

RIO: RESTful INTERFACE TO ONTOLOGY

by

CHINMAY KALE

(Under the Direction of Krzysztof J. Kochut)

ABSTRACT

 The vision of the Semantic Web is to transform the World Wide Web from a web of

linked documents to a web of linked data. Using the RESTful style, Web applications can

navigate among resources, discover new resources, modify them and perform other tasks. If we

view an ontology as a set of triples forming a graph, it is similar in its organization to the World

Wide Web. Hence, using a set of RESTful style services, we should be able to perform similar

operations on an ontology. In this thesis, we present a design and a prototype implementation of

RIO, a RESTful Interface to Ontologies. RIO provides a RESTful interface to manage, edit, and

query OWL ontologies. RIO also provides a novel way of navigation within an ontology based

on URIs representing ontology paths. In addition, RIO provides a unique way to execute

SPARQL queries in a RESTful way.

INDEX WORDS: RESTful Web Services, Ontologies, SPARQL Endpoints, Ontology

Servers, And Semantic Web

RIO: RESTful INTERFACE TO ONTOLOGY

by

CHINMAY KALE

B.E. Computer Engineering, University of Pune, India, 2006

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2011

© 2011

CHINMAY KALE

All Rights Reserved

RIO: RESTful INTERFACE TO ONTOLOGY

by

CHINMAY KALE

 Major Professor: Krzysztof J. Kochut
 Committee: John A. Miller
 William York

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2011

iv

DEDICATION

 To my parents, brother and loved ones.

v

ACKNOWLEDGEMENTS

 I would like to thank my major advisor, Dr. Krys J. Kochut, for being an inspiring mentor

and a supportive advisor for past three years. I would also like to thank my committee, Dr. Miller

and Dr. York for their support, time and valuable suggestions.

I thank my friends Uthaya and Ankur, for their help and ideas to improve my thesis. Last, but

certainly not the least, I would thank all my loving friends and family for their support without

which this work wouldn’t have been possible.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...#

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ...1

 1.1 Semantic Web ..1

 1.2 Ontologies ..1

 1.3 URI, URL and URN ..2

 2 BACKGROUND ...4

 2.1 Ontology Languages ..4

 2.2 Ontology Servers ...5

 2.3 SPARQL Endpoints ...8

 2.4 Introduction to REST ...9

 3 MOTIVATION ..14

 4 RELATED WORK ..17

 5 SYSTEM DESIGN ..19

 5.1 Ontology Management Sub-Service ...20

 5.2 Ontology Sub-Service ...23

 5.3 Navigation Sub-Service ..46

vii

 5.4 SPARQL Query Sub-Service ..52

 6 IMPLEMENTATION ..55

 7 EXPERIMENTS & EVALUATION ...59

 8 CONCLUSION & FUTURE WORK ..62

 8.1 Persistent Storage for Ontologies ..62

 8.2 Regular Expression Support ..63

 8.3 Support for RDF/XML format ..63

 8.3 Performance Evaluation ...63

REFERENCES ..64

viii

LIST OF FIGURES

Page

Figure 1: System Architecture of the ontology server ...19

Figure 2: Node-link diagram for the navigating in Pizza Ontology ..48

Figure 3: Architecture of RIO ..55

1

CHAPTER 1

INTRODUCTION

1.1 Semantic Web

In the World Wide Web (WWW) a web page can be accessed by its Uniform Resource

Locator (URL) through the hypertext transfer protocol (HTTP). Most of the resources on the

WWW are written in HTML, which conveys their rendering information to the web

browsers. Therefore most of the information on the WWW is intended for human use.

Machines for automatic information processing and integration cannot use the information

present in the web pages. Semantic Web aims at representing information on the web so that

the computers can understand the meaning of the information. This is accomplished by

embedding machine-readable information in the existing web pages. The machine-readable

syntax makes the content easy to process the information while making it more amenable to

exchange between heterogeneous applications. The Semantic Web can be thought of as a

huge graph where resources are connected to other resources through meaningful edges,

which represent the relationship between the resources.

1.2 Ontologies

There can be different ways in which semantics can be added to information. Ranked

from the weakest formalisms to the strongest, they are as follows:

• Controlled Vocabularies

2

Controlled vocabularies are a limited set of enumerated terms, which are agreed

upon based on the particular use case. Only the terms from the enumerated set

can be used to add metadata.

• Taxonomies
Taxonomy is a controlled vocabulary with relations such as “subclass of” and

“superclass of” between the enumerated terms.

• Thesaurus
A Thesaurus adds to taxonomy by giving the ability to state if two terms are

equivalent, homographic or associative [NISO, 2005].

• Ontologies
An ontology is a formal specification of a shared conceptualization [1].

Ontologies represent shared domain-specific knowledge, which can be shared

between machines and people. Ontologies can be expressed in increasingly

expressive languages such as: RDF-Schema [2], Web Ontology Language

(OWL) [3]. Both these languages allow ontologies to be modeled as directed

labeled graphs [4] where the nodes of the graphs are the concepts and the labeled

edges are the relationships between the concepts.

1.3 URL, URI and URN

URI stands for Uniform Resource Identifier. It is a string of characters used to identify

resources in a distributed system such as Internet. Such a representation of resources in a

distributed system enables interaction between the resources over network. A URI identifies

a resource either using a name or location. Depending upon this, the URI can be classified

into URL, Unified Resource Location or Unified Resource Name.

3

The goal of Semantic Web is to empower Web-based agents with the ability to process and

understand the data instead of merely just displaying it [5] . On the other hand ontologies

are the formal specification and description of concepts of a particular domain. Thus,

ontologies can provide knowledge to Web-based agents. And with the help of this

knowledge it will be possible for the agents to process and understand the data that is

exchanged amongst them.

4

CHAPTER 2

BACKGROUND

2.1 Ontology Languages

Ontologies are used to model domain knowledge in a machine-readable fashion. This

knowledge can range from some basic statement to complex axioms. To cater to the

difference in the level of knowledge representation, there are increasingly expressive

ontology languages:

• RDF/RDFS (RDF Schema)

RDFS [6] allows users to model knowledge using resources which might be classes,

properties or instances. Group of similar instances belong to a class. Every instance has

its type specified using rdf:type property. RDFS allows hierarchical relation between

classes with the subClassOf relationship. A property is applied to a class and can be

considered as its attribute. The domain of a property specifies the classes to which the

property can be applied. The range of a property restricts the classes of instances, which

can be a valid value for that property.

• Web Ontology Language (OWL)

OWL [7] is one of the most prominent languages for publishing and sharing domain

knowledge through ontologies. It adds to the expressiveness of RDFS by providing a

framework for framing more complex knowledge components. We will not introduce the

5

complete description of the OWL language, as this goes beyond the scope of the thesis.

The reader should consult [8] for the complete specification of OWL. Some of the RDFS

lacking features provided by OWL are:

• Ability to state equivalence between two resources.

• Ability to state the cardinality of properties.

• Expressing the range of a property to be a closed set.

• Ability to state disjointedness of classes.

• Ability to express classes as unions and intersections of other classes

2.2 Ontology Servers

We were unable to name a formal definition of ontology servers after a review of literature

in this research area. [9] state that the notion of Ontology Server originated from the

research of ontology development tools. Most of the previous works describe an ontology

server, implicitly or explicitly, as a kind of isolated or integrated tool for building ontologies

[10, 11]. Whereas some studies discuss ontology servers as ontology repositories [12, 13].

On the other hand, some other studies discuss both ontology repository as well as server

functionality, so in this context, the server is described as an information system [14, 15].

Based on the literature review, we believe that a server that provides an interface to manage,

browse, edit and navigate ontologies can be called an ontology server.

Ontology servers can be classified into two groups based on the functionalities that they

offer: (a) tool development and (b) Application Programming Interfaces (APIs). During the

infancy of the Semantic Web, most of the ontology servers developed were with the primary

focus of ontology development. As more and more ontologies were created and their sizes

6

increased, ontology servers providing application programming interface for interacting

with the ontology started surfacing in the research community. The application-

programming interface aids development of any kind of application on top of the ontology

repository such as ontology browser, ontology editor and ontology translator.

Many servers expose their APIs through web-services to have the advantage of

interoperability. Two most popular styles of implementing web-services are SOAP and

REST. W3C defines SOAP as “ a lightweight protocol specification for exchanging

structured information in a decentralized, distributed environment” [16]. XML technologies

are used by SOAP to define an extensible messaging framework. The framework provides a

message construct that can be exchanged over a variety of underlying protocols. SOAP, also

defines a processing model that specify rules for processing SOAP messages, an

extensibility model, that defines the SOAP features and modules and a protocol binding

framework, that defines the underlying protocol binding framework and also specifies the

rules for defining the binding to the underlying protocol that can be used to exchange SOAP

messages between client and server. The client to invoke a SOAP based web-service has to

send information encoded in XML according to the SOAP specification. On the other hand

REST web-services uses the ubiquitous HTTP protocol for exchanging the information as

well as invoking the web-service. As most of the modern languages and web-browser have

native support for HTTP protocol, REST web services are more scalable. We will describe

more about REST web-services later in this chapter.

