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Abstract

A Steiner triple system of order n is a collection of subsets of size three, taken from the

n-element set {0, 1, ..., n−1}, such that every pair is contained in exactly one of the subsets.

The subsets are called triples, and a block-intersection graph is constructed by having each

triple correspond to a vertex. If two triples have a non-empty intersection, an edge is inserted

between their vertices. It is known that there are eighty Steiner triple systems of order 15

up to isomorphism. In this paper, we attempt to distinguish the eighty systems using their

block-intersection graphs, as well as discuss general properties of block-intersection graphs

of Steiner triple systems.
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Chapter 1

Introduction

In 1847, Reverend Thomas P. Kirkman published “On a Problem in Combinations” [11] that

first answered questions on the existence of what would later be called Steiner triple systems.

The problem he considered was to find a collection of subsets of size three, taken from the

n-element set {0, 1, ..., n− 1}, with the property that every pair is contained in exactly one

of the subsets. This problem was a specific case of a more general question on combinations

posed by W.S.B. Woodhouse in 1844. Several years later, Jakob Steiner, apparently unaware

of Kirkman’s article, similarly asked about the existence of various designs, including the

one solved by Kirkman. It was Steiner’s name that was eventually used for the systems,

although Steiner himself did not offer any solutions. Such systems were an early example

of what are now known as balanced incomplete block designs in the field of combinatorial

design.

Kirkman’s name did become associated with a related topic that originated with “Kirk-

man’s schoolgirl problem,” in which he wanted to arrange fifteen girls into sets of three such

that each girl was paired with every other girl once. This describes a Steiner triple system,

but Kirkman added the condition that the thirty-five sets of three be expressible as seven

partitions of {0, 1, ..., 14}. The triple system would then describe a week-long schedule for
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daily walks where the fifteen girls were in different sets each day. In the same year his

question was published, Kirkman offered a solution, as did Arthur Cayley [5]. Kirkman also

asked about orders other than 15 for which an analogous problem could be solved. These

designs are a subtype of Steiner triple systems often called Kirkman triple systems, and we

will revisit this idea below.

1.1 Combinatorial Definitions and Background

A Steiner triple system of order n is a pair (V,B) comprising the n-set V = {0, 1, ..., n− 1}

and a set B of sets of size three, each a subset of V , such that any pair of elements of V

appears in exactly one set of B. The sets in B are called triples or blocks. We will abbreviate

“Steiner triple system of order n” as STS(n). A necessary and sufficient condition for the

existence of a Steiner triple system of order n was proved by Kirkman in his 1847 paper,

that n ≡ 1, 3 mod 6 [11].

As a balanced incomplete block design, an STS(n) is a (n, 3, 1)-design, where 3 is the

size of a block and 1 is the number of blocks in which a pair of elements appears. In any

STS(n), there are n(n−1)
6

triples. We obtain this total by computing
(
n
2

)
/
(

3
2

)
, as there are(

n
2

)
ways to select unordered pairs from the n-set and each triple contains

(
3
2

)
pairs. The

replication number of an STS(n) is defined as the number r of triples in which each element

of V appears. A theorem on block designs states that (n − 1) = r(3 − 1) for an STS(n),

yielding the replication number equal to n−1
2

.

The subtype of STS(n)s known as Kirkman triple systems, as described above with

Kirkman’s schoolgirl problem, have the additional property of resolvability. First, we define

a parallel class in an STS(n) as a set of pairwise disjoint triples that partitions the n-set; the

union of the triples in a parallel class will contain each element once. An STS(n) is resolvable

if the triples of B can be partitioned into parallel classes. In Kirkman’s problem, each day
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represents a parallel class. A necessary and sufficient condition on n for the existence of a

resolvable STS(n) was not proved until 1965 [5], but it is quite simple: n ≡ 3 mod 6.

Up to isomorphism, there is one STS each for orders 3, 7, and 9. There are two STS(13)s,

eighty STS(15)s, over 11 billion STS(19)s, and the numbers grow exponentially from there

(and are not completely determined for orders over 19) [10]. Richard Wilson showed that

the number N of Steiner triple systems on a permissible order n is such that (e−5n)n
2/6 ≤

N ≤ (e−1n)n
2/6 [18]. In this paper we will focus on the Steiner triple systems of order 13

and 15, in particular on distinguishing among isomorphism types. The STS(15)s have been

known for over half a century and have a standard numbering in the literature, which can

be found in [5]. In addition, the two STS(13)s are included in Appendix A in the order by

which they will be referenced.

1.2 Graph Theory Definitions

A graph is an object made up of vertices and edges, where edges are links between vertices.

If two vertices have an edge between them, they are adjacent. The number of edges leaving

a vertex is called the degree of that vertex, and a simple graph contains no loops and at most

one edge per pair of vertices; all graphs considered here will be simple. A graph with every

vertex having equal degree is called regular. If for each pair of vertices, there is a sequence

of edges starting from one vertex and ending at the other, the graph is connected. The

complement G of a graph G is formed using the same vertex set as G with edges inserted

between vertices that were not adjacent in G.

For the following definitions, consider a graph on n vertices. If every pair of vertices is

joined by an edge, the graph is complete and denoted by Kn. A graph can also be represented

in the form of an adjacency matrix, which is an n × n matrix with entry aij equal to the
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number of edges between the ith and jth vertices. In a simple graph, this matrix is composed

entirely of 0’s and 1’s.

1.3 Block-Intersection Graphs

From an STS(n), different graphs can be formed. For example, if the vertex set is {0, 1, ...,

n − 1} and n is an admissible order, then defining an STS(n) is equivalent to decomposing

Kn into triangles (copies of K3). But a different sort of graph can be constructed by taking

the vertex set as B, that is, every triple in the STS(n) corresponds to a vertex. If two

triples have a non-empty intersection then an edge is inserted between their vertices. The

resulting graph is known as the block-intersection graph or the BIG. It is this graph that will

be considered as a possible way to distinguish Steiner triple systems of the same order. By

construction, the block-intersection graphs are finite and simple.

Vertex Triple

A (0, 1, 2)

B (3, 4, 5)

C (6, 7, 8)

D (0, 3, 6)

E (1, 4, 7)

F (2, 5, 8)

G (0, 4, 8)

H (1, 5, 6)

I (2, 3, 7)

J (0, 5, 7)

K (1, 3, 8)

L (2, 4, 6)

Figure 1.1: The BIG for STS(9)

In order to study the properties of the BIGs, we construct them using SAGE, the open-

source mathematics software package [14]. Given a Steiner triple system, a matrix is built to
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serve as an adjacency matrix for the BIG. The code cycles through the list of triples, entering

a “1” in position ij if triple i shared a common element with triple j and “0” otherwise (for

i 6= j). A function in SAGE to create a graph on such an adjacency matrix is then applied

to each matrix corresponding to an STS(13) and STS(15). For the relevant program code,

please see Appendix B.

One can use BIGs of Steiner triple systems to attempt to distinguish the systems because

two STS(n)s are isomorphic if and only if their block-intersection graphs are isomorphic. The

reverse direction was proved by David Pike in 1996 (although the article was not printed

until 1999) and the forward direction was stated without a formal proof by Charles Colbourn

and Alexander Rosa in 1999 [5, 13]. Hence if two BIGs can be shown to be non-isomorphic

via a graph invariant, we can conclude their systems are also non-isomorphic.1

1.4 Properties of the Block-Intersection Graphs

Some of the very basic graph invariants will be identical for BIGs of the same order. The

number of vertices is equal to the number of triples, which as mentioned above is n(n−1)
6

.

To calculate the degree of a vertex, note that any element of V is in n−1
2

triples, so for an

arbitrary element a in a triple, a is in n−1
2
− 1 other triples. Now multiply by three for the

three elements in each triple, and we obtain the degree of each vertex: 3(n−1
2
− 1) = 3(n−3)

2
.

Thus each BIG is a regular graph. Because the BIGs are regular, their total number of

edges is straightforward to compute using the Handshaking Lemma: (number of vertices) ×

(degree) / 2.

For lower orders of n, the block-intersection graphs are fairly small in terms of both

number of vertices and of edges. The BIG for STS(3) consists of a single vertex representing

1Although the results cited for STS(n)s specifically are from the late 1990s, block-intersection graphs
had been used to distinguish non-isomorphic balanced incomplete block designs since at least 1985. For
example, see M.J. Colbourn (1985), Algorithmic aspects of combinatorial designs: a survey, Annals of
Discrete Mathematics 26, 67-136.
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the only triple (0, 1, 2), and for STS(7) the graph is K7. If n = 9, its BIG has twelve vertices

and fifty-four edges as shown above in Figure 1.1. But these totals grow quickly: each BIG

of an STS(13) contains twenty-six vertices and 195 edges and is regular of degree 15; the

corresponding totals for n = 15 are thirty-five, 315, and 18.

In fact, not only is a BIG regular, it is also strongly regular. A strongly regular graph

with parameters (v, k, e, f) is a k-regular graph on v vertices such that each pair of adjacent

vertices has e neighbors in common and each pair of non-adjacent vertices has f neighbors

in common. We prove strong regularity in the following proposition.

Proposition: The block-intersection graph of an STS(n) for n ≥ 9 is strongly regular with

parameters (n(n−1)
6

, 3(n−3)
2

, n+3
2
, 9).

Proof: We know the number of vertices in a BIG is n(n−1)
6

and the graph is regular of

degree 3(n−3)
2

. Now we determine the parameters e and f .

Consider two adjacent vertices in a BIG. They represent triples B1 and B2 with one com-

mon element a; suppose B1 = (a, b, c) and B2 = (a, d, e). Then their common neighbors must

intersect bothB1 andB2, so four of these neighbors will have the form (b, d, ), (b, e, ), (c, d, ),

and (c, e, ), where denotes any other permissible element of V . The other neighbors in

common will be the triples also containing a, which appears in a total of n−1
2

triples. Be-

cause B1 and B2 both already contain a, the remaining number is n−1
2
− 2 = n−5

2
. Hence the

number of common neighbors is n−5
2

+ 4 = n+3
2

.

