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ABSTRACT

A goal of any scientist is to gain an understanding for the subject matter at hand. Within quantum

chemistry understanding can be achieved through the in-depth study of small systems which retain key

features of larger, more chemically interesting species. Within combustion chemistry, the n-propylperoxy

radical is the smallest peroxy radical system with an energetically favorable pathway to the formation of the

all-important hydroperoxyalkyl radical, a species that is key to low-temperature combustion phenomena.

The five rotamers that are formed within the deep potential energy well as the n-propylperoxy radical forms

are considered. Focal point analysis and second order vibrational perturbation theory (VPT2) are utilized

to differentiate the energies and vibrational frequencies of these nearly isoenergetic species. They hydrogen

cyanide dimer represents a small linear system which exhibits hydrogen-bonding phenomena. Results are

obtained for this system utilizing a robust combination of method and basis set. The effect of substitution

with common isotopes upon vibrational frequencies is investigated using VPT2. Finally, the consideration of

simple aluminum (I) compounds, whose valence electron structure mimics that of carbenes are considered.

The effect of several substituents, at varying degrees of electrophilicity are investigated. In order to determine

the relative energetic favorability, two different schemes, one isodesmic the other hypohomodesmotic are used

to determine evaluate the relative energies of formation of different carbene derivatives

Index Words: peroxy radicals, combustion, hydrogen bonding, second order vibrational perturbation

theory, aluminyl anion, coupled-cluster theory, focal point analysis
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Hartree–Fock Theory

Hartree–Fock theory is a way of determining the electronic wavefunction of a many electron system as the

product of many one-electron wavefunctions. The start of the theory comes from the Schrödinger equation

written famously as follows:

ĤΨ = EΨ (1.1)

The wavefunction Ψ is expressed in the form of a Slater determinant.1 The Slater determinant for a wave-

function of N electrons in N spin orbitals (ψ) has the form:

|Ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)

...
...

. . .
...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
= |ψ1(x1)ψ2(x2) · · ·ψN (xN )〉 (1.2)

Where the last form of the wavefunction is written as a product of one electron spin orbitals in Dirac

notation. The prefactor in front of the determinant is a normalization factor that accounts for the fact

that any electron could be in any orbital. Using this formalism yields a wavefunction as the product of one

electron wavefunctions with the proper anti-symmetry due to the fermionic nature of electrons.

In the original equation (1.1), it is impossible to find an exact solution to the wavefunction Ψ but we can

approximate it by solving the equation iteratively until our answer sufficiently converges on a solution. The

goal is then to find some wavefunction Φ that is a close approximation to the exact wavefunction, Ψ. The

new form of the equation is:

Ĥ|Ψ〉 = E|Ψ〉 → Ĥ|Φ〉 = E|Φ〉 (1.3)
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This is a standard eigenvalue problem. The form of the Hamiltonian operator, known as the Fock operator1

within Hartree–Fock theory, obtains the energy for an electron i within the system being studied. The Fock

term for electron i within:

Hi = Fi = −1

2
∇2
i −

∑
N

ZN
riN

+
∑
j

〈ij||ij〉 (1.4)

Where the first two terms are considered the one-electron energy operators, a kinetic energy operator and

a term describing the coulombic attraction between electrons an nuclei. These terms can be conveniently be

stored in a matrix (h). The energy for electron i whose eigenvalue is stored in the matrix (h) is:

hi = −1

2
∇2
i −

∑
N

ZN
riN

(1.5)

The last term in equation 1.4 is called the r12 term. It describes the repulsive forces felt by an electron

from the other electrons within the system. Although the first two terms are easily solved for, this term,

is very difficult and computationally costly to solve for exactly. As it is written, the term describes the

antisymmetrized form of the two electron energy whereby the locations of two electrons are correlated.

Often, the two terms that are present are expressed as such:

∑
j

〈ij||ij〉 =
∑
j

〈ij|ij〉 − 〈ij|ji〉 =
∑
j

Jij −Kij (1.6)

Where the J and K matrices contain the values of the Coulomb and exchange energy terms, respectively.

The form of the operator makes it so that no two electrons can occupy the same space. The coulombic forces

felt by an electron are said to be the average electronic effect of all electrons.

1.1.1 Solving for the Wavefunction Using Roothaan Equations

Following the example of Szabo and Ostlund in their excellent book “Modern Quantum Chemistry: Intro-

duction to Advanced Electronic Structure Theory”,1 we use a set of one particle basis functions with which

to represent our wavefunction. We can call these basis functions χi. These basis functions will be used to

build up our determinantal wavefunction |Φ〉 which is an approximation to the exact wavefunction and a

determinant as expressed in equation 1.1. This approximate solution is composed of eigenfunctions φa which

are linear combinations of our basis functions

φa =
∑
i

Caiχi . (1.7)
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We can define a density matrix, which describes the probability of finding an electron in a certain space

within our basis. In order to find this probability, we need to sum over the individual probabilities that each

electron is found in a space described by a basis function. This can be done two ways, by either restricting

the spin state of the functions or not. In the later case, you must treat all alpha orbitals with one summation

and all beta orbitals with different summation. The terms of the density matrix which we show here is just

a summation of the coefficients between two basis functions:

Dab =
∑
i

CaiC
∗
bi (1.8)

Where we sum over all of the occupied orbitals (i). These get stored in the density matrix D, which gets

updated every iteration of the procedure.

In our given basis, we can represent our wavefunction in terms of these expansion coefficients. In prac-

tice, these coefficients are stored in a matrix C which contains all expansion coefficients, which describe

molecular orbitals. These molecular orbitals are one-particle wavefunctions that can spread over an entire

molecule. Molecular orbitals are the most important result coming from Hartree–Fock theory. Solving for

the appropriate C becomes the task for solving the Schrödinger equation as we have set up the problem

here. We can express the energy of a single eigenfunction (φa) by using equation 1.6 and the Fock operator

(F̂ )

F̂ |
∑
i

Caiχi〉 = εa|
∑
i

Caiχi〉 . (1.9)

Here we have made the substitution ε for E because the eigenvalues (molecular orbital energies) we obtain

using this method are not exact but only approximations. To make our method solvable, we multiply each

side the by a complex conjugate of the basis function. To obtain:

∑
i

Cai〈χ∗j |F̂ |χi〉 = εa
∑
i

Cai〈χ∗j |χi〉 (1.10)

where the coefficients and energies have been factored out from the integrals which only depend upon the

basis functions. The final term on the right side represents the overlap between the two basis functions.

