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Abstract

Collisions are very important in determining the abundances of the different species that exist

in our world. Atoms, molecules, ions, electrons and even photons, have their concentrations

dictated by the collisions they undergo. In this work, three types of collisions are studied.

The photodissociation, collision with photons, of cyanogen (CN) is studied in chapter 1.

Cross sections were computed for the 2Σ+(4)← X 2Σ+, 2Σ+(5)← X 2Σ+, 2Π(4)← X 2Σ+,

and 2Π(5) ← X 2Σ+ electronic transitions. Partial and LTE cross sections were evaluated

for all rovibrational levels (v′′N ′′) of the ground electronic state of CN, X 2Σ+, and over a

large wavelength range of astrophysical interest. The results will allow for the calculation

of reliable CN photodissociation rates for astrophysical environments with varying radiation

and dust properties. The rotational quenching of CO2 by collisions with He is the subject

of Chapters 3 and 4. CO2 was treated as a rigid rotor in the ground state. If CO2 is initially

in the rotational state specified by the rotational quantum number jo, cross sections for

transitions to all possible lower−j rotational states, for a wide range of relative collision

energy, were calculated. In Chapter 4, the emphasis is on rotational quenching of CO2

by collisions with He in the ultracold regime. Complex scattering lengths and elastic and



inelastic rotational quenching cross sections have been computed for carbon dioxide, with

rotational excitation j as high as 200, due to ultracold 4He collisions. It is predicted that the

ratio of the elastic to inelastic cross section, or figure-of-merit, is sufficiently large that highly

rotationally excited CO2 could be a viable candidate for cooling and trapping. In chapter 5,

new potential energy curves were used to calculate the cross section for excitation transfer

from the He(23S) atoms to the He(11S) gas, the diffusion of He(23S) atoms in He(11S) gas,

and the total elastic cross sections for the collision of He(11S) and He(23S) atoms. The

results were compared to published results and a good agreement is observed. The elastic

cross sections for the collision of He(11S) and He(33S) were calculated for the first time.

Index words: Born-Oppenheimer approximation, adiabatic basis, diabatic basis,
multichannel equations, close-coupling equations, coupled states
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Chapter 1

Introduction

Collisions between atoms, molecules, electrons, photons, and other particles have important

consequences that range from the blue color of the sky to the generation of x-ray emission.

They are also very important in the study and understanding of the interactions between

these quantum systems. Actually, analyzing the results of crossed beam scattering experi-

ments, is the most practical and dependable method for deducing the interaction potentials

between the colliding species. Spectroscopy can also provide parameters from which the

potentials can be calculated. However, crossed-beam experiments probe different regions of

the interaction potential. Experiments on macroscopic samples do not lead to the potentials

acting between the constituents except for rare and simple cases such as for inert gases where

the potential can be deduced from thermodynamic data. When the potentials are known,

then statistical mechanics can be used to calculate and derive the macroscopic properties of

the material.

In crossed-beam experiments, the scattered species are detected at different angles to the

incident beam. The density in these collision chambers is very low so single collision events

can be assumed. Scattering theory links the observations from these experiments, such as the

angular distribution of the particles after the collision, and the interactions responsible for
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the scattering. Quantum mechanics is the most appropriate framework to describe collisions

between quantum systems. Classical mechanics, on the other hand, is still used to provide

insights into the problem. Somewhere in between, the semi-classical treatment provides a

satisfactory and simplified theory.

Collisions involving exchange in momentum or translational energy only between the

colliding species are classified as elastic. Inelastic collisions, on the other hand, result in

a change in the internal state of the species involved. That is, an exchange between the

translational and rotational, vibrational or electronic energy occurs. A change in electronic

state implies an exchange of energy of the order of an electron volt, whereas a change in

the vibrational state needs energy of the order of a tenth of an eV. Rotational transitions

happen at only 0.01 of an eV. Reactive collisions result in atom rearrangement and/or the

production of new species.

1.1 Potential Energy Surfaces and the Born-Oppenheimer

Approximation

For a molecule, the Hamiltonian, in the center-of-mass system, can be written as:

H = Tn( ~Q) + Te(~q) + V (~q, ~Q), (1.1)

where T n and T e are the kinetic energy operators for the nuclear and the electronic motions,

respectively. That is,

Tn = −
∑
k

h̄2

2Mk

∇2
Q, (1.2a)

Te = −
∑
i

h̄2

2m
∇2
q, (1.2b)
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where m is the electronic mass and Mk is the mass of nucleus k. The position vector

of the electrons relative to the nuclear center of mass is ~q while ~Q refers to the nuclear

coordinates. The electrons are very light compared to the nuclei, hence they can be ignored

when calculating the center of mass for the system. As a result, the nuclear center of mass

is a good approximation to the total center of mass. The total wave function Ψ depends

on the electronic configuration as well as the nuclear coordinates. That is Ψ = Ψ(~q, ~Q).

Determining these wave functions and the corresponding energies is not easily achieved by

solving the multidimensional Schrödinger equation using the Hamiltonian in 1.1.

In the Born-Oppenheimer approximation, the electronic motion is separated from the

nuclear motion based on the assumption that the electrons, because of their much smaller

mass, move much faster than the nuclei. If the nuclei were clamped in fixed positions

denoted collectively by ~Qo, then the Hamiltonian in 1.1 will consist of the kinetic energy

of the electrons and the potential which depends parametrically on ~Q. In this case, the

Schrödinger equation can be written as:

[
Te(~q) + V (q,Qo)

]
φi(~q, ~Qo) = E ′i(Qo)φi(~q, ~Qo), (1.3)

where φi(~q, ~Qo) is the electronic wave function corresponding to energy eigenvalue E ′i. This

process can be repeated, and the above equation can be solved for the wave functions and the

energies at different nuclear configuration Qk, and hence with different potential V (q,Qk).

Now, the total wave function can be written as a product of these electronic wave functions

and a nuclear wave function χ as:

ψ(~q, ~Q) = χ( ~Q)φ(~q, ~Q). (1.4)
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Substituting ψ given by 1.4 and using the Hamiltonian given by 1.1:

Hχ( ~Q)φ(~q, ~Q) = Eχ( ~Q)φ(~q, ~Q)

=

[
Tn( ~Q) + Te(~q) + V (q,Q)

]
χ( ~Q)φ(~q, ~Q)

=

[
−
∑
k

h̄2

2Mk

∇2
Q + E ′( ~Q)

]
χ( ~Q)φ(~q, ~Q). (1.5)

Where the result from 1.3 was used. Now:

∇2
Qχ( ~Q)φ(~q, ~Q) = φ(~q, ~Q)∇2

Qχ( ~Q) + χ( ~Q)∇2
Qφ(~q, ~Q) +∇Qχ( ~Q) · ∇Qφ(~q, ~Q). (1.6)

In the Born-Oppenheimer approximation, all terms but the first in the equation above are

ignored [2]. The justification being, as mentioned before, that the electrons are much lighter

than the nuclei. Then, classically, their velocities are large compared to those of the nuclei.

As a result, the electronic wave functions change slowly with the nuclear coordinates hence

the respective derivatives can be ignored. Consequently, the electronic wave functions can

adjust themselves quasi-statistically in response to the nuclear motion. For this reason, these

wave functions are called adiabatic. So,

∇2
Qχ( ~Q)φ(~q, ~Q) ∼ φ(~q, ~Q)∇2

Qχ( ~Q). (1.7)

Substituting in 1.5 and rearranging yields:

[
−
∑
k

h̄2

2Mk

∇2
Q + E ′( ~Q)

]
χ( ~Q) = Eχ( ~Q). (1.8)

This is the Schrödinger equation for the nuclear wave functions. It shows that the nuclei

move in an effective potential, E ′, which is the energy eigenvalue, as a function of nuclear

coordinates, of a particular electronic configuration.
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1.2 Adiabatic vs. Diabatic Representation and the

Multichannel Equations

In scattering problems, 3N -3 coordinates are needed to describe the state of the system where

N is the number of colliding objects, whether they are molecules, atoms, electrons, . . . or

any combination. In the center-of-mass frame, the collision between two or more objects is

equivalent to the scattering of an object with mass µ from the interaction potential where

µ is the reduced mass of the system. It is customary and mathematically convenient to

separate the relative position, i. e. the position relative to the center-of-mass, vector, ~r,

from the internal coordinates, referred to collectively here as ~ρ. The Hamiltonian can then

be written as [3]:

H = Hint(~ρ)− h̄2

2µ
∇2
r + V (~r, ~ρ), (1.9)

where V (~r, ~ρ) is the interaction potential which vanishes, by definition, when the objects

under consideration are at infinite distance from each other. That is:

lim
r→∞

V (~r, ~ρ) = 0. (1.10)

The time independent Schrödinger equation:

HΨ(~r, ~ρ) = EΨ(~r, ~ρ), (1.11)

where E is the total energy of the system in the center-of-mass coordinates, can then be

solved utilizing different approximations. The two most important and frequently used will

be discussed here.
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The total wave function Ψ can be expanded in terms of the eigenstates of Hint, that is:

Ψ(~r, ~ρ) =
∑
j

ψj(~r)φj(~ρ), (1.12)

where

Hint(~ρ)φj(~ρ) = Ejφj(~ρ). (1.13)

Substituting in 1.9 and utilizing the orthonormality of φj(~ρ) yields

[
∇2
r + k2

i

]
ψi(~r) =

∑
j

Vij(~r)ψj(~r), (1.14)

where

k2
i = 2µ(E − Ei)/h̄2;

Vij(~r) = (2µ/h̄2)

∫
φ∗i (~ρ)V (~r, ~ρ)φj(~ρ) d~ρ. (1.15)

Alternatively, the total wave function can be expanded in terms of the eigenfunctions of

the full internal Hamiltonian at a given relative position, ~r. In this case:

Ψ(~r, ~ρ) =
∑
j

ψ̃j(~r)φ̃j(~r, ~ρ), (1.16)

where [
Hint(~ρ) + V (~r, ~ρ)

]
φ̃j(~r, ~ρ) = Ẽj(r)φ̃j(~r, ~ρ). (1.17)

φ̃j and Ẽj depend parametrically on ~r. Since the potential vanishes at infinite separation,
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then, as r →∞

φ̃j(~r, ~ρ) ∼ φj(~ρ) (1.18a)

Ẽj(r) ∼ Ej. (1.18b)

Using this expansion and utilizing the orthonormality of the eigenfunctions yields the equiv-

alent for 1.14: [
∇2
r + k2

i

]
ψ̃i(~r) =

∑
j

[
Rij(~r) · ∇r + Pij(~r)

]
ψ̃j(~r), (1.19)

where

k2
i (~r) = 2µ(E − Ẽi(~r))/h̄2;

Rij(~r) = −2

∫
φ̃i
∗
(~r, ~ρ)∇rφ̃j(~r, ~ρ) dρ = −2〈φ̃i | ∇r | φ̃j〉,

Pij(~r) = −
∫
φ̃i
∗
(~r, ~ρ)∇2

rφ̃j(~r, ~ρ) dρ = −〈φ̃i | ∇2
r | φ̃j〉. (1.20)

The basis φ̃j(~r, ~ρ) depend parametrically on the relative position ~r. They resemble the

adiabatic functions used in the Born-Oppenheimer approximation. Hence they are known

as the adiabatic basis. By comparison, the φj(~ρ) are known as the diabatic basis. Each of

equations 1.14 and 1.19, is a set of equations, one for each basis function or a channel. Hence

the name multichannel equations. In the diabatic representation, the channels are coupled

together by the off-diagonal elements of the interaction potential, whereas the coupling is

through the kinetic energy for the relative motion in the adiabatic representation. ki as

defined in 1.15 and 1.20 is the channel wave number. When E > Ei, the ith channel is said

to be open, because the molecule can emerge in that state after the interaction. Otherwise,

the channel is closed when the wave number is imaginary.

