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Abstract

Artificial neural networks (ANNs) were developed to map ground reaction force (GRF)

data to subjective diagnostic scores of lameness. Twenty-one clinically normal dogs (19–

32.2 kg) underwent surgery inducing osteoarthritis in the left hind stifle joint. Lameness

scores were assigned by a veterinarian and GRF data were collected twice prior to and five

times after the surgery. The study discussed herein focused on identifying the preferred ANN

architecture and input variables extracted from GRF curves. The data were partitioned to

allow the accuracy of the resulting models to be evaluated with dogs not included in model

development. The results indicate that backpropagation neural networks are preferable to

probabilistic neural networks. Input variables were identified in this study that capture a

dog’s attempt to remove weight from an injured limb. ANNs differentiated the three classes

of lameness with an accuracy ranging from 87.8–100%.

Index words: Canine, Dog, Gait Analysis, Artificial Neural Network,
Ground Reaction Force, Diagnosis, Biomechanics, Force Plate,
Lameness, Probabilistic Neural Network, Backpropagation,
Decision Support



Canine Gait Analysis and Diagnosis

using Artificial Neural Networks

and

Ground Reaction Force

by

Makiko Kaijima

B.A., Keio University, Japan 2000

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2005



c© 2005

Makiko Kaijima

All Rights Reserved



Canine Gait Analysis and Diagnosis

using Artificial Neural Networks

and

Ground Reaction Force

by

Makiko Kaijima

Approved:

Major Professor: Ronald W. McClendon

Committee: Timothy L. Foutz

Walter D. Potter

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2005



Dedication

For my family

I would like to dedicate this thesis to my parents, Tadao and Kiyoko Kaijima, who tremen-

dously encouraged and supported my education at home and abroad. I also would like to

dedicate it to my sister, Sawako Kaijima, who has been a great inspiration throughout my

life and motivated me to achieve higher goals.

iv



Acknowledgments

I would like to thank all of the professors and friends for their support and guidance.

First of all, I would like to express my gratitude to all of my committee members. Espe-

cially, I would like to thank my major professor, Dr. Ron McClendon, for providing me with

valuable knowledge about Artificial Neural Networks and introducing me to this project and

its members. I also wish to thank Dr. Tim Foutz for sharing his insightful Biomechanics

knowledge and guiding me through my thesis work. My great appreciation also goes to Dr.

Don Potter for having equipped me with a set of skills versatile enough to solve a variety of

problems throughout the Masters degree program.

I also would like to thank Dr. Steven Budsberg for letting me use the precious data

he has collected over years and for sharing his Veterinary Medicine expertise. In addition,

I would like to thank Lisa Reynolds for helping me become familiar with the data, data

acquisition procedure, and other related materials. Furthermore, I would like to thank all of

my friends, especially Shilpa Hardas, Jaymin Kessler, Soyoung Kwon, and Rabia Guendouzen

for constantly providing intellectual stimulus and mental support. I would also like to thank

Matthew Horton for helping me with my English and proofreading this thesis.

I also would like to thank Dr. Michael Covington for not only providing me with valuable

AI and computer-related skills but also sharing his valuable study strategies for maintaining

the highest academic standards.

Lastly, I would like to thank Dr. Don Nute for introducing me to this exciting field of AI.

My academic goals became quite different from the ones I had originally planned. I came

here to make my longtime dream of becoming an athletic trainer come true. Taking many

classes in different areas and meeting people with high academic standards, I decided to

switch my major. I am grateful for all of your invaluable guidance and sage advice. Without

v



vi

all of your synergistic support, I could not have excelled in a new field and completed my

Masters degree. Once again, thank you very much; the technical and human skills I have

obtained here will remain a lifelong treasure.



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problems in Canine Gait Analysis . . . . . . . . . . . . . . . 1

1.2 Advantages and Effectiveness of Force-Plate Canine

Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Classification Techniques for Gait Abnormality Detection 3

1.4 Description of the Study . . . . . . . . . . . . . . . . . . . . 5

2 FUNDAMENTALS OF CANINE GAIT . . . . . . . . . . . . . . . . . 7

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Types of Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 GRF Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Data Collection Tools and Procedure for the Pharma-

ceutical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Data Set Preparation . . . . . . . . . . . . . . . . . . . . . . 19

3.3 ANN Design Tool and Procedure . . . . . . . . . . . . . . . 19

4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 42

vii



viii

4.1 Preliminary Input Analysis and Important Single Input

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Selection of Preferred ANN Model and Sets of Input

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Selection of Preferred Number of BPN Hidden Nodes . . 46

4.4 Preferred ANN Model and Set of Input Variables . . . . 47

5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . 63

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures

2.1 Footfall Sequence of Symmetrical Gait . . . . . . . . . . . . . . . . . . . . . 13

2.2 Rhythm of Footfalls in Symmetrical Gait . . . . . . . . . . . . . . . . . . . . 13

2.3 Orthogonal Components of GRF . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Representative GRF Curves of Normal Canine Gait . . . . . . . . . . . . . . 14

2.5 Representative Vertical GRF Curves of Normal and Abnormal Canine Gait . 15

2.6 Representative Cranial-Caudal GRF Curves of Normal and Abnormal Canine

Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Representative Medial-Lateral GRF Curves of Normal and Abnormal Canine

Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 BPN with One Output Node to Differentiate Three Classes . . . . . . . . . . 36

3.2 BPN with Three Output Nodes to Differentiate Three Classes . . . . . . . . 36

3.3 PNN with Three Output Nodes to Differentiate Three Classes . . . . . . . . 36

3.4 Vertical GRF Input Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Cranial-Caudal GRF Input Variables . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Medial-Lateral GRF Input Variables . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Input Variables Related to Mid Point . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Shift in Center of Gravity during Abnormal Gait . . . . . . . . . . . . . . . 41

4.1 BPN with Three Output Nodes Using Mid(R-L)/FRONT, Mid(R-L)/HIND,

and PFz(RH) (Data Configuration 1) . . . . . . . . . . . . . . . . . . . . . . 58

4.2 PNN Using Mid(R-L)/FRONT, Mid(R-L)/HIND, and PFz(RH) (Data Con-

figuration 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 BPN with One Output Node Using Mid(R-L)/FRONT, Mid(R-L)/HIND,

PFz(RF), PFz(RH), AveF(RF), and AveR(RH) (Data Configuration 1) . . . 60

ix



x

4.4 Hidden Node Analysis (BPN with One Output Node) . . . . . . . . . . . . . 61

4.5 Hidden Node Analysis (BPN with Three Output Nodes) . . . . . . . . . . . 62

5.1 LM1 and LM3 Vertical GRF Curves Acquired from Dog A . . . . . . . . . . 69



List of Tables

3.1 Subjective Scoring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Number of Patterns Acquired at Every Observation Point . . . . . . . . . . . 28

3.3 Score Obtained for Each Dog at Each Observation Point . . . . . . . . . . . 29

3.4 Number of Patterns Acquired for Each Dog . . . . . . . . . . . . . . . . . . 30

3.5 ANN Architecture Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Input Variables Provided by the Software . . . . . . . . . . . . . . . . . . . . 32

3.7 Input Variables Calculated from the Variables Listed in Table 3.6 . . . . . . 32

3.8 Input Variables Calculated from the Raw Data . . . . . . . . . . . . . . . . . 33

3.9 Target Value Coding (BPN with One Output Node) . . . . . . . . . . . . . . 34

3.10 Target Value Coding (BPN with Three Output Nodes) . . . . . . . . . . . . 34

3.11 Target Value Coding (PNN with Three Output Nodes) . . . . . . . . . . . . 34

3.12 Two Data Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.13 Number of Patterns in Data Configurations 1 and 2 . . . . . . . . . . . . . . 35

4.1 Overall Accuracy (%) Using a Conventional Single Input Variable, Data Con-

figuration 1, Evaluation Data Set . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Overall Accuracy (%) Using a Single Input Variable Suggested in This Study,

Data Configuration 1, Evaluation Data Set . . . . . . . . . . . . . . . . . . . 48

4.3 Overall Accuracy (%) Using Combinations of the Three Best Single Input

Variables, Data Configuration 1, Evaluation Data Set . . . . . . . . . . . . . 49

4.4 Overall Accuracy (%) Using Mid(R-L)/FRONT, Mid(R-L)/HIND and

Other Variables, Data Configuration 1, Evaluation Data Set . . . . . . . . . 50

4.5 Overall Accuracy (%) Using Mid(R-L)/FRONT, Mid(R-L)/HIND and

Other Variables, Data Configurations 1 and 2, Evaluation Data Sets . . . . . 51

xi



xii

4.6 Misclassification by BPN with One Output Node, Data Configuration 1, Eval-

uation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Misclassification by BPN with Three Output Nodes, Data Configuration 1,

Evaluation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Misclassification by PNN, Data Configuration 1, Evaluation Data Set . . . . 54

4.9 Misclassification by BPN with One Output Node, Data Configuration 2,

Evaluation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Misclassification by BPN with Three Output Nodes, Data Configuration 2,

Evaluation Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Misclassification by PNN, Data Configuration 2, Evaluation Data Set . . . . 57



Chapter 1

INTRODUCTION

1.1 Problems in Canine Gait Analysis

1.1.1 History and Current State of Gait Analysis

Scientific studies on canine locomotion started in the late nineteenth century (Brown, 1986;

DeCamp, 1997; Hollenbeck, 1981; Newton & Nunamaker, 1985). Subsequently, various gait

analysis methods have been proposed, such as kinetic analysis of ground reaction force (GRF)

obtained from force-plates, computer-aided 3-D kinematic analysis of the motor relationship

between each body segment, and assessment of electromyography (EMG)1 and electrogo-

niometry (EGM)2 (DeCamp, 1997; Newton & Nunamaker, 1985). In the last twenty years,

these techniques have been increasingly used in clinical practice along with subjective diag-

noses. Force-plate and kinematic analysis are widely accepted and have been proven to be

a reliable means of assessing normal and abnormal gait and the efficacy of various medical

interventions (Budsberg, 2001; Budsberg et al., 1987, 1988, 1993, 1995, 1996, 1999; Cross

et al., 1997; DeCamp, 1997; Dueland et al., 1977, Jevens et al., 1996; McLaughlin, 2001;

O’Connor et al., 1989; Renberg et al., 1999).

