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ABSTRACT

A proper understanding of any document relies heavily upon two things: an 

understanding of the relationships between terms and a grasp of the manner in which language 

relates one term to another. For example a full comprehension of the sentence “Jane plays 

basketball” requires the reader to first understand that Jane is related to basketball by her taking 

part in this activity; second, the reader must have an understanding that of how basketball relates 

to other terms. Thus, for a full grasp of the sentence the reader must be aware that basketball is a 

sport among other things. These two understandings are missing from current search and storage 

methodologies and are instead largely replaced with word distance measures. As such the only 

relation stored by most modern methods is that the word “Jane” appears near the word 

“basketball.” Our system remedies these two problems through both relationship recognition as 

well as a grasp of how concepts relate to one another as in the linking of “sports” to “basketball.” 

This allows for automated semantic information storage and beyond this enables storage of 

information in a manner that resembles the structure of language.
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CHAPTER 1

INTRODUCTION

The most often cited challenge of the Semantic Web movement is the transformation of 

Natural Language text into Semantic Information [Bern00a].  That is, the alteration of human 

understandable information into machine readable data.  Even HTML content lacks methods for 

allowing a program to process a document’s meaning. There are some attempts to remedy this 

problem such as allowing the placement of meta-information into HTML and Web sites that 

allow their users to annotate other sites with terms regarding the subject of a given site or page 

[Abra98, Hamm05] or snippets of a page (i.e., microformats, RDFa (www.rdfa.info)).  But for 

the most part, the act of placing a document online is largely akin to placing a new book onto a 

bookshelf with only a vague title to guide a reader to the information.

The natural and intuitive ability of humans to understand language, in both written and 

spoken form, comes from the knowledge of the terms being discussed and the relations among 

these terms. For example, English speakers know that a more general term for “table” is 

“furniture” and that “stuff” and “thing” can be used as a catchall for any concept. Computer 

programs, on the other hand, have to rely on analysis such as frequency of terms, and structure of 

links between the terms (i.e., href in HTML). Such methods have proven success as it is evident 

by top search engines. However, we claim that a better computer processing of text is possible by 

exploiting relationships among the terms. As the current Web evolves into the Semantic Web, it 

is expected that relationships will play an increasingly significant role both in the field of 

research [Shet03] and within the commercial sector [Shet05]. In fact, there are commercial 

products that make use of natural language parsing within a specific domain, such as MedScan1.  

                                                
1 http://ariadnegenomics.com/products/medscan/

http://ariadnegenomics.com/products/medscan/
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The challenge is, to develop methods that can convert sentences into a form that allows better 

computer processing (i.e., improvements on retrieval of correct documents).

Search engines have a limited understanding of relationships present in text and are 

generally limited to the notion that a term is present in a document and appears within a certain 

distance of other terms. That is, the actual relationships between data are ignored. Without 

knowledge of the relationships present in data any queries for related entities will be error prone. 

Our approach attempts to remedy this by injecting a human’s understanding of language into 

document processing for indexing and retrieval. This is accomplished first, through the 

recognition of both terms and any relationships among them; and secondly by relating the terms 

and relationships to an ontology of terms.  The ontology used herein is structured in such a way 

that more general or more specific forms of a term are linked.  For example, “Sports” and “Golf” 

are directly linked because “Golf” represents a specific sport. This allows our system a grasp of 

both the relationships present in the text as well as relationships among terms that may not be 

directly present in the text. Thus, our system seeks to address two major problems: one, the 

problem of entity placement and two, the problem of relationship recognition. Here, by the entity 

placement problem we refer to the lack of understanding of the specificity, generality, or 

relationship that a term has to other entities. This concept was illustrated in the previous example 

where it was noted that “Golf” and “Sports” are related by one term being more specific than the 

other. The relationship recognition problem represents a lack of understanding of the links 

between entities as stated in the text. For example, the sentence “Joe is a Lawyer,” draws a clear 

relationship between Joe and the profession of lawyer. Typically, this type of relationships is 

completely ignored in favor of a more simplistic inspection of word distance. Our approach to 

these problems relies on breaking sentences into three pieces consisting of a subject, a relation,
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and an object. For instance, suppose a document contains the text: “viruses are the cause of many 

diseases.” Most search engines would note that the terms “viruses” and “diseases” appear in the 

same document somewhat close to each other and therefore some relationships exist between 

them. However, there is a causal relationship present between the terms that would be ignored.  

Our approach recognizes the causal relationship present in this sentence and represents this using 

a subject – predicate – object form; or more specifically as “Viruses” <cause of> “diseases.”

In this paper, we use ontologies and natural language processing to move one step ahead 

on the transformation of natural language text into a form or representation that facilitates an 

improvement on the processing of information. The contributions of this paper are two-fold. 

First, we introduce a novel method of creating subject – predicate – object triplets from natural 

language. Second, we demonstrate the applicability of this triplet representation for querying and 

retrieval of documents through an application that we developed.
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CHAPTER 2

MOTIVATION

People have a natural and intuitive understanding of the hierarchy inherent to the 

language they speak.  As mentioned before, “table” and “furniture” are related by the first being 

a more specific form of the second.  It is this comprehension of general to specific along with a 

grasp of the specific relations among terms that allows speakers to quickly move from one topic 

to another in conversation with little or no explanation of the transition.

Unfortunately, this human understanding of language is rarely recognized by search 

applications.  Search engines simply recognize what terms are contained within a document and 

their proximity to each other.  There is no understanding of the actual relations among terms or 

where the term stands in the hierarchy of language.  Golf is recognized only as a location in 

memory and not as a sport.

Beyond the hierarchy of general to specific, search engines have an extremely limited 

understanding of any relationship present in the document.  This comprehension is generally 

limited to a knowledge that a term is present in a document and appears within a certain distance 

of other terms.  This causes the system to be ignorant of the actual relationships between entities 

in the data.  Without knowledge of the relationships present in data any queries for related 

entities will be error prone.  As an example, suppose a user wishes to search for “famous authors 

not awarded a Nobel prize” or any other negative relationship between two entities.  This would 

return documents that contain “authors” and “Nobel prize” in close proximity which would, in 

all likelihood, be a list of authors that where awarded a Nobel prize; the exact opposite of what 

the user was seeking.
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This underscores the strength of the Semantic Web model and the weakness of the 

current Internet.  As it currently stands the World Wide Web contains no well-defined or 

coherent mechanism for storing or processing relationships between pieces of information.  Most 

current Internet search applications are based solely on the relationship of reference proximity 

and have no understanding of the nature of a relationship or the specificity of a given term.

The Natural Language Semantic Store attempts to remedy this by injecting a human’s 

understanding of language into search and retrieval.  Both TAP [Guha02] and WordNet [Fell98] 

are used to lend the system an understanding of the hierarchy of language while natural language 

parsing in the form of JavaNLP [Klei02] is used to mine relationships among entities.  Discovery 

of entity relationships is used not only during document storage but also during user search in 

order to ensure a constant awareness of links between entities.

Thus, the system detailed herein addresses two major problems present in current search 

methodologies.  One, an ignorance of the relationships specified by the author and two, a lack of 

understanding of how different terms relate to each other through the structure of language.  

These two problems are detailed in greater depth in the two sections to follow.

2.1  Entity Placement Problem

When an entity is hashed to a location in memory this provides no understanding of the 

specificity, generality, or relationship the term has to other entities.  An understanding of these 

concepts can not only improve search results but also lend the engine an understanding that 

emulates a human’s own grasp of language.  The system and algorithm presented here attempts 

to address this lack of understanding on the part of other search methods by using developed 

ontologies in addition to natural language processing techniques.  This lends the system a 

comprehension of language that resembles a human’s own understanding.
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2.2  Relationship Recognition Problem

Indexing based on term location in a document causes any relationships between entities 

presented in the text to go unprocessed.  The result of this is that all searches simply scan for 

terms identical to those present in a query and appearing in close proximity to each other.  The 

system detailed herein attempts to repair this problem through natural language processing that 

converts sentences and queries into their component entities and recognizes any relationships 

between them.
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CHAPTER 3

BACKGROUND

One of the major goals of Natural Language Processing is to lend a computer the same 

level of language understanding possessed by a fluent speaker.  While this goal currently remains 

unaccomplished there are a multitude of progressions along numerous paths that all attempting to 

create a viable solution.  However, despite the existence of many different paths most people 

would readily agree that any application that finally achieves this goal would require three 

general components [Mahe95], [Cull86].

