2.3 gives

us the following:

0 = φ(βp−1αp−1l2)

= βp−1φ(αp−1l2)

= βp−1(αp−1l2 ⊗ l1 + l1 ⊗ αp−1l2 + z′)

= βp−1αp−1l2 ⊗ l1 + l1 ⊗ βp−1αp−1l2 + βp−1z′

= βp−1z′

Thus there exists y′ ∈ S2(Ω−1k) such that βy′ = z′. This finishes the proof. �



Chapter 12

The Symmetric Square of M(−,−; 1)

We retain the notation of earlier chapter.

For the rest of this chapter, fix λ1, λ2 ∈ k be nonzero, let x be a generator of

D1 = kHb
↑G, let L = L(λ2), and let M = M(λ1, λ2; 1). By construction of M , we

have a sequence

0 −−−→ M −−−→ L
f−−−→ D1 −−−→ 0

where f(l1) = −λ1α
p−1x and f(αp−1l2) = αp−1x.

The map f ⊗ f : L⊗L → D1 ⊗D1 sends symmetric tensors to symmetric tensors

and alternating tensors to alternating tensors, so f ⊗ f restricts to maps S2(L) →
S2(D1) and Λ2(L) → Λ2(D1), which by abuse of notation we will also call f ⊗ f

when it is clear from context which map we mean.

Proposition 12.1 The kernel of f ⊗ f : S2(L) → S2(D1) is isomorphic to the fol-

lowing module:

M(1
2
λ1, λ2; 1) ⊕

(p−1)/2⊕
j=1

Ω(D1) ⊕ (projective)

Proof: The map f ⊗ f is surjective, so the kernel is entirely determined by the

stable class of f ⊗ f . By 11.1 we have a splitting S2(L) = φ(L) ⊕ (projective), so it

suffices to determine the stable class of the restriction of f ⊗f to φ(L). In particular,

observe that

(f ⊗ f)(φ(l1)) = (f ⊗ f)(l1 ⊗ l1 + βp−1y)

58
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= (−λ1α
p−1x) ⊗ (−λ1α

p−1x) + βp−1(f ⊗ f)(y)

= λ2
1(α

p−1x ⊗ αp−1x)

where the last equality holds because β kills S2(D1), and also the following:

(f ⊗ f)(φ(αp−1l2)) = (f ⊗ f)(αp−1l2 ⊗ l1 + l1 ⊗ αp−1l2 + βy′)

= (αp−1x) ⊗ (−λ1α
p−1x)

+(−λ1α
p−1x) ⊗ (αp−1x) + β(f ⊗ f)(y′)

= −2λ1(α
p−1x ⊗ αp−1x)

Next, set x′ = 1
2
(x ⊗ αp−1x + αp−1x ⊗ x), and note that:

αp−1x′ = αp−1(1
2
(x ⊗ αp−1x + αp−1x ⊗ x))

= αp−1x ⊗ αp−1x

Since x′ is not annihilated by αp−1 and S2(D1) is a direct sum of copies of D1, it

follows that 〈x′〉 ∼= D1 is a direct summand of S2(D1); a dimension count shows the

following: S2(D1) = 〈x′〉 ⊕ N for some

N ∼=
(p−1)/2⊕

j=1

D1

Given this splitting, let ρ: S2(D1) → 〈x′〉 be the projection with kernel N and let

1 − ρ: S2(D1) → N denote the orthogonal projection 1S2(D1) − ρ.

We can then write f ⊗ f = (ρ ◦ (f ⊗ f), (1 − ρ) ◦ (f ⊗ f)) where the maps

ρ ◦ (f ⊗ f): S2(L) → 〈x′〉,

(1 − ρ) ◦ (f ⊗ f): S2(L) → N

reflect the splitting. Examining these homomorphisms, we see that:

(ρ ◦ (f ⊗ f))(l1) = λ2
1x

′
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and

(ρ ◦ (f ⊗ f))(αp−1l2) = −2λ1x
′

(1 − ρ) ◦ (f ⊗ f)(l1) = (1 − ρ) ◦ (f ⊗ f)(αp−1l2) = 0

Thus f ⊗ f is stably equivalent to ρ ◦ (f ⊗ f), while (1 − ρ) ◦ (f ⊗ f) factors

through a projective. Let F : φ(L) → 〈x′〉 be the restriction of ρ ◦ (f ⊗ f) to φ(L);

by proposition 10.3 and definition 10.5, ker(F ) = ker((−2λ1)
−1F ) ∼= M(1

2
λ1, λ2; 1);

the rest is straightforward. �

By taking the exact sequence

0 −−−→ M −−−→ L
f−−−→ D1 −−−→ 0

and moving around the triangle, we can construct an exact sequence

0 −−−→ L
f ′−−−→ D1 ⊕ (projective) −−−→ Ω−1(M) −−−→ 0

where f ′ is stably equivalent to f .

Corollary 12.2 The cokernel of f ′ ⊗ f ′ is isomorphic to the module:

Ω−1M(1
2
λ1, λ2; 1) ⊕

(p−1)/2⊕
j=1

D1 ⊕ (projective)

Proof: Since f ⊗f is an epimorphism and f ′⊗f ′ is a monomorphism, the core of

the cokernel of f ′⊗f ′ is just Ω−1 ker(f⊗f). Now apply the previous proposition. �

We can now prove the following result:

Proposition 12.3 There is a short exact sequence of the following form:

CΛ2(Ω−1M): 0 → Ω−1M(1
2
λ1, λ2; 1) ⊕

(p−1)/2⊕
j=1

D1 ⊕ (projective)

→ D1 ⊗ Ω−1(M) → Λ2(Ω−1(M)) → 0
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Proof: Truncate this sequence to obtain the complex

C: 0 → D1 ⊕ (projective) → Ω−1(M) → 0

with homology L in degree 1. The alternating square of this complex,

Λ2(C): 0 → S2(D1 ⊕ (projective)) → D1 ⊗ Ω−1M

→ Λ2(Ω−1(M)) → 0

has homology S2(L) in degree 2. We thus have an exact sequence:

0 → S2(L) → f ′ ⊗ f ′S2(D1 ⊕ (projective)) → D1 ⊗ Ω−1M

→ Λ2(Ω−1(M)) → 0

By the previous result, S2(D1 ⊕ (projective))/S2(L) is isomorphic to

Ω−1M(1
2
λ1, λ2; 1) ⊕

(p−1)/2⊕
j=1

D1 ⊕ (projective)

and we get the sequence CΛ2(Ω−1M) as claimed. �

Theorem 12.4 The symmetric square S2(M) is isomorphic to the module:

ΩΩHb
M(1

2
λ1, λ2; 1) ⊕

(p−3)/2⊕
j=1

D1 ⊕ (projective)

Proof: Consider the short exact sequence CΛ2(Ω−1M) of proposition 12.3. If we

restrict this sequence to Hb, we get:

CΛ2(Ω−1M)↓Hb
: 0 →

p(p+1)/2⊕
j=1

kHb
⊕ (projective)

→
p2⊕

j=1

kHb
⊕ (projective)

→
p(p−1)/2⊕

j=1

kHb
⊕ (projective) → 0
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By lemma 2.1, this sequence splits, so CΛ2(Ω−1M) is Hb-split. On the other hand, the

middle term of CΛ2(Ω−1M) is projective relative to Hb. It follows that:

ΩHΛ2(Ω−1M) ∼= Ω−1M(1
2
λ1, λ2; 1) ⊕ (Hb−projective)

By 7.2 and 7.3, we have:

Λ2(Ω−1M) ⊕ (projective) ∼= Ω−2(S2(M)) ⊕ (projective)

By 4.21, all kG-modules involved are of period one or two, so in particular:

Ω−2(S2(M)) ⊕ (projective) ∼= S2(M) ⊕ (projective)

Putting everything together, it follows that

S2(M) ∼= Ω−1
Hb

Ω−1M(1
2
λ1, λ2; 1) ⊕ (Hb−projective)

