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Abstract

In this research I develop automated thin film filter design techniques for ultrashort laser

pulse shaping applications. Genetic algorithms and simulated annealing techniques are used

to search for these optimal filter designs. Both temporal and spectral domain methodologies

are explored and, for the case of a double pulse reflection filter, comparisons are made

between the two techniques. All filters in this work are constructed from two materials (not

including the substrate) and consist of alternate high and low refractive index layers. The

optimization algorithms search for an optimum filter design within the constraints of layer

thickness, total number of layers, material choice, and computational run time. A double

pulse filter, a pulse stretching mirror and a compression filter are some of the examples

considered in this work.
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Chapter 1

Introduction

1.1 Historical Overview of Dielectric Stacks

The effects of interference due to single thin films have been observed since the 1600’s,

when Robert Boyle [1] and Robert Hooke [2] independently discovered the creation of light

rings due to the interference in a single thin film of varying thickness. At the time, theories

on the nature of light were unable to explain this effect, and it remained a mystery until

1801, when Thomas Young presented his theory on the interference of light [3, 4]. Young’s

theory was strongly challenged and recognition only came once Augustin Fresnel developed a

complementary wave theory of light in 1816 [5]. Joseph Fraunhofer is credited with creating

the first antireflection coatings in 1817 [6].

Developments were much more rapid in the 1930s, when evaporated zinc sulphide layers

were being produced by Pfund for low-loss beam splitters [7]. Strong developed antireflection

coatings by the evaporation of fluorite onto glass [8], and Geffcken created the first thin-film

metal-dielectric interference filter [9, 10]. Macleod [6] attributes the flourishing of this field

to sputtering and vacuum evaporation methods developed in the 1930’s, which were boosted

by redoubled efforts to improve optics following the first World War. Once reliable vacuum

pumps were developed, the above methods became effective ways to produce a dielectric

stack. Currently, dielectric stacks play an integral role in many optical devices, performing

well in both high-reflection and antireflection applications [11]. Specific wavelengths can

either be blocked or transmitted, the glare can be reduced from a camera lens, or the reflec-

tion of an ultrashort laser pulse can be tailored with the addition of a dielectric stack. As

manufacturing capability develops, more intricate dielectric stacks are being realized, with

1
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both thinner and greater numbers of layers. Manufacturers can now deposit layers of only

a few nanometers thickness, allowing dielectric stacks to match detailed spectral profiles

with great accuracy, see for example, [12]. The limits and applications for optical thin-film

dielectric stacks are still being explored, and this is one of the reasons the field remains an

interesting one.

1.2 Designing a Dielectric Stack

While manufacturing technology has enhanced our ability to realize more sophisticated fil-

ters, computer simulations have greatly improved our ability to perform detailed modelling

of the behavior of these multilayer stacks, which can in turn lead to the development of novel

designs.

Given that the materials, substrate, layer number and thicknesses known, one can cal-

culate the expected reflection or transmission profile of that stack using the characteristic

matrix method [13]. The characteristic matrix method, which is detailed in Appendix A,

essentially expresses the electric and magnetic fields on both sides of a thin film layer in

(2× 2) matrix form. Calculating the fields on either side of an arbitrary multilayer dielectric

stack then reduces to an appropriate series of matrix multiplications and is extremely effi-

cient. In practice, the fields are normalized, and the admittances, Y = H/E, on both sides of

the stack are calculated. Once the admittances are known the reflectances can be calculated

using,

R =
∣∣∣∣Y0 − Y
Y0 + Y

∣∣∣∣2 (1.1)

where Y0 is the admittance of free space. As an example, should one want a high-reflecting

dielectric stack for a prescribed wavelength range, thin-film theory directs one toward a filter

constructed of a series of layers with one quarter wave optical thickness. The beams reflected

from each interface in the quarter-wave stack have the same phase at the front of the dielectric

stack, allowing them to combine constructively, thus producing a highly reflective device. A
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quarter-wave stack design is shown in the upper pane of Fig. 1.1. The lower pane shows the

spectrum that was calculated using the characteristic matrix method. This particular stack

is designed to maximally reflect the central wavelengths of a Ti:Sapphire laser, i.e., λL =

800 nm.

It is worth noting that the properties of a given quarter-wave stack can be modified in

a variety of ways. To broaden the central reflectance band, a higher ratio between refractive

indices of the two layers is used. If one requires a dielectric stack to reflect over a different

wavelength range, then assuming the material parameters are still valid for the new wave-

lengths, one needs only to adjust the layers to be quarter-wave thicknesses for the new central

wavelength.
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Figure 1.1: A quarter-wave stack design (upper pane) and its reflectance spectrum (lower
pane). The resultant spectral profile contains a high-reflectance band at the design wave-
length of 800 nm and shows characteristic side lobes.
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The purpose of this dissertation is to develop dielectric stacks for ultrashort pulse shaping

applications. The problem is this: given a desired reflected or transmitted pulse, calculate

the appropriate dielectric stack. This is essentially the inverse of the problem of calculating

the spectrum of a given filter, and it is harder because of the indirect method needed to

achieve this. One approach is to use an iterative scheme whereby a calculation of the desired

properties is incorporated into an optimization algorithm. The calculation of the desired

properties can either be performed in the frequency domain, i.e. if a particular reflectance

spectrum is desired, the characteristic matrix method can be used, or in the time domain, if

a given pulse shape is desired, the time-dependent electric field can be calculated numerically

by integrating either the wave equation or Maxwell’s equations directly.

In this work, the finite-difference time domain (FDTD ) method [14] is used to numer-

ically integrate the Maxwell curl equations [15] for the electric and magnetic fields. The

equations are converted to finite-difference equations on spatially-offset grids. Due to the

interdependent nature of the electric and magnetic fields, the finite-difference time domain

method uses a leapfrog algorithm, i.e. the electric field at the current time step is used

to calculate the magnetic field at the next (half) time step, and so on. Thus the electric

and magnetic fields can be propagated forward in time. The exceptional versatility of this

method sees application in fields as diverse as tumor detection and stealth aircraft technology

[16, 17, 18, 19, 20]. Additional details of the finite-difference time domain method can be

found in Appendix B.

1.3 Optimization Methods

In order to decide upon an optimization method, one must consider the nature of the

search space. Gradient-based methods excel when one has a good starting point, near the

global minimum. If one does not know the search space well, a random starting position

can lead to the algorithm converging at the nearest local minima – a problem that often

affects gradient-based methods. Because of the complex search space for the particular filter
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designs in this current work, gradient designs were passed over in favor a method that

could work independent of the starting position and therefore should not become trapped

in local maxima/minima. One such non-gradient method, a genetic algorithm, is used in

this dissertation because of its ability to leave a local maximum/minimum in search of the

global maximum/minimum. Also, due to the computationally intensive nature of the finite-

difference time domain calculations, it was advantageous to use an algorithm that could be

parallelized.

Computational optimization has been integral to optical filter design since Baumeister’s

work in 1958 [21] where he described a method of relaxing the thicknesses of a multilayer

filter design to produce a “close approximation to a given transmission curve in a limited

spectral region.” Indeed, within the various optimization methods available today, many

are incarnations of this original work. Aguilera et al. compare the performance of several

optimization methods for designing infrared filters [22], which shows how evolutionary algo-

rithms fare against gradient optimization methods for a particular filter design problem.

Dobrowolski and Kemp have also performed such comparisons and provide a useful overview

of the various techniques [23]. Yang and Kao compare their family competition evolutionary

algorithm (FCEA) to the standard genetic algorithm [24] and simulated annealing methods

[25]. Their work, which is a special-case genetic algorithm, was useful for comparison with

the frequency domain genetic algorithm in this dissertation.

Table 1.1 shows some of the popular gradient (damped least squares, Hooke-Jeeves) and

non-gradient (family competition evolutionary algorithm, Monte Carlo simulated annealing,

needle method) methods that have been applied to thin-film filter design to date. From the

table, one can see the variation in the thin film filter thickness for the beam splitter and

antireflection coating examples. All the solutions produced are of a reasonable thickness and

layer number, such that they are all realistic options for constructing. The design problems

chosen for comparison did not single out any method as being significantly better than the

others.
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Table 1.1: A comparison of several optimization methods as applied in the literature to a
particular thin-film filter design problems. Optimization methods have been abbreviated as
follows: damped least squares (DLS), family competition evolutionary algorithm (FCEA),
Hooke-Jeeves (HJ), Monte Carlo simulated annealing (MCSA), needle method (NM). The
optical thickness was calculated by σ =

∑
i=1

nidi.

Design Optimization Number of Optical Fitness
Type Method Layers Thickness (when specified)
Beam splitter FCEA[25] 15 1.65 µm

NM[25] 14 1.51 µm
DLS[23] 11 1.56 µm 1.13

MCSA[23] 11 2.12 µm 1.62
Antireflection coating DLS[22] 11 24.73 µm 1.38

HJ[22] 21 31.62 µm 0.94

Basics of the Genetic Algorithm

The genetic algorithm takes its inspiration from the principle of natural selection and evolu-

tion. A standard version begins with a single population that is usually a random assignment

of individuals. Each individual may be a single chromosome or set of chromosomes, depending

on how many parameters are to be optimized. A single filter design is known as an individual.

The fitness of each individual is evaluated, and the best performing one from each generation

is stored. Individuals with better attributes have a higher chance of being selected to mate.

In computational terms, mating amounts to passing the binary chromosome strings (which

correspond to layer thicknesses) onto the next round of calculations. Thus, after successive

iterations, the population, a set of filter designs, evolves to an optimized set of individuals.

In this work, the thickness of each filter layer forms the variable parameters.

The algorithm acts on each individual through three common genetic operators,

1. Crossover: two binary strings are selected, and a randomly-chosen portion of their

strings are swapped.
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2. Mutation: a bit on the individual’s string is chosen at random to be changed from a 1

to a 0 or from a 0 to a 1.

3. Selection: the method by which an individual is chosen for crossover and mutation.

The total fitness of a population, S is summed. A random number n between 0 and S

is chosen, and the individual with the fitness closest to or just above n is selected. In

the case of crossover, this process is repeated twice to choose both the parents.

The genetic algorithm in this work is the “little genetic algorithm,” which is described in

Ref. [26]. The algorithm generates a population of individuals, with each individual repre-

senting a possible solution for the pulse shaping dielectric stack design. Each dielectric stack

is of the same arrangement of (HL)25, with H being the higher refractive index layer and L

being the lower refractive index layer. Dielectric stacks are identical in their layer number

and material type; the layers of each dielectric stack will be of differing thicknesses. At each

generation of the algorithm, the algorithm evaluates the ability of each stack to produce the

requisite pulse shape. The algorithm assigns fitness to each individual using a difference-

squared match between the target and resultant intensities. A higher value of F indicates a

better dielectric stack. When the next generation begins, the better dielectric stacks have a

higher selection probability for the next round of crossover (mating). In this way, a survival

of the fittest mechanism helps promote the better solutions while the poorer solutions receive

a much lower probability of propagating their genes to the next generation. Parameters such

as the total dielectric stack thickness and the individual layer thickness varied over the course

of the optimization process. The total stack thickness and corresponding reflectance for each

of the optimized designs are shown in the tables throughout this dissertation.

Appropriate selection of user-specified parameters (e.g. string length, crossover prob-

ability) enables the genetic algorithm to reach its optimum solution in a consistent and

accurate manner. Deciding what values are appropriate for each variable, however, is not a

straightforward task. The lack of available problem-dependent information often compounds

this issue. To get an indication of the sensitivity of the algorithm’s performance to each of
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these user-secified parameters, the performance of the algorithm for a variety of parameter

choices and a variety of optimizing functions was examined.

1.4 The Layout of This Dissertation

The remainder of this dissertation is structured as follows: Chapter 2 outlines the dielectric

stack design used in this project. The filters described in this dissertation are the product

of two independent methodologies: optimizing in the time domain and optimizing in the

frequency domain. Chapter 2 also introduces the time and frequency domain aspects of the

optimization. The time domain approach is particularly novel for this type for filter design.

To the best of my knowledge, this is the first time filters have been optimized with temporal

pulse shaping as the target function for an ultra-short laser pulse. Chapter 3 discusses the

time domain designs. Results for double pulse reflection, double pulse transmission, triple

pulse reflection, and stretched pulse reflection filters are presented in Chapter 3. The pos-

sibility of a frequency domain approach is explored in Chapter 4. Both genetic algorithms

and simulated annealing algorithms are used in conjunction with the characteristic matrix

method in this chapter. Chapter 5 covers some aspects of the manufacturability of a pulse

stretching filter. An additional application – a pulse stretcher-compressor pair – is also con-

sidered. Conclusions are presented in Chapter 6.



Chapter 2

Preliminary Considerations for Dielectric Stack Design

When we design a dielectric stack, we seek an arrangement of layers (a solution) that best

delivers a specified performance. This layer arrangement needs specification of both the

material type and layer thicknesses. While excellent solutions can be found by allowing

continuous variation of the refractive indices or the layers, this can lead to refractive indices

for which no material exists. In this case a post-refinement may be performed on these designs

to bring them into an equivalent two-material solution. However, an optimization with two-

materials produces a realistic, construction-ready design directly. Furthermore, the smaller

search space required by the inclusion of only two materials requires fewer computational

resources. For this reason, all designs presented in this dissertation involve a two-material

solution.