Let B1 and B2 now correspond to non-adjacent vertices. They must be of the form

B1 = (a, b, c) and B2 = (d, e, f). A common neighbor of both of these triples must contain

an element from each. For instance, we know that the pair {a, d} must occur in exactly one

triple, so one of the neighbors in common has the form (a, d, ). Similarly, two other common

neighbors are (a, e, ) and (a, f, ). There are nine possible ways to pair one element from

B1 and one element from B2, so any non-adjacent vertices will have nine common neigh-
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bors (for n ≥ 9). Thus the BIG of an STS(n) is a strongly regular graph with parameters

(n(n−1)
6

, 3(n−3)
2

, n+3
2
, 9). �

Clearly every block-intersection graph G is connected. In a strongly regular graph, the

vertex connectivity κ(G), which is the smallest number of vertices whose removal results in

a disconnected graph, is equal to the degree of each vertex [4]. Edge connectivity is defined

analogously and denoted by κ′(G). A well-established result in graph theory is the inequality

1 ≤ κ(G) ≤ κ′(G) ≤ δ for connected graphs, where δ is the minimum degree. In a strongly

regular graph, κ(G) = δ, implying that the edge connectivity κ′(G) is also equal to the

degree. Thus both measurements of connectivity are 3(n−3)
2

in each BIG.

Another measure related to graph connectivity is the diameter of a graph, the supremum

of the set of distances between any two vertices u and v, where such a distance is defined as

the smallest number of edges required to go from u to v. In a BIG, two vertices correspond

to two triples B1 and B2 of an STS(n), and they either have a common element or they

do not. If they share an element, there is an edge between the vertices and so the distance

is 1. If not, since each element of B1 must occur in a triple with each element of B2, the

non-adjacent vertices for B1 and B2 have a common neighbor and the distance is 2. Hence

the possible non-trivial distances in a BIG are 1 and 2, so the diameter is equal to 2.

The block-intersection graphs are also distance-regular. Let G be regular and connected

with diameter d, and consider two vertices u and v of distance i from each other. If non-

negative integers b0, b1, ..., bd−1, c1, ..., cd exist such that for i = 0, 1, ..., d, v has bi neighbors

a distance i + 1 from u and ci neighbors a distance i − 1 from u, then G is distance-

regular. These values form an array {b0, ..., bd−1; c1, ..., cd} associated to the graph called the

intersection array.
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Proposition: The block-intersection graph of an STS(n) is distance-regular.

Proof: We determine the entries of the intersection array, which shows the existence of

the required integers bi and cj for appropriate i and j.

• i = 0: If u and v are at distance 0, then u = v and the number of neighbors distance

1 from u is the degree k, so b0 = 3(n−3)
2

.

• i = 1: Let u and v be at distance 1. Then they correspond to intersecting triples B1

and B2 of the form (a, b, c) and (a, d, e). Consider the number of adjacent vertices to

v distance 2 from u: these are triples that have a common element with B2 but not

B1, so any triple containing d or e but not b or c. Each of d, e appears in n−1
2

triples,

but we subtract 2 to not double count B2 and subtract 4 for the triples containing

{d, b}, {d, c}, {e, b}, or {e, c}, yielding b1 = 2(n−1
2

) − 6 = n − 7. Also, the number of

neighbors of v distance 0 from u is only u itself, so c1 = 1.

• i = 2: If u and v are 2 edges apart, then they are non-adjacent vertices. The BIG is

strongly regular and the corresponding parameter applicable here is 9, thus c2 = 9.

Hence the intersection array for a BIG is {3(n−3)
2

, n − 7; 1, 9}. From these quantities we

can also define integers ai as the number of neighbors of v a distance i from u, yielding

a1 = 3(n−3)
2
− b1 − c1 = n+3

2
and a2 = 3(n−3)

2
− c2 = 3(n−9)

2
. �

Note that a connected graph is distance-regular of diameter 2 if and only if it is strongly

regular [3].

Yet another regularity property satisfied by the block-intersection graphs is walk-regularity.

A graph G is walk-regular if the number of closed walks of length s that start and end at the

same vertex is equal for every vertex. A walk of length s is a sequence of adjacent vertices

v1, v2, ..., vs, vs+1, not necessarily distinct, and the walk is closed if v1 = vs+1. A standard

theorem is that given the adjacency matrix A of G, the entry a
(s)
ij in As is the number of

s-length walks starting at vi and ending at vj. If i = j, this is the number of closed walks.
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For example, in a simple graph, a
(1)
ii = 0 because there are no loops, and a

(2)
ii = di, the degree

of vi. Then the total number of closed walks of length s in G is equal to tr(As). The fact

that the BIGs are walk-regular is implied by their distance-regularity.

The basic properties of the block-intersection graphs offer a good overview of the highly

structured nature of these graphs. Because the invariants we have covered in this section are

the same for BIGs corresponding to STS(n)s on the same n, we will consider other graph

invariants in further chapters. First, though, we discuss how to obtain the Steiner triple

systems from which the BIGs are formed.
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Chapter 2

Methods of Construction

In this chapter we describe several ways of producing Steiner triple systems of a given order,

starting with either a permissible n-set or a smaller system from which a larger system can

be created.

2.1 The Doubling Construction

There is a “doubling construction” for Steiner triple systems that is valid for all n, which

provides a relatively quick and easy way of obtaining Steiner triple systems of larger orders.

Proposition: If there is an STS(n), then there is an explicit method for producing an

STS(2n+1) for any n ≥ 3.

Proof: Because we necessarily have n ≡ 1, 3 mod 6, in either case it is true that 2n+ 1 ≡

1, 3 mod 6; hence there is an STS(2n+1). The triples of the larger system are those from

the original system, plus triples containing elements from {n, n+ 1, ..., 2n− 1, 2n}. For each

(a, b, c) of the STS(n), we create (a+n, b+n, c), (a+n, b, c+n), and (a, b+n, c+n). Finally,
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add the triple (a, a + n, a + 2n) for all a ∈ {0, ..., n− 1}. This process yields three types of

triples that total to n(n−1)
6

+ 3(n(n−1)
6

) + n = (2n)(2n+1)
6

, the right number for an STS(2n+1).

Now we verify that each pair of elements of {0, ..., 2n} appears in exactly one triple. For

any pair in {0, ..., n − 1}, there is a unique triple of the STS(n) containing it. A pair with

both elements in {n, ..., 2n−1} or one element in {0, ..., n−1}, one element in {n, ..., 2n−1}

will occur in a triple of the second type. Finally, any pair including the element 2n occurs

in the third type of triple. �

2.2 Lexicographically Least STS(n)

We consider another method for the creation of an STS(2n+1) from an STS(n), this time

resulting in a system that is lexicographically least among Steiner triple systems of order

2n + 1. With the usual ordering < on the integers, we define a lexicographic ordering of

blocks in a Steiner triple system. Given triples (a, b, c) and (d, e, f) such that a < b < c and

d < e < f , we say that (a, b, c) ≺ (d, e, f) if a < d or a = d, b < e or a = d, b = e, c < f .

It follows that there is a lexicographically least STS(n) for any n, but such a Steiner triple

system can actually be generated with a backtrack-free algorithm for certain n.

The Algorithm: One method of trying to produce an STS(n) is to create triples in

a lexicographic order. Beginning with the triple (0, 1, 2), one then takes the next-lowest

triple possible while maintaining the conditions necessary for an STS(n), i.e., making sure

not to have any pair of elements represented in more than one triple. Note that the n−1
2

triples containing 0 are always the first generated; because n is necessarily odd, we obtain

(0, 1, 2), (0, 3, 4), ..., (0, n − 2, n − 1). If an STS(n) can be produced this way without ever

having to backtrack, it will certainly be lexicographically least among all STS(n)s.
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Example: For n = 7, the element set is V = {0, ..., 6} and the first three triples produced

using the algorithm are (0, 1, 2), (0, 3, 4), and (0, 5, 6). We start the next block with 1; since 1

and 2 have appeared together, the next element added is 3. The last element in this triple is

5, as 3 and 4 were already paired, yielding (1, 3, 5). Similar reasoning produces (1, 4, 6), and

now 1 has been with all other elements. Finally, (2, 3, 6) and (2, 4, 5) complete the system.

At no point did we have to stop and backtrack; there was always a greater appropriate

element in V .

Example: For n = 9, V = {0, ..., 8} and the triples produced are (0, 1, 2), (0, 3, 4),

(0, 5, 6), (0, 7, 8), (1, 3, 5), and (1, 4, 6). At this point 1 needs to appear with 7 and 8, but

(1, 7, 8) is not a valid triple because 7 and 8 have already been paired. This is problematic

because we are going in increasing lexicographic order, so the next triple must begin with

2, implying there will not be a triple containing 1 and 7 or 1 and 8. If we tried to continue,

we obtain (2, 3, 6) and (2, 4, 5), and here we run into the same problem. Clearly there are

pairs of elements not appearing in any triple, in addition to the fact that an STS(9) should

comprise twelve triples. Thus there is no STS(9) that can be produced without backtracking

in the lexicographically-least method.

Now we characterize lexicographically-least, backtrack-free STS(n)s by a property of n.

Proposition: If n = 2k − 1 for k ≥ 2, then there exists an STS(n) produced by the

lexicographically-least, backtrack-free method.

Proof by induction on k: Base case k = 2: There is one STS(3), consisting of the triple

(0, 1, 2).

Base case k = 3: As listed above, the STS(7) has triples (0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5),

(1, 4, 6), (2, 3, 6), and (2, 4, 5).