1.1.2 Problem Statement

The accuracy and consistency of subjective gait evaluations are limited by a clinician’s

knowledge, experience, and observational acumen. Force-plate and kinematic analyses pro-

vide objective, quantifiable, and repeatable results of canine gait evaluation by eliminating

1EMG measures the electrical activity of muscles.
2EGM is a technique used to gather information about the angles of the joint.

1
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human bias (McLaughlin, 2001). These analyses also accelerate data collection procedures.

However, data obtained using these methods are not fully exploited in current veterinary

practice. Researchers are often baffled by the massive quantities of data obtained from these

measurement tools. Moreover, data recorded from signal devices make it difficult to extract

important clinical information. The relationships between subjective diagnostic scores given

by veterinarians and objective GRF data are not yet fully understood, even though corre-

lations have been found between them (Budsberg et al., 1988, 1996; Jevens et al., 1996).

However, the results of objective gait analysis must correspond with clinical assessment of

diseases and their treatment. Although force-plate analysis is not an alternative to subjective

diagnosis, gait analysis can be used to enhance diagnostic accuracy. As a result, there is a

need for an automated process that fully exploits the available data, performs biomechanical

analysis on them, and relates the results to subjective evaluation for an accurate, reliable,

and efficient clinical decision making procedure.

1.2 Advantages and Effectiveness of Force-Plate Canine Gait Analysis

The advantage of force-plate analysis is that it readily acquires reliable GRF data for

assessing the limb function of a dog. A gait involves a complicated musculoskeletal coor-

dination mechanism. For example, a limb must apply a vertical force against the hip or

shoulder to support its weight and must apply a forward force along the vertebral column

to move forward. In addition, according to Newton’s First Law, a dog must elicit a force

from its external environment to move or change its speed or direction. In other words, a

dog needs to push off the ground and simultaneously receive environmental resistance. This

resistance force is then applied back to the limb and transmitted to the whole system, which

causes the motion of the next limb. This iterative process results in a gait (Gray, 1968).

A thorough functional analysis of a canine gait requires detailed knowledge of a large

amount of biological information: changes in tension and length of individual muscles and the

anatomical relationships between different muscles and between muscle and bone. Measuring
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these changes and relationships accurately without interfering with a dog’s movement is dif-

ficult and impractical. However, if we regard the body as a single musculoskeletal functional

unit, we can assess the combined effort of all the parts of the system involved in locomo-

tion by letting the dog walk on force-plates. According to Newton’s Third Law, orthogonal

reaction forces are exactly equal in magnitude but opposite in direction to the net internal

force generated by the whole system, which is transmitted through a limb to the ground

(Gray, 1968). Hence, even though GRF tests cannot measure joint-specific or muscle-specific

functions during locomotion, they can measure limb functions to a great extent. Thus, the

results of tests performed on force-plates are important. For a more detailed description of

canine gait biomechanics, see Brown (1986), Gray (1968), and Hollenbeck (1981).

1.3 Classification Techniques for Gait Abnormality Detection

Several classification techniques have been applied to gait data for differentiating normal

and abnormal gait, such as mathematical and statistical methods, fractal dynamics, wavelet

transformation, and artificial intelligence techniques such as machine learning, fuzzy clus-

tering, and artificial neural networks (ANNs) (Barton & Lees, 1997; Begg & Kamruzzaman,

2005; Chau, 2001 [a] & [b]; Cheron et al., 2003; Evans et al., 2003; Hahn et al., 2005; Keegan

et al., 2003; Lafuente et al., 1997; O’Malley et al., 1997; Schobesberger & Peham, 2002;

Schöllhorn, 2004; Simon, 2004; Su & Wu, 2000; Wu et al., 2001).

Evans et al. (2003) applied a decision rule called Youden’s index to GRF data obtained

from a total of 76 Labrador retrivers, 69 of which had unilateral cranial cruciate disease.

They differentiated normal and abnormal gait with 78.3–82.6% sensitivity3 and 82.3–88.2%

specificity4 using peak vertical forces and impulses.

Recently, ANNs have been used for human gait analysis (Chau, 2001[b]) and have also

been used for equine gait analysis (Keegan et al., 2003; Schobesberger & Peham, 2002). ANNs

3The frequency of classifying a normal dog as normal
4The frequency of classifying an abnormal dog as abnormal



4

have been used to process several types of gait data, including GRFs, foot pressure, joint

angles, and EMGs (Chau, 2001[b]). An ANN is a computational model that simulates the

biological learning process of a brain. There are many types of ANNs, but all consist of three

elements: processing units called nodes, links connecting each of them, and mathematical

learning rules. In supervised learning, an ANN learns by example rather than by using

domain-specific knowledge. In supervised training, the ANN goes through a large number of

examples of a known set of inputs and corresponding outputs. For example, Backpropatation

Networks (BPNs) determine the relationships between the inputs and outputs by adjusting

weights associated with each link through an iterative procedure.

Keegan et al. (2003) used ANNs to process kinematic data that were obtained from horses

trotting on a treadmill and transformed using the continuous wavelet transformation method.

The ANN model differentiated three classes of lameness (i.e., normal and lameness in the

left or right front limb) with an accuracy of 85%. Schobesberger and Peham (2002) used

ANNs to process kinematic data that were obtained from horses trotting on a treadmill and

transformed by the Fast-Fourier-Transformation algorithm. Their ANN model differentiated

six classes of lameness with an accuracy of 78%.

Su and Wu (2000) and Wu et al. (2001) used ANNs to map GRF data obtained from

healthy human subjects and patients with ankle arthrodesis. A total of 18 input variables

extracted from GRF curves were used. Half of the input variables were force parameters

normalized by mass: the peak vertical forces at (1) heel-strike and (2) push-off, (3) the

minimum vertical force at mid stance, (4) the peak fore-aft forces at heel-strike, the peak

(5) braking and (6) propulsive forces, and the peak medial-lateral forces at (7) heel strike,

(8) mid-stance, and (9) push-off. The rest of the input variables were temporal variables

corresponding to each force parameter normalized by the duration of the stance phase.

Using all 18 input variables, the standard 3-layer BPN differentiated normal and abnormal

gait 89% accurately. Better results of 98% were obtained using a Genetic Algorithm Neural

Network (GANN), which used a genetic algorithm to find the optimal set of input variables.
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The input variables found to be useful for GANN included force parameters (1) and (4)–(8)

and temporal parameters (2), (4) and (8). For more studies that used ANNs to process gait

data, see Barton & Lees (1997), Chau (2001 [b]), Cheron (2003), Hahn et al. (2005), Lafuente

et al. (1997), Schöllhorn (2004), and Simon (2004).

One of the major advantages of using ANNs to process gait data for diagnostic problems

is that they can be developed without full knowledge of the domain. Since they are data-

driven, one need not be certain how each factor in the data interact or contribute to the final

results. Therefore, ANNs can be used for a clinical decision support system, which must

account for how noisy, ambiguous, or distorted medical data might be associated with a

particular symptom. In addition, ANNs can generalize well on a new set of data. In other

words, ANNs can use previously known information to draw conclusions about similar but

not identical observation. This characteristic of ANNs is especially valuable because a new

patient is unlikely to have exactly the same medical condition as previously seen patients.

However, these systems are black-box in nature and cannot provide explanations for the

results. In addition, it has been shown that the accuracy of ANN output improves with

higher numbers of observations (Smith, 1993). Since the number of medical observations

could be scarce, and the network could become more susceptible to the noise in data.

1.4 Description of the Study

1.4.1 Purpose and Significance of the Study

GRF reflects a dog’s movement and its inside musculoskeletal activity as a whole. ANNs

are well suited for classification using noisy biomedical data from a signal device, and they

have been shown to be an effective means for detecting human and equine gait abnormalities

(Barton & Lees, 1997; Chau, 2001 [b]; Cheron et al., 2003; Hahn et al., 2005; Keegan et al.,

2003; Lafuente et al., 1997; O’Malley et al., 1997; Schobesberger & Peham, 2002; Schöllhorn,

2004; Simon, 2004; Su & Wu, 2000; Wu et al., 2001). Therefore, an ANN could be trained

using canine GRF data to accurately predict the subjective diagnosis of a veterinarian.
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If successfully implemented in a decision support system, ANNs developed for canine

gait analysis and diagnosis could have a significant clinical impact. More accurate diagnosis

supported by computerized analysis of objective GRF data could result in the detection of

subtle lameness, which is often missed by a clinician. In addition, it could enable much more

precise evaluation of surgical and pharmacological intervention. Moreover, ANNs can be used

for educational purposes.

1.4.2 Goal and Objectives

The goal of this study was to determine the accuracy of ANNs used to map variables extracted

from GRF curves to a subjective diagnostic score of lameness.

The related objectives of this study were to

1. identify the input variables extracted from GRF curves that could be used to duplicate

accurately the subjective diagnostic score of lameness,

2. find the preferred ANN architecture and combinations of input variables, and

3. to evaluate the feasibility and accuracy of the results for use in an automated canine

lameness diagnostic system.

1.4.3 Organization of the Study

Chapter 2 summarizes important terminology related to canine gait and the interpretation

of GRF curves. The clinical data and ANNs used in this study are explained in Chapter 3.

Chapter 4 presents and discusses the results of this study. Chapter 5 discusses the significance

and limitations of this study with a view to future improvements.



Chapter 2

FUNDAMENTALS OF CANINE GAIT

In order to understand how to map GRF data to subjective diagnostic scores using ANNs,

the basic teminology and principles of canine gait and interpretation of GRF curves must

be understood.

2.1 Terminology

This section summarizes the terminology used to describe a dog’s coordinated and repetitive

limb movement. Most of the terms used in this paper follow the guidelines suggested by

Leach (1993). For notational convenience, each limb is expressed in terms of left or right and

front or hind (i.e., LF, LH, RF, and RH).

2.1.1 Limb Pairs

Limbs can be paired in three ways according to their relative position. Limbs on the same

side of the body are ipsilateral (i.e., LF and LH or RF and RH). Limbs on opposite sides of

the body across from each other are contralateral (i.e., LF and RF or LH and RH). Limbs

on opposite sides of the body diagonal to each other are appropriately called diagonal limbs

(i.e., LF and RH or RF and LH).