The diabatic and adiabatic bases form complete sets, so either one provides an exact
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representation of the wave function. However, in practice, a finite basis is used in the

expansions 1.12 and 1.16. The result is a finite number of multichannel equations called the

close-coupling equations. The choice of basis set depends on the problem to be solved. For

example, when the internal motion of the colliding partners can be assumed fast compared

to the relative motion, then the adiabatic representation is more appropriate to use. The

accuracy and the computation resources determine the number of basis functions to include.

In general, the adiabatic basis functions vary slowly with r hence, the kinetic energy coupling

terms in 1.19 are small. Therefore fewer terms are needed in the adiabatic representation

1.16 to achieve convergence. However, equation 1.17 must be solved for the relevant range

of r to obtain the adiabatic basis. This is not an easy task. As a result, most calculations

use the diabatic basis.

1.3 Scattering: a General Review

In general terms, the wave function of the system outside the scattering region, that is where

the interaction potential is effectively zero, can be written as a combination of the incident

wave function and the scattered wave function as follows:

Ψ(r, ρ)r→∞ ∼ φj(ρ)eikjz +
1

r

∑
j′

fjj′(Ω)φj′(ρ)eikj′r, (1.21)

where ρ stands collectively for all internal coordinates needed to describe the internal state

designated by φ. fjj′ is the scattering amplitude which depends on the scattering solid angle

Ω. If the scattering has cylindrical symmetry about the z-axis, as in the case of a central

force, the scattering amplitude is a function of the polar angle, θ, only. The cross section

for a system initially in state j to be scattered to state j′ is the ratio of the scattered flux to

8



that of the incident flux which translates to:

σjj′(Ω) =

(
kj′

kj

)
|fjj′ |2 (1.22)

An alternative, but related, description involves the scattering matrix S . The state of

the system before the collision, z → −∞, can be written in terms of the eigenfunctions φ(ρ)

as:

Φ(ρ) =
∑
j

cjφj(ρ), (1.23)

and after the collision, z →∞, it becomes

Φ
′
(ρ) =

∑
j

c′jφj(ρ). (1.24)

The S matrix is defined by

C′ = SC, (1.25)

where C and C’ are the column vectors of the coefficients before and after the collision

respectively. The S matrix is a function of the total energy and it depends on the system’s

total angular momentum J .

The probability is conserved, that is:

∑
j

|cj|2 = 1 =
∑
j

|c′j|2. (1.26)

9



Then

C′†C′ = (SC)†SC = 1,

C′†C′ = C†S†SC = 1,

=⇒ S†S = I or S† = S−1 (1.27)

where the (†) stands for the adjoint, transpose and complex conjugate, or hermitian conju-

gate. S is then a unitary matrix. |Sjj′|2 is the probability of transition between states j, and

j′. Time reversal shows that |Sjj′|2 is equal to |Sj′j|2. Hence, S is also a symmetric matrix.

Generally, the wave functions above are determined from solving coupled Schrödinger

equations. From these wave functions, the scattering matrix elements are determined which

are then used to calculate the cross section. For a given J ,

σJjj′(Ej) =
π

k2

∣∣∣∣δjj′ − SJjj′∣∣∣∣2. (1.28)

Then

σjj′(Ej) =
J=Jmax∑
J=Jmin

σJjj′(Ej). (1.29)

The rate coefficient for that transition can then be obtained by averaging over the range

of velocities available. Often a Maxwell-Boltzmann distribution is adopted so the rate coef-

ficient is given by:

rj→j′(T ) =

(
8kBT

πµ

)1/2
1

(kBT )2

∫ ∞
0

σjj′(Ej)e

(
−

Ej
kBT

)
Ej dEj, (1.30)

where kB is the Boltzmann constant and T is the kinetic temperature of the gas. The total

quenching rate coefficient is calculated by adding up contributions from all possible exit
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channels, so that:

rj =
∑
j′

rj→j′(T ). (1.31)

Behavior at Low Temperature and the Wigner Laws

If the interaction potential goes to zero as 1/r2+ε and ε > 0, then the energy dependence of

the cross section follows simple rules derived by Wigner [4]:

σnl→nl′ ∼ v2(l+l′)
n , (1.32a)

σnl→n′l′ ∼ v2l−1
n , (1.32b)

where vn is the relative velocity, l is the angular momentum of the collision, and n is a

collective index that describes the state. In our case, n is just the rotational quantum

number j. At cold temperatures or low collision energies, the scattering is dominated by

the s-wave, that is the l = 0 term. It follows then from the equations above that for elastic

scattering, i.e. n = n′ and l = l′, the cross section approaches a constant. However, for

the inelastic case, the cross section varies as the inverse velocity. This is known as Wigner

threshold behavior.

1.4 Photodissociation

Photodissociation is, as the name suggests, the fragmentation of molecules upon the absorp-

tion of photons. It is the first step in many chain reactions such as the ozone-oxygen cycle in

the atmosphere. Many chemical lasers achieve population inversion by photodissociation [5].

The iodine laser discovered by Kasper and Pimentel [6] is an example. Iodine is produced by

the photodissociation of CH3I. However, the populations of the two electronic states, 2P1/2

and 2P3/2, of the produced iodine are usually inverted. The laser subsequently operates on
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the 2P1/2 → 2P3/2 electronic transition. Photodissociation is the main process of destruc-

tion of molecules in regions such as diffuse and translucent interstellar clouds where intense

ultraviolet radiation exists [7]. In addition to the applications mentioned and on a more

fundamental level, photodissociation can be used to investigate molecular dynamics such as

the breaking and construction of bonds, internal energy transfer between the different modes

in a molecule, and radiationless transitions with precision. Bond breaking can be studied

experimentally using single quantum states. In such experiments, usually three lasers are

used [5]. One laser is used to prepare the molecule in the specific ro-vibrational state in the

ground electronic state. Absorbing radiation from another laser excites the molecule into

the continuum. A third laser is used to probe the products. Photodissociation energy can

be as small as several thousandths of an eV for van der Waals molecules bound by the weak

long-range forces. For chemically bound molecules, the photodissociation energy is typically

1− 10 eV.

Absorbing a photon causes a molecule to jump to an excited state constrained by angular

momentum selection rules and the wavelength of the photon. When in the excited state, the

molecule can follow different paths to dissociation. The rate of dissociation depends on the

cross sections for all these possibilities and on the intensity and shape of the radiation field.

Let AB be the parent molecule, then the photodissociation process can be written as [5]:

AB +Nphotonh̄ω → (AB)∗ → A(α) +B(β), (1.33)

where N is the number of photons absorbed, (AB)∗ is the excited complex, α and β rep-

resent the internal state of the fragments A and B respectively. The photodissociation is

described as direct when the molecule dissociates immediately after excitation. That is

the life time of the excited complex is very short compared to the vibrational period in

that bond. This happens when the energy surface of the excited state is repulsive along
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the coordinate associated with the bond. In this case, there are no potential barriers that

prevent the molecule from moving down the potential slope so to speak. If such a barrier

exists, then the molecule spends longer time in the excited state. It may subsequently dis-

sociate indirectly by electronic predissociation, vibrational predissociation or unimolecular

reactions [5]. Direct photodissociation can be treated by classical mechanics. However, a

full quantum-mechanical description is needed for the other types.

Photodissociation vs. Scattering

Following the notation in equation 1.33, if A and B were two entities prepared at a given

internal state at infinity, then upon collision or scattering, they form an excited complex

(AB)∗ which decays subsequently through the available channels, A(α) and B(β) in this

case. The second half of the dissociation process as in equation 1.33 is the same as the

second part of the full collision as described. Hence, photodissociation is sometimes called a

half-collision.

Total angular momentum, orbital plus rotational, is conserved during a collision or pho-

todissociation event. Calculating the cross section, in both cases, usually involves averaging

over total angular momentum states denoted by the quantum number J . Each state weighted

by (2J + 1). In collisions, a large number of J , called partial wave, is needed. In photodisso-

ciation, the available total angular momentum states are constrained by the dipole selection

rule:

∆J = Ji − Jf = 0 or ± 1. (1.34)

This reduces the number of total angular momentum states needed to be taken into account

in the case for photodissociation. This consequently reduces the numerical effort.

The total energy in photodissociation can be controlled by varying the wavelength of

the radiation used. This enables the detection of resonances and other structures in the
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spectrum. However, in case of collision between atoms or molecules, the total energy is not

easily controlled experimentally.

1.5 Molecules in the Interstellar Medium

Spectral analysis is an important tool in the study of the chemical and physical state of inter-

stellar clouds. Identifying the species is one piece of information extracted from such spectra.

On the other hand, knowledge of the abundances of these species, which are proportional

to the strengths of the spectral lines, are very important in understanding the environment

of interstellar clouds [8]. Abundances depend, among other factors, on the production and

destruction processes. Photodissociation is usually the dominant destruction mechanism for

most neutral molecules in diffuse and translucent clouds, photodissociation regions (PDRs),

x-ray dominated regions (XDRs), the surfaces of protoplanetary disks (PPDs), circumstellar

shells, and other UV-irradiated environments see, for example [9, 10]. In Chapter 2, the

photodissociation of CN is considered.

The dust particles in the dense clouds scatter and absorb most of the star light and render

the clouds invisible to the eye. As a result, molecular species are identified almost exclusively

from their rotational spectra. These transitions correspond to wavelengths of the order of

a millimeter which suffer negligible scattering or absorption by the grains. Also, millimeter

radiation is not attenuated by the Earth’s atmosphere. Moreover, the resolution of lines is

much better than for higher energy transitions. The gas density and temperature can be

derived from the relative intensities of the rotational emission lines. When the density is low

and collisions are rare, the populations of the rotational levels result from equilibrium with

the pervasive radiation field. However, when the density is high, collisions determine the

populations of the rotational levels. In this case, the temperature deduced from the relative

populations corresponds to the kinetic (or translational) temperature of the gas [11, 12]. An
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interesting case is that of the cyanogen molecule (CN). CN was among the first molecules

detected in the ISM by McKellar[13]. He estimated the excitation temperature of CN to

be 2.3 K. However, it was not explained [14] until the discovery of the cosmic microwave

background by Dicke et al. [15] and Penzias and Wilson [16, 17, 18] in 1965. Now, it

is accepted that the relative populations of the rotational levels of CN are the result of

radiative equilibrium with the CMB. Considering that the existence of CMB is an important

prediction of the Big Bang theory, the rotational spectra of molecules in space is a valuable

source of information.

The density divide between the radiative equilibrium regime and the collisional one is

not simple or unique for all molecules or even for all transitions of the same molecule.