Induction step: Assume we have a lexicographically-least, backtrack-free STS(n), where

n = 2k − 1 and k ≥ 3. We must show there exists an STS(2k+1 − 1) = STS(2n+1) that
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can be created in the same manner. First we note that if there is an STS(n), n ≡ 1, 3 mod

6. As mentioned in the previous proof, this implies 2n + 1 ≡ 1, 3 mod 6, so there exists an

STS(2n+1). We complete this proof by outlining a method of construction.

First, we keep the triples of the STS(n), of which there are n(n−1)
6

, and let m = 2k−1. Add

the triples (0, n, n+ 1), (0, n+ 2, n+ 3), ..., (0, 2n− 1, 2n). In each of these triples beginning

with 0, there is a pair of consecutive elements from {n, ..., 2n}; label the pairs p1, p2, ..., pm.

For example, p1 = {n, n + 1}, p2 = {n + 2, n + 3}, and pm = {2n − 1, 2n}. Because we are

adding n+ 1 = 2k new elements, there are 2k

2
= 2k−1 = m such pairs. These pairs are to be

put into sets of size four as follows (note that m is divisible by 4):

stage 1: {p1, p2}, {p3, p4}, ..., {pm−3, pm−2}, {pm−1, pm}

stage 2: {p1, p3}, {p2, p4}, ..., {pm−3, pm−1}, {pm−2, pm}

stage 3: {p1, p4}, {p2, p3}, ..., {pm−3, pm}, {pm−2, pm−1}

...

stage m− 1: {p1, pm}, {p2, pm−1}, ..., {pm/2−1, pm/2+2}, {pm/2, pm/2+1}

At each stage any pair pi is put into a 4-set with a new pair, the next available pair it has

not yet been joined with.

Now the 4-sets are to be put into triples: At each stage, we do the following for each set

of size four. Starting with pairs pi = {a, b} and pj = {c, d} from the 4-set, create the triples

(base1, a, c), (base1, b, d), (base2, a, d), and (base2, b, c), where the bases are

stage 1: base1 = 1, base2 = 2

stage 2: base1 = 3, base2 = 4

...

stage m− 1: base1 = n− 2, base2 = n− 1

13



There will be m new bases m−1,m, ..., n−1, in addition to the original bases of 0, 1, ...,m−2

(we know these are the original bases since we began with the STS(n)). By construction,

after stage i, the bases 2i − 1 and 2i will have been in a triple with every element of the

(2n+1)-set, thereby creating an STS(2n+1).

As a check, we calculate the number of triples in the new system. We have added n×m

new triples, as there will be n total bases and we added m triples per base. The STS(n)

had n(n−1)
6

triples, so the new system will have n(n−1)
6

+ nm = (2k−1)(2k−2)
6

+ (2k − 1)(2k−1) =

(2k+1−1)(2k+1−2)
6

= (2n+1)(2n)
6

triples, which is the correct number in an STS(2n+1). �

Remark: This creates a sequence of nested Steiner triple systems, each of order 2k − 1 for

k ≥ 2.

2.3 Other Methods

While the previous two sections detailed the creation of an STS(2n+1) from an STS(n), we

now consider direct constructions of a Steiner triple system for any permissible value of n.

This is in contrast to Kirkman’s proof that n ≡ 1, 3 mod 6 is necessary and sufficient for the

existence of an STS(n), which relied on using smaller systems to obtain systems of a larger

order. The following are due to Thoralf Skolem as discussed in [1].

Skolem’s method for the construction of an STS(n) where n = 6m+3. We work

with elements of the set {0, 1, ..., 6m+ 2}. First create the following array:

0 1 2 3 ... 2m− 1 2m

2m+ 1 2m+ 2 2m+ 3 2m+ 4 ... 4m 4m+ 1

4m+ 2 4m+ 3 4m+ 4 4m+ 5 ... 6m+ 1 6m+ 2
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Form triples (i, i+ 2m+ 1, i+ 4m+ 2) from the columns of this array for i = 0, 1, ..., 2m.

Now for each pair {a, b} in any row, the third element c of the triple (a, b, c) is the entry in

the next row such that 2c ≡ a + b mod (2m + 1) (the next row of the bottom is the top

row). There are
(

2m+1
2

)
pairs of elements in each row, so because there are 3 rows, we obtain

3
(

2m+1
2

)
= 3m(2m+ 1) triples. Adding this number to the 2m+ 1 previously created triples

yields a total of (2m + 1)(3m + 1) = (6m+3)(6m+2)
6

triples, as required. It is straightforward

to verify that each pair of elements from {0, 1, ..., 6m+ 2} occurs in exactly one triple.

Skolem’s method for the construction of an STS(n) where n = 6m+ 1. Here the

set of elements is {0, 1, ..., 6m}, and we begin in a similar manner with the array:

0 1 ... m− 1 m m+ 1 ... 2m− 1

2m 2m+ 1 ... 3m− 1 3m 3m+ 1 ... 4m− 1

4m 4m+ 1 ... 5m− 1 5m 5m+ 1 ... 6m− 1

Now we create three types of triples.

1. Triples from the first m columns (those to the left of the bar): (i, 2m + i, 4m + i) for

i = 0, 1, ...,m− 1.

2. Triples of the following forms: (m+ i, 2m+ i, 6m), (3m+ i, 4m+ i, 6m), and (i, 5m+

i, 6m), each of these for i = 0, 1, ...,m− 1.

3. Triples (a, b, c), where {a, b} is a pair of elements from the same row and c is in the

next row such that if a+ b is even, 2c ≡ a+ b mod 2m and c is in the left half, and if

a+ b is odd, 2c ≡ a+ b− 1 mod 2m and c is in the right half.

The number of triples is then 4m + 3
(

2m+1
2

)
, where the first summand corresponds to

types (1) and (2) and the latter summand is for type (3). This adds to the correct total

m(6m+ 1) = (6m+1)(6m)
6

. Again one can confirm that each pair of elements is part of exactly

one triple.
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Now that we have reviewed algorithms yielding Steiner triple systems on permissible n-

sets, we turn to the primary issue at hand, using block-intersection graphs to distinguish

among isomorphism types of systems on the same order.
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Chapter 3

Cliques

One graph invariant is the number of cliques of a given size in a graph. A clique is a complete

graph on m vertices, often called an m-clique, where we consider m ≤ n(n−1)
6

(recall that

n(n−1)
6

is the total number of vertices in a BIG of an STS(n)). A maximum clique is the

largest possible clique in a graph, whose number of vertices is called the clique number and

denoted by ω(G). A maximal clique is a clique for which it is not possible to add another

vertex; alternatively, a maximal clique is a clique not contained in a larger clique. In a BIG,

the vertices correspond to triples of an STS(n), so a clique represents a collection of triples

with pairwise non-empty intersections.

Because each element of an STS(n) is in n−1
2

triples, the BIG will have at least n cliques

of size n−1
2

induced by each of 0, 1, ..., n− 1, namely all the triples that contain a given point

a. As one element a ∈ V generates the clique and hence will be contained in each triple,

these are always maximum cliques. If the size were increased, an additional triple would

have to contain a in order to intersect every triple currently present; however, all triples

containing a are already vertices of the clique, showing maximality. In this paper we call

this type of clique, of size n−1
2

with one common element in each triple, a “canonical clique.”
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3.1 Maximal Cliques in a BIG

In order to consider maximal cliques of larger sizes, we begin with triangles. There are two

types of 3-cliques possible in a BIG:

1. Triples containing a common element, such as (a, b, c), (a, d, e), and (a, f, g).

2. Triples with no element in common, such as (a, b, c), (a, d, e), and (c, e, f).

Neither of these are maximal cliques: each can be expanded to create a clique of size four.

For the first type, a 4-clique can be obtained by adding the triple (a, h, i). Because a must

appear with every other element of V and we are considering n = 13 or 15, such a triple will

always exist and allow the creation of a 4-clique. It is also possible to add any of the triples

(b, d, f), (b, d, g), (b, e, f), (b, e, g), (c, d, f), (c, d, g), (c, e, f), or (c, e, g), if they are part of

the STS(n).

For the second type, if we start with the triangle (a, b, c), (a, d, e), (c, e, f), there are

four pairs of the elements {a, ..., f} that have not yet appeared in a triple in this triangle:

{a, f}, {b, d}, {b, e} and {c, d}. Because the pairs {a, f}, {b, e}, and {c, d} already intersect

all triples in this 3-clique, it does not matter what the third element is in the triple containing

any of these pairs. By definition of a Steiner triple system, the pairs must occur in some

triple, so any of these triples can be included to increase from a 3-clique to a 4-clique. In

addition, if the triple (b, d, f) is part of the system, it offers another option in expanding to

a 4-clique. Hence a triple of the form (a, f, ), (b, e, ), (c, d, ), or (b, d, f) can always be

added.

Unlike cliques of size three, some cliques of size four are maximal for both n = 13 and

15. Again we consider two cases:

1. Triples with a common element, that is, (a, b, c), (a, d, e), (a, f, g), and (a, h, i). Clearly

this can be expanded to a 5- or 6-clique for orders 13 and 15, and a 7-clique for order

15 by choosing any other triple containing a.
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2. Triples with no one element in common. Theoretically, each of these 4-cliques can be

expanded to a maximum clique of size six for order 13 and a maximum clique of size

seven for order 15. For example, (a, b, c), (a, d, e), (a, f, g), (b, d, f) becomes (a, b, c),

(a, d, e), (a, f, g), (b, d, f), (b, e, g), which then yields (a, b, c), (a, d, e), (a, f, g), (b, d, f),

(b, e, g), (c, d, g), which in turn is enlarged to (a, b, c), (a, d, e), (a, f, g), (b, d, f), (b, e, g),

(c, d, g), (c, e, f). However, maximality occurs when the desired next triple is not in a

particular system. In this example, the 6-clique could be stopped from increasing to a

7-clique if the pair {c, e} exists in a triple that does not contain the required element

f .