 For our purpose, we assume that ontology servers are ontology repositories that provide

services to interact with ontologies. These repositories are geared to storing and returning

RDF triples in response to queries. Such repositories are also called as triple stores. Triple

7

stores can be classified into two types depending upon the way they store RDF triples (a) in-

memory triple stores (b) persistent triple store. Persistent ontology repositories usually store

the RDF data in Relational Database Management Systems. Both of these approaches have

their advantages and disadvantages. In-memory triple store have space limitations and

cannot be used for storing huge amounts of data. On the other hand in-memory triple stores

have efficient reasoners available. There are many free open-source as well as commercial

triple stores available. Following is a brief overview of few of them:

• Jena

Jena [17] is a free open source Java platform for building Semantic Web

applications. It provides both in-memory, as well as persistent triple store storage. It

uses JDBC for connecting to persistent triple stores. Jena also provides reasoning

capabilities. For better performance, Jena requires data to be present in-memory for

reasoning. Jena framework also provides a SPARQL query engine.

• Sesame

Sesame [18] is a free open source framework for storage, inferencing and querying

RDF data. It provides features similar to Jena. Sesame’s focus is on the RDF data

storage and query, but without much support for OWL and related inferencing tools.

• Redland

Redland [19] is a set of free C language libraries that provide support for RDF.

It provides a RDF parser library called Raptor for parsing RDF/XML or N-triples

and storing them in RDF triples. Although Redland does not provide a strong

support for reasoning and inferencing, it does work with C language. When speed is

a major concern, Redland framework can be the choice.

8

• Virtuoso

Virtuoso Universal Server also called, as Virtuoso [20] is a database engine that

combines the functionality of traditional RDBMS, ORDBMS, RDF, XML, free-text,

Web application server, and file server into a single server product package.

• BRAHMS

BRAHMS [21] is a RDF store primary geared for high performance semantic

association discovery. It is a main-memory RDF store. It provides read-only access

to client-applications. RDF triples are indexed and provide very fast access and

semantic association discovery.

2.3 SPARQL endpoint

SPARQL [22] is an RDF query language and data access protocol for the Semantic Web. Its

name is a recursive acronym that stands for SPARQL Protocol and RDF Query Language.

The W3C Recommendation of SPARQL consists of three separate specifications. The first

one SPARQL Query Language specification [23] is the core specification of SPARQL

query language. Together with this language specification is the SPARQL Query XML

Results Format specification [24], which describes an XML format for serializing the results

of a SPARQL query. The third specification is he SPARQL Protocol for RDF (SPROT)

specification [25] that uses WSDL 2.0 to define simple HTTP and SOAP protocols for

remotely querying RDF databases.

A SPARQL endpoint is a SPROT conformant interface. It provides a service for client

applications to query knowledge bases using the SPARQL query language. After execution

9

of the SPARQL query, the results are transmitted to client applications. A SPARQL

endpoint can be configured to return results in a number of different formats. For instance,

when used by human users in an interactive way, it presents the result in the form of a

HTML table. When accessed by applications, the results are serialized into machine-process

able formats, such as RDF/XML or Turtle format and few others. SPARQL endpoints can

be categorized as generic endpoints and specific end- points. A generic endpoint works

against any RDF dataset, which could be stored locally or accessible from the Web. A

specific endpoint is tied to one particular dataset, and this dataset cannot be switched to

another endpoint.

SPARQL protocol [22] uses WSDL 2.0 to define simple HTTP and SOAP bindings for

remotely querying RDF data. Client applications use SPARQL protocol to interact with

SPARQL endpoints.

2.4 Introduction to REST

 Representation State Transfer (REST) was introduced and described by Roy Fielding in his

doctoral dissertation [26]. In the dissertation he put forth the architectural principles of the

Web. He presented these architectural principles as a framework of constraints. According

to him these framework of constraint describe how large-scale distributed information

systems such as Web are built and operated. He stated that the core of such distributed

systems is its resources and the interplay between them. In his dissertation, he advocated

using a limited set of operations with uniform semantics to build a ubiquitous infrastructure

that can support any type of application. He referred to this architectural style as

REpresentational State Transfer, or REST.

10

According to him, this framework is the reason for how scalable, mash-up able, usable and

accessible the Web is. With these observations, he states that if distributed systems are

designed using these constrained, they will have above stated advantages.

The following constraints are the core of REST architectural style

• Resource Identification:

All resources of a system should have a unique identifier and the resources should be

addressable using this identifier. To have addressability, the identifiers should be

global and should be dereferenceable irrespective of their context.

• Unique Interface:

This constraint states that all the interactions between the system's resources and the

client applications should be carried out through a uniform constrained interface.

This interface should expose a small set of well-defined methods to manipulate the

resources.

• Self-Describing Messages:

This constraint builds upon the second constraint. As the second constraint states

that all interactions with resources should be exposed through a uniform interface,

REST architecture demands the resources should have representations that represent

the important aspects of the resource. These representations have to be designed in

such a way, that any client applications can get the relevant state of the resource by

inspecting their representations. Also, by exchanging these representations via the

uniform interface, any changes to the resource or its state should be communicated.

• Hypermedia Driving application state:

11

This constraint states that the representations, described in third constraint, should be

linked, so that the applications that have the capability to understand these

representations will be able to find these links. As the semantics of these links are

described by the representations, these applications will also be able to understand

them. These links help these applications in identifying new resources and also they

provide them with the possibility of making certain state transitions. In short this

constraint states to use Hypermedia As The Engine Of Application State

(HATEOAS). According to [27], this constraint is the most important reason for

supporting loose coupling, as identifiers can be discovered at runtime and used

through the uniform interface without the need of any agreements between the

interacting parties.

• Stateless Interaction:

This constraint states that every interaction between the client and server should be

self-contained and isolated. The server should not maintain any state of the client,

which would allow interactions to depend upon both the exchanged representation

and on the session associated with the client. This constraint is necessary to ensure

the scalability of the servers is bound only by the number of concurrent client

requests and not by the total number of clients that they have to interact with.

If any system is designed and implemented using these constraints, such systems are called

RESTful applications. In the System Design chapter of this thesis, we will show how we

have incorporated all these constraints in our ontology server.

12

REST is protocol agnostic. But due to HTTP’s ubiquitous nature, most of the systems

adhering to REST principles use HTTP protocol as transport layer. The idea behind REST

principle of uniform interface is to stick to the finite set of operations of the application

protocol that your system uses to distribute your system’s services. This means utilizing the

HTTP methods for exposing the services offered by the system. HTTP specification lists

eight methods, out of which four are important to design RESTful services. They are GET,

POST, PUT and DELETE.

• The GET request method offers read-only access to resources. It is used to query the

server for specific information. It is idempotent and safe operation. GET method

does not change the state of the resource.

• The POST request method offers a way to send data to the server. It is a non-

idempotent operation. It is usually modeled to create or modify a resource.

• The PUT request method also offers a way to send data to the server. But it differs

from the POST method as its idempotent. It is usually modeled to add the state of the

resource.

• The DELETE request method offers a way to remove resources. It is idempotent as

well.

Application systems provide RESTful web-services by having unique identifiers for the

resources they want to expose and support these four HTTP methods to perform operations

on the resources.

13

For the thesis, we have built an ontology server, RIO that provides a RESTful Interface to

Ontologies. It provides RESTful sub-services for ontology management, browsing, editing,

navigation and execution of SPARQL query.

14

CHAPTER 3

MOTIVATION

The current de facto global information system World Wide Web (WWW) is a web of

linked documents. The vision of Semantic Web is to transform WWW from a web of linked

documents to a web of linked data. Maturing Semantic Web technology stack fuels the

increasing interest in publishing semantically linked data. Within recent years we have

witnessed creation of very large ontologies such as Dbpedia [28], YAGO [29], UniProt [30]

being published. On the other hand many domain specific ontologies such as GlycO [31],

ProkinO [32] are also being published. The applications that interoperate among various

such domains seek for an alignment among the ontologies from these domains. As a result, a

unified ontology is created. Though the individual size of these domain ontologies not very

large in size, the resultant unified ontology tends to be enormously large and complex.

Consequently, the number of huge and complex ontologies and applications based on them

is rising.

Ontology is a directed graph and its topology can become very complex especially for larger

ontologies. This makes it very difficult to comprehend or render them. Ontology

administrators face difficulties in managing and maintaining large ontologies. Similarly

ontology applications such as editors, browsers and visualizers have a hard time processing

such large ontologies. Ontology navigation can be of great help to solve these problems.

Navigating ontology to a point of interest can provide the ontology client application a

15

zoomed-in view of the point of interest. Using navigation techniques the applications using

large ontologies can focus on a small sub-graph from the ontology, which is of their interest.

In last few years, ontologies have moved from theory to practice to real world applications.

Ontologies are now not limited to academia but they are finding their way into enterprise

applications. Most common operations required in any enterprise application are the Create-

Read-Update-Delete (CRUD) operations. Also these operations are handy if they are

exposed through web-services. And if the web-services are of type REST, then any client

application that has capability of sending and receiving HTTP request and response

respectively can consume the web-services offering CRUD operations.

REST architecture is not protocol specific, but uses HTTP protocol as its transport layer.

The HTTP protocol is the de facto for Web of linked documents. Web of linked documents

is very much similar to ontology in terms of its topology. Both are directed sub-graphs with

nodes connected by directed edges. The documents or resources in Web of linked

documents can be seen analogous to concepts (classes, properties, instances) in ontology.

