
EXTRACTION AND INDEXING OF TRIPLET-BASED KNOWLEDGE USING NATURAL

LANGUAGE PROCESSING

by

David C. Hooge Jr.

(Under the Direction of Budak Arpinar)

ABSTRACT

A proper understanding of any document relies heavily upon two things: an

understanding of the relationships between terms and a grasp of the manner in which language

relates one term to another. For example a full comprehension of the sentence “Jane plays

basketball” requires the reader to first understand that Jane is related to basketball by her taking

part in this activity; second, the reader must have an understanding that of how basketball relates

to other terms. Thus, for a full grasp of the sentence the reader must be aware that basketball is a

sport among other things. These two understandings are missing from current search and storage

methodologies and are instead largely replaced with word distance measures. As such the only

relation stored by most modern methods is that the word “Jane” appears near the word

“basketball.” Our system remedies these two problems through both relationship recognition as

well as a grasp of how concepts relate to one another as in the linking of “sports” to “basketball.”

This allows for automated semantic information storage and beyond this enables storage of

information in a manner that resembles the structure of language.

INDEX WORDS: Natural Language Semantic Store, Semantic Web, Ontologies, RDF,
Indexing, Natural Language Processing

EXTRACTION AND INDEXING OF TRIPLET-BASED KNOWLEDGE USING NATURAL

LANGUAGE PROCESSING

by

DAVID CARL HOOGE JR.

B.S., Birmingham-Southern College, 2003

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2007

© 2007

David Carl Hooge Jr.

All Rights Reserved

EXTRACTION AND INDEXING OF TRIPLET-BASED KNOWLEDGE USING NATURAL

LANGUAGE PROCESSING

by

DAVID CARL HOOGE JR.

Major Professor: Budak Arpinar

Committee: Prashant Doshi
John Miller

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2007

iv

TABLE OF CONTENTS

Page

LIST OF TABLES... vi

LIST OF FIGURES .. vii

CHAPTER

1 INTRODUCTION ...1

2 MOTIVATION..4

Entity Placement Problem...5

Relationship Recognition Problem..6

3 BACKGROUND ...7

A History of NLP ..9

NLP and the Semantic Web ..11

Marrying NLP and Semantic Web ..18

4 NATURAL LANGUAGE IMPLEMENTATION ..20

Natural Language Processor..20

Natural Language Algorithm Overview..23

Entity Recognition...25

Predicate – Object Recognition...27

Predicate – Object Augmentation..29

Triplet Creation ...30

Pronoun Resolution ...30

v

Triplet Filtration ..31

Secondary Predicate Parsing ...32

5 TERM HIERARCHY TREE IMPLEMENTATION ..35

Dictionary Store ..38

Storage Platform..43

6 EXPERIMENTAL RESULTS...44

7 CONCLUSION..49

8 FUTURE WORKS...50

REFERENCES ..52

vi

LIST OF TABLES

Page

Table 1: A Step-by-Step Iteration through the Tree in Figure 1..28

vii

LIST OF FIGURES

Page

Figure 1: The Parse Tree Generated by JavaNLP..21

Figure 2: A Hypernym Relationship in WordNet..27

Figure 3: Two Predicate Parse Trees ...33

Figure 4: An Example of a Term Hierarchy Tree..35

Figure 5: Raw Triplet Data Produced by a Search for Chair in WordNet.....................................37

Figure 6: System Architecture ...42

Figure 7: Percentage of Correct Triplets Generated ..46

Figure 8: Triplet Generation Numbers...46

1

CHAPTER 1

INTRODUCTION

The most often cited challenge of the Semantic Web movement is the transformation of

Natural Language text into Semantic Information [Bern00a]. That is, the alteration of human

understandable information into machine readable data. Even HTML content lacks methods for

allowing a program to process a document’s meaning. There are some attempts to remedy this

problem such as allowing the placement of meta-information into HTML and Web sites that

allow their users to annotate other sites with terms regarding the subject of a given site or page

[Abra98, Hamm05] or snippets of a page (i.e., microformats, RDFa (www.rdfa.info)). But for

the most part, the act of placing a document online is largely akin to placing a new book onto a

bookshelf with only a vague title to guide a reader to the information.

The natural and intuitive ability of humans to understand language, in both written and

spoken form, comes from the knowledge of the terms being discussed and the relations among

these terms. For example, English speakers know that a more general term for “table” is

“furniture” and that “stuff” and “thing” can be used as a catchall for any concept. Computer

programs, on the other hand, have to rely on analysis such as frequency of terms, and structure of

links between the terms (i.e., href in HTML). Such methods have proven success as it is evident

by top search engines. However, we claim that a better computer processing of text is possible by

exploiting relationships among the terms. As the current Web evolves into the Semantic Web, it

is expected that relationships will play an increasingly significant role both in the field of

research [Shet03] and within the commercial sector [Shet05]. In fact, there are commercial

products that make use of natural language parsing within a specific domain, such as MedScan1.

1 http://ariadnegenomics.com/products/medscan/

http://ariadnegenomics.com/products/medscan/

2

The challenge is, to develop methods that can convert sentences into a form that allows better

computer processing (i.e., improvements on retrieval of correct documents).

Search engines have a limited understanding of relationships present in text and are

generally limited to the notion that a term is present in a document and appears within a certain

distance of other terms. That is, the actual relationships between data are ignored. Without

knowledge of the relationships present in data any queries for related entities will be error prone.

Our approach attempts to remedy this by injecting a human’s understanding of language into

document processing for indexing and retrieval. This is accomplished first, through the

recognition of both terms and any relationships among them; and secondly by relating the terms

and relationships to an ontology of terms. The ontology used herein is structured in such a way

that more general or more specific forms of a term are linked. For example, “Sports” and “Golf”

are directly linked because “Golf” represents a specific sport. This allows our system a grasp of

both the relationships present in the text as well as relationships among terms that may not be

directly present in the text. Thus, our system seeks to address two major problems: one, the

problem of entity placement and two, the problem of relationship recognition. Here, by the entity

placement problem we refer to the lack of understanding of the specificity, generality, or

relationship that a term has to other entities. This concept was illustrated in the previous example

where it was noted that “Golf” and “Sports” are related by one term being more specific than the

other. The relationship recognition problem represents a lack of understanding of the links

between entities as stated in the text. For example, the sentence “Joe is a Lawyer,” draws a clear

relationship between Joe and the profession of lawyer. Typically, this type of relationships is

completely ignored in favor of a more simplistic inspection of word distance. Our approach to

these problems relies on breaking sentences into three pieces consisting of a subject, a relation,

3

and an object. For instance, suppose a document contains the text: “viruses are the cause of many

diseases.” Most search engines would note that the terms “viruses” and “diseases” appear in the

same document somewhat close to each other and therefore some relationships exist between

them. However, there is a causal relationship present between the terms that would be ignored.

Our approach recognizes the causal relationship present in this sentence and represents this using

a subject – predicate – object form; or more specifically as “Viruses” <cause of> “diseases.”

In this paper, we use ontologies and natural language processing to move one step ahead

on the transformation of natural language text into a form or representation that facilitates an

improvement on the processing of information. The contributions of this paper are two-fold.

First, we introduce a novel method of creating subject – predicate – object triplets from natural

language. Second, we demonstrate the applicability of this triplet representation for querying and

retrieval of documents through an application that we developed.

4

CHAPTER 2

MOTIVATION

People have a natural and intuitive understanding of the hierarchy inherent to the

language they speak. As mentioned before, “table” and “furniture” are related by the first being

a more specific form of the second. It is this comprehension of general to specific along with a

grasp of the specific relations among terms that allows speakers to quickly move from one topic

to another in conversation with little or no explanation of the transition.

Unfortunately, this human understanding of language is rarely recognized by search

applications. Search engines simply recognize what terms are contained within a document and

their proximity to each other. There is no understanding of the actual relations among terms or

where the term stands in the hierarchy of language. Golf is recognized only as a location in

memory and not as a sport.

Beyond the hierarchy of general to specific, search engines have an extremely limited

understanding of any relationship present in the document. This comprehension is generally

limited to a knowledge that a term is present in a document and appears within a certain distance

of other terms. This causes the system to be ignorant of the actual relationships between entities

in the data. Without knowledge of the relationships present in data any queries for related

entities will be error prone. As an example, suppose a user wishes to search for “famous authors

not awarded a Nobel prize” or any other negative relationship between two entities. This would

return documents that contain “authors” and “Nobel prize” in close proximity which would, in

all likelihood, be a list of authors that where awarded a Nobel prize; the exact opposite of what

the user was seeking.

5

This underscores the strength of the Semantic Web model and the weakness of the

current Internet. As it currently stands the World Wide Web contains no well-defined or

coherent mechanism for storing or processing relationships between pieces of information. Most

current Internet search applications are based solely on the relationship of reference proximity

and have no understanding of the nature of a relationship or the specificity of a given term.

The Natural Language Semantic Store attempts to remedy this by injecting a human’s

understanding of language into search and retrieval. Both TAP [Guha02] and WordNet [Fell98]

are used to lend the system an understanding of the hierarchy of language while natural language

parsing in the form of JavaNLP [Klei02] is used to mine relationships among entities. Discovery

of entity relationships is used not only during document storage but also during user search in

order to ensure a constant awareness of links between entities.

Thus, the system detailed herein addresses two major problems present in current search

methodologies. One, an ignorance of the relationships specified by the author and two, a lack of

understanding of how different terms relate to each other through the structure of language.