Example: In system 2 of order 15, the triples (1, 3, 5), (1, 7, 9), (3, 7, 11), and (5, 7, 14)

form a clique of size four. This clique is maximal because the triples that could possibly be

added that intersect with these four are (1, 11, 14), (3, 9, 14), and (5, 9, 11), none of which is

part of system 2.

3.2 Maximum Cliques for n = 15

In the BIG for an STS(15), there is a special property of maximum cliques without a com-

mon element in each triple, which we now state and prove.

Proposition: If the BIG for an STS(15) contains a non-canonical maximum clique of size

7, it is the BIG of an STS(7), i.e., it represents a subsystem of size 7.

Proof: As above, we consider the possible ways to obtain a 7-clique from a 4-clique. The

first possible 7-clique contains triples with a common element; this type is a canonical clique.

The second type has the form (a, b, c), (a, d, e), (a, f, g), (b, d, f), (b, e, g), (c, d, g), (c, e, f),

up to labeling, in which each element is represented in three triples. In fact, that must be

the case in a clique of size seven for n = 15. Consider if we had four, five, or six triples with
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a common element. For example, take (a, b, c), (a, d, e), (a, f, g), and (a, h, i) of size four. At

this point there is no possible triple to add that will intersect these four other than one

containing a (which would make a canonical clique), and the same clearly holds for size five

or six. Finally, if one element is in only one or two triples, we would not have enough triples

to make a 7-clique. Hence an element occurs in exactly three triples.

Now we confirm that the clique is an STS(7). By inspection of (a, b, c), (a, d, e), (a, f, g),

(b, d, f), (b, e, g), (c, d, g), (c, e, f), we have seven distinct elements {a, ..., g}, each in three

triples, which equals the replication number 7−1
2

. Also, there are seven triples, and the re-

quired number is 7(7−1)
6

= 7. Finally, each possible pair of {a, ..., g} appears in exactly one

triple. Thus we do have a Steiner triple system of size 7. �

Example: System 1 of the STS(15)s corresponds to the lexicographically-least, backtrack-

free system guaranteed by 15 = 24−1. Because it can be generated starting with the STS(7)

and using the proof in Chapter 2, system 1 contains a non-canonical maximum clique corre-

sponding to the triples from the STS(7): (0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (1, 4, 6), (2, 3, 6),

and (2, 4, 5).

Example: Another non-canonical maximum clique in STS(15) #1 is formed by (1, 3, 5),

(1, 8, 10), (1, 12, 14), (3, 8, 12), (3, 10, 14), (5, 8, 14), and (5, 10, 12), which is isomorphic to

the STS(7) in the previous example.

Remark: Maximum cliques in BIGs for order n = 13 will not correspond to subsystems,

as they are of size six, not an admissible order for a Steiner triple system (clearly 6 6≡ 1, 3

mod 6).
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3.3 Clique Census

As part of the effort to distinguish Steiner triple systems of a given order, we conducted a

maximal clique census. SAGE provides a function to identify all maximal cliques of a graph,

so we ran the function on each BIG and tallied the number of maximal cliques for each

possible clique size.

For n = 13, both BIGs have clique number ω(G) = 6, as expected because n−1
2

= 12
2

= 6,

and both graphs have thirteen of these maximum cliques. The other possible clique sizes

were four and five; the total number of maximal cliques was 201 for system 1 and 156 for

system 2. For the complete census please see Table 3.1. Note that the different number of

maximal cliques immediately distinguishes the two STS(13)s, as does the differing numbers

of 4- and 5-cliques.

Table 3.1: Clique Census for n = 13

System Total Maximal Cliques 6-Cliques 5-Cliques 4-Cliques

1 201 13 24 164

2 156 13 39 104

Now for order n = 15, all BIGs have ω(G) = 7, and all have at least fifteen such maximum

cliques corresponding to the canonical cliques. There is one system each that has thirty and

twenty-two maximum cliques, respectively. Five systems have eighteen and sixteen have

sixteen; all of the rest have fifteen. The difference between the number of maximum cliques

and fifteen corresponds to the number of subgraphs that represent STS(7)s. The other

possible clique sizes were four, five, or six and the number of maximal cliques ranged from

30 to 435.

We initially ranked and compared systems by total number of maximal cliques. There

are only four systems with a total under 150, one of which will be discussed further below,

and another four systems between 150 and 200. Of the 90% with totals over 200, sixteen
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were between 200 and 300 (20%), fifty-four were between 300 and 400 (67.5%), and just two

had totals over 400.

Out of the eighty STS(15)s, seventeen have a unique number of maximal cliques. There

are nine pairs of systems with the same total, three sets of size 3 that share the same total,

two sets of size 4, three sets of size 5, and one each of size 6 and size 7. All of these systems

that have the same number of maximal cliques also have identical clique censuses (the same

number of 4-cliques, 5-cliques, 6-cliques, and 7-cliques), except in one case. There are four

systems with 345 maximal cliques, three of which have the same census and one which does

not. As a result of the clique census, the STS(15)s were partitioned into thirty-seven classes.

Table 3.2: Partial Clique Census for n = 15

System(s) Total Maximal Cliques 7-Cliques 6-Cliques 5-Cliques 4-Cliques

1 30 30 0 0 0

2 86 22 8 24 32

3 114 18 12 36 48

4, 5 158 18 8 36 96

35, 40, 59 325 15 1 33 276

46, 49, 60, 65, 75 372 15 0 21 336

77 417 15 0 6 396

80 435 15 0 0 420

There are a few other interesting points that arose but which we will not elaborate on at

this time. In general, as the total number of maximal cliques increased, so did the number

of systems with identical censuses. All of the systems with a total greater than 350 had only

the fifteen canonical maximum 7-cliques; almost half of the systems fell into this category

without subsystems of size 7 (36 out of 80 for 45%). Just over half (41) had no 6-cliques, and

there was a rough correlation between number of maximal cliques and absence of 6-cliques.

Only two had no 5-cliques and these were the systems with the lowest and highest total of
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maximal cliques. Every STS(15) except one had maximal 4-cliques; the exception, system

1, had only 7-cliques in its BIG.

The maximal clique census did provide a way to distinguish many of the STS(15)s from

each other based on their BIGs. However, there were still many small groups of systems that

had identical BIGs in this regard and thus could not be differentiated using cliques alone.

3.4 System 1 for n = 15

The lexicographically-least, backtrack-free STS(15) labeled as system 1 has a very curious

maximal clique census: it has thirty maximal cliques, which is by far the lowest number,

and all are maximum cliques of size 7. STS(15) #1 has the usual fifteen canonical cliques,

meaning that it has another fifteen cliques whose triples do not all contain a common element,

and it is also the only system without maximal cliques of lower size.

A simple and appealing explanation for the large number of maximum cliques in system

1 for n = 15 is provided using properties of finite projective space. The three-dimensional

projective space PG(3, 2) over GF(2), the field containing two elements, can be defined as

a set P of fifteen points and a set L of subsets (called “lines”) of P satisfying the following

axioms for projective spaces:

1. Any line contains at least three points.

2. Any two points lie on a unique line.

3. A transversal to two sides of a triangle also meets the third side.

Subspaces of dimension 0, 1, and 2 are points, lines, and planes, respectively. In a finite

projective space, an equal number of points lie on every line [17].

In PG(3, 2), there are thirty-five lines and fifteen planes to go with the fifteen points (see

Figure 3.1). Every line contains three points, each point lies on seven lines, and any pair

of points appears on exactly one line. As a result, the properties of PG(3, 2) coincide with
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those of a Steiner triple system of order 15, with points and lines instead of elements and

triples. Thus PG(3, 2) can be thought of as an STS(15). There is only one PG(3, 2) up to

isomorphism, meaning that it represents one of the eighty STS(15)s, which corresponds to

system 1.

Figure 3.1: PG(3,2)

Now, the planes of PG(3, 2) have seven points and seven lines and are each isomorphic to

the Fano plane PG(2, 2), the projective plane of order two. The Fano plane is also a visual

representation of the STS(7), so each plane of PG(3, 2) corresponds to a subsystem STS(7) of

STS(15) #1. In Figure 3.2 of the Fano plane, the triples of the STS(7) are formed by the six

lines and one circle. Recall from above that a subsystem of size 7 in an STS(15) corresponds

to a non-canonical maximum clique. Then the fact that system 1 has fifteen subsystems

isomorphic to STS(7) implies that its block-intersection graph has another fifteen maximum

cliques in addition to the fifteen canonical maximum cliques.

Remark: The relationship between PG(3, 2) and an STS(15) holds for projective spaces

of higher dimension. In fact, Colbourn and Rosa state the theorem:

Theorem: The points and lines of PG(n, 2) form the elements and triples of an

STS(2n+1 − 1).
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Figure 3.2: The Fano Plane

The argument of their proof goes as follows: Let Pn be an (n+1)-dimensional vector space

over GF(2) with vector addition represented by ⊕. For nonzero ~x, ~y ∈ Pn, {0, ~x, ~y, ~x ⊕ ~y},

is a subspace of dimension two. Hence each pair of nonzero vectors defines one punctured

subspace (obtained by removing 0 from the set in the previous sentence) containing three

vectors. Defining the elements to be nonzero vectors and punctured subspaces of dimension

two to be triples yields an STS(2n+1− 1). A Steiner triple system resulting from PG(n, 2) is

called projective [5].