Each document in Web of linked document has a unique addressable URI and so do

concepts in ontology. Using REST web-services, we have applications that can navigate

between various documents, discovery new documents, modify different documents and

perform other similar tasks, in the Web of linked documents. With this as our motivation,

we believe that we can perform similar tasks using REST web-services within an ontology.

SPARQL protocol [22] uses WSDL 2.0 to define simple HTTP and SOAP bindings for

remotely querying RDF data. There are two HTTP bindings defined in the SPARQL

protocol specification - queryHttpGet and queryHttpPost. The specification instructs to use

16

queryHttpGet except in cases where the URL encoded query exceeds practical limits. In

such cases the specifications says queryHttpPost should be used. The current SPARQL

specification supports SELECT, CONSTRUCT, DESCRIBE and ASK queries. Both

SELECT and CONSTRUCT queries are read-only. The SELECT query after successful

execution creates a new temporary RDF graph, called the result-set, that contains all or a

subset of the variables bound in the query pattern match, whereas the CONSTRUCT query

creates a new RDF graph by substituting variables in a set of triple templates. So both of

these query constructs are creating a resource. Clearly using queryHttpGet binding for these

queries violates REST principles. We would discuss in this thesis our approach to make

SPARQL query execution RESTful.

The vision of Semantic Web is to transform WWW from a web of linked documents to a

web of linked data. Topology of WWW is similar to topology of ontologies. Using REST

web-services, we have applications that can navigate between various documents, discovery

new documents, modify different documents and perform other similar tasks, in the Web of

linked documents. Hence, with REST-Web Services, we should be able to perform similar

operations on an ontology. With this motivation, in this thesis we present design and

implementation of RIO, a RESTful Interface to Ontology server framework. RIO provides

RESTful interface to manage, edit and modify an OWL ontology. RIO also provides a novel

way of programmatic navigation within the Ontology. Apart from this, RIO provides a

unique way to execute SPARQL query is a RESTful way.

17

CHAPTER 4

RELATED WORK

Many free open-source as well as commercial ontology servers are available or being

developed. Web-Protégé [33], AllegroGraph [34], Ontology-browser [35], Virtuoso [20],

and KAON [36], BRAHMS [21] are few such ontology servers. These ontology servers

mainly provide functionalities to maintain and manage ontologies. They primarily vary by

the way they have implemented the maintenance operations, features they provide and the

type of Application Programming Interfaces (API) they expose. It is very common and

intuitive for an ontology server to expose these functionalities as SOAP or REST APIs.

Providing these known standard web-service APIs allow client stubs to interact with the

server dynamically. However some existing ontology servers provide custom APIs that are

developed for the client applications. Their functionalities are tuned to the application

served hence they may not support some general functionalities expected in an ontology

servers. Web-Protégé is one of those application centric ontology servers. It is an open-

source server providing lightweight, web-based ontology editor with a web browser based

graphical user interface. The server side component is developed using Protégé-OWL [37]

API services exposed using SOAP web services. There are few general-purpose ontology

servers that mainly focus on ontology storage functionality, such as Virtuoso, Allegograh,

Redland. Virtuoso provides features such as a relational database engine, web-server and a

file server. Surprisingly only few ontology servers currently adopt REST. One of them is

18

Allegrograh ontology server, which provides a RDF triple store and access to the triple store

via REST web services. It is a high performance persistent graph database engine developed

by Franz Inc. However AllegroGraph has no provision to edit, browse or navigate OWL

ontologies. Ontology-Browser is another rest kind ontology server providing features such

as browsing OWL ontologies, executing SPARQL queries, and dynamically loading

ontologies in the server. Though it adopts REST architecture, the web-services exposed by

the server do not follow REST principles. Also it allows read-only access to the ontologies

and there is no support for editing or updating any concept from ontology. Both

AllegroGraph and Ontology-Browser provide SPARQL endpoints, but their implementation

of the SPARQL endpoint is not RESTful.

Most of the ontology navigation services are provided using graphical user interface. Such

tools render ontology as a node-link diagram and navigation is provided using a click-

expand-navigate model. Web-Protégé [33], NavEditOW [38] are few such ontology servers

which provide browser based ontology navigation as described allow. None of the above

mentioned ontology servers provide an API for ontology navigation.

The focus of currently available ontology servers is on ontology development, storage and

management. On the other hand, RIO server focuses upon providing a REST interface for

editing and navigating ontologies. Also it provides a novel way of executing SPARQL

queries in a RESTful way.

19

CHAPTER 5

SYSTEM DESIGN

The RIO server is an ontology server implemented in Java using the Jena framework. It

provides REST web services to applications, which require navigating, managing,

performing CRUD operations and executing SPARQL queries on ontologies. Each of these

features is exposed as sub-service through REST web-services. The figure below depicts the

overall system architecture of RIO server.

Figure 1: System Architecture of the RIO server.

Management sub-service

Ontology sub-service

Navigation sub-service

SPARQL sub-service

Rere O1

O2

O3

Cache

Ontology 1 Ontology 2

Ontology 3

20

RIO is a J2EE specification compliant server and has the capability of serving REST web-

services invoked via HTTP protocol. Multiple OWL ontologies can reside in the server at

the same time. The server has four sub-service interfaces namely Ontology Management

sub-services, Ontology sub-services, Navigation sub-services and SPARQL query execution

sub-services. Each sub-service is designed strictly according to REST principles. Any

service call made to this ontology server does not allow referring multiple ontologies

together. However any ontology, which has been imported into another ontology, can be

referred together with the later. Following is a detailed description of each service bundle

interface. For explaining the design of the URIs we will be giving an example of URIs used

to load, navigate, interact and execute SPARQL queries over wine ontology. Wine ontology

[39] is an ontology developed at University Jaume I of Castellón, Spain.

5.1 Ontology Management Sub-Service

This sub-service provides functions to manage the OWL ontologies that are deployed in the

server. The client application invokes this sub-service, if it wants to load an ontology that is

currently not loaded in the server. It also provides a utility for the client application to take a

snapshot of any ontology that is currently loaded by requesting to serialize it into an OWL

file. This feature is provided because RIO provides sub-service interface to execute CRUD

operations on the loaded ontologies, so at any given point the client application can

download a modified ontology as an OWL file from the server. Another utility provided by

this sub-service is to remove a loaded ontology from RIO.

21

Also this sub-service loads some default ontology during server startup. The default

ontologies are configured using a configuration file. This sub-service reads this file and

loads the default ontologies during server startup.

Another useful utility provided by this sub-service is to perform validation and consistency

checks. The client application invokes this utility to get a report of results of consistency and

validation checks performed on any ontology loaded in RIO. This utility performs a global

check across the schema and instance data for inconsistencies. If any inconsistencies are

encountered, a report is returned to the client application.

Following is the URI design for invoking sub-services from this interface.

1) Load Ontology

PUT
Request:
Resource: /ontMgmt/{ontologyName}
Content Type: application/binary
Body:
The OWL file stream representing the ontology that is being loaded.
Response:
Success: 201 “Ontology Loaded”
Error: 404 “Bad request. “

Example:
PUT /ontMgmt/wine

2) Remove Ontology

DELETE
Request:
Resource: /ontMgmt/{ontologyName}
Response:
Status:
Success: 200 “OK”
Error: 404 “ The ontology requested in not loaded in the server.”

22

Example:
DELETE ontMgmt/wine

3) Validate Ontology

For each failed validation or inconsistency check, a report is returned to the client

application in the following format. The Type tag defines the type of the failed

validation or inconsistency check. The Description tag encloses a brief description of the

failed validation or inconsistency check.

GET
Request:
Resource: ontMgmt/{ontologyName}/validate
Response:
Content Type: application/xml
Body:

<Reports>
 {<Report />

 <Type> type < Type />

 <Description> description … </Description>

</ Report>...}
</Reports>

4) Display all ontologies loaded in the server.

For each ontology loaded in the server, an Ontology tag is returned. The Ontology tag

specifies the local name of the ontology and its URI.

GET
Request:
Resource: ontMgmt/display
Response:

23

Content Type: application/xml
Body:

< Ontologies>

 {< Ontology name=”ont1” uri=” uri of ont” />…}

</ Ontologies>

Example:

GET ontMgmt/display

<?xml version="1.0" encoding="UTF-8"?>

<Ontologies>
 <Ontology name="wine"

uri="http://krono.act.uji.es/Links/ontologies/wine.owl"/>
 <Ontology name="pizza"

uri="http://www.co-ode.org/ontologies/pizza/pizza.owl" />
 <Ontology name="glyco"

uri="http://glycomics.ccrc.uga.edu/ontologies/GlycO" />
</Ontologies>

5.2 Ontology Sub-Service.

This sub-service is designed to provide a RESTful interface for interacting with the concepts

of an ontology. In OWL ontology the classes, properties, instances and restrictions are the

concepts of interest. This sub-service provides methods to perform CRUD operations on

these concepts. Each of these concepts is treated as resource in REST terminology and they

have a unique URI. These operations are mapped to four HTTP operations namely POST,

GET, PUT and DELETE. The combination of one of the HTTP operation and a URI

invokes a service method from this module. Currently JSON/XML encoded

request/response is supported.