∼= ΩΩHb
M(1

2
λ1, λ2; 1) ⊕ (Hb−projective)

the last line by 4.21 and 9.5, and the fact that Ω and ΩH commute. Comparing the

restrictions S2(M)↓Hb
and (ΩM∗ ⊕ (Hb−projective))↓Hb

shows that the relatively

Hb-projective summand is of the form

(p−3)/2⊕
j=1

D1 ⊕ (projective)

which completes the proof. �



Chapter 13

A Nilpotent of Order 3

We continue to use the same definitions and notation as in the previous chapter,

and impose one additional condition: we require that p = 3. Since 3 − 2 = 1, the

classes M(−,−; 1) and M(−,−) are identical in this case. This allows us to prove

a number of results which either do not hold more generally, or which do appear to

hold in general but for which the proofs at p = 3 are substantially less complicated.

We will return to a discussion of the situation at other primes in chapter 14.

Proposition 13.1 Let λ1, λ2 ∈ k× and let M = M(λ1, λ2). The symmetric square

S2(M) is isomorphic to ΩM∗ ⊕ (projective).

Proof: If p = 3, then 1
2

= −1. By 10.13, 10.14, and 12.4, we then have:

S2(M) ∼= ΩΩHb
M(

1

2
λ1, λ2) ⊕ (projective)

∼= ΩΩHb
M(−λ1, λ2) ⊕ (projective)

∼= ΩM(−λ1,−λ2) ⊕ (projective)

∼= ΩM∗ ⊕ (projective)

�

Proposition 13.2 Let λ1, λ2 ∈ k× and let M = M(λ1, λ2). The alternating square

Λ2(M) is isomorphic to ΩΩHb
(M∗)⊕(Hb−projective), and the relative core of M⊗M

with respect to Hb is periodic relative to Hb of period 1.

63



64

Proof: Recall that ΩHM ∼= M(λ1,−λ2) by 10.13. By 7.4, we have isomorphisms

as follows:

S2(ΩHb
M) ⊕ (Hb−projective) ∼= S2(ΩHb

k ⊗ M)

∼= Ω2
Hb

Λ2(M) ⊕ (Hb−projective)

∼= Λ2(M) ⊕ (Hb−projective)

But by 10.13 and 13.1, we have:

S2(ΩHb
M) ∼= Ω(ΩHb

M)∗ ⊕ (projective)

∼= Ω(M(λ1,−λ2)
∗) ⊕ (projective)

∼= ΩM(−λ1, λ2) ⊕ (projective)

∼= ΩΩHb
M∗ ⊕ (projective)

Thus the relative core of Λ2(M) with respect to Hb is isomorphic to ΩΩHb
M∗. It

follows immediately that

M ⊗ M = ΩM∗ ⊕ ΩΩHb
M∗ ⊕ (Hb−projective)

and thus the relative core of M ⊗ M with respect to Hb is of period one relative to

Hb. �

Proposition 13.3 Let λ1, λ2 ∈ k×, let M = M(λ1, λ2), and let N = M⊕M∗. Then

N and the relative core of N ⊗N with respect to Hb are of period two relative to Hb,

and the relative core of N⊗3 with respect to Hb is of period one relative to Hb.

Proof: It is clear that N is of period two relative to Hb, since M∗ �∼= ΩHM by

proposition 10.15. Now consider the following tensor product:

N ⊗ N = M ⊗ M ⊕ M ⊗ M∗ ⊕ M∗ ⊗ M ⊕ M∗ ⊗ M∗
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By corollary 13.2, we know that the relative cores of M ⊗ M and M∗ ⊗ M∗ with

respect to Hb are of period one relative to Hb. However,

dimk(Soc(M ⊗ M∗)) = dimk HomkG(M, M) = 8

while

dimk(Soc(ΩHb
M ⊗ M∗)) = dimk HomkG(ΩHb

M, M) = 7

by 10.11. It follows that the relative core of M ⊗M∗ ∼= M∗ ⊗M with respect to Hb

is not of period one with respect to Hb, and so the relative core of N ⊗N is not. On

the other hand, the expansion of N⊗3 may be expressed as a direct sum of modules

isomorphic to M⊗3, M ⊗ M ⊗ M∗, M ⊗ M∗ ⊗ M∗, and (M∗)⊗3, all of which are of

period one relative to Hb. �

Theorem 13.4 Let M = M(λ1, λ2). Then the element

µ = [M ] − [ΩHb
(M)] + [M∗] − [ΩHb

(M∗)] ∈ a(kG)

is nilpotent of degree 3.