However, it is possible to deduce a critical gas density at which the Einstein coefficient for

spontaneous emission is equal to the frequency of collisions that transfer the molecule to

different rotational levels. The frequency of collision is calculated from the rate coefficient

for that transition and the density of the gas. In Chapter 3, the rotational relaxation of CO2

resulting from collisions with He atoms is discussed and the rate coefficients are calculated.

A delicate balance between processes that destroy the molecules and those producing

them dictates the molecular abundances in different astronomical environments in which

these molecules exist. Many models to predict or produce the observed abundances of the

molecules exist. They consist of a large number of rate equations which are differential

equations that describe the change in concentration of any given species as a result of the

destructive and synthesizing processes. The rate coefficients, derived from the cross sections

are needed inputs to such models.
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Chapter 2

Photodissociation of Cyanogen1

In a study of translucent clouds, [19] found that the observed abundances of CN and C2

could not be reproduced by their models without significantly adjusting the photodissocia-

tion rates. In the former case, the photodissociation calculations of [1], obtained from the

ground rovibrational level of the electronic X 2Σ+ state, were adopted. Here we revisit the

photodissociation of CN by performing calculations over a large photon energy range and

from all ro-vibrational levels v′′N ′′,

CN(X 2Σ+, v′′, N ′′) + hν → C + N. (2.1)

Ab initio potentials and transition moment functions were adopted from [1], but adjusted and

extended as appropriate to known experimental and theoretical constraints. Cross sections

were computed for the 2Σ+(4) ← X 2Σ+, 2Σ+(5) ← X 2Σ+, 2Π(4) ← X 2Σ+, and 2Π(5) ←

X 2Σ+ electronic transitions. Atomic units are used throughout unless otherwise stated.

1Based on W. H. al-Qady & P. C. Stancil. Submitted to the Astrophys. J. (under review)
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2.1 Photodissociation Cross Sections

The partial photodissociation cross section for a transition from rovibrational state v′′N ′′ of

electronic state i to the continuum of electronic state f can be written as [7, 20]

σv′′N ′′ = 2.689× 10−18 ∆Ek′N ′,v′′N ′′
g

2N ′′ + 1

N ′′+1∑
N ′=N ′′−1

SN ′ |Dfi
k′N ′,v′′N ′′|2 cm2, (2.2)

where ∆Ek′N ′,v′′N ′′ is the energy of the photon absorbed in the transition, Dfi
k′N ′,v′′N ′′ is

the matrix element 〈χk′N ′(R)|Dfi(R)|χv′′N ′′(R)〉, of the electric dipole transition moment

responsible for absorption from the initial state i with wave function χv′′N ′′(R) into the

f electronic state, v is the vibrational quantum number, N is the angular momentum for

nuclear motion, and g is the molecular state degeneracy factor given by

g =
2− δ0,Λ′+Λ′′

2− δ0,Λ′′
. (2.3)

Here, we neglect spin-splitting in the electronic ground state and Λ-doubling in excited Π

states. The latter is accounted for through the factor g assuming the final Π continuum

states are degenerate.

The continuum wave functions χk′N ′(R) are normalized such that they behave asymp-

totically as

χk′N ′(R) ∼ sin(k′R− π

2
N ′ + δN ′), (2.4)

where δN ′ is the phase shift. The SN ′ ’s in equation (2.2) are the Hönl-London factors defined,

for a Σ← Σ transition as

SN ′(N ′′) =

 N ′′, N ′ = N ′′ − 1 (P branch)

N ′′ + 1, N ′ = N ′′ + 1 (R branch),
(2.5)
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and for a Π← Σ transition as

SN ′(N ′′) =


(N ′′ − 1)/2, N ′ = N ′′ − 1 (P branch)

(2N ′′ + 1)/2, N ′ = N ′′ (Q branch)

(N ′′ + 2)/2, N ′ = N ′′ + 1 (R branch),

(2.6)

according to the convention of [21].

Continuum wave functions χk′N ′ for the 2Σ+(4), 2Σ+(5), 2Π(4), and 2Π(5) states and

bound wave functions χv′′N ′′ for the X 2Σ+ state were obtained by solving the radial Schrödinger

equation using the Numerov method [22]. Wave functions were obtained on a grid with a

stepsize of 3× 10−4 ao over the internuclear distance range 0.5 ≤ R ≤ 200 ao.

2.2 Potential Energy and Dipole Transition Moment

Functions

Ab initio potential energies and dipole transition moments from [1] were used to calculate

the partial cross sections for CN presented in this work. They reported potential energies

for internuclear distances R = 1.90 ao to R = 3.70 ao. For R > 3.7 ao, the potentials were

extrapolated by fitting to the long-range interaction potential

V (R) = −C5

R5
− C6

R6 −Q2R4
(2.7)

[23]. The adopted values of the coefficients C5 and C6 are shown in Table 2.1. As we

are unaware of any previous van der Waals coefficient calculations for CN, we approximated

them following the procedures of [24] and [25]. C6 was estimated for X 2Σ+ using the London

formula and known ground state dipole polarizabilities of C and N. Estimates were made of

the excited state C and N polarizabilities considering only bound-bound atomic transitions
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and used to approximate C6 for the CN excited states. As the resulting C6 estimates are of

similar magnitude, the X 2Σ+ C6 was used for all molecular states. Q = 2.34 was estimated

for the ground state and the same value used for other states. The sign of the C5 coefficient

was then obtained following [25] with the magnitude computed by fitting the longest-range

potential data of [1], but keeping C6 and Q fixed. The estimated values of C6 can be

compared to 29.651 and 24.80 obtained for the X 1Σ+ and A 1Π states of CO, respectively

[26]. Further, C6 for the four lowest electronics states of C2, X 1Σ+
g (62.98), a 3Πu (61.54),

b 3Σ−g (60.28), and A 1Πu (61.54), are all very similar [27]. While for the C2 a
3Πu, [27]

estimated C5 = 13.5.

For R < 3.70 ao, the potential curves were fitted to the short-range interaction expo-

nential form A exp(−BR) + C. The complete X 2Σ+ potential was further forced to give

exact agreement with the experimental dissociation energy of 7.76 eV [28] by adjusting the

matching of the ab initio data to the long-range form relation (2.7). While no experimental

information is available for the excited states 2Σ+(4), 2Σ+(5), 2Π(4), and 2Π(5), their poten-

tials were shifted to match experimental asymptotic atomic energies [29] as given in Table 2.1

and shown in Figure 2.1. While this procedure results in some uncertainty, it ensures that

the photodissociation cross section thresholds from X 2Σ+ (v′′ = 0, N ′′ = 0) agree exactly

with available experimental data.

In a like manner, the transition dipole moment functions were extended beyond the ab

initio data given in [1] by fitting at long-range to the form A exp(−BR). At short-range the

fit was made to a quadratic which terminated at R = 0 to the transition dipole moments for

Al as given in Table 2.1.
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Table 2.1: Considered CN molecular states and asymptotic separated-atom and united-atom
limit properties. All data in atomic units unless otherwise indicated.

Molec. Separated-atom United-atom Al
State Atomic states Energy (eV)a C5

b C6
c State Dipole mom.d

X 2Σ+ C(2s22p2 3P ) + N(2s22p3 4S0) 0.00 0 30.84 3s23p 2P 0 -
2Π(4) C(2s22p2 3P ) + N(2s22p3 2P 0) 3.571935 -5 30.84 3s2(1S)nd 2D 1.6
2Σ+(4) C(2s22p2 1D) + N(2s22p3 2D0) 3.644021 50 30.84 3s24p 2P 0 0
2Π(5) C(2s22p2 1D) + N(2s22p3 2D0) 3.644021 14 30.84 3s25p 2P 0 0
2Σ+(5) C(2s22p2 1D) + N(2s22p3 2P 0) 4.835661 26 30.84 3s25s 2S 0.858

aExperimental data from [29].
bEstimated. See text for details.
cEstimated. See text for details.
dExperimental data from [29].

2.3 Results and Discussion

A sample of results for the partial cross sections σv′′N ′′ for transitions from different rovi-

brational levels of the X 2Σ+ electronic state are shown in Figures 2.2-2.5 2. Only the final

electronic states 2Σ+(4), 2Σ+(5), 2Π(4), and 2Π(5) were considered as transitions to low-lying

states are either dominated by bound-bound transitions or were found by [1] to give negli-

gible photodissociation cross sections. Figure 2.2 shows the results obtained for transitions

from the lowest rovibrational level v′′ = 0, N ′′ = 0 of the ground electronic state X 2Σ+

compared to the cross sections of [1], where the latter is a sum over all final states.

In agreement with [1], we find that the cross section at the longest wavelengths is domi-

nated by transition to the 2Π(5). However, correctly accounting for the separated-atom ener-

gies, we obtain the threshold for this transition at 1087 Å (11.4 eV) compared to∼ 1040 Å (12

eV) used by [1]. We also find a second strong resonance near 1030 Å due to a quasi-bound

state in the upper potential energy curve. The 2Π(4) has a longer wavelength threshold

(1094 Å or 11.3 eV), but its cross section near threshold is more than an order of magnitude

2Complete data for all computed photodissociation cross sections are available online at the UGA Molec-
ular Opacity Project database website, http://www.physast.uga.edu/ugamop/
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smaller as seen in the inset to Figure 2.2. For the 2Σ+(5) cross section, our results appear

to be smaller than predicted by [1] and shifted to shorter wavelengths, though it is not clear

from their summed cross section the contribution of individual components. The 2Σ+(4)

cross section is smaller than the cross section for the other transitions (except the 2Π(4)),

but it reaches a peak magnitude near 960 Å .

Overall the current CN cross section from the ground rovibrational level is about a factor

of two smaller than that obtained by [1], which may help to reduce the discrepancy for

the CN abundance in translucent molecular cloud models [19]. Further, the present cross

sections are highly oscillatory. This is to be expected as the reduced mass of CN is large and

the final continuum wave functions fluctuate rapidly as the repulsive walls of the potentials

are ascended.