These two problems are detailed in greater depth in the two sections to follow.

2.1 Entity Placement Problem

When an entity is hashed to a location in memory this provides no understanding of the

specificity, generality, or relationship the term has to other entities. An understanding of these

concepts can not only improve search results but also lend the engine an understanding that

emulates a human’s own grasp of language. The system and algorithm presented here attempts

to address this lack of understanding on the part of other search methods by using developed

ontologies in addition to natural language processing techniques. This lends the system a

comprehension of language that resembles a human’s own understanding.

6

2.2 Relationship Recognition Problem

Indexing based on term location in a document causes any relationships between entities

presented in the text to go unprocessed. The result of this is that all searches simply scan for

terms identical to those present in a query and appearing in close proximity to each other. The

system detailed herein attempts to repair this problem through natural language processing that

converts sentences and queries into their component entities and recognizes any relationships

between them.

7

CHAPTER 3

BACKGROUND

One of the major goals of Natural Language Processing is to lend a computer the same

level of language understanding possessed by a fluent speaker. While this goal currently remains

unaccomplished there are a multitude of progressions along numerous paths that all attempting to

create a viable solution. However, despite the existence of many different paths most people

would readily agree that any application that finally achieves this goal would require three

general components [Mahe95], [Cull86].

1. Dictionary: More specifically the system requires an understanding of the meaning of

words and their association with other words. This is best thought of, as the title implies,

as lending the program a dictionary it can page through and look up word meanings.

This does not, however, denote a true understanding of the word; that portion of the

system in detailed in the following component.

2. Inference Engine: Where the previous dictionary component lends the system the ability

to know the various meanings of a word; an Inference Engine allows the system to

choose from amongst them. For example: the word chair has two very distinct and

different meanings, namely it can refer to the article of furniture one sits upon or the head

of some governing body as in “science department chair.” The dictionary component

reports these two meanings to the program whereas the inference engine gives the ability

to choose the proper definition for the situation.

3. Language Understanding: Arguably an understanding of the language naturally stems

from the combination of the above two components, however, for the sake of

completeness it is listed here as a separate piece. This represents the ability of the system

8

to fully realize the meaning an author intended in writing a given passage. This ranges

from word understanding to a grasp of the general meaning of a sentence.

This is not to say that the ultimate ends of Natural Language Processing is language

fluency. This idea is better viewed as a general idealized goal for the field. Many of the systems

described in the sections that follow have goals that are quite divergent from that of full language

understanding. However, they do all share a common thread in the desire to give a computer

application some understanding of human communication. The understanding a system seeks

ranges from computer object representation of the sentence [Klei02] to text processing for the

purpose of classifying document as being part of a given field [Guth99] to even aiding document

retrieval in larger systems [Jone99].

Perhaps then a better statement of the aims of NLP is that it wishes to create a machine

understanding of natural language. This understanding is not always analogous with fluency.

NLP seeks to give a computer some ability to process human created text in much the same

manner a computer utilizes a data object or accesses a database. It wishes to gift the computer

with the ability to pull information from text in the same manner data is pulled from a database

upon execution of a query.

This desire is extraordinarily similar to that of the Semantic Web movement which, in

part, wishes to transform the web from a shelf of books into a database. At their heart both seek

to transform something originally meant for human consumption into something that a machine

has a ready understanding of. This represents the greatest link between the two subsets of

Computer Science in addition to underscoring why the combinations of their methods is both

ready and needed.

9

In this section we will first provide an overview of the background of the Natural

Language Processing subset of Artificial Intelligence, then move to overview a few modern

systems with a special focus on any ways in which Natural Language uses several of the

methodologies also associated with the Semantic Web movement.

3.1 A History of NLP

Natural Language Processing found its beginnings in the mid-1960s with two major

systems containing similar underlying functionality: ELIZA [Weiz66] and STUDENT [Bobr66].

These two systems are highly representative of what can be considered the first generation of

Natural Language Processing systems. Their understanding of language, as well as the domains

in which they were able to function, were extremely limited. This heavy domain dependence

stemmed from a programmatic reliance upon grammatical structure and word meaning rules that

existed solely within a single domain. This means that the computers lacked any ability to

understand the meaning behind language and rather emulated this understanding through the

rules that always held true for a given domain. For example, in the domain of law the word

“ruled” denotes a decision handed down by a judge, thus the outcome of a given court case can

not be far behind. In this way these systems used general heuristics as well as exploiting clichéd

phrases within the domain to create the illusion of text understanding. In addition to these

limitations the systems were strictly able to process simple declarative or interrogative sentences

and nothing more complex.

Running parallel to these systems was what, at the time, seemed like a promising

branching of NLP: language translation. While this segment is, for the most part, outside of the

scope of this overview it is important to note the effect early translation programs had upon later

NLP applications. The first translation applications sought to convert between one language and

10

another through a simple dictionary understanding of words. This means that terms in one

language were simply converted to their counterparts in another [Cull86]. However, this once

again points to the problem of choosing which meaning of a word is in current use. This

approach ultimately provided unacceptable results leading to the aforementioned conviction that

any natural language system required something more than a dictionary understanding of the

words being used.

Later generations of NLP applications learned from the previous processing and

translations attempts and included an integration of semantics. Of note in this vein was the

SHRDLU [Wino72] system which married semantic understanding with a reasoning engine

borrowed from Artificial Intelligence. The promising results from this lent further credence to

the belief that language understanding required a grasp of both word meaning and word use.

This second generation also marked the advent of systems that sought to transform natural

language into some machine understandable intermediary form [Scha75] rather than create a

direct understanding of language. This process can be thought of as a conversion of the human

created text into object representation. This allows for application processing that is much the

same as the manner in which a program is able to interact with its own contained objects. This

lends a degree of representational understanding of the sentence to the program.

These initial generations of NLP research are outlined here to further emphasis the ready

ability to combine Natural Language techniques with those of the Semantic Web. These two

subsets of Computer Science seek to, in some sense, lend programs the ability to understand text

meant strictly for human consumption.

11

3.2 NLP and the Semantic Web

As NLP systems have matured over the years they have also realized an increased need

for language understanding. As time has passed this need for language understanding has drawn

closer and closer to the Semantic Web vision for a machine understandable World Wide Web. It

is our belief that the two subsets have of late drawn close enough that a linking of the two is

nearly unavoidable.

Perhaps the best example of this is the previously mentioned ontological based NLP

engine. This engine, referred to as the Mikrokosmos Project [Mahe95], utilizes a situated

ontology in order to allow the program an in-depth understanding of the language of a given

domain. In fact more descriptive time is spent, within the framework of the paper, describing the

creation of the ontology rather than the formulation of the Natural Language engine. This

underlies the project’s heavy reliance upon its ontology, a concept that represents one of the

major methodologies at the heart of the Semantic Web movement. In particular the

Mikrokosmos project outlines several general ways in which an ontology bolsters the process of

Natural Language parsing or any other system:

1. Symbolic Meaning: A fully formed ontology guarantees that every concept represented

within a text will not only be mapped to meaning but to relationship with other concepts.

This ensures some baseline understanding of any term used within the text.

2. Meaning Collapse: Because of an ontology's ability to store relationships amongst

objects in addition to the object’s meaning much of the definition of a word can be

collapsed and represented through relationships. For example, the concept of a

“syndrome” is highly linked to medical science. This is a fact normally explained in the

12

definition of this concept. An ontology would allow for the explicit omission of this

information in favor of simply showing a link between the two.

3. Constraint Understanding: Some concepts only make sense within certain bounds. For

example: liquid water can only exist at a range between thirty-two and two hundred and

twelve degrees Fahrenheit. An ontological representation allows for easy understanding

of complex concepts such as this and gives natural language processor a shortcut to

understanding.

4. Faster Learning: An existing ontology provides a groundwork for the understanding of

any new concept. This concept is quite familiar to most people, however few have seen

this idea stated in such a way. The idea here is that once one has a baseline

understanding of a topic it becomes easier to gain additional understanding regarding this

subject. For example, children are taught addition prior to multiplication because once

addition has been learned the understanding of multiplication simply requires one’s mind

to compute several addition functions.

The key difference between this work and our own is the system’s reliance upon carefully

formatted and correct domain information. Our system has none of these requirements and as

such has none of the domain dependences and needs for carefully constructed knowledge bases

to represent them.

Another system that attempts automated information extraction from natural language

text is the Artequakt project [Alan03]. However, like the previous system Artequakt also

requires a previously formed ontology in order to fully extract information. Here the ontology

takes the form of a classification structure rather than the more general ontology of terms as was

seen in the Mikrokosmos project. This classification ontology is utilized as the system searches

13

online for documents and information that matches its in-built classification structure. Thus, the

system contains no initial corpus of information but rather issues searches to web search engines

in order to locate information related to the ontology that it is given. Thus, the system no only

locates its own information but is also able to update the information it extracts as new facts are

placed on the web.

Like the Mikrokosmos project mentioned before the Artequakt system differs from our

own in its reliance upon a correctly constructed ontology. Thus, the user must in large part tell

the system what information he or she wishes to locate and then run the system in order to allow

it to find this information. Due to our reliance upon natural language processing the program

detailed herein is able to extract information without a previously created ontology and beyond

this is able to create information from documents related to any domain.