2.1.2 Temporal Components of gait

The stance phase is when a foot is on the ground, and the swing phase is when a foot is in

the air. One stride equals to the stance and swing phases of one foot. A gait cycle occurs

after each foot has moved once, and a gait occurs when the same gait cycle is repeated.

7
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2.2 Types of Gait

Each gait type is characterized by the following three points: the sequence of footfalls during

a gait cycle, the rhythm of footfalls, and the number of supporting paws at any given stance

phase (Brown, 1986). Note that most named gaits have a range of variation. The most

common canine gaits are the walk, the amble, the trot, the pace, the canter, and the gallop.

The discussion in the following section is confined to the materials related to the trot, which

is the gait used in this study.

2.2.1 Footfall Sequence and Symmetrical Gait

The gait of a dog is commonly divided into two main groups, symmetrical and asymmetrical,

according to footfall sequence. In a symmetrical gait, such as a walk, trot, or pace, the

movement of the limbs on one side of the body repeats the movement of the limbs on the

other side. In other words, ipsilateral feet are set down before either contralateral foot is

set down, as shown in Figure 2.1. The order in which the paws are set on the ground are

indicated by arrows. For example, if LH is set on the ground, then the following footfall

sequence is LF, RH, RF, LH, and so on. Note that two or more adjacent feet in the diagram

may be set down at the same time (i.e., LH with LF, LF with RH, RH with RF, RF with

LH, or any three at a time).

In an asymmetrical gait, such as a canter or gallop, limb movements of on one side of the

body do not repeat those of the other side. A more complete explanation of asymmetrical

gaits is found in Brown (1986), Gray (1968), and Hollenbeck (1981).

2.2.2 Rhythm of Footfalls and Number of Supporting Limbs

Different types of symmetrical gaits can be distinguished by the relative time interval between

the hind and front footfalls on one side. As mentioned above, the other side repeats the same

motion.
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A line chart of the rhythm on one side of a dog is shown in Figure 2.2 (Brown, 1986). For

example, both feet on one side are set down at the same time when pacing. Therefore, the

time interval between the hind and front footfalls is zero. In the trot, the diagonal legs move

at the same time (i.e., RF with LH or LF with RH), which means that the time interval

between footfalls on one side is 1/2 the time of one cycle. Depending on the rhythm of

the footfalls, the number of paws on the ground at any given supporting phase differs, and

usually there are only two supporting limbs at a time during a trot.

2.3 GRF Curve

As shown in Figure 2.3, GRF can be divided into 3 vectors: vertical forces (Fz), cranial-

caudal forces (Fy), and medial-lateral forces (Fx). Forces applied in the direction of each

vector shown in Figure 2.3 yield a positive GRF curve.

2.3.1 GRF Curve of Normal Trot

GRF curves obtained from the limbs on one side of a healthy dog while trotting are plotted

against the time of a single stride (Figure 2.4). The curves represent force applied, which is

directly proportional to the acceleration of the dog in respective directions.1 The first half

of the curve is for the front limb, and the second half is for the ipsilateral hind limb. Points

A and C correspond to the paw strikes of the front and hind limbs, respectively. Similarly,

Points B and D correspond to the toe-offs of the front and hind limbs, respectively. Since

the trot is a symmetrical gait, nearly identical curves can be obtained from the contralateral

limbs in a healthy dog.

Each force has different clinical importance and implications. The vertical force (Fz),

which has the greatest magnitude, most directly measures the amount of weight a limb can

bear. In general, front limbs bear more weight and function as the main supporting limbs.

The cranial-caudal curve (Fy) quantifies the forces that affect forward motion: braking force

1According to Newton’s Second Law, F = ma, where F is force, m is mass, and a is acceleration
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and propulsive force. The braking force indicates deceleration in the early stance phase when

a paw is put on the plate; the propulsive force indicates the acceleration when the paw pushes

off the ground. The front limbs mainly function to decelerate the dog while the hind limbs

serve to accelerate the dog. As a result, the braking impulse2 is greater in the front limbs

while the propulsive impulse is generally greater in the hind limbs (Budsberg et al., 1987).

The medial-lateral forces (Fx), which have the smallest magnitude, indicate lateral stability.

Most studies have used peak vertical forces, peak braking forces, peak propulsive forces,

and associated impulses as discrete variables for analysis. Because of their small amplitude

and large variation in a given dog and from dog to dog, medial-lateral forces have rarely been

used in evaluating limb function. Limb-loading time or rate,3 (Budsberg et al., 1988, 1995,

1996) weight distribution among the four limbs4 (Budsberg et al, 1987), center of pressure,

reaction torque, and applied moment of inertia have also been used in biomechanical analysis

of canine gait to a limited extent (DeCamp, 1997).

2.3.2 GRF Curve of Abnormal Trot

GRF curves for all the limbs of a trotting dog before and after LH cranial cruciate ligament

transection (CCLT) are superimposed for comparison in Figure 2.5 (vertical), Figure 2.6

(cranial-caudal), and Figure 2.7 (medial-lateral).

As shown in Figure 2.5 and Figure 2.6, the peak vertical, braking, and propulsive forces

and associated impulses of the injured limb (LH) are lower than the preoperative values

(Budsberg, 2001; DeCamp, 1997; Jevens et al., 1996; O’Connor et al., 1989; Rumph et

al., 1995). The decrease in the peak vertical force of the injured limb indicates decreased

weightbearing (Figure 2.5). The decrease in the peak braking and propulsive forces of the

injured limb indicates reduced control over acceleration and deceleration (Figure 2.6). The

2Impulse is the total force applied over a stance phase.
3Time required from foot contact to reach peak magnitude (% of the complete stance phase).
4Weight distribution among the four limbs are calculated using the following formula: peak

vertical force of a limb / sum of peak vertical forces of four limbs × 100.
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decrease can be attributed not only to the mechanical joint instability induced by the surgery

but also to the cartilage and mensical injuries caused by that instability (Budsberg, 2001).

The diagonal (RF) and contralateral (RH) limb stance phase overlap indicates earlier

placement of contralateral limb on the ground and protracted diagonal limb stance phase

(Figure 2.5) in order to remove weight from the affected limb. Furthermore, lateral insta-

bility is more noticeable (Figure 2.7). The sharp increase in the peak medial-lateral force of

the non-injured limb (LF in this case) indicates the dog’s movement to compensate medial-

lateral balance instability caused by the injured limb. Compensatory action by non-injured

limbs is a resonable way to explain the abnormal Post-CCLT curves in Figures 2.5–2.7.

However, the redistribution of forces to the other three limbs when one limb is lame has not

been completely understood (DeCamp, 1997). Several studies have suggested that lameness

in a hind limb increases compensatory vertical loading of the contralateral limb (Budsberg,

2001; DeCamp, 1997; Jevens et al., 1996; Rumph et al., 1995). Changes in ipsilateral and

contralateral front limb vertical force value have also been reported (Rumph et al., 1995).

Another study reported a significant decrease in the ipsilateral front braking impulse and

mentioned the possibility that force redistribution involves all four limbs, which results in

GRF curve alterations in all directions (Jevens et al., 1996). It is likely that force redistri-

bution is affected by many factors, including severity of lameness, cause of lameness, joints

affected, duration of lameness, and the dog’s neurological modification ability (Budsberg,

2001; DeCamp, 1997; Jevens et al., 1996 ).

2.3.3 GRF Curve Alteration and Subjective Scoring System

As mentioned above, alterations in the GRF of an injured limb and possibly the other limbs

are associated with lameness. However, the variables found to be associated with lameness

and the strength of correlation between GRF curves and subjective lameness scores have

varied from study to study. Budsberg et al. (1987) and Jevens et al. (1996) found significant

correlation between the peak vertical forces and impulses and subjective lameness scores.
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In other studies, limb-loading time and weight distribution among four limbs corresponded

with the clinical evaluation of improved weightbearing in the injured limb (Budsberg et al.,

1988).
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Figure 2.1: Footfall Sequence of Symmetrical Gait

Figure 2.2: Rhythm of Footfalls in Symmetrical Gait

Figure 2.3: Orthogonal Components of GRF



14Figure 2.4: Representative GRF Curves of Normal Canine Gait



15Figure 2.5: Representative Vertical GRF Curves of Normal and Abnormal Canine Gait



16Figure 2.6: Representative Cranial-Caudal GRF Curves of Normal and Abnormal Canine Gait



17Figure 2.7: Representative Medial-Lateral GRF Curves of Normal and Abnormal Canine Gait



Chapter 3

METHODOLOGY

3.1 Data Collection Tools and Procedure for the Pharmaceutical Study

Data gathered from force-plate analysis in an earlier pharmaceutical study of osteoarthritis

drug development1 were used in this study with ANNs to map variables extracted from GRF

curves to subjective diagnostic score of lameness. Twenty-one institution-owned, clinically

normal adult hound-type dogs (Dogs A–U) of mass from 19 to 32.2 kg (Avg. 24.36 kg) were

used. Each dog underwent LH cranial cruciate ligament transection, inducing osteoarthritis

in the knee (stifle) joint. GRF data were collected using two biomechanical force-plates flush

with and in the center of a 12 meter walkway. Force-plates were interfaced with a computer

system and GRFs were recorded at 1 millisecond intervals using Acquire 7.31 data acquisition

software.2 In addition, two photoelectric cells placed 2 meters apart were used to determine

the velocity of the gait.

Without having access to force-plate test results, a veterinarian observed each dog and

diagnosed the severity of lameness using the scoring system shown in Table 3.1. The lameness

score indicates the abnormality in the movement of an injured limb during the stance phase

as well as the swing phase. Subjective diagnostic scores were assigned by the veterinarian

and GRF data were collected twice prior to and five times after the surgery. A total of seven

different trials were conducted one month prior to (T
−1), immediately prior to (T0), and one

(T1), three (T3), six (T6), nine (T9), and twelve (T12) months after the surgery. For each trial,

gait data of five valid attempts were collected from each dog, unless the subject was too lame

1The studies were approved by the Animal Care and Use Committee at the University of Georgia.
2Sharon Software, Inc., Dewitt, MI.