Figures 2.3 and 2.4 show the partial cross sections for transitions from the vibrational

levels v′′ = 0 and v′′ = 20 with different N ′′ for 2Σ+(5) and 2Π(5), respectively. As N ′′ and/or

v′′ increases, the threshold wavelength increases as expected. For v′′ = 0, cross sections

generally become less oscillatory with increasing N ′′, while for v′′ = 20, the oscillations and

resonances are seen to persist. Partial cross sections for the transitions 2Σ+(5) ← X 2Σ+

and 2Π(5) ← X 2Σ+ for various v′′ with N ′′ = 0 are shown in Figure 2.5. As expected

the threshold shifts to longer wavelength as v′′ increases, but with the overall magnitude

decreasing. Similar trends are found for the other electronic transitions.
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Figure 2.1: Potential energy curves for the low-lying doublet electronic states of CN con-
sidered in this work which are dipole-connected to the X 2Σ+ ground state. The notation
follows that of [1].
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Figure 2.3: CN photodissociation partial cross sections as a function of wavelength for the
transition 2Σ+(5) ← X 2Σ+ from two vibrational levels with different rotational quantum
number N ′′ of the ground electronic state. (a) v′′ = 0. (b) v′′ = 20.
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Figure 2.4: CN photodissociation partial cross sections as a function of wavelength for the
transition 2Π(5) ← X 2Σ+ from two vibrational levels with different rotational quantum
number N ′′ of the ground electronic state. (a) v′′ = 0. (b) v′′ = 20
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Figure 2.5: CN photodissociation partial cross sections as a function of wavelength for the
transition from different vibrational levels v′′ with the rotational quantum number N ′′ = 0
of the ground electronic state. (a) 2Σ+(5)← X 2Σ+. (b) 2Π(5)← X 2Σ+.
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2.4 Astrophysical Applications

In nearly all environments, except dense regions, the abundances of atoms and molecules

are limited by efficient photo-destruction reactions due to the local radiation field. However,

photo-destruction rates are dependent not only on the properties of the affected species (via

the cross section), but also on local conditions including the intensity and wavelength depen-

dence of the radiation field. The radiation field is attenuated with depth into a cloud due to

wavelength-dependent absorption by the dominant atoms (H), molecules (H2 and possibly

CO), and grains. While this is a very complicated problem, the issue has been addressed, in

large part, in a pragmatic fashion in most astrochemical models. The majority of astrochem-

ical models include photo-destruction through pre-computed exponentially-attenuated fitted

photo-rates which can, for example, be found in such databases as UMIST [30]. The photo-

rates are given as a function of visual extinction Av and have primarily been taken from

the calculations/compilations of [31] and [32]. These calculations were performed for plane-

parallel clouds illuminated by an average interstellar radiation field including UV radiation

attenuation due to scattering and absorption by dust grains. The grain model assumed the

average interstellar graphite-silicate grain mixture of [33] with the grain optical properties

taken from [34]. The adoption of these pre-computed photorates have allowed for significant

advancement in modeling by considerably reducing the problem to the solution of coupled

rate equations. However, quoting [32] “Our results apply strictly to the ‘average cloud’ in

a region of the diffuse interstellar medium where RV =3.1.” This is in contrast, for example,

to the average value of RV = 4.05 with a scatter of ±0.8 deduced in starburst galaxies by

[35] or the translucent sight lines sampled in interstellar C II absorption by [36] with STIS

where RV ranged from 2.6 to 5.1. Examples of where dust grains are not even present or are

significantly underabundant include grain disruption in C-shocks with speeds as low as 50

km/s, J-shocks, and the inner regions of the protoplanetary disks or PPDs. The adoption of
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pre-computed photo-rates may therefore lead to significant uncertainties in molecular abun-

dances in astrochemical models. It is therefore important to return to the computation of

the environment-independent property, the photodissociation cross section as obtained here.

Since the important study of molecular optical absorption lines in translucent molecular

clouds by [19], a large number of investigations have probed numerous sight lines with HST,

FUSE, IUE, and VLT UVES. These observations have detected absorption due to CN as well

as H2, CO, CH, C2, etc., [?, e.g.,]]son07, in our galaxy, in the Magellenic Clouds [37], and

beyond. These molecular observations have given new insights into the origin and evolution

of a range of astronomical environments. CN itself was apparently first observed in the

interstellar medium by [38], but the literature is too vast to be adequately addressed here

[?, see]for some recent discussions]lis01,lea04. Instead, we discuss three environments where

the new CN photodissociation cross sections may have an impact. Due to the various local

conditions, photodissociation rates are not provided.

Diffuse and Transluscent Clouds. It is well known that photodissociation due to the inter-

stellar radiation field is a dominant molecular destruction process in diffuse and transluscent

clouds. However, extensive observational evidence points to a wide variation in grain prop-

erties [?, eg.,]]sof05. In fact, the earlier study of [19] found that the observed abundances

of CN and C2 could not be reproduced by their models without significantly adjusting the

photodissociation rate. They concluded that either the shape of the UV radiation field was

not correct, pointing to variations in dust properties, or that the photodissociation cross sec-

tions are unreliable. Further, they performed a parameter study of photo-rates in translucent

clouds by adopting various grain models and found that the photodissociation rate for C2

varied by as much as 2 dex while that for CN had an even larger variation. The finding

here that the CN photodissociation cross sections are at least a factor of two smaller than

previously given may help to alleviate part of the discrepancy.

Starburst Galaxies. [35] has reviewed the state of knowledge of the dust opacity in
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nearby galaxies. The existing evidence suggests that the dust content of galaxies depend on

the morphology, luminosity, and activity level. She deduced for starbursts the average value

of RV = 4.05±0.8 - far different than the value of 3.1 adopted in the photo-rate calculations

of [32]. A large number of molecules are detected in starbursts. For example, [39] observed

CN as well as HCN, C2H, and HOC+ in the nucleus of M82. The molecules are believed

to be formed in a giant PDR with a radiation field of 104 Habing units, but PDR models

under-predict the abundances of these molecules by a factor of 10. It is then often argued

that the molecule abundances can be increased in the models by assuming an enhanced

cosmic-ray ionization rate or shocks. However, since the primary destruction process for the

neutrals is photodissociation the adoption of pre-computed photo-rates can possibly account

for this discrepancy.

Protoplanetary Disks and Circumstellar Shells. A large number of molecules have been

observed in the circumstellar shells of asymptotic giant branch (AGB) stars. In particular,

refractory molecules have been detected in the well-studied AGB circumstellar environment

toward IRC+10216. It was shown by Glassgold and co-workers that the gas-phase chemistry

in circumstellar shells is driven by photoprocesssing of “parent” molecules in the inner enve-

lope. However, nearly all models treat photodissociation with pre-computed exponentially-

attenuated photo-rates except, for example, those of [40] and [41]. Given that the dust

properties and abundances and the radiation field are significantly different from the typi-

cal interstellar case [?, see, for example]]van06, accurate molecular abundances can only be

obtained if local photorates are self-consistently computed. In recent studies of the photo-

chemistry in PPDs, [42] found that the abundances of many molecules, including CN, are

sensitive to the adopted photorate, while [43] demonstrated that dust evolution (growth and

sedimentation) affect the photorates for important molecules including CN and CS.

In the inner regions of PPDs, as well as in planetary and stellar atmospheres, the gas

density may exceed the critical density for most rovibrational levels. In such situations,
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the level populations can be described by a Boltzmann distribution depending on the gas

temperature. The photodissociation cross section can then be obtained, in the so-called local

thermodynamic equilibrium (LTE) assumption, by summing over all rovibrationally-resolved

cross sections weighted by the LTE population of the levels [?, see for example]]miy11.

LTE cross sections for all four considered CN electronic transitions have been obtained for

temperatures between 500 and 5000 K, with some examples given in Fig. 2.6. The LTE cross

sections for 500 K, which are very similar to the cross section from the ground rovibrational

level (v′′ = 0, N ′′ = 0), are shown in Fig. 2.6a to lie at wavelengths shortward of Lyα and

generally reaching their maximum values, except for the 2Σ+(5) ← X 2Σ+ transition, just

longward of the Lyman limit. As pointed out by [19], the photodissociation rate of CN is

very sensitive to the adopted extinction curve which may vary significantly in this wavelength

region. Blackbody radiation intensity curves are also shown for comparison where it is seen

that for a gas temperature of 500 K, the CN photodissociation rate will be inefficient for

effective stellar temperatures less than 10,000 K, typical of T Tauri stars in circumstellar

disks. However, efficient CN photodissociation may result for larger radiation temperatures,

but still be negligible for Lyα radiation. Fig. 2.6b displays the LTE cross sections for 3000 K,

which is the gas temperature on the disk surface in the PPD models of [44]. As the gas

temperature increases, the LTE cross sections shift towards longer wavelengths possibly

enhancing the photodissociation rate in most radiation fields. Interesting, a strong resonance

develops near Lyα for the 2Π(4)← X 2Σ+ transition.
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Figure 2.6: CN LTE photodissociation cross sections as a function of wavelength for the
transitions 2Σ+(4) ← X 2Σ+, 2Σ+(5) ← X 2Σ+, 2Π(4) ← X 2Σ+, and 2Π(5) ← X 2Σ+. (a)
500 K. (b) 3000 K. The dotted curves are for blackbody radiation at the indicated radiation
temperatures.
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Conclusions

Using a combination of theoretical and experimental data, potential energies and dipole

transition moments were constructed and used to perform comprehensive cross section cal-

culations for the photodissociation of CN through the 2Σ+(4) ← X 2Σ+, 2Σ+(5) ← X 2Σ+,

2Π(4) ← X 2Σ+, and 2Π(5) ← X 2Σ+ transitions. The partial and LTE cross sections were

evaluated for all rovibrational levels (v′′N ′′) of the ground electronic state of CN, X 2Σ+, and

over a large wavelength range of astrophysical interest. The results will allow for the cal-

culation of reliable CN photodissociation rates for astrophysical environments with varying

radiation and dust properties. Further improvements in the CN photodissociation cross sec-

tions can be made with refinements in the potential energy and transition moment function

calculations.
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Chapter 3

Rotational Relaxation of Carbon

Dioxide by Collisions with Helium

Atoms1

Solid CO2 in interstellar medium, toward several protostars, was first reported in 1989 by [45].

They detected a strong absorption feature at 15.2 µm in the database of the Low Resolution

Spectra (LRS) on board the Infrared Astronomical Satellite, IRAS, for three sources: AFGL

961 in the Rosette Nebula, AFGL 989 in the Cone Nebula, and AFGL 890. This is associated

with the, ν2, bending mode of the CO2 ice. They also showed that the abundance of solid

CO2 is almost the same as that for solid CO. In 1996, analyzing data from the Short

Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO), [46],

reported the detection of solid CO2 through both its bending and asymmetric stretching,

ν3 = 4.27 µm, modes. The SWS uses a grating of resolving power, λ/∆λ, ∼ 2000. They

detected the solid CO2 in five infrared sources known as: GL 2591, GL 2136, GL 4176, NGC

7538 IRS9, and Sgr A*. The first four are young stars, while the fifth is a Galactic Center.

1Based on ’ Rotational Relaxation of CO2 by Collisions with He Atoms’, in preparation
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They reported a relative abundance of CO2 to H2O of ∼ 15%. In the same year and using

data from the same source, [47], reported detecting gas-phase CO2, alongside the solid CO2,

in the spectra of the four young stars mentioned earlier. They reported the abundance of gas-

phase CO2 to be less than 5% of that of the solid CO2 . According to the the same reference,

the gas-phase CO2 abundance is only ∼ 2 × 10−7 relative to H2. CO2 does not possess a

dipole moment. As a result, it can not be detected through millimeter rotational spectra

from Earth. Moreover, carbon dioxide is abundant in the Earth’s atmosphere. Consequently,

detecting its vibrational lines, associated with the bending and stretching modes, must be

done from outer space. The technology and the resources to carry spectrometers on satellites

was not available until recently. Under conditions in most molecular clouds, molecules exist

in their lowest electronic and vibrational state. Moreover, just a few rotational levels are

populated. Radiative and collisional transitions between these rotational levels occur with

comparable frequency [48]. These transitions determine the level population, and hence the

intensity of the observed lines. Radiative and collisional transitions follow different rules. As

a result, the rotational levels are not in ’local thermodynamic equilibrium’ with either the

radiation field or the kinetic temperature [48]. Rates for the radiative transitions are known,

however those in the collisional case are not.

In this chapter, the rotational quenching of CO2 by collisions with He is examined. As

99% of the atoms in the universe are hydrogen and helium, and H2 is almost 5 times more

abundant than He, these two species are frequently used as collision partners. However,

collisions with He are in principle easier to treat as helium is an atom whereas H2 is a

molecule. Also, the difference between the two processes, collision with He or H2, might be

insignificant to a first approximation [49].