In summary, cliques were helpful in distinguishing some STS(15)s but were not enough

to completely identify all eighty up to isomorphism, although they did differentiate the two

STS(13)s. In the next chapter we consider using independent sets and related properties.
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Chapter 4

Independent Sets

In a graph, an independent set is a set of mutually non-adjacent vertices; a maximal inde-

pendent set is an independent set such that adding another vertex would force the induced

subgraph to contain an edge, that is, at least two vertices in the set would be adjacent, vio-

lating independence. Finally, a maximum independent set is the largest possible independent

set, whose size is denoted by α(G). It is well-established that a set of vertices is independent

if and only if the set is a clique in the graph’s complement. With that in mind, we produced

the graph complement of each BIG using SAGE, then identified independent sets in BIGs

by finding cliques in these complements.

4.1 Independent Sets in a BIG

As the vertices of a BIG represent triples of an STS(n), an independent set in such a graph

is a set of triples that are mutually disjoint. In the following sections, we consider different

characteristics of independent sets in the block-intersection graphs.
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4.1.1 Cardinality

In the BIGs of STS(13)s and STS(15)s, the cardinality of a maximal independent set is at

least three: given an independent set {(a, b, c), (d, e, f)} of size two, there is always a third

triple (g, h, i) that does not intersect the first two triples.

For n = 13, an independent set is at most size four, for suppose we have an independent

set of triples {(a, b, c), (d, e, f), (g, h, i), (j, k, l)}. Increasing this set would require an ad-

ditional three distinct elements to form a mutually non-intersecting triple. But n = 13, so

there is only one more element and thus no other triple can be added. In fact, this shows that

any maximum independent set will have one element of V not represented, and in system 2,

each of the thirteen maximum independent sets corresponds to missing a different element

of V .

Now if n = 15, it is possible to have an independent set of size five, as such a set

would contain five triples, each made up of distinct elements. Then clearly this set would be

maximal because 5 triples× 3 elements is 15 total elements; every element of {0, ..., 14} would

be represented in the independent set. Of course, just as in the case n = 13, maximality

can occur with sets of lower sizes (three and four) if unused elements are only paired with

elements already included in the independent set.

Although in theory an independent set of size three can be expanded to include one more

triple for either n = 13 or 15, maximality occurs when the desired elements do not appear

in a triple together. Such a set contains nine distinct elements a, b, ..., i, leaving four or six

others not yet represented for n = 13 or 15, respectively. But if no 3-subset of the remaining

elements forms a triple in the system, the independent set of size three is maximal.

Example: In the second STS(13), the triples (0, 1, 2), (3, 6, 11), and (5, 9, 12) form a

maximal independent set. There are four unused elements: 4, 7, 8, and 10, but each triple

that contains at least one of these elements also contains at least one of 0, 1, 2, 3, 6, 5, 9,

11, and 12. Adding such a triple would violate independence, so we have maximality.
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4.1.2 Resolvability

Recall from the Introduction that a resolvable STS(n) is one whose set of triples can be

partitioned into parallel classes. A related idea is that of a partial parallel class, which is a

set of mutually disjoint triples that may not partition V . Because a parallel class is a set of

mutually disjoint triples whose union is the n-set, a parallel class in an STS(15) is exactly

a maximum independent set of size five in its BIG; maximal independent sets of sizes three

or four are partial parallel classes. However, a maximum independent set in the BIG of an

STS(13) is of size four, and hence cannot form a parallel class due to the absence of one

element. For n = 13, then, any maximal or maximum independent set forms just a partial

parallel class.

For an STS(15), note that if a block-intersection graph contains at least seven maximum

independent sets, or equivalently, the system has at least seven parallel classes, this does

not necessarily imply the system is resolvable. Not only do the triples within a parallel class

have to be pairwise disjoint, but the set of parallel classes must also be pairwise disjoint so

as to partition the set B of triples. If the system is resolvable and the BIG does contain

seven mutually disjoint independent sets, these sets must be maximum of size five to obtain

the total of thirty-five vertices.

Example: System 61 of order 15 is resolvable, so it contains seven parallel classes that

partition its set of triples. Each parallel class is a maximum independent set in the block-

intersection graph; these are listed in Table 4.1. The table also represents one solution to

Kirkman’s schoolgirl problem if each element corresponds to a girl and the columns are taken

as the days of the week.

Remark: Because an STS(n) comprises blocks of size three, it is straightforward to see

that a necessary condition for resolvability is n ≡ 0 mod 3. As Steiner triple systems exist

for n ≡ 1, 3 mod 6, a system is potentially resolvable only if n ≡ 3 mod 6. It was not until

1965, however, that this condition was also shown to be sufficient [5].
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Table 4.1: Maximum Independent Sets in the BIG of STS(15) #61

Parallel Class

1 2 3 4 5 6 7

(0, 1, 2) (0, 3, 4) (0, 5, 6) (0, 7, 8) (0, 9, 10) (0, 11, 12) (0, 13, 14)

(3, 8, 10) (1, 8, 11) (1, 7, 9) (1, 4, 6) (1, 12, 14) (1, 10, 13) (1, 3, 5)

(4, 9, 13) (2, 9, 12) (2, 8, 14) (2, 11, 13) (2, 4, 5) (2, 3, 6) (2, 7, 10)

(5, 11, 14) (5, 7, 13) (3, 12, 13) (3, 9, 14) (3, 7, 11) (4, 7, 14) (4, 8, 12)

(6, 7, 12) (6, 10, 14) (4, 10, 11) (5, 10, 12) (6, 8, 13) (5, 8, 9) (6, 9, 11)

4.1.3 Graph Coloring

A classic problem in graph theory is that of coloring a graph G: assigning each vertex a color

such that adjacent vertices are of different colors. The lowest possible number of colors is the

chromatic number χ(G). Every set of vertices of the same color, called a color class, clearly

forms an independent set. Because each STS(n) block-intersection graph G contains cliques,

in which every pair of vertices is connected, χ(G) will be at least the clique number ω(G).

Note that the size of any color class is at most α(G), the size of the maximum independent

set. We obtain a connection between colorings, independent sets, and resolvability as stated

in the following:

Proposition: Let G be the block-intersection graph of an STS(15). Then χ(G) = 7 if and

only if the system is resolvable.

Proof: χ(G) = 7 ⇐⇒ G contains seven color classes on thirty-five vertices ⇐⇒ G has

seven maximum independent sets of size five ⇐⇒ B can be partitioned into seven mutually

disjoint sets of triples, i.e., parallel classes ⇐⇒ the STS(15) is resolvable. �
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We know there exists at least one resolvable STS(15) since 15 ≡ 3 mod 6 (and because

we were able to identify the parallel classes in system 61), so the chromatic number of at

least one BIG for an STS(15) attains the lowest possible value ω(G) = 7. The other possible

values for the chromatic number for n = 15 were eight and nine; both systems of order 13

have chromatic number equal to eight [12].

4.2 Independent Set Census

Like with maximal cliques, we compiled a census of maximal independent sets. For n = 13,

the size of the largest independent set is four for both systems, as expected. System 1 has

eight maximum and 106 maximal independent sets, and system 2 has thirteen maximum and

91 maximal independent sets. As mentioned above, non-maximum maximal independent sets

are of size three. The data are shown in Table 4.2. Any of the unequal numbers of such sets

is enough to distinguish the two STS(13)s, similar to the differing totals of maximal cliques.

Table 4.2: Independent Set Census for n = 13

System
Total Maximal

Independent Sets
Size 4 Size 3

1 106 8 98

2 91 13 78

For each BIG of order n = 15, the maximum independent set is either of size four, for

ten out of eighty systems, or size five for the remaining systems. The number of maximum

independent sets ranges from 1 to 224. Although this is a broad range, 22.5% of systems

contain only one such set, and three-fourths of the systems have under ten (61 of 80), with

nine more falling between 11 and 56. The total then increases considerably: the remaining

ten STS(15)s have between 182 and 224 maximum independent sets, and these ten coincide
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with those having maximum independent sets of size four. There are only two systems such

that every maximal independent set is also maximum; their respective totals are 56 and 224.

The number of maximum independent sets of the BIGs yields information on parallel

classes in the STS(15)s. Because ten systems have such sets of size four, not five, in their

graphs, these systems contain no parallel classes. To consider those that do have at least

one parallel class, we look at the BIGs with maximum independent sets of size five. Hence

the number of parallel classes in an STS(15) with such a set falls between one and fifty-six.

The number of maximal independent sets goes from 56 to 261, with 76 of the systems

having 200 or higher and only one system with under 152. The four systems that have under

200 maximal independent sets all have between sixteen and fifty-six maximum independent

sets, which is on the large end of the totals of maximum sets under 182. All except four

STS(15)s have maximal independent sets of size three, and those that have none fall in the

lowest 20% in total number of maximal sets.

Considering the independent set census as a way of differentiating systems, there are

sixteen with a unique number of maximal independent sets, and twelve pairs of systems with

the same total. Of these pairs, only one has systems with identical censuses; all the others

can be distinguished. In fact, several of the pairs differ in size of maximum independent set,

making the full census unnecessary in these cases. Six sets of size three match in number of

maximal independent sets, but five of these have different censuses. The sixth has two with

identical censuses and one without. There are only three sets of size four with the same total

of maximal sets, and all of these systems within each total have different censuses. Finally,

there are ten STS(15)s that have 251 maximal independent sets; of these only two have the

same census.

The independent set census was more successful in distinguishing the eighty STS(15)s

than the clique census. Using maximal independent sets in the BIGs, only six systems

could not be declared completely different from every other graph on this invariant. In fact,
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a majority of the systems that had the same total of maximal independent sets had an

unequal number of maximum independent sets, in which case calculating the numbers for

each possible set size is not required. The remaining six systems were divided into three

pairs, with the two BIGs in each pair sharing the same census, resulting in seventy-seven

classes based on independent sets.