18
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or distracted to perform the test. The GRF data were considered valid if the trot was at a

velocity of 1.7 to 2.1 m/s with acceleration variation within the range of −0.5 to 0.5 m/s2.

3.2 Data Set Preparation

The variables extracted from GRF curves for one gait attempt and the corresponding sub-

jective lameness score were organized into a pattern,3 and all the patterns acquired for the

pharmaceutical study were organized into a data set.

A total of 678 patterns were obtained from the pharmaceutical study. For twelve dogs,

data from five gait attempts were collected on seven different dates. For nine dogs, data

from 1–5 gait attempts were collected on 5–7 different dates. A summary of the number

of patterns obtained for each of the twenty-one dogs is shown in Table 3.2. As shown in

Table 3.3, all the dogs had a lameness score of LM1 prior to the surgery (T
−1 and T0), and

all of them were diagnosed as lame (LM2 or LM3) one month after the surgery (T1). The

lameness score of some dogs fluctuated after the surgery. Only nine dogs (Dogs A–I) received

lameness scores of LM1, LM2, and LM3, whereas the rest of the dogs (Dogs J–U) received

lameness scores of LM1 and LM2. None of the dogs received a score of LM4. A total of 265,

354, and 59 patterns for LM1, LM2, and LM3, respectively, were used (Table 3.4).

3.3 ANN Design Tool and Procedure

ANNs were developed using NeuroShell 24 to map a set of objective GRF variables to

a corresponding subjective lameness score (LM1, LM2, or LM3).5 This study focused on

finding the preferred ANN models, single input variables, and sets of input variables.

3A pattern is a record of input variables and corresponding output target values from a single
observation.

4Ward Systems Group, Inc., Frederic, MD.
5ANNs developed in this study only differentiated three classes of lameness because no dog

received a lameness score of LM4 (Section 3.2).
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3.3.1 ANN Architecture and Models

The standard 3-layer backpropagation networks (BPNs) and probabilistic neural networks

(PNNs) were used because BPNs have been shown to be suitable for human and equine gait

abnormality detection and PNNs have been shown to be suitable for classification problems

and perform well with scarce data (Barton & Lees, 1997; Chau, 2001 [b]; Cheron, 2003; Hahn

et al., 2005; Huang, 2004; Huang & Liao, 2004; Keegan et al., 2003; Lafuente et al., 1997;

Saini et al., 2003; Schöllhorn, 2004; Schobesberger & Peham, 2002; Simon, 2004; Su & Wu,

2000; Wu et al., 2001; and Zhao et al., 2004). The three ANN models tested were (a) BPN

with one output node (Figure 3.1), (b) BPN with three output nodes (Figure 3.2), and (c)

PNN with three output nodes (Figure 3.3). ANN architecture parameters used in this study

are listed in Table 3.5.

BPNs consist of three layers: input, hidden, and output layers. Each node in a particular

layer is connected to all the nodes in adjacent layers. In other words, each network is fully

connected. The number of input nodes is equal to the number of input variables used by the

network. The number of output nodes depends on the classification strategy. One output node

can be used to differentiate multiple classes or N output nodes can be used to differentiate

N classes. The number of hidden nodes is arbitrary.

PNNs consist of four layers: input, pattern, summation, and output layers. The number

of input nodes is equal to the number of input variables used by the network. The number

of output nodes is equal to the number of classes (N ). The pattern layer contains N pools

of pattern nodes, and the number of pattern nodes is equal to the number of patterns in the

training data set. Each input node is connected to all the nodes in the pattern layer. Pattern

nodes of N th pool are connected to the N th summation nodes (Specht, 1990).

3.3.2 Input Variables

Inputs to each ANN were variables extracted from GRF curves (Tables 3.6–3.8 and Fig-

ures 3.4–3.7). The software used for data acquisition provided raw GRF data as well as the
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following calculated variables: peak vertical force (PFz), peak braking force (PFy-b), peak

propulsive force (PFy-p), peak medial-lateral force (PFx), associated impulses (IFz, IFy-b,

and IFy-p), average rising (AveR) and falling slopes (AveF) of vertical forces, and time

when the peak vertical force was reached (TFz) (Table 3.6 and Figures 3.4–3.6). Additional

variables as shown in Table 3.7 were calculated using these variables. These variables were

tested because they have been found to be associated with lameness in previous studies.

In addition, variables related to the Mid Point, which is the minimum point between the

peak vertical forces of ipsilateral limbs (Table 3.8 and Figure 3.7), were calculated from the

raw data. The Mid Point of the non-affected side of the dog (Mid[R]) is noticeably higher

than the Mid Point of the affected side in an abnormal trot. Mid(R) seems to capture the

various aspects of a dog’s attempt to reduce weight on the injured limb. GRF curves for

all the limbs of a trotting dog after LH Cranial Cruciate Ligament Transection (CCLT) are

presented in Figure 3.8 to show the estimated cadence. At any given moment in an abnormal

trot, either two diagonal feet or three total feet are touching the ground. For a dog to keep

equilibrium during locomotion (as long as the vertical force is considered), the center of the

gravity (G) must lie either on the diagonal line connecting the two feet on the ground or

within the triangle of the three feet touching the ground. If a dog wants to remove weight

from the injured limb (LH) and keep equilibrium, the center of gravity must be shifted to

the right or to the front. In order to shift the center of gravity to the right of the intersection

of the diagonal line, the contralateral limb (RH) must be set on the ground while the injured

limb (LH) and the diagonal limb (RF) are on the ground. On the other hand, in order to

shift the center of gravity to the front of the intersection of the diagonal line, the diagonal

limb (RF) must be carried way behind until the ipsilateral limb (LF) is set on the ground.

As shown in Figure 3.8, the dog accomplishes this shift in center of gravity by setting down

the contralateral limb (RH) earlier and by elongating the stance phase of the diagonal limb

(RF). Since the trot is a symmetrical gait, the difference in magnitude of the Mid Point
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for each side of the dog (Mid[R-L]) also can be a good indicator for distinguishing levels of

lameness severity.

The magnitude of the Mid Points is affected by three factors: (a) front and hind limb

stance phase overlap, (b) the falling slope of the front limb (AveF[LF] or AveF[RF]), which is

affected by the peak vertical force of the front limb (PFz[LF] or PFz[RF]) and the duration of

weightbearing once the peak vertical force is reached (TotalT[RF]-TFz[RF] or TotalT[LF]-

TFz[LF]), and (c) the rising slope of the hind limb (AveR[LH] or AveR[RH]), which is

affected by the peak vertical force of the hind limb (PFz[LH] or PFz[RH]) and the duration

of weightbearing until the peak vertical force is reached (TFz[LH] or TFz[RH]). Therefore,

Mid(R) and Mid(R-L) normalized by the sum of the peak vertical forces of any set of limbs

that can be set on the ground simultaneously (i.e., two front limbs, two rear limbs, two

diagonal limbs, any combinations of three limbs, and all the limbs) were also tested.

Note that the peak vertical force of the non-injured hind limb (RH) provided by the

software was not precise enough. If the Mid Point was higher than 33% of the peak vertical

force of the front limb (RF) as shown in Figure 3.7, the peak vertical force of the non-injured

hind limb (RH) was calculated as 0. Hence, the peak vertical force of the non-injured limb

(RH) was re-calculated.

3.3.3 Target Values and Interpretation of ANN Output

Outputs of each ANN were lameness scores corresponding to those assigned by a veterinarian

(LM1, LM2, and LM3). The target value coding procedure differed according to the ANN

model used. For BPNs with one output node, the target values of LM1, LM2, and LM3

patterns were 0.1, 0.5, and 0.9, respectively (Table 3.9). For BPNs with three output nodes,

the target values of LM1 patterns were 0.9, 0.1, and 0.1 for the nodes corresponding to

LM1, LM2, and LM3, respectively (Table 3.10). Likewise, for the LM2 patterns and LM3

patterns, the target value for the corresponding node was 0.9 (0.1 for the other two nodes).

For PNNs with three output nodes, the target values of LM1 patterns were 1, 0, and 0 for
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the nodes corresponding to LM1, LM2, and LM3, respectively (Table 3.11). Likewise, for the

LM2 patterns and LM3 patterns, the target value for the corresponding node was 1 (0 for

the other two nodes).

The network output interpretation procedure differed according to the ANN model used.

The output value of BPNs with one output node was interpreted as LM1, LM2, or LM3 if it

was in the range of 0.1–0.35, 0.35–0.65, or 0.65–0.9, respectively. The output value of BPNs

with three output nodes was interpreted as LM1, LM2, or LM3 when the corresponding node

had the highest network output value. The output value of PNNs was interpreted as LM1,

LM2, or LM3 if the binary output value of the corresponding node was 1.

3.3.4 ANN Model Development and Evaluation

In order to develop and evaluate BPNs, a data set was divided into three mutually exclusive

subsets: training, testing, and evaluation data sets. Each network was trained using the

training data set. The testing data set was used to determine when the training should be

terminated. If a network is trained until errors on a training data set are minimized, the

network might learn either noise or features peculiar to the training data set in addition to

the important features. In this study, the generalization ability of each model was checked

periodically during training (i.e, every 200 training patterns presented) using the testing

data set in order to prevent over-training. This process was repeated until the errors on the

testing data set were reasonably minimized (i.e, no improvement was found on the testing

data set after presenting 20000 training patterns since the best network had been found).

Once the model was developed, patterns in the evaluation data set were presented to the

trained network in order to evaluate how well the model generalized on a new set of data.

In order to develop and evaluate PNNs, a data set was divided into two mutually exclusive

subsets: training and evaluation data sets. Each network was trained using the training data

set. The input nodes received input values. Pattern nodes received the weighted sum of these

inputs and calculated an activation level using the Gaussian function. The summation nodes
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added all the inputs from the pattern nodes associated with that class. The output of the

PNN result corresponded to the results of a probability density function. The results were

of two kinds: binary output (0 or 1) and a value indicating the probability of each pattern

belonging to a particular class. Unlike BPNs, each PNN required each training pattern to

be presented to the network only once during training.

The only required control factor for a PNN was the smoothing factor. The smoothing

factor determined the radial deviation of the Gaussian function. If the smoothing factor

was too small, the networks did not generalize well on the new data set. If the smoothing

factor was too large, the networks failed to learn the subtle relationships between inputs and

outputs. In preliminary runs, a data set was divided into mutually exclusive 3 subsets (i.e.,

training, testing, and evaluation data sets) in order to chose appropriate smoothing factors.