These terms can be stored in a matrix, often denoted as S. The Fock operator (F̂ ) between the two basis

functions can be seen as an element of a matrix known as the Fock matrix F. If we generalize these terms

as matrices representing the terms across our entire basis, we obtain the following expression:

FC = SCε (1.11)

3



Where the energies (εa) are stored in a diagonal matrix (ε) whose elements are the energies of the eigenfunc-

tions contained as columns within the coefficient matrix. The last preparation we need to do is to make an

orthogonalization matrix which will allow us to guarantee that our molecular orbitals will be orthonormal

to one another. It turns out that this matrix is the overlap matrix raised to the negative one-half power.

The first step of obtaining a Hartree–Fock solution is to compute the necessary integrals. The necessary

integrals include the overlap integrals, the one electron kinetic energy integrals, coulombic attraction integrals

between electrons and nuclei, and the two electron repulsion integrals. A thorough review and pedagogical

explanation of these integrals can be found in the paper by Murphy, Turney and Schaefer.2

The next step is to form an initial guess as to the Fock matrix. There are several ways that this can be

done, however, it is common to initialize the Fock matrix as identical to the h matrix. This is called the

“core” guess. After the first iteration, the density matrix will be refined and the Coulomb and exchange

terms will grow in. The Fock matrix, formed at the beginning of each iteration, can be computed as follows.

F = h + J−K (1.12)

The resulting Fock matrix is diagonalized and the electronic energy can be computed by summing over all

occupied orbitals and adding in nuclear repulsion terms. The same can be accomplished by the following

summation:

EHF =
∑
i

εi + VN (1.13)

Where fεi are the eigenvalues (occupied orbital energies) of the Fock matrix and VN represents the positive

nuclear repulsion terms.

In order to take an iterative step toward the solution of equation 1.10, we need to transform the Fock

matrix from our initial basis to the molecular orbital basis.

S−
1
2 FC = S−

1
2 SC = S

1
2 Cε (1.14)

Next we multiply by the identity matrix (I) in the form of (S−
1
2 S

1
2 ) resulting in a standard eigenvalue

problem:

F′C′ = C′ε (1.15)

4



Where the following transformations have taken place:

F′ = S−
1
2 FS−

1
2 (1.16)

Obtaining the eigenfunction matrix of this transformed Fock-Matrix (F′) gives you the new transformed

coefficient matrix C′. These can be back transformed into new coefficient matrices, in the initial basis, by

multiplying the transformed coefficient matrix by the inverse square of the overlap matrix.

C = S−
1
2 C′ (1.17)

These back-transformed coefficient matrices are used to form a new density matrix. This density matrix is

fed back into the formation of a new J and K matrices which are used to form a new Fock matrix. The

energy is checked again, and if the energy is close enough to the previous iteration, or “self-consistent”, the

process is over and the current coefficient matrix contains the eigenfunctions which are molecular orbitals.

If convergence is not achieved at the current iteration, then the new Fock matrix is obtained and the process

continues to another iteration.

1.2 Coupled-Cluster Methods

The problem with Hartree–Fock theory is that it only approximately treats the problem of electron cor-

relation. The wavefunction is not exact because Hartree–Fock theory describes the repulsive forces that

electrons exert on each other as an average force, which is not a fully accurate description. Describing more

accurately how the electrons approach each other and relax away from each other, known as electron-electron

correlation, leads to a better description of the wavefunction.

The exact wavefunction within a basis can represented as the sum of the ground state determinant

obtained from Hartree–Fock, mixed in with all excited determinants within the Hartree–Fock solution. For

a system of N electrons this requires the treatment of all excitations from singles to N -tuple excitations.

The wavefunction (Ψexact) is then expressed as:

|Ψexact〉 = c0|Ψ0〉+ Σiac
a
i |Ψa

i 〉+ . . .+ Σijkl...abcd...c
abcd...
ijkl... |Ψabcd...

ijkl... 〉 (1.18)

Where the final term considers all possible combinations of exciting all possible electrons from occupied

orbitals (i,j,k...) into all possible unoccupied or virtual orbitals (a,b,c...). This method of obtaining the

exact wavefunction becomes prohibatively costly as systems of even moderate size are considered. When

all possible combinations are considered this is called Full Configuration-Interaction (FCI). Many methods

5



seek to approximate this limit. One such method is Coupled-Cluster theory3,4 which treats only certain

excitations of the ground state wavefunction. Coupled-Cluster (CC) does systematically converge upon FCI

so that as higher orders of excitations are included in the CC treatment, the wavefunction that is obtained

approaches that of an FCI treatment. Coupled-Cluster theory seeks to converge toward FCI by explicitly

including higher order excitations at lower levels of CC treatment.

Coupled-cluster theory is a “post Hartree–Fock” method because it uses the Hartree–Fock wavefunction

as a starting point and describes “excitations” from this wavefunction. This is similar to the FCI approach

and indeed, coupled-cluster does converge quickly to the same answer as FCI.

When deriving coupled-cluster equations, we make use of second quantized operators. The two types of

these operators are known as creation and annihilation operators. They have the following effects:

â†i |〉 = |φi〉 (1.19)

and

âi|φi〉 = |〉 (1.20)

Where the † symbol denotes a creation operator. The creation operator acts on a wavefunction, in our case

an empty wavefunction, known as a vacuum state (|〉), and “creates” a particle in orbital i. The annihilation

operator eliminates an electron in orbital i from the wavefunction, returning the empty wavefunction in this

case. Paired together they can be used as an excitation operator:

â†i âj |Φ〉 = |Φai 〉 (1.21)

Where a particle has been taken from (annihilated) orbital i and put into (created) orbital a within some

reference wavefunction Φ. The resulting excited wavefunction is Φai . Combinations for these operators form

the basis for the cluster operator which acts upon the Hartree–Fock wavefunction to express a Coupled

Cluster wavefunction as a linear combination of the ground (Hartree–Fock) and excited wavefunctions. This

involves splitting the orbitals from Hartree–Fock into low-energy “occupied” orbitals and higher energy

“virtual” orbitals.

The cluster operator (T̂ ) can be expressed as a sum of operators which give different numbers of excita-

tions. The simplest operator, T̂1 which describes single excitations can be expressed as follows:

T̂1 =
∑
i

t̂i =
∑
ia

tai a
†
aai (1.22)

6



Here we sum over all of the single excitations that from an occupied orbital i to a virtual orbital a which

my be factored in to our wavefunction. Coupled-cluster includes higher order terms which can be generically

expressed in the following way:4

T̂n =

(
1

n!