The task of finding a dielectric stack to produce a desired spectral or temporal function

is more difficult than simply calculating the properties of a multilayer stack. For example,

one can calculate the properties of a known stack by using the characteristic matrix method

in the frequency domain or by the FDTD method in the time domain. But when we wish to

design a dielectric stack of a given performance, we are asking the inverse question. A designer

typically employs automated methods [27, 28]. These begin with a template structure, e.g

a 50 layer stack composed of two alternating materials, and refine it to an optimal design

within the given constraints. Automated designs are at the same time both convenient and

restrictive. By initially narrowing the field of possibilities, the algorithm potentially excludes

excellent designs that lie outside the specifics of the input design template. As an example,

if a genetic algorithm uses a two-material template, an initial population of 10 and runs for

9
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500 generations, the optimal solution may be very good, but the solution found after 1000

generations might be significantly better. An important part of testing the applicability of a

genetic algorithm to a given optimization problem is performing preliminary simulations with

a variety of generations and population sizes to ensure the algorithm will produce acceptable

results within a given time frame. These preliminary simulations influenced the choice of

stack layers in the optimizations that followed. This was particularly noticible in the pulse

stretching filters of Chapter 5, which needed more layers in the filter to achieve the necessary

higher reflectance of the 100 fs incident pulse. The 100 layer templates produced as good (or

better) results than the 150 layer templates. However, both were stronger performers than

the 50 layer versions, meaning these filter designs produced reflected intensities that better

matched the target function. Thus, 100 layer designs were used for this application. I used

a two-material template throughout, since it has been shown elsewhere [29, 30] that two

materials can produce dielectric stacks of comparable performance to stacks that use more

than two materials.

2.1 Common Materials

The dielectric stacks are composed of alternating layers of high-index and a low-index mate-

rial, adjacent to a silicon dioxide substrate. Both the high and low index materials, as well

as the substrate, were chosen for their widespread use in optical filters and the ease with

which they can be deposited as exceptionally thin layers. In the time domain simulations of

Chapter 3, the stacks are composed of alternating layers of tantalum pentoxide, Ta2O5, and

magnesium fluoride, MgF2 on a silicon dioxide, SiO2, substrate. Fig. 2.1 shows a schematic of

this design. The MgF2 layer is next to the substrate. For the frequency domain simulations

of Chapter 4 and the time domain simulations of Chapter 5, all oxide layers were used, i.e.

silicon dioxide, SiO2, and niobium pentoxide, Nb2O5, with SiO2 as the substrate. Table 2.1

gives the refractive indices for the materials used in the dielectric stack designs described in

this dissertation.
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Table 2.1: Optical properties for tantalum pentoxide, Ta2O5, niobium pentoxide, Nb2O5,
silicon dioxide, SiO2, and magnesium fluoride, MgF2.

Material Refractive
Index, n0

Ta2O5 2.05
Nb2O5 2.26
SiO2 1.52
MgF2 1.38

2.2 Fitness Functions for the Time and Frequency Domains

Chapter 1 introduced the concept of a fitness function, F , as a way for the optimization to

evaluate the performance of a filter. The fitness function may use different optical properties

to characterize solutions in the time or frequency domain. In the time domain, the reflected

and transmitted fields are monitored [31], and the resultant (reflected or transmitted) inten-

sity profile, I(t), is compared to the desired intensity profile, Iideal(t), using

F =
1∑

i

[Iideal(ti)− I(ti)]2
. (2.1)

The reciprocal in Eq. 2.1 is used because the genetic algorithm employed in this disserta-

tion maximizes F . If the desired intensity profile is an N-pulse train with each pulse centered

at τj and with pulsewidth σj, then the target function is

Iideal(t) =
1

N

N∑
j=1

e−((t−τj)/σj)2

. (2.2)

If one combines pulses of width σj at time intervals of τj = σj, one can create a single

stretched (flat-topped) pulse. This forms the target function for the stretched pulse profiles

of Chapters 3 and 5,

Iideal(t) =
1

N

N∑
j=1

e−((t−σj)/σj)2

. (2.3)
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Alternate layers of magnesium
fluoride and silicon dioxide.

Glass substrate

200 nm

tantalum pentoxide.

Figure 2.1: Schematic of the two material design for the dielectric stack as described in the
dissertation. While the figure shows even thickness layers, the actual designs were of varied
layer thickness.

As F is maximized, the difference between I(t) and Iideal(t) is minimized and a dielectric

stack is generated that will reflect fields close to the specified pulse shape.

There was a deliberate decision to fit for an entire pulse shape rather than to a set of

metrics, e.g. reflectance, pulse width, etc. Since the former is a more stringent requirement

that minimizes the multiplicity of a particular solution set. Furthermore, a judicious choice of
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Subroutine MakeStructures 

Pad end of structure 
      with substrate

Pad front of structure with air

Fill middle of structure with 
       refractive index data 

   Assign two steps for boundary
conditions to minimize reflection 
      from rear face of structure

    Store index file for 
use with FDTD routine 

Read in filter information 

Figure 2.2: Flowchart showing the algorithm for padding the filter prior to its use in the
FDTD subroutine.

the amplitudes Aj naturally incorporates the reflectance, which does not appear explicitly in

Eq. 2.1. In this dissertation I(t) is calculated using the finite-difference time domain method,

which is described in more detail in both Chapter 3 and Appendix B. The GA-FDTD hybrid

algorithm results that use Eqs. 2.1, 2.2, and 2.3 appear in Chapters 3 and 5.

The most computationally expensive part of the GA-FDTD algorithm is the finite-

difference time domain calculation. Because of this, openMPI [32] was used to parallelize
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The Genetic Algorithm

Find fitness

Initialize random number 
                generator

     Set up simulation; 
read GA parameter files

Parameter files

Output best-performing 
(elite) member and their
                 fitness

V
V

Does Generation =
   MaxGeneration?

Generation = 1

Create initial population strings

Translate strings into real values 
         for filter construction

   Set up FDTD simulation;
 read FDTD parameter files

   Yes

   Calculate statistics
for current generation

   Perform scaling

     Construct filter

   Reflect pulse off filter
         (FDTD method)

Calculate reflectance 
        due to filter

Individual = 1

No

Does Individual =
   PopulationSize?   Yes  No

V

V

V

Figure 2.3: Flowchart for the dielectric filter optimization algorithm.

the algorithm by simultaneously calculating the reflected and transmitted pulses for each

filter design in the population. A total of eleven processors were used: one as the master pro-

cessor, and ten slave processors corresponding to the ten individuals in the population.The

parallelization greatly reduced by a factor of 10 the overall run-time of the optimization.

For the frequency domain optimizations, the finite-difference time domain (FDTD) step is

replaced by the characteristic matrix (CM) method, which is used to calculate the reflec-

tion and transmission spectra for the thin-film structures. Appendix A gives an overview of
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the characteristic matrix calculations. The GA-CM algorithm executes much faster than the

GA-FDTD algorithm because of the computational speed of the CM step.

For the frequency domain optimization, the reflectance spectrum of a given dielectric

stack is compared to the required reflectance spectrum (that can be calculated by Fourier

transforming the required time-domain pulse shape). The reciprocal of the sum of the differ-

ences squared between the two spectral functions squared gives the fitness. For some of the

frequency domain optimizations, it was found useful to use a supergaussian to more heavily

weight the central passband of the reflectance spectra, i.e.,

F =
1∑

i

e−
(ωmid−ωi)

σ

2m

[Iideal(ωi)− I(ωi)]2
, (2.4)

where ωmid and m are parameters that control the location and shape (steepness) of the

supergaussian within the spectral domain. Varying σ adjusts the width of the supergaussian.

Results for the GA-CM hybrid appear in Chapter 4.

Pseudorandom Number Generation

One of the key components of the genetic algorithm’s success comes from its ability to

jump away from suboptimal solutions in particularly complex search spaces. In a large part

this is due to the randomization of the initial population, crossover, and mutation sites

of each individual’s binary strings. The pseudorandom number generator for the algorithm

produces a sequence of numbers that approximate the properties of random number ones. The

generator was tested in several ways. The first test optimized the same stack, e.g. a 50 layer

double pulse reflection dielectric stack, with a different pseudorandom number generator each

time and compared the various results. It was important to check for consistency amongst

several pseudorandom number generators to know that the eventual filter design would be

the result of unbiased shuffling. For this I tested the Mersenne twister, the linear congruent

method, and the “minimal” random number generator of Park and Miller. Further details

about these generators can be found in Appendix C.
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Table 2.2: Mean and standard deviation in the elite fitness for a genetic algorithm due to
the choice of PNG seed. Three different pseudorandom number generators were tested.

Pseudorandom Number Generator Mean Elite Fitness Standard Deviation
(F̄) (σF)

Linear congruent method [33] 0.7537 0.1565
Mersenne Twister [34] 0.8558 0.1652
Park and Miller [35] 0.8607 0.1608

Since all of the pseudorandom number generators are initialized by a seed that starts

the recursion, I also ran the genetic algorithm with the same random number generator –

the minimal generator – and changed the seed with each run. Variation of the output was

calculated to give an idea of fluctuation in the performance due to seed choice. Results for

the seed variations are shown in Table 2.2 and give the average and standard deviation due

to 10 different seed initializations per pseudorandom number generator.



Chapter 3

Time Domain Optimization

Tailored femtosecond laser pulses have found application in the precise control of microscopic

processes. Pulse shaping techniques are already common practice in the areas of laser-matter

interaction and materials processing. In chemistry, where coherent control of reactions is

desired, the exact shaping of a laser pulse to the local mode of a specific chemical bond enables

bond-cleaving reactions to take place [36]. Currently, the control of femtosecond laser pulse

shapes is of fundamental importance in fields such as spectroscopy [37, 38], micromachining

[39, 40], and the quantum control of wavepackets [41, 42]. Consistency and repeatability of

the shaped pulses remain key issues within the experimental design.

Pulse shaping with genetic algorithms, often using a real-time feedback loop, has been

demonstrated by Assion et al. [36] and, more recently, in the work of Nuernberger et al.

[43]. Both groups used a grating compressor and a liquid-crystal spatial light modulator

to create the spectral-phase modulations on the incident pulse. This experimental method

works well for feedback-aided pulse shaping, but the set up can be somewhat time-consuming.

While much work has already been done with genetic algorithms to optimize thin film filters

for non-temporal applications ([44, 27, 45, 46]), to my knowledge this chapter presents the

first examination of genetic algorithms for the design of pulse shaping dielectric stacks. In

this chapter, I present the time domain results for the thin film dielectric stacks, thereby

demonstrating an alternative means of femtosecond pulse shaping. The principle advantages

over the pulse shaping methods used in the aforementioned applications are simplicity and

ruggedness of the pulse shaping device.

17
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3.1 Reflective Double Pulse Dielectric Stacks

To demonstrate the ability of the genetic algorithm in designing dielectric stacks for ultra-

short pulse applications, the first series of designs were for stacks that produced double pulses

upon reflection. Ten different dielectric stacks are described in this section. These devices

are designed to convert a single incident pulse into two pulses spaced by ∆t = 30 - 300 fs

upon reflection.

The fitness function F for these double pulse dielectric stacks is

F =
1∑

i

[Iideal(ti)− I(ti)]2
. (3.1)

where the intensity function, Iideal(t), is constructed from two σ = 30 fs Gaussian pulses,

each centered at τj,

Iideal(t) =
1

2

2∑
j=1

e−((t−τj)/σ)2

. (3.2)

The intensity, I(ti), is calculated using the finite-difference time domain method.

Performance

The double pulse dielectric stacks perform quite well. While some of the reflectances can

likely be improved with further optimization, the algorithm does a good job of generating

two pulses of the same intensity separated by the desired spacing. Fig. 3.1 shows the results

from the FDTD calculation of the pulse-mirror interaction, with the reflected pulses (blue),

the incident pulse (black), and the desired pulse train (dashed red). The calculation allowed

sufficient time for the reflected pulse to return to its approximate starting location. Initial

simulations used a 1D grid of 2009 steps, which corresponded to a λ/20 resolution for the

800 nm input pulse. While the ∆t = 30 fs and ∆t = 60 fs double pulses are too close

together to be resolved completely, they are clearly of unequal height. Dielectric stacks that

optimize for temporal separations greater than 60 fs begin to show clear double pulse shapes
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Table 3.1: Principal design metrics of the double pulse reflection filters. Refractive index
profiles are shown in Fig. 3.2. The physical thickness for the filter excludes that of the
substrate.

Time Between Double Pulses (fs) Reflectance (%) Filter Layers Filter Thickness (µm)
30 98.04 50 38.84
60 89.90 50 39.80
90 75.57 50 41.20
120 87.83 50 37.24
150 88.74 50 38.48
180 82.19 50 42.56
210 86.29 50 37.52
240 81.15 50 40.64
270 85.54 50 34.12
300 93.60 50 39.64

in their reflected intensity profile. In all figures, intensities are normalized in the sense that

the intensity of the input pulse was 1 Wm−1.

In Table 3.1 the main design parameters for the double pulse dielectric stacks are shown.

All dielectric stacks use a 50 layer template, with the filter thicknesses ranging from 34.12

µm for the ∆t = 270 fs stack through to 42.56 µm for the ∆t = 180 fs stack. There is also

a wide range in the reflectances produced by the different filters, suggesting that some of

the filters would gain from further optimization. All optimizations ran for 500 generations

and started with the same seed in the random number generator. These ten designs are

end-padded with a substrate1 so that the FDTD algorithm works with filters of a constant

total thickness. Within this fixed total thickness of stack plus substrate, the filter thickness

itself is able to vary. Individual filter thicknesses are shown in Table 3.1, while the associated

designs are shown in Fig. 3.2.

1A MgF2 substrate was used with the total filter + substrate thickness equalling 2009 grid spaces
for a 50-layer filter.
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Figure 3.1: The above plots are simulations for which the target reflected double pulse
was separated by increasing time intervals. The incident pulse is shown in black, while the
reflected pulse is blue. The target pulse shape is shown as a dashed red line.