A testing data set was used to find the smoothing factor that produced fewer classification

errors. Once the optimal smoothing factor was found, patterns from the testing data set

were added to the training data set, and the PNN was retrained using the updated training

data set. Once the model was developed, patterns in the evaluation data set were presented

to the trained network in order to evaluate how well the model generalized on a new set of

data.

The networks were developed using patterns from two-thirds of the dogs (14) in the data

set and evaluated with patterns from the remaining dogs (7). In order to obtain results

that better indicated model performance in clinical practice, the accuracy of each model

was tested using an evaluation data set that never contained patterns from the same dog

as patterns used in model development. Two different data sets (Data Configurations 1

and 2) were created. Because there were only nine dogs that received a lameness score of

LM3 (Table 3.4), each evaluation data set contained three dogs with LM3 patterns and four

other dogs. In Data Configuration 1, patterns from Dogs A–F, J–N, and P–R were used for

model development, and patterns from Dogs G–I, O, and S–U were used for model evaluation

(Table 3.12). In Data Configuration 2, patterns from Dogs D–I and N–U were used for model
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development, and patterns from Dogs A-C and J–M were used for model evaluation. The

number of patterns in each subset is presented in Table 3.13.

3.3.5 ANN Model Assessment

Once an ANN was trained and the results from the evaluation data set were obtained, a

predicted lameness score was assigned to each pattern in the evaluation data set using the

criteria given in Section 3.3.3. Each ANN was assigned an Overall Accuracy (OA), which is

the sum of the patterns classified on the same level assigned by the veterinarian divided by

the total number of patterns in the evaluation data set:

OA =
a + b + c

P
× 100,

where a is the number of patterns in the evaluation data set classified as LM1 by the ANN

and actually assigned LM1 by the veterinarian, b is the number of patterns in the evaluation

data set classified as LM2 by the ANN and actually assigned LM2 by the veterinarian, c is

the number of patterns in the evaluation data set classified as LM3 by the ANN and actually

assigned LM3 by the veterinarian, and P is the number of patterns in the evaluation data

set.

3.3.6 Input Variables and ANN Model Selection Procedure

In order to identify the input variables that correlated well with lameness scores, the BPN

with one output node was used with Data Configuration 1. The variables shown in Tables 3.6–

3.8 were mapped by each ANN model individually. Various combinations of the input vari-

ables found to be useful were then used to create additional ANNs. If the multiple inputs

increased the accuracy of the network, these variables, along with other input variables, were

used to develop additional ANNs. If the accuracy was lower with the multiple inputs, alterna-

tive combinations were tested. After this process was repeated, unnecessary input variables

were eliminated, and useful variables were kept for subsequent model development. Several

ANNs were developed to examine the impact of a particular input variable on the accuracy.
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Trial and error was used to a large extent because, typically, a veterinarian trained in ortho-

pedics can differentiate the severity based on his experience but cannot provide a conclusive

point of reference for the diagnosis. Once the promising sets of input variables were iden-

tified, input analysis was conducted for three ANN models using both data configurations.

The accuracy of three ANN models was compared and the preferred set of input variables

were selected based on the results obtained from both data configurations. In addition, the

preferred number of hidden nodes for BPNs was determined using the preferred set of input

variables.
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Table 3.1: Subjective Scoring System

Lameness Score Description

1 Trots normally
2 Slight lameness at trot
3 Moderate lameness at trot
4 Severe lameness at trot
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Table 3.2: Number of Patterns Acquired at Every Observation Point

Number of Patterns

Dog T
−1 T0 T1 T3 T6 T9 T12 Total

A 5 5 5 5 5 5 5 35
B 5 5 5 5 5 5 5 35
C 5 5 5 4 0 5 5 29
D 5 5 5 5 5 5 5 35
E 5 5 4 5 5 5 5 34
F 5 5 0 5 5 5 5 30
G 5 5 0 0 5 1 5 21
H 5 5 2 5 5 5 5 32
I 5 5 0 1 5 2 0 18
J 5 5 5 5 5 5 5 35
K 5 5 5 5 5 5 5 35
L 5 5 1 5 5 5 5 31
M 5 5 5 5 5 5 5 35
N 5 5 5 5 5 5 5 35
O 5 5 0 5 5 5 5 30
P 5 5 5 5 5 5 5 35
Q 5 5 5 5 5 5 5 35
R 5 5 5 5 5 5 5 35
S 5 5 5 5 5 5 5 35
T 5 5 3 5 5 5 5 33
U 5 5 5 5 5 5 5 35

Total 105 105 75 95 100 98 100 678
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Table 3.3: Score Obtained for Each Dog at Each Observation Point

Lameness Score

Dog T
−1 T0 T1 T3 T6 T9 T12

A 1 1 3 2 2 2 3
B 1 1 3 2 2 2 2
C 1 1 3 2 * 2 2
D 1 1 3 3 2 2 2
E 1 1 3 2 2 1 2
F 1 1 * 3 2 2 2
G 1 1 * * 3 3 2
H 1 1 3 3 3 1 2
I 1 1 * 2 2 3 *
J 1 1 2 2 2 2 2
K 1 1 2 2 2 2 2
L 1 1 2 2 2 2 1
M 1 1 2 1 1 1 1
N 1 1 2 2 2 2 2
O 1 1 * 2 2 2 1
P 1 1 2 2 1 2 2
Q 1 1 2 2 2 2 2
R 1 1 2 2 1 2 2
S 1 1 2 2 2 1 2
T 1 1 2 2 2 2 2
U 1 1 2 2 2 2 2

* No score available
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Table 3.4: Number of Patterns Acquired for Each Dog

Number of Patterns

Dog LM1 LM2 LM3 Total

A 10 15 10 35
B 10 20 5 35
C 10 14 5 29
D 10 15 10 35
E 15 15 4 34
F 10 15 5 30
G 10 5 6 21
H 15 5 12 32
I 10 6 2 18
J 10 25 0 35
K 10 25 0 35
L 15 16 0 31
M 30 5 0 35
N 10 25 0 35
O 15 15 0 30
P 15 20 0 35
Q 10 25 0 35
R 15 20 0 35
S 15 20 0 35
T 10 23 0 33
U 10 25 0 35

Total 265 354 59 678



31

Table 3.5: ANN Architecture Parameters

BPN Value

Number of Ouptput Nodes 1 or 3
Number of Input Nodes Varied
Number of Hidden Nodes 2
Learning Rate 0.1
Momentum 0.1
Initial Weight 0.3
Activation Function (Input Layer) Linear
Activation Function (Hidden Layer) Logistic
Activation Function (Output Layer) Logistic

PNN Value

Number of Ouptput Nodes 3
Number of Input Nodes Varied
Number of Hidden Nodes 290, 474 (Data Configuration 1)

268, 443 (Data Configuration 2)
Activation Function Gaussian
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Table 3.6: Input Variables Provided by the Software

Input Variables Notation

Peak vertical forces PFz
Vertical impulses IFz
Time when peak vertical forces are reached TFz
Average rising slopes of vertical forces AveR
Average falling slopes of vertical forces AveF
Total duration of stance phase TotalT
Peak braking forces PFy-b
Braking impulses IFy-b
Peak propulsive forces PFy-p
Propulsive impulses IFy-p
Peak medial-lateral forces PFx

Table 3.7: Input Variables Calculated from the Variables Listed in Table 3.6

Input Variables Notation

Peak vertical force differences between
the injured side of the dog PFz(LF−LH)
the non-injured side of the dog PFz(RF−RH)
the two front limbs PFz (RF−LF)
the two hind limbs PFz (RH−LH)

Percentage of weightbearing in injured limb WB
(PFz[LH] normalized by sum of the PFz
of all the limbs)

Duration of front limb stance phase TotalT(RF)-TFz(RF)
after the PFz is reached TotalT(LF)-TFz(LF)
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Table 3.8: Input Variables Calculated from the Raw Data

Input Variables Notation Normalized by

Mid Points Mid(R)
Mid(R)/FRONT PFz(RF)+PFz(LF)
Mid(R)/HIND PFz(RH)+PFz(LH)
Mid(R)/PFz(RF+LH) PFz(RF)+PFz(LH)
Mid(R)/PFz(LF+RH) PFz(LF)+PFz(RH)
Mid(R)/PFz(RIGHT) PFz(RF)+PFz(RH)
Mid(R)/PFz(LEFT) PFz(LF)+PFz(LH)
Mid(R)/PFz(RF+LF+LH) PFz(RF)+PFz(LF)+PFz(LH)
Mid(R)/PFz(RH+LF+LH) PFz(RH)+PFz(LF)+PFz(LH)
Mid(R)/PFz(RF+RH+LH) PFz(RF)+PFz(RH)+PFz(LH)
Mid(R)/PFz(RF+RH+LF) PFz(RF)+PFz(RH)+PFz(LF)
Mid(R)/PFz(ALL) PFz(RF)+PFz(RH)+

PFz(LF)+PFz(LH)
Mid Points difference Mid(R−L)

Mid(R−L)/FRONT PFz(RF)+PFz(LF)
Mid(R−L)/HIND PFz(RH)+PFz(LH)
Mid(R−L)/PFz(RF+LH) PFz(RF)+PFz(LH)
Mid(R−L)/PFz(LF+RH) PFz(LF)+PFz(RH)
Mid(R−L)/PFz(RIGHT) PFz(RF)+PFz(RH)
Mid(R−L)/PFz(LEFT) PFz(LF)+PFz(LH)
Mid(R−L)/PFz(RF+LF+LH) PFz(RF)+PFz(LF)+PFz(LH)
Mid(R−L)/PFz(RH+LF+LH) PFz(RH)+PFz(LF)+PFz(LH)
Mid(R−L)/PFz(RF+RH+LH) PFz(RF)+PFz(RH)+PFz(LH)
Mid(R−L)/PFz(RF+RH+LF) PFz(RF)+PFz(RH)+PFz(LF)
Mid(R−L)/PFz(ALL) PFz(RF)+PFz(RH)+

PFz(LF)+PFz(LH)
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Table 3.9: Target Value Coding (BPN with One Output Node)