)2 n∑
i,j,k...a,b,c...

tabc...ijk...a
†
aa
†
ba
†
c...akajai (1.23)

The full cluster operator not only contains terms like the one above, but also contains terms which are

comprised of higher powers of each of the single, double, triple, etc. operator. For example, the full cluster

operator contains the following term which is the squared form the single excitation operator:

1

2
T̂ 2
1 =

∑
ij

t̂it̂j =
∑
ijab

tai t
b
ja
†
aa
†
bajai (1.24)

One can determine that the cluster operator can be expanded in a power series of excitation operators.

This means that the cluster operator at its limit can be expressed as an exponential operator which contains

all orders of excitation raised to all powers. The exact coupled-cluster wavefunction can be expressed as this

|ΨCC〉 = eT̂ |Φ0〉 (1.25)

It can be realized that acting upon this wavefunction with an energy operator such as the electronic Hamil-

tonian (Ĥ) would yield the coupled cluster energy.

ĤeT̂ |Φ0〉 = Ĥ|ΨCC〉 = ECC |ΨCC〉 (1.26)

By acting on the left with an excited state wavefunction the expression for the coupled-cluster amplitudes.

These amplitudes describe how the excited state wavefunction is coupled to the ground state wavefunction

through the cluster operator.

〈Φab...ij... |ĤeT̂ |Φ0〉 = E〈Φab...ij... |eT̂ |Φ0〉 (1.27)

An important part of this theory involves its truncation. It is helpful now to express the one-electron

Hamiltonian operator in second-quantized form:

Ĥ =
∑
pq

hqpa
†
qap +

∑
pqrs

〈φpφq||φrφs〉a†pa†qasar (1.28)

Where p, q, r, and s are generic indices which can refer to any orbital, whether it can be found in the

7



occupied or virtual orbitals. A key requirement of an energy term or amplitude term in coupled-cluster

is that the Hamiltonian and the specific operator within the expansion of the cluster operator be able to

“connect.” This means that they must share at least one index (p, q, ...) or the term does not contribute

to the overall coupled cluster equations. Since the terms in the Hamiltonian have at most four indices, the

Hamiltonian can only connect to four excitation operators.4 This means that a T̂ 4
4 term which describes

a 16-tuple excitation in the wavefunction may survive while a T̂ 5
1 term which only describes a quintuple

excitation will not contribute to the coupled-cluster equations.

1.3 Second-Order Vibrational Perturbation Theory

Molecular vibrations are typically treated using the harmonic approximation. In this case, the potential

of the vibrational motion is assumed to be quadratic, centered at the equilibrium value of the vibrational

coordinate, also called a normal coordinate. Normal coordinates are defined as the eigenvectors of the

second derivative energy matrix, known as the Hessian. Assuming that the Hessian was mass-weighted, the

frequencies associated with the normal coordinates are found using the eigenvalues of the matrix. Because the

potential of each coordinate is assumed to be quadratic, the frequencies are merely related to the curvature

(second-derivative) of the potential. This approximation is fairly good when the molecule is near 0 K, and

the vibrations are near the bottom of a potential, where it is most harmonic in character. This can be seen

in figure 1.1. At the equilibrium value of both curves, the two potentials are nearly identical. However, the

two deviate from one another the further from equilibrium coordinate r is displaced.

Realistic molecular vibrations do not have quadratic potentials. For example, bond stretches are better

modeled by a Morse potential. This potential accounts for the fact that the energy of the system rises faster

as nuclei are pushed together (a bond is compressed) than when they are pulled apart (a bond is stretched).

As bonds are stretched, they are weakened and the curvature decreases to the point where the bond breaks

and there should be no increase in energy as the previously bonded atoms go further apart. This anharmonic

behavior needs to be accounted for if computed frequencies are going to match the fundamental frequencies

observed in an experimental setting.

Because computations treat molecules at 0 K, where the potential of vibrations is most harmonic, small

perturbative correction to account for anharmonicity is generally enough to bring computed frequencies

into decent agreement with those observed in spectroscopic experiment. Vibrational perturbation theory5,6

utilizes higher order derivatives to address the anharmonicity of vibrations. Within second order vibrational

perturbation theory (VPT2), third and fourth derivatives of the potential energy surface are computed and

new vibrational frequencies can be obtained using the following equation:5

8



Figure 1.1: A diagram of a morse potential (blue) overlaid with a harmonic potenial (red). Both potentials
describe the potential energy surface with respect to a generic coordinate r.

νr = ωr + 2χrr +
1

2

∑
r 6=s

χrs (1.29)

In this equation the value of νr and ωr are the new anharmonic vibrational frequency and the harmonic vi-

brational frequency for mode r, respectively. The (χrs) are the anharmonicity constants. These constants are

the product of third- and fourth-derivatives of the potential energy surface known as cubic and quartic force

constants respectively, along with the harmonic frequencies and equilibrium rotational constants. The values

for these anharmonicity constants have the following mathematical form within the VPT2 approximation:5?

χrr =
1

16
φrrrr −

1

16

∑
s

φ2rrs
(8ω2

r − 3ω2
s)

ωs(4ω2
r − ω2

s)
(1.30)

and

χrs =
1

4
φrrss −

1

4

∑
t

φrst
ωt(ω

2
t − ω2

r − ω2
s)

∆rst
+
[
Ae(ζ

(a)
rs )2 +Be(ζ

(b)
rs )2 + Ce(ζ

(c)
rs )2

](ωr
ωs

+
ωs
ωr

)
(1.31)

where ωr is the harmonic frequency for mode r, φrrr and φrrrr are the cubic and quartic force constants,

respectively. The first term represents the “diagonal” terms of the VPT2 analysis. The much more com-

plicated equation 1.31 represents those “off diagonal” terms, which describes the coupling of two different

9



vibrational modes within the analysis. As such, a few terms need to be included. The last term of this

equation includes the equilibrium rotational constants Ae, Be, and Ce along with ζ terms. These terms

represent the coupling of the two vibrational modes r and s through molecular rotations about each of the

inertial axes. The final term from the denominator of the summation is equal to:5

∆rst = (ωr + ωs + ωt)(ωr + ωs − ωt)(ωr − ωs + ωt)(ωr − ωs − ωt) (1.32)

A difficulty associated with this type of analysis is the presence of “resonance” terms which exist in the

summations present within both terms. A “resonance” occurs when the denominator within the summation

goes to nearly zero because of an accidental degeneracy. When the denominator approaches zero, the term

grows erroneously large and the frequencies obtained from the perturbative treatment of anharmonicity suffer

in quality. These resonances are known as Fermi resonances. An example of how these resonances can be

dealt with is found in section five of the second chapter of this dissertation.