Another example of a Natural Language system that includes a heavy reliance upon

ontological information comes from the use of WordNet [Fell98] to create much of the word

understanding present in the previous system. It should, however, be noted that WordNet

represents something closer to a general language understanding mechanism rather than the

ontology present in the previous system. Specifically, Amit Bagga et al. illustrates one use of

WordNet with their message understanding system [Bagg97]. This system seeks to allow its

user to build an information extraction system based not on text formatting or regular

expressions, as is frequently used, but on an understanding of the language given in the text. In

much the same way as was mentioned previously with a situated ontology WordNet provides the

ability for the program to gain a semantic understanding of the words and phrases being used in

addition to a comprehension of a word’s relation to other terms. This work diverges from our

own by its manner of information extraction. More specifically the message understanding

14

system extracts information from a Web page into a preexisting template. Thus, the program

scans the text looking for specific pieces of information such as phone number or street address

rather than seeking to capture all information present in the text.

A similar use of a language ontology is seen in the Semtag and Seeker project [Dill03].

The information created by the Semtag portion of the project is then used by seeker to index the

information and allowing for speedy retrieval. Here the TAP ontology is used to allow entity

recognition in the three step process of semantic tagging:

1. Spotting pass: Documents are retrieved from the store and all references to

entities in TAP are located. The system then stores the ten words to either side of

the entity reference creating a window of context around the object.

2. Learning pass: Once all windows from the document store have been saved they

are all scanned in order to determine the corpus wide distribution of terms.

3. Tagging pass: The distribution of terms is used in this pass to disambiguate all the

terms. This is done by inspection of terms contained within the windows

surrounding each entity as well as within the document as a whole. Thus, if a

document contains a reference to Tiger Woods in addition to multiple references

to video games then the system could reasonably state that the reference to Tiger

Woods is not to the person but rather to the video game series baring the person’s

name. With disambiguation complete the system then tags the entity with the

proper TAP reference.

The Semtag and Seeker project differs from our own in its ultimate goal; more

specifically Semtag and Seeker wishes solely to disambiguate entities with regards to their TAP

reference whereas our project wishes to extract triplets from text. Thus, Semtag and Seeker is

15

best considered as part of any future work upon our project that would allow for disambiguation

of entities.

Entity disambiguation is once again seen in the SKR project to locate terms present in the

UMLS metathesaurus [Srin02]. Here natural language parsing is used to locate noun phrases

within medical abstracts. These phrases are then matched against the concepts contained within

the UMLS knowledge base using flexible matching techniques. This means that the matched

concept need not be stated exactly the same as the concept present in the thesaurus but need only

match within a certain word range.

The SKR project differs from our word in its focus on simply using natural language

processing to location entities rather than extract facts regarding the information present in text.

In fact, the a large portion of its functionality is encompassed by a portion of our own project

with the only difference being that we have left disambiguation as future work rather than

incorporating it as part of our current work.

The practice, mentioned previously, of translating natural language into an intermediately

form of programmatic object is used create document summaries [Jure04]. This system,

however, includes a reversal of the previous examples; here Natural Language Parsing

techniques are used to create an intermediary ontology. Whereas the previously mentioned

systems represent NLP utilizing aspects of the Semantic Web movement; thus, the current

system is better thought of as the Semantic Web utilizing NLP. This system first parses a given

text using a natural language processor that converts the sentence into an annotated object. This

object is then mined to create an intermediary graph representation of the information contained

in the sentence. Once the full text has been mined the graph object is inspected for patterns that

indicate which sentences can be extracted from the text and included in a summary. The creation

16

of the intermediary graph form is simply a middle ground for the ultimate goal of summarizing

the text. Thus, this graph does not represent a complete and correct representation of the

information in the text, rather it is simply a means to the ultimate ends of text summarization.

While this system’s focus is less upon correct formulation of the information in the text into

ontological form and more upon creating a representation that can be used for summarization this

still represents the use of a technique typically associated with the Semantic Web.

A similar use of an intermediary form of information representation is found in the works

of the Attempto project [Kuhn06]. However, unlike the previous summarization project the

authors of the text must use the Attempto Controlled English (ACE) language. The project

summarizes the major facts of texts pulled from the biomedical domain to allow for more

effecting information mining. In this way a large corpus of biomedical information, which is

notoriously difficult to cross-reference with other information sets, can be mined and then

compared to other ACE language rendered information. The authors note that their language is

capable of fully representing 56% of the headlines the system was tested over with support for

partial representation of another 23%.

The difference of this project from our own work lies once again in the need for the

author to create a representation of the information other than the standard language

representation. Our own work mines the existing language and makes no requirement that either

the author originally represent the information in a intermediary structure or that the document

be later reformulated by another person.

While the previous examples have largely confined themselves to inspecting natural

language for information the START [Katz02] system proposes using a syntax that greatly

resembles natural language. This allows creates a semi-structured basis from which to create

17

semantic information. Thus, a person with only a passing knowledge of the Semantic Web

would be able to create information for use by various semantic systems. An interesting facet of

this concept is its underlying presumption that the semantic method of representing information

is not far from the natural language means of information presentation. While this concept

deviates greatly from our own work so that little comparison between the two systems can be

made it should be noted that this concept greatly underlies our own work. Both share a belief in

the relatedness of natural language and the Semantic Web method of information storage.

There also exist systems that attempt triplet extraction from text by all-together different

means. Specifically an attempt is made at inspecting the structure and language used in HTML

code in order to discover relationships among entities [Svat03]. This technique, however, limits

itself to a heavy reliance upon inspecting the structure of HTML code. Any natural language

processing takes a backseat to the structured HTML. Thus, while this system does create a map

of links among entities it requires extensive additional information to do so in the form of HTML

scrubbers and parsers.

Each of the previous systems provide and example of the successful marriage of NLP and

Semantic web techniques. They underscore both the ability of the two subsets to be combined in

addition to the relatedness of the two areas. While the focus and methodologies of the systems

outlined are divergent they do all share a common goal of heightened language understanding.

As noted before this understand can take radically different forms, from a speaker’s fluency in a

language to the ability to represent a sentence as an object that can then be passed and parsed

between functions.

It should also be noted that a similar method of document classification to our system is

used in the Semantic Enhancement Engine [Hamm02]. This system seeks to annotate natural

18

language text with information that specifies the proper domain for the terms contained in the

document. Ultimately, however, this system diverges from our own in that it seeks document

and entity classification whereas our own system is more largely concerned with relationship

recognition as stated by the author of a document.

3.3 Marrying NLP and Semantic Web

Natural Language Processing and the Semantic Web movement engender many of the

same concepts. Most notably they both seek to lend some form of language understanding to

machines. While the goals are by no means completely similar they carry enough similarity that

either side would find its objectives greatly aided by methodologies from the other. The modern

systems mentioned here show this exceptionally well in the form of a working merge of

components dear to both subsets of Computer Science.

Beyond this our system differs from all the system herein on three points in addition to

addressing the two previously mentioned problems with the current breed of web searching

applications:

1. No ontology needed: Because of our use of natural language parsing and the

subsequent processing of this information our system does not require an

ontology in order to extract data from unstructured text. Rather it relies on an

understanding of the structure of language itself.

2. Domain independence: Our reliance on an understanding of the structure of

language further means that our system can operate over the text drawn from any

domain.

3. Requires only natural language: We solely require the text of an article for triplet

extraction. There is no requirement of metadata regarding the text. Thus, far less

19

human intervention is required for the conversion of human created text into

semantic information.

A heightened level of integration between the Semantic Web and Natural Language

processing is both possible and needed. The two fields have goals and methods that are too

highly related for them to be considered together.

20

CHAPTER 4

NATURAL LANGUAGE IMPLEMENTATION

The Natural Language Semantic Store system operates in two distinct phases, as do all

other search applications: document store and document retrieval. In addition, the system itself

also consists of two distinct parts: the natural language processor, detailed in this section, and the

Term Hierarchy Tree, detailed in the section to follow.

4.1 Natural Language Processor

The natural language processing portion of the system detailed here seeks to address the

second of the two problems given above, that is our approach for creating triplets from text

focuses on the problem of relationship recognition. That is, special attention is paid to relations

formed between entities and every effort is made to ensure that the all relationships are captured

as precisely as possible.

Natural language processing in our system relies on a parse-tree produced by an existing

NLP parse engine. We chose Stanford’s JavaNLP parsing engine because it represents an

established code base as well as for its log-linear run time [Klei02]. JavaNLP parses all entered

text into a tree structure that begins at a root node, denoted as root and containing no

information, and progresses downwards to leaf nodes based on phrasal dependence.

While our approach uses the JavaNLP engine to generate a tagged form of the

information present in the sentence this does not mean it is solely dependent upon JavaNLP for

all functionality. While the methods detailed below often give examples as generated by

JavaNLP it should be noted that we anticipate that our approach would work equally well for any

natural language processing engine that returns both part-of-speech tags and phrase dependences.

21

JavaNLP parses all entered text into a Tree structure that begins at a root node, denoted

as root containing no information, and progresses downwards to leaf nodes based on phrase

dependence.

Figure 1 - The Parse Tree Generated by JavaNLP

JavaNLP uses the Penn Treebank set of language tags to annotate a given sentence [Marc93].

This tagging set is broken down into three levels. These represent grammatical usage from most

inclusive to least inclusive:

1. Clause Level: This allows for full tagging of a coherent clause, the most common of

which is a single declarative clause represented as S.