Lameness Target Value
Score

Output Node

LM1 0.1
LM2 0.5
LM3 0.9

Table 3.10: Target Value Coding (BPN with Three Output Nodes)

Lameness Target Value
Score

Output Node 1 Output Node 2 Output Node 3

LM1 0.9 0.1 0.1
LM2 0.1 0.9 0.1
LM3 0.1 0.1 0.9

Table 3.11: Target Value Coding (PNN with Three Output Nodes)

Lameness Target Value
Score

Output Node 1 Output Node 2 Output Node 3

LM1 1 0 0
LM2 0 1 0
LM3 0 0 1
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Table 3.12: Two Data Configurations

Data Dogs in Model Dogs in Model
Configuration Development Evaluation

1 A-F, J-N, P-R G-I, O, S-U
2 D-I, N-U A-C, J-M

Table 3.13: Number of Patterns in Data Configurations 1 and 2

Data Configuration 1 LM1 LM2 LM3 Total

Training 110 157 23 290
Testing 70 98 16 184

Evaluation 85 99 20 204

Total 265 354 59 678

Data Configuration 2 LM1 LM2 LM3 Total

Training 103 142 23 268
Testing 67 92 16 175

Evaluation 95 120 20 235

Total 265 354 59 678
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Figure 3.1: BPN with One Output Node to Differentiate Three Classes

Figure 3.2: BPN with Three Output Nodes to Differentiate Three Classes

Figure 3.3: PNN with Three Output Nodes to Differentiate Three Classes



37Figure 3.4: Vertical GRF Input Variables



38Figure 3.5: Cranial-Caudal GRF Input Variables



39Figure 3.6: Medial-Lateral GRF Input Variables



40Figure 3.7: Input Variables Related to Mid Point



41Figure 3.8: Shift in Center of Gravity during Abnormal Gait



Chapter 4

RESULTS AND DISCUSSION

4.1 Preliminary Input Analysis and Important Single Input Variables

The results obtained from ANNs using the single input variables commonly used for other

canine studies are shown in Table 4.1. None of the conventional variables produced accept-

able levels of accuracy (39.2–64.7%). The results obtained from ANNs using single input

variables suggested in this study are shown in Table 4.2. ANNs using Mid(R-L)/FRONT,

Mid(R-L)/HIND, or Mid(R-L)/LEFT distinguished three lameness classes with an accuracy

of 93.6%, 90.7%, and 90.7%, respectively, while the accuracy of ANNs using other input

variables was in the range of 55.4–63.7%. Neither the Mid Point of the non-affected side of

the dog (Mid[R]) nor the difference in magnitude of the Mid Point for each side of the dog

(Mid[R-L]) alone differentiated three lameness classes or distinguished normal from abnormal

gait that well (Table 4.2). The difference had to be normalized by the sum of the peak ver-

tical forces of the two front limbs, two hind limbs, or two left limbs in order to produce an

accuracy above 90%.

When Mid(R-L)/FRONT and Mid(R-L)/HIND were used together, the accuracy of the

model improved 2–5% (Table 4.3). Using other combinations of these three input variables,

ANNs performed 2–7% worse than the ANN using Mid(R-L)/FRONT and Mid(R-L)/HIND.

When other single variables were used by the ANN in combination with Mid(R-L)/FRONT

and Mid(R-L)/HIND, model accuracy did not improve except when PFz(LF) was used as well

(Table 4.4). However, when multiple input variables were used in combination with these two

variables, the accuracy improved slightly. The highest accuracy of 96.6% was obtained when

peak vertical forces of RF and RH, average falling slope of RF, and average rising slope
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of RH were used along with Mid(R-L)/FRONT and Mid(R-L)/HIND. When other single

variables were used in combination with these six variables, model accuracy decreased.

4.2 Selection of Preferred ANN Model and Sets of Input Variables

After the preliminary input variable analysis, limited input analysis was done for all the

ANN models and data configurations. Additional input analysis and testing on the other

data configuration was performed to determine if input variables found to be useful on one

set of dogs would generalize well on data from other dogs. Nine sets of input variables were

tested (Table 4.5).

4.2.1 ANN Model Comparison

Using the nine sets of input variables with Data Configuration 1, the ANNs differentiated

three classes of lameness 87.8% to 96.6% accurately (Table 4.5). Misclassification by BPNs

with one output node is shown in Table 4.6. Patterns from five out of seven dogs (Dogs H, I,

S, T, and U) in the evaluation data sets were misclassified using Input Sets 1–8. Most of the

misclassification came from LM2 patterns classified as either LM1 or LM3. Most of the LM2

patterns misclassified as LM1 came from six patterns of Dog U, five of which were obtained

on the same trial date. All of the LM2 patterns misclassified as LM3 came from particular

patterns of three dogs (Dogs S, T, and U). There were several LM3 patterns from two dogs

(Dogs H and I) misclassified as LM2. The weakest classification correspondence (i.e, LM1

patterns classified as LM3) came from the same gait attempt of a single dog (Dog U). Note

that patterns from only one dog were involved in misclassification using Input Sets 8 and 9.

Misclassification by BPNs with three output nodes is shown in Table 4.7. Patterns from

five out of seven dogs (Dogs G, H, I, T, and U) in the evaluation data sets were misclassified

using Input Sets 1–8. Most of the misclassification came from LM2 patterns classified as

either LM1 or LM3. All of the LM2 patterns misclassified as LM1 came from six patterns

of Dog U, five of which were obtained on the same trial date. All of the LM2 patterns
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misclassified as LM3 came from particular patterns of two dogs (Dogs U and T). There were

several LM3 patterns from three dogs (Dogs G, H, and I) misclassified as LM2. The weakest

classification correspondence (i.e, LM1 patterns classified as LM3) came from the same gait

attempt of a single dog (Dog U). Note that patterns from only one dog were involved in

misclassification using Input Sets 4–9.

Misclassification by PNNs is shown in Table 4.8. Patterns from five out of seven dogs

(Dogs H, I, S, T, and U) in the evaluation data sets were misclassified using the Input Sets

1–8. Most of the misclassification came from LM2 patterns classified as either LM1 or LM3.

All of the LM2 patterns misclassified as LM1 came from six patterns of Dog U, five of which

were obtained on the same trial date. All of the LM2 patterns misclassified as LM3 came from

particular patterns of three dogs (Dogs S, T, and U). There were several LM3 patterns from

two dogs (Dogs H and I) misclassified as LM2. The weakest classification correspondence

(i.e, LM3 patterns classified as LM1) came from particular patterns of two dogs (Dogs H

and I) when Input Sets 8–9 were used. In addition, the weakest classification correspondence

(i.e, LM1 patterns classified as LM3) came from the same gait attempt of a single dog (Dog

U). Note that two to four dogs were involved in misclassification using each input set.

The performance of all the models using Data Configuration 2 was slightly better than

their performance using Data Configuration 1. Using the nine sets of input variables with

Data Configuration 2, the ANNs differentiated three classes of lameness 97.5% to 100% accu-

rately (Table 4.5). BPNs differentiated three classes 100% accurately using several different

sets of input variables. PNNs did not perform as well as BPNs; however, they still classified

97.5–99.6% accurately.

Misclassification by BPNs with one output node is shown in Table 4.9. Using Input

Sets 4 and 5, the networks differentiated three classes of lameness 100% accurately. Using

the rest of the input sets, patterns from three out of seven dogs (Dogs A, B, and L) in

the evaluation data sets were misclassified. LM2 patterns misclassified as LM3 came from

particular patterns of two dogs (Dogs B and L), and LM3 patterns misclassified as LM2 were
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from patterns from a particular trial date of a single dog (Dog A). No more than one dog

was misclassified except when Input Set 2 was used. These BPNs differentiated normal and

abnormal gait 100% accurately because normal patterns (LM1) were never misclassified as

abnormal (LM2 or LM3) and abnormal patterns (LM2 or LM3) were never misclassified as

normal (LM1).

Misclassification by BPNs with three output nodes is shown in Table 4.10. Using Input

Sets 4–8, the networks differentiated three classes of lameness 100% accurately. Using the rest

of the input sets, patterns from three out of seven dogs (Dog A, B, and L) in the evaluation

data sets were misclassified. LM2 patterns misclassified as LM3 came from particular patterns

of two dogs (Dogs B and L), and LM3 patterns misclassified as LM2 were from patterns

from a particular trial date of a single dog (Dog A). No more than one dog was misclassified

except when Input Set 2 was used. These BPNs differentiated normal and abnormal gait

100% accurately because normal patterns (LM1) were never misclassified as abnormal (LM2

or LM3) and abnormal patterns (LM2 or LM3) were never misclassified as normal (LM1).

Misclassification by PNNs with three output nodes is shown in Table 4.11. Using any of

the Input Sets, the networks did not differentiate three classes of lameness 100% accurately.

Patterns from three out of seven dogs (Dogs A, B, and L) in the evaluation data sets were

misclassified. LM2 patterns misclassified as LM3 came from particular patterns of two dogs

(Dogs B and L), and LM3 patterns misclassified as LM2 were from patterns from a particular

trial date of a single dog (Dog A). Two dogs (Dogs A and L) were misclassified except when

Input Set 1 was used. These PNNs differentiated normal and abnormal gait 100% accurately

because normal patterns (LM1) were never misclassified as abnormal (LM2 or LM3) and

abnormal patterns (LM2 or LM3) were never misclassified as normal (LM1).

Comparing the three ANN models used indicates that BPNs with three output nodes

are preferable because BPNs with three output nodes consistently performed as well as or

better than BPNs with one output node and PNNs (Table 4.5). The exception was when

input variable sets 8 and 9 were presented to the network using Data Configuration 1. How-
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ever, the difference between BPNs with one output node and three output nodes was very

small. The highest accuracy that each model reached was the same using both data configu-

rations (Table 4.5). In addition, since most of the misclassification came from patterns from a

particular trial date for particular dogs regardless of the ANN model used, the classification

tendency of all three models was almost the same (Tables 4.6–4.11).