1.4 Natural Bond Orbital Analysis

Hartree–Fock Theory obtains the wavefunction of a molecule as a product of one-electron wavefunctions that

are potentially spread through the entire molecule (hence they are called molecular orbitals). Natural Bond

Orbital (NBO) theory7–9 seeks to describe the wavefunction in terms of what are called localized orbitals.

These orbitals help describe a Lewis type bonding concept in a simple easy to visualize way. In an excellent

review by Reed, Curtiss, and Weinhold,9 the authors describe the process of determining NBOs as part of

a series in which different types of orbitals may be obtained.

input→ NAOs→ NHOs→ NBOs (1.33)

Natural orbitals, as defined in the review above, are eigenfunctions (φi) of the one-particle reduced density

matrix. The elements of this matrix are the overlap of the two functions sandwiching the density operator

which represents the integration over all electrons except for one in each case. Written in second-quantized

form, the elements of the matrix look as such:

Γij =
∑
ij

〈χi|φk〉〈φk|χj〉 (1.34)

If this density matrix is computed with the atomic basis, it is possible to partition the density matrix Γ

into atomic blocks where each block on the diagonal describes the atomic centered densities for atoms (A,

B, ...)
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Γ =

ΓAA ΓAB

ΓBA ΓBB

 (1.35)

The above density matrix corresponds to a two-atom system. By diagonalizing the ΓAA and ΓBB matrices,

one can obtain eigenfunctions which correspond to the natural atomic orbitals (NAOs). The eigenvalues

obtained, which are the corresponding occupancies of these NAOs, can be used to classify the orbitals as

either core orbitals or lone pair orbitals if the occupation is close to two, bonding orbitals if occupancy is close

to one or non-bonding orbitals if the occupancy is near zero. The procedure to the natural hybrid orbitals

(NHOs)10,11 and natural bond orbitals (NBOs) requires that the terms from the core orbitals and lone pair

orbitals be zeroed out in the density matrix Γ. Diagonalizing this new matrix, including the off-diagonal,

inter-atomic terms, gives eigenfunctions that correspond to the NBOs, which can be partitioned into atomic

centered NHOs.

CABi =

cAb
cBa

 (1.36)

Where CABi describes an NBO between atoms A and B. This eigenvector is then shown to be a combination

of the NHO cAb , an NHO on atom A pointed toward atom B, and the corresponding NHO on atom B

pointed toward atom A. We can form bonding or anti-bonding NBOs by respectively adding or subtracting

the NHOs from one another. This leads to bonding orbitals which have occupancies which are close to two,

and anti-bonding orbitals which have occupancies close to zero.

Natural population analysis involves summing of the density in all orbitals of an atom. For any atom

(A), we can define the natural population (q) as:8

q(A) =
∑
i

〈σ(A)
i |Γ̂|σ

(A)
i 〉 (1.37)
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Where the natural population is the sum of the density of all orbitals (σi) centered on atom A. The value

of this atomic density can tell how much charge transfer (either gaining or losing of electrons) has occurred

for atom (A) within the system of chemical interest.

One of the most powerful and telling analyses that is part of NBO is the determination of non-Lewis con-

tributions to the bonding effects. This is done using a second-order perturbative analysis of the energy:7,8,12

∆E
(2)
i→j∗ = −2

〈σi|F̂ |σ∗j 〉2

εj∗ − εi
(1.38)

The numerator term on the right contains the bonding orbital (σi) and the antibonding orbital (σ∗j ) sur-

rounding an energy operator, which in this case is the Fock operator (F̂ ). The denominator is the difference

in energy of the antibonding orbital and the bonding orbital. These terms help describe donations from

occupied natural bonding orbitals to unoccupied natural antibonding orbitals. Analysis of these terms can

give excellent information on delocalization effects within the electronic structure of a molecule. The pro-

gram reports three values for each interaction of this type. First the ∆E, value is reported with large values

indicating that a strong energetically lowering interaction occurs between two NBOs. The magnitude of this

first value is decided by both the numerator and the denominator on the right side of the previous equation.

The more relevant value would be a large numerator which signifies a large overlap of the two orbitals, while

a small denominator may be coincidental.

1.5 Focal Point Analysis

There are three main approximations made when solving the many-electron Schrödinger equation. The first

is the incompleteness of the basis set. An infinite basis set, also known as the complete basis set, would yield

the lowest possible Hartree–Fock energy which is achieved by unlimited flexibility to describe the cloud of

electrons. The complete basis set does not in reality have a representation as one cannot always add more

basis functions to a set used to compute an energy. Instead we use basis sets of manageable size which can

be realistically used in computations. As we will discuss in more detail later, by building up the size of basis

sets in a systematic way, we can extrapolate what the energy would be at the complete basis set limit.

12



The second approximation is made regarding the correlation treatment of the wavefunction. As discussed

in the section above on coupled-cluster theory, a wavefunction that accurately describes how electrons interact

with one another can be achieved by expressing the wavefunction as a linear combination of the ground-

state wavefunction and excited wavefunctions which result from excitations from orbitals in the ground-state

wavefunction. Just basis sets are utilized to approach the complete basis set in some known way, coupled-

cluster can be used to approach the FCI limit, utilizing higher orders of excitation.

The third main approximation that we make is that to ignore the relativity of the system which is valid

for first and second row elements but not for larger elements. Electrons toward the core of large elements

move at speeds that approach the speed of light and thus their mass changes. This has an effect upon the

shapes of orbitals, particularly by contracting s and p orbitals while expanding d and f orbitals,13 also

changing the energy of the system.

Focal Point Analysis (FPA)14–16 focuses upon the first two approximations while adding corrections

accounting for relativistic effects. The results of a FPA are often expressed within a table of values that

looks like the following:

Table 1.1: An example incremented focal point table.

HF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) +δ CCSDTQ NET
aug-cc-pVDZ +0.34 −2.30 +1.06 −0.40 +0.10 −0.05 +0.01 [−1.23]
aug-cc-pVTZ +1.24 −2.28 +1.10 −0.38 [+0.10] [−0.05] [+0.01] [−0.26]
aug-cc-pVQZ +1.24 −2.22 +1.10 −0.38 [+0.10] [−0.05] [+0.01] [−0.20]
aug-cc-pV5Z +1.26 [−2.20] [+1.09] [−0.38] [+0.10] [−0.05] [+0.01] [−0.16]
CBS LIMIT [+1.27] [−2.17] [+1.09] [−0.38] [+0.10] [−0.05] [+0.01] [−0.13]

Where each value, except for Hartree–Fock values, is the difference in total energy from the previous column.