24

1) Sub-Services for Interacting with a class.

This sub-service provides an interface to browse, add, update or delete any class from

the requested ontology. The client application provides the name of the ontology they

want to query in form of the URI (as explained above).

a) Accessing a class

The client application passes a class name in the URI. This request returns information

about the class passed in the URI. For the class, list of its super classes, sub-classes,

properties and instances is returned in xml format (defined below) as response body. If

the class does not exist in the ontology, an error with appropriate HTTP status code is

returned to the client application. For the class mentioned in the request URL a Class tag

is returned. The Class tag has SuperClasses, SubClasses, Instances, and Properties tag.

GET
Request:
Resource: ontService/{ontologyName}/class/{className}
Response:
Content Type: application/xml
Body:

<Class name="Class1" uri= http://serverAddress/#Class1” />

 <SuperClasses>
 {<SuperClass name=”SuperClass1”

 uri=”http://serverAddress/#SuperClass1” />…}

 </SuperClasses>

 <SubClasses>

{<SuperClass name=”SuperClass1”
 uri=”http://serverAddress/#SuperClass1” />…}

 </SubClasses>

 <Properties>
{<Property name=”Prop1”
 uri=”http://serverAddress/#Prop1” />…}

 </Properties>

25

 <Instances>

{<Instance name=”Inst1”
 uri=”http://serverAddress/#Instance1” />..}

 </Instances>
</Class>

Errors:

• 404 “no such class exist”
• 404 “requested ontology is not loaded”

Example:

GET ontService/wine/class/CheeseNutsDessert

<Class name="CheeseNutsDessert"
uri="http://krono.act.uji.es/Links/ontologies/food.owl#CheeseNutsDe
ssert">
 <SubClasses/>
 <SuperClasses>
 <SuperClass name="Dessert”

 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#Dessert"/>

 </SuperClasses>

 <Instances>

 <Instance name="Cheese"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#Cheese"/>
 <Instance name="Nuts"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#Nuts"/>
 </Instances>

<Properties>
 <Property name="hasSugar"

 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#hasSugar"/>
 <Property name="madeFromFruit"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#madeFromFruit"/>
 <Property name="hasMaker"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#hasMaker"/>
 <Property name="madeIntoWine"

26

 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#madeIntoWine"/>
 <Property name="hasFlavor"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#hasFlavor"/>
 <Property name="locatedIn"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#locatedIn"/>
 <Property name="hasBody"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#hasBody"/>
<Property name="producesWine"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#producesWine"/>

 </Properties>
</Class>

b) Creating a class

This request creates classes in the ontology mentioned in the request URL. Information

for each class that has to be created is provided as the request body in xml format as

described below. The request body should be in following format. For the class that has

to be added, a Class tag should be present. The Class tag has the name attribute required

whereas the URI attribute is optional. The Class tag can have at most one SuperClass

tag. For the SuperClass tag name attribute is required, URI attribute is optional. If the

SuperClass tag is present, the class being created is added as sub-class of the class

mentioned by the SuperClass tag, otherwise it is added as a top-level class (sub-class of

owl: Thing).

PUT
Request:
Resource: ontService/{ontologyName}/class/{className}
Content Type: application/xml
Body:

 <Class name="Class1" uri= http://serverAddress/#Class1” />

27

 <SuperClass name=”SuperClass1”

 uri=”http://serverAddress/#SuperClass1” />

</Class>

Response:
Status
Success: 201 “Class added”.

Errors:
The request body encoded in XML is validated and following errors,
if encountered, are returned to client application

• 404 “class already exists”
• 404 “name attribute missing from class tag”
• 404 “name attribute missing from superclass tag”
• 404 “requested ontology is not loaded”

Example

PUT ontService/wine/class/newAmericanWine

 <Class name="newAmericanWine" />

 <SuperClass name=”AmericanWine” />

</Class>

c) Updating a class

This requests, updates a class. The information required to update the class is sent, as the

request body encoded in XML. The request body should be in the following format. The

class to be updated is included in the Class tag. It should be a class that currently exists

in the ontology, if not an error will be returned. The name attribute is required, and the

local name of the class to be updated is to be included there. The URI attribute is

28

optional. The Class can contain at most one SuperClass tag. If the SuperClass tag is not

included, the class is updated to be a top-level class (sub-class of owl: Thing). If the

SuperClass tag is mentioned, it should have the name attribute mentioning any existing

super-class of the class that has to be updated. The SuperClass tag should contain

Update tag. The name attribute is required for the Update tag whereas the uri attribute is

optional. The name attribute of Update tag mentions the name of the class that would be

added as the new super-class for the class that is being updated. If the class mentioned in

the name attribute of Update tag already exists in the ontology, it is re-used, otherwise a

new class is created with that name and added as the super-class of the class that is being

updated.

POST
Request:
Resource: ontService/{ontologyName}/class/{className}
Content Type: application/xml
Body:

<Class name="Class1"
 uri= http://serverAddress/#Class1” />

<SuperClass name=”SuperClass1”
 uri=”http://serverAddress/#SuperClass1”

 <Update name=”newSuperClass”
 uri=”http://serverAddress/#newSuperClass”/>

 </SuperClass>

</Class>

Response:
Status
Success:

• 200 “Ok” Requested Class updated.
Errors:

29

The request body encoded in XML is validated and following errors,
if encountered, are returned to client application

• 404 “class does not exists”
• 404 “name attribute missing from class tag”
• 404 “name attribute missing from superclass tag”
• 404 “super-class mentioned in request does not exist”
• 404 “name attribute missing from Update tag”
• 404 “requested ontology is not load

Example

POST ontService/wine/class
 <Class name="newAmericanWine" />

 <SuperClass name=”AmericanWine” >
 <Update name=”AlsatianWine” />
 </SuperClass>

</Class>

d) Deleting a class

This request deletes the classes mentioned in the URL from the ontology. If multiple

classes are request for deletion, the class names have to be comma delimited. If only one

class is to be deleted, no need to delimit it with a comma. If any of the classes requested

for deletion do not exist in the ontology, an error with the appropriate HTTP status code

is returned to the client application.

DELETE
Request:
Resource: ontService/{ontologyName}/class/{className}
Response:
Status
Success:

• 200 “Ok” All requested classes are deleted

Errors:

• 404 “ requested ontology is not loaded”

30

Example

DELETE ontService/wine/class/newAmericanWine

2) Sub-Service for interacting with properties

This sub-service provides an interface to browse, add, update or delete any property

from the requested ontology

a) Accessing Properties

The client application passes a list of comma-delimited names of properties in the URL.

This request returns information about each property passed in the URL. For each

property, the list of its super properties, sub-properties, domain and range is returned in

XML format (defined below) as response body. If multiple properties are requested, the

property names have to be comma delimited. If only one property is to be requested, no

need to delimit it with a comma. If any of the comma-delimited property does not exist

in the ontology, an error with appropriate HTTP status code is returned to the client

application. For the property mentioned in the request URL, its domains, ranges, sub-

properties and super-properties are returned in a XML format described below.

31

GET
Request:
Resource: ontService/{ontologyName}/property/{propertyName}
Response:
Content Type: application/xml
Body:

<Property name="P1" uri= http://serverAddress/#P1” />

 <SuperProperties>
 {<SuperProperty name =”SuperProp1

 uri=”http://serverAddress/#SuperProp1”/>…}
</SuperProperties>

 <SubProperties>
 {<SubProperty name =”SubProp1

 uri=”http://serverAddress/#SubProp1”/>…}
 </SubProperties>

<Domain>
 {<Class name=”Class2”
 uri=”http://serverAddress/#Class2” />…}

</Domain>

<Range>
 {<Class name=”Class3”
 uri=”http://serverAddress/#Class3” />…}

</Range>

</Property>

Errors:

• 404 “ no such property exist”
• 404 “ requested ontology is not loaded”

Example:

GET ontService/wine/property/hasDrink

<Property name="hasDrink"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#hasDrink" type="object"/>

 <SuperProperties/>

32

 <SubProperties/>

<Domain>

 <Class name="MealCourse"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#MealCourse"/>

</Domain>

<Range>

 <Class name="MealCourse"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#MealCourse"/>

</Range>

</Property>

b) Creating properties

This request creates the property in the ontology. Currently the client application can

create only a data or an object property. The information for the property to be added in

the ontology has to be provided in XML format as described below. The Property tag

includes the name and the type of the property that is to be created. The name and type

attribute of the Property tag is required whereas the URI attribute is optional. The type

attribute currently accepts only object or data. The Property tag can have at most one

SuperProperty tag. For the SuperProperty tag name attribute is required, URI attribute is

optional. If the SuperProperty tag is present, the property being created is added as a

sub-property of the property listed by the SuperProperty tag, otherwise, it is added as a

top-level property. The Domain tag contains a list of classes that will be added as the

domain of the property. The name attribute of the Domain tag is a required property

where as the uri attribute is optional. The Range tag contains either a list of classes or a

33

DataType tag depending upon the type of the property that is to be added. If the type of

property is “data”, then the Range tag should contain the DataType tag. The DataType

tag encloses the data type for the ranges of data values. Currently following data type

values are supported and can be enclosed in DataType tag.