4.2.2 Preferred set of input variables

Except for PNNs developed using Data Configuration 2, better results were obtained using

both Mid(R-L)/FRONT and Mid(R-L)/HIND instead of using Mid(R-L)/FRONT alone

(Table 4.5). Comparing the nine sets of input variables used by BPNs with three output

nodes indicates that the combination of Mid(R-L)/FRONT, Mid(R-L)/HIND, and PFz(RH)

(Input Set 5) generalized well across different data configurations (Table 4.5 and Figure 4.1).

PNNs also performed best using Input Set 5 (Table 4.5 and Figure 4.2). BPNs with one

output node approximated the target values more closely using Input Set 8 (Table 4.5 and

Figure 4.3). However, using Input Set 8, BPNs with three output nodes, which were found

to be the most suitable ANN architecture in this study, did not perform as well as when

using Input Set 5 (Table 4.5). Input variables that affect the magnitude of Mid Point were

also found to be useful in several cases. These variables included the peak vertical forces of

individual limbs, the average falling slope of RF, the average rising slope of RH, and the

temporal components of vertical forces.

4.3 Selection of Preferred Number of BPN Hidden Nodes

Limited analysis of the preferred number of hidden nodes for BPNs was conducted using

Mid(R-L)/FRONT, Mid(R-L)/HIND, and PFz(RH). Comparing the preferred number of

hidden nodes for BPNs with one output node indicates that two hidden nodes are suitable

for this model (Figure 4.4). Comparing the preferred number of hidden nodes for BPNs with
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three output nodes indicates that with two or more hidden nodes, the networks accuracy

increased (Figure 4.5). With one input node, all the LM3 patterns were misclassified as LM2.

4.4 Preferred ANN Model and Set of Input Variables

Given the results presented above, BPNs with three output nodes and two hidden nodes

were found to be the most suitable ANN model. In addition, Mid(R-L)/FRONT, Mid(R-

L)/HIND, and PFz(RH) comprised the preferred set of input variables.
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Table 4.1: Overall Accuracy (%) Using a Conventional Single Input Variable, Data Config-
uration 1, Evaluation Data Set

Limbs
Input

RF RH LF LH RF-LF RH-LH

PFz 50.5 48.5 52.5 57.8 48.0 64.7
IFz 39.2 51.5 48.5 58.3 - -
TFz 54.1 47.1 48.5 54.9 - -
AveR 50.5 47.1 48.5 57.4 - -
AveF 57.4 51.0 45.1 57.8 - -
TotalT 39.7 48.0 49.0 48.5 - -
PFy-b 48.5 42.2 48.5 52.5 - -
IFy-b 48.5 48.5 48.5 53.9 - -
PFy-p 45.1 41.2 48.5 59.8 - -
IFy-p 45.6 47.6 48.5 56.9 - -
PFx 42.7 46.6 46.6 48.5 - -
TotalT-TFz 61.8 - 46.1 - - -
WB - - - 61.3 - -

Table 4.2: Overall Accuracy (%) Using a Single Input Variable Suggested in This Study,
Data Configuration 1, Evaluation Data Set

Normalized by
Peak Vertical Force of Mid(R) Mid(R-L)

— 56.9 55.4
FRONT 56.9 93.6
HIND 57.4 90.7
RF+LH 57.4 55.9
LF+RH 57.4 55.4
RIGHT 56.9 63.2
LEFT 57.8 90.7
RF+LF+LR 56.4 56.4
RR+LF+LR 55.9 56.9
RF+RR+LR 55.9 56.4
RF+RR+LF 55.4 56.9
ALL 56.4 63.7
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Table 4.3: Overall Accuracy (%) Using Combinations of the Three Best Single Input Vari-
ables, Data Configuration 1, Evaluation Data Set

Input

Mid(R-L) Mid(R-L) Mid(R-L)
/FRONT /HIND /LEFT OA

* 93.6
* 90.7

* 90.7

* * 95.6
* * 94.1

* * 88.7

* * * 92.7

* Input variables mapped by ANNs
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Table 4.4: Overall Accuracy (%) Using Mid(R-L)/FRONT, Mid(R-L)/HIND and
Other Variables, Data Configuration 1, Evaluation Data Set

Mid(R-L) PFz AveF AveR TotalT-TFz TFz

/FRONT /HIND (RF) (RH) (LF) (LH) (RF) (RH) (RF) (RR) OA

* * 95.6
* * * 95.1
* * * 92.7
* * * 96.1
* * * 87.8
* * * 94.6
* * * 95.6
* * * 94.6
* * * 95.6
* * * * 95.1
* * * * 94.6
* * * * 92.7
* * * * * 94.6
* * * * * 94.6
* * * * * 95.6
* * * * * 95.6
* * * * * * 96.6
* * * * * * * 96.1
* * * * * * * 96.1
* * * * * * * * 96.1

* Input variables mapped by ANNs
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Table 4.5: Overall Accuracy (%) Using Mid(R-L)/FRONT, Mid(R-L)/HIND and
Other Variables, Data Configurations 1 and 2, Evaluation Data Sets

Input Mid(R-L) Mid(R-L) PFz PFz PFz PFz AveF AveR TotalT-TFz TFz
Set /FRONT /HIND (RF) (RH) (LF) (LH) (RF) (RH) (RF) (RR)

1 *
2 *
3 * *
4 * * *
5 * * *
6 * * *
7 * * *
8 * * * * * *
9 * * * * * * * *

Data Configuration1 Data Configuration 2
Input Set BPN 1 BPN 3 PNN 3 BPN 1 BPN 3 PNN 3

1 93.6 95.6 93.6 99.6 99.6 99.6
2 90.7 94.1 93.1 97.5 97.5 97.5
3 95.6 95.6 95.6 99.6 99.6 98.3
4 95.1 95.6 94.6 100 100 98.7
5 92.7 96.6 96.1 100 100 98.7
6 96.1 96.1 96.1 99.6 100 98.3
7 87.8 96.6 94.1 99.6 100 98.3
8 96.6 95.6 94.6 99.6 100 98.3
9 96.1 94.6 95.1 99.6 100 98.3

* Input variables mapped by ANNs
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Table 4.6: Misclassification by BPN with One Output Node, Data Configuration 1, Evaluation Data Set

Dog U I H S T

Trial T
−1 T1 T9 T3 T6 T9 T12 T1 T1 T1 T3

Date

Actual LM1 LM2 LM2 LM2 LM2 LM3 LM2 LM3 LM2 LM2 LM2
Score

Input Misclassified as (Number of patterns)
Set

1 LM3(1)* LM1(1) LM3(3) LM1(5) LM3(3)
2 LM2(1) LM1(1) LM1(5) LM1(1) LM1(5) LM2(1) LM2(1) LM3(3) LM3(1)
3 LM2(1) LM1(1) LM1(5) LM2(1) LM2(1)
4 LM3(1) LM1(1) LM3(2) LM1(5) LM3(1)
5 LM3(1) LM1(1) LM3(3) LM1(5) LM3(3) LM3(2)
6 LM2(1) LM1(1) LM1(5) LM2(1)
7 LM2(1) LM1(1) LM3(4) LM1(5) LM1(2) LM2(1) LM1(2) LM3(4) LM3(3) LM3(2)
8 LM2(1) LM1(1) LM1(5)
9 LM3(1) LM1(1) LM3(1) LM1(5)

* Dog U LM1 pattern acquired on T
−1 misclassified as LM3
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Table 4.7: Misclassification by BPN with Three Output Nodes, Data Configuration 1, Evaluation Data Set

Dog U T H I G

Trial T
−1 T1 T9 T1 T1 T9 T6

Date

Actual LM1 LM2 LM2 LM2 LM3 LM3 LM3
Score

Input Misclassified as (Number of patterns)
Set

1 LM2(1)* LM1(1) LM1(5) LM2(1) LM2(1)
2 LM2(1) LM1(1) LM1(5) LM3(1) LM2(2) LM2(2)
3 LM2(1) LM1(1) LM1(5) LM2(1) LM2(1)
4 LM3(1) LM1(1) LM3(2) LM1(5)
5 LM2(1) LM1(1) LM1(5)
6 LM3(1) LM1(1) LM3(1) LM1(5)
7 LM3(1) LM1(5) LM3(1)
8 LM3(1) LM1(1) LM3(2) LM1(5)
9 LM3(1) LM1(1) LM3(4) LM1(5)

* Dog U LM1 pattern acquired on T
−1 misclassified as LM2
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Table 4.8: Misclassification by PNN, Data Configuration 1, Evaluation Data Set

Dog U S T H I

Trial T
−1 T1 T9 T1 T1 T1 T9

Date

Actual LM1 LM2 LM2 LM2 LM2 LM3 LM3
Score

Input Misclassified into (Number of patterns)
Set

1 LM3(1)* LM1(1) LM3(3) LM1(5) LM3(3)
2 LM2(1) LM1(1) LM1(5) LM3(3) LM2(2) LM2(2)
3 LM2(1) LM1(1) LM1(5) LM2(1) LM2(1)
4 LM2(1) LM1(1) LM1(5) LM3(2) LM2(1) LM2(1)
5 LM2(1) LM1(1) LM1(5) LM2(1)
6 LM2(1) LM1(1) LM1(5) LM2(1)
7 LM2(1) LM3(1) LM1(5) LM3(2) LM2(1) LM2(2)
8 LM3(1) LM1(2) LM3(1) LM1(5) LM1(1) LM1(1)
9 LM3(1) LM1(1) LM3(1) LM1(5) LM1(1) LM1(1)

* Dog U LM1 pattern acquired on T
−1 misclassified as LM3
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Table 4.9: Misclassification by BPN with One Output Node, Data Configuration 2,
Evaluation Data Set

Dog A B L

Trial Date T12 T3 T1

Actual Score LM3 LM2 LM2

Input Set Misclassified as
(Number of patterns)

1 LM3(1)
2 LM2(5)* LM3(1)
3 LM3(1)
4
5
6 LM3(1)
7 LM3(1)
8 LM3(1)
9 LM3(1)

* Dog A LM3 pattern acquired on
T12 misclassified as LM2
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Table 4.10: Misclassification by BPN with Three Output Nodes, Data Configuration 2,
Evaluation Data Set

Dog A B L

Trial Date T12 T3 T1

Actual Score LM3 LM2 LM2

Input Set Misclassified as
(Number of patterns)

1 LM3(1)
2 LM2(5)* LM3(1)
3 LM3(1)
4
5
6
7
8
9

* Dog A LM3 pattern acquired on
T12 misclassified as LM2
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Table 4.11: Misclassification by PNN, Data Configuration 2, Evaluation Data Set

Dog A B L

Trial Date T12 T3 T1

Actual Score LM3 LM2 LM2

Input Set Misclassified as
(Number of patterns)

1 LM3(1)
2 LM2(5)* LM3(1)
3 LM2(3) LM3(1)
4 LM2(2) LM3(1)
5 LM2(3) LM3(1)
6 LM2(3) LM3(1)
7 LM2(2) LM3(2)
8 LM2(2) LM3(2)
9 LM2(2) LM3(2)

* Dog A LM3 pattern acquired on
T12 misclassified as LM2
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Figure 4.1: BPN with Three Output Nodes Using Mid(R-L)/FRONT, Mid(R-L)/HIND,
and PFz(RH) (Data Configuration 1)



59Figure 4.2: PNN Using Mid(R-L)/FRONT, Mid(R-L)/HIND, and PFz(RH) (Data Configuration 1)
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Figure 4.3: BPN with One Output Node Using Mid(R-L)/FRONT, Mid(R-L)/HIND,
PFz(RF), PFz(RH), AveF(RF), and AveR(RH) (Data Configuration 1)



61Figure 4.4: Hidden Node Analysis (BPN with One Output Node)



62Figure 4.5: Hidden Node Analysis (BPN with Three Output Nodes)



Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary

ANNs were developed to map GRF variables to duplicate subjective diagnostic scores of

lameness. The data were gathered from clinically normal dogs that underwent left hind limb

cranial cruciate ligament transection, inducing osteoarthritis in the stifle joint. This study

focused on identifying single input variables that significantly influenced ANN performance

and finding the preferred ANN model and set of input variables. The three ANN models

considered were (a) BPN with one output node, (b) BPN with three output nodes, and (c)

PNN with three output nodes. The accuracy of the ANNs and input variables was tested on

two different data configurations, each of which never contained patterns from the same dog

in both model development and evaluation.

The three single input variables found to be useful in this study included the difference

between Mid Points of the non-injured and injured sides of the dog normalized by the sum of

the peak vertical forces of (a) the two front, (b) the two hind, or (c) the two left limbs. BPNs

with three output nodes were found to be the most accurate ANN models. The preferred

set of input variables for this model included the difference between Mid Points of the non-

injured and injured sides of the dog normalized by the sum of the peak vertical forces of (a)

the two front limbs and (b) the two hind limbs and the peak vertical force of the contralateral

limb (RH). Using the preferred set of input variables found in this study, BPNs with three

output nodes differentiated three classes of lameness with 96.6–100% accuracy. Including the

peak vertical forces of other individual limbs, average falling slope of the diagonal limb (RF),
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average rising slope of the contralateral limb (RH), and temporal variables associated with

vertical forces slightly increased the overall accuracy.

5.2 Conclusions

The results of this study suggest that ANNs provide a way to use canine GRF data to predict

subjective lameness scores. The results corroborate the findings of similar human and equine

gait studies discussed in Chapter 1. The results are promising, considering the small number

of patterns and dogs used for model development, the uneven number of training patterns

from each class, and the subjective target values. ANNs have been shown to generalize well

if there are more patterns for model development. In addition, it is ideal to have the same

number of patterns for each class for model development so that examples from each class

have nearly the same influence on the network (Smith, 1993). The results confirm that ANNs

work well with limited canine GRF data if appropriate input variables are used.

5.2.1 Significance

The results of this study indicate that computerized analysis of GRF data using ANNs

allows for more accurate diagnosis by detecting signs of lameness that could be missed by

GRF data analysis done by a clinician. GRF curves obtained from Dog A before the surgery

(assigned LM1 by a veterinarian) and GRF curves obtained from the same dog after the

surgery (assigned LM3 by a veterinarian) are superimposed for comparison in Figure 5.1.

The shape of the post-operative GRF curves are quite similar to those obtained before

the surgery. In addition, the peak vertical force of injured limb (LH) was higher than the

preoperative value. Furthermore, the peak vertical force of injured limb (LH) was higher than

the contralateral limb (RH) after the surgery. These findings contradict the findings of other

studies (DeCamp, 1997; Jevens et al. 1996; Rumph et al., 1995). As a result, there is a great

possibility that lameness revealed in the gait data could be missed by a clinician. However,

ANNs developed in this study successfully classified the post-operative pattern as LM3 using
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appropriate input variables. This finding demonstrates the benefit of computerized analysis

of GRF data: adding accuracy and consistency to clinical decision making.

Furthermore, the results of this study indicate that canine gait analysis and diagnosis

systems using ANNs could be both time efficient and cost effective. As Simon (2004) dis-

cussed, the clinical use of human gait analysis and diagnosis systems is most limited by

the time and cost required for gait testing and interpretation. Canine GRF data can be

readily obtained simply by trotting the dog on a force-plate. In addition, the results of this

study indicate that only a few gait attempts are required to obtain a fairly accurate diag-

nosis and that ANNs can instantaneously interpret data if successfully interfaced with data

acquisition software. Hence, canine gait analysis and diagnosis systems using ANNs could be

financially reimbursable. As a result, canine gait analysis and diagnosis systems using ANNs

are expected to be used extensively and have a significant clinical impact. The gait data used

in this study were obtained from dogs with artificially induced osteoarthritis for new drug

development research. Osteoarthritis is one of the most common causes of chronic pain in

dogs; around 20% of the canine population (10 to 12 million dogs in the United States alone)

is affected (Budsberg, 2004). Hence, computerized gait analysis systems that add accuracy,

consistency, and efficiency to pharmachological research could benefit a large percentage of

the canine population. In addition, these systems can be used in clinical decision support

to provide more appropriate treatment or provide more precise evaluation of surgical and

phamachological intervention.

5.2.2 Limitations of the Study and Possible Future Improvement

The limiting assumptions of this study are provided below with a view to future improvement.

First, BPNs were trained only once with random initial weights. Because BPNs learn in order

to minimize error from a particular place of the search space, they might find local optima

and leave global optima undiscovered. Hence, initial weights could be re-randomized and

BPNs could be re-trained to see if a global minimum error could be found.
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Second, vertical impulses of injured limbs were presented to the network; however, they

did not produce good results. If the Mid Point was higher than 33% of the peak vertical force

of the ipsilateral front limb, the impulses were attributed to the front limbs. In actuality, some

of the impulses should have been attributed to the hind limbs. Since the vertical impulses of

injured limbs were found to be useful in many previous studies (Budsberg, 2001; Budsberg et

al., 1988; DeCamp, 1997; Jevens et al., 1996; O’Connor et al., 1989; Rumph et al., 1995), the

method introduced by Lee et al. (2002) could be used to reconstruct the vertical impulses of

individual limbs.

Third, accuracy of each ANN model was analyzed individually. However, since all three

ANN models performed well, future researchers could develop ensembles that train individual

networks using the same data set and optimize by combining the results from each network.

In addition, ANNs with different architecture parameters such as initial weights, learning

rate, momentum, number of hidden nodes, and input variables could be trained in parallel

to obtain the final results. A detailed explanation of ensemble networks and their potential

can be found in Engelbrecht (2002).

Fourth, the input analysis was done by heuristic search using knowledge from previous

studies and biomechanical analysis of the canine gait. This process was time-consuming and

may have left other optimal combinations undiscovered. Hence, some other computational

means, such as genetic algorithms, could be tried to see whether there are other combinations

of variables that would work as well as or better than the combinations considered in this

study. In addition, while an individual input variable is interpretable, understanding why

one combination of input variables works better than another is difficult. More detailed

biomechanical analysis has to be done to obtain conclusive interpretation of the variables.

Fifth, ANNs only differentiated three broadly-defined classes of lameness. However, in real

practice, it would be useful to have a confidence factor or probability for each classification,

as in other Expert Systems in biomedicine. In addition, it would also be useful to find more

precise values, instead of only LM1, LM2, and LM3. One way to obtain these values is to
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convert the closeness of target value approximation. The other possible approach is to create

a neuro-fuzzy system. The major advantage of using a fuzzy system is that it quantifies

the degree to which gait data belongs to a certain lameness class. Fuzzy clustering methods

have been applied to gait data, and neuro-fuzzy systems have been developed for other

classification problems in biomedicine (Chau, 2001[a]; Hudson & Cohen, 2000; Lisboa, 2002;

O’Malley et al.,1997; Tan et al., 1999 and Teodorescu, 1999). O’Malley et al. (1997) applied

a fuzzy clustering technique to gait data collected from children with cerebral palsy in order

to measure gait changes after neuro-surgical and orthopedic operations. Tan et al. (1999)

also used a fuzzy clustering technique to differentiate the gait of Parkinson’s disease patients

from the gait of neurologically intact subjects.

Sixth, patterns that showed no weightbearing in the injured limb were not used. Hence,

accuracy of ANN models and input variables found to be preferable in this study have to be

further investigated with data sets that contain more patterns that show no weightbearing in

the injured limb. However, in a hybrid ANN Expert System, these patterns could be classified

as LM4 according to a simple rule: IF no weightbearing, THEN LM4. However if this rule

were used, precise values could not be obtained for gaits with lameness severity between LM3

and LM4. Hence, whether an ANN or another means is used to classify the non-weightbearing

patterns should be determined according to how the system will be applied.

Seventh, as Chau (2001 [b]) discussed, ANN-based research has more often been used for

human gait analysis than other methods. Chau attributed the infrequent use of gait analysis

systems in clinical practice to the black-box quality of ANNs, in spite of their accuracy. Hence,

it is necessary to find a way to incorporate Expert Systems that can provide explanations

to support the conclusions of ANNs.

Eighth, only similar-built dogs with osteoarthritis induced by CCLT were used. Previous

studies reported that peak vertical forces and impulses correlated with physical size of the

dog (DeCamp, 1997). Hence, it would be interesting to compare these results with the results

from various kinds and sizes of dogs with natural osteoarthritis.
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Finally, the subjective diagnostic score was provided by only one veterinarian. It would

be interesting see whether the preferred ANN model and set of input variables found in this

study would also be effective in mapping GRF data to subjective diagnostic scores given by

other veterinarians.
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