Compared to cliques and independent sets, a more recently explored subfield of graph

theory is algebraic graph theory, whose focus is using the spectra of graphs as an invariant

to show non-isomorphism. We will cover this subject in the next chapter.
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Chapter 5

Spectra

Spectral graph theory uses techniques of linear algebra to study structural properties of

graphs and can be used in the graph isomorphism problem. We consider such methods

applied to the block-intersection graphs.

5.1 Definitions and Background

Let A denote the adjacency matrix of a block-intersection graph G on v vertices. The

characteristic polynomial of A is det(xI −A), where I is the v× v identity matrix. Because

similar matrices have the same characteristic polynomial, any vertex labeling of G used to

create A results in the same polynomial. Thus there is exactly one characteristic polynomial

for every graph, and the roots λ1, λ2, ..., λv of this polynomial are the eigenvalues of G. The

eigenvalues are typically listed in non-increasing order, and the multi-set of eigenvalues is

the spectrum of G, with the number of times λi appears called its multiplicity. If two graphs

have the same spectrum, they are cospectral, but they may not be isomorphic. However, if

two graphs are isomorphic then they are cospectral, meaning that a graph’s spectrum is an

invariant.
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Because the spectrum of a graph constitutes an invariant and is straightforward to com-

pute, we turned to graph spectra as a possible method of distinguishing BIGs. SAGE has

a function to find the spectra of a graph; these eigenvalues were determined for the BIG

of each system. We initially considered eigenvalues of each graph’s Laplacian matrix as

well. The Laplacian matrix is L = D − A, where D is the degree matrix, a v × v diago-

nal matrix such that the non-zero entry di is equal to the degree of vertex i. In general,

there is no easy relationship between the usual spectra and the Laplacian spectra. However,

with a k-regular graph, each entry in D is the same and results in the eigenvalues of L

being k − λ1, k − λ2, ..., k − λv. Since the BIGs are regular and the Laplacian spectra can

be characterized in terms of the usual spectra, we focused on eigenvalues of the adjacency

matrix.

Before discussing the spectra of the BIGs, we make some general remarks. The first

eigenvalue λ1 is equal to k for a k-regular graph G: each row of A has k entries equal to 1,

so A~j = k~j, where ~j denotes the all-1 vector. This also implies that ~j is an eigenvector of

G. In addition, k must be the first eigenvalue of a k-regular graph because |λi| ≤ ∆(G), the

maximum degree of G, for all i. Finally, in a connected graph, the multiplicity of k is 1.

5.2 Spectra of the BIGs

We found the spectra for each BIG for orders n = 13 and 15; within the respective orders,

all graphs were cospectral, that is, had the same eigenvalues with the same multiplicities.

Each order had three distinct eigenvalues. The spectrum for n = 13 is 15, 2, and −3 with

respective multiplicities 1, 12, and 13, and the same figures for n = 15 are 18, 3, and −3

with multiplicities 1, 14, and 20. In hopes of a general characterization, we also considered

the spectra of BIGs of one STS(n) each for permissible orders up to n = 25, using SAGE
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to generate the Steiner triple systems. The results are in Table 5.1; n = 7 was excluded

because its BIG is K7, and complete graphs have their own classification of spectra.

Table 5.1: Spectra of the Block-Intersection Graphs

STS Order Number of Vertices Degree k Eigenvalues Respective Multiplicities

9 12 9 9, 0, -3 1, 8, 3

13 26 15 15, 2, -3 1, 12, 13

15 35 18 18, 3, -3 1, 14, 20

19 57 24 24, 5, -3 1, 18, 38

21 70 27 27, 6, -3 1, 20, 49

25 100 33 33, 8, -3 1, 24, 75

... ... ... ... ...

n
n(n− 1)

6

3(n− 3)

2
k, k − n, -3 1, n− 1,

n(n− 7)

6

As is evident from the table, the BIGs all had three distinct eigenvalues, with −3 ap-

pearing in the spectrum of each graph. Using the output seen in the table, the eigenval-

ues and multiplicities could both be predicted based on the order n. Because the spectra

were highly structured, we researched further in algebraic graph theory. It can be shown

that strongly regular graphs with parameters (v, k, e, f) have eigenvalues k, s, and t, where

s, t = 1
2
(e−f±

√
∆) and ∆ = (e−f)2+4(k−f). The respective multiplicities are 1, `, and m,

where `,m = 1
2
(v − 1∓ 2k+(v−1)(e−f)√

∆
) [8]. Using the parameters (n(n−1)

6
, 3(n−3)

2
, n+3

2
, 9) of the

BIGs, the spectra calculated based on [8] matches the values predicted by our investigation.

5.3 Graph Complements and Line Graphs

Two cospectral graphs do not necessarily have cospectral graph complements, so one might

consider determining the spectra of the complements of the BIGs in an effort to distinguish
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among systems. However, it is straightforward to show that the complement G of a strongly

regular graph G is itself strongly regular. In fact, the parameters of G can be computed in

terms of the original parameters (v, k, e, f): G has parameters (v, v − k − 1, v − 2 − 2k +

f, v − 2k + e). Since the BIG complements are all strongly regular on the same parameters,

they are also all cospectral for each n and hence cannot be used to differentiate STS(n)s of

the same order.

Another simple graph operation used to obtain a new graph whose spectrum can be

informative is the creation of the line graph L(G) of a graph G. The vertex set of L(G) is

the edge set of G, and two vertices are joined in L(G) if their respective edges in G have a

vertex in common. The number of vertices for a line graph of a BIG is then 195 for n = 13

and 315 for n = 15. Now, each BIG is regular of degree k. It follows that its line graph is

(2k − 2)-regular: consider an edge e in the BIG incident to two vertices v1 and v2, which

each have k edges leaving them. Two of those, one each from v1 and v2, correspond to e,

implying that e shares a vertex with 2k − 2 edges. Hence any k-regular graph will have a

line graph that is (2k − 2)-regular.

We produced the line graphs for the BIGs and found their spectra; again all BIG line

graphs for the same order STS(n) were cospectral. In this case, strong regularity was unnec-

essary in determining the spectra of each L(BIG), as regularity itself implies cospectral line

graphs. Because each BIG has a (2k − 2)-regular line graph, a result of Sachs states that

if G has eigenvalues k, s and t with multiplicities 1, `, and m, then the respective spectrum

for L(G) is 2k − 2, k − 2 + s, k − 2 + t, and −2 with multiplicities 1, `, m, and |E(G)| − v,

where |E(G)| is the number of edges of the original graph G [3]. Because the BIGs are of

the same degree, their line graphs have identical spectra, so this spectra cannot be used to

differentiate the STS(n)s.

Remark: Although the line graph of a regular graph is regular, the same relationship

does not necessarily hold for strong regularity. This follows either from the fact that a graph
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is strongly regular if and only if it has three distinct eigenvalues or by a counting argument.

First, the line graphs of the BIGs have four eigenvalues and so are not strongly regular.

Second, consider two adjacent vertices u1 and u2 in L(G), where G is k-regular. Adjacency

implies they share a vertex v1 in G. A common neighbor u3 in the line graph would have to

be adjacent to both u1 and u2, meaning it shares a vertex with both of the corresponding

edges in G. This vertex could be v1, in which case there are k − 2 possible edges. If not v1,

then the edge u3 in G must have one incident vertex vi in common with u1 and the other

incident vertex vj in common with u2. However, this edge u3 may not be present in G if vi

and vj are non-adjacent. Because two adjacent vertices in L(G) have a variable number of

common neighbors (either k − 2 or k − 1), L(G) is not strongly regular.

5.4 Eigenspaces

For both orders n = 13 and 15, although the BIGs are cospectral, each graph’s adjacency

matrix is distinct up to permutation by vertex relabeling and so has a distinct set of eigenvec-

tors, as tested using SAGE. Because the eigenvalues and multiplicities are identical, every

graph has for each eigenvalue a vector space of the same degree (equal to the number of

vertices) and same dimension (equal to the eigenvalue’s multiplicity). However, the basis

matrices, composed of the eigenvectors, are different. It is true that the first eigenspace

always corresponds to the eigenvalue k, the degree of the BIG, and the all-1 eigenvector ~j.

In looking for algebraic invariants associated to graphs, Dragoš Cvetković defined the

angle matrix of a graph G. Given a graph on v vertices with t distinct eigenvalues µ1 >

... > µt, define βij to be the angle between the eigenspace of µi and ej, where {e1, ..., ev}

is the standard basis of Rv. The angles of G are then αij = cos(βij), which form the t × v

angle matrix (αij). This matrix is an invariant if the vertices of G are labeled such that the
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columns of the angle matrix are in lexicographic order (all references in this section are to

[7]).

The advantage to considering angle matrices is that they can distinguish many graphs

with identical spectra. Using results from Cvetković, Rowlinson, and Simić, we calculate the

angle matrices of the BIGs. They have v = n(n−1)
6

vertices and t = 3 distinct eigenvalues.

Because each BIG is walk-regular, αi1 = αi2 = · · · = αiv for i = 1, 2, 3.1 The dimension of

the eigenspace corresponding to µi is the multiplicity of µi, and by Proposition 4.2.1 in [7],

equals
v∑

j=1

α2
ij where i = 1, 2, 3. For ease of notation here, denote the multiplicity of the ith

eigenvalue as ci. Then we have ci =
v∑

j=1

α2
ij = vα2

ij, yielding angles αij =
√

ci
v

. As each BIG

of an STS(n) on the same n has the same eigenvalues of the same multiplicities, this implies

they have identical angle matrices. Thus these matrices unfortunately cannot differentiate

the block-intersection graphs.

Remark 1: The logic of the preceding paragraph shows that any two strongly regular

graphs with the same parameters have the same angle matrices, as they are walk-regular

with equal spectra. In fact, any two walk-regular graphs with equal spectra have identical

angle matrices. Hence although the angle matrix is an algebraic graph invariant, it does not

determine a graph up to isomorphism.