• Numeric – integer, float, decimal, nonPositive, nonnegative.

• String – string, token, language.

• Boolean – Boolean

• URI – anyURI

• Time – dateTime

If any other string is enclosed other than the above mentioned, an error is returned. If the

type of the property is “object”, the Range tag encloses a list of Class tag. These classes

are added as the range of the property being added. Classes mentioned as Domain or

Range for the property need to be existent classes in the ontology, no new classes are

created using this service.

PUT
Request:
Resource: ontService/{ontologyName}/property/{propertyName}
Content Type: application/xml
Body:

<Property name="P1" uri= http://serverAddress/#P1” type=””/>

 <SuperProperty name =”SuperProp1

 uri=”http://serverAddress/#SuperProp1”/>

<Domain>
 {<Class name=”Class2”
 uri=”http://serverAddress/#Class2” />…}

</Domain>

<Range>
 {<Class name=”Class3”

34

 uri=”http://serverAddress/#Class3” />…}
 <DataType>datatype</DataType>
</Range>

</Property>
Response:
Status
Success:

• 201 “Property created“
Errors:

• 404 “ no such property exist”.
• 404 “super property does not exist”.
• 404 “domain class does not exist”.
• 404 “range class does not exist”.
• 404 “name attribute was missing”.
• 404 “type attribute was missing”.
• 404 “ requested ontology is not loaded”

Example:

PUT ontService/wine/property/hasNewDrink

<Property n ame="hasNewDrink" type="object"/>

 <SuperProperty name=”hasDrink”/>

<Domain>

 <Class name="MealCourse" />

</Domain>

<Range>

 <Class name="MealCourse" />
</Range>

</Property>

c) Updating properties

This requests, updates a property. The update service allows only updating of the

domain and range of the property. Updating the type of the property is not permitted.

35

The information for the property that has to be updated is passed as request body in xml

format as described below. The Property tag includes the property that is to be updated.

The name attribute is required in the Property tag whereas the URI attribute is optional.

The Property tag includes Domain and Range tags. The Domain tag includes a Class tag

that mentions the domain class for this property that has to be updated and the Class tag

contains an Update tag including the domain class with which this property will be

updated. The Range tag can contain a Class tag or a DataType tag, depending on the

type of the property that is being updated. The Class tag includes the range class for this

property that has to be updated and it encloses an Update tag mentioning the range class

with which this property has to be updated. Similarly the DataType encloses an Update

tag that includes the data type value that is to be added as the range value for the

property. Please refer to “creating a property”, to check for supported data type values.

The Update tag should mention a class that is already present in the ontology, new class

will not be created.

POST
Request:
Resource: ontService/{ontologyName}/property/{propertyName}
Content Type: application/xml
Body:

<Property name="P1" uri= http://serverAddress/#P1“ />

 <Domain>
 <Class name=”Class1” uri=”http://serverAddress/#Class1” />
 <Update name=”M1” uri=http://serverAddress/#M1” />
 </Class>

 </Domain>

 <Range>

 <Class name=”Class1” uri=”http://serverAddress/#Class1” />
 <Update name=”M1” uri=http://serverAddress/#M1” />
 </Class>

36

 </Range>

 </Property>

Response:
Status
Success:

• 200 “Ok” Requested property updated

Errors:

• 404 “ no such property exist”
• 404 “domain class does not exist”
• 404 “range class does not exist”
• 404 “name attribute was missing”
• 404 “ requested ontology is not loaded”

Example:

POST ontService/wine/property/hasNewDrink

<Property name="hasNewDrink" type="object"/>

<Range>
 <Class name=”MealCourse” >
 <Update name="DessertCourse" />
 </Class>
</Range>

</Property>

d) Delete a property

This request removes the property included in the URL from the ontology.

DELETE
Resource: ontService/{ontologyName}/property/{propertyName}

Response:
Status
Success:

• 200 “Ok” Requested property deleted
Error:

37

• 404 “ requested ontology is not loaded”

Example

DELETE ontService/wine/property/hasNewDrink

3) Sub-Service for interacting with instances of a class

This set of services provide an interface to browse, add or delete any class’s instance

from the requested ontology. The client application sends a URL that has the ontology

name and the name of the class. All the above-mentioned operations are performed for

the instances of this class.

a) Accessing instances of a class

This request retrieves instances of the class included in the URL. If the class included in

the URI does not exist in the ontology, an error with appropriate HTTP status code is

returned to the client application.

GET
Request:
Resource: ontService/{ontologyName}/instancesOf/{className}
Response:
Content Type: application/xml
Body:

<Class name="Class1" uri= http://serverAddress/#Class1” />

 <Instances>

 {<Instance name=”Inst1”
 uri=”http://serverAddress/#Inst1” />…}

 </Instances>

38

</Class>

Error:

• 404 “ requested ontology is not loaded”.
• 404 “requested class does not exist”.

Example:

GET ontService/wine/instanceOf/WineBody

<Class name="WineBody"
 uri="http://krono.act.uji.es/Links/ontologies/

 wine.owl#WineBody” />

<Instances>
 <Instance name=”Light”
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#Light"/>
 <Instance name=”Medium”
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#Medium"/>
 <Instance name=”Full”
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#Full"/>

</Instances>
</Class >

b) Creating an instance for a class

This service adds an instance for the class included in the URI. Information for the

class for which the instance is to be added, is provided using the request body encoded

in XML. While adding the instance, the client application can also specify the values

for the properties of the class. The format of request body is as shown below. For the

class included in the URI, only one instance is added per request. The Class tag should

include the name of the class for which the new instance will be added. The Class tag

contains one Instance tag. The Instance tag should include the name attribute whereas

39

URI attribute is optional. The Instance tag includes a list of Property tags. The Property

tag requires name, value and type attributes whereas the URI attribute is optional. The

name attribute includes the name of the property, the type attribute includes the type of

the property and the value attribute includes the value, this property will have for this

instance.

PUT
Request:
Resource: ontService/{ontologyName}/instancesOf/{className}
Content Type: application/xml
Body:

<Class name="Class1" uri= http://serverAddress/#Class1” />

 <Instance name =”Inst1” uri=”http://serverAddress/#Inst1>
 <Properties>
 {<Property name=”p1”

 uri=http://serverAddress/#prop1 value=”v1”
 type=”object”/>…}

 </Properties>
<Instance>

</Class>

Response:
Status
Success:

• 201 “Requested instance created”.
Errors:

• 404 “no such class exist”.
• 404 “property does not exist”.
• 404 “instance already present”.
• 404 “value class does not exist”.
• 404 “name attribute was missing”.
• 404 “type attribute was missing”.
• 404 “requested ontology is not loaded”

Example

40

PUT ontService/wine/instanceOf/class/AmericanWine

 <Class name="AmericanWine" />

 <Instance name=”newWine” >
 <Property name=”locatedIn”
 type=”object”
 value=”USRegion”/>
 </Instance>

</Class>

c) Delete instance of a class.

This operation is not permitted for this resource. Please refer the services explained at #4

Handling instances, deleting an instance.

4) Sub-Service for interacting with instances.

This set of services provides functionality to delete instances from an ontology. The

request returns the response body encoded in XML in following format. The Instance

tag includes the information of the instance name included in the URI.

a) Access an instance.

GET
Request:
Resource: ontService/{ontologyName}/instance/{instanceName}
Response:
Content Type: application/xml
Body:

<Instance name="Class1" uri= http://serverAddress/#Inst1” />

<Classes>
 {<Class name=”Inst1”

 uri=”http://serverAddress/#Class1” />…}

</Classes>
</Instance >

41

Errors:

• 404 “instance does not exist “
• 404 “ontology does not exist”

Example:

GET ontService/wine/instance/newWine

<Instance name="newWine"
 uri="http://krono.act.uji.es/Links/ontologies/

 wine.owl#newWine” />

<Classes>
 <Class name=”AmericanWine”
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#AmericanWine"/>

</Classes>
</Instance >

b) Creating an instance

This operation is not permitted for this resource. Please refer the service explained at #3

Handling instances of a class, for creating an instance.

c) Delete an instance

This request removes the instance included in the URL from the ontology.

DELETE
Request:
Resource: ontService/{ontologyName}/instance/{instanceName}
Response:
Status
Success:

• 200 “Ok” Requested instance deleted
Error:

• Ontology is not loaded -> 404 “ requested ontology is not loaded”

42

Example

DELETE ontService/wine/instance/newWine

5) Sub-Service for interacting with restrictions of a class

This set of services provide an interface to browse, add or delete any class’s restrictions

from the requested ontology. The client application sends a URL that has the ontology

name and a class name. All the above-mentioned operations are performed on the

restrictions of this class.

a) Accessing restrictions of a class

This request retrieves restrictions of all the class whose name is included in the resource

URI of the request. If the class does not exist in the ontology, an error with appropriate

HTTP status code is returned to the client application. For the class included in the URL,

a Class tag is returned. The Class tag contains a list of Restriction tags. Each Restriction

tag has a type attribute, which mentions the type of the attribute. The values that type

attribute can contain are allValuesFrom, someValuesFrom, hasValue,

maxCardinality and minCardinality. The Restriction tag contains the Property

tag, which mentions the property on which the restriction is. The Property tag encloses

either a Value tag or a Class tag depending upon the type of the restriction. If the

restriction type is value restriction, then Class tag is present where as if the restriction

type is cardinality restriction then Value tag is present.