2. Phrase Level: This enables phrase recognition within a clause. The most common of

these, as well as the most useful to this project, are noun and verb phrases represented as

NP and VP respectively.

3. Word Level: This level simply provides the part of speech of each word in the sentence.

For example: proper noun, noun, plural noun, etc.

Clauses exist only singularly and cannot be contained by any other structure excepting

the root tag which is able to contain all other tags; however, this represents a design decision of

“Tiger Woods donates to a large number of charities.”
(ROOT [69.474]
 (S [69.371]
 (NP [20.560] (NNP [8.264] Tiger) (NNP [9.812] Woods))
 (VP [47.672] (VBZ [11.074] donates)
 (PP [31.541] (TO [0.003] to)
 (NP [27.963]
 (NP [15.561] (DT [1.413] a) (JJ [5.475] large) (NN [5.979] number))
 (PP [11.856] (IN [0.669] of)
 (NP [10.784] (NNS [7.814] charities))))))
 (. [0.002] .)))

22

the tree data structure rather than an actual tagging of the language. Phrases are generally

contained within clauses, however they can appear outside of any clause as in the case of a

sentence fragment, and are able to contain other phrases. In fact, it is a phrase’s ability for self-

containment that forms the basis of a sizable portion of triplet creation. Word level tags

associate with a single word and reveal its part of speech.

Triplet creation relies, primarily, on phrase level tags. These tags provide us with

indications on precisely how a given natural language sentence can be reformed into the subject -

predicate - object triplet associated with the Semantic Web movement and, more specifically,

with RDF information.

By itself the tagging done by the JavaNLP engine tells little about the information

contained within a given sentence. It is solely concerned with revealing part of speech and

phrasal dependencies present in the text. Thus, our program works by only using JavaNLP to

generate a parse tree such as that of Figure 1. Besides the generation of parse trees, no other

processing is required from JavaNLP. The generation of triplets, indexing and storage are

accomplished strictly by our own methods detailed below.

The entire process of initial triplet creation, or more exactly the first five steps given

below, requires a single pass through the tree. This generally makes the creation of the tree

object representation of a sentence the most computationally intensive portion of the natural

language processing segment of the program. This is, however, not always the case since tree

creation is heavily affected by the complexity of the sentence.

23

4.2 Natural Language Algorithm Overview

Once the sentence tree has been created, our program parses it for both entity recognition

and triplet formation. Thus, the parse tree given in Figure 1 represents the full contribution of

any Natural Language Parser used by our program.

The challenge of converting from the parse tree structure to triplet form lies in the fact

that the relationships between entities in text can be extremely complex. This fact is best

illustrated by the 27% average error rate among the untrained human subjects (described later in

the evaluation section (Section 6)). Our method addresses the problem of entity recognition and

relationship formation by first locating entities within a sentence. The sentence is then further

inspected to locate all relationships between entities. Conversion from a natural language

sentence to triplet format occurs in seven phases, listed here and detailed below:

1. Entity Recognition: Noun phrases are extracted from the sentence tree and are scanned

for entities based on part-of-speech recognition.

2. Predicate - Object Recognition: Verb phrases are extracted from the sentence tree and are

used to form initial versions of the predicate, object pairing.

3. Predicate - Object Augmentation: Prepositional phrases are used to further alter the

predicate - object pairing created in the previous step. This often involves combining the

previous predicate - object linking with the prepositional phrase to create a `new

predicate. A new object is then formed from what remains of the verb phrase.

4. Triplet Creation: The fully augmented predicate - object is recombined with the entity

recognized in step one to form a full subject - predicate - object triplet.

24

5. Pronoun Resolution: All pronouns in the triplet are resolved to the closest proper noun

phrase. This is the only step that can draw information not only from the current sentence

but from any previous sentences as well.

6. Triplet Filtration: Triplets that have a high likelihood of being poorly formed or incorrect

are discarded. Generally, this is accomplished by detecting redundant information across

several triplets.

7. Secondary Predicate Parsing: Some of the predicates returned by the previous steps can

be condensed to less wordy forms that still maintain much of the same meaning. Here a

tree structure is created from the predicate and unneeded statements are eliminated.

In our approach, we use RDF (Resource Description Framework) to represent extracted

entities and relations. One of the primary advantages of RDF, the knowledge modeling

framework most often used in the Semantic Web, is that it enables easy recognition of complex

data sets as a graph structure. In general this takes the form of XML represented statements

about entities, or more intuitively statements that give some link between two entities and then

further describe the nature of the link. This allows for several facts to be represented as a chain

of statements, for example: “John Smith <studied at> Homeland High <founded by> Peter

Sinclair.” However, natural language, if divided inexpertly, will form triplets whose

understanding is dependent upon information contained in some proceeding set of triplets

[Wood75] For example, consider the two triplets regarding a company’s product: “Acme”

<makes> “Anvils” <for> “export”. Whereas in the previous example both triplets represent a

single fact in this second example only the first of the two triplets represents a complete

statement.

25

In the chain of statements given in the proceeding paragraph each of the two triplets has

meaning independent of the meaning in any proceeding or trailing triplets. That is,

understanding the fact that Homeland High was founded by Peter Sinclair does not require the

reader to understand that John Smith also studied there. In our approach, the generation of each

triplet is intended so that it represents a single piece of information.

4.3 Entity Recognition

When a noun phrase is located within the phrasal sentence tree it is understood to have

the possibility of containing a single entity. Here the term entity refers to any abstract concept or

real world object; for example: “Natural Science” would be recognized as an entity due to the

fact that this references an abstract concept; additionally “University of Georgia at Athens”

represents a real world place and would also be noted as an entity.

Once the noun phrase has been extracted from the tree it is parsed and nouns in both their

singular and plural forms are combined to form a single entity. Specifically this means words

fully contained within a noun phrase and tagged with NN - noun, NNS - plural noun, NNP -

proper noun, NNPS - plural proper noun, or JJ - adjective. Proper nouns are given a special

focus as these will later be used during the pronoun resolution phrase of triplet creation. This

filters out all excessively descriptive words and returns the complete entity name. In should be

noted that despite this need to remove descriptive words adjectives are still included as part of

the proper noun. This is because adjectives often provide modifications to the entity that

describe what type or give qualifying information that is essential to a full description.

With the noun phrase extracted, it is parsed and nouns in both their singular and plural

forms are combined to form a single entity. For example, Figure 1 includes the noun phrase:

(NP [20.560] (NNP [8.264] Tiger) (NNP [9.812] Woods)) this phrase would become the

26

single entity “Tiger Woods.” Proper nouns are given a special focus as these will later be used

during the pronoun resolution phrase of triplet creation. This filters out all excessively

descriptive words and returns the complete entity name. However, if the noun phrase is found to

contain a proper noun then all words not tagged as a proper noun are removed from inclusion as

part of the entity. The noun phrase mentioned previously could also have been phrased as: (NP

[20.560] (NN [7.623] golfer) (NNP [8.264] Tiger) (NNP [9.812] Woods)). While this

phrasing mixes nouns and proper nouns it would still produce the same outcome, namely “Tiger

Woods.” Intuitively this rule is described as: “proper nouns do not mix with others.” This is

done to ensure correct recognition of proper nouns.

While noun phrases contain only a single entity it is possible for several noun phrases to

be bound to multiple identical predicate – object pairings rather than the more previously

reviewed single entity binding. This happens when a conjunction separates two entities, for

example consider the sentence: “Jack and Jill ran up the hill.” Here, both Jack and Jill are

associated with the exact same predicate - object, thus meaning there are two triplets created

from the sentence, namely: “Jack <ran up> hill” and “Jill <ran up> hill.” For the purposes of this

program this is referred to as Coordinating Conjunction Splitting and is given a greater focus in

the section of the same name to follow.

As for the assignment of URIs to entities or any component of a triplet, there are two

ways the identifier can be assigned:

1. The entity is part of the preexisting ontology: In this case the object is simply assigned a

URI that is identical to the previously assigned one. For example, Figure 2 shows the

hypernym relationship present in WordNet and two entities are present along with their

URIs, namely “chair” and “folding chair.” Thus, if either of these terms were located

27

within a sentence then once converted to triplet form and stored they could be referred to

in the same manner as the entity in WordNet.

2. The entity represents a previously unseen term: In the case that the term is not present in

WordNet nor TAP then the underlying storage subsystem is used to assign a URI to the

object. Generally, this assignment takes a form extremely similar to that given in Figure 2.

Figure 2. A Hypernym Relationship in WordNet.

It should be noted that TAP is a shallow but broad ontology and its knowledge base

containing basic lexical and taxonomic information about a wide range of popular objects

[Guha02]. In addition, our system allows any ontology to be loaded and used with the same

effect as those detailed above. Therefore instead of TAP and WordNet any other preexisting

ontology can be used in our system.

The phase of entity recognition and all other needed phases are explained on an on step-

by-step in Table 1. This shows how each of the processes detailed here and in the sections to

follow is applied to a sentence to produce the final output of a triplet.

4.4 Predicate - Object Recognition

In a manner similar to the extraction of noun phrases in the previous step verb phrases are

likewise pulled from the tree. However, unlike noun phrases, verb phrases do not contain a

single entity. In fact, all verb phrases, unless part of a sentence fragment, contain an underlying

verb phrase and noun phrase, present in that order. These two included phrases are utilized to

form the initial versions of the triplet predicate – object association.