1. Dictionary: More specifically the system requires an understanding of the meaning of 

words and their association with other words.  This is best thought of, as the title implies, 

as lending the program a dictionary it can page through and look up word meanings.  

This does not, however, denote a true understanding of the word; that portion of the 

system in detailed in the following component.

2. Inference Engine: Where the previous dictionary component lends the system the ability 

to know the various meanings of a word; an Inference Engine allows the system to 

choose from amongst them.  For example: the word chair has two very distinct and 

different meanings, namely it can refer to the article of furniture one sits upon or the head 

of some governing body as in “science department chair.”  The dictionary component 

reports these two meanings to the program whereas the inference engine gives the ability 

to choose the proper definition for the situation.

3. Language Understanding: Arguably an understanding of the language naturally stems 

from the combination of the above two components, however, for the sake of 

completeness it is listed here as a separate piece.  This represents the ability of the system 
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to fully realize the meaning an author intended in writing a given passage.  This ranges 

from word understanding to a grasp of the general meaning of a sentence.

This is not to say that the ultimate ends of Natural Language Processing is language 

fluency.  This idea is better viewed as a general idealized goal for the field.  Many of the systems 

described in the sections that follow have goals that are quite divergent from that of full language 

understanding.  However, they do all share a common thread in the desire to give a computer 

application some understanding of human communication.  The understanding a system seeks 

ranges from computer object representation of the sentence [Klei02] to text processing for the 

purpose of classifying document as being part of a given field [Guth99] to even aiding document 

retrieval in larger systems [Jone99].

Perhaps then a better statement of the aims of NLP is that it wishes to create a machine 

understanding of natural language.  This understanding is not always analogous with fluency.  

NLP seeks to give a computer some ability to process human created text in much the same 

manner a computer utilizes a data object or accesses a database.  It wishes to gift the computer 

with the ability to pull information from text in the same manner data is pulled from a database 

upon execution of a query.

This desire is extraordinarily similar to that of the Semantic Web movement which, in 

part, wishes to transform the web from a shelf of books into a database.  At their heart both seek 

to transform something originally meant for human consumption into something that a machine 

has a ready understanding of.  This represents the greatest link between the two subsets of 

Computer Science in addition to underscoring why the combinations of their methods is both 

ready and needed.
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In this section we will first provide an overview of the background of the Natural 

Language Processing subset of Artificial Intelligence, then move to overview a few modern 

systems with a special focus on any ways in which Natural Language uses several of the

methodologies also associated with the Semantic Web movement.

3.1  A History of NLP

Natural Language Processing found its beginnings in the mid-1960s with two major 

systems containing similar underlying functionality: ELIZA [Weiz66] and STUDENT [Bobr66]. 

These two systems are highly representative of what can be considered the first generation of 

Natural Language Processing systems.  Their understanding of language, as well as the domains 

in which they were able to function, were extremely limited.  This heavy domain dependence 

stemmed from a programmatic reliance upon grammatical structure and word meaning rules that 

existed solely within a single domain.  This means that the computers lacked any ability to 

understand the meaning behind language and rather emulated this understanding through the 

rules that always held true for a given domain.  For example, in the domain of law the word 

“ruled” denotes a decision handed down by a judge, thus the outcome of a given court case can 

not be far behind.  In this way these systems used general heuristics as well as exploiting clichéd 

phrases within the domain to create the illusion of text understanding.  In addition to these 

limitations the systems were strictly able to process simple declarative or interrogative sentences 

and nothing more complex.

Running parallel to these systems was what, at the time, seemed like a promising 

branching of NLP: language translation.  While this segment is, for the most part, outside of the 

scope of this overview it is important to note the effect early translation programs had upon later 

NLP applications.  The first translation applications sought to convert between one language and 
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another through a simple dictionary understanding of words.  This means that terms in one 

language were simply converted to their counterparts in another [Cull86].  However, this once 

again points to the problem of choosing which meaning of a word is in current use.  This 

approach ultimately provided unacceptable results leading to the aforementioned conviction that 

any natural language system required something more than a dictionary understanding of the 

words being used.

Later generations of NLP applications learned from the previous processing and 

translations attempts and included an integration of semantics.  Of note in this vein was the 

SHRDLU [Wino72] system which married semantic understanding with a reasoning engine 

borrowed from Artificial Intelligence.  The promising results from this lent further credence to 

the belief that language understanding required a grasp of both word meaning and word use.  

This second generation also marked the advent of systems that sought to transform natural 

language into some machine understandable intermediary form [Scha75] rather than create a 

direct understanding of language.  This process can be thought of as a conversion of the human 

created text into object representation.  This allows for application processing that is much the 

same as the manner in which a program is able to interact with its own contained objects.  This 

lends a degree of representational understanding of the sentence to the program.

These initial generations of NLP research are outlined here to further emphasis the ready 

ability to combine Natural Language techniques with those of the Semantic Web.  These two 

subsets of Computer Science seek to, in some sense, lend programs the ability to understand text 

meant strictly for human consumption.
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3.2  NLP and the Semantic Web

As NLP systems have matured over the years they have also realized an increased need 

for language understanding.  As time has passed this need for language understanding has drawn 

closer and closer to the Semantic Web vision for a machine understandable World Wide Web.  It 

is our belief that the two subsets have of late drawn close enough that a linking of the two is 

nearly unavoidable.

Perhaps the best example of this is the previously mentioned ontological based NLP 

engine.  This engine, referred to as the Mikrokosmos Project [Mahe95], utilizes a situated 

ontology in order to allow the program an in-depth understanding of the language of a given 

domain.  In fact more descriptive time is spent, within the framework of the paper, describing the 

creation of the ontology rather than the formulation of the Natural Language engine.  This 

underlies the project’s heavy reliance upon its ontology, a concept that represents one of the 

major methodologies at the heart of the Semantic Web movement.  In particular the 

Mikrokosmos project outlines several general ways in which an ontology bolsters the process of 

Natural Language parsing or any other system:

1. Symbolic Meaning: A fully formed ontology guarantees that every concept represented 

within a text will not only be mapped to meaning but to relationship with other concepts.  

This ensures some baseline understanding of any term used within the text.

2. Meaning Collapse: Because of an ontology's ability to store relationships amongst 

objects in addition to the object’s meaning much of the definition of a word can be 

collapsed and represented through relationships.  For example, the concept of a 

“syndrome” is highly linked to medical science.  This is a fact normally explained in the 
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definition of this concept.  An ontology would allow for the explicit omission of this 

information in favor of simply showing a link between the two.

3. Constraint Understanding: Some concepts only make sense within certain bounds.  For 

example: liquid water can only exist at a range between thirty-two and two hundred and 

twelve degrees Fahrenheit.  An ontological representation allows for easy understanding 

of complex concepts such as this and gives natural language processor a shortcut to 

understanding.

4. Faster Learning: An existing ontology provides a groundwork for the understanding of 

any new concept.  This concept is quite familiar to most people, however few have seen 

this idea stated in such a way.  The idea here is that once one has a baseline 

understanding of a topic it becomes easier to gain additional understanding regarding this 

subject.  For example, children are taught addition prior to multiplication because once 

addition has been learned the understanding of multiplication simply requires one’s mind 

to compute several addition functions.

The key difference between this work and our own is the system’s reliance upon carefully 

formatted and correct domain information. Our system has none of these requirements and as 

such has none of the domain dependences and needs for carefully constructed knowledge bases 

to represent them.

Another system that attempts automated information extraction from natural language 

text is the Artequakt project [Alan03].  However, like the previous system Artequakt also 

requires a previously formed ontology in order to fully extract information.  Here the ontology 

takes the form of a classification structure rather than the more general ontology of terms as was 

seen in the Mikrokosmos project.  This classification ontology is utilized as the system searches 
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online for documents and information that matches its in-built classification structure.  Thus, the 

system contains no initial corpus of information but rather issues searches to web search engines

in order to locate information related to the ontology that it is given.  Thus, the system no only 

locates its own information but is also able to update the information it extracts as new facts are 

placed on the web.