Fig. 3.3 shows the evolution of a double pulse reflection filter’s intensity profile. The

best-performing filter at the various generations from 1 through to 500 was used to generate

the reflected pulse shapes shown. Note that the double pulse shape becomes more defined

as the algorithm begins to converge upon better-performing solutions.
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1.52.

Conversion to Higher Resolution

After obtaining an optimized filter at λ/20 resolution, the design is fine-tuned for accuracy

at the same central input wavelength of λ = 800 nm but at a higher grid resolution of λ/200.

The three post-processing steps are illustrated in Fig. 3.4, which shows the results from a

∆t = 120 fs double pulse mirror. I first rescaled the λ/20 filter generated by the genetic

algorithm (upper pane) into a λ/200 version (middle pane). This amounts to adding 10
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Figure 3.3: Plots showing the development of the reflected pulse for generations 1 through
500. The filter was designed to generate a double pulse from a 30 fs incident pulse. The
incident pulse appears in red, while the evolving reflected pulse appears in blue.

data points on the λ/200 grid in place of one data point on the λ/20 grid. Multiple FDTD

calculations, each with a different input wavelength, ran on the rescaled filter. The same

metric equation (Eq. 2.1) gauged the fitness of this filter with respect to the various FDTD

simulations (middle pane, inset). Using the optimized wavelength, the filter was then scaled

to λ/200 resolution, by a a 1.7 % expansion of the grid, which was used to compensate for

the offset in the reflectance spectra peak (786.6 nm) of the spectrum of the λ/200 resolution
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structure and the desired reflectance peak at 800 nm. This final step produced a filter that

was optimized at high resolution for the desired 800 nm input pulse (bottom pane)

For additional validation, I calculated the reflectance spectra from both the FDTD-

produced fields and independently using the characteristic matrix method [47], as shown

in Fig 3.5. Despite a limit placed on the FDTD calculations by the grid resolution, the

close match of reflectance properties in both the FDTD and characteristic matrix spectra of

Fig. 3.5 suggests a robustness of the structure to small imperfections in its fabrication. In fact,

a rough upper bound can placed on the sensitivity to construction errors: simulations with a

λ/20 resolution showed strong deterioration in the features of the reflectance spectum while

simulations with a λ/200 resolution produced spectra that matched rather well. Therefore,

in the manufacture of such filters, inaccuracies below the order of λ/200 should still produce

the desired pulse shaping effects.

The conversion of the optimized filter from a λ/20 grid to a λ/200 grid was an important

problem overcome in this work. The underlying issue came from the offset between the

dielectric stacks on the two different grids. Essentially, the higher resolution dielectric stack

is able to make sharper transitions between the media. Overlaying a dielectric stack from

the 40 nm grid with its 4 nm counterpart (scaled up by a factor of 10 for comparison)

showed the mismatch in the two stacks. The reflectance spectrum from a λ/20 grid shows

this mismatch when compared with that of a λ/200 grid. Essentially, the λ/20 spectrum is

accurate to within ±λ/20, while the λ/200 spectrum is accurate to within ±λ/200. Fig. 3.5

shows this clearly. The upper pane has the reflectance spectra for a λ/20 filter calculated

by both the characteristic matrix method and the λ/20 FDTD-produced spectrum. The two

spectra differ by about 36 nm, which is the difference between their two grid resolutions

in nm. The lower pane shows the resulting reflectance spectra when both calculations are

performed at λ/200 resolution.
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Figure 3.4: Converting the filter from a λ/20 resolution to λ/200 resolution. Pane a) shows
the reflected intensities due to a filter at the λ/20 resolution. After scaling to λ/200 (pane
b), wavelength tuning to 786.6 nm produced the best fitness for the filter (pane c, inset).
The result for the incident wavelength at 786.6 nm appears in pane c). Pane d) displays the
final result of tuning to λ/200 resolution.

Mechanisms

To better understand the pulse shaping mechanisms, I performed a case study of the ∆t =

300 fs, double pulse reflection filter. The reflected fields were calculated using the finite-

difference time domain technique, as outlined above. As shown in Fig. 3.5, the reflectance

spectrum comprises many sharp features, with no particular symmetry about the central

800 nm wavelength. The spectrum lacks a dominant central reflectance band – often seen
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with dielectric stack spectra – but it does show strong reflection in the region of 800 nm as

specified in the optimization of this particular filter. While the reflectance spectra provide

a useful method of characterizing the dielectric stacks, they do not explain the mechanism

responsible for the dielectric stacks’ pulse shaping ability. One current strategy for ultrashort

pulse shaping mirrors is to design a mirror with a large group delay dispersion (GDD). A

large group delay dispersion converts an ultrashort pulse into a longer pulse with a large

chirp. To see if group delay dispersion played an important role in the operation of in these

filter designs, I calculated the group delay dispersion of these devices.

The group delay dispersion at wavelength λ, Dλ, of an optical element is proportional to

the second derivative of the spectral phase, φ, with respect to frequency, ω, is given by [48],

Dλ =
∂2φ

∂ω2
. (3.3)

Eq. 3.3 was used to calculate the group delay dispersion over the central frequencies of the

incident pulse, while the corresponding result of the group delay dispersion as a function

of wavelength for the case study filter is shown in Fig. 3.6 a). Note that the group delay

dispersion is particularly small in the vicinity of the filter’s central wavelength. In Fig. 3.6

the GDD spans the range ± 5 fs over the incident pulse frequencies of 760 - 840 nm. The

third order dispersion (TOD) over the same spectral region is also shown in Fig. 3.6 b). The

third order dispersion, Tλ, results from the frequency dependence of group delay dispersion

[48],

Tλ =
∂3φ

∂ω3
(3.4)

and, if of a large enough magnitude, it can also contribute to pulse broadening. One can

see from Fig. 3.6 that the values of the third order dispersion are on the order of ± 10

fs. For comparison one can consider fused silica intra-cavity prism pairs, which are used to

create ultra-short pulses. These have group delay dispersion of order -862 fs2 and third order
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of wavelength for the case study filter – a double pulse reflection filter with ∆t = 300 fs.
Both are plotted against the 30 fs Gaussian pulse bandwidth, to show the region of interest.

dispersion on the order of -970 fs3, so from the above it appears that neither GDD nor TOD

contribute in a major way to the pulse shaping mechanism employed by these devices [49].

As additional confirmation that GDD was not responsible for pulse shaping, spectrograms

were calculated from the reflected pulses. A Gabor transform provides the measure of the

pulse’s frequency and phase content for local sections of the pulse over time,
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Gx(t, f) =
∫ ∞
−∞

e−π(τ−t)2

e−2πifτx(τ)dτ. (3.5)

τ is the time parameter of the original function, x(τ), and f is the frequency. A Gabor

transform [50] represents a special case of the short-time Fourier transform, in which a

Gaussian windowing function is used. A Gabor transform as implemented in the commercial

software package Igor Pro [51] was used to calculate the spectrograms in Figs. 3.7, 3.13, and

3.17.
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If group delay dispersion was responsible for the pulse shaping, then a spectrogram would

show pulses with dramatically different central frequencies. The spectrograms in Fig. 3.7 show

no major frequency shift between the leading and trailing sections of the double pulse, and

so GDD is ruled out as the major pulse shaping mechanism.

Multiple Mirrors

Another possible pulse shaping mechanism is the existence of two optimally-spaced mirror

substructures within the filter that each reflect a pulse of the appropriate intensity. For

example, a two mirror structure with R1 = 0.326 (T1 = 0.674) and R2 = 0.718 (T2 = 0.282)

would produce a pulse train with the first five pulses having the following intensities:

I1 = R1 = 0.326

I2 = T1R2T1 = 0.326

I3 = T1R2R1R2T1 = 0.076

I4 = T1R2R1R2R1R2T1 = 0.018

I5 = T1R2R1R2R1R2R1R2T1 = 0.004 (3.6)

This is in reasonable agreement with the five pulses that are observed in Fig. 3.8 d), i.e.,

I1 = 0.326

I2 = 0.321

I3 = 0.066

I4 = 0.017

I5 = 0.009, (3.7)

strongly indicating that the mechanism found by the optimization routine involves two mir-

rors spaced by an optical path difference of Λ = 45 µm. Upon closer examination of filter
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sublayers, the two mirrors corresponding to the double pulse peaks are identified, as indi-

cated in Fig. 3.8 b) and Fig. 3.8 c) with reflections R1 = 0.326 and R2 = 0.321. The optical

path difference between these two mirrors as calculated from the stack structure in Fig. 3.8

a) is 37 µm. If the remainder of the stack from 65 µm to the substrate is included in the

second mirror, the peak intensity is increased, as is the width of the pulse. Furthermore, the

effective optical path difference between the two mirrors will also be increased. From the

above we can infer that the optimization algorithm has produced a device that to zeroth

order is based upon a two mirror structure in which the intermediate and trailing layers of

the full dielectric stack play a role in delaying and reshaping the second pulse.

3.2 Transmissive Double Pulse Dielectric Stacks

Having seen the results of the reflected double pulse simulations, the next step was to see how

well the genetic algorithm could design a filter for transmitted pulse shaping. Conventional

transmission coatings originate from a single quarter-wave film with refractive index equal to

that of the square root of the substrate. It is not always easy to find a suitable material that

gives the needed refractive index, which is why multilayer coatings are more appropriate for

many transmission cases. Cid et al. [52] showed that multilayer coatings are necessary for

general transmissive applications because of the inherently narrow bandwidth provided by a

single-layer coating.

The transmissive dielectric stacks used the same number of layers and materials as the

double pulse reflection filters. For comparison with the double pulse reflection filters, the

genetic algorithm used the same population (10 individuals) and optimized for the same

time (500 generations). As shown in Fig. 3.9, the transmission filters exhibited rather poor

transmission (37.30% to 61.48%) and extremely poor pulse shape. Fig. 3.9 shows the resultant

dielectric stacks generated by the genetic algorithm. The multiple mirror scenario used to

describe the double pulse reflection filters, may not apply to transmission filters. It is also

possible that many more layers or different material choices are required to achieve pulse
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Figure 3.8: Identification of two mirrors within the case study filter. Pane a) is the full filter.
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shaping in transmission. However, this search space was left unexplored in favor of pursuing

the reflectance dielectric stacks in more detail. The remainder of this dissertation focuses on

improving and further testing the performance of the reflectance dielectric stacks.
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3.3 Other Reflective Multipulse Dielectric Stacks

Reflective Triple Pulse Dielectric Stacks

Following the success of the double pulse mirrors, I explored the performance of the dielectric

stacks that were designed to reflect a triple pulse train. The initial triple pulse designs were

based upon 50 layer templates. It was found that the reflectivity of these devices degraded

for large ∆t since the dielectric stack needs to have a sufficient thickness to accommodate
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Figure 3.10: The corresponding filters that generated the intensities in Fig. 3.9. The ordinate
axis labels refractive index: nair = 1.00, nTa2O5 = 2.05, nMgF2 = 1.38, and nSiO2 = 1.52.

the optical path distance required to delay the third reflected pulse. For that reason, all the

simulations presented in this section use 100 layer templates. While 100 layers may not be

the optimal choice, it provided a sufficient thickness for triple pulses to be generated with

comparable reflectance. The filter parameters for this section are summarized in Table 3.2

while the results themselves are given in Fig. 3.11.

The fitness function F for the triple pulse dielectric stacks is again of the form
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Table 3.2: Principal design metrics of the triple pulse reflection filters. Refractive index
profiles are shown in Fig. 3.12. The physical thickness for the filter excludes that of the
substrate.

Time Between Triple Pulses (fs) Reflectance % Filter Layers Filter Thickness (µm)
60 91.25 100 86.78
90 95.12 100 77.44
120 94.75 100 78.20
180 91.52 100 77.16
210 82.83 100 84.24
240 88.78 100 81.20

F =
1∑

i

[Iideal(ti)− I(ti)]2
(3.8)

where the intensity function, Iideal, is constructed from three σ = 30 fs Gaussian pulses, each

centered at τj,

Iideal(t) =
1

3

3∑
j=1

e−((t−τj)/σ)2

. (3.9)

Performance

Fig. 3.11 shows the typical reflected pulse (blue) and the incident pulse (red) for the triple

pulse simulations. Again, intensities are normalized to that of the input pulse. The data

is obtained with an FDTD calculation that allows sufficient time for the reflected pulse to

return to its approximate starting location. Since a 100 layer thickness is modeled for the

triple pulses, the 1D grid is increased to 4009 steps (c.f. 2009 steps for the 50 layer filters).

The grid resolution remains at λ/20 for the 800 nm input pulse. Filter thicknesses range

from 77.44 µm for the ∆t = 90 fs mirror to 86.78 µm for the ∆t = 60 fs mirror. On average

the reflectances for the 100 layer triple pulse mirrors are higher than those of the 50 layer

double pulse mirrors.
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consecutive pulse separation of the target function (dashed red line) ranges from 30 to 120 fs.

Pulse Stretching Mirrors

The motivation here was to see how well the algorithm could design a filter capable of

significantly stretching a pulse upon reflection. The algorithm and filter parameters were

kept the same (population = 10, generations = 500, and layers = 50) for comparison with

the double pulse filters. In all simulations the incident medium is air, the substrate is glass

and the filter materials are tantalum pentoxide and magnesium fluoride, as before.
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Figure 3.12: The corresponding filters that generated the intensities in Fig. 3.11. The ordinate
axis labels refractive index: nair = 1.00, nTa2O5 = 2.05, nMgF2 = 1.38, and nSiO2 = 1.52.