Each column represents an increase in the amount of correlation treatment with the values closest to that

of FCI are on the right hand side of the table, and each new row describes an increase in the cardinality of

the basis set. For the purposes of this study, the correlation consistent basis sets designed by Dunning17 are

used for all FPA results. These basis sets exhibit the systematic convergence to the complete basis set limit

that is integral to FPA.

All values in brackets are either the result of extrapolations to the CBS limit or the result of additivity.

The later comes from the fact that at higher levels of correlation, the corrections should be very small and

thus basis set should not impact the value of the energy significantly. These values are not extrapolated,

but are treated as additive corrections to the electronic energy to aid in the approach of FCI. Extrapolation

techniques are different between HF and correlated methods.

The HF energy extrapolations utilize the equations presented by Feller18 which uses energies obtained

using three basis sets of increasing cardinality.
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EX = E∞ +Be−CX (1.39)

Here the E∞ is the CBS limit of the energy, B and C are variables to be solved for and EX is the HF energy

obtained using each basis set. Note that we use 3 and 4 for the TZ and QZ energies respectively. Utilizing

three basis sets, we have a system of three equations and three unknowns which means that we have a fully

determined system. The solutions for B and C are generally not regarded, but the value for E∞ is incredibly

important. The solution for the CBS energy has the following general form:

E∞ = EX3 −
(EX3 − EX2)2

EX1 − 2EX2 + EX3
(1.40)

And the expression for the HF/CBS energy in Table 1.1 is:

E∞ = E5Z −
(E5Z − EQZ)2

ETZ − 2EQZ + E5Z
(1.41)

The correlated energies, those obtained at the MP2 level and higher, are only extrapolated using a

two-point extrapolation devised by Helgaker:19

EX = E∞ +BX−3 (1.42)

Herein, the extrapolations are often done using the TZ and QZ energies. Again, if we compute the energy

using two different basis sets of cardinality X1 and X2, we have a system of two equations with two unknowns

(E∞ and B). Solving for the CBS energy, we get the following equation:

E∞ = EX2 −
EX2 − EX1

X−32 −X−31

×X−32 (1.43)

These extrapolations typically sufficiently deal with basis set effects. One detail to consider however,

is the energetic convergence observed for the energies within the extrapolation scheme. The obtained CBS

energy does change based upon which energies are used for the extrapolation. It is better to extrapolate

using energies that are obviously converging on the same answer. This is easily seen in a focal point table

and is worth consideration when using FPA.

Corrections to account for relativistic as well as non-electronic energy values are often added to further

refine the energies. For reaction energies, the energies of reactants and products have vibrational energy

even at 0K. The so-called zero point vibrational energy correction is achieved by adding the values obtained

from reactants and products at the geometries used to model these processes. When hydrogens are present
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in a system, it may be that a slight breakdown of the Born–Oppenheimer approximation may affect results.

A third correction that is often added is a computation accounting for the fact that often core electrons

are not treated with correlation. There are also several ways to account for relativistic effects. All additive

corrections result from single point calculations done at identical levels of correlation treatment with basis

sets of identical cardinality.

A nice feature of focal point analysis is that it allows for error bars to be put on the computed energy

for a system. The correction at the highest level of correlation can serve as the precision for the calculation.

Often this results that are converged to within chemical accuracy, 1 kcal mol−1, for the energy a system

being studied at a given level of theory and basis set.
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CHAPTER 2

INVESTIGATING THE GROUND-STATE ROTAMERS OF THE N -PROPYLPEROXY

RADICAL∗

∗ Reprinted from Hoobler, P. R.; Turney, J. M.; and Schaefer, H. F., J. Chem. Phys. 2016, 145 174301, with

the permission of AIP Publishing.
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2.1 Abstract

The n-propylperoxy radical has been described as a molecule of critical importance to studies of low tem-

perature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal

propylperoxy. Reliable CCSD(T)/ANO0 geometries were predicted for the molecule’s five rotamers. For

each rotamer, energetic predictions were made using basis sets as large as the cc-pV5Z in conjunction with

coupled cluster levels of theory up to CCSDT(Q). Along with the extrapolations, corrections for relativistic

effects, zero-point vibrational energies, and diagonal Born–Oppenheimer corrections were used to further

refine energies. The results indicate that the lowest conformer is the gauche-gauche (GG) rotamer followed

by the gauche-trans (0.12 kcal mol−1 above GG), trans-gauche (0.44 kcal mol−1), gauche′-gauche (0.47

kcal mol−1), and trans-trans (0.57 kcal mol−1). Fundamental vibrational frequencies were obtained using

second-order vibrational perturbation theory (VPT2). This is the first time anharmonic frequencies have

been computed for this system. The most intense IR features include all but one of the C-H stretches. The

O-O fundamental (1063 cm−1 for the GG structure) also has a significant IR intensity, 19.6 km mol−1. The

anharmonicity effects on the potential energy surface were also used to compute vibrationally averaged rg,0K

bond lengths, accounting for zero-point vibrations present within the molecule.

2.2 Introduction

Low-temperature combustion occurs between 600–900 K,20,21 and is comprised of cool flame oscillations

involving free radical pathways. In this temperature regime, the barrierless, exothermic reaction between

alkyl radicals and molecular oxygen22 strongly influences combustion dynamics. At this point, several

subsequent reactions can proceed through energetically submerged transition states with respect to the

initial reactants. The fate of alkylperoxy radicals is dependent on temperature, pressure, and the alkyl

chain length (CnH2n+1) among other factors. This diverse chemistry was reviewed by Zádor, Taatjes and

Fernandes in 2011.23 For species with n ≤ 2 the reaction products are dominated by the concerted elimination

of hydroperoxy radical (HOO•) and formation of hydroxyl radicals (•OH), the species believed to be the key

to low-temperature combustion. Note that at elevated temperatures, the kinetic rate for the reverse reaction

(ROO• → R• + O2) becomes non-negligible due to its barrierless nature. This leads to what is call the

“Negative Temperature Coefficient” (NTC) region where increasing temperatures counterintuitively lead to

a delay in combustion.24–27

In this work, we consider the n-propylperoxy radical (3 carbon atoms).27–31 This molecule is often

considered to be an ideal combustion compound for theoretical examination because of its manageable size

coupled with a combustion mechanism containing intermediates of interest. The most crucial propylperoxy
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intermediate25,32,33 is formed by way of an internal hydrogen abstraction. This process occurs through a

ring-like transition state, resulting in a carbon centered radical, often denoted as QOOH. Until recently,34

no QOOH species had been directly characterized, though the existence of these combustion intermediates

has been included in most kinetic models.35 The difficulty in achieving this feat is due to the highly-transient

nature of these intermediates. A 5- and a 6-membered ring transition state are available to n-propylperoxy

radical for the formation of QOOH. The barriers corresponding to both ringed species lie lower in energy

than reactants. While it is true that the six-membered ring transition state lies lower in energy than the

5-membered ring,29,32,36 both are considered integral to the kinetic model of n-propylperoxy combustion.