Like the Mikrokosmos project mentioned before the Artequakt system differs from our 

own in its reliance upon a correctly constructed ontology.  Thus, the user must in large part tell 

the system what information he or she wishes to locate and then run the system in order to allow 

it to find this information.  Due to our reliance upon natural language processing the program 

detailed herein is able to extract information without a previously created ontology and beyond 

this is able to create information from documents related to any domain.

Another example of a Natural Language system that includes a heavy reliance upon 

ontological information comes from the use of WordNet [Fell98] to create much of the word 

understanding present in the previous system.  It should, however, be noted that WordNet 

represents something closer to a general language understanding mechanism rather than the 

ontology present in the previous system.  Specifically, Amit Bagga et al. illustrates one use of 

WordNet with their message understanding system [Bagg97].  This system seeks to allow its 

user to build an information extraction system based not on text formatting or regular 

expressions, as is frequently used, but on an understanding of the language given in the text.  In 

much the same way as was mentioned previously with a situated ontology WordNet provides the 

ability for the program to gain a semantic understanding of the words and phrases being used in 

addition to a comprehension of a word’s relation to other terms. This work diverges from our 

own by its manner of information extraction. More specifically the message understanding 
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system extracts information from a Web page into a preexisting template. Thus, the program 

scans the text looking for specific pieces of information such as phone number or street address 

rather than seeking to capture all information present in the text.

A similar use of a language ontology is seen in the Semtag and Seeker project [Dill03].  

The information created by the Semtag portion of the project is then used by seeker to index the 

information and allowing for speedy retrieval.  Here the TAP ontology is used to allow entity 

recognition in the three step process of semantic tagging:

1. Spotting pass: Documents are retrieved from the store and all references to 

entities in TAP are located.  The system then stores the ten words to either side of 

the entity reference creating a window of context around the object.

2. Learning pass: Once all windows from the document store have been saved they 

are all scanned in order to determine the corpus wide distribution of terms.

3. Tagging pass: The distribution of terms is used in this pass to disambiguate all the 

terms.  This is done by inspection of terms contained within the windows 

surrounding each entity as well as within the document as a whole.  Thus, if a 

document contains a reference to Tiger Woods in addition to multiple references 

to video games then the system could reasonably state that the reference to Tiger 

Woods is not to the person but rather to the video game series baring the person’s 

name.  With disambiguation complete the system then tags the entity with the 

proper TAP reference.

The Semtag and Seeker project differs from our own in its ultimate goal; more 

specifically Semtag and Seeker wishes solely to disambiguate entities with regards to their TAP 

reference whereas our project wishes to extract triplets from text.  Thus, Semtag and Seeker is 
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best considered as part of any future work upon our project that would allow for disambiguation 

of entities.

Entity disambiguation is once again seen in the SKR project to locate terms present in the 

UMLS metathesaurus [Srin02].  Here natural language parsing is used to locate noun phrases 

within medical abstracts.  These phrases are then matched against the concepts contained within 

the UMLS knowledge base using flexible matching techniques.  This means that the matched 

concept need not be stated exactly the same as the concept present in the thesaurus but need only 

match within a certain word range.

The SKR project differs from our word in its focus on simply using natural language 

processing to location entities rather than extract facts regarding the information present in text.  

In fact, the a large portion of its functionality is encompassed by a portion of our own project 

with the only difference being that we have left disambiguation as future work rather than 

incorporating it as part of our current work.

The practice, mentioned previously, of translating natural language into an intermediately 

form of programmatic object is used create document summaries [Jure04].  This system, 

however, includes a reversal of the previous examples; here Natural Language Parsing 

techniques are used to create an intermediary ontology.  Whereas the previously mentioned 

systems represent NLP utilizing aspects of the Semantic Web movement; thus, the current 

system is better thought of as the Semantic Web utilizing NLP.  This system first parses a given

text using a natural language processor that converts the sentence into an annotated object.  This 

object is then mined to create an intermediary graph representation of the information contained 

in the sentence.  Once the full text has been mined the graph object is inspected for patterns that 

indicate which sentences can be extracted from the text and included in a summary.  The creation 
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of the intermediary graph form is simply a middle ground for the ultimate goal of summarizing 

the text. Thus, this graph does not represent a complete and correct representation of the 

information in the text, rather it is simply a means to the ultimate ends of text summarization.  

While this system’s focus is less upon correct formulation of the information in the text into 

ontological form and more upon creating a representation that can be used for summarization this 

still represents the use of a technique typically associated with the Semantic Web.

A similar use of an intermediary form of information representation is found in the works 

of the Attempto project [Kuhn06].  However, unlike the previous summarization project the 

authors of the text must use the Attempto Controlled English (ACE) language.  The project 

summarizes the major facts of texts pulled from the biomedical domain to allow for more 

effecting information mining.  In this way a large corpus of biomedical information, which is 

notoriously difficult to cross-reference with other information sets, can be mined and then 

compared to other ACE language rendered information.  The authors note that their language is 

capable of fully representing 56% of the headlines the system was tested over with support for 

partial representation of another 23%.

The difference of this project from our own work lies once again in the need for the 

author to create a representation of the information other than the standard language 

representation.  Our own work mines the existing language and makes no requirement that either 

the author originally represent the information in a intermediary structure or that the document 

be later reformulated by another person.

While the previous examples have largely confined themselves to inspecting natural 

language for information the START [Katz02] system proposes using a syntax that greatly 

resembles natural language.  This allows creates a semi-structured basis from which to create 
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semantic information.  Thus, a person with only a passing knowledge of the Semantic Web 

would be able to create information for use by various semantic systems.  An interesting facet of 

this concept is its underlying presumption that the semantic method of representing information 

is not far from the natural language means of information presentation.  While this concept 

deviates greatly from our own work so that little comparison between the two systems can be 

made it should be noted that this concept greatly underlies our own work.  Both share a belief in 

the relatedness of natural language and the Semantic Web method of information storage. 

There also exist systems that attempt triplet extraction from text by all-together different 

means. Specifically an attempt is made at inspecting the structure and language used in HTML 

code in order to discover relationships among entities [Svat03]. This technique, however, limits 

itself to a heavy reliance upon inspecting the structure of HTML code.  Any natural language 

processing takes a backseat to the structured HTML.  Thus, while this system does create a map 

of links among entities it requires extensive additional information to do so in the form of HTML 

scrubbers and parsers.

Each of the previous systems provide and example of the successful marriage of NLP and 

Semantic web techniques.  They underscore both the ability of the two subsets to be combined in 

addition to the relatedness of the two areas.  While the focus and methodologies of the systems 

outlined are divergent they do all share a common goal of heightened language understanding.  

As noted before this understand can take radically different forms, from a speaker’s fluency in a 

language to the ability to represent a sentence as an object that can then be passed and parsed 

between functions.

It should also be noted that a similar method of document classification to our system is 

used in the Semantic Enhancement Engine [Hamm02].  This system seeks to annotate natural 
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language text with information that specifies the proper domain for the terms contained in the 

document.  Ultimately, however, this system diverges from our own in that it seeks document 

and entity classification whereas our own system is more largely concerned with relationship 

recognition as stated by the author of a document.

3.3  Marrying NLP and Semantic Web

Natural Language Processing and the Semantic Web movement engender many of the 

same concepts.  Most notably they both seek to lend some form of language understanding to 

machines.  While the goals are by no means completely similar they carry enough similarity that 

either side would find its objectives greatly aided by methodologies from the other.  The modern 

systems mentioned here show this exceptionally well in the form of a working merge of 

components dear to both subsets of Computer Science.

Beyond this our system differs from all the system herein on three points in addition to 

addressing the two previously mentioned problems with the current breed of web searching 

applications:

1. No ontology needed: Because of our use of natural language parsing and the 

subsequent processing of this information our system does not require an 

ontology in order to extract data from unstructured text.  Rather it relies on an 

understanding of the structure of language itself.

2. Domain independence: Our reliance on an understanding of the structure of 

language further means that our system can operate over the text drawn from any 

domain.

3. Requires only natural language: We solely require the text of an article for triplet 

extraction.  There is no requirement of metadata regarding the text.  Thus, far less 
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human intervention is required for the conversion of human created text into 

semantic information.

A heightened level of integration between the Semantic Web and Natural Language 

processing is both possible and needed.  The two fields have goals and methods that are too 

highly related for them to be considered together.
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CHAPTER 4

NATURAL LANGUAGE IMPLEMENTATION

The Natural Language Semantic Store system operates in two distinct phases, as do all 

other search applications: document store and document retrieval.  In addition, the system itself 

also consists of two distinct parts: the natural language processor, detailed in this section, and the 

Term Hierarchy Tree, detailed in the section to follow.