The fitness function F for the pulse-stretching dielectric stacks again took the form

F =
1∑

i

[Iideal(ti)− I(ti)]2
(3.10)

where the intensity function, Iideal, was now constructed from multiple σ = 30 fs Gaussian

pulses, each centered at τj,

Iideal(t) =
1

N

N∑
j=1

Aje
−((t−τj)/σ)2

. (3.11)
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Figure 3.13: Spectrograms corresponding to the triple pulses shown in Fig. 3.11.

Performance

Table 3.3 shows the main design parameters of the dielectric stack for the pulse stretching

mirrors. The associated designs are in Fig. 3.16. All ten mirrors are end-padded with a sub-

strate to a fixed total thickness, and within that total thickness the optimization algorithm

allowes for variation of the filter thickness itself, as shown in Table 3.3. It is interesting to

note the effect of the 50 layer template on the longer target pulse shapes. In Fig. 3.15, panes

a), b), and c) show the reflected pulse matching the width of the target function, while panes
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Figure 3.14: Reflectance spectrum for the ∆t = 120 fs triple pulse filter shown in Fig. 3.11.

d), e), and f) show that the 50 layer dielectric stack (due to its short optical thickness) is

unable to stretch the pulse to the requisite length. As a consequence, only the reflectance

of the N = 5, 10, and 20 dielectric stacks maintain comparably high reflectances. Table

3.3 shows a decrease in the reflectance for increased target length, as expected from the

discussion above.
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Table 3.3: Principal design metrics of the higher-pulsed reflection filters. Refractive index
profiles are shown in Fig. 3.16. The physical thickness of the filter excludes that of the
substrate.

Number of Overlapping Pulses Reflectance % Filter Layers Filter Thickness (µm)
3 94.25 50 37.96
5 91.39 50 37.60
8 96.05 50 36. 48
10 89.98 50 43.84
15 89.52 50 40.24
20 84.57 50 45.48
30 78.94 50 43.00
40 55.49 50 45.60
50 50.17 50 44.12
60 62.09 50 44.12

Optimization Enhancement Strategies

In an effort to improve the reflectances for the pulse stretching dielectric mirrors, a 25 layer

and, separately, a 40 layer quarter-wave stack were incorporated into the filter template.

Initially a pulse reflected from a pre-optimized structure with an added 25 layer quarter-

wave stack was modelled, but the reflected pulse shapes deteriorated, due to the quarter-wave

stack reflecting extra light back through the filter. This extra back-reflected light canceled

some of the constructive, pulse shaping fields. To avoid this problem, the filter was optimized

with a fixed quarter-wave stack in place.

The results of the combined filter and quarter-wave stack were marginally higher in

reflectance than the stand-alone filter design. The addition of a 25 layer stack to the opti-

mization template created a 1% improvement in reflectance over the solo filter, while the 40

layer stack produced a 2% improvement. In both cases the reflectance of the combination

was between that of the quarter-wave stack and the stand-alone filter. These results are

summarized in Table 3.4.
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Figure 3.15: These simulations optimized for pulses that were stretched upon reflection. The
incident pulse is shown in black while the reflected pulse is blue. The target function (dashed
red line) was constructed from overlapping N Gaussian pulses, where N ranges from 3 to 60.

Table 3.4: Reflectivities for multipulsed reflection filters with quarter-wave stacks incorpo-
rated into the design template.

Layers in additional Reflectance of Reflectance of
quarter-wave stack filter and stack (%) stack only (%)

0 96.23 0.00
25 97.76 99.98
40 98.47 99.99



41

1

1.5

2

2.5

1

1.5

2

2.5

1

1.5

2

2.5

R
ef

ra
ct

iv
e 

In
de

x

1

1.5

2

2.5

0 10 20 30 40 50
Distance (µm)

1

1.5

2

2.5

1

1.5

2

2.5

1

1.5

2

2.5

1

1.5

2

2.5

1

1.5

2

2.5

0 10 20 30 40 50
Distance (µm)

1

1.5

2

2.5

Figure 3.16: The corresponding filters that generated the intensities in Fig. 3.15. The ordinate
axis labels the refractive index: nair = 1.0, nTa2O5 = 2.05, and nMgF2 = 1.38.
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43

700 800 900
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

R
ef

le
ct

an
ce

Figure 3.18: Reflectance spectrum for the N = 20 pulse stretching filter shown in Fig. 3.15.
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Chapter 4

Frequency Domain Optimization

Since pulse shaping calculations in the time domain are computationally expensive and the

underlying optical problem is linear, an attractive alternative to the approach described in

Chapter 3 is to calculate the reflectance spectrum for these pulse shaping filters. One can

then optimize in the frequency domain using the computationally efficient characteristic

matrix method to calculate the reflectance spectra from the individual filter designs. The

only difference between the two methods used is the replacement of the finite-difference

time domain method by the characteristic matrix method. The genetic algorithm uses the

characteristic matrix method to calculate the fitness for each filter in frequency space. Apart

from running on a single processor, the genetic algorithm itself remains unchanged for this

section.

The first effort in the frequency domain was to design filters according to the spectral

profiles of the double pulse filter described in Chapter 3. The genetic algorithm struggled to

provide a good match to the target function, so a second optimization method – simulated

annealing – was introduced for comparison with the genetic algorithm. An introduction to

this method is provided in this chapter as well as a comparison of the double pulse spectral

results. Since neither optimization strategy in the frequency domain performed as well as

had been expected, much of this chapter is devoted to understanding the limitations of the

frequency domain optimization.

However, before describing these investigations, this following section provides a summary

of the double pulse train results in the frequency domain.

45
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4.1 An Overview of Some Frequency Domain Results

The literature often describes the spectral properties of filters in terms of reflectance or

transmittance spectra, and it is here that one can classify filters as notch, broadband, lowpass

and highpass. Frequency domain genetic algorithms began appearing in filter applications

in the 1990’s with a work by Michielssen, Ranjithan, and Mittra [53]. In that work, a real-

coded algorithm was used to design lowpass and high pass filters of alternating lead telluride

(PbTe, nH = 5.10) and zinc sulfide (ZnS, nL = 2.20) layers with a germanium substrate

(Ge, nsub = 4.00). The filters matched their target spectral functions with some success and

the performance of the real-coded genetic algorithm compared favorably with other then-

contemporary methods. From that time onward, the literature quickly expanded to test the

performance of more elaborate genetic algorithms, using more involved real-coded versions,

family competition evolutionary algorithms [54], and genetic algorithms that incorporated

post-processing gradient refinement methods.

Often the research that sustained binary-coded genetic algorithms began to design filters

in which the refractive index of the layers could assume any value within a range. This

effectively expanded the space in which the algorithm could search. In fact, both the use

of real-coded algorithms and the progression toward the possibility of inhomogeneous layers

allowed the dielectric stack design to move toward continuous parameterization of the layers,

which is considered by some to be a more natural way to design a dielectric stack. The

disadvantage of designing a filter with inhomogeneous layers is that while it permits more

sophisticated spectra to be matched, the filters themselves are rather delicate to manufacture.

Careful monitoring is required in the deposition stages to control and change the refractive

index as a layer.
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4.2 Double Pulse Filters in the Frequency Domain: A Comparison with the

Time Domain Optimization Strategy

The only difference between the frequency domain optimization code and the time domain

optimization code used in this dissertation is the replacement of the finite-difference time

domain calculation for the reflected pulse profile with a characteristic matrix calculation

of the reflectance within the fitness function. For comparison with the results of Chapter

3, the same materials, layer numbers, population size and maximum generation are used

by the algorithm, i.e. 50 layer filters constructed from MgF2 and SiO2. A population of

10 evolves for 500 generations of the genetic algorithm. It is worth noting that while the

time domain optimizations of Chapter 3 run for about an hour using 11 processors, these

frequency domain optimizations are dramatically faster, taking approximately 1.5 minutes

on a single processor. The speed of calculation in the frequency domain makes this approach

very appealing for the design of pulse shaping dielectric stacks.

To produce a double pulse target function in the frequency domain, I selected as my

starting point the target function from the ∆t = 150 fs double pulse reflection filter. I

Fourier transformed both the incident and target pulses and took the ratio of the magnitude

squared to produce a reflectance spectrum. Fig. 4.2 shows the results from the frequency

domain simulations that used this target function. As can be seen from the figures, the

optimization was a complete failure. The frequency optimization code was then modified to

use the simulated annealing method to see if this optimization algorithm would be more

effective.

The Simulated Annealing Method

Like the genetic algorithm, simulated annealing is a stochastic optimization method. For

the class of problems that contain multi-dimentional, nonlinear, or discontinuous functions

stochastic algorithms are often a successful way of finding global minima [55]. Simulated

annealing works well when the search space is large, since it has the ability to explore
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Figure 4.1: The frequency domain genetic algorithm result (green solid line) compared with
the time domain genetic algorithm (light green dashed line) for the case of a double pulse
filter. The incident pulse for both simulations is shown in black.

big sections of the space with its step sizes. The name refers to its heuristic analogy with

metallurgic annealing, a technique that involves the heating and controlled cooling of a

material to help the constituent atoms reach a lower energy configuration. The heating step

allows the atoms to move from their initial positions and explore more energetic states in

the internal energy of the system. The cooling process allows the atoms to come to rest in

configurations of lower internal energy, permitting a more relaxed configuration to be found.
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By analogy with this physical process, simulated annealing uses an artificial temperature

to control the probability of accepting an uphill (more energetic) step within the search space.

As the system is “heated,” it accepts more energetic solutions with a higher probability than

before. This enables the optimization to step outside of local minima and search farther

in the space for a better solution. As the system is “cooled,” smaller steps are taken and

solutions closer to the previous step are considered. The possibility of the algorithm accepting

a more energetic solution decreases. The allowance for uphill moves prevents the system from

becoming stuck at local minima – which is the bane of methods that accept downhill moves

only. One can fine-tune these optimizations by the duration of each heating cycle as well as

the temperature change in each loop.

To adapt a simulated annealing algorithm for dielectric stack design, the fitness at each

step, Fi, is calculated from the stack’s reflectance spectrum from an idealized spectrum.

The algorithm works with one filter design, evaluating the fitness, and then assigning small,

random changes to all design parameters. The algorithm evaluates the fitness of the next

design, Fi+1. If the small perturbations in the filter’s design parameters result in an improved

fitness, the changes will be accepted. If the resulting fitness is worse than before, this is

accepted with the probability [23],

P =


1 Fi+1 < Fi

e−[β(Fi+1−Fi)] Fi+1 > Fi

(4.1)

where β is a positive, inverse temperature parameter that scales the proportion of worse-

performing designs that are accepted. All simulated annealing results in this chapter are the

product of 30,000 iterations. For this work, I adopted the simulated annealing algorithm of

Tsallis and Stariolo [56] because the global optimum is guaranteed for appropriate choices

of the cooling schedule [57].
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A Comparison of Optimization Methods for the Double Pulse Spectral

Target Function

The reflected pulse profile from the simulated annealing optimization can be seen as the blue

line in Fig. 4.2, while the reflected pulse profile result produced by the frequency domain

genetic algorithm is shown in green. The genetic algorithm time domain result is shown

as a dashed green line for comparison. One can see that the time domain run produced

two evenly-weighted peaks, while the frequency domain simulations matched one peak well

but barely produced a second peak. The frequency domain genetic algorithm and simulated

annealing algorithm results were not promising.

Despite their ability to hill-climb and thereby avoid local minima, simulated annealing

algorithms are sensitive to their starting configuration. While these methods take larger

steps at the beginning of the optimization, if the starting configuration is far from the

global maximum then the algorithm may not sample the whole parameter space. To explore

this effect, I ran the simulated annealing algorithm and used as input a randomly-assigned

filter, an elite filter from a 500 generation genetic algorithm, and the worst filter from the

initial generation of a genetic algorithm. To see if the simulated annealing would benefit

from the work done by the genetic algorithm. Results from this investigation are shown in

Fig. 4.3, where the random-filter (upper panes) and fittest-filter (lower panes) initializations

are shown. Both the temporal pulse profiles (left panes) and reflectance spectra (right panes)

are shown. In all cases, the red dashed line is the target function, the incident pulse is shown in

black, and the temporal/spectral match of the best SA-designed filter is shown in blue. While

the spectral match is better in the fittest-filter initialization, but the temporal match is still

very unimpressive. Initializing with a randomly-generated filter to the SA produced a filter

that matched to the one temporal peak well. It is important to note that the target reflectance

function oscillated rapidly in wavelength and that the optimized structure captured many,

but far from all, of these oscillations. Neither version was able to produce a clear double pulse



51

0

0.5

1

GA-CM
SA-CM
GA-FDTD

0

0.5

1

N
or

m
al

iz
ed

 I
nt

en
si

ty

GA-FDTD
SA-CM

0.5 1
Time (ps)

0

0.5

1

GA-FDTD
GA-CM

Figure 4.2: Comparison of the frequency domain genetic algorithm result (green line) and
simulated annealing (blue line) algorithms compared with the best performance of the time
domain genetic algorithm (dashed green line) for the case of a double pulse filter. The incident
pulse for all simulations is shown in black.

shape in the time domain, nor were they able to match all of the peaks in the reflectance

spectrum.

From the above discussion it appears that the optimization problem in the frequency

domain may be harder than in the time domain. In order to gain a better understanding

of this issue, several other frequency domain problems were attempted using the genetic

algorithm.
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Figure 4.3: Initializing the simulated annealing in two different ways. The upper panes show
the result from initializing the simulated annealing algorithm with a randomly-generated
filter design, while the lower panes show the result from passing the fittest filter from a 500
generation genetic algorithm run. In all cases, the incident pulse is black, the reflected pulse
or spectrum is blue, and the red dashed lines represent the target pulse shape or the target
spectrum.