In this study, carbon dioxide is treated as a rigid linear rotor. For an initial rotational

state designated by the quantum number, j, the quenching cross sections, to the state j′,

resulting from collisions with He atoms were calculated.
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3.1 The Multichannel and the Close-coupled Equations

The quantum mechanical treatment of the scattering by a rigid rotor was first formulated by

Arthurs and Dalgarno [50] and a detailed account can be found in many books, for example,

[51], [52], [53] and [54]. Figure 3.1 illustrates the coordinates relevant to this collision in a

space-fixed, SF, coordinate system whose origin is the center of mass of the rotor. Following

the discussion in section 1.2, in the center-of-mass frame, the collision between the helium

atom and the carbon dioxide molecule is equivalent to the scattering of a particle with mass

µ from the interaction potential where µ is the reduced mass of the He−CO2 complex. The

internal hamiltonian is just the rotational energy of the rotor, Hrot. It is a function of the

polar and azimuthal angles, α and β respectively, of the intermolecular axis. The interaction

potential is a function of the angle, γ, between the position vector ~r and the intermolecular

axis. It also depends on the distance r and it approaches zero as r approaches infinity. γ

and r are sometimes called the ‘Jacobi coordinates’.
 

x 

r y 

z 

γ 

O 

He 

Rotor 

Figure 3.1: Space-fixed, SF, coordinate system for the collision between a He atom and the
CO2 rigid rotor.

The hamiltonian for this system is then,

H = Hrot(α, β)− h̄2

2µ
∇2(~r) + V (r, γ), (3.1)
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If I is the moment of inertia of the rotor, then the hamiltonian for its rotational motion is:

Hrot = − h̄
2

2I

[
1

sinα

∂

∂α

(
sinα

∂

∂α

)
+

1

sin2 α

∂2

∂β2

]
,

Hrot =
ĵ2

2I
, (3.2)

where ĵ is the rotational angular momentum operator. The eigenfunctions of Hrot are then

the spherical harmonic functions, Yjmj
(α, β), where j is the rotational angular momentum

quantum number of the rotor and m is its projection on the SF z-axis. The eigenvalues of

Hrot are:

Ej = j(j + 1)
h̄2

2I
= j(j + 1)Bj, Bj =

h̄2

2I
, and j = 0, 1, 2, . . . (3.3)

The kinetic energy of the relative motion, the second term in equation 3.1, can be sep-

arated into an angular part and a translational contribution. The angular part represents

the orbital kinetic energy of the helium atom around the center-of-mass of CO2. It is a

function of θ and φ, the polar and azimuthal angles, respectively, of the position vector ~r.

This orbital hamiltonian is identical to Hrot in equation 3.2 with α and β replaced by θ and

φ respectively. Hence, the spherical harmonic functions: Ylm(θ, φ) are the eigenfunctions

for the orbital hamiltonian with eigenvalues l(l + 1)h̄2/2µ where l is the orbital quantum

number. The hamiltonian in equation 3.1 can then be written as:

H =
ĵ2

2I
+

L̂2

2µr2
− h̄2

2µr

∂2

∂r2
r + V (r, γ). (3.4)

The spherical harmonic functions constitute a complete orthogonal set, or a basis, so the

total wave function can be expanded as:

Ψ(α, β, θ, φ, r) =
1

r

∑
l,m,j,mj

Ylm(θ, φ)Yjmj
(α, β)ψlmjmj

(r). (3.5)
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ψlmjmj
(r) is an unknown radial function.

Substituting Ψ as given above in the Schrödinger equation with the hamiltonian in equa-

tion 3.4, and applying the orthogonality of the spherical harmonics yields a system of equa-

tions, the multichannel equations, which the radial functions ψlmjmj
(r) must satisfy.

[
d2

dr2
− l(l + 1)

r2
+ k2

j

]
ψlmjmj

(r) =
2µ

h̄2

∑
l′j′

Vljl′j′(r)ψl′mj′mj′
(3.6)

where

k2
j = 2µ(E − Ej)/h̄2;

Vljl′j′(r) =

∫
Y ∗l′m′(θ, φ)Y ∗j′m′

j
(α, β)V Ylm(θ, φ)Yjmj

(α, β) dα dβ dθ dφ. (3.7)

Ψ as given above is an eigenfunction of ĵ2, l̂2, ĵz, and l̂z, but it is not an eigenfunction of

the total angular momentum Ĵ2 or it projection on the z-axis, Ĵz. As a result, the potential

matrix elements Vljl′j′ defined above will couple terms that differ in one or more of the

four angular momenta quantum numbers producing a large number of coupled equations

that need to be solved simultaneously. Symmetry properties can be utilized to reduce the

number of coupled equations.

An important symmetry is the invariance of the Hamiltonian under a rotation of the

coordinate system. The leads to the important law of conservation of the total angular

momentum, J=j+l , of the system. Eigenfunctions of Ĵ2 can be constructed according to:

Y JM
lj (θ, φ, α, β) =

∑
m,mj

CJM
lmjmj

Ylm(θ, φ)Yjmj
(α, β)

J = l + j, l + j − 1, ....|l − j|,

M = m+mj. (3.8)
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CJM
lmjmj

are the Clebsch−Gordan coefficients. They are related to Wigner 3j-symbol as:

CJM
lmjmj

= (−1)j−l+M(2J + 1)
1
2

 j l J

mj m −M

 (3.9)

The resulting wave function is then:

Ψ =
1

r

∑
JMlj

Y JM
lj (θ, φ, α, β)ψJMljj(r) (3.10)

Using this Ψ in the Schrödinger equation, then multiplying by the complex conjugate of

Y JM
lj and integrating over all coordinates except r yields the multichannel equations:

[
d2

dr2
− l(l + 1)

r2
+ k2

j

]
ψJMlj(r) =

2µ

h̄2

∑
l′j′

V JM
ljl′j′ψJMl′j′(r), (3.11)

Here, the potential matrix is block diagonal in J as the collision can not cause a change in

the total angular momentum. For each value of J , there are 2J + 1 possible values for M .

This produces 2J + 1 blocks of coupled equations for each J . Each block corresponds to

one value of M and can be solved independently. As resources needed to solve a system of

N coupled equations increases as N3, the result is considerable savings. The functions in

equation 3.8 are also eigenfunctions of the parity operator. They have definite parity, odd

or even, under inversion of the coordinates of all particles in the origin of the SF coordinate

system. If P̂ is the parity operator, then:

P̂ Y JM
lj (θ, φ, α, β) = Y JM

lj (π − θ, π + φ, π − α, π + β)

= (−1)j+lY JM
lj (θ, φ, α, β). (3.12)

The right hand side of equation 3.11 can be simplified by expanding the potential in
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angular functions as:

V (r, γ) =
∞∑
λ=0

vλ(r)Pλ(cos γ), (3.13)

where Pλ are the Legendre polynomials. The potential matrix elements can then be written

as:

V JM
ljl′j′ =

∑
λ

vλ(r)〈jlJM |Pλ(cos γ)|j′l′JM〉. (3.14)

The Symmetry of the carbon dioxide means the potential is invariant when the two oxygen

atoms are exchanged. A property shared with homonuclear diatomic molecules. In this case,

it is required that:

Pλ(cos γ) = Pλ(cos(π − γ)) = Pλ(− cos γ). (3.15)

Consequently, λ must be even.

The addition theorem for spherical harmonics can be used to write the legendre polyno-

mials in terms of α, β, θ, and φ since

Pλ(cos γ) =
4π

2λ+ 1

λ∑
ν=−λ

Yλν(α, β)Y ∗λν(θ, φ). (3.16)

The integrals in equation 3.14 can then be evaluated so that the potential matrix elements

are given by:

〈jlJM |Pλ(cos γ)|j′l′JM〉 =
∑
λ

vλ(r)fλ(jl, j
′l′; J), (3.17)

where fλ(jl, j
′l′; J) are often called the ‘Percival-Seaton coefficients’ as they were first intro-

duced by [55]. They are given by:

fλ(jl, j
′l′; J) = (−1)j+j

′−J [(2j + 1)(2l + 1)(2j′ + 1)(2l′ + 1)]
1
2

(2λ+ 1)
Cjj′λ

000 C
ll′λ
000W (jlj′l′; Jλ).

(3.18)
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W (jlj′l′; Jλ) are the Racah coefficients. They are related to the 6j−symbol of Wigner as

W (jlj′l′; Jλ) = (−1)j+l+j
′+l′

j l J

l′ j′ λ

 (3.19)

The Clebsch−Gordan coefficient, Cjj′λ
000 , vanishes except when ‘j+j′+λ′ is even. Similarly,

‘l + l′ + λ′, must be even. In this case, one can write:

(−1)j+j
′+λ+l+l′+λ = +1

= (−1)j+j
′+l+l′ , any λ

= (−1)j+l(−1)j
′+l′

Hence (−1)j+l = (−1)j
′+l′ (3.20)

However, (−1)j+l, defines the parity of the eigenfunctions of Ĵ , equation 3.12, and hence

that of Ψ. The parity then is conserved and transitions occur between states with the same

parity.

The symmetry of CO2 requires λ to be even as explained above. Also, j+ j′+λ must be

even. Then j and j′ should both be even or odd and transitions between odd−j and even−j

levels do not occur. Hence, the allowed transitions are only those for which ∆j is even. This

separates each block of coupled equations, with the same J , into two groups: one for even j

and the other for odd j. Also, from these two Clebsch−Gordan, and that λ must be even,

the relation between λ, j, j′, l, and l′ is given by

λ =

 j + j′, j + j′ − 2, ..., |j − j′|+ 1 or|j − j′|;

l + l′, l + l′ − 2, ..., |l − l′|+ 1 or|l − l′|.
(3.21)

When λ = 0 then j′ = j and l′ = l. In this case, in the interaction potential expansion in
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equation 3.13, P0(cos γ) = 1 and v0(r) contributes to elastic scattering of the He atom from

the CO2 molecule. Potential terms with λ ≥ 2 can produce transitions between different

rotational levels according to the triangular inequalities: |j − j′| ≤ λ ≤ j + j′. That is

λ ≥ ∆j. Higher values of λ can produce larger transitions ∆j. However, the magnitudes

of the coefficients, vλ(r) decrease as λ increases. Hence, the probability for transitions with

high ∆j becomes smaller.

The Multichannel Equations in The Body-Fixed, BF, Frame

The multichannel equations for the collision of an atom and a rigid rotor were derived in a

body-fixed frame [56] and it is mentioned here without much detail just for completeness.

The origin of the coordinate system is still the center-of-mass. However, the z-axis coincides

with the position vector of the atom ~r in figure 3.1. Thus, the z-axis in the BF frame rotates

as the collision progresses. The interaction potential is easier to describe, in this frame, as

it depends on r and γ. The rotation of the frame, on the other hand, introduces Coriolis

forces that need to be addressed. A discussion of the advantages of both the SF and the BF

coordinates can be found in [57].