4.1  Natural Language Processor

The natural language processing portion of the system detailed here seeks to address the 

second of the two problems given above, that is our approach for creating triplets from text 

focuses on the problem of relationship recognition. That is, special attention is paid to relations 

formed between entities and every effort is made to ensure that the all relationships are captured 

as precisely as possible.

Natural language processing in our system relies on a parse-tree produced by an existing 

NLP parse engine. We chose Stanford’s JavaNLP parsing engine because it represents an 

established code base as well as for its log-linear run time [Klei02].  JavaNLP parses all entered 

text into a tree structure that begins at a root node, denoted as root and containing no 

information, and progresses downwards to leaf nodes based on phrasal dependence.

While our approach uses the JavaNLP engine to generate a tagged form of the 

information present in the sentence this does not mean it is solely dependent upon JavaNLP for 

all functionality. While the methods detailed below often give examples as generated by 

JavaNLP it should be noted that we anticipate that our approach would work equally well for any 

natural language processing engine that returns both part-of-speech tags and phrase dependences.
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JavaNLP parses all entered text into a Tree structure that begins at a root node, denoted 

as root containing no information, and progresses downwards to leaf nodes based on phrase 

dependence.

Figure 1 - The Parse Tree Generated by JavaNLP

JavaNLP uses the Penn Treebank set of language tags to annotate a given sentence [Marc93]. 

This tagging set is broken down into three levels. These represent grammatical usage from most 

inclusive to least inclusive:

1. Clause Level: This allows for full tagging of a coherent clause, the most common of 

which is a single declarative clause represented as S.

2. Phrase Level: This enables phrase recognition within a clause. The most common of 

these, as well as the most useful to this project, are noun and verb phrases represented as 

NP and VP respectively.

3. Word Level: This level simply provides the part of speech of each word in the sentence. 

For example: proper noun, noun, plural noun, etc.

Clauses exist only singularly and cannot be contained by any other structure excepting 

the root tag which is able to contain all other tags; however, this represents a design decision of 

“Tiger Woods donates to a large number of charities.”
(ROOT [69.474]
  (S [69.371]
    (NP [20.560] (NNP [8.264] Tiger) (NNP [9.812] Woods))
    (VP [47.672] (VBZ [11.074] donates)
      (PP [31.541] (TO [0.003] to)
        (NP [27.963]
          (NP [15.561] (DT [1.413] a) (JJ [5.475] large) (NN [5.979] number))
          (PP [11.856] (IN [0.669] of)
            (NP [10.784] (NNS [7.814] charities))))))
    (. [0.002] .)))
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the tree data structure rather than an actual tagging of the language.  Phrases are generally 

contained within clauses, however they can appear outside of any clause as in the case of a 

sentence fragment, and are able to contain other phrases.  In fact, it is a phrase’s ability for self-

containment that forms the basis of a sizable portion of triplet creation.  Word level tags 

associate with a single word and reveal its part of speech.

Triplet creation relies, primarily, on phrase level tags.  These tags provide us with 

indications on precisely how a given natural language sentence can be reformed into the subject -

predicate - object triplet associated with the Semantic Web movement and, more specifically, 

with RDF information.

By itself the tagging done by the JavaNLP engine tells little about the information 

contained within a given sentence. It is solely concerned with revealing part of speech and 

phrasal dependencies present in the text. Thus, our program works by only using JavaNLP to 

generate a parse tree such as that of Figure 1. Besides the generation of parse trees, no other 

processing is required from JavaNLP. The generation of triplets, indexing and storage are 

accomplished strictly by our own methods detailed below.

The entire process of initial triplet creation, or more exactly the first five steps given 

below, requires a single pass through the tree.  This generally makes the creation of the tree 

object representation of a sentence the most computationally intensive portion of the natural 

language processing segment of the program.  This is, however, not always the case since tree 

creation is heavily affected by the complexity of the sentence.
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4.2  Natural Language Algorithm Overview

Once the sentence tree has been created, our program parses it for both entity recognition 

and triplet formation. Thus, the parse tree given in Figure 1 represents the full contribution of 

any Natural Language Parser used by our program.

The challenge of converting from the parse tree structure to triplet form lies in the fact 

that the relationships between entities in text can be extremely complex. This fact is best 

illustrated by the 27% average error rate among the untrained human subjects (described later in 

the evaluation section (Section 6)). Our method addresses the problem of entity recognition and 

relationship formation by first locating entities within a sentence. The sentence is then further 

inspected to locate all relationships between entities.  Conversion from a natural language 

sentence to triplet format occurs in seven phases, listed here and detailed below:

1. Entity Recognition: Noun phrases are extracted from the sentence tree and are scanned 

for entities based on part-of-speech recognition.

2. Predicate - Object Recognition: Verb phrases are extracted from the sentence tree and are 

used to form initial versions of the predicate, object pairing.

3. Predicate - Object Augmentation: Prepositional phrases are used to further alter the 

predicate - object pairing created in the previous step.  This often involves combining the 

previous predicate - object linking with the prepositional phrase to create a `new 

predicate. A new object is then formed from what remains of the verb phrase.

4. Triplet Creation: The fully augmented predicate - object is recombined with the entity 

recognized in step one to form a full subject - predicate - object triplet.
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5. Pronoun Resolution: All pronouns in the triplet are resolved to the closest proper noun 

phrase. This is the only step that can draw information not only from the current sentence 

but from any previous sentences as well.

6. Triplet Filtration: Triplets that have a high likelihood of being poorly formed or incorrect 

are discarded. Generally, this is accomplished by detecting redundant information across 

several triplets.

7. Secondary Predicate Parsing: Some of the predicates returned by the previous steps can 

be condensed to less wordy forms that still maintain much of the same meaning.  Here a 

tree structure is created from the predicate and unneeded statements are eliminated.

In our approach, we use RDF (Resource Description Framework) to represent extracted 

entities and relations. One of the primary advantages of RDF, the knowledge modeling 

framework most often used in the Semantic Web, is that it enables easy recognition of complex 

data sets as a graph structure.  In general this takes the form of XML represented statements 

about entities, or more intuitively statements that give some link between two entities and then 

further describe the nature of the link. This allows for several facts to be represented as a chain 

of statements, for example: “John Smith <studied at> Homeland High <founded by> Peter 

Sinclair.” However, natural language, if divided inexpertly, will form triplets whose 

understanding is dependent upon information contained in some proceeding set of triplets 

[Wood75] For example, consider the two triplets regarding a company’s product: “Acme” 

<makes> “Anvils” <for> “export”.  Whereas in the previous example both triplets represent a 

single fact in this second example only the first of the two triplets represents a complete 

statement.
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In the chain of statements given in the proceeding paragraph each of the two triplets has 

meaning independent of the meaning in any proceeding or trailing triplets.  That is, 

understanding the fact that Homeland High was founded by Peter Sinclair does not require the 

reader to understand that John Smith also studied there. In our approach, the generation of each 

triplet is intended so that it represents a single piece of information.

4.3  Entity Recognition

When a noun phrase is located within the phrasal sentence tree it is understood to have 

the possibility of containing a single entity.  Here the term entity refers to any abstract concept or 

real world object; for example: “Natural Science” would be recognized as an entity due to the 

fact that this references an abstract concept; additionally “University of Georgia at Athens” 

represents a real world place and would also be noted as an entity.

Once the noun phrase has been extracted from the tree it is parsed and nouns in both their 

singular and plural forms are combined to form a single entity.  Specifically this means words 

fully contained within a noun phrase and tagged with NN - noun, NNS - plural noun, NNP -

proper noun, NNPS - plural proper noun, or JJ - adjective.  Proper nouns are given a special 

focus as these will later be used during the pronoun resolution phrase of triplet creation.  This 

filters out all excessively descriptive words and returns the complete entity name.  In should be 

noted that despite this need to remove descriptive words adjectives are still included as part of 

the proper noun.  This is because adjectives often provide modifications to the entity that 

describe what type or give qualifying information that is essential to a full description.