4.3 Tests with Quarter-Wave Stack Design

The first of these was to see if the frequency domain genetic algorithm could design a

filter based upon the reflectance spectrum of a quarter-wave stack. The target function

was generated by the design of a 28 layer quarter-wave stack out of magnesium fluoride
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(MgF2, nL = 1.38) and silicon dioxide (SiO2, nH = 1.52) on a silicon dioxide substrate.

The characteristic matrix method was used to calculate the reflectance spectrum over the

600 - 1200 nm range. The genetic algorithm’s initial designs were composed of the same

materials, number of layers, and layer order as the quarter-wave stack from which the target

function had been generated. With random assignments of the layer thicknesses, the filter

population then evolved, and each filter’s performance was evaluated against the target

function. The algorithm was varied in several ways, using different maximum generations

and different weights on the target function. The simulations consisted of 10 individuals

in a population and was allowed to evolve through 500 - 1600 generations. In order to

maintain a direct comparison, again the same values of 10 individuals and 500 generations

were chosen initially. Fig. 4.4 shows the simulation results for two representative variations

of the algorithm. The upper pane shows the results from a 500 generation optimization that

followed the steps outlined above. It took just under two minutes to produce a filter of fitness

F = 0.0818. The spectral profile of this filter is shown in black compared with the dashed

red target function. The lower pane displays the same optimization problem, but this time

a supergaussian weight function was used,

S(ω) = e[−[(w−w0)/σ]20] (4.2)

to emphasize the central reflectance band of the target function. Since the earlier trials had

taken such a small amount of time, this version was allowed to run for 1600 generations. The

runtime was 85 minutes and the final filter produced a fitness of F = 1.567. Note that the

central reflectance better matches the steep sides of the target function. Both filters produced

reasonable single-pulse shapes when examined in the time domain. Again, the results of this

optimization were unimpressive.
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Figure 4.4: Two different quarter-wave stack optimization simulations are compared here.
The upper pane shows a 500 generation run that used a standard target function. The lower
pane shows the same optimization problem, but this time used a supergaussian weighted
target function, to emphasize the central passband. It ran for 1600 generations. In both
cases, the spectral profile of the filters are shown in black compared with the dashed red
target function.

4.4 Comparison with the Literature

To find further functions that the frequency domain genetic algorithm could replicate, a

literature search was carried out. Two similar papers were located, but both contained key

differences from this work in the methodology. One incorporated inhomogeneous layers,
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which, as mentioned earlier, requires difficult manufacturing control. The second work used

homogeneous layers, however, their method differed from this work in that they used addi-

tional selection methods in their genetic algorithm. These papers were used as a test cases

for the genetic algorithm, with the idea to match the genetic parameters that these two

papers specified yet maintain the key elements of this original genetic algorithm and filter

template.

The first paper [58] constructed 40 layer dielectric stacks from two materials of refractive

indices nL = 1.35 and nH = 2.20. The authors used a binary-coded genetic algorithm with

100 individuals, a maximum generation of 1600, and a crossover probability of 0.6. Fig. 4.5,

shows the results from the genetic algorithm in black against the target function in red. The

central reflectance band reached 0.86 compared with the desired 0.90; the side passbands

averaged 0.1 reflectance compared with the target 0.0 reflectance.

While my genetic algorithm struggled to reach the high central reflectance of the target

function, the differences were most likely due to the continuously-varying refractive index

design used by Martin’s group [58]. My genetic algorithm used the more practical two mate-

rial design. Nonetheless, an attempt was made to replicate the Martin work closer in a

separate run by specifying all 40 refractive indices used. However, this increases the material

choices effectively increased the search space 20-fold. The algorithm still had to find the best

layer thicknesses to match the target function, but by changing from 2 to 40 materials there

were many more possibilities to check. However, runtimes were not allowed to increase pro-

portionally for consistency with the maximum generations and population count of Martin’s

study. Again, the match was poor.

The second paper [25] used 33 layers with the refractive indices 1.35 and 2.35. They used

a binary-coded genetic algorithm with 50 individuals, a maximum generation of 1000, and a

crossover probability of 0.6. For comparison, I replicated the target function from pane 1b)

of the paper. Fig. 4.6 shows the reconstructed target function (red dashed line) compared
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Figure 4.5: Optimization of this dissertation’s genetic algorithm against a target function
from [58] (upper pane). The lower pane shows the result from the reference work compared
to the same target.

with the results of my genetic algorithm (black line) and simulated annealing algorithm (blue

line).

Both algorithms did a reasonable job of providing smooth reflectance in the 500 - 550

nm range and in the 700 - 750 nm range. However, they both had trouble matching the flat

line for lower reflectances in the range 400 - 450 nm and 600 - 650 nm. Overall, the Yang-

designed dielectric stack matched the target better than the genetic algorithm or simulated
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Figure 4.6: The upper pane compares the genetic algorithm and simulated annealing attempts
to match a target function from Ref. ??. The lower pane shows results from the reference
work compared to the same target.

annealing-produced stacks. Yet, the results from the Yang paper and those generated by my

genetic algorithm are not directly comparable; the Yang paper describes results from a family

competition evolutionary algorithm, which allows groups of individuals to compete amongst

themselves for promotion to the next generation. This advantage is not present in the genetic

algorithm used in this dissertation. The family competition evolutionary algorithm also uses

an adaptive step-size, starting out with larger steps to better survey the search space and
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decreasing the step length as the algorithm converges. While this functionality is present in

the simulated annealing method, the genetic algorithm does not have that capability. These

differences may explain the poorer performance of the genetic algorithm when compared

with simulated annealing simulations.

In relation to both the Martin and the Yang papers, a complete match with their data

could not be made. Their studies either allowed more freedom in the design parameters,

or they used a modified genetic algorithm. It appears that the basic genetic algorithm is

insufficient for the task of designing a dielectric stack with spectral specifications. This

could explain the lack of papers that use a plain binary-coded genetic algorithm to design a

two-material dielectric stack in the frequency domain. Real-coding the strings, encouraging

family competition within the generations, or expanding the two-material format to allow

a continuous range of refractive indices are all possible ways to improve the performance of

the frequency domain algorithm.

Having established that steep-sided and rapidly oscillating target functions are harder

for the genetic algorithm, some (hopefully) easier target functions were investigated. Since

the algorithm consistently rounds out spectral features, it seemed reasonable to create a

smoother version of the target function from one of the earlier simulations in this section. A

supergaussian target function (red), which was inspired by the Martin function, as well as

the optimization result (black) is shown in Fig. 4.7. It shows a good agreement between the

two functions. As was the case before, the filter that produced this spectral result comprises

40 alternating layers of magnesium fluoride (nL = 1.35) and zinc sulphide (nH = 2.2).

Inspired by the time domain double pulse optimization, I also investigated the ability of

the algorithm to match a double Gaussian pulse in the frequency domain. In Fig. 4.8, these

reflectance spectra (black) are compared with the target function (red). 16,000 generations of

the genetic algorithm were simulated here. Note that the asymmetric shape of the reflectance

peaks is due to using a wavelength rather than a frequency scale.
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Figure 4.7: Results of an optimization using a supergaussian target function (red). The
reflectance spectrum of the optimized filter (black) is in good agreement with the target
function.

From the investigations above, there appear to be problems that are easy to optimize in

the time domain but that are difficult in the frequency domain [59, 60, 61, 62, 63]. Simple,

continuous functions appear to be easy problems for both domains. The optimization of two

Gaussian features in the spectral domain was comparable to results in the time domain. I

conclude that despite the linearity of the optical problem, the optimization of a pulse shaping
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Figure 4.8: The result from a double Gaussian target in the frequency domain. The target
function appears in red while the reflectance spectrum is shown in black.

filter is a problem more appropriately solved in the time domain, and this strategy is used

in the remainder of the dissertation.



Chapter 5

The Design of Manufacturable Pulse-Stretching Filters

In this chapter I discuss some of the efforts required to develop one of the concepts described

in Chapter 3, the pulse-stretching filter, to a stage where it can be constructed by an optical

component manufacturer.

5.1 Improved Utilization of the Binary Encoding

As a result of rewriting and optimizing the finite-difference time domain routine, I was able

to use the algorithm at a spatial resolution of λ/64, rather than the λ/20 resolution described

in Chapter 3. This improvement reduces the thinnest filter layers from 40 nm to 12.5 nm.

Furthermore, using a λ/64 resolution takes better advantage of the binary encoding ability

of the genetic string.

In the work described in the previous chapters of this dissertation, each layer in the filter

was allowed to range from 0 - 2λ in thickness. At a λ/20 resolution, it is necessary to use a

6-bit encryption, which can specify any non-negative integer from 0 to 63 and only requires

40 sublayers of 40 nm thickness to construct a 2λ layer. Thus the additional 41 to 63 bits

that could be used for encoding in the binary string are redundant. If one uses a λ/64 grid

and 7-bit binary encoding, the 0-64 sublayers can specify a layer thickness between 0 and

2λ.

5.2 Conversion to Higher Resolution

Once the results from a λ/64 resolution optimization are produced, the design needs conver-

sion to at least λ/200 resolution. At this higher resolution, the reflectance spectrum produced
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by an FDTD calculation closely matches that of the spectrum produced by the character-

istic matrix method. In practice it is easier to scale a λ/64 resolution structure to a λ/256

resolution structure rather than to a λ/200 resolution structure. At λ/256 the grid resolution

increases such that the grid spacing is reduced to ∆x = 3.125 nm. As described in Chapter

3, the dielectric stacks often drop slightly in their fitness or optical performance upon con-

version to the higher grid resolution. Again, tuning is employed to find a grid spacing that

produces slightly better performance than the exact ∆x = 3.125 nm grid for the λ/256

resolution.

In contrast with the higher resolution conversions described in Chapter 3, the filters

described in this chapter were tuned by directly varying the grid spacing rather than the

wavelength. This reduced the number of post-processing FDTD calculations by one. Fig. 5.1

illustrates the steps involved in converting of a 50 layer dielectric stack from a λ/64 to a λ/256

resolution. First, I converted the genetic algorithm’s resultant λ/64 resolution dielectric stack

into a λ/256 resolution design by replacing each λ/64 sublayer with four λ/256 sublayers.

The associated reflected intensity profiles for the λ/64 and λ/256 resolution structure are

shown in Fig. 5.1. Multiple FDTD calculations, each with a different grid spacing, were

performed for the rescaled dielectric stack. Again, Eq. 2.1 was used to determine the fitness

of this dielectric stack with various grid spacings, and the results of this tuning generate the

plot that is inset in the middle pane of Fig. 5.1. Once the optimized grid spacing was found,

the dielectric stack tuning was complete at the higher resolution (bottom pane). In this case,

∆x = 3.135 nm produced the best result for the optimized filter. All the filter layers are then

scaled as though they were on a 3.135 nm grid, giving the final dielectric stack blueprint.

A Modification to the Dielectric Stack Design

Material Considerations

For all of the structures described in this chapter, I use niobium pentoxide, Nb2O5, and silicon

dioxide, SiO2, because it is easier to deposit structures composed of all oxide layers rather
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Figure 5.1: Converting the filter from a λ/64 resolution to a more realistic λ/256 resolution.
The results of the optimization appears in the top pane, while the middle pane shows the
result of directly mapping that filter onto a higher resolution grid without tuning. The inset
in the middle pane shows the results from tuning the grid spacing. The bottom pane shows
the reflected pulse profile from the tuned λ/256 structure.
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than from oxide/fluoride combinations. Niobium pentoxide was chosen as a pair for silicon

dioxide because its refractive index is slightly higher than that of tantalum pentoxide. The

low index material was changed from magnesium fluoride to silicon dioxide, which increased

the refractive index of the L layers. Therefore, I used a higher-refractive index oxide for the

H layers, in an effort to maintain a high ratio between the low and high refractive indices,

i.e., nH/nL.

5.3 Pulse Stretching Filters for 100 fs Pulses

These devices represent two major design changes from the earlier pulse stretching filters of

Chapter 3. Firstly, they are designed for 100 fs input pulses with a central wavelength of 800

nm rather than the 30 fs input pulses that were used earlier. Secondly, these filters make use

of all oxide layers, i.e. Nb2O5 and SiO2, to make fabrication of these mirrors easier. The final

product should be a blueprint for a readily-manufacturable and laboratory-testable dielectric

stack.

Performance

Using the new design parameters, the first step is explore the performance of a pulse-

stretching mirror. In particular, a target function that comprises of 20 overlapping Gaussians

was used to stretch the pulse by a factor of 10 on reflection. Several layer templates are

used. Fig. 5.2 shows the results from the 50, 100, and 150 layer dielectric stacks. One can see

that there is only modest improvement in increasing the number of layers from 50 to 100 to

150. Since a 50 layer structure is manufacturable using today’s technology (100 layers being

tomorrow’s technology), only the 50 and 100 layer structures were explored further.