3.2 The Cross Section for Rotational Transitions of a

Rigid Rotor

In principle, the wave function can be expanded in an infinite number of basis states. In

practice, the sum has to be truncated at a finite number N resulting in N coupled mul-

tichannel equation called the close-coupled equations. The only variable in equations 3.11

is r. They are solved by numerical integration outwards from r = 0, or sufficiently small

that the interaction potential is highly repulsive and the wavefunctions for all the channels,
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ψJMl′j′(r), are nearly zero. The integration should be carried out to a value of r where

the potential matrix elements, V JM
ljl′j′ , are negligible and equations 3.11 take the free particle

form: [
d2

dr2
− l(l + 1)

r2
+ k2

j

]
ψJMlj(r) = 0. (3.22)

The general solution to these equations is

ψj(r) = Aje
ikjr +Bje

−ikjr, (3.23)

where Aj and Bj are called Jost functions and kj =
√

2µ(E − Ej)/h̄2 are the channel wave

numbers. Ej is the energy of the internal state designated by the quantum number j. In

our case, the internal states are the rotational states of the rigid rotor. If E < Ej then the

channel with energy Ej is closed because the system can not emerge in this state after the

collision without violating conservation of energy. On the other hand, if E > Ej then the

channel is open and accessible. If the rotor was initially in state j and j′ is its final state

after the collision, then the solutions given in equation 3.23 should satisfy the asymptotic

form:

ψj′(r) ∼ δjj′e
−ikjr − Sj′j

(
kj
kj′

) 1
2

eikj′r (3.24)

Imposing the asymptotic form in 3.24 on the solutions in equation 3.23 relates the Jost

functions to the scattering matrix elements Sij. The scattering amplitude is then [50],

f(jmjj
′mj′ ; θ, φ) =

∑
J

∑
l

∑
l′

∑
m′

[
(2l + 1)π

kjkj′

]1/2

il−l
′+1C

Jmj

l0jmj
C
Jmj

l′m′j′mj′
[SJj′l′jl−δll′δjj′ ]Yl′m′(θ, φ),

(3.25)

and the differential cross-section is:

σ(jmjj
′mj′ ; θ, φ) =

(
kj′

kj

)
|f(jmjj

′mj′ ; θ, φ)|2. (3.26)
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The total cross-section is obtained by integrating the differential cross-section over θ and φ.

This yields

σ(jj′) = π(2j + 1)−1k−2
j

∞∑
j=0

∑
l

∑
l′

(2J + 1)|SJjlj′l′ − δjj′δll′ |2 (3.27)

3.3 Calculating the Cross Sections

The close-coupling equations for an atom-rigid rotor system 3.11 were solved using the poten-

tial energy surface for the He-CO2 complex calculated by Ran and Xie [58]. Computations

were carried out using the non-reactive molecular scattering package, MOLSCAT [59]. A

hybrid log-derivative/Airy propagator [60] was used to solve the close-coupling equations.

The modified log-derivative propagator of Manolopoulos [61] and [62] was used from rmin,

the minimum value of r, to an intermediate value rmid just past the classical turning point.

The Airy propagator was then used up to the maximum distance rmax. The rotational basis

for CO2 included all open channels and a few closed channels determined by convergence

tests. The reduced mass of the He−CO2 complex used was 3.66878 amu. The energies for

the CO2 rotational levels corresponding to j = 0 up to j = 42 are shown in Table 3.1.

Symmetry Considerations

CO2 is a boson since the nuclei have zero spin. In this case, to satisfy Pauli exclusion

principle, the total wave function must be symmetric upon exchange of the equivalent nuclei.

Carbon dioxide is linear in the ground state and exists in a 1Σ+ molecular state. The

electronic wave function for the 1Σ+ is symmetric. The total wave function can be written

as a product of electronic, vibrational, rotational and nuclear wave function. The vibrational

wave function is symmetric since it depends on the absolute difference in the coordinates of

the atoms. Since the nuclear wave function is symmetric for bosons, the symmetry of the

total wave function depends on that of the rotational wave function. As discussed earlier,
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Table 3.1: Rotational Levels of CO2

level energy (cm−1) j level energy (cm−1) j
1 0.0000000 0 22 180.2527216 21
2 0.7804375 1 23 197.4166793 22
3 2.3413092 2 24 215.3602649 23
4 4.6826088 3 25 234.0834048 24
5 7.8043267 4 26 253.5860223 25
6 11.7064500 5 27 273.8680374 26
7 16.3889628 6 28 294.9293668 27
8 21.8518459 7 29 316.7699243 28
9 28.0950769 8 30 339.3896201 29

10 35.1186301 9 31 362.7883615 30
11 42.9224768 10 32 386.9660526 31
12 51.5065850 11 33 411.9225941 32
13 60.8709195 12 34 437.6578836 33
14 71.0154419 13 35 464.1718155 34
15 81.9401106 14 36 491.4642812 35
16 93.6448808 15 37 519.5351685 36
17 106.1297045 16 38 548.3843622 37
18 119.3945304 17 39 578.0117441 38
19 133.4393044 18 40 608.4171924 39
20 148.2639686 19 41 639.6005825 40
21 163.8684624 20 42 671.5617863 41

43 704.3006727 42

for a rigid rotor, the symmetry of the rotational wave function is (−1)j. As a result, only

even−j rotational levels in the ground vibrational state of CO2 are occupied.

The Log Derivative Method

The close-coupled equations are linear with the general form:

ψ
′′
(r) = F(r)ψ(r), (3.28)
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where F is a symmetric matrix. If all the eigenvalues of F are negative, then the region is

classically allowed for all channels. In this case, integration can be carried out without prob-

lems using the Numerov method [22]. On the other hand, if one or more of the eigenvalues

of F is positive, some of the components of ψ increase exponentially as r increases [52]. This

makes integrating equation 3.28 difficult. The log derivative method is then better suited to

carry out the integration.

The log derivative of ψ is defined as,

X = ψ
′
ψ−1. (3.29)

The derivative of which is given by:

X′ = ψ”ψ−1 − ψ′
ψ−1ψ

′
ψ−1. (3.30)

The second-order equations can then be transformed to the first-order non-linear equations

X′ = F−X2 (3.31)

Johnson [62] derived an algorithm to integrate this equation.

3.4 Results: Cross Sections and Rate Coefficients

Figures 3.2-3.5 show results for the quenching of CO2 rotational states designated by j =10,

20, 30, and 40 to all possible lower energy states j′. The top figure shows the state-to-state

cross sections, while the figures at the bottom show the corresponding rate coefficient. The

cross sections have similar features in general. They are dominated by the ∆j = j ′− j = −2

transition. That is, transitions to the next immediate lower state have the largest probability
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while transitions to states with lower j′, that is ∆j= -4, -6,... have smaller cross sections.

The cross sections for a given transition generally decrease with increasing collision energy.

In other words, the cross sections follow the exponential energy-gap law [63] in which the

probability for energy transfer decreases exponentially with the final kinetic energy available

in the collision. The lines also do not cross. Resonance features are absent in accordance

with an earlier study [64]. An increase in the cross sections, though, can be seen at about 30

cm−1 for j=10. A more pronounced increase can be seen at around 100 cm−1 for the j=20,

30, and 40. In the limit as the collision’s energy approaches zero, where the s-wave scattering

is dominant, the cross sections vary as ∼ v−1 in agreement with the Wigner threshold laws

[4].

The rate coefficients were obtained by averaging the cross sections over the Maxwell-

Boltzmann distribution of relative velocities. The results show the state-to-state rate coef-

ficient. They tend to a constant at very low temperature in agreement with the expected

Wigner threshold behavior. However, the rate coefficient increases rapidly at ∼ 10 to ∼

500 K before approaching a constant in the limit of high temperature considered here. This

behavior is more pronounced the higher the initial rotational state, j, of the CO2 molecule.
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Figure 3.2: CO2 quenching, from j=10 to all possible j′, due to collisions with He. Top:
State-to-state cross sections. Bottom: State-to-state rate coefficients as a function of tem-
perature.
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Conclusions

The rotational quenching of CO2 by collisions with He was studied. CO2 was treated as

a rigid rotor in the first ground state. If CO2 is initially in the rotational state specified

by the rotational quantum number jo, cross sections for transitions to all possible lower−j

rotational states, for a wide range of relative collision energy, were calculated based on the

theoretical frame work of [50]. Cross sections for transitions to higher−j rotational states can

be obtained through detailed-balance. Cross sections are dominated by the ∆j = j′ − j =

−2 transition. They follow the exponential energy-gap law [63], and they agree with the

Wigner threshold laws [4]. Resonance features are absent in accordance with an earlier

study [64]. State-to-state rate coefficients were calculated. The rate coefficient behavior is
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more pronounced for transitions with large ∆j. They increase steadily for low temperature,

but sharply in the high temperature limit as such transitions become more probable. Rate

coefficients for the ∆j = j′ − j = −2 transition are almost constant.
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Chapter 4

Quenching of Rotationally Excited

CO2 at Ultra Cold Temperatures1

4.1 Introduction

The cooling and trapping of molecules produces unique environments that can be used to

study molecular interactions at very low and even ultracold temperatures. The availability

of such cold molecular systems can be used to investigate a variety of phenomena including

fundamental constant variation, quantum computing algorithms, strongly-correlated systems

[65, 66], inelastic collisions, cold chemistry [67, 68], and a host of other forefront areas

in contemporary physics [69]. A variety of approaches have been developed to produce

translationally cold molecules [70], but a major workhorse is the helium-buffer gas method,

where the molecules are slowed down through elastic collisions with cryogenically cold He

atoms [71].

Over the past decade, there has been an increasing interest in generating molecules in

high rotational levels, so-called super rotors [72, 73, 74]. An interesting aspect of super rotors

1Based on W. H. al-Qady, R. C. Forrey, B. H. Yang, P. C. Stancil and N. Balakrishnan, Phys. Rev. A 81,
014701 (2011). Copyright (2011) by the American Physical Society. Reprinted with permission of publisher.
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is their prospect for unique properties at very low temperature. Forrey [75, 76] proposed that

super rotors could be translationally cooled and trapped, as ultracold molecular rotational

quenching rates generally decrease with increasing rotational excitation. If rovibrational

quenching is also small, as is often the case for specific rotational levels at temperatures

accessible to helium buffer-gas methods, then the super rotors would be stable against col-

lision. Here, we demonstrate the feasibility of producing cold super rotors by exploring the

dependence of scattering properties with rotational excitation for inelastic He-CO2 interac-

tions.

4.2 The Complex Scattering Length

At very low energies, the scattering is dominated by the s-wave (l = 0 ) term. In this regime,

the scattering can be described by the complex scattering length, a = α−iβ [77]. β is derived

from the inelastic cross section [78] and gives a measure of the total decay probability of an

internal excited state. For an initial state with vibrational and rotational quantum numbers

v and j , the imaginary part of the scattering length βvj in the limit of zero initial kinetic

energy is given by

βvj = kσin
vj/4π, (4.1)

where k is the initial wave vector and σin
vj the sum of the inelastic cross sections of all open

channels [78]. In the limit k → 0 , the relation between the elastic cross section σel
vj and the

complex scattering length avj is given by [78]

σel
vj = 4π(α2

vj + β2
vj) = 4π|avj|2, (4.2)
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from which the magnitude of the real part of the scattering length is given by

|αvj| =
√
σel
vj/4π − β2

vj, (4.3)

while the sign of αvj is determined from the sign of the phase shift. Application of the

complex scattering length formalism to low-lying rotational levels of the He-CO2 system,

and other linear and non-linear molecules, was given in [79].