The QOOH species can undergo a second addition of molecular oxygen to form a peroxyalkylhydroperoxy

radical (•OOQOOH). The kinetics of the formation and decomposition of this combustion species has become

of interest recently.37 The decomposition of •OOQOOH intermediate is believed to result in an increase in

the number of radicals present in a combustion system. It is the increase in total number of radicals, in

particular hydroxyl radicals, that leads to propagation and sustained low-temperature ignition. Since the

n-propylperoxy radical system is the smallest system that can achieve the transition state of interest in

route to the QOOH intermediate, it provides a unique opportunity for investigation using high-level theory.

The knowledge gained by studying this relatively simple system can then be applied to much larger systems

which are more prevalent within actual combustion models.

It is possible that under the right conditions, the n-propylperoxy radical species can relax into a deep

potential well that is roughly 30 kcal mol−1 below that of the reactants in lieu of continuing through the

available combustion pathways. The focus of this paper is to investigate what happens to the radical species

once it can be found in this well.

The n-propylperoxy radical contains three degrees of freedom with regard to dihedral angles, two of

which are considered to be of greater importance the third less so. The dihedral that is often of least interest

involves the rotation of the terminal methyl group of the molecule. The other two dihedrals are the 6 OOCC

and the 6 OCCC. If one of these angles has a value of 180°, it is described as trans, whereas if the value of

the dihedral is roughly ±60°, it is described as gauche. There are five rotamers, isomers due to rotation, that

can be formed through combinations of these two dihedrals angles. The common naming system for these

rotamers is to describe the 6 OOCC first and the 6 OCCC second. The only rotamer of the five with any

symmetry is the trans-trans (TT) rotamer which has Cs symmetry. There also exist trans-gauche (TG) and

gauche-trans (GT), which are both C1 structures. The last two rotamers both contain two gauche dihedral

angles, made distinct by the fact that the gauche-gauche (GG) rotamer contains dihedrals of the same sign

while the gauche′-gauche (G′G) structure has dihedrals of opposite sign.
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As the n-propylperoxy radical has gained scientific attention, it has been the interest of several different

theoretical studies. A 2005 study by Merle et al. considered the rotamers on the ground state potential energy

surface and found their relative energies to lie within one kcal mol−1 at the CBS-QB3 level of theory. They

also reported a population analysis using a Boltzmann distribution at 298K. What Hadad and coworkers

found at three different levels of theory was that all five of these ground state rotamers made up a significant

portion of the population at 298K. This suggests that, if observed, a sample of this radical species would

likely contain a mixture of all five of the rotamers being studied.36

The 2005 study of Tarczay, Zalyubovsky and Miller38 also included a theoretical investigation of the five

rotamers. They also found the rotamers to lie very close in energy. At their “best” level of theory (G2)

they found the energies of the conformers to be within 180 cm−1 of each other. Along with this analysis

they also used the equation of motion coupled-cluster with single and double excitations (EOM-CCSD)

method to compute the Ã←X̃ excitation energy for each rotamer. The theoretical results were compared to

experimentally obtained spectra from the same group.39 The spectra used for experimental comparison were

obtained using cavity ringdown spectroscopy (CRDS) which allows for the observation of these non-intense

transitions. Matching their theoretical results with experimental results, they were able to reasonably label

the excitation peaks from the CRDS spectrum with three of the five rotamers. A last piece of interesting

analysis was done to determine barriers of rotation between each of the rotamers. With the B3LYP/6-31+G*

method, the two different dihedral angles were scanned (0°to 180°for 6 OOCC and 0°to 360°for 6 CCCO).

The results showed that the maximum barrier heights between any of the rotamers was approximately 1000

cm−1 (∼ 2.86 kcal mol−1). As they state in the paper, this relatively low barrier supports the notion that

each of these rotamers would exist in equilibrium with one another at 298 K.38 One would also expect this

to be true at combustion temperatures.

Some of the first spectroscopy done on peroxy radicals was done with UV absorption spectroscopy. The

n-propylperoxy radical was studied with this method.40 However, this method does not allow for the mass

specific study of peroxy radicals. The UV absorption studied corresponds to the B̃←X̃ transition which is

a dissociative absorption. This absorption is not strongly dependent upon the non-peroxy moiety. Thus

it is an effective way to determine the presence, but not identity of peroxy radicals. The advent of cavity

ring-down spectroscopy (CRDS) has greatly aided the study of peroxy radicals by increasing the sensitivity

of measurements within the IR region. This method has been successfully applied to n-propylperoxy radical

in order to study the Ã←X̃ transition.39,41

To date, experimental spectra have not been reported that allow the resolution of fundamental vibra-

tional transitions for this system. In light of this, we have predicted harmonic vibrational frequencies for the

n-propylperoxy radical along with anharmonic corrections using VPT2 theory. The fundamental frequencies
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reported in this paper should aid in the assignment of experimentally obtained vibrational spectra. This

interplay of theory and experiment is well precedented within the field of peroxy radicals and related combus-

tion species.42–45 We seek to provide spectroscopic information in line with this precedent for n-propylperoxy

radical. Our analysis should aid in the spectral identification of this molecule from experimental studies.

Further, an attempt to differentiate the rotamers and provide a method of specific rotamer detection may

allow for the determination of the conformational make-up of this species within combustion systems. This

would provide insight into the effect of rotamer populations on low-temperature combustion phenomena.