Robustness

If these devices are to find practical application, it is necessary to see how a particular

dielectric stack will perform in sub-optimal conditions. In particular, if the central wavelength
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Figure 5.2: Comparison of filters optimized for the same target pulse shape (red dashed line)
but with differing layer numbers in the design template. Shown here are 50, 100, and 150
layer filters that were asked to spread a 100 fs input pulse (black line) over the distance of
20 overlapping Gaussian pulses. The reflection due to each filter is shown in blue.

of the laser drifts or if its pulsewidth changes, to what degree does it impact the filter’s ability

to produce the desired reflected pulse? To investigate this, the reflected pulses with different

central wavelengths and pulsewidths were calculated. Results for the robustness tests are

shown in Figs. 5.3, 5.4, 5.6, 5.7, and 5.5 while the corresponding reflectance data appears in

Tables 5.1 and 5.2. All of the FDTD calculations here were run using λ/256 resolution.
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It is gratifying to note the lack of variation in the reflected pulse shape due to wavelength

and pulse width detunings. For the 50 layer filter, the optimized reflectance occurs at the

standard central wavelength of 800 nm and intensity FWHM of 100 fs. The filter produces a

very similar reflection shape for λ = 790 nm and only drops the reflectance by 0.09 %, from

91.15 % to 91.04 %. With the pulse width variations, the drop in reflectance was 0.25 % for

an incident pulse width shift of 15 fs (from 100 fs to 85 fs).
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Figure 5.3: Testing the 50 layer pulse-stretching filter performance with sub-optimal incident
pulse widths. Corresponding reflectance data appears in Table 5.1. The incident pulse is
black, the reflected pulse is blue and the target function is a dashed red line.
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Table 5.1: Results for the robustness tests of the 50 and 100 layer pulse stretching filters
with respect to incident intensity pulse width. Reflected pulse profiles appear in Figs. 5.3,
5.4 and 5.5.

Number of Pulsewidth Reflectance
Filter Layers (fs) (%)

50 85 90.90
50 90 91.25
50 95 91.63
50 100 91.15
50 105 89.36
50 110 90.78
100 70 93.00
100 85 94.09
100 90 94.37
100 95 94.12
100 100 94.50
100 105 94.32
100 110 93.85
100 130 93.45

Table 5.2: Results for the robustness tests of the 50 and 100 layer pulse stretching filters
with respect to incident wavelength.

Number of Wavelength Reflectance
Filter Layers (nm) (%)

50 790 91.04
50 795 90.81
50 800 91.15
50 805 91.34
50 810 90.99
50 815 90.55
100 790 94.37
100 795 94.58
100 800 94.70
100 805 94.41
100 810 94.36
100 815 94.50
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Figure 5.4: Testing the 100 layer pulse-stretching filter performance with sub-optimal incident
pulse widths. Corresponding reflectance data appears in Table 5.1. The incident pulse is
black, the reflected pulse is blue and the target function is a dashed red line.

Resolution Comparison

This series of simulations show the gains that can be made when optimizing directly on a

higher grid resolution. Fig. 5.8 shows the outcomes from three separate optimizations. All

simulations had the same goal of designing a pulse stretching filter with 50 layers of Nb2O5

and SiO2, but used resolutions of λ/20, λ/64, and λ/128. The results from the grids of λ/20,

λ/64, and, λ/128 optimizations are shown respectively in the upper, middle, and lower
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Figure 5.5: A direct comparison of the intensity profiles for both optimal and non-optimal
pulses. 70, 100, and 130 fs incident pulses were reflected off the 100 layer pulse stretching
dielectric stack. Sub-optimal incident pulses are shown in the top and bottom panes, while
the middle pane shows the incident pulse for which the filter was designed. In all cases the
target reflectance is shown as a red dashed line, while the incident pulse is in black and the
reflected pulse appears in blue.

panes of Fig 5.8. The λ/64 grid provided sufficient resolution, with its resultant best filter’s

spectrum matching the length of the pulse stretching target well. The λ/128 optimization

produces a good filter design with better fitness than the λ/64 optimization. However, the

reflectance is not as high. The corresponding reflectances and fitnesses are given in Table 5.3.
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Figure 5.6: Testing the 50 layer pulse stretching filter for performance with detuned incident
wavelengths. The incident wavelegnth (black) varied from 790 nm through to 815 nm. The
reflected pulse shape appears in blue while the target function is shown in red for comparison.
Corresponding data appears in Table 5.2.

5.4 Application: A Matched Pulse Stretcher/Compressor Pair

Having spent much of this dissertation discussing the optimization of pulse-stretching filters,

I was interested to determine if the stretched pulse could be re-compressed. One current

practice in ultrafast optics is to stretch and compress laser pulses using a pair of diffrac-

tion gratings [64, 65]. Diffraction grating arrangements have limited robustness and energy
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Figure 5.7: Testing the 100 layer pulse stretching filter for performance with detuned incident
wavelengths. The incident wavelegnth (black) varied from 790 nm through to 815 nm. The
reflected pulse shape appears in blue while the target function is shown in red for comparison.
Corresponding data appears in Table 5.2.

throughput due to the metallic coatings, and have been known to distort the output beam

profile. These features are undesirable, hence the attractiveness of circumventing these prob-

lems by using a fixed filter-based device.
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Figure 5.8: Reflected pulse shapes (blue) for the 50 layer pulse-stretching filters designed
using spatial resolutions of λ/20, λ/64, and λ/128, respectively. The dashed red curve shows
the target function in each case, and the incident pulse is shown in black. Table 5.3 displays
the reflectances and grid sizes for these cases.

Table 5.3: Comparison of simulations for the 20 overlapping pulse-stretching design. All
simulations use a 50 layer filter template, but are run on different grid resolutions. Fig. 5.8
shows the corresponding pulse shapes.

Spatial ∆x Fitness Reflectance
Resolution (nm) (%)
λ/20 40 1.155 87.81
λ/64 12.5 1.170 91.54
λ/128 3.125 1.312 88.11
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Reading in an Arbitrary Incident Pulse

In order to develop a compressor stack, the stretched pulse must be read into the optimizing

algorithm. The GA-FDTD program was converted to read from a file rather than generate

the incident pulse from a Gaussian function, as was done in the previous dielectric stack

simulations. This modification also has the advantage that it allows any pulse shape, say

from experimental data or from the results of the pulse-stretching simulations to be read

into the optimization algorithm. It can also be used to input the incident pulses for the

different grid tunings when converting the dielectric stack to a higher resolution.

With the ability to read in arbitrary pulse shapes, the algorithm could now be used to

design a pulse compressing dielectric stack. The optimization created a dielectric stack that

could best restore the original Gaussian shape from a reflected pulse produced by either

the 20 or 40 overlapping pulse stretching filter. The pulse compression results are shown in

the upper and lower panes of Fig. 5.9, respectively. The genetic algorithms was run for 500

generations with 10 individuals.

In both cases, the simulation ran on a λ/64 grid and used a dielectric stack composed

of 100 alternating niobium pentoxide and silicon dioxide layers. Both versions worked well

in producing Gaussian shapes upon reflection. The peak intensity of the 40 overlapping

pulse version is somewhat poorer than the 20 overlapping pulse version. It is possible that

the 40 overlapping pulse version requires a thicker dielectric stack to produce the necessary

submirrors within the dielectric stack.
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Figure 5.9: Reflected pulse shapes for the 50 layer compression dielectric stack designed
using a spatial resolution of λ/64. Results from the 20 and 40 overlapping pulse stretching
dielectric stack were used as the incident pulse (black). In both cases the reflected pulse is
shown in blue and the target function appears in red.



Chapter 6

Conclusions

The main contribution of this dissertation is the exploration of thin-film filter design for ultra-

short pulse shaping applications. The filters described in this dissertation are the product

of two independent methodologies: optimizing in the time domain and optimizing in the

frequency domain. The time domain approach is particularly novel for this type for filter

design. To the best of my knowledge, this is the first time filters have been optimized with

temporal pulse shaping as the target function for an ultra-short laser pulse. With the combi-

nation of the finite-difference time domain technique and a genetic algorithm, various filter

designs were created that produce double, triple, and stretched pulses upon reflection. The

spacing between the double peaks was investigated for a range of 30 - 300 fs, while the

spacing between consecutive peaks for the triple pulse reflections was investigated for the

30 - 120 fs range. To understand the mechanisms of the pulse shaping filters, a case study

was performed. By investigating the group delay dispersion, spectrograms for the reflected

pulses and isolating particular layers of the filter, it became apparent that the double pulses

were created by two effective mirrors within the stack.

The possibility of using a frequency domain technique was also explored. The problem

here was to design a filter for a desired spectral profile. The target reflectance or trans-

mittance function was fed into the algorithm and then used as a means of identifying

better-performing filters. For the spectral domain optimizations, both genetic algorithms

and simulated annealing algorithms were used in conjunction with the characteristic matrix

method. To check the efficacy of this optimization strategy, the frequency domain algorithm

was used to produce a filter with a reflectance function that matched the Fourier transform
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of a double-pulse (time domain) filter’s reflected pulse. In the case of the double, triple, and

stretched time-domain pulses, the target functions for these calculations became much more

difficult to match. Where a target function is straight-forward for a genetic algorithm in one

domain, its Fourier transform can be quite a difficult structure for the genetic algorithm

to solve. The main contribution from this section was the further characterization of target

functions that are easy and target functions that are hard for the genetic algorithm.

Both the filter template and the genetic algorithm used in this dissertation had several

modifications made to improve the realizability of the final filter design. The materials were

converted to all-oxide layers for ease of manufacture. Changes to the genetic algorithm’s

binary encoding made better use of the computational resources, improving the grid resolu-

tion without slowing the algorithm noticeably. The algorithm was also modified to read in

arbitrary stretched pulse shapes so that a stretcher/compressor filter pair could be designed.

Chapter 5 detailed the results of filters designed for 100 fs input pulses. I am pleased to

note that a detailed manufacturability study of one of my pulse stretching designs is being

performed by an optical coating company at the time of writing.



Appendix A

The Characteristic Matrix Method

The characteristic matrix method provides an elegant way of handling Maxwell’s equations

subject to the boundary conditions in a multilayer stack. An outline is given here, following

the development given by Born and Wolf [47] and Macleod [6]. Our frequency domain algo-

rithms use the resulting equations exactly.

Consider the stack of l films illustrated in Fig. A.1. The layers run from 1 to l while

their interfaces are labeled 1 to l-1. We choose an orientation of the coordinate system so

that the materials change in only one dimension, enabling Maxwell’s equations to reduce to

independent sets of equations for the transverse electric (TE) and transverse magnetic (TM)

modes. We assume the incident light propagates in the ŷ-direction. The angle of incidence

is denoted υ.

We treat the sum of the positive and negative traveling waves at each interface in the

multilayer. A positive traveling wave is distinguished from the total field by use of the

notation E+. Likewise, we use E− to denote negative propagating waves. We consider the

tangential components, which are continuous across the interfaces. At a particular interface,

such as the boundary between film 1 and film 2 in Fig. A.2, we can relate the tangential

components at this interface, Eb and Hb, as

Eb = E+
1b + E−1b

Hb = η1E
+
1b − η1E

−
1b (A.1)
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Figure A.1: A multilayer stack consisting of air, l homogeneous planar films, and a semi-
infinite substrate.

Note that there is no negative traveling wave in the substrate. We calculate the path differ-

ence δ as a fraction of the wavelength.

δ = 2πN1d cos θi/λ (A.2)

This allows us to infer the fields, denoted with a, at the boundary between the surface and

film 1 of Fig. A.2, using the phase factor eiδ for forward traveling waves and it’s complex

conjugate, e−iδ for backward traveling waves,
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Figure A.2: Light incident on two thin films with a substrate.

E+
1a = E+

1be
iδ

E−1a = E−1be
−iδ

H+
1a = H+

1be
iδ

H−1a = H−1be
−iδ. (A.3)

Substitution of the explicit forms for E±1b and H±1b gives us a system of two equations that

relate the tangential fields at the surface-film 1 boundary, Ea and Ha, to the tangential fields
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at the film 1-film 2 boundary, Eb and Hb. Compiling these in matrix form we have Ea

Ha

 =

 cos δ i
η1

sin δ

iη1 sin δ cosδ


 Eb

Hb

 . (A.4)

The final form used in our optimization algorithm was a normalized version. Most properties

of thin film systems are extracted from the following transfer matrix, Ea/Eb

Ha/Hb

 =

 B

C

 =

 cos δ i
η1

sin δ

iη1 sin δ cos δ


 1

η2

 . (A.5)

In particular, we can extend this to the general case of an l-layer stack. The characteristic

matrix for this assembly is simply the product of the matrices for the individual layers,

multiplied in the correct order: B

C

 =
l∏

i=1

 cos δi
i
ηi
sinδ

iηi sin δ cos δi


 1

ηm

 . (A.6)



Appendix B

The Finite-Difference Time Domain Method

The basic FDTD space grid and time stepping routine was developed in the seminal 1966

paper by Kane Yee [14]. In this paper he converted Maxwell’s equations into a set of finite

difference equations that could calculate the propagation of an electromagnetic wave for

boundaries involving a perfectly conducting medium. Here, we follow Yee’s method to cast

Maxwell’s equations into a form suitable for our one-dimensional FDTD algorithm.

We begin with Maxwell’s curl equations for an isotropic medium:

∇×H = Jf +
∂D

∂t

∇× E = −∂B
∂t

(B.1)

The first of these is the Maxwell-Ampere law, which relates the motion of a magnetic field in

a closed loop to the electric field passing through the loop. The second equation, Faraday’s

law, describes the induced electromotive force (EMF) caused by a changing magnetic flux.

The motion of one field induces the presence of the other, so as a pair, this creates an

electromagnetic wave. For the purposes of the filter design calculations, we ignore any source

terms, such as Jf . We also work with E and H rather than H, D, E, and B, so we use

D = εE and B = µH to convert the equations into the desired form. µ is the permeability

of the medium, and ε is the medium’s permittivity.

In Cartesian coordinates the rearranged Maxwell curl equations can be written as six

coupled scalar equations

∂Hx

∂t
=

1

µ

(
∂Ey
∂z
− ∂Ez

∂y

)

81



82

∂Hy

∂t
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1

µ

(
∂Ez
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)
∂Hz

∂t
=

1

µ

(
∂Ex
∂y
− ∂Ey

∂x

)
∂Ex
∂t
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1

ε

(
∂Hz
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1

ε

(
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∂x

)
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∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
. (B.2)

Yee defined the grid coordinates (i, j, k) as:

(i, j, k) = (i∆x, j∆y, k∆z) (B.3)

where ∆x,∆y and ∆z are increments between successive grid steps.