4.3 Results and Discussion

In Figure 4.1, the real part, α, and the imaginary part, β of the scattering lengths for the

ultracold collision energy of 10−6 cm−1 are presented. Results are shown for the CC and

CS methods as the CS approximation is more computationally efficient for larger j . As β

depends only on the inelastic cross sections, it is a measure of the quenching of j . Similarly,

an increase in α, indicates an increase in the elastic scattering. For j ≤16, β is larger than

α indicating that rotational quenching will be very efficient. As j increases, α increases

rapidly plateauing for j ∼> 120 . On the other hand, β decreases slowly with j , but then

drops relatively rapidly for j ∼> 80 . This trend is alternatively shown in Figure 4.2 for the

ratio β/α where it is noted that the differences between results obtained with the CC and

CS methods are largely removed.

In cooling and trapping experiments, inelastic quenching cross sections need to be small

compared to the elastic cross sections to avoid trap loss. A figure-of-merit for the ability to

trap a species is given by the ratio of the elastic to inelastic cross sections, σel/σin, which is

related to the components of the complex scattering length by

σel

σin
=
k(α2 + β2)

β
. (4.4)
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Figure 4.1: Real and imaginary parts, α and β, respectively, of the scattering length as a
function of the rotational level j . All calculations were performed at 10−6 cm−1.

In the limit of α >> β, as shown for large j in Figures 4.1 and 4.2,

σel

σin
≈ α

β
kα. (4.5)

In the zero-temperature limit, α and β are constant for a given j , hence their utility. As the

energy (or k) increases, but still within the Wigner regime, the figure-of-merit improves as it

is approximately proportional to k . As an illustration, we show in Figure 4.3 the elastic and

inelastic quenching cross sections, but for the slightly higher energy of 10−4 cm−1. Trends

similar to the scattering lengths are evident. The ratio β/α (not shown) is nearly identical
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Figure 4.2: Ratio of the imaginary part β to the real part α of the scattering length for 4He
collisions with CO2 as a function of the rotational level j . All calculations were performed
at 10−6 cm−1.

to that given in Figure 4.2. For large j , rotational quenching is dominated by ∆j = −2

transitions, which becomes a factor of ∼5 smaller than the elastic cross section for j = 200 .

The gas temperatures for He buffer-gas cooling are typically beyond the range of the

Wigner regime so that equations (4.4) and (4.5) are no longer valid. As the collision energy

increases to the He buffer-gas region, the number of required partial waves also increases.

The computational time for scattering calculations within the CS approximation scales as

∝ j4
max/2 per partial wave, where jmax is the largest rotational state included in the basis. At

the present, computations of elastic and quenching cross sections up to 1000 cm−1 have only

been completed for j = 40. For example, the total number of partial waves needed to secure
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Figure 4.3: Elastic and final-state j ′ resolved cross sections as a function of initial rotational
level j for a collision energy of 10−4 cm−1 obtained with the CS approximation for 4He-CO2.

convergence for j = 40 at a collision energy of 1000 cm−1 was 50. We therefore estimate by

extrapolation that the figure-of-merit will be large for He-CO2(j = 200) at 0.5 K.

To illustrate this, the elastic and total inelastic cross sections for j = 10, 20, 24, 30, and

40 are shown in Figure 4.4 from 10−2 to 10 cm−1. The typical Wigner threshold behavior of

the cross sections are clearly evident at low energy. The cross sections typically depart from

the Wigner regime near the collision energy where the total inelastic cross section is equal to

that of the elastic cross section. Figure 4.5 shows that the crossing energy is a monotonically

decreasing function of j. By j = 70, the crossing energy is significantly smaller than the

He cryogenic temperature. A simple extrapolation of Figure 4.5 suggests that the crossing
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energy will be smaller than 10−3 cm−1 for j ∼ 200.
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Figure 4.4: Elastic cross section and total inelastic cross section as a function of energy for
He collisions with CO2 and various j.

The ratio of the elastic to total inelastic cross section, or figure of merit, is displayed in

Figure 4.6 for various collision temperatures in the cold regime as a function of j . The ratio

is seen to increase with j and with temperature up to 1 K. Simple extrapolation to j ∼ 200

suggests a figure of merit of ∼10, which is encouraging for possible cooling and trapping

experiments, if such highly excited states could be created.

To create super rotors, Karczmarek et al. [72] proposed that two circularly-polarized

laser fields could be used to spin diatoms up to very high rotational levels. This so-called

optical centrifuge approach was experimentally demonstrated for Cl2 by Villeneuve et al. [74],

reaching a maximum rotational angular momentum of j ∼ 420. Preliminary experiments on
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Figure 4.5: The energy where the elastic cross section is equal to the total inelastic cross
section as a function of the rotational level j.

O2 and CS2 gave similar results [74]. The original experiments were done in a supersonic

molecular beam containing the molecules to be spun-up. If a surface was inserted into the

beam just downstream from the laser, the super rotors would hit the surface with the jet’s

velocity, which would be about 700 m/s [80].

A related proposal was given by Li et al. [73], but unlike the work of Refs. [72, 74]

which results in a distribution of rotational levels, their scheme would produce molecules in

a single, selected j level. Numerical simulations found that Li2 could be excited to j > 115

[73]. Following on earlier studies of CO2 collisions with highly vibrationally excited azulene

[81], Mullin et al. [82] applied the optical centrifuge approach to room-temperature CO2
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temperatures as a function of j.

obtaining excitations to j ∼ 200.

The experiments described above produce molecular super rotors that are also transla-

tionally hot. These molecules are generally extremely fragile against collisions due to efficient

quasiresonant vibration-rotation (QRVR) energy transfer. If the super rotors are produced

from a translationally cold gas, however, the QRVR transitions are energetically closed and

the molecules are stable against collision [75, 76].

Merging these two concepts, we propose a scheme to produce rotationally hot, but trans-

lationally cold molecules which could be readily realized for the explicit case of carbon dioxide

by combining an optical centrifuge in a helium buffer-gas cell. A possible scheme would be:
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i) Introduce room-temperature CO2 into the gas cell with cryogenic 4He or 3He. CO2 would

be rapidly translationally cooled through elastic collisions and rotationally cooled to j = 0

via inelastic collisions (see Fig. 4.4, for example). ii) With ultrafast laser pulses, spin-up the

molecules to high rotational levels. Elastic collisions with He would maintain low transla-

tional energies for the high j levels, while a limited fraction would be lost due to inefficient

inelastic collisions. iii) Both He and CO2 would then be allowed to exit the cell via a small

hole [83], creating a beam of CO2 super rotors that is considerably slower than what would

be produced by a supersonic jet. These super rotors would be much less fragile against

collision due to the closed QRVR transitions. The rotational level distribution of the beam

would be highly stable as CO2 lacks a dipole moment.

An optical centrifuge generally produces a range of j and mj in accordance with Raman

selection rules. If the molecules are initially in the j = 0 state, then the distribution of super

rotors would include only even j and mj. Further selection of mj levels could be obtained

through magnetic Feshbach tuning of β before ejection of the beam. A variety of novel

low temperature experiments could then be envisioned including collisions with electrons,

photons, atoms, molecules, and surfaces which may reveal unique properties (see also [74]).

While Li et al. did mention the possibility of using cold molecules in their super rotor

scheme, we demonstrate with accurate scattering calculations the feasibility of our approach

here with current available technology.

Finally, the scheme could be extended to highly vibrationally excited states for specific

rotational levels which allow QRVR transitions at normal temperatures, but are energetically

closed as the temperature is lowered to that in the He buffer gas cell. The availability

of downward vibrational transitions generally increases the rotational state selectivity of

collisionally-stable super rotors.
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Conclusions

Complex scattering lengths and elastic and inelastic rotational quenching cross sections have

been computed for carbon dioxide, with rotational excitation j as high as 200, due to ul-

tracold 4He collisions. It is predicted that the ratio of the elastic to inelastic cross section,

or figure-of-merit, is sufficiently large that highly rotationally excited CO2 could be a viable

candidate for cooling and trapping. A novel experiment combining a He buffer gas cell with

an optical centrifuge is proposed as a means of producing rotationally hot, but translation-

ally cold CO2. A high-flux beam of cold CO2 super rotors could be created and used for a

variety of scattering experiments.
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Chapter 5

Dynamics of Excited Helium

Scattering by Helium

5.1 Introduction

Collisions between electronically excited atoms and molecules are important in the study

of energy transfer mechanisms in shock waves, explosions, and electrical discharge among

others. In this case, a transfer of excitation from one system to the other is possible. That

is: A∗ +B → A+B∗.

For a given species, when excited atoms are scattered by ground state atoms of the same

species, the excitation transfer does not result in a change in the relative energy, so it is

elastic in this sence. However, since the internal states of the two colliding systems were

exchanged, i.e., A+A∗ → A∗+A, it is not pure elastic. It is called exact-resonance excitation

transfer collision.

Helium has received special interest. Most monatomic gases will condense before reaching

low enough temperatures for quantal effects to manifest, however, these effects are obvious

on the diffusion and viscosity of helium at temperature below 50o K.
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5.2 Collisions between Metastable Helium Atoms and

Normal Helium Atoms

In collisions between similar atoms, attention must be given to the fact that the nuclei

are identical. When excited helium atoms are scattered by their normal counterparts, for

example, it is impossible to distinguish between the excited atoms in the original beam and

the excited atoms resulting from resonant excitation transfer. As a result, the cross section

for a given direction is the sum of the cross section in that direction and the cross section in

the opposite direction. The quantum treatment for such collisions was developed by Massey

and Smith [84]. It was applied to the case of helium, collisions between metastable and

normal atoms, by Buckingham and Dalgarno [85, 86].

For slow collisions where the relative velocity is much smaller than the orbital velocity

of the electrons, the total wave function, in the adiabatic representation, equation 1.16, can

be written as:

Ψ(~r, ~ρ) =
∑
j

ψj(~r)χ(s1, s2)φj(~r, ~ρ), (5.1)

where the nuclear spin function χ(s1, s2) was added. The subscripts 1 and 2 stand for the

two atoms involved.

To solve the scattering problem with Ψ as given above, the radial nuclear function is

expanded in terms of partial waves as

ψj(~r) =
∞∑
l=0

il(2l + 1)ζl(r)Pl(r̂ · k̂). (5.2)

Since the 4He nuclei have zero spin, Pauli principle requires the total wave function to be

symmetric with respect to interchange of the nuclei, ~r1 ⇀↽ ~r2. This is equivalent to ~r ⇀↽ −~r.
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Under this transformation, the legendre polynomials Pl behave as

Pl(r̂ · k̂) = (−1)lPl(−r̂ · k̂). (5.3)

ψj(~r) can then be written as the sum of an even part, e, and an odd part, o [87] as

ψj(~r) = ψej (~r) + ψoj (~r) (5.4)

=
∑
l=even

il(2l + 1)ζl(r)Pl(r̂ · k̂) +
∑
l=odd

il(2l + 1)ζl(r)Pl(r̂ · k̂).