The reference geometry of each rotamer was optimized by using coupled-cluster theory, incorporating

single, double, and perturbative triple excitations [CCSD(T)] with the Atomic Natural Orbital (ANO) ba-

sis set proposed by Almöf and Taylor.46 All geometry optimizations were completed with an unrestricted

Hartree–Fock (UHF) reference along with a frozen core (1s-like molecular orbitals of carbon and oxygen)

approximation.47 The ANO family of basis sets was chosen because it appears to perform well within VPT2

theory when compared to similarly sized basis sets.48 Given the relatively large system being studied, the

ANO0 basis set (comparative in size to the Dunning cc-pVDZ basis set) made computations of anharmonic

frequencies feasible. Initial harmonic frequencies were checked to make sure that no imaginary frequencies

existed, ensuring that we had optimized to a true minimum on the potential energy surface in the case of

each rotamer.

Anharmonic corrections to the potential energy surface for each rotamer were accounted for using second-

order vibrational perturbation theory (VPT2) at the UHF-CCSD(T)/ANO0 level of theory. The full cubic

force field was obtained along with the semi-diagonal portion of the quartic force field. These were ob-

tained by numerical differentiation of analytic second derivatives. The CFOUR program was utilized for all

computations.49

In the case of resonances between a vibration and a single overtone, resonances were dealt with by building

2 × 2 matrices with anharmonic frequencies on the diagonal with cubic force-constants making up the off-

diagonal elements. By diagonalizing these matrices, corrections to the computed anharmonic frequencies

were obtained. In the case of both the GG and G′G rotamers, a single fundamental frequency was found to

be in resonance with two different overtones. This required the building of a 3 × 3 matrix with cubic force

constants between the fundamental frequency with each of the overtones and Darling–Dennison coefficients

representing the interactions between the overtones. The process of identifying and these resonances was

done using the PyVPT2 program.50

Accurate relative energies for the rotamers were determined using the focal point analysis technique,14,15,51

making use of the reference geometries at the UHF-CCSD(T)/ANO0 level of theory. Extrapolation to the

complete basis set limit was done for both Hartree–Fock (HF) energies (three point extrapolation) and cor-
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relation energies (two point extrapolation) obtained using the Dunning correlation consistent cc-pVXZ (X

= T, Q, 5) basis sets52 via the following extrapolation functions:18,19

EHF(X) = E∞HF + ae−bX (2.1)

and

Ecorr(X) = E∞corr + aX−3 (2.2)

Included in the analyses were high level correlation computations through coupled cluster theory including

single, double, triple and perturbative quadruple excitations [CCSDT(Q)]. These CCSDT(Q) computations

were done using the MRCC code of Kállay interfaced with CFOUR.53,54 In order to correct for the frozen-

core approximation that was used during the single point energy computations, an auxiliary core correlation

correction(∆core) was computed. This correction represents the difference between all electron (AE) and

frozen core (FC) single point energies that were computed using the Dunning correlation consistent triple-

zeta basis set including core functions (cc-pCVTZ).

∆core = [AE-CCSD(T)/cc-pCVTZ]− [FC-CCSD(T)/cc-pCVTZ] (2.3)

Also included in the corrections were anharmonic zero point vibrational energy corrections (∆AZPVE). In

each case, this correction was obtained during the computations to determine the anharmonicity of the

potential energy surface. Due to the fact that our system contains a relatively large number of hydrogens,

we had to consider the possibility of non-adiabatic effects. In order to assure that we have a high level of

reliability with regard to such effects, diagonal Born-Oppenheimer corrections (∆DBOC) were predicted at the

HF/cc-pVTZ level of theory.55,56 Final corrections were added to our results to account for relativistic effects

(∆rel). These relativistic corrections were obtained by adding the mass-velocity and Darwin one-electron

terms computed with the AE-CCSD(T)/cc-pVTZ method.57,58
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As one last piece of analysis, the vibrationally averaged equilibrium parameters (rg,0K) were computed

and compared to the equilibrium internuclear distances (re). These results are reported in Table 2.7. Follow-

ing the example of Copan, Schaefer, and Agarwal43, the vibrationally averaged bond lengths are obtained

through the following Taylor expansion of the bond lengths in terms of normal modes of vibration:

rg,0K = 〈r〉g,0K ≈ re +
∑
s

(
∂r

∂Qs
)e〈Qs〉g,0K +

1

2

∑
(
∂2r

∂Q2
s

)e〈Q2
s〉g,0K (2.4)

2.3 Results

2.3.1 Fundamental Vibrational Frequencies

We present our anharmonic vibrational frequencies for all five rotamers in Table 2.1. Each column contains

the set of harmonic frequencies, anharmonic corrections, and final anharmonic fundamental frequencies for

a particular structure. It is worth noting that we do not follow the standard convention in our designation

of the frequencies for the symmetric TT rotamer. Given that the rotamer has Cs symmetry, convention

would require us to report all a′ fundamentals followed by all a′′ modes. For ease of comparison with our

C1 rotamers, which have no point group symmetry, we have more appropriately reported the fundamentals

in decreasing order of frequency. Our harmonic frequencies show general agreement with previous research

done on this system.36 The anharmonic corrections to these frequencies may be understood in terms of the

primary bonds involved in each vibrational mode. Those vibrational frequencies which correspond to C–H

bond stretches (modes 1–7) exhibit large anharmonic corrections, generally above 100 cm−1 in magnitude.

All other modes have anharmonic corrections that are below 50 cm−1 in magnitude. Any resonances that

were found between fundamentals and overtones were corrected for using the PyVPT2 program described

in the theoretical methods section of this paper.50 Those frequencies which were subject to resonance are

labeled within the tables, along with which overtone band(s) provide the resonance interaction.

Comparing vibrational frequencies between different rotamers is complicated by the lack of symmetry

present in four of the five species studied. In Table 2.2 we have labeled some of the more recognizable

frequencies. The easiest assignment to be made is that for the O-O stretch. For each rotamer, this is

reported as ν19. The frequencies we report for this mode are 1063 cm−1 for the GG rotamer, 1060 cm−1 for

the GT, 1073 cm−1 for the TG, 1064 cm−1 for the G′G, and 1072 cm−1 for the TT. These frequencies span

a range of only 13 cm−1. This comparison indicates that this mode is not largely dependent upon the alkyl

portion of the molecule. As may be seen in Table 2.2, these modes are among the most intensely IR active

modes for each of the five rotamers. This fundamental should appear in any IR spectrum of the molecule.

Unfortunately, except at very high resolution, this mode would not be a good candidate for differentiating
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the rotamers, due the fact that there is no large variation in this fundamental across the five rotamers.