Proof: First, note that element µ may be expressed as a product:

µ = ([k] − [ΩHb
k])e′Hb

([M ⊕ M∗])

By 13.3 and 8.2, the element m = e′Hb
[M ⊕ M∗] ∈ a(G) is periodic with respect to

[ΩHb
k] of period two, as is m2, while m3 is of period one with respect to [ΩHb

k]. The

theorem follows immediately from 8.3. �

Remark 13.5 i) The theorem depends on the fact that the elements e′Hb
[M ]2 and

e′Hb
[M∗]2 are of period one relative to [ΩHb

k], but that e′Hb
[M ][M∗] is of period two

relative to [ΩHb
k]. In fact, the same argument shows that

([k] − [ΩHb
k])e′H(ω1[M ] + ω2[M

∗])
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is a nilpotent of nilpotence degree three for any nonzero constants ω1, ω2 ∈ k×.

ii) Benson and Carlson [3] say that a kG-module M is absolutely p-divisible if

for every extension field k1 of k and every direct summand M1 of k1 ⊗k M as a

k1G-module, p| dimk1(M1). They show that the linear span a(G; p) in a(G) of the

absolutely p-divisible kG-modules is an ideal, and define A(G; p) = a(G; p) ⊗�C ⊂
A(G). They then prove the following theorem:

Theorem 13.6 (Benson-Carlson) For an arbitrary finite group G, the ring

A(G)/A(G; p) has no nonzero nilpotent elements.

The constituent indecomposable modules of a nilpotent must therefore have dimen-

sions divisible by p over all extension fields. The construction of theorem 13.4 shows

that this bound is sharp, in that p| dimk(M) but p2 � dimk(M) for M ∈ M(−,−). In

all previous constructions of nilpotents in a(G) known to this author, p2| dimk(M)

for the constituent modules M of the nilpotent.

Corollary 13.7 Let G be an elementary abelian 3-group of rank 2n. The represen-

tation ring a(G) contains a nilpotent of degree 2n + 1.

Proof: This follows directly from theorem 13.4 and proposition 8.7. �

Remark 13.8 It should be possible to reduce the rank of G to n + 1 by taking

G = Ha × Hb1 × Hb2 × · · ·Hbn

and inflating nilpotent elements from the subgroups Ha×Hb1 , Ha×Hb2 , · · ·Ha×Hb2 .



Chapter 14

Future Development

14.1 Generalizations: M(H, ζ, λ)

Let G be an arbitrary p-group, let H be a cyclic subgroup of G, and let ζ ∈ Hn(G, k)

be a cohomology element which is annihilated on restriction to H . Then Lζ↓H =

kH ⊕ ΩkH ⊕ (proj), the stable homomorphism group StHomkG(Lζ , kH↑G) is two-

dimensional, and the kernels of maps f ∈ StHomkG(Lζ , kH↑G) whose Frobenius

correspondents in StHomkH(Lζ↓H , kH) are split maps form a one-parameter family.

We might thus define a class M(H, ζ, λ) composed of such modules, and much of

the framework of our analysis would extend immediately to such a class.