For the case of collision between two helium atoms, one in its ground state, He(11S),

and the other in the first excited state, He∗(1s2s, 23S)

He(11S) +He∗(1s2s, 23S)→ He∗(1s2s, 23S) +He(11S). (5.5)

The molecule He2 can form in the Σ+
g or the Σ+

u state with equal probabilities. The electronic

wave function is symmetric for the gerade, g, state when ~ρ ⇀↽ −~ρ. φj(~r, ~ρ) is not symmetric

for the ungerade, u, state. However, upon nuclear inversion

φj(~r, xi, yi, zi) = φj(~r,−xi, yi,−zi), (5.6)

where the z − axis were taken along the nuclear axis. Reflection of the coordinates for

all electrons in a plane containing the internuclear axis, leaves the electronic wave function

unchanged for the Σ+ states. For the Σ− states, the effect is multiplying φ by −1. This

property, combined with equation 5.6 makes the electronic wave function symmetric upon

inversion of nuclei for the Σ+
g , and Σ−u states, but antisymmetric for the Σ−g , and Σ+

u states.
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The total, symmetric, wave function can then be written as:

Ψ(~r, ~ρ) = ψg(~r)φg(~r, ~ρ) + ψu(~r)φu(~r, ~ρ), (5.7)

where φg(~r, ~ρ) and φu(~r, ~ρ) are the wave functions associated with Σ+
g and Σ−u states respec-

tively.

The scattering problem is solved with the asymptotic form of Ψ as a boundary condition.

The nuclear wave function in the asymptotic region is:

ψg(~r)→r→∞

[
eikz +

eikr

r
f g
]
, (5.8)

where eikz represents the incident plane wave, and f g is the scattering amplitude given by

f g =
1

2ik

∑
l=even

(2l + 1)(e2iδl−1)Pl(cos θ), (5.9)

where δl is the phase shift. For ψu(~r), the sum is over the odd partial waves and the

corresponding scattering amplitude is fu.

According to Massey and Smith [84], for bosons, the scattered amplitude is:

f(θ) =
1

2

[
fg(θ) + fg(π − θ) + fu(θ)− fu(π − θ)

]
. (5.10)

Since fg(θ) and fu(θ) are significant only for small angles θ, fg,u(θ) and fg,u(π − θ) do not

overlap. The scattered intensity of the excited atoms per unit solid angle is then:

|f(θ)|2 =
1

4

[
|fg(θ) + fu(θ)|2 + |fg(π − θ)− fu(π − θ)|2

]
. (5.11)

The first term is due to direct elastic scattering of the excited atoms, while the second is

related to elastic scattering with excitation transfer. There is no significant direct elastic
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scattering at large angles except near resonance. Consequently, excited atoms scattered at

large angles are ground state atoms which become excited by the collision.

Buckingham and Dalgarno [85, 86] derived the following expressions for the total elastic

cross section, the diffusion and the excitation transfer cross section for the process in 5.5.

σtot = 2π

∫ π

0

|f(θ)|2 sin θ dθ,

=
4π

k2

∑
l

(2l + 1) sin2 δl. (5.12)

Diffusion is reduced by backward scattering, that is collisions through an angle θ ' 180o.

Hence, the diffusion cross section is defined as

σd = 2π

∫ π

0

(1− cos θ)|f(θ)|2 sin θ dθ,

=
4π

k2

∑
l

(l + 1) sin2(δl+1 − δl). (5.13)

and

σtr =
π

2

∫ π

0

|fg(θ)− fu(θ)|2 sin θ dθ,

=
π

k2

∑
l

(2l + 1) sin2(δgl − δ
u
l ). (5.14)

where k2 = 2µE, and δl is equal to the phase shift associated with the g state when l is even

and for odd partial waves, it is equal to the phase shift associated with the u state.
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The Potential Energy Surface

New potential energy curves of He2 prepared by Buenker et al. [88] were used. These curves

are shown in figure 5.1. The potential energy was calculated using the multi-reference single-

and double-excitation configuration interaction (MRD-CI) method [89, 90]. Self-consistent

field (SCF) calculation were utilized to obtain orthonormal basis set of molecular orbits.

Those, in turn, were used to construct the many-electron functions which are the basis set

for the MRD-CI calculations for both ground and excited electronic states.

The equilibrium separation for the He2 molecule is around ∼ 2ao. In the metastable

state, c3Σ+
g has an attractive well ∼ 0.627 eV deep, and a repulsive hump of ∼ 0.289 eV at

a nuclear separation of ∼ 3.6ao. The a3Σ+
u state, on the other hand, has a deeper well of

∼ 1.979 eV. It also has a repulsive barrier, shown in the inset of figure 5.1, at ∼ 5.2ao. It is

∼ 6.46× 10−2 eV high. In the n = 3 manifold, the 3Σ+
g has a well of depth ∼ 1.457 eV and

a barrier ∼ 6.79 × 10−2 eV high at ∼ 4.8ao. The 3Σ+
u state is purely attractive with a well

∼ 2.192 eV deep. All the 3P states in the n = 2 manifold have repulsive barriers except for

the b3Πg state which is attractive with a well that extends below the c3Σ+
g minimum.
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Figure 5.1: Potential energy curves for the interaction of: He(11S) with He(33S) (top), and
He(11S) with He(23S) and He(23P ) (bottom). The inset shows the barrier in the a3Σ+

u .

70



5.3 Cross-sections Results

Single channel scattering calculations were performed using the curves in figure 5.1. The

phase shifts obtained were then used to calculate the cross sections according to the formulae

given in equations 5.12, 5.13, and 5.14.

The excitation transfer cross section is shown in figure 5.3. It decreases rapidly for

energies less than ∼ 500 cm−1. As a3Σ+
u has a barrier with comparable height to this

energy at ∼ 5ao, the unavailability of enough energy to overcome this barrier suppresses the

excitation transfer. In other words, the colliding atoms need a minimum energy to enter

the effective region for excitation transfer where the states, a3Σ+
u and c3Σ+

g , have significant

separation. It increases slowly after that with increasing energy.

Figure 5.4 shows the cross section for the diffusion of He(23S) atoms in He(11S) gas. It

results from removing the contributions of small angle scattering from the total elastic cross

sections shown in figure 5.2. It has a minimum around ∼ 500 cm−1. This is also attributed

to the barrier in a3Σ+
u . For larger energies, the diffusion cross section is almost constant.

However, it increases as the energy decreases.

Figure 5.2 shows the total elastic cross section. It is dominated by small angle scattering

and includes the cross section for the process:

He(11S) +He∗(1s2s, 23S)→ He(11S) +He∗(1s2s, 23S). (5.15)

At very low temperatures, the elastic cross section for c3Σ+
g approaches a constant while it

decreases monotonically to zero for the a3Σ+
u symmetry. This is consistent with the threshold

behavior and with Wigner limit in equation 1.32a. At low temperature, the cross section is

dominated by the l = 0 term or s − wave. This explains the constant limit in the case of

c3Σ+
g . For a3Σ+

u , the lowest term is the l = 1 or p − wave which causes the cross sections

to decrease as E2. a3Σ+
u scatters odd partial waves while c3Σ+

g scatters even partial waves
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because of symmetry resulting from the two identical nuclei as discussed earlier.

10-3 10-2 10-1 100 101 102

Energy (cm-1)

101

102

103

C
ro

ss
 se

ct
io

n 
(Å

2 )
n=3
n=2

a3Σu

c3Σg

Figure 5.2: Total elastic cross sections for the collision of: He(11S) and He(23S) atoms
(dotted lines), and He(11S) and He(33S) atoms (solid lines).
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Figure 5.3: Cross section for excitation transfer from the He(23S) atoms to the He(11S) gas.
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Figure 5.4: Cross section for the diffusion of He(23S) atoms in He(11S) gas.
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Conclusion

New potential energy curves, [88], for the interaction of helium atoms in their ground state

with excited helium atoms were used to calculate the cross section for excitation transfer

from the He(23S) atoms to the He(11S) gas, the diffusion of He(23S) atoms in He(11S) gas,

and the total elastic cross sections for the collision of He(11S) and He(23S) atoms. The

results were compared to [91]. A good agreement is observed. Both have the same general

features. In both, the diffusion cross section has a minimum at ∼ 500 cm−1. Below this

energy, the excitation transfer decreases rapidly. The oscillations in the elastic cross section

are seen in both results. We have the correct behavior at very low energies where quantum

effects, which are sensitive to the long-range interaction, dominate. However, the elastic

cross sections for the collision of He(11S) and He(23S) atoms falls at high energy while it

stays almost constant in [91]. The long range interaction is not critical for these energies.

The elastic cross sections for the collision of He(11S) and He(33S) atoms were not calculated

before. They display similar features as the potentials of the 3Σ+
g and 3Σ+

u states have the

same general characteristics.
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Chapter 6

Conclusions

In the previous chapters, cross sections for different processes were calculated. The pro-

cedure, in general, requires the solution of the Schrödinger equation using an interaction

potential relevant to the problem to obtain an expression for the cross section. In every case,

the starting point is a reliable potential energy surface for the interaction under considera-

tion.

In Chapter 2, the photodissociation of CN

CN(X 2Σ+, v′′N ′′) + hν → CN(final state, v′N ′) → C + N, (6.1)

was revisited. The final state in the equation above stands for the 2Σ+(4), 2Σ+(5), 2Π(4),

or 2Π(5). Partial and LTE cross sections were evaluated for all rovibrational levels (v′′N ′′) of

the ground electronic state of CN, X 2Σ+, and over a large wavelength range of astrophysical

interest. The results will allow for the calculation of reliable CN photodissociation rates for

astrophysical environments with varying radiation and dust properties.

The rotational quenching of CO2 by collisions with He is the subject of Chapters 3 and

4. CO2 was treated as a rigid rotor in the ground state. If CO2 is initially in the rotational
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state specified by the rotational quantum number jo, transitions of CO2 represented by:

CO2(jo) +He → CO2(j′) +He, (6.2)

were considered. Cross sections for transitions to all possible lower−j rotational states, for

a wide range of relative collision energy, were calculated based on the theoretical frame work

of [50]. Cross sections for transitions to higher−j rotational states can be obtained through

detailed-balance. Cross sections are dominated by the ∆j = j ′ − j = −2 transition. They

follow the exponential energy-gap law [63], and they agree with the Wigner threshold laws

[4].

In Chapter 4, the emphasis is on rotational quenching of CO2 by collisions with He in the

ultracold regime. Complex scattering lengths and elastic and inelastic rotational quenching

cross sections have been computed for carbon dioxide, with rotational excitation j as high

as 200, due to ultracold 4He collisions. It is predicted that the ratio of the elastic to inelastic

cross section, or figure-of-merit, is sufficiently large that highly rotationally excited CO2

could be a viable candidate for cooling and trapping. A novel experiment combining a He

buffer gas cell with an optical centrifuge is proposed as a means of producing rotationally

hot, but translationally cold CO2. A high-flux beam of cold CO2 super rotors could be

created and used for a variety of scattering experiments.

The interaction of two helium atoms according to

He(11S) +He∗(1s2s, 23S)→ He∗(1s2s, 23S) +He(11S), (6.3)

was considered in Chapter 5. In this case, the fact that the two interacting nuclei are

identical must be taken into account. New potential energy curves, [88], were used to

calculate the cross section for excitation transfer from the He(23S) atoms to the He(11S)

gas, the diffusion of He(23S) atoms in He(11S) gas, and the total elastic cross sections for
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the collision of He(11S) and He(23S) atoms. The results were compared to [91]. A good

agreement is observed. The elastic cross sections for the collision of He(11S) and He(33S)

were calculated. They were not calculated before.
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