Remark 2: If graphs have four distinct eigenvalues, they also have the same angles. In

particular, this means the line graphs of the BIGs cannot be distinguished via angle matrices.

1This follows from the fact that a
(s)
kk =

v∑
j=1

µs
jα

2
jk, and a

(s)
kk is the number of closed walks of length s that

begin and end at vertex k.
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5.5 Distance-Regularity

Recall that the block-intersection graphs of STS(n)s are distance-regular. This property

yields information on graph spectra just as strong regularity did. First we define the adja-

cency algebra A(G) of a graph G with adjacency matrix A as the set of all polynomials in A

with real coefficients. Now denote the diameter of G as d. A basis for A(G) is then given by

the set {A0, A1, ..., Ad}, where the Ah are distance matrices defined as follows. Entry aij of

Ah is 1 if the distance between the ith and jth vertices equals h and 0 otherwise. In a BIG,

d = 2, and note that A0 = I, A1 = A, and A0 + A1 + A2 = J , J being the all-1 matrix.

Because the distance matrices are a basis for A(G), the degree of the minimal polynomial of

A is d + 1 = 3 and so G has exactly three distinct eigenvalues. This of course matches the

total dictated by strong regularity.

Furthermore, the parameters of a distance-regular graph, represented in the intersection

array, can be used to calculate the three eigenvalues and their multiplicities. In the Intro-

duction, we computed the intersection array of a BIG on an STS(n) to be {b0, b1; c1, c2}

= {3(n−3)
2

, n − 7; 1, 9}, with related values a1 = n+3
2

and a2 = 3(n−9)
2

. From the distance

matrices, Biggs develops a different set of (d+ 1)× (d+ 1) matrices, in particular resulting

in the intersection matrix B based on the ai, bi, and ci, which we list here for the BIGs:

B =


0 1 0

3(n− 3)

2

n+ 3

2
9

0 n− 7
3(n− 9)

2


whose eigenvalues coincide with those of the graph G [3]. This method can be advantageous

for reducing the size of the matrix of interest from n(n−1)
6
× n(n−1)

6
to 3 × 3 for the BIGs.

The eigenvalues we calculated from the intersection matrices for orders n = 13 and 15 did

indeed match those listed above. Biggs also includes a formula to determine the multiplicity
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of each eigenvalue, involving the number of vertices and the inner product of left and right

eigenvectors.2 Thus the highly-structured nature of the BIGs offers multiple ways to compute

their spectra.

Remark: The adjacency algebra A(G) of any strongly regular graph G has as a basis

{I, A, J − I − A} [8]. Because the block-intersection graphs are of diameter 2, this basis is

the same as the set of distance matrices {A0, A1, A2}.

Although spectral graph theory yields many interesting results on the block-intersection

graphs, the spectrum and eigenspaces of the BIGs unfortunately were not able to aid in

distinguishing the underlying Steiner triple systems of orders 13 and 15 (or any STS(n)s on

the same order). In the final chapter, we address the success of the methods considered thus

far in differentiating systems.

2To determine the multiplicity of eigenvalue λi, compute m(λi) = |V (G)|
(ui,vi)

, where ui and vi are left and

right eigenvectors, respectively, corresponding to λi and with first entry 1. |V (G)| is the number of vertices
and the denominator represents the inner product.
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Chapter 6

Differentiating Systems

As discussed in the Introduction, there is only one Steiner triple system up to isomorphism

for orders n = 3, 7, and 9, but there are two isomorphism types for STS(13)s and eighty

for STS(15)s. We turned to block-intersection graphs and their invariants in an attempt to

differentiate these systems.

6.1 Block-Intersection Graphs

The primary reason we have studied block-intersection graphs of Steiner triple systems, other

than to determine some of their basic characteristics and properties, was to find a way to

distinguish non-isomorphic systems of the same order. Clearly this is not a problem for

n = 3, 7, or 9, which have only one STS(n) up to isomorphism. The two systems of order 13

were easily distinguished by either the maximal clique census or the maximal independent

set census, as their respective totals differed on these graph invariants. However, Steiner

triple systems of order 15 proved to be more of a challenge. Because each BIG had identical

graph spectra, we considered cliques and independent sets.
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6.1.1 Cliques and Independent Sets

As stated above, only eighteen STS(15)s had distinct clique censuses, so sixty-two had the

same census as at least one other system. We also had seventy-four with distinct independent

set censuses and six without. We then used both censuses simultaneously, which resulted in

seventy-six systems having a unique breakdown of cliques and independent sets (Table 6.1

shows the data for the additional two systems). But there were still two pairs of systems

that could not be distinguished by this method, as each pair had an identical number of

cliques and independent sets of the various sizes. Now, because there are eighty STS(15)s

and systems of the same order are isomorphic if and only if their BIGs are isomorphic, we

know there are eighty distinct BIGs up to isomorphism. Yet we still had four graphs that

could not be differentiated; the two pairs were systems 20 and 21 and systems 46 and 65.

Table 6.1: Systems Differentiated Using Both Censuses

System
Total Maximal

Independent Sets
Size 5 Size 4 Size 3 Total Maximal Cliques

58 251 3 168 80 370

74 251 3 168 80 363

Remark: Because the amount of time required for a computer to find cliques and

independent sets is small, these censuses of the block-intersection graphs do represent an

efficient way to distinguish almost all of the STS(15)s.

6.1.2 Line Graphs

Two line graphs L(G1) and L(G2) are isomorphic if and only if their original graphs G1

and G2 are isomorphic, except in the case where G1 and G2 are K3 and K1,3
1, a result of

Whitney’s from 1932 [19]. The line graphs of the two BIGs for order n = 13 were tested

1K1,3 consists of four vertices, one of which is adjacent to each of the other three vertices.
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using SAGE and found to be non-isomorphic, and all BIG line graphs for n = 15 were

mutually non-isomorphic as well. Because these line graphs were clearly not defined from

K3 or K1,3, their corresponding graphs are also non-isomorphic. While this constitutes a

method of distinguishing systems of a given order, the method in all likelihood would not

be preferred, as it still relies on testing for graph isomorphisms and on much larger graphs.

The number of vertices jumps from 26 in the BIG to 195 in its line graph just for n = 13. It

would almost certainly be quicker to simply test the BIGs themselves for isomorphism.

6.2 Cycle Structure

Another graph that can be formed from a Steiner triple system is defined as follows. For

any pair of elements {a, b} of V, the graph Gab has vertex set V − {a, b, c}, where c is the

other element from the triple containing a and b. Vertices i and j are connected by an edge

if (a, i, j) or (b, i, j) is a triple in B. It follows that the resulting graph is regular of degree 2,

but Gab may not be connected. Each component, a maximal connected subgraph, is an even

cycle, which is a 2-regular graph on an even number of vertices. This graph is described but

not given a name by Mathon, Phelps, and Rosa in [12], in which the results discussed below

appear. Colbourn and Rosa later call it the double neighborhood of a and b, although they

allow c to be a vertex of degree 0 [5].

Each cycle in Gab has length at least four and at most n− 3, due to the removal of three

elements in creating the vertex set. The list of the cycle lengths in lexicographic order is

the cycle list and partitions n − 3 into even parts not less than 4. The cycle structure is

the multiset of cycle lists in lexicographic order for all possible
(
n
2

)
pairs from V . Now let

π(n) be the number of distinct cycle lists for an STS(n). A useful compressed form of the

cycle structure data is the cycle vector, which comprises π(n) components such that position
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i equals the number of occurrences of the ith cycle list. The sum of the coordinates of the

cycle vector will be
(
n
2

)
.

Cycle structure completely distinguishes Steiner triple systems of orders 13 and 15. In

general, isomorphic systems yield identical cycle structures, but the converse may not hold.

For n = 13, there are
(

13
2

)
= 78 cycle lists, each of the form `1 = 4 + 6 or `2 = 10. For order

15, the number of cycle lists is
(

15
2

)
= 105, and there are four distinct lists: `1 = 4 + 4 + 4,

`2 = 4 + 8, `3 = 6 + 6, and `4 = 12. The cycle vectors for an STS(13) and STS(15) are then

(a1, a2) and (a1, a2, a3, a4), respectively, where ai is the number of occurrences of `i among

the different cycle lists.

It is possible for two systems to have identical cycle vectors but different cycle structures,

so cycle vectors alone are not always enough information. However, the two pairs of STS(15)s

not differentiated by the block-intersection graphs were distinguished by their cycle vectors,

shown in Table 6.2, so the entire cycle structure was unnecessary.

Table 6.2: Cycle Vectors for Select STS(15)s

System Cycle Vector

20 (4, 48, 4, 49)

21 (5, 45, 7, 48)

46 (1, 18, 14, 72)

65 (0, 21, 14, 70)

6.3 Non-Graphical Methods

Because the BIGs were not enough to completely distinguish the STS(15)s, we researched

alternate methods in the literature to evaluate whether other approaches were successful.
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6.3.1 Convex Hulls of the Triples

In 2005, Olivier Anglada and Jean-François Maurras published their results on differentiating

the eighty STS(15)s by the convex hulls of the characteristic vectors of the triples. For each

block B ∈ B we define its characteristic vector xB in R15 by x(i) = 1 if i − 1 ∈ B and

x(i) = 0 otherwise, for i = 1, 2, ..., 15. The convex hull associated with a particular STS(15)

is then the set of all convex combinations of the characteristic vectors of its triples, where

a convex combination is a linear combination of a subset of the characteristic vectors such

that the real-valued coefficients are all non-negative and sum to 1.

Anglada and Maurras used computer code to count the number of facets of the convex

hull for each STS(15) and found that the totals were all distinct. They were thus able to

conclude that these systems are all non-isomorphic. The number of facets varied greatly,

from 150 for the first STS(15) to 32,699 for STS(15) #77. Although the range is large,

only two systems have facets totaling under 2,316. Note the number of facets provides an

alternate ordering for the systems.