GET

43

Request:
Resource: ontService/{ontologyName}/restrictionsFor/{className}
Response:
Content Type: application/xml
Body:

<Class name="Class1" uri= “http://serverAddress/#Class1” />

<Restrictions>
 {<Restriction type=”someValuesFrom”>
 <Property name=”p1” uri=http://serverAddress/#p1/>
 <Value>val</Value>
 <Class name=”C1” uri=http://serverAddress/#C1/>

 </Restriction>…}
</Restrictions>

 </Class>

Errors:

• 404 “class does not exist”.
• 404 “requested ontology is not loaded”

Example:

GET ontService/wine/restrictionsFor/Juice

<Class name="Juice" uri=”http://krono.act.uji.es/Links/ontologies/
 food.owl#Juice” />

 <Restrictions>
<Restriction type="minCardanility">
 <Property name="madeFromFruit"
 uri="http://krono.act.uji.es/Links/ontologies/
 food.owl#madeFromFruit"/>
 <Value>1</Value>
</Restriction>

</Restrictions>

 </Class>

b) Creating restriction for a class

This service adds restrictions for the classes. Following is the format for the request

body encoded in XML. For the class for which restriction is to be added a Class tag

44

mentioning the name of the class is required. The Class tag has a list of Restriction tags.

Every Restriction requires having the type attribute. The type attribute mentions the type

of the restriction. Only allowed values for type attribute are allValuesFrom,

someValuesFrom, hasValue, maxCardinality and minCardinality. The

Restriction tag encloses Property tag, which mentions the property on which the

restriction applied. The Property tag encloses either a Value tag or a Class tag depending

upon the type of the restriction. If the restriction is of value constraint type, the Class tag

is required mentioning the name of class whereas if the restriction is of cardinality

restriction the Value tag is required enclosing the value.

PUT
Request:
Resource: ontService/{ontologyName}/restrictionsFor
Content Type: application/xml
Body:

<Class name="Class1" uri= http://serverAddress/#Class1” />

 <Restrictions>
 {<Restriction type=”someValuesFrom”>
 <Property name=”p1” uri=http://serverAddress/#p1/>
 <Value>val</Value>
 <Class name=”C1” uri=http://serverAddress/#C1/>

 </Restriction>…}
 </Restrictions>
</Class>

Response:
Status
Success:

• 201 “All restrictions created”.
Errors:

• 404 “no such class exist”.
• 404 “property does not exist”.
• 404 “value class does not exist”.
• 404 “name attribute was missing”.
• 404 “type attribute was missing”.
• 404 “requested ontology is not loaded”

45

Example:

PUT ontService/wine/restrictionsFor/Juice

<Class name="Juice" uri=”http://krono.act.uji.es/Links/ontologies/
 food.owl#Juice” />

 <Restrictions>
<Restriction type="minCardanility">
 <Property name="hasSugar"
 uri="http://krono.act.uji.es/Links/ontologies/
 wine.owl#hasSugar"/>
 <Value>1</Value>
</Restriction>

</Restrictions>

 </Class>

c) Delete a restriction for a class.

This operation is not permitted for this resource. Please refer #6 Handling restriction of a

class on a property.

6) Sub-Service for interacting with restrictions of a class on a property.

This set of services provides the utility to interact with the restrictions of a class on a

particular property.

a) Accessing restriction

This operation is not permitted for this resource. Please refer #6 Handling restrictions for

a class to access restrictions.

b) Creating restrictions

46

This operation is not permitted for this resource. Please refer #6 Handling restrictions for

a class to create restrictions

c) Deleting restriction

This service deletes a restriction for the class and the property whose names are included

in the resource URI. If either the class or the property is not present in the ontology

included in the URI, an error with appropriate status code is returned to the client

application.

Request:
Resource: ontService/{ontName}/restrictionOf/{clsName}/{propName}
Response:
Status
Success:

• 200 “Ok” Restriction deleted.
Errors:

• 404 “requested ontology is not loaded”
• 404 “class does not exist”
• 404 “property does not exist”

Example:

DELETE ontService/wine/restrictionsOf/Juice/hasSugar

5.3 Navigation Sub-Service

The OWL ontology is a directed labeled [4] graph with concepts as the nodes and properties

being the edges. Ontology navigation is used to get a zoomed in view of a node (classes or

instances) of interest. This navigation through ontology is analogous to graph traversal.

Popular navigation tools such as OntoGraf [40], Jambalaya [41] provides a click-expand-

navigate approach. In this approach, the user clicks on a node which is the starting point and

this node is expanded into one or multiple neighboring nodes, then the user clicks on one of

47

the newly rendered node which then expands, and so on. User does this process iteratively

till he finds his node of interest. Effectively, the user navigates from the starting node along

the edges to a destination node. This ordered set of edges is the path from the starting node

to the destination. Such a path naturally fits into the URI format and the output achieved

after navigating along this path can be viewed as path to a resource in URI terminology. The

Navigation service provides a REST web service interface to embed such a path into HTTP

request URI and process it to return the destination nodes as the response. The URI for

invoking the navigational service is

 <Starting node>/<forward slash delimited edges, which constitute

the path> ? limit={value}.

 - where the Starting node can be a class or an instance.

Navigating along the path is a pipeline process, where each stage represents a navigation

step along the one edge from the path. At each stage, we navigate from a set of input nodes

to a set of nodes, known as output nodes, which are reachable via the corresponding edge.

Output nodes from one stage are applied as input to the subsequent stage. For the first stage,

the starting node is considered as the input node. Navigating in such manner can result into

discovery of large number of nodes. To limit this, client application can provide a query

parameter called limit in the URI. The final set of nodes will be limited to the limit included

in as the query parameter by the client application.

Following is the request format for invoking this service and brief explanation about how it

works.

Request syntax:

path/{ontologyName}/class/{className}/{property}+?limit={value}

48

path/{ontologyName}/instance/{individualName}/{property}+?limit={va

lue}

{className}/{instance} provides us the starting point for navigation. We than go on

navigating through the ontology along the property path specified by the

associations/properties in the HTTP request.

Figure 2: Node-link diagram for the navigating in Pizza Ontology

49

The navigation starts with the indicated class or instance. The request URI specifies using

the keyword class or instance if the starting point is class or an instance. We navigate using

the first property mentioned to all the classes associated with our starting point class and we

collect them as interim result set. Then we navigate using the second property mentioned in

the path from each of the class from the interim results from the first query and replace the

current contents of the interim results with the newly explored classes. We continue

navigation in such a manner till we have processed the path or any property/association

from the path resulted into an empty interim result. To make things more clear consider an

example from the pizza ontology.

 path/pizza/class/AmericanPizza/hasTopping/hasSpeciness?limit=5

Here the URI specifies that our starting point in this case, AmericanPizza is a class. We

first locate the AmericanPizza in the pizza ontology. Then we use the first property

specified in the path query, which is hasTopping and navigate along this property to get all

the classes that are associated to AmericanPizza using the hasTopping property and add

them into the interim result set. In this example after navigating from AmericanPizza

using hasTopping property, we get PeperoniTopping and MozzarellaTopping

classes.

AmericanPizza/hasTopping/ => [PeperoniTopping, MozzarellaTopping]

50

We then apply the second property in the path query (hasSpiciness) on each

PeperoniTopping and MozzarellaTopping and navigate from each of these classes

along the property hasSpeciness.

[PeperoniTopping, MozzarellaTopping]/hasSpiciness => [Mild, Medium]

So the output of the navigational query is [Mild, Medium] and it is returned to the user.

In short, we start with one class or instance (starting point) and then apply first property

to get a result of interim classes on which we then apply the second property to get

another new set of interim result on which we apply the third property and so on. We

do this till at any state we don’t get any interim result or we are done processing all the

properties mentioned in the path, whichever one occurs first.

 Apart from properties user can also specify relations such as subClassOf,

superClassOf, instancesOf, equivalntClasses, disjointClasses,

complementClasses.

The response of this request depends upon the navigational path. If the result of

navigation results into a set of classes, then all the information of the class is returned

encoded in XML as shown below.

GET
Request:
Resource:
path/{ontName}/class/{className}/{prop} ?limit={value}
Or
path/{ontName}/instance/{instanceName}/{prop}+?limit={value}
Response:

51

Content Type: application/xml
Body:

<Classes>
 {<Class name="Class1" uri= http://serverAddress/#Class1” />

 <SuperClasses>
 {<SuperClass name=”SuperClass1”

 uri=”http://serverAddress/#SuperClass1” />…}

 </SuperClasses>

 <SubClasses>

{<SuperClass name=”SuperClass1”
 uri=”http://serverAddress/#SuperClass1” />…}

 </SubClasses>

 <Properties>
{<Property name=”Prop1”
 uri=”http://serverAddress/#Prop1” />…}

 </Properties>

 <Instances>
{<Instance name=”Inst1”
 uri=”http://serverAddress/#Instance1” />..}

 </Instances>
 </Class>…}
</Classes>

If the result of the navigation is set of instances, then the response encoded in XML has

following format.

<Instance name="Class1" uri= http://serverAddress/#Inst1” />

<Classes>
 {<Class name=”Inst1”

 uri=”http://serverAddress/#Class1” />…}

</Classes>
</Instance >

Errors:
• Class does not exist -> 404 “no such class exist”.
• Ontology is not loaded -> 404 “requested ontology is not loaded”

52

5.4 SPARQL Query Sub-Service

This sub-service provides an interface to execute SPARQL queries. We have come up

with a novel approach to expose SPARQL execution service as a REST web-service

(which adheres to REST principles). To execute one SPARQL query and get the result

set, the client application has two send two separate HTTP requests. The client

application "posts" the SPARQL query that is to be executed as a request body encoded

in XML, in the format explained below. The HTTP POST request creates the result set

resource on the server. The server sends back the URI to the created result set and a time

parameter as a response to the first request. The result set resource is cached on the

server for a time period equivalent to time parameter included in the response of the

POST request. To retrieve the result set, the client application has to send a HTTP GET

request with the URI of the result set within the time period. The server removes the

result set after the time period has elapsed. If the client application requests for the result

set after the time period has elapsed, an error with appropriate HTTP status code is sent

back. This service accepts a SPARQL query in form the request body encoded in XML.

The XML format to invoke this service is explained below. The response returned to the

client is encoded in XML and is in following format. The Result tag includes URI and

TimeOut tags. The URI tag notifies the client application the URI for the result set

produced by the execution of the query requested. The TimeOut tag notifies the client

application for how much time the result set will be cached on the server. The client

application will have to send a HTTP GET request passing the identifier before the

timeout time has elapsed to get the result from the server. The time mentioned by the

timeout attribute is in milliseconds.

53

Following is the description of the URI design of this sub-service

a) Execute SPARQL query

The URI template to invoke this service is

sparqlService/{ontologyName}

- Where the {ontologyName} is the ontology that the user wants to

query.

POST
Request
Resource: sparqlService/{ontologyName}
Content Type: application/XML
Body:

<Query>
 { SPARQL Query }
</Query>

Response
Content type: application/XML
Body:

<ResultSet>

 <URI> http://serverAddress/resultSetIdentifier </URI>
 <TimeOut> xyz </TimeOut>

</ResultSet>

b) Accessing the result of SPARQL query

This service provides the client with the result set of the SPARQL query that the client

application previously executed. The client application has to invoke this service using

54

the URI included in the response of the HTTP POST request that the client application

sent to execute the query.

GET

Request

Resource

URI included in the response of the POST request

Response

The format of the response provided by this service depends upon the format the client

application requested in the HTTP header of the request. More precisely, the server

performs content negotiation and returns the result set in the format the client

application mentioned in the Accept field of the HTTP request header.

55

CHAPTER 6

IMPLEMENTATION

This chapter describes the implementation of the RIO server.

J2EE Application Server Environment
(JBOSS)

Figure 3: Architecture of RIO

The ontology server is a J2EE web server with the capability of processing RESTful

requests. Implementation of RIO can be divided into logical layers as shown in Figure 3.

Logic Layer

(JENA)

Ontology Store

Default

Config file

for RIO

Service Layer

(RESTEasy)

SPARQL

Query Result

Set Store

56

The service layer handles RESTful request. The logic layer interacts with the ontology store.

The ontology store is a main-memory storage where all the ontologies currently loaded in

RIO are present. The default configuration file contains the details of the ontologies that are

to be loaded during server startup. The SPARQL query result set store, caches SPARQL

query result sets temporarily. Following is a brief overview of each component of RIO.

The service layer is implemented using JBOSS’s RESTEasy [42], which is a framework for

developing RESTful Java web services. RESTEasy is an open source software distributed

under Apache Software License 2.0. RESTEasy is a full certified and portable

implementation of the JAX-RS specification [43]. JAX-RS is the Java Community Process

specification released in 2008. It provides a Java API for RESTful web services over the

HTTP protocol. As mentioned in the System Design chapter the ontology server provides

four types of services. They are implemented as Java interfaces and are called

OntologyManagementService, OntologyService, NavigationService and SPARQLService.

Each service provides a RESTful API to interact with the ontologies loaded in the web

server. These services are implemented using JBOSS’s RESTEasy [42], which is a

framework for developing RESTful Java web services.

Every Java service resource is mapped to a unique URI. For example a URI

/ontoService represents the OntologyService Java interface. This mapping is

achieved using JAX-RS annotations defined by RESTEasy.

All the Java services support four HTTP operations GET, POST, PUT, DELETE. A

combination of any one of these HTTP operations and a URI uniquely identifies a Java

service method from the Java service interfaces. So, for every URI, all four HTTP

operations are supported.

57

To keep the marshaling and un-marshaling of request/response data decoupled from the Java

objects, the service layer uses message body readers and writers. These message body

readers parse the request body to extract the information sent by the client. They also

validate the request and check if it adheres to the format expected by the API. If not, an

error is returned to the client along with appropriate HTTP status code. The message writer

on the other hand wraps the result of the invoked service into a format that the client can

accept (as mentioned in the Accept Header field of the HTTP request). Once the request has

been parsed and validated the service layer transfers the control to the logic layer.

The logic layer is implemented using JENA semantic web toolkit. During the server startup,

logic layer reads the default configuration file. The default configuration file contains details

of the ontologies, which are to be loaded into the ontology store. RIO currently hosts all the

ontologies in main memory. Each ontology is loaded into memory using JENA Java API

without any semantic reasoning capability support. We made this design decision, as most

of the services exposed by RIO do not need any semantic reasoning, except the validate

service (refer Chapter #5). We use in-built reasoners provided by JENA API for the validate

service. When any client application invokes the validate service, logic layer, converts the

current in-memory model of the requested ontology into a inferred in-memory model using

JENA’s built-in OWL micro reasoners [44] . This inferred model is used by the validate

service to check for any inconsistencies in the ontology.

As discussed in Chapter # 5, we have a novel way of executing SPARQL queries in

RESTful way. The result set created after a successful execution of a SPARQL query is

temporarily cached in the SPARQL query result set store. The time for which the result sets

will be cached is set at server startup through the configuration file, and this time is called

58

resultSetTimeOut. As soon as a result set is present in the result set store for

resultSetTimeOut time, that result set is evicted from the cache.

59

CHAPTER 7

EXPERIMENTS & EVALUATION

To evaluate RIO, we deployed it in JBOSS application server (version 5.1). We configured

RIO to load four ontologies by default, namely Pizza ontology, Wine ontology, GlycO

ontology and ReactO ontology. We used tools such as FireFox add-on Poster [45] and unix

shell utility – CURL [46] that can create HTTP requests and parse HTTP response to test all

the services provided by RIO.

Following are the tests that we did with the wine ontology.

• Ontology Management sub-service.

We loaded the wine ontology by uploading the OWL file of wine ontology using the

load service from ontology management sub-service. Also tested the save ontology

service by serializing the wine ontology into an OWL file.

• Ontology sub-service.

We tested this sub-service using the wine ontology. For testing various services

provided by this sub-service, we created a class, added some properties to it, added few

restrictions to it, and added an instance to the newly created class. We created the class

newAmericanWine and added it as the sub-class of AmericanWine class. We

created AmericanRedWine as its instance. We also performed tests to retrieve

various classes, properties, and instances from the wine ontology.

• Navigation sub-service.

60

We tested the navigation service using the example explained in the Chapter #5 (under

Navigation sub-service). We loaded the pizza ontology into RIO. We used

http://om.cs.uga.edu/rio/path/American/hasTopping/hasSpiciness

as the URI to test navigation within the pizza ontology with the American class as the

starting point. We also used the GlycO ontology to test the navigation service provided

by RIO.

• SPARQL Query sub-service

For testing SPARQL queries we used wine and the pizza ontologies. We submitted

various queries with different values in Accept header of the client request to test the

content negotiation feature provided by the navigation service.

Apart from these tools, we developed a client application in JAVA called OntoStat.java

for testing the services provided by RIO. We programmed the client application to gather

statistics of number of concepts present in any ontology that is loaded in RIO. The client

application is developed using RESTEasy client framework [47]. OntoStat accepts the

name of the ontology from command line, whose statistics are to be calculated. It then

sends RESTful requests to RIO to retrieve all classes, properties and instances for that

particular ontology and provides a count of each of these concepts.

RIO uses JENA API for interacting with the ontologies. Hence performance of RIO depends

upon performance of JENA framework. Currently all the ontologies loaded in RIO are in-

memory models. Needless to say, this has the drawback of reliability. During unfortunate

events like server crashes, the modifications done to any ontology loaded in the server will

be lost. To overcome, this problem, we have provided a service, which can serialize any

61

ontology loaded in RIO to an OWL file (as discussed in Chapter 5). The client applications

can utilize this service to create a snapshot of any ontology loaded in RIO.

RIO loads all the ontologies without any inferencing support. So no schema validations with

inferencing are executed, for every operation performed on the ontology using RIO's

services. To overcome this, RIO provides a validate service as described in Chapter #5

(under Ontology Management Sub-Service section.) This service returns a detailed report

of any present inconsistencies in the ontology. RIO uses the validity checking provided by

JENA framework, to validate the model. The client application then can use modification

services provided by the Ontology sub-service to rectify any inconsistencies that are present.

Currently we have not performed any performance evaluation of RIO. We plan to do so in

future.

62

CHAPTER 8

CONCLUSION AND FUTURE WORK

This thesis demonstrated a new way of building an ontology server and exposing its

functionality using REST architecture principles. We successfully demonstrated a novel

way of programmatic ontology navigation in a RESTful way. In this thesis, we also

successfully demonstrated a unique way of implementing a SPARQL endpoint that adheres

to REST architecture principles. We also displayed how operations such as ontology

management, ontology modification and ontology editing can be done using REST web-

services. RIO server demonstrates how REST web-services are a natural fit to provide an

interface for interacting with ontologies. We can have ontology independent client

application such as ontology visualizers and browsers built using RIO. Due to RIO, any

client application that has the capability of sending/receiving HTTP request/response can

leverage the advantages of ontologies.

Currently RIO has rich but basic set of functionalities. RIO server can be extended to add

following features.

8.1 Persistent Storage for Ontologies

 Currently all the ontologies loaded in the server are in-memory models. Persistent triple

store support is currently not provided by the server. The current server implementation can

63

be easily extended to support persistent triple store for storing ontologies. Due to the

modular design of the ontology server, adding this support won’t be a tedious task.

8.2 Regular Expression Support

Currently the navigational queries do not accept regular expressions. We plan to add regular

expression in future. Some work related to infinite loops would be required to add support

of regular expressions to navigational queries.

8.3 Support RDF/XML format

The ontology server currently accepts request in JSON and XML format. And all the

responses to the client are encoded in XML or JSON format. In future we plan to support

RDF/XML format.

8.4 Performance Evaluation

At the time of writing this thesis, we did not perform any performance evaluation of the

services provided by RIO. In future we plan to evaluate the performance of the various

services provided by RIO.

64

REFERECES

1. Gruber, T.R., A translation approach to portable ontology specifications.

Knowledge acquisition, 1993. 5(2): p. 199-220.

2. Brickley, D. and R.V. Guha, Resource Description Framework (RDF) Schema

Specification 1.0: W3C Candidate Recommendation 27 March 2000. 2000.

3. McGuinness, D.L. and F. Van Harmelen, OWL web ontology language overview.

W3C recommendation, 2004. 10.

4. Hayes, J. and C. Gutierrez, Bipartite Graphs as Intermediate Model for RDF

The Semantic Web – ISWC 2004, S. McIlraith, D. Plexousakis, and F. van Harmelen,

Editors. 2004, Springer Berlin / Heidelberg. p. 47-61.

5. Lee, T.B., J. Hendler, and O. Lassila, The semantic web. Scientific American, 2001.

284(5): p. 34-43.

6. RDF Schema. Available from: http://www.w3.org/TR/rdf-schema/.

7. OWL, Web Ontology Language. Available from: http://www.w3.org/TR/owl-

features/.

8. OWL Language Reference. Available from: http://www.w3.org/TR/owl-ref/.

9. Ahmad, M.N. and R.M. Colomb, Managing ontologies: a comparative study of

ontology servers, in Proceedings of the eighteenth conference on Australasian

database - Volume 632007, Australian Computer Society, Inc.: Ballarat, Victoria,

Australia. p. 13-22.

10. Farquhar, A., R. Fikes, and J. Rice, The ontolingua server: A tool for collaborative

ontology construction. International Journal of Human-Computers Studies, 1997.

46(6): p. 707-727.

65

11. Eklund, P., N. Roberts, and S. Green. Ontorama: Browsing rdf ontologies using a

hyperbolic-style browser. in Proc. First International Symposium on Cyber Worlds

(CW.02), IEEE Computer Society. 2002. IEEE.

12. Pan, J., S. Cranefield, and D. Carter, A lightweight ontology repository, in

Proceedings of the second international joint conference on Autonomous agents and

multiagent systems2003, ACM: Melbourne, Australia. p. 632-638.

13. Harrison, R. and C.W. Chan. Distributed ontology management system. in 18th

Annual Canadian Conference on Electrical and Computer Engineering Saskatoon,

IEEE. 2005. IEEE.

14. Reinberger, M.L. and P. Spyns, STAR Lab Technical Report. STAR, 2004.

2004(16): p. 16.

15. Li, Y., et al., Beyond Ontology Construction; Ontology Services as Online

Knowledge Sharing Communities

The Semantic Web - ISWC 2003, D. Fensel, K. Sycara, and J. Mylopoulos, Editors.

2003, Springer Berlin / Heidelberg. p. 469-483.

16. SOAP Version 1.2. Available from: http://www.w3.org/TR/soap12-part1/.

17. McBride, B., Jena: A semantic web toolkit. Internet Computing, IEEE, 2002. 6(6): p.

55-59.

18. Broekstra, J., A. Kampman, and F. Van Harmelen, Sesame: A generic architecture

for storing and querying rdf and rdf schema. The Semantic Web—ISWC 2002,

2002: p. 54-68.

19. Beckett, D., Redland RDF application framework. Institute for Learning and

Research Technology, University of Bristol, 2004.

66

20. Erling, O. and I. Mikhailov, RDF Support in the Virtuoso DBMS. Networked

Knowledge-Networked Media, 2009: p. 7-24.

21. Janik, M. and K. Kochut, BRAHMS: A WorkBench RDF Store and High

Performance Memory System for Semantic Association Discovery

The Semantic Web – ISWC 2005, Y. Gil, et al., Editors. 2005, Springer Berlin /

Heidelberg. p. 431-445.

22. Clark, K.G., L. Feigenbaum, and E. Torres, SPARQL protocol for RDF. World Wide

Web Consortium (W3C) Recommendation, 2008.

23. SPARQL Query Language for RDF. 2008.

24. SPARQL Query Results XML Format. 2008; Available from:

http://www.w3.org/TR/rdf-sparql-XMLres/.

25. SPARQL Protocol for RDF. 2008; Available from: http://www.w3.org/TR/rdf-

sparql-protocol/.

26. Fielding, R.T., Architectural styles and the design of network-based software

architectures, 2000, Citeseer.

27. Pautasso, C. and E. Wilde, Why is the web loosely coupled?: a multi-faceted metric

for service design, in Proceedings of the 18th international conference on World

wide web2009, ACM: Madrid, Spain. p. 911-920.

28. Auer, S., et al., Dbpedia: A nucleus for a web of open data. The Semantic Web,

2007: p. 722-735.

29. Suchanek, F.M., G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.

2007. ACM.

67

30. Bairoch, A., et al., The Universal Protein Resource (UniProt). Nucleic Acids

Research, 2005. 33(suppl 1): p. D154-D159.

31. Thomas, C.J., A.P. Sheth, and W.S. York, Modular Ontology Design Using

Canonical Building Blocks in the Biochemistry Domain, in Proceeding of the 2006

conference on Formal Ontology in Information Systems: Proceedings of the Fourth

International Conference (FOIS 2006)2006, IOS Press. p. 115-127.

32. Gosal, G.P.S., ProKinO: Design and Development of Ontology on Protein Kinases,

2010, University of Georgia.

33. Tania Tudorache, J.V., and Natalya F. Noy, Web-Prot eg e: A Lightweight OWL

Ontology Editor for the Web. OWL Experiences and Directions Workshop (OWLED

2008), 2008. 5th.

34. Aasman, J., Allegro graph, 2006, Technical Report 1, Franz Incorporated.

35. Ontology-Browser.

36. Bozsak, E., et al., KAON — Towards a Large Scale Semantic Web

E-Commerce and Web Technologies, K. Bauknecht, A. Tjoa, and G. Quirchmayr,

Editors. 2002, Springer Berlin / Heidelberg. p. 231-248.

37. Horridge, M., et al., A Practical Guide To Building OWL Ontologies Using The

Protégé-OWL Plugin and CO-ODE Tools Edition 1.0. The University Of

Manchester, 2004.

38. Bonomi, A., et al., NavEditOW – A System for Navigating, Editing and Querying

Ontologies Through the Web

Knowledge-Based Intelligent Information and Engineering Systems, B. Apolloni, R.

Howlett, and L. Jain, Editors. 2007, Springer Berlin / Heidelberg. p. 686-694.

68

39. Wine Ontology. Available from:

http://krono.act.uji.es/Links/ontologies/wine.owl/view.

40. OntoGraf. Available from: http://protegewiki.stanford.edu/wiki/OntoGraf.

41. Jambalaya. Available from: http://www.thechiselgroup.org/jambalaya.

42. RESTEasy. Available from: http://www.jboss.org/resteasy.

43. Pericas-Geertsen, S. and M. Potociar, JAX-RS: Java™ API for RESTful Web

Services. 2011.

44. JENA, OWL Micro Reasoner. Available from:

http://jena.sourceforge.net/javadoc/com/hp/hpl/jena/reasoner/rulesys/OWLMicroRea

soner.html.

45. FireFox add-on Poster. Available from: https://addons.mozilla.org/en-

US/firefox/addon/poster/.

46. CURL. Available from: http://www.unix.com/man-page/Linux/1/curl/.

47. RESTEasy Client Framework. Available from:

http://docs.jboss.org/resteasy/2.0.0.GA/userguide/html/RESTEasy_Client_Framewor

k.html.