Because of the verb followed by noun ordering of information within a verb phrase the

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hypernymOf>
http://wordnet.princeton.edu/wn#103253680-folding_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103253680-folding_chair-n

28

initial formulation of a predicate - object is fairly straightforward. The beginning verb phrase is

Triplet Creation Step Portions of Parse Tree
Inspected

Product of Parse

Entity Recognition (NP [20.560](NNP [8.264] Tiger)
(NNP [9.812] Woods))

“Tiger Woods”

Predicate – Object
Recognition

(VP [47.672](VBZ [11.074] donates)
(PP [31.541] (TO [0.003] to)
 (NP [27.963]
 (NP [15.561] (DT [1.413] a) (JJ
[5.475] large) (NN [5.979] number))

“Tiger Woods”
<donates to>

“a large number”

Predicate – Object
Augmentation

(PP [11.856] (IN [0.669] of)
 (NP [10.784] (NNS [7.814]
charities))))))

“Tiger Woods”
 <donates to a large

number of>
“charities”

Table 1. A Step-by-Step Iteration through the Tree in Figure 1.

recognized and parsed, words tagged with VB - verb, VBD - verb past tense, VBG - verb gerund,

VBN - verb past participle, VBP - verb non-third person singular present, VBZ - verb third

person singular present, TO - to, DT - determiner, or JJ – Adjective are added to the predicate.

Note the presence words not tagged as verbs within the predicate, specifically: to, determiners,

and adjectives.

Determiners are included because they often provide limiting modifications on the

predicate that can alter its meaning greatly. For example “few” is labeled as a determiner and if

dropped from the predicate changes meaning from denoting a small subset of the objects in

question to all of a given object. There is, however, one alteration made to the determiner rule:

the word “the” while marked as a determiner is never included in the predicate. This is simple

because the word “the” contains no useful information and is safe to leave out of the predicate.

29

Adjectives are included for much the same reason as determiners, these words represent

extra descriptive text that if removed from the tends to alter the meaning enough that one finds

the predicate referring to an entirely different set of things than was the intention of the author of

the sentence.

Finally, “to” is included because this provides a link between predicate and object that if

dropped would cause the predicate to be extremely hard to understand. For example, take the

fragment of a sentence “ran to police” if rendered as predicate - object without “to” we would

have “ran” as predicate and “police” as object; this makes it unclear if the object helped to

operate the police department of if he sought aid from police.

The noun phrase is extracted and parsed in an identical manner as was described in the

entity recognition step. Beyond verb phrases and noun phrases the other phrase recognized and

processed is the prepositional phrase. While this phrase is extremely meaningful later in the

algorithm at the current stage it is simply parsed and included as part of the predicate.

4.5 Predicate - Object Augmentation

There are two major types of augmentations that the initial predicate - object can undergo:

coordinating conjunction splitting and prepositional phrase combination.

1. Coordinating Conjunction Splitting: A coordinating conjunction split is best understood

when first illustrated with an example. Say we are currently interested in parsing the

sentence: “Dick kicked and threw the rock.” There are actually two full subject -

predicate - object triplets present in this sentence, namely “Dick <kicked> rock” and

“Dick <threw> rock.” An identical process occurs in the case of a comma delimited list

of items. It should also be noted the conjunction splitting is able to produce two slightly

different forms of the same predicate. Consider the verb phrase: “incapable of

30

recognizing and repeating.” When properly processed this produces: “<incapable of

recognizing>” and “<incapable of repeating>.”

2. Prepositional Phrase Combinations: In its simplest form, a prepositional phrase will cause

the initially created predicate - object to be merged into a single new predicate followed

by the prepositional phrase. Consider as an example the parse tree presented in Figure 1,

as processing begins the initial entity “Tiger Woods” and ends at charities to produce:

“Tiger Woods <donates to a number of> charities.” This example is shown on a step-by-

step basis in Table 1.

4.6 Triplet Creation

Following the predicate - object creation and augmentation phase, the final two portions

of a full triplet are recombined with the entity to which they relate. Determining which predicate

- object combines with what subject is a trivial task due to the structure of the sentence tree.

Predicate - objects are combined with the noun phrase that immediately precedes them in the

sentence tree. This noun phrase will always represent the subject of the trailing verb phrase. This

process is simply reversed in the case of sentences with leading verb phrases.

4.7 Pronoun Resolution

Pronoun resolution is the process of changing any pronouns present in the triplet into the

entities to which they refer. It also marks the only portion of natural language processing which

spans across multiple sentences. All other processing is limited solely to the current sentence in

question. The guiding principle behind the form of pronoun resolution used herein is that a

pronoun appears closest to the proper noun to which it refers, here closest refers strictly to word

distance.

31

Most often a pronoun is used immediately following the proper noun to which it refers

for both the sake of simplicity as well as ease of understanding. However, this is not always the

cause and will sometimes lead to a pronoun being resolved to the incorrect entity. This problem

and the subject of pronoun resolution is a complex and thus we leave both its mention and its

application to the future work section.

4.8 Triplet Filtration

When completed, the above methods for triplet generation tend to overproduce. More

exactly, they are disposed to return, along with triplets that represent important information

stated by the author, triplets that are either simple repetitions of previously stated information or

are simply too trivial to be present in triplet form.

The order by which triplets were created becomes important during the filtration stage.

As stated before, sentences are parsed and triplets are created from a single pass through the

sentence tree. Thus, each successive triplet represents information from a later portion of the

sentence. Many of the filtration thus tend to favor keeping any triplet that appears later in the list

of triplets produced. This is because the most common filtration is removal due to information

repetition.

Most sentences contain anywhere from one to three triplets. This stems from the very

nature of the sentence: a sentence is used to convey a coherent thought. This concept is used in

triplet filtration, namely one of the requirements for filtration is the existence of a large number

of triplets.

If a sentence does produce more than three triplets then all of the triplets are checked by

three rules; applied in the order that follows:

32

1. Short Subsumption: Subsumption generally occurs when I trivial fact is stated and later

expanded upon. If the sentence produces more than three triplets it has the possibility of

triplet removal due to this rule. A triplet is discarded if it is extremely short and fully

contained within a triplet that follows it. For example, the first of the two triplets: “Jon”

<viewed> “film” and “Jon” <viewed the film> “North” would be removed due to this

rule’s influence.

2. Trivial Similarity: If after the processing of the above more than five triplets still remain

for a sentence some triplets can be removed in accordance with this rule. A triplet is

removed from the output if its subject and object are identical and its predicate is nearly

identical to a following triplet. Consider the triplets: “Peter” <ran quickly from>

“Bloodhound” and “Peter <ran from> “Bloodhound,” here the first of the two would be

eliminated due to its simple restatement of the second.

3. Extreme Verbosity: Finally, if the previous two rules leave more than five triplets

unfiltered this final harsh rule is applied. If a subject appears still in more three triplets

then all triplets beginning with this subject are filtered.

4.9 Secondary Predicate Parsing

The final of all natural language parsing steps resolves the problem of wordiness within

the predicate. Towards this end the predicate is passed to the JavaNLP engine to form a sentence

tree of just this portion of the sentence. This second parsing produces a tree different from a

simple subset of the sentence tree produced originally.

Secondary Predicate Parsing takes place in three steps applied in-order; detailed below. It

should be noted that if the predicate does not conform to any of the three cases below it is left

unaltered.

33

1. Chain of Information Removal: If triplets are found to form a chain of information then

these triplets are not removed. As noted before one of the major design decisions of our

method was that each triplet should embody a whole and discrete piece of information.

Any secondary processing over these triplets has the chance of reintroducing the triplet

dependency problem outlined previously.

2. Leading Verb Phrase Parsing: If the predicate begins with a verb phrase then it is possible

to reduce it to the simplest predicate formulation; namely, verb phrase immediately

followed by noun phrase. For example, the predicate <ran for mayor during> contains

this formulation of verb immediately followed by noun and can be reduced to <ran for

mayor> with no loss of meaning.

3. Leading Noun Phrase Parsing: If the predicate begins with a noun phrase then a reduction

to single noun phrase is possible. This generally happens when the predicate represents

an existential phrase. Consider the predicate <is a longstanding> this can be reduced to

the simple existential <is>.

Figure 3 - Two Predicate Parse Trees

(ROOT [19.809]
 (S [11.925]
 (VP [11.519] (VB [0.003]
have)
 (VP [7.801] (VBN [5.431]
built)))))

(ROOT [43.838]
 (SINV [40.731]
 (VP [12.981] (VBZ [11.074]
straddle))
 (NP [23.604]
 (NP [9.070] (NN [6.411] line))
 (PP [12.593] (IN [4.967]
between)))))

34

Figure 3 presents two different sentence trees formed by predicate parsing, both of these

would fall under the leading verb phrase rule. The left example represents a tree including

multiple verb phrases which form the new predicate. The right example gives a tree that

contains a verb phrase followed by a noun phrase used to form the new predicate. The method

does not require the ordering of one verb phrase followed by a one noun phrase, rather it is best

described as: any number of verb phrases followed by a single noun phrase. Any trailing noun or

verb phrases will then be discarded.

The presence of prepositional phrases within the predicate phrase trees should also be

noted. These phrases are included as part of the new predicate. Also, should any prepositional

phrases trail the final noun phrase they will also be included included, however, no other phrases

are given this treatment. This is because, as alluded to previously, prepositional phrases often

provide information that modifies and adds to information present in verb and noun phrases.