With the noun phrase extracted, it is parsed and nouns in both their singular and plural 

forms are combined to form a single entity.  For example, Figure 1 includes the noun phrase: 

(NP [20.560] (NNP [8.264] Tiger) (NNP [9.812] Woods)) this phrase would become the 
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single entity “Tiger Woods.”  Proper nouns are given a special focus as these will later be used 

during the pronoun resolution phrase of triplet creation. This filters out all excessively 

descriptive words and returns the complete entity name. However, if the noun phrase is found to 

contain a proper noun then all words not tagged as a proper noun are removed from inclusion as 

part of the entity. The noun phrase mentioned previously could also have been phrased as: (NP 

[20.560] (NN [7.623] golfer) (NNP [8.264] Tiger) (NNP [9.812] Woods)).  While this 

phrasing mixes nouns and proper nouns it would still produce the same outcome, namely “Tiger 

Woods.”  Intuitively this rule is described as: “proper nouns do not mix with others.”  This is 

done to ensure correct recognition of proper nouns.

While noun phrases contain only a single entity it is possible for several noun phrases to 

be bound to multiple identical predicate – object pairings rather than the more previously 

reviewed single entity binding.  This happens when a conjunction separates two entities, for 

example consider the sentence: “Jack and Jill ran up the hill.”  Here, both Jack and Jill are 

associated with the exact same predicate - object, thus meaning there are two triplets created 

from the sentence, namely: “Jack <ran up> hill” and “Jill <ran up> hill.”  For the purposes of this 

program this is referred to as Coordinating Conjunction Splitting and is given a greater focus in 

the section of the same name to follow.

As for the assignment of URIs to entities or any component of a triplet, there are two 

ways the identifier can be assigned:

1. The entity is part of the preexisting ontology: In this case the object is simply assigned a 

URI that is identical to the previously assigned one. For example, Figure 2 shows the 

hypernym relationship present in WordNet and two entities are present along with their 

URIs, namely “chair” and “folding chair.”  Thus, if either of these terms were located 
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within a sentence then once converted to triplet form and stored they could be referred to 

in the same manner as the entity in WordNet.

2. The entity represents a previously unseen term: In the case that the term is not present in 

WordNet nor TAP then the underlying storage subsystem is used to assign a URI to the 

object. Generally, this assignment takes a form extremely similar to that given in Figure 2.

Figure 2. A Hypernym Relationship in WordNet.

It should be noted that TAP is a shallow but broad ontology and its knowledge base 

containing basic lexical and taxonomic information about a wide range of popular objects 

[Guha02]. In addition, our system allows any ontology to be loaded and used with the same 

effect as those detailed above. Therefore instead of TAP and WordNet any other preexisting 

ontology can be used in our system.

The phase of entity recognition and all other needed phases are explained on an on step-

by-step in Table 1. This shows how each of the processes detailed here and in the sections to 

follow is applied to a sentence to produce the final output of a triplet.

4.4  Predicate - Object Recognition

In a manner similar to the extraction of noun phrases in the previous step verb phrases are 

likewise pulled from the tree.  However, unlike noun phrases, verb phrases do not contain a 

single entity.  In fact, all verb phrases, unless part of a sentence fragment, contain an underlying 

verb phrase and noun phrase, present in that order.  These two included phrases are utilized to 

form the initial versions of the triplet predicate – object association.

Because of the verb followed by noun ordering of information within a verb phrase the 

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hypernymOf> 
http://wordnet.princeton.edu/wn#103253680-folding_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103253680-folding_chair-n
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initial formulation of a predicate - object is fairly straightforward.  The beginning verb phrase is

Triplet Creation Step Portions of Parse Tree 
Inspected

Product of Parse

Entity Recognition (NP [20.560](NNP [8.264] Tiger) 
(NNP [9.812] Woods))

“Tiger Woods”

Predicate – Object 
Recognition

(VP [47.672](VBZ [11.074] donates)
(PP [31.541] (TO [0.003] to)
   (NP [27.963]
    (NP [15.561] (DT [1.413] a) (JJ 
[5.475] large) (NN [5.979] number))

“Tiger Woods”
<donates to>

“a large number”

Predicate – Object 
Augmentation

(PP [11.856] (IN [0.669] of)
  (NP [10.784] (NNS [7.814] 
charities))))))

“Tiger Woods”
 <donates to a large 

number of>
“charities”

Table 1. A Step-by-Step Iteration through the Tree in Figure 1.

recognized and parsed, words tagged with VB - verb, VBD - verb past tense, VBG - verb gerund, 

VBN - verb past participle, VBP - verb non-third person singular present, VBZ - verb third 

person singular present, TO - to, DT - determiner, or JJ – Adjective are added to the predicate.  

Note the presence words not tagged as verbs within the predicate, specifically: to, determiners, 

and adjectives.

Determiners are included because they often provide limiting modifications on the 

predicate that can alter its meaning greatly.  For example “few” is labeled as a determiner and if 

dropped from the predicate changes meaning from denoting a small subset of the objects in 

question to all of a given object.  There is, however, one alteration made to the determiner rule: 

the word “the” while marked as a determiner is never included in the predicate.  This is simple 

because the word “the” contains no useful information and is safe to leave out of the predicate.
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Adjectives are included for much the same reason as determiners, these words represent 

extra descriptive text that if removed from the tends to alter the meaning enough that one finds 

the predicate referring to an entirely different set of things than was the intention of the author of 

the sentence.

Finally, “to” is included because this provides a link between predicate and object that if 

dropped would cause the predicate to be extremely hard to understand.  For example, take the 

fragment of a sentence “ran to police” if rendered as predicate - object without “to” we would 

have “ran” as predicate and “police” as object; this makes it unclear if the object helped to 

operate the police department of if he sought aid from police.

The noun phrase is extracted and parsed in an identical manner as was described in the 

entity recognition step. Beyond verb phrases and noun phrases the other phrase recognized and 

processed is the prepositional phrase. While this phrase is extremely meaningful later in the 

algorithm at the current stage it is simply parsed and included as part of the predicate.

4.5  Predicate - Object Augmentation

There are two major types of augmentations that the initial predicate - object can undergo: 

coordinating conjunction splitting and prepositional phrase combination.  

1. Coordinating Conjunction Splitting: A coordinating conjunction split is best understood 

when first illustrated with an example. Say we are currently interested in parsing the 

sentence: “Dick kicked and threw the rock.”  There are actually two full subject -

predicate - object triplets present in this sentence, namely “Dick <kicked> rock” and 

“Dick <threw> rock.” An identical process occurs in the case of a comma delimited list 

of items. It should also be noted the conjunction splitting is able to produce two slightly 

different forms of the same predicate. Consider the verb phrase: “incapable of 
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recognizing and repeating.”  When properly processed this produces: “<incapable of 

recognizing>” and “<incapable of repeating>.”

2. Prepositional Phrase Combinations: In its simplest form, a prepositional phrase will cause 

the initially created predicate - object to be merged into a single new predicate followed 

by the prepositional phrase.  Consider as an example the parse tree presented in Figure 1, 

as processing begins the initial entity “Tiger Woods” and ends at charities to produce: 

“Tiger Woods <donates to a number of> charities.”  This example is shown on a step-by-

step basis in Table 1.

4.6  Triplet Creation

Following the predicate - object creation and augmentation phase, the final two portions 

of a full triplet are recombined with the entity to which they relate. Determining which predicate 

- object combines with what subject is a trivial task due to the structure of the sentence tree.  

Predicate - objects are combined with the noun phrase that immediately precedes them in the 

sentence tree.  This noun phrase will always represent the subject of the trailing verb phrase. This 

process is simply reversed in the case of sentences with leading verb phrases.

4.7  Pronoun Resolution

Pronoun resolution is the process of changing any pronouns present in the triplet into the 

entities to which they refer. It also marks the only portion of natural language processing which 

spans across multiple sentences. All other processing is limited solely to the current sentence in 

question. The guiding principle behind the form of pronoun resolution used herein is that a 

pronoun appears closest to the proper noun to which it refers, here closest refers strictly to word 

distance.
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Most often a pronoun is used immediately following the proper noun to which it refers 

for both the sake of simplicity as well as ease of understanding.  However, this is not always the

cause and will sometimes lead to a pronoun being resolved to the incorrect entity.  This problem 

and the subject of pronoun resolution is a complex and thus we leave both its mention and its 

application to the future work section.