6.3.2 Binary Linear Codes

Vladimir D. Tonchev and Robert S. Weishaar detailed their success in differentiating the

STS(15)s using binary linear codes generated by the incidence matrix of each system. Given

an STS(n), its incidence matrix M is the n × n(n−1)
6

element-by-triple matrix where entry

aij = 1 if the element i is in the jth triple and 0 otherwise. If the rows and columns of the

incidence matrix for a system can be permuted into the incidence matrix of another system,

the two STS(n)s are isomorphic. Tonchev and Weishaar note that a k-length code is a linear

subspace of the vector space of dimension k over some finite field F . Because the article uses

binary codes, F is GF(2). Finally, codes are isomorphic if a permutation of the k coordinate

positions results in one code being obtained from the other.
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The code C of an STS(n) is defined to be the row space of its incidence matrix M ; C

has length n(n−1)
6

and dimension equal to the rank of M over GF(2). Since the rows of M

correspond to the elements or points of the 15-set, C is more specifically called the code of

the points. Similarly, one can consider the code of the blocks, of length n, as the column

space of M . For the STS(15)s, Tonchev and Weishaar list several computations: size of the

automorphism groups of the system and of its code, rank of the incidence matrix of a system

over GF(2), and the weight distribution (number of codewords with a particular weight,

using the Hamming weight of a vector).

The codes of the blocks were not able to distinguish the systems of order 15, as they were

partitioned into five isomorphism classes according to the rank of the incidence matrices.

But the length-35 codes of the points were all non-isomorphic, thereby showing another way

to distinguish the STS(15)s. The weight distributions and column sums of matrices formed

by codewords of weight 7 associated to each code of the points was enough to show non-

isomorphism. The authors remark on an interesting result, that the system with the largest

code automorphism group was not the system with the largest automorphism group. System

16 has a code group of order 225,792 but its automorphism group has order 168. On the

other hand, STS(15) #1 has the largest automorphism group, which actually has the same

size as its code automorphism group: order 20,160.

6.3.3 Lattices

A k-dimensional lattice L is a free abelian group of rank k or a discrete group of vectors in Rk,

and Michel Deza and Viatcheslav Grishukhin use lattices as a way to categorize STS(15)s.

The set B of triples of an STS(n) can be used to form the set V(B) of vectors corresponding

to B, which generates affinely a lattice L(B) contained in the lattice
√

2A14. Vectors of norm

4 in L(B) are themselves a set R(B) that form a root system, all vectors of norm 2 in a

lattice composed of vectors with even norms. The authors study the lattices generated by
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the STS(15)s, and they find that the lattices have a total of five different root systems, all

of them sub-lattices of A14. The eighty STS(15)s are partitioned into the root systems ∅,

A7
1, A2A

3
3, A6A7, and A14. Systems 1 and 2 are the only systems that fall into ∅ and A7

1,

respectively. Numbers 3 through 7 are in the third type, 8 through 22 and 67 are in the

fourth type, and the remaining systems all fall into the final type. The two pairs of STS(15)s

not distinguished by the BIGs, systems {20, 21} and {46, 65}, are of the same type of lattice

root system so cannot be distinguished by this method either.

Remark: The partition of STS(15)s resulting from classifying the systems into the five

types of root systems coincides with the partition resulting from the isomorphism classes of

the binary linear codes of the blocks discussed in the previous section. The equivalence of

the two methods was shown by Patrick Solé in 1997 [15].

6.3.4 Miscellaneous

We survey several other properties of triple systems not derived from the block-intersection

graphs.

Automorphism Groups: As briefly mentioned above, the first STS(15) has an auto-

morphism group of order 20,160. This is by far the largest size; the next highest is 288,

and after that there are two systems with orders 192 and 168. Seven systems have auto-

morphism groups of order between 21 and 96, and there are another seven between 5 and

12. The majority of the systems are of smaller order: there are eight, twelve, and six each

of orders 4, 3, and 2, respectively. Finally, nearly half of the STS(15)s, thirty-six of eighty,

have automorphism groups of order 1. In the literature, triple systems with only the identity

automorphism are called automorphism-free. Note that systems with automorphism groups

of unequal orders are certainly non-isomorphic.

Chromatic Index: The chromatic index CI of an STS(n) is the smallest number of

colors assigned to the triples such that no intersecting triples have the same color. In a BIG,
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each vertex corresponds to a triple, and so the chromatic index of the system coincides with

the chromatic number χ(G) of the block-intersection graph G. Every STS(15) has chromatic

index 7, 8, or 9. Because only four are of CI = 7 and thirteen of CI = 8, with over three-

fourths of the systems having CI = 9, the chromatic index can be informative but is not the

best way to distinguish systems. Systems of order 15 with CI = 7 = χ(G) are resolvable, as

shown in Chapter 4.

Parallel Classes: We defined parallel classes in the introduction in the context of

Kirkman triple systems, and because the number of such classes varies per system, this total

can be used to differentiate STS(15)s. The smallest number is 0 and the largest is 56, but

just six have 16 or more. In fact, 12.5% of the systems do not contain any parallel classes,

22.5% have only 1, and 15% have 2, so fully half of the systems fall between 0 and 2. The

number of systems with a count of parallel classes equal to 3 or 4 is sixteen, with eight

systems having 5 or 6, and ten with somewhere between 7 and 12.

Since a parallel class in an STS(15) is an independent set in its BIG, these figures on

parallel classes match the totals we obtained on maximum independent sets in the BIGs.

For example, we found that ten systems had α(G) = 4, which implied they contained no

parallel classes, and ten of eighty is 12.5%. Of those with α(G) = 5, the number of maximum

independent sets did range from 1 to 56.

Pasch Configurations: A Pasch configuration is any collection of four triples on six

elements of the form (a, b, c), (a, d, e), (b, e, f), and (c, d, f). Note that each element will

not be paired with all of the five other elements. Within an STS(n), many other configura-

tions can be defined by changing the number of triples or number of elements involved, but

Pasch configurations have been frequently studied in conjunction with Steiner triple systems

because they are the smallest configuration (in terms of number of triples) that occurs a

variable number of times per STS(15). There are from 0 to 105 Pasch configurations in the

systems of order 15, although only six fall above 37.
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Resolvability: Resolvability of a Steiner triple system has been discussed in other con-

texts above, but it is another property that shows non-isomorphism of systems on the same

order. Recall that a resolvable STS(n) is one whose set of triples can be partitioned into

parallel classes. There are four resolvable STS(15)s, which cannot be isomorphic to a non-

resolvable system. One of these has only a single resolution, but the other three each have

two different resolutions [6]. This is an interesting point: there are seven possible resolutions

of an STS(15) up to isomorphism, but they only occur on four underlying systems. Resolv-

ability is clearly not a very efficient method of differentiating systems, but it does constitute

an invariant. The resolvable STS(15)s are systems 1, 7, 19, and 61.

Remark: The two pairs of STS(15)s that could not be distinguished by graph invariants

of their block-intersection graphs were systems {20, 21} and {46, 65}. The properties asso-

ciated with Steiner triple systems discussed above that are identical for each of these pairs

are the size of automorphism group, chromatic index, number of parallel classes, number of

Pasch configurations, and resolvability.

6.4 Summary

Of the properties discussed in this chapter, the invariants of Steiner triple systems that could

distinguish each of the eighty systems of order 15, up to isomorphism, were cycle structure,

number of facets of the convex hulls of the triples’ characteristic vectors, and binary linear

codes of the points (elements in V ). Using a test for graph isomorphism, the STS(15)s were

also distinguished by their block-intersection graphs and by the corresponding line graphs.

The other methods studied in relation to the BIGs could not fully differentiate the systems,

although we were successful for seventy-six out of eighty. The most useful BIG invariant was

maximal independent sets; the number and size of such sets were distinct for seventy-four

systems.
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Appendix A

Steiner Triple Systems of Order 13

1. { (0,1,2), (0,3,4), (0,5,6), (0,7,8), (0,9,10), (0,11,12), (1,3,5), (1,4,7), (1,6,8), (1,9,11),

(1,10,12), (2,3,9), (2,4,5), (2,6,10), (2,7,12), (2,8,11), (3,6,11), (3,7,10), (3,8,12), (4,6,12),

(4,8,9), (4,10,11), (5,7,11), (5,8,10), (5,9,12), (6,7,9) }

2. { (0,1,2), (0,3,4), (0,5,6), (0,7,8), (0,9,10), (0,11,12), (1,3,5), (1,4,7), (1,6,8), (1,9,11),

(1,10,12), (2,3,9), (2,4,5), (2,6,10), (2,7,11), (2,8,12), (3,6,11), (3,7,12), (3,8,10), (4,6,12),

(4,8,9), (4,10,11), (5,7,10), (5,8,11), (5,9,12), (6,7,9) }
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Appendix B

Code Used to Generate

Block-Intersection Graphs

# Create a list with each STS(15) as an entry #

# The STS(15)s are labeled x0 through x79 #

List_15 = [x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,

x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,

x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,

x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,

x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,

x50,x51,x52,x53,x54,x55,x56,x57,x58,x59,

x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,

x70,x71,x72,x73,x74,x75,x76,x77,x78,x79]

n = len(x0) # number of triples

# Initialize lists that will contain adjacency matrices and BIGs #

M_15 = [a for a in range(80)]

51



G_15 = [a for a in range(80)]

# Create adjacency matrices and BIGs for each STS(15) #

for a in range(80):

M_15[a] = matrix(n,n) # this creates a matrix filled with 0’s

for i in range(n):

for j in range(n):

for k in range(3):

for l in range(3):

if j!=i and List_15[a][i][k] == List_15[a][j][l]:

M_15[a][i,j] = 1

G_15[a] = Graph(M_15[a])
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