In one dimension this reduces to only two coupled partial differential equations to solve,

∂Ex
∂t

=
1

ε

(
−∂Hy

∂z

)
(B.4)

∂Hy

∂t
=

1

µ

(
−∂Ex
∂z

)
(B.5)

We now consider the magnetic field at a time n to be the average of the previous half

time-step and the successive half time-step. This semi-implicit approximation allows us to

calculate H on a grid, one half time and one half spatial step removed from the E grid.

Hx|ni,j,k =
Hx|n+1/2

i,j,k +Hx|n−1/2
i,j,k

2
. (B.6)

We can express all the magnetic fields about the Yee Cell in terms of this half step forward

in time:

Hx|n+1/2
i,j,k =

1− ∆t
2µi,j,k

1 + ∆t
2µi,j,k

Hx|n−1/2
i,j,k +

 ∆t
µi,j,k

1 + ∆t
2µi,j,k




Eyni,j,k+1/2
−Ey |ni,j,k−1/2

∆z
−

Ezni,j+1/2,k
−Ez |ni,j−1/2,k

∆y

 (B.7)

Hy|n+1/2
i,j,k =

1− ∆t
2µi,j,k

1 + ∆t
2µi,j,k

Hy|n−1/2
i,j,k +

 ∆t
µi,j,k

1 + ∆t
2µi,j,k




Ezni+1/2,j,k
−Ez |ni−1/2,j,k

∆x
−

Exni,j,k+1/2
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∆z





83

(i, j, k) (i+1, j, k)

(i, j, k+1)

(i+1, j+1, k)

(i+1, j+1, k+1)

Ex

Ez
Hy

Hx

Hz Ey

Hy

Hz

Figure B.1: The Yee Cell for the three dimensional FDTD algorithm. This schematic shows
the orientation of all electric and magnetic field components for a single unit cube. Note the
half-step offset of the E and H fields.

(B.8)
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The last step is to set the grid spacings equal, ∆x = ∆y = ∆z = ∆, so that we are

dealing with a uniform cubic grid. We group the material parameters together as a single

coefficient.

Hx|n+1/2
i,j,k = Da(m)|i,j,kHn+1/2

x +Db(m)|i,j,k(Ey|ni,j,k+1/2 − Ey|ni,j,k−1/2

+Ez|ni,j−1/2,k − Ez|ni,j+1/2,k)

Hy|n+1/2
i,j,k = Da(m)|i,j,kHn+1/2

y +Db(m)|i,j,k(Ez|ni+1/2,j,k − Ez|ni−1/2,j,k

+Ex|ni,j,k−1/2 − Ez|ni+1/2,j,k)

Hz|n+1/2
i,j,k = Da(m)|i,j,kHn+1/2

z +Db(m)|i,j,k(Ex|ni,j+1/2,k − Ex|ni,j−1/2,k

+Ey|ni−1/2,j,k − Ey|ni+1/2,j,k)

(B.13)

Ex|n+1
i,j,k = Ca(m)|i,j,kEy|ni,j,k + Cb(m)|i,j,k(Hz|n+1/2

i,j+1/2,k −Hz|n+1/2
i,j−1/2,k

+Hy|n−1/2
i,j,k−1/2 −Hy|n+1/2

i,j,k+1/2)

Ey|n+1
i,j,k = Ca(m)|i,j,kEy|ni,j,k + Cb(m)|i,j,k(Hx|n+1/2

i,j,k+1/2 −Hx|n+1/2
i,j,k−1/2

+Hz|n+1/2
i−1/2,j,k −Hz|n+1/2

i+1/2,j,k)

Ez|n+1
i,j,k = Ca(m)|i,j,kEz|ni,j,k + Cb(m)|i,j,k(Hy|n+1/2

i+1/2,j,k −Hy|n+1/2
i−1/2,j,k
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+Hz|n+1/2
i,j−1/2,k −Hx|n+1/2

i,j+1/2,k)

(B.14)

The electric field coefficients used above are:

Ca(m)|i,j,k =
1−

σi,j,k∆t

2εi,j,k

1+
σi,j,k∆t

2εi,j,k

and Cb(m)|i,j,k =
∆t

εi,j,k∆

1+
σi,j,k∆t

2εi,j,k

,

and the magnetic field coefficients are:

Da(m)|i,j,k =
1− ∆t

2µi,j,k

1+ ∆t
2µi,j,k

and Db(m)|i,j,k =
∆t

µi,j,k∆

1+ ∆t
2µi,j,k

.

So for one dimension, we have the following FDTD equations:

Ex|n+1
k = Ca(m)|kEx|nk + Cb(m)|k

(
Hy|n+1/2

k+1/2 −Hy|n+1/2
k−1/2

)
(B.15)

Hy|n+1/2
k−1/2 = Da(m)|kHy|n−1/2

k−1/2 +Db(m)|k
(
Ex|nk − Ex|nk−1

)
. (B.16)

Algorithm Stability

Since an electromagnetic pulse cannot propagate faster than the speed of light, we ensure the

one in our algorithm doesn’t either. To do this, the time taken to propagate across one cell,

∆x, is fixed to ∆t = ∆x/c. For one dimensional simulations this is absolutely convergent. For

two dimensional simulations, the condition becomes ∆t = ∆x/(
√

2c), allowing for motion

diagonally across a cell. Three dimensions is a simple extension of this, and in general we

write this Courant Condition for n-dimensions as ∆t ≤ ∆x/
√
nc[66, 67].



Appendix C

Genetic Algorithms

Genetic algorithms are particularly intuitive because of the parallels they share with evo-

lutionary processes. The general idea is to solve a problem (often an optimizing one) by

initializing a population of guesses. These individual guesses are evaluated for how well they

address the problem at hand. Accordingly, a fitness for each individual is assigned. Better-

performing individuals have a better chance of passing on traits, by offspring solutions, much

like the process in Nature that we know as survival of the fittest. Recombination and muta-

tion, operators borrowed from the field of genetics, are applied to individuals in an effort to

maintain the diversity of a population. The algorithm simulations until some pre-destined

cutoff is reached: either a computational limit is reached or a satisfactory fitness is found.

There exist many types of genetic algorithms (messy, hybrid, order-based, etc.) and many

methods of implementation [68, 69]. Certainly, this flexibility of design has enabled genetic

algorithms to be used in a vast array of disciplines, and it should be noted that function

optimization utilizes only a small fraction of a genetic algorithm’s capabilities [60]. More

details can be found in Refs. [26, 70] and [71]; the ICGA proceedings [72] provide a good

source of results regarding genetic algorithm theory and applications.

This chapter is organized as follows. Section 2.1 introduces the main user-specified param-

eters. Section 2.2 verifies the sensitivity of the algorithm to changes in each of these param-

eters, while section 2.3 concludes with a summary of the algorithm’s sensitivity to these

parameters.
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Individual String
1 101100110111001
2 011010110001110
3 011110100011101
4 010110100111010
5 111011001101000
6 100110101111000
7 111000011001101
8 101101111001001
9 110011010011100
10 001010101101100

Table C.1: An example of initial population strings generated by the genetic algorithm.

C.1 Initializing the Algorithm

Creating an Initial Population

To begin a genetic algorithm, we need an initial population. Our initial population is gener-

ated by collecting a random series of 0’s and 1’s to generate the strings of each individual.

There is a trade-off between the number of individuals in a population and how many

generations it takes to converge. Too small a population means the algorithm may take longer

to find the right combinations before converging. Each generation will be quicker to evaluate,

for there are fewer members from which to make selections. Widely scattered populations

(more likely with a larger initial population size) tend to have a better chance of finding

good solutions early on, although each generation may be slower to process.

Experience tells us that the ideal population size depends upon the function at hand. As

with all parts of the genetic algorithm, one wishes to use the minimum precision necessary.

Some functions perform well with N = 10 individuals but others need N = 10000.
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Limiting the Search Space

When seeking an optimal solution one must always consider any computational limits at

hand. To reduce the space in which the algorithm searches, restrictions are placed upon the

range of variables (unknowns) that are to be optimized . For example, the following test

function has maxima at (1, 2), (5, 4) and (6, 6).

f(x, y) = e−(x−2)2

+ 1.5e−4(x−1)2

e−4(y−2)2

+ 2.5e−4(x−5)2

e−4(y−4)2

+ 1.5e−4(x−6)2

e−4(y−6)2

(C.1)

From Fig. C.1, one can see that the peak at (5, 4) is the global maximum. If the search space

is restricted to xε[0, 4] two out of the three maxima are omitted.

f

x

y

Figure C.1: One of the test functions used to validate the genetic algorithm.

Over-restricting the search space can therefore result in not finding the best solution,

while not restricting the space at all can be computationally expensive.
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C.2 Genetic Operators

Selection

In the algorithm used in this dissertation, “roulette wheel” selection was used, whereby

the probability of selection is proportional to that individual’s fitness. Better-performing

individuals maintain a higher probability of reproduction. The selection mechanism is per-

formed twice, so that a total of two individuals can be chosen to undergo, or to not undergo,

crossover. Selection continues until N (the population size) individuals have been selected.

This weighted selection method allows all individuals the chance of continuing in the

next generation and therefore maintains the diversity of the population [69]. Over a number

of generations the traits of less fit parents disappear.

Table C.2: An example of roulette selection: choosing an individual for crossover.

Individual Fitness Cumulative total Random number n Individual chosen
1 7 7 23 3
2 2 9 49 7
3 17 26 6 3
4 12 38 7 1
5 7 45 15 3
6 3 48 27 4
7 2 50 45 5
8 14 64 13 3
9 1 65 61 8
10 3 68 9 2

For roulette selection, the algorithm calculates the sum fitness of a generation, S. A

random integer n, which is between 0 and S is called, and the individual who has a cumulative

fitness equal or just greater than n is selected. Notice in table C.2 that individual 3 gets chosen

the most, in accordance with having the best fitness. Lesser performing individuals, such as

individual 9 still get chosen but not as frequently.
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Crossover & No Crossover

Crossover is also known as recombination. We all have a direct familiarity with crossover

in genetics: you and your siblings are not identical to your parents, but you inherit one or

more attributes, be it skin tone, a facial feature or your body type. This is how crossover

works. Good traits are preserved from generation to generation while allowing some new

combinations to appear, too.

The same applies to recombination in the genetic algorithm. The introduction of new

traits by crossover allows the algorithm to explore the search space by providing opportunities

for novel solutions (in the form of offspring) to appear in the population. The most common

form of crossover is done at a single-point along the parent chromosomes. The locus of

interest is chosen at random, and the two parents switch half their string with each other.

This enables good traits to persist in subsequent generations.

Crossover works better than no crossover provided the population contains sufficiently

diverse members, otherwise there is a high probability that individuals will be crossing the

same strings with each other. Representative samples of different building blocks for good

solutions need to be present in the population, and the evaluation function needs to reflect

the contributions of these building blocks. Finally, to work well, crossover needs to be capable

of putting good building blocks together, and not somehow splitting the feature up when

recombining the chromosomes of different individuals.

Mutation

Where crossover creates new individuals by the mixing of two parents, mutation does so by

modification of a single individual.

This process occurs frequently in nature; quite often it is a replication error. For what-

ever its cause, mutation beneficially diversifies the population: novel chromosomes can be

passed onto the new generation. Mutations that correspond to poorer fitnesses die out, but

sometimes a better fitness (a better solution) is introduced by mutation. Thus, in coding, it
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prevents a genetic algorithm from converging around a sub-optimal solution. When modeling

functions with many local maxima, mutation enables the algorithm to generate more pos-

sible solutions before converging on a particular one. It also aids the effectiveness of crossover

when the population’s diversity is maintained.

In practice, mutation probabilities between 0.01 and 0.2 seem to work well. If the mutation

rate is too low, it barely has an effect. Mutation rates that are too high permute too many of

the good genes, slowing down the algorithm’s progress. One’s task in setting mutation rates

is to balance caution against excess.

C.3 Encoding and Decoding

Chromosomes & String Length

Choice of encoding method and string length seem like an optimization problem in them-

selves. I used binary encryption since it lends itself to easy implementation of the genetic

operators in the algorithm (crossover, selection, and mutation). String length, on the other

hand, remains particular to the problem at hand, and so it was determined through test sim-

ulations what length would provide sufficient encoding accuracy without excessively slowing

the algorithm.

A Note on Accuracy

If a parameter is continuous then it must be quantized for encoding purposes. The range

is limited between the upper and lower bounds, and divided between these points evenly.

Depending on the bit length for a particular parameter, not all numbers will be possible, and

some rounding is involved, either up or down, to match the set of allowable values. Error will

always be present in quantizing continuous parameters; the amount depends on the length

of each gene representing that parameter.

Lower bounds on the filter thickness, our unknown, eliminated the possibility of the

algorithm optimizing for negative thicknesses.
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Table C.3: The initial population used for testing genetic algorithm parameters.

Individual Initial x Initial y
1 1.14432847499847412 3.14193534851074219
2 3.02259731292724609 6.90307140350341797
3 6.61785030364990234 6.37295627593994141
4 3.94131422042846680 6.11682844161987305
5 5.01945543289184570 5.62727975845336914
6 0.564872443675994873 5.17120981216430664
7 0.432738363742828369 5.86820507049560547
8 1.43496441841125488 0.489470124244689941
9 2.99558973312377930 2.30775785446166992
10 4.52329635620117188 2.69720053672790527

Decoding the Unknowns

Next we must translate the binary strings into numbers with physical meaning. In our current

example, each string represents a guess of the coordinate for the global optimum. An excellent

explanation of this can be found in David A. Coley’s book [26].