4.8  Triplet Filtration

When completed, the above methods for triplet generation tend to overproduce. More 

exactly, they are disposed to return, along with triplets that represent important information 

stated by the author, triplets that are either simple repetitions of previously stated information or 

are simply too trivial to be present in triplet form.

The order by which triplets were created becomes important during the filtration stage.  

As stated before, sentences are parsed and triplets are created from a single pass through the 

sentence tree. Thus, each successive triplet represents information from a later portion of the 

sentence.  Many of the filtration thus tend to favor keeping any triplet that appears later in the list 

of triplets produced.  This is because the most common filtration is removal due to information 

repetition.

Most sentences contain anywhere from one to three triplets. This stems from the very 

nature of the sentence: a sentence is used to convey a coherent thought. This concept is used in 

triplet filtration, namely one of the requirements for filtration is the existence of a large number 

of triplets.

If a sentence does produce more than three triplets then all of the triplets are checked by 

three rules; applied in the order that follows:
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1. Short Subsumption: Subsumption generally occurs when I trivial fact is stated and later 

expanded upon. If the sentence produces more than three triplets it has the possibility of 

triplet removal due to this rule. A triplet is discarded if it is extremely short and fully 

contained within a triplet that follows it.  For example, the first of the two triplets: “Jon” 

<viewed> “film” and “Jon” <viewed the film> “North” would be removed due to this 

rule’s influence.

2. Trivial Similarity: If after the processing of the above more than five triplets still remain 

for a sentence some triplets can be removed in accordance with this rule. A triplet is 

removed from the output if its subject and object are identical and its predicate is nearly 

identical to a following triplet.  Consider the triplets: “Peter” <ran quickly from> 

“Bloodhound” and “Peter <ran from> “Bloodhound,” here the first of the two would be 

eliminated due to its simple restatement of the second.

3. Extreme Verbosity: Finally, if the previous two rules leave more than five triplets 

unfiltered this final harsh rule is applied. If a subject appears still in more three triplets 

then all triplets beginning with this subject are filtered.

4.9  Secondary Predicate Parsing

The final of all natural language parsing steps resolves the problem of wordiness within 

the predicate. Towards this end the predicate is passed to the JavaNLP engine to form a sentence 

tree of just this portion of the sentence. This second parsing produces a tree different from a 

simple subset of the sentence tree produced originally.

Secondary Predicate Parsing takes place in three steps applied in-order; detailed below. It 

should be noted that if the predicate does not conform to any of the three cases below it is left 

unaltered.
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1. Chain of Information Removal: If triplets are found to form a chain of information then 

these triplets are not removed. As noted before one of the major design decisions of our 

method was that each triplet should embody a whole and discrete piece of information. 

Any secondary processing over these triplets has the chance of reintroducing the triplet 

dependency problem outlined previously.

2. Leading Verb Phrase Parsing: If the predicate begins with a verb phrase then it is possible 

to reduce it to the simplest predicate formulation; namely, verb phrase immediately 

followed by noun phrase. For example, the predicate <ran for mayor during> contains 

this formulation of verb immediately followed by noun and can be reduced to <ran for 

mayor> with no loss of meaning.

3. Leading Noun Phrase Parsing: If the predicate begins with a noun phrase then a reduction 

to single noun phrase is possible. This generally happens when the predicate represents 

an existential phrase.  Consider the predicate <is a longstanding> this can be reduced to 

the simple existential <is>.

Figure 3 - Two Predicate Parse Trees

(ROOT [19.809]
  (S [11.925]
    (VP [11.519] (VB [0.003] 
have)
      (VP [7.801] (VBN [5.431] 
built)))))

(ROOT [43.838]
  (SINV [40.731]
    (VP [12.981] (VBZ [11.074] 
straddle))
    (NP [23.604]
      (NP [9.070] (NN [6.411] line))
      (PP [12.593] (IN [4.967] 
between)))))
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Figure 3 presents two different sentence trees formed by predicate parsing, both of these 

would fall under the leading verb phrase rule.  The left example represents a tree including 

multiple verb phrases which form the new predicate.  The right example gives a tree that 

contains a verb phrase followed by a noun phrase used to form the new predicate.  The method 

does not require the ordering of one verb phrase followed by a one noun phrase, rather it is best 

described as: any number of verb phrases followed by a single noun phrase.  Any trailing noun or 

verb phrases will then be discarded.

The presence of prepositional phrases within the predicate phrase trees should also be 

noted.  These phrases are included as part of the new predicate.  Also, should any prepositional 

phrases trail the final noun phrase they will also be included included, however, no other phrases 

are given this treatment.  This is because, as alluded to previously, prepositional phrases often 

provide information that modifies and adds to information present in verb and noun phrases.  

Thus, any attempt to remove or truncate these phrases would be extremely error-prone and 

would result in triplets that do not accurately represent the data present in the original sentence.
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CHAPTER 5

TERM HIERARCHY TREE IMPLEMENTATION

The Term Hierarchy Tree, shown partially in figure 4 can be thought of addressing the 

first of the two problems which are introduced in Section 1. Namely, it seeks to address the 

problem of entity placement, or rather: how a specific entity relates to others. Beyond addressing 

this issue it also serves as an indication of the validity of the information created from triplet 

processing. More exactly, it shows how the information pulled from natural language can be 

related to an existing ontology.

Figure 4. An Example of a Term Hierarchy Tree.

The tree in Figure 4 gives a brief overview of the Term Hierarchy Tree.  Here terms 

donated by WordNet are shown as grey square figures while entities from TAP are displayed as 
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white circles. Note that as one progresses downward in the tree structure terms become more 

specific forms of the previous term.  For example, “Sports” is related to both “Golf” and 

“Soccer” as these are more specific sports topics. TAP entities are placed under subjects to which 

they have a high relation, in this example the book Elements of Style is given as a prime example 

of a nonfiction publication.

Several existing components are integrated to give our system an ability to process the 

language that emulates some of the facets of the understanding of a fluent speaker. Sesame 

[Broe02] acts as a backend for information storage and retrieval. WordNet [Fell98] is used for 

information regarding English language terms, while TAP [Guha02] lends the system an 

understanding of common entities and helps determine their relation to the information stored in 

WordNet.

Sesame is an open source semantic database that contains support for both schema 

inference and querying. It was chosen because of its flexibility in terms of store and access 

methods in addition to its speed. Jena [McBr02] another leading open source semantic 

information store solution was also considered during the course of research for this project, 

however Sesame frequently bettered Jena in our tests.

WordNet is a lexical reference system that closely resembles a human’s own innate 

understanding of language. It contains nearly all dictionary words well as how these words relate 

to other similar terms. For the purposes of our project, WordNet is used to form a basic 

understanding of the generality or specificity of a term in addition to a grasp of synonym 

information.  For example, if one was to inspect the term “chair” one would see that a more 

general term is “furniture” in addition to being presented with a list of more specific terms 
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ranging from “desk chair” to “chair and a half.”  One would also be presented with synonyms for 

the word “chair” such as “seat.”  This example can be seen as the entities are present in WordNet 

in figure 4.

TAP is quite similar to WordNet but with a differing focus.  Whereas WordNet contains 

dictionary terms, TAP contains numerous real world entities ranging from people and places to 

even some of the more recent electronic devices.  Combining these two knowledge bases allows 

the system to have an inbuilt understanding of an entity's “place in the grand scheme of things.”

Figure 5. Raw Triplet Data Produced by a Search for Chair in WordNet.

The Term Hierarchy Tree has two major components listed below and detailed in greater 

depth to follow:

1. Dictionary Store: This portion of the program includes all information from the TAP and 

WordNet knowledge bases in addition to any information added from outside sources.  It 

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hyponymOf> 
http://wordnet.princeton.edu/wn#104004316-seat-n

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hypernymOf> 
http://wordnet.princeton.edu/wn#103945550-rocking_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hypernymOf> 
http://wordnet.princeton.edu/wn#103497608-ladder-back-n

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hypernymOf> 
http://wordnet.princeton.edu/wn#103253680-folding_chair-n

http://wordnet.princeton.edu/wn#102894344-chair-n 
<http://wordnet.princeton.edu/wn#hypernymOf> 

http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hyponymOf
http://wordnet.princeton.edu/wn#104004316-seat-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103945550-rocking_chair-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103497608-ladder-back-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
http://wordnet.princeton.edu/wn#103253680-folding_chair-n
http://wordnet.princeton.edu/wn#102894344-chair-n
http://wordnet.princeton.edu/wn#hypernymOf
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is also home to integration methods that allow information stored in differing formats to 

work together and refer to each other.