The C-O stretching modes are similar to the O-O stretching modes in that the range of frequencies over

which these modes occur is modest but moreso than found for the O-O stretch. The fundamental band

which primarily contains the C-O stretch is ν21. From Table 2.1, the reported fundamentals for this mode

range from 908–953 cm−1. The intensities associated with this mode fall in one of two camps, where the

intensities reported for the TG, TT, and G′G rotamers are approximately twice the intensities reported for

the GT and GG rotamers. With all of this in mind, it may be possible to specifically detect the TT rotamer

[ν(CC) = 953 cm−1 ] which has a favorable combination of high IR intensity and distinct frequency. For the

other rotamers, any unresolved spectrum might not be helpful for rotamer specific detection.

The two C-C bond stretching modes offer the best hope for rotamer specification. The modes involving

these two stretches are ν13 for the Cα-Cβ stretch and ν12 for the Cβ-Cγ stretch. Combining the analysis

of these two modes is much more useful in this case than looking at them individually. The most distinct

of the rotamers is likely the higher energy (by only 0.5 kcal mol−1) G′G rotamer. From Table 2.2, it can

be seen that only ν13 is predicted to appear as a fairly strong peak within an IR spectrum, while for the

other C-C stretching mode ν12, the IR intensity is small (0.7 km mol−1). The TG rotamer essentially shares

the same frequencies for both modes with differences of 3 cm−1 and 5 cm−1 for ν12 and ν13 respectively.

The differentiating factor between the G′G and TG rotamers comes with their relative frequencies. By

comparison with the strong O-O stretch (intensities 19–28 km mol−1), the ν13 Cα-Cβ intensity for the G′G

rotamer is about half as intense, while the ν13 intensity for the TG rotamer is only about one fifth as intense.

In this way, these two rotamers may be differentiated from one another and are distinct enough from the

other rotamers that a well resolved experimental spectrum might be able to distinguish either the G′G or

the TG from the other rotamers. The TT rotamer is the next most easily identifiable rotamer. From Table

2.2, the frequencies for the two C-C modes are essentially identical, differing by 2 cm−1, and should appear

as one, fairly intense peak, particularly in matrix isolation. The last two rotamers, the GT and GG, present

a challenge for this combined analysis. Neither of these two rotamers is predicted to have an intense band

for either of these modes. Further, the frequencies for the modes of interest only differ by 5 cm−1 and

10 cm−1. This combined analysis, even appended with information from more modes, will have a difficult

time differentiating these two rotamers from one another. Our global analysis of the C-C stretching modes

however, does get us closer to rotamer specific detection.

The lowest frequency torsion modes within each of the conformers have also been assigned. In four of our

five rotamers, we find that the lowest frequency mode largely involves the torsion about the 6 OOCC dihedral

angle. The exception is the GT conformer where this torsion is assigned to ν2. The fundamental frequencies

for this mode lie between 69 and 113 cm−1, most of which fall in the lower end of this range. Considering
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the 6 OCCC dihedral, we find that the torsional motion involving this dihedral can be assigned to ν2, again

the exception being the GT rotamer. The frequencies for this motion lie between 98 and 145 cm−1. The

last dihedral degree of freedom involving the terminal methyl group can generally be assigned to ν3 with

the exception of the TT rotamer where ν4 is assigned to this mode. The frequencies assigned to terminal

methyl rotation range from 173 to 227 cm−1. It is interesting to note that the theoretical frequencies span

a range of 54 cm−1. A slight dependence upon the OOCC dihedral angle can be observed. Rotamers with

a gauche dihedral angle at this position have higher frequencies corresponding to terminal methyl rotation,

while those rotamers with a trans dihedral at this position have lower frequencies.

Given the slight dependence upon the OOCC dihedral angle on the torsional modes a future avenue

of study presents itself. A coupled rotor analysis of the torsional modes can be performed to project out

their effect on the remaining vibrational modes. Tarczay and co-workers38 predicted rotational barriers of

roughly 250–1000 cm−1 associated with transformations between rotamers of the n-propylperoxy radical,

and we find the barrier for terminal methyl rotation to be roughly 900 cm−1 using B3LYP and a triple-ζ

quality basis set. Given that the rotational barriers within the n-propylperoxy radical are of this magnitude,

we are confident that VPT2 can offer a valid treatment of these modes.

As noted in Table 2.1, each rotamer shows a resonance between one of the C-H stretching fundamentals

and at least one overtone band. All of the resonances observed are between fundamental C-H stretching

modes and first overtones of 6 HCH bends. For both the GG and G′G rotamers, a single C-H stretching

fundamental (ν7 for GG and ν6 for G′G) is in resonance with two separate 6 HCH bending overtones (ν8

and ν9). All of the modes associated with these frequencies involve the terminal methyl group. These

resonances require the building of 3×3 contact matrices in order to be resolved. The corrections for these

resonances were +36 cm−1 in each case. For the TG rotamer, there is found a fundamental which suffers

from resonance with a single overtone. This resonance also occurs between the fundamental involving the

terminal C-H stretch (ν7) and a terminal methyl 6 HCH bend (ν8). The applied correction was 14 cm−1,

much smaller than that for the GG and G′G resonances. This is likely due to the fact that the resonance

only involves a single overtone instead of two.

The remaining pair of rotamers, GT and TT, suffer from two separate resonances between a single C-

H stretch and a single 6 HCH bend. The first of these resonances occurs between the ν6 stretch and the

ν8 bend for each rotamer. Both of these modes involve the CβH2 group of the molecule. This resonance

is in contrast to the GG and G′G rotamers which only display resonances involving the terminal methyl

moiety. The second pair of resonances do involve the terminal methyl group. These occur between the ν6

stretching and the ν8 bending modes. The corrections applied to account for both of these resonances were

roughly the same as that for the TG. This is likely due to the fact that each interaction accounted for was
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between a single fundamental and a single overtone. All of the resonances discussed within this section

have been noted in Table 2.1 along with identification of which fundamentals and overtones participate in

each resonance. Specific values for the applied corrections along with cubic force constants associated with

resonances have been included in the Supplemental Information for this paper. A potential dependence upon

the 6 OCCC dihedral angle might be inferred from these observations. Further study would be required to

draw conclusions based upon the 6 OCCC dihedral angle (or terminal 6 CCCC dihedral angle in any larger

alkylperoxy molecule) and its effect upon the types of resonances that plague a particular alkylperoxy IR

spectrum.

Table 2.1: Harmonic (ω), anharmonic corrections (δν), and final fundamental frequencies (ν