Thus, any attempt to remove or truncate these phrases would be extremely error-prone and

would result in triplets that do not accurately represent the data present in the original sentence.

35

CHAPTER 5

TERM HIERARCHY TREE IMPLEMENTATION

The Term Hierarchy Tree, shown partially in figure 4 can be thought of addressing the

first of the two problems which are introduced in Section 1. Namely, it seeks to address the

problem of entity placement, or rather: how a specific entity relates to others. Beyond addressing

this issue it also serves as an indication of the validity of the information created from triplet

processing. More exactly, it shows how the information pulled from natural language can be

related to an existing ontology.

Figure 4. An Example of a Term Hierarchy Tree.

The tree in Figure 4 gives a brief overview of the Term Hierarchy Tree. Here terms

donated by WordNet are shown as grey square figures while entities from TAP are displayed as

36

white circles. Note that as one progresses downward in the tree structure terms become more

specific forms of the previous term. For example, “Sports” is related to both “Golf” and

“Soccer” as these are more specific sports topics. TAP entities are placed under subjects to which

they have a high relation, in this example the book Elements of Style is given as a prime example

of a nonfiction publication.

Several existing components are integrated to give our system an ability to process the

language that emulates some of the facets of the understanding of a fluent speaker. Sesame

[Broe02] acts as a backend for information storage and retrieval. WordNet [Fell98] is used for

information regarding English language terms, while TAP [Guha02] lends the system an

understanding of common entities and helps determine their relation to the information stored in

WordNet.

Sesame is an open source semantic database that contains support for both schema

inference and querying. It was chosen because of its flexibility in terms of store and access

methods in addition to its speed. Jena [McBr02] another leading open source semantic

information store solution was also considered during the course of research for this project,

however Sesame frequently bettered Jena in our tests.

WordNet is a lexical reference system that closely resembles a human’s own innate

understanding of language. It contains nearly all dictionary words well as how these words relate

to other similar terms. For the purposes of our project, WordNet is used to form a basic

understanding of the generality or specificity of a term in addition to a grasp of synonym

information. For example, if one was to inspect the term “chair” one would see that a more

general term is “furniture” in addition to being presented with a list of more specific terms

37

ranging from “desk chair” to “chair and a half.” One would also be presented with synonyms for

the word “chair” such as “seat.” This example can be seen as the entities are present in WordNet

in figure 4.

TAP is quite similar to WordNet but with a differing focus. Whereas WordNet contains

dictionary terms, TAP contains numerous real world entities ranging from people and places to

even some of the more recent electronic devices. Combining these two knowledge bases allows

the system to have an inbuilt understanding of an entity's “place in the grand scheme of things.”

Figure 5. Raw Triplet Data Produced by a Search for Chair in WordNet.

The Term Hierarchy Tree has two major components listed below and detailed in greater

depth to follow:

1. Dictionary Store: This portion of the program includes all information from the TAP and

WordNet knowledge bases in addition to any information added from outside sources. It

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hyponymOf>
http://wordnet.princeton.edu/wn#104004316-seat-n

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hypernymOf>
http://wordnet.princeton.edu/wn#103945550-rocking_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hypernymOf>
http://wordnet.princeton.edu/wn#103497608-ladder-back-n

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hypernymOf>
http://wordnet.princeton.edu/wn#103253680-folding_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n
<http://wordnet.princeton.edu/wn#hypernymOf>

http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hyponymOf
http://wordnet.princeton.edu/wn#104004316-seat-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103945550-rocking_chair-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103497608-ladder-back-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103253680-folding_chair-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf

38

is also home to integration methods that allow information stored in differing formats to

work together and refer to each other.

2. Indexing: This portion of the program controls indexing and reference for all data stored.

This functionality is largely handled through Sesame.

5.1 Dictionary Store

The dictionary store is initially comprised of information from TAP and WordNet, and is

later expanded upon as documents are stored. Whereas WordNet represents a dictionary of terms

TAP and be thought of as representing an encyclopedia of concepts. It primarily stores the names

of real world entities; for example: the names of all people who play for the New York Nicks is

included in addition to all products currently produced by Apple. This knowledge base is linked

to the information contained in WordNet by the category information given for each entity in

WordNet. To illustrate this consider searching WordNet for information regarding “Tiger

Woods.” This returns two distinct sets of entities, one regards the person “Tiger Woods” and is

marked with the general category “Athlete.” The other set of entities are all video games made

utilizing Tiger Wood’s name such as “Tiger Woods PGA Tour 2004” and are marked “Console

Game Software.” This category information can then be used to place entities within the

Hierarchy of Terms.

This Hierarchy of Terms is created from WordNet’s hypernymy and hyponymy

relationships. This provides a relationship of terms from most general to most specific. This is

utilized in our program in order to determine a relationship amongst otherwise disparate terms,

for example a triplet containing “Golf” would be found, through the relationship of hypernymy

to be related to “Sports” and thus the user performing a search could be offered information on a

more general form of the subject s/he searched for.

39

While the preceding gives an example of an ordering of terms which, for the most part,

have a direct relationship between each other, this does not accurately represent the majority of

terms. What happens in the case of terms that bare little or no resemblance to each other, such as

in the case of “sports” and “books?” It is from this fact that the name “Term Hierarchy Tree” is

drawn. “Sports” and “books” represent two distinct branches of the tree, so that while these two

concepts may have an identical more general ancestor, they represent two different unrelated

parts of the tree.

In this way all terms stored within WordNet can be arranged in a tree structure with each

level of the tree symbolizing a level of generality. This is, however, not to say that all terms

present at the second level of the tree have the same level of specificity, or classify the same

number of terms. The various branches of the tree will often have radically disparate levels of

generality. However, within the local context each step down in the tree represents a step

downward to the most specific terms of that domain. As an example let us revisit the previously

mentioned terms “books” and “sports.” Say that these two terms are present on the same level of

the tree and that the “books” node has two children: “fiction” and “non-fiction” while “sports”

also has two children: “golf” and “soccer.” An understanding of the meaning of these terms

immediately exposes to the reader the fact that golf and soccer refer to very specific sports while

fiction and non-fiction represent the two most general classifications of books. Yet within the

domain of sports and books each represents the next step downwards towards more specific

terms. The uneven tree structure this ultimately forms stems from the fact that some areas of

interest can be subdivided to a greater extent than others.

Up to this point the information provided by TAP has been largely ignored in the

discussion of the Term Hierarchy Tree. TAP is integrated with the information from WordNet

40

by means of the relation information associated with each entity in TAP. In terms of the Term

Hierarchy Tree this means that each entity contained within TAP can be thought of as a leaf

node. Thus, TAP is utilized for the correct indexing of entities to the categories given by

WordNet. To return to the example given above, suppose that “Tiger Woods” is found as the

subject of a triplet. “Tiger Woods” would then be located as a component of TAP and beyond

this linked to the information in WordNet as is stated previously. Thus, “Tiger Woods” would be

related to “Athlete” which would be in turn related to “Sports” and so on.

This raises an interesting question regarding the placement of “Tiger Woods” under

“athlete” rather than under “golf.” This placement represents a design decision made by the

makers of TAP. It should be noted that either placement makes sense, the entity “Tiger Woods”

is highly concerned with both golf and is properly termed an athlete. This problem of dual

placement is addressed by allowing a given entity to appear in more than on location. Thus, it is

quite possible for “Tiger Woods” to appear in both categories. It should, however, be noted that

the “out of the box” functionality of the system solely includes the placement of “Tiger Woods”

as an athlete; his eventual placement under “golf” is, however, detailed below in the section that

discusses the storage of information to the Term Hierarchy Tree.

5.1.1 Storage of Documents

When a document is entered into the system, it is first parsed by the natural language

processor. This produces a set of triplets and entities that represent the information contained in

the document. This data is then aggregated and representative entities and triplets are pulled

from the document. The process of determining which triplets and entities can be thought of as

representative is fairly simple but slightly different for each of the two document metrics:

41

1. Determining Entity Representativeness: The total number of entities produced by a

document is counted and each is assigned a score based on the number of times it appears

either as an entity or as part of a triplet. All entities referenced by at least twenty percent

of the triplets created from the document are then taken to be representative and are noted

as such along with their score. The score is noted for help in comparing documents that

are determined to be largely about a given entity.

2. Determining Triplet Representativeness: The determination of triplet representativeness

then relies on the entities found to be representative of the document. To revisit the

example mentioned previously: when the program is executed using WordNet and TAP

information “Tiger Woods” is initially related to “athlete.” However, if a document is

entered into the system that includes numerous sentences between “Tiger Woods” and

“golf” then the indexes of the system will relate Tiger Wood’s to golf.

Once the representative triplets and entities of a document are determined then this text

stored with the appropriate relations. Thus, if two of the entities found to be highly related to a

document were “golf” and “sports” then a reference to the document would be added under these

two categories.

5.1.2 Retrieval of Documents

Retrieval of documents is initiated by a user supplied query. This query can range

anywhere from an entity name to a full natural language question complete with punctuation.

Queries are first parsed by the natural language processor in the same manner as a document is

parsed for storage. This will generate either a set of triplets or, in the most simplistic of searches,

a set of entities. These entities and triplets are then recalled through the use of the Sesame

storage back end.

42

The Term Hierarchy Tree adds another benefit to information recall. It allows the user to

not only view documents related to the search but also categories to which documents have a

high relation.