2. Indexing: This portion of the program controls indexing and reference for all data stored. 

This functionality is largely handled through Sesame.

5.1  Dictionary Store

The dictionary store is initially comprised of information from TAP and WordNet, and is 

later expanded upon as documents are stored. Whereas WordNet represents a dictionary of terms 

TAP and be thought of as representing an encyclopedia of concepts. It primarily stores the names 

of real world entities; for example: the names of all people who play for the New York Nicks is 

included in addition to all products currently produced by Apple. This knowledge base is linked 

to the information contained in WordNet by the category information given for each entity in 

WordNet. To illustrate this consider searching WordNet for information regarding “Tiger 

Woods.” This returns two distinct sets of entities, one regards the person “Tiger Woods” and is 

marked with the general category “Athlete.” The other set of entities are all video games made 

utilizing Tiger Wood’s name such as “Tiger Woods PGA Tour 2004” and are marked “Console 

Game Software.” This category information can then be used to place entities within the 

Hierarchy of Terms.

This Hierarchy of Terms is created from WordNet’s hypernymy and hyponymy 

relationships. This provides a relationship of terms from most general to most specific. This is 

utilized in our program in order to determine a relationship amongst otherwise disparate terms, 

for example a triplet containing “Golf” would be found, through the relationship of hypernymy 

to be related to “Sports” and thus the user performing a search could be offered information on a 

more general form of the subject s/he searched for.
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While the preceding gives an example of an ordering of terms which, for the most part, 

have a direct relationship between each other, this does not accurately represent the majority of 

terms.  What happens in the case of terms that bare little or no resemblance to each other, such as 

in the case of “sports” and “books?”  It is from this fact that the name “Term Hierarchy Tree” is 

drawn.  “Sports” and “books” represent two distinct branches of the tree, so that while these two 

concepts may have an identical more general ancestor, they represent two different unrelated 

parts of the tree.

In this way all terms stored within WordNet can be arranged in a tree structure with each 

level of the tree symbolizing a level of generality.  This is, however, not to say that all terms 

present at the second level of the tree have the same level of specificity, or classify the same 

number of terms.  The various branches of the tree will often have radically disparate levels of 

generality.  However, within the local context each step down in the tree represents a step 

downward to the most specific terms of that domain.  As an example let us revisit the previously 

mentioned terms “books” and “sports.”  Say that these two terms are present on the same level of 

the tree and that the “books” node has two children: “fiction” and “non-fiction” while “sports” 

also has two children: “golf” and “soccer.”  An understanding of the meaning of these terms 

immediately exposes to the reader the fact that golf and soccer refer to very specific sports while 

fiction and non-fiction represent the two most general classifications of books.  Yet within the 

domain of sports and books each represents the next step downwards towards more specific 

terms.  The uneven tree structure this ultimately forms stems from the fact that some areas of 

interest can be subdivided to a greater extent than others.

Up to this point the information provided by TAP has been largely ignored in the 

discussion of the Term Hierarchy Tree.  TAP is integrated with the information from WordNet 



40

by means of the relation information associated with each entity in TAP.  In terms of the Term 

Hierarchy Tree this means that each entity contained within TAP can be thought of as a leaf 

node. Thus, TAP is utilized for the correct indexing of entities to the categories given by 

WordNet. To return to the example given above, suppose that “Tiger Woods” is found as the 

subject of a triplet. “Tiger Woods” would then be located as a component of TAP and beyond 

this linked to the information in WordNet as is stated previously. Thus, “Tiger Woods” would be 

related to “Athlete” which would be in turn related to “Sports” and so on.

This raises an interesting question regarding the placement of “Tiger Woods” under 

“athlete” rather than under “golf.”  This placement represents a design decision made by the 

makers of TAP.  It should be noted that either placement makes sense, the entity “Tiger Woods” 

is highly concerned with both golf and is properly termed an athlete.  This problem of dual 

placement is addressed by allowing a given entity to appear in more than on location.  Thus, it is 

quite possible for “Tiger Woods” to appear in both categories.  It should, however, be noted that 

the “out of the box” functionality of the system solely includes the placement of “Tiger Woods” 

as an athlete; his eventual placement under “golf” is, however, detailed below in the section that 

discusses the storage of information to the Term Hierarchy Tree.

5.1.1  Storage of Documents

When a document is entered into the system, it is first parsed by the natural language 

processor.  This produces a set of triplets and entities that represent the information contained in 

the document.  This data is then aggregated and representative entities and triplets are pulled 

from the document. The process of determining which triplets and entities can be thought of as 

representative is fairly simple but slightly different for each of the two document metrics:



41

1. Determining Entity Representativeness: The total number of entities produced by a 

document is counted and each is assigned a score based on the number of times it appears 

either as an entity or as part of a triplet. All entities referenced by at least twenty percent 

of the triplets created from the document are then taken to be representative and are noted 

as such along with their score. The score is noted for help in comparing documents that 

are determined to be largely about a given entity.

2. Determining Triplet Representativeness: The determination of triplet representativeness 

then relies on the entities found to be representative of the document. To revisit the 

example mentioned previously: when the program is executed using WordNet and TAP 

information “Tiger Woods” is initially related to “athlete.” However, if a document is 

entered into the system that includes numerous sentences between “Tiger Woods” and 

“golf” then the indexes of the system will relate Tiger Wood’s to golf.  

Once the representative triplets and entities of a document are determined then this text 

stored with the appropriate relations.  Thus, if two of the entities found to be highly related to a 

document were “golf” and “sports” then a reference to the document would be added under these 

two categories.

5.1.2  Retrieval of Documents

Retrieval of documents is initiated by a user supplied query. This query can range 

anywhere from an entity name to a full natural language question complete with punctuation. 

Queries are first parsed by the natural language processor in the same manner as a document is 

parsed for storage. This will generate either a set of triplets or, in the most simplistic of searches, 

a set of entities.  These entities and triplets are then recalled through the use of the Sesame 

storage back end.
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The Term Hierarchy Tree adds another benefit to information recall. It allows the user to 

not only view documents related to the search but also categories to which documents have a 

high relation. 

A final note should be added regarding the ordering of documents. Documents are 

ordered by the degree of relationship they have with a given term. This means that if there are 

two documents associated with golf, one which has references to golf in twenty percent of its 

triplets and entities and the other using golf eighty percent of the time, then the second document 

will be displayed first. In the case of a search that includes a triplet or several entities the 

documents are ordered by a simple addition of percentages.

Figure 6. System Architecture.
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5.2  Storage Platform

All indexing, storage, and retrieval is handled through the semantic data store engine 

Sesame [Broe02] as mentioned before.  The capability most often used behind the scenes is 

Sesame’s schema inference. This allows us to enter triplet information as it is extracted from the 

documents. Sesame then creates all needed schema information automatically without any 

further intervention beyond the initial configuration.

As for indexing, Sesame can be set up to allow indexing on a number of different 

dimensions, that is to say that it supports indexing in nearly exactly the same way that modern 

databases support indexing. For our purposes, indexing is done on both entities and the 

relationships between them. In this way while there are no specific searches which are optimized 

in general all searches reap some of the benefits of indexing.

Searching is accomplished through the use of Sesame’s own query language, SeRQL 

[Broe04]. While it supports other Semantic Web query languages such as RQL [Karv02], and

RDQL [Seab04], we have chosen SeRQL because of its native support within Sesame. This 

proved to yield slightly faster response times than were found to be the case with other query 

languages.  In addition to query language support Sesame supports all major file formats for 

semantic information, such as N-Triples [Gran02], and N3 [Bern00], and allows for importing 

and exporting to and from these formats.

The system architecture is given in Figure 6 and shows the process of both storing a 

document and then the later retrieval of documents through a user entered query. Thus, the 

system can be thought of as having two phases that occur in order: first, document storage and 

second, document retrieval.  Also note the system’s heavy use of the triplet creation engine; this 

portion of our system is used for both relating documents to terms in the ontology and for queries.
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CHAPTER 6

EXPERIMENTAL RESULTS

Testing focuses on the triplet creation engine of the program. This is due to the fact that 

the Term Hierarchy Tree was created and utilized largely as a method of lending a schema to the 

created triplets.  

The dataset of news articles was chosen for several reasons: one, the heavily fact based 

nature of the articles they represent an excellent choice for our method of information extraction.  

Second, the articles are written for human consumption making the job of the human tester 

easier. In addition, this type of articles reflects a sizable portion of the documents placed on the 

Internet within a given day. Third, for ease of testing the documents need to be somewhat short, 

roughly a page in length, the inverted pyramid writing style of news articles allows text to be cut 

from the ends of articles without losing meaning. Beyond these reasons we chose human testing 

rather than testing with some preexisting corpus because of the novelty of our approach. While 

several testing corpuses address a problem that is related to those we wish to address none 

provide a dataset that provides for a clear translation from sentence to triplet.

The first part of the testing phase was accomplished by presenting a University of 

Georgia Computer Science Masters student who is not related to this research project with a set 

of twenty news articles. He then generated all the triplets that he believed were possible from 

these articles. Once done, he was allowed to review and discuss the triplets in order to determine 

if any incorrect triplets were present in this human created set. Thus, through initial production 

followed by review a sort of “gold standard” of triplets was generated for the news articles. In a 

similar manner the same twenty articles were presented to our system and the triplets it generated 

were reviewed and scored.
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The second part of our testing was accomplished by presenting nine Computer Science 

graduate students who had just finished a course reviewing Semantic Web methodologies a 

worksheet that included instructions for triplet generation in addition to five news articles. The 

instructions were nearly identical to the provisions listed at the beginning of Section 3.1. That is, 

they told students that each triplet should represent a discrete piece of information as well as 

giving an accurate fact as stated in the article. The triplets the students generated were then 

gathered and reviewed to form a set of correct student generated triplets. This set was created by 

first inspecting all triplets created by each subject and eliminating all incorrect triplets. The set 

was then further reduced by comparing each subject’s triplets against the triplets generated by all 

other subjects. By doing this, the final set of human created triplets includes only correct unique 

triplets as given by the nine human subjects.

This set is then compared against the triplets generated by our system to determine the 

overlap. A triplet overlaps with another if the two are determined to contain identical 

information.  Generally this means that the two triplets were actually identical, containing all of 

the same words in the same order. Occasionally, however, there is a slight word variation 

between the triplets that does not result in a difference of meaning. For example, one student 

gave the relation “works for” while another gave “employed by,” these two relations obviously 

represent identical information.

As mentioned previously testing took place in two stages. The first stage compared the 

triplets generated by the program against triplets generated by a human expert knowledgeable of 

the Semantic Web.

Figure 7 shows two important metrics for measuring the abilities of the system. The 

rightmost of the two comparisons shown for each of the systems gives the percentage of triplets 
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generated found to be correct on further review. The leftmost comparison gives the percentage of 

the “gold standard” of triplets that were captured by each system. Notice especially in Figure 4 

that while our system’s triplet accuracy is at 50% the algorithm manages to capture 81% of the 

“gold standard” triplets. This means that while the system overproduces it is still able to capture 

a majority of the correct triplets.
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Figure 7. Percentage of Correct Triplets Generated.
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Figure 8. Triplet Generation Numbers.

The Figure 8 gives raw numbers for triplets produced by both the human and the 

computer system. This serves to once again emphasize that while our system does overproduce 

triplets the numbers of correctly produced triplets are extremely similar between both the two.

The second stage of testing involved a comparison between nine human subjects and the 

computer system to determine overlap as given below. In this phase of testing our system was 

found to overlap with 53% of the triplets created by the untrained subjects.  This seeming 

reduction in the ability of our system to capture triplets stems from two sources:
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1. The computer system captured more triplets than the human subjects: The human 

subjects captured a total of 104 correct and unique triplets, 55 of which were found to be 

identical to those generated by our system.  However, our system generated another 23 

triplets that were correct and not captured by any human subjects.

2. Unlike the triplets generated by the expert the triplets generated by untrained humans 

contained inferences: Inference triplets are triplets that represent a fact present in the 

article that requires an understanding of the text to create.  For example, one article stated 

that that Intel sought to overhaul parts of its business in order to increase profit and then 

listed processors and memory among the portions to be overhauled.  One student then 

created triplets that noted that both processors and memory are key parts of Intel.   While 

this represents a correct triplet it should be noted that the formation of this triplet requires 

a human understanding of the text.

Both the expert testing and the inexpert testing phases of testing reveal one of the 

limitations of that system presented here, namely that while we are capable of boasting high 

recall the precision of the system is a good deal lower.  We believe this low precision is 

acceptable given the system described herein also relies on the previously mentioned Term 

Hierarchy Tree structure.  Thus, while document parsing will yield incorrect triplets the process 

will also create enough correct triplets that combined with the document metrics given above 

will yield the proper document recall.

There are, however, several methods that we leave to future work that are available 

towards the improvement of the precision of our system.  These improvements are:



48

1.) Improvement of the JavaNLP used – While the algorithms described here work with any 

Natural Language Parsing system the ability to produce triplets can only be as good as 

the initial parse generated.  The training data chosen for JavaNLP in this project 

represents the fastest backing file available for the project.  Because of the high order of 

all Natural Language processing algorithms speed was a concern for our system.  The 

training corpus used here has 80.1% precision [Klei02] whereas dataset that are slower 

and parse the sentence structure more deeply are able to produce 86.6% precision.

2.) Lowered triplet filtration limits – As mentioned previously our system was 

designed with some ability to accept inaccurate triplets due to the Term Hierarchy Tree 

design.  Thus, the filtration limits are set purposefully low to prevent the incorrect 

removal of accurate triplets.  By increasing the threshold for removal a larger number of 

incorrect triplets would be removed.  This would, however, also result in the deletion of 

correct triplets, something this project wished to avoid as much as possible.
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CHAPTER 7

CONCLUSION

The approach presented here addresses several of the problems present in modern search 

applications. Namely, it seeks to store and recall information based on entities and any relations 

present between the entities rather than scanning the documents for the existence of a searched 

for phrase. Towards this end Stanford’s JavaNLP tool provides an infrastructure used to 

transform natural language sentences into the common triplet form used by nearly all Semantic 

Web applications. This natural language processing engine servers a dual role: first, it is used as 

a means to store documents and second, it is used in the same manner to process any queries 

issued to the system by a user. This allows the system a better processing of all relationships and 

entities present in the text. The end product allows for search and indexing based on this concept. 

This, we believe, is something largely lacking from modern information retrieval techniques.
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CHAPTER 8

FUTURE WORK

There are several branches that we feel are beyond the scope of the current work that 

would, however, provide an excellent focus for additional work on this project.  The primary of 

these is an improvement upon pronoun resolution.  This is the subject of several papers [Tetr99], 

[Mitk98], and as such is well beyond this work’s focus on creating a search and index method 

based on the relationship between entities.  While the limited form of pronoun resolution used 

currently works well enough that it does not truly hamper the system it does represent a natural 

next step in development.

Beyond improvements of entity reference that would be accomplished through further 

work on pronoun resolution the ability to view information mined from a document as a graph 

would be extremely helpful to a quick understanding of the information.  This topic is also the 

subject of a number of paper within the Semantic Web community [Deli06], [Flui02] and we feel 

that it would lend the user the ability to review all document relating to his search with a 

thumbnail overview of all the information.  This could allow an at a glance understanding of 

information gleaned from a multitude of different sources and could possibly preclude the user 

having to read any part of the actual document in question.

This idea of visualization could also be further extended to allow for merging of all 

documents placed under a given classification.  This would allow an “at a glance” understanding 

of all information mined related to a given subject.  Given that the system detailed herein places 

a heavy focus on ensuring that each triplet mined from the document in question represents a fact 

that the author wishes to convey to the reader this would produce a graph of facts regarding a 

topic.  Doing so would allow the user to understanding quickly and easily the various 
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relationships between differing segments of information regarding a category.

The document ranking methods used herein represent another area for improvement 

based on recent research in Semantic Web.  Specifically retrieval ranking could be improved 

through the addition of metrics regarding the relations between entities [Alem03].  Thus, the 

system could gain a greater understanding of the degree to which a given entity is related to 

another or additionally the level of significance of the linking between the two.  The 

determination of the “importance” of different relations within differing context could 

additionally be done through semantic association discovery as given in [Alem06].
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