14.2 Primes p > 3

Note that most of the ‘module-theoretic’ results in chapter 10 hold for the class

M(−,−), while the more homological constructions in chapter 11 and afterward

are proven for M(−,−; 1). When p = 3, these classes are identical, which simpli-

fies matters significantly. At other primes, the situation is less clear; for example,

neither ΩHb
M(λ1, λ2; 1) nor M(λ1, λ2; 1)∗ lie in the class M(−,−; 1) (although

ΩHb
M(λ1, λ2; 1)∗ does, reflecting a similar result for modules of type Lζ .) However,

note that if M ∈ M(−,−) and

µ = ([k] − [ΩHb
k])eHb

([M ] + [M∗]) ∈ a(G)
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then µ is a nilpotent of order three as long as M⊗M = N ⊕ΩHb
N ⊕(H−projective)

for some module N , a much weaker condition than the one proved in chapter 11; we

have verified, using MAGMA, that this construction does indeed yield a nilpotent

of degree 3 when p = 5 and p = 7. We believe it very likely that the construction

works at arbitrary odd primes.

14.3 The Case p = 2: Dihedral 2-Groups

The representation theory of the dihedral 2-groups D2n in characteristic 2 is of

interest in part because groups with dihedral Sylow subgroups are among those of

‘tame’ representation type, and we thus know much more about their module theory

than we can ever hope to for most groups. In fact, we have a complete classification,

due to Ringel, of the indecomposable kD2n-modules, and thus we have a complete

description of a(D2n) as an additive group. Despite this, very little is known about

the tensor product structure. In his thesis [7], Heldner constructed the first known

example of a nilpotent element of degree 3 of a representation ring, working with the

dihedral group D8 of order 8. Heldner produced his example using custom software

written in Cayley. Heldner’s example is somewhat unsatisfactory in that he provides

no proof beyond the output of the software itself, giving us little insight into the

situation.

Let H be the center Z(D8) of the dihedral group D8 of order 8. We have been able

to show that Heldner’s construction is of the form x = [M ]− [ΩHM ] for modules M

of type M(H, ζ, λ) in the sense we give above. Using MAGMA, we have generated

dozens of other examples of nilpotents over D8 and D16 which represent similar

constructions. We believe that developing the theory of modules of type M(H, ζ, λ)

in this context has a strong chance of not only giving the proper setting for Heldner’s
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constructions, but of making substantial progress on the problem of describing the

multiplicative structure of a(D2n).

14.4 The Case p = 2: Elementary Abelian 2-Groups

As already noted, the only groups for which the nilpotence question is unresolved

are the elementary abelian 2-groups E2n of rank n ≥ 3. The usual constructions

are of no use here; a standard result states that all periodic modules for elementary

abelian 2-groups are of period 1. No such result holds for periodicity relative to a

subgroup H , however, and we have constructed modules of type M(H, ζ, λ) over E8

which are of period n > 1 relative to H . It thus may be possible to find a nilpotent

of the form x = [M ] − [ΩHM ] using modules of this type.

14.5 Cohomology Relative to a kG-module W

Okuyama [8] has introduced a new type of cohomology theory to modular repre-

sentation theory, that of cohomology relative to a kG-module W . It subsumes the

theory of cohomology relative to a subgroup in the following sense: if H < G, then

cohomology relative to H in the standard sense is equivalent to cohomology relative

to the module kH↑G under Okuyama’s definition. This theory is of interest in the

context of our program for two reasons.

First, if G is an elementary abelian p-group, there is an important formal analogy

between the cyclic subgroups H < G and certain points of the rank variety VG, an

analogy which extends to other points of VG in the form of so-called ‘shifted’ cyclic

subgroups 〈x〉 of G, which are cyclic subgroups of the multiplicative group of kG.

This analogy generalizes to arbitrary groups G via the Quillen stratification. If 〈x〉
is a cyclic shifted subgroup corresponding to a point of the variety of Lζ , then we
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can define modules of type M(〈x〉, ζ, λ) in terms of kernels of maps Lζ → k〈x〉↑G.

Such modules may have properties similar to those modules of type M(H, ζ, λ).

Second, we have computed examples of modules in whose behavior this new type

of cohomology emerges naturally. For instance, we have examples of D8-modules M

and W = W ′
V4

↑D8 for which

M ⊗ M ⊗ M = M ⊕ ΩW (M) ⊕ ΩW (M) ⊕ Ω2
W (M) ⊕ (W−projective)

and which cannot be similarly described by other cohomology theories. This type

of relative cohomology thus appears to be of practical interest in understanding the

behavior of these modules.
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