A final note should be added regarding the ordering of documents. Documents are

ordered by the degree of relationship they have with a given term. This means that if there are

two documents associated with golf, one which has references to golf in twenty percent of its

triplets and entities and the other using golf eighty percent of the time, then the second document

will be displayed first. In the case of a search that includes a triplet or several entities the

documents are ordered by a simple addition of percentages.

Figure 6. System Architecture.

43

5.2 Storage Platform

All indexing, storage, and retrieval is handled through the semantic data store engine

Sesame [Broe02] as mentioned before. The capability most often used behind the scenes is

Sesame’s schema inference. This allows us to enter triplet information as it is extracted from the

documents. Sesame then creates all needed schema information automatically without any

further intervention beyond the initial configuration.

As for indexing, Sesame can be set up to allow indexing on a number of different

dimensions, that is to say that it supports indexing in nearly exactly the same way that modern

databases support indexing. For our purposes, indexing is done on both entities and the

relationships between them. In this way while there are no specific searches which are optimized

in general all searches reap some of the benefits of indexing.

Searching is accomplished through the use of Sesame’s own query language, SeRQL

[Broe04]. While it supports other Semantic Web query languages such as RQL [Karv02], and

RDQL [Seab04], we have chosen SeRQL because of its native support within Sesame. This

proved to yield slightly faster response times than were found to be the case with other query

languages. In addition to query language support Sesame supports all major file formats for

semantic information, such as N-Triples [Gran02], and N3 [Bern00], and allows for importing

and exporting to and from these formats.

The system architecture is given in Figure 6 and shows the process of both storing a

document and then the later retrieval of documents through a user entered query. Thus, the

system can be thought of as having two phases that occur in order: first, document storage and

second, document retrieval. Also note the system’s heavy use of the triplet creation engine; this

portion of our system is used for both relating documents to terms in the ontology and for queries.

44

CHAPTER 6

EXPERIMENTAL RESULTS

Testing focuses on the triplet creation engine of the program. This is due to the fact that

the Term Hierarchy Tree was created and utilized largely as a method of lending a schema to the

created triplets.

The dataset of news articles was chosen for several reasons: one, the heavily fact based

nature of the articles they represent an excellent choice for our method of information extraction.

Second, the articles are written for human consumption making the job of the human tester

easier. In addition, this type of articles reflects a sizable portion of the documents placed on the

Internet within a given day. Third, for ease of testing the documents need to be somewhat short,

roughly a page in length, the inverted pyramid writing style of news articles allows text to be cut

from the ends of articles without losing meaning. Beyond these reasons we chose human testing

rather than testing with some preexisting corpus because of the novelty of our approach. While

several testing corpuses address a problem that is related to those we wish to address none

provide a dataset that provides for a clear translation from sentence to triplet.

The first part of the testing phase was accomplished by presenting a University of

Georgia Computer Science Masters student who is not related to this research project with a set

of twenty news articles. He then generated all the triplets that he believed were possible from

these articles. Once done, he was allowed to review and discuss the triplets in order to determine

if any incorrect triplets were present in this human created set. Thus, through initial production

followed by review a sort of “gold standard” of triplets was generated for the news articles. In a

similar manner the same twenty articles were presented to our system and the triplets it generated

were reviewed and scored.

45

The second part of our testing was accomplished by presenting nine Computer Science

graduate students who had just finished a course reviewing Semantic Web methodologies a

worksheet that included instructions for triplet generation in addition to five news articles. The

instructions were nearly identical to the provisions listed at the beginning of Section 3.1. That is,

they told students that each triplet should represent a discrete piece of information as well as

giving an accurate fact as stated in the article. The triplets the students generated were then

gathered and reviewed to form a set of correct student generated triplets. This set was created by

first inspecting all triplets created by each subject and eliminating all incorrect triplets. The set

was then further reduced by comparing each subject’s triplets against the triplets generated by all

other subjects. By doing this, the final set of human created triplets includes only correct unique

triplets as given by the nine human subjects.

This set is then compared against the triplets generated by our system to determine the

overlap. A triplet overlaps with another if the two are determined to contain identical

information. Generally this means that the two triplets were actually identical, containing all of

the same words in the same order. Occasionally, however, there is a slight word variation

between the triplets that does not result in a difference of meaning. For example, one student

gave the relation “works for” while another gave “employed by,” these two relations obviously

represent identical information.

As mentioned previously testing took place in two stages. The first stage compared the

triplets generated by the program against triplets generated by a human expert knowledgeable of

the Semantic Web.

Figure 7 shows two important metrics for measuring the abilities of the system. The

rightmost of the two comparisons shown for each of the systems gives the percentage of triplets

46

generated found to be correct on further review. The leftmost comparison gives the percentage of

the “gold standard” of triplets that were captured by each system. Notice especially in Figure 4

that while our system’s triplet accuracy is at 50% the algorithm manages to capture 81% of the

“gold standard” triplets. This means that while the system overproduces it is still able to capture

a majority of the correct triplets.

Percentage of Correct Triplets Generated
by Human Expert and Computer

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Percentage of
Correct Triplets

Percentage of Total
Triplets Captured

Human Subject
Computer System

Figure 7. Percentage of Correct Triplets Generated.

Comparison of Triplet Production:
Expert Human vs. Computer

0

50

100

150

200

250

300

350

400

Total Triplets
Produced

Incorrect
Triplets

Correct
Triplets

Human Subject
Computer System

Figure 8. Triplet Generation Numbers.

The Figure 8 gives raw numbers for triplets produced by both the human and the

computer system. This serves to once again emphasize that while our system does overproduce

triplets the numbers of correctly produced triplets are extremely similar between both the two.

The second stage of testing involved a comparison between nine human subjects and the

computer system to determine overlap as given below. In this phase of testing our system was

found to overlap with 53% of the triplets created by the untrained subjects. This seeming

reduction in the ability of our system to capture triplets stems from two sources:

47

1. The computer system captured more triplets than the human subjects: The human

subjects captured a total of 104 correct and unique triplets, 55 of which were found to be

identical to those generated by our system. However, our system generated another 23

triplets that were correct and not captured by any human subjects.

2. Unlike the triplets generated by the expert the triplets generated by untrained humans

contained inferences: Inference triplets are triplets that represent a fact present in the

article that requires an understanding of the text to create. For example, one article stated

that that Intel sought to overhaul parts of its business in order to increase profit and then

listed processors and memory among the portions to be overhauled. One student then

created triplets that noted that both processors and memory are key parts of Intel. While

this represents a correct triplet it should be noted that the formation of this triplet requires

a human understanding of the text.

Both the expert testing and the inexpert testing phases of testing reveal one of the

limitations of that system presented here, namely that while we are capable of boasting high

recall the precision of the system is a good deal lower. We believe this low precision is

acceptable given the system described herein also relies on the previously mentioned Term

Hierarchy Tree structure. Thus, while document parsing will yield incorrect triplets the process

will also create enough correct triplets that combined with the document metrics given above

will yield the proper document recall.

There are, however, several methods that we leave to future work that are available

towards the improvement of the precision of our system. These improvements are:

48

1.) Improvement of the JavaNLP used – While the algorithms described here work with any

Natural Language Parsing system the ability to produce triplets can only be as good as

the initial parse generated. The training data chosen for JavaNLP in this project

represents the fastest backing file available for the project. Because of the high order of

all Natural Language processing algorithms speed was a concern for our system. The

training corpus used here has 80.1% precision [Klei02] whereas dataset that are slower

and parse the sentence structure more deeply are able to produce 86.6% precision.

2.) Lowered triplet filtration limits – As mentioned previously our system was

designed with some ability to accept inaccurate triplets due to the Term Hierarchy Tree

design. Thus, the filtration limits are set purposefully low to prevent the incorrect

removal of accurate triplets. By increasing the threshold for removal a larger number of

incorrect triplets would be removed. This would, however, also result in the deletion of

correct triplets, something this project wished to avoid as much as possible.

49

CHAPTER 7

CONCLUSION

The approach presented here addresses several of the problems present in modern search

applications. Namely, it seeks to store and recall information based on entities and any relations

present between the entities rather than scanning the documents for the existence of a searched

for phrase. Towards this end Stanford’s JavaNLP tool provides an infrastructure used to

transform natural language sentences into the common triplet form used by nearly all Semantic

Web applications. This natural language processing engine servers a dual role: first, it is used as

a means to store documents and second, it is used in the same manner to process any queries

issued to the system by a user. This allows the system a better processing of all relationships and

entities present in the text. The end product allows for search and indexing based on this concept.

This, we believe, is something largely lacking from modern information retrieval techniques.

50

CHAPTER 8

FUTURE WORK

There are several branches that we feel are beyond the scope of the current work that

would, however, provide an excellent focus for additional work on this project. The primary of

these is an improvement upon pronoun resolution. This is the subject of several papers [Tetr99],

[Mitk98], and as such is well beyond this work’s focus on creating a search and index method

based on the relationship between entities. While the limited form of pronoun resolution used

currently works well enough that it does not truly hamper the system it does represent a natural

next step in development.

Beyond improvements of entity reference that would be accomplished through further

work on pronoun resolution the ability to view information mined from a document as a graph

would be extremely helpful to a quick understanding of the information. This topic is also the

subject of a number of paper within the Semantic Web community [Deli06], [Flui02] and we feel

that it would lend the user the ability to review all document relating to his search with a

thumbnail overview of all the information. This could allow an at a glance understanding of

information gleaned from a multitude of different sources and could possibly preclude the user

having to read any part of the actual document in question.

This idea of visualization could also be further extended to allow for merging of all

documents placed under a given classification. This would allow an “at a glance” understanding

of all information mined related to a given subject. Given that the system detailed herein places

a heavy focus on ensuring that each triplet mined from the document in question represents a fact

that the author wishes to convey to the reader this would produce a graph of facts regarding a

topic. Doing so would allow the user to understanding quickly and easily the various

51

relationships between differing segments of information regarding a category.

The document ranking methods used herein represent another area for improvement

based on recent research in Semantic Web. Specifically retrieval ranking could be improved

through the addition of metrics regarding the relations between entities [Alem03]. Thus, the

system could gain a greater understanding of the degree to which a given entity is related to

another or additionally the level of significance of the linking between the two. The

determination of the “importance” of different relations within differing context could

additionally be done through semantic association discovery as given in [Alem06].

52

REFERENCES

[Abra98] David Abrams, Ronald Baecker, and Mark H. Chignell. Information archiving with

bookmarks: Personal web space construction and organization. In Conference on Human

Factors in Computing Systems, 1998. pp 41–48.

[Alan03] H. Alani, S. Kim, D. Millard, M. Weal, W. Hall, P. Lewis, and N. Shadbot. Automatic

ontology-based knowledge extraction from web documents. IEEE Intelligent Systems, 2003; pp

14-21.

[Alem03] B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A. Sheth. Context-Aware Semantic

Association Ranking. First International Workshop on Semantic Wb and Databases, Berlin,

Germany, September 7-8, 2003; pp. 33-50

[Alem06] B. Aleman-Meza, A.P. Sheth, D. Palaniswami, M. Eavenson, and I.B. Arpinar.

Semantic Analytics in Intelligence: Applying Semantic Association Discovery to Determine

Relevance of Heterogeneous Documents. In Siau, K.L. ed. Advanced Topics in Database

Research, Idea Group Publishing, 2006.

[Anya05] K. Anyanwu, A. Maduko, A. Sheth. SemRank: Ranking Complex Relationship

Search Results on the Semantic Web. In Proceedings of the Fourteenth International World Wide

Web Conference, 2005.

[Bagg97] A. Bagga, J.Y. Chai, and A.W. Bierman. The role of WordNet in the creation of a

trainable message understanding system. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence

Conference. 1997.

[Bern00] T. Berners-Lee. Primer: Getting into RDF & Semantic Web using N3.

http://www.w3.org/2000/10/swap/Primer.html, 2002.

http://www.w3.org/2000/10/swap/Primer.html

53

[Bern00a] T. Bernes-Lee, J. Hendler, and O. Lassila. Semantic Web. In Scientific American,

May 2000.

[Bobr66] D. G. Bobrow. Natural language input for a computer problem solving system. In

MAC-TR-1, Project Mac,1966.

[Broe02] J. Broekstra, A. Kampan, and F. van Harmelen. Sesame: A generic architecture for

storing and querying RDF and RDF Schema. In International Semantic Web Conference, 2002.

pp. 54-68.

[Broe04] J. Broeskstra and A. Kampman. SeRQL: A second generation RDF query language. In

Semantic Web Advanced Development Europe: Workshop on Semantic Web Storage and

Retrieval, 2004.

[Cull86] R. Cullingford. Natural Language Processing: A Knowledge-Engineering Approach.

Rowman and Littlefield, Totowa, NJ, 1986.

[Deli06] Leonidas Deligiannidis, Amit P. Sheth, and Boanerges Aleman-Meza. Semantic

Analytics Visualization. In Proceedings of the IEEE International Conference on Intelligence and

Security Informatics 2006, May 23-24, 2006, San Diego, CA, USA.

[Deke03] Ofer Dekel, Christopher D. Manning, Yoram Singer. Log-Linear Models for Label

Ranking. In Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT

Press, 2004. pp. 497-504.

[Dill03] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S.

Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag and Seeker: Bootstrapping the

semantic Web via automated semantic annotation. World Wide Web Conference Budapest,

Hungary (2003)

[Fell98] C. Fellbaum. Wordnet: An Electronic Lexical Database. MIT Press, 1998.

54

[Flui02] C. Fluit, M. Sabou, F. van Harmelen. Ontology-based Information Visualisation. In

Visualising the Semantic Web, 2002.

[Gran02] J. Grant, D. Beckett, D. RDF Test Cases. W3C Working Draft.

http://www.w3.org/TR/2002/WD-rdf-testcases-20021112, 2002.

[Gruh04] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J.

Zien. How to build a webfountain: An architecture for very large-scale text analytics. In IBM

Systems Journal - Utility Computing, 2004.

[Guha02] R. Guha and R. McCool. Tap: A Semantic Web Platform. In Computer Networks 42,

2002. pp. 557-577.

[Guth99] L. Guthrie, J. Guthrie, and J. Leistensnider. Document classification and routing in

Natural Language Information Retrieval. Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1999. pp. 289-310.

[Hamm02] B. Hammond, A. Sheth, and K. Kochut, Semantic Enhancement Engine: A Modular

Document Enhancement Platform for Semantic Applications over Heterogeneous Content. In

Real World Semantic Web Applications, pp. 29-49, 2002

[Hamm05] Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott. Social bookmarking

tools (I): A general review. In D-Lib Magazine, 2005.

[Jone99] Karen Jones. What is the Role of NLP in Text Retrieval in Natural Language

Information Retrieval, Tomek Strzalkowski, Ed., Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1999. pp. 1-21.

[Jure04] Jure Leskovec, Marko Grobelnik, and Natasa Milic-Frayling. Learning sub-structures

of Docment Semantic Graphs for Document Summarization. In Link Analysis and Group

http://www.w3.org/TR/2002/WD-rdf-testcases-20021112

55

Detection, 2004.

[Karv02] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.

RQL: A Declarative Query Language for RDF. In Word Wide Web Conference, 2002.

[Katz02] Boris Katz, Jimmy Lin. Annotating the Semantic Web using natural language. In

Proceedings of the 2nd Workshop on NLP and XML, 2002.

[Klei02] D. Klein, and C. Manning. Fast Exact Inference with a Factored Model for Natural

Language Parsing, In Proceedings of Neural Information Processing Systems, 2002.

[Kuhn06] Tobias Kuhn, Loic Royer, Norbert E. Fuchs, Michael Schroeder. Improving Text

Mining with Controlled Natural Language: A Case Study for Protein Interactions. In Third

International Workshop on Data Integration in the Life Sciences, Hinxton, UK, 2006.

[Mahe95] K. Mahesh, and S. Nirenburg, A Situated Ontology for Practical NLP. In Proceedings

Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.

[Marc93] Mitchell Marcus, Beatrice Santorini, and Maryann Marcinkiewicz. Building a large

annotated corpus of English: the Penn Treebank. In Computational Linguistics,1993.

[McBr02] B. McBride. Jena: A semantic Web toolkit. In IEEE Internet Computing, 2002. pp.

55-59.

[Mitk98] R. Mitkov. Robust pronoun resolution with limited knowledge. In Proceedings of the

Eighteenth Conference on Computational Linguistics, 1998.

[Popo03] B. Popov, A. Kiryakov, A. Kirilov, et al. KIM - Semantic Annotation Platform.

In Proceedings of the 2nd International Semantic Web Conference, 2003.

56

[Scha75] R. C. Schank. Conceptual Information Processing. Elsevier, New York, 1975.

[Seab04] A. Seaborne. RDQL—A Query Language for RDF. W3C, Member Submission.

http://www.w3.org/Submission/2004/SUBM-RDQ-20040109, 2004.

[Shet03] A. Sheth, I. B. Arpinar, and V. Kashyap, Relationships at the Heart of Semantic Web:

Modeling, Discovering, and Exploiting Complex Semantic Relationships, In Enhancing the

Power of the Internet Studies in Fuzziness and Soft Computing, 2003.

[Shet05] A. Sheth. From Semantic Search and Integration to Analytics. In Dagstuhl Seminar

Proceedings, Dagstuhl, Germany, 2005.

[Srin02] Suresh Srinivasan, Thomas C. Rindflesch, William T. Hole, Alan R. Aronson, and

James G. Mork. Finding UMLS Metathesaurus Concepts in MEDLINE. Proceedings of the

American Medical Infomatics Association, 2002.

[Svat03] V. Svatek, J. Braza, and V. Sklenak. Towards Triple-Based Information Extraction

from Visually-Structured HTML Pages. In Poster Track of the 12th International World Wide

Web Conference, Budapest, 2003.

[Tetr99] Joel R. Tetreault. Analysis of syntax-based pronoun resolution methods. In Proceedings

of ACL, 1999.

[Weiz66] J. Weizenbaum. ELIZA - A computer program for the study of natural language

communications between men and machines. In Communications of the Association for

Computing Machinery,1966. pp. 36-45.

[Wino72] T. Winograd. Understanding Natural Language. Academic Press, New York, 1972.

[Wood75] W. A. Woods. What's in a Link: Foundations for Semantic Networks. In

http://www.w3.org/Submission/2004/SUBM-RDQ-20040109

57

Representation and Understanding: Studies in Cognitive Science. Academic Press, 1975. pp. 35-

82.