The following transformation makes use of the upper and lower bounds, rmax and rmin,

that we imposed on the search space in the beginning. The binary string is first converted into

a base-10 integer, z, and from there into a real number, r. The number of bits in each string,

`, are used to divide the range between upper and lower bounds into even increments of all

allowable real values that a solution to this problem can have. We reach the transformation:

r =
rmax − rmin

2` − 1
z + rmin. (C.2)

For the purposes of comparing values of each genetic operator, a fixed initial population

was used (see Table C.3). Here, we list the actual initial guesses that the genetic algorithm

used for test simulations. There is a fairly even distribution of guesses across the search

space.
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Figure C.2: Positions of the initial population, as randomly assigned by the genetic algorithm.

C.4 Assessing the Fitness

In assessing the fitness of each individual, some key decisions are made. These are specific

to our algorithm, and may differ from how other genetic algorithms operate. We chose

1. a fixed objective (fitness) function – one that does not change over time. For example,

possible damage of the optical filter due to the laser pulse is unaccounted for. We

assume the filter appears the same for each successive generation, or we assume that

each generation sees a new filter each time we run a simulation of the system.

2. binary encryption and fixed length strings. Many other coding methods are possible,

but this lends itself well for our purposes.
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Figure C.3: A contour plot of the corresponding fitness function (below). White represents
local maxima, while black represents minima.

3. a fixed size population.

This means that for each generation, the same number of individuals need to be evalu-

ated for their ability. The algorithm creates as many filters as there are individuals, using

individual 1’s information for filter 1, etc. It performs an FDTD propagation of a laser

pulse through each filter and records the reflected and transmitted fields. We chose to eval-

uate fitness based on a desired output pulse shape. Filters that generate a pulse shape and

reflectance closer to that requested are assigned better finesses. All chromosomes are of equal

size (the number of layers) and encoding accuracy.
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Subroutine FindFitness

Calculate reflectance due to filter

Make structures

Run FDTD subroutine;
   get reflected pulse

Assign fitness to that individual

Have we reached
the last individual?

Store fitness for all
        individuals

No

Yes

V

V

Individual chromosome

Figure C.4: Flowchart for fitness evaluation in the genetic algorithm.

C.5 Improving the Algorithm

Fitness Scaling

In some simulations, particularly fit individuals may appear early in the sequence. Fitness

proportional selection allows these individuals to replicate in larger quantities, increasing
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Figure C.5: The fitness of the elite member in the population as it evolved during the
algorithm. This particular run had a population of ten individuals and a crossover probability
of 0.6. As is often the case, progress is made rapidly and early on (steep increase in fitness),
but it levels out once the individuals all reach a fairly good level of fitness.

their market share of their particular traits. On one hand rapid convergence is good, but

only if it is convergence about the correct solution. To avoid convergence about a local (not

global) optimum, fitness scaling is applied.
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What we need is a method that prevents good individuals from dominating the opti-

mization process, while still maintaining a selection pressure throughout the run. Linear

fitness scaling works by calibrating the population about the average population fitness.

This enables a fair distribution of copies to be made, from both better performing and

averagely performing individuals.

Typical values for the scaling constant, sc, are in the range 1.0 to 2.0. sc = 2.0 means

approximately twice as many elite individuals will propagate to the next generation than

will average individuals.

Scaling is implemented right before selection so that the scaled results will impact the

subsequent selection round. In our genetic algorithm, a linear transformation was used:

f si (g) = a(g)fi(g) + b(g) (C.3)

where fi(g) is the true fitness of an individual, i, and f si (g) denotes its scaled fitness.

We should note here that such scalings can produce a negative fitness for the weaker

members of the population. This can be avoided by setting negative values to zero, effectively

turning off the scaling on those individuals.

Benefits of scaling:

1. If the fitness function produces negative values, scaling removes the possibility of these

being translated into negative selection probabilities.

2. Slows dominance of super individuals.

Three types of scaling are in common use: linear scaling, power law scaling, and expo-

nential scaling.

Elitism

Elitism provides a mechanism for copying the best individuals from one generation into

the subsequent generation. Without this system, offspring and other individuals evolve with
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little regard for the quality of the individual being replaced. By allowing the top individual

another generation in which it may produce offspring, we ensure excellent solutions have

another opportunity to express themselves as the final solution.

The Web Interface

The focus of this section is the development of the web interface for the GA-FDTD algorithm.

While all of the simulations mentioned in this dissertation were run through a terminal

window, we wanted to have the option of platform-independent remote access for other users.

Jeff Deroshia was instrumental in setting up the web forms, and testing the php algorithm

for accuracy. He also set up the password-protected accounts, so that each run is stored a

file with a user name identifier.

The web interface comprises of a series of php and html forms that collect information

from the user. Default values are offered in the boxes, and the information collected will

depend on the type of run the user specifies at the outset. This information generates the

parameter files for the run. Some secondary parameters rely on this primary information for

their values. The interface takes care of these self-consistent calculations, both minimizing

potential error in the input files and automating parts that the user needn’t specify directly.

Figs. C.6 - C.9 show images from the web interface.
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Figure C.6: The first page of the web interface asks the user what type of operation they
want. Options are optimization of a new filter, calculating the reflected and transmitted
fields due to a filter, calculating the reflectance spectrum of a filter, or converting a filter file
to a higher resolution grid.

Figure C.7: Parameters for converting an index file to a different resolution. The algorithm
needs the file name and length as well as the old and new resolution in terms of the central
wavelength.
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Figure C.8: Parameters for a restarted GA-FDTD run. The web form asks from what gen-
eration the algorithm will resume and also for the new maximum generation.

Figure C.9: Image of the web interface showing the parameters for a full GA-FDTD run.
Both pulse and filter parameters are required.
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Figure C.10: Image of the web interface showing the parameters for the incident pulse and
simulational resolution.



Appendix D

Pseudorandom Number Generators

Definitions

Linear feedback shift register: A shift register where the input bit is a function of the

previous output state.

Mersenne prime: A prime number that is also one less than a power of two, 2n− 1. There

are currently 46 known Mersenne Primes.

Period: The number of values a generator outputs prior to repetition of the sequence. A

generator that produces values modulo some value m, is seen to have a full period if the

period length is equal to m.

Shift register: A group of mathematical operations that shift the bits left or right by one

or more positions.

The Mersenne Twister

This generator uses a Mersenne prime, 219937−1, in the parameters and a twisting algorithm

that shifts the seed on a repeated basis. Essentially the algorithm is a very large linear-

feedback shift register. The 19937 bit seed is stored in a 624 element array of 32 bit integers,

which more than satisfies the needs of the genetic algorithm presented here.

The Mersenne Twister algorithm is available online [34], courtesy of its creators Makoto

Matsumoto and Takuji Nishimura.
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The Linear Congruent Method

Much simpler than the Mersenne twister, a linear congruent generator (LCG) begins with

the recurrence relation

Xn+1 = (aXn + c) modm. (D.1)

Where X0 initializes the sequence, a scales the sequence and c increments the sequence. m is

the modulus. LCG’s will generate satisfactory strings of pseudorandom numbers but only for

careful parameter choice. RANDU, an infamous linear congruent generator of the 1960’s was

an example of nonrandom sequences due to poor parameter choice [73]. It was included in

IBM’s scientific computation package for the System/360 mainframe computers and removed

once researchers realized many of the numbers fell into planar correlations within the three

dimensional number space.

A careful choice of a, c, and m circumvents this [74]:

1. c and m are relatively prime,

2. a− 1 is divisible by all prime factors of m

3. a− 1 is a multiple of 4 if m is a multiple of 4

Relatively prime means they share no common positive factors (divisors) except the

number1. George Marsaglia’s random number generator, also available online [33], uses a

congruent generator as its core. The algorithm includes a shift register that moves bits by

±3 places and has a 2-bit multiply with carry generator, to further increase the generator’s

period. A subtract-with-borrow step, developed by Marsaglia, gives very long periods from a

comparatively simple algorithm. A number in the cache is replaced by the difference of two

others:

ai = (ai+20 − ai+5 − b) (D.2)
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b is set to 0 or 1, the latter being used if computation of ai−1 caused overflow in the 32-

bit algebra. Marsaglia’s version was implemented as an alternative pseudorandom number

generator for the genetic algorithm testing.

The Minimal Random Number Generator

A second good LCG algorithm comes is the minimal random number generator of Park and

Miller [35]. The above-mentioned choices of a and m are incorporated into the algorithm,

and c is set to zero. The algorithm prevents sequential correlations by shuffling the output

with a Bays-Durham method. As an added safeguard, the algorithm manipulates the choice,

should zero be the seed (apparently a common mistake made by users of this algorithm).

The version of the minimal random number generator used in our genetic algorithm

testing came from Timothy Kaiser’s Advanced Fortran 90 webpage [75].



Appendix E

Exploring Genetic Algorithm Parameter Variation in the Frequency

Domain

In designing dielectric stacks with simulational methods, a balance must be struck between

the complexity of the algorithm and the resources available for computation [68, 76, 77].

Although this is to some extent affected by processing power, generally it is a good idea to

work with a manageable-sized algorithm so that one can gain feedback at greater intervals

and thereby make design adjustments. To determine the best parameters for minimizing run

time and maximizing dielectric stack fitness, I tested various sizes of genetic populations and

compare that to the ability of the dielectric stack performance. Also, each of the simulations

presented below were set with several different seeds, so that the results could be independent

of the algorithm’s starting position.

The number of generations controls the total run time of the algorithm. For the generation

variations the population was held at 20 individuals. The run times for smaller generations

took only a few seconds. Generations of 50, 100, and 200 were all under a few minutes

run time, so I also simulated generations of 500, 1000, 2000, and 4000 to see if the payoff

was much better for the longer run. Although these were very fast simulations, the larger

populations did not yield much of an improvement in the dielectric stack fitness. It was a

case of diminishing returns. The upper pane of Fig. E.1 shows the trailing off of fitness as

a function of generation. A population of 500 yielded a good return for its computational

load. For the generation variations, the population was held at 20 individuals. This made

the shorter simulations (fewer generations) very fast.
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The population size - the number of individual dielectric stacks compared at any one

time by the algorithm - sets the demand for computational resources at any one time.

The algorithm is in series for the frequency domain calculations, which means that each

dielectric stack must have its spectrum and associated fitness calculated before the rest of

the algorithm proceeds. Increasing the number dielectric stacks makes each generation of the

algorithm take longer. More dielectric stacks can also be a good thing, as it allows exploration

of wider computational space. To understand at what point the trade between speed and

thoroughness ceased to benefit the algorithm’s final answer, several preliminary simulations

were performed. The lower pane of Fig. E.1 shows the results of this exploration for the

frequency domain calculation of dielectric stacks. Populations of 10, 20, 50, 100, 200, 500,

and 1000 dielectric stacks were simulated and plotted against the value of the best fitness

reached during the run. As a result of these investigations, it appears that a population of 10

provides the best return for computational expense. Fig. E.1 shows that although the other

populations of 20, 50 and 500 gave a slightly higher fitness by the end of their simulations,

the improvement was small over the increase in population. In cases where the algorithm is

compared to previous results in the literature, I used the same population as the comparison

work. If no population was specified, then a population of 10 was used as it gave the best

results per capita.

For this optimization, one would expect population increases to yield better returns, since

the larger population maintained a larger gene pool. It turned out that a small population

could find a good filter design just as well as the larger populations. This suggests that as

long as the algorithm has one good answer, having a lot of average dielectric stacks doesn’t

add much to the algorithm’s performance.

It is worth noting that although the total number of layers plays a role in the speed

of computation, it does so to a lesser degree than the already-mentioned parameters. The

layer number becomes more significant when one reproduces a filter that matches a sharper
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Figure E.1: Variation of the generation (upper) and population (lower) as functions of fitness
for the algorithm’s elite filter.

spectral function. For example, a bandpass filter can be specified by a step function. The

sharper a spectral function is, the more Fourier components are required to specify the

shape. Consequently, a smoother spectral profile will be accurately represented by fewer

Fourier harmonics, which translates into fewer filter layers being needed to produce the

target spectrum. In the case of the pulse-shaped Fourier transforms, the resultant spectral

functions are relatively undulating, so the 50 - 150 layer templates are adequate for this type

of filter design.



Appendix F

Symbols and Abbreviations

This section presents many of the symbols and abbreviations that appear repeatedly in the

text. As much as possible, these symbols are consistent with generally-used versions, although

there may be some discrepancies where the general literature is known to interchangeably use

different symbols to represent the same physical quantity. Conversely, some symbols (such

as the letter m) are used more than once, each time representing different quantities.

dk The physical thickness of the kth layer in a thin film.

E The electric field.

F The fitness of a particular filter design.

H The magnetic field.

I The pulse intensity.

k The imaginary part of the refractive index. The presence k in the complex

refractive index, N = n− ik, indicates absorption.

n The real part of the refractive index.

N The complex refractive index, N = n− ik.
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R Reflectance. The ratio of reflected intensity to incident intensity at a

boundary.

T Transmittance. The ratio of the transmitted intensity to incident

intensity at a boundary.

TE Transverse electric. The electric vector is polarized such that it

propagates normal to the plane of incidence.

TM Transverse magnetic. The magnetic vector is polarized such that it

propagates normal to the plane of incidence.

Y Admittance.

Y′ Admittance of free space.

α Absorption coefficient.

ε The permittivity of the medium.

λ The wavelength of light. Typically the wavelength in free space is

given.

µ The permeability of the medium.

φ The phase of a wave.

σ The incident or reflected pulsewidth.

θ The incident angle of light on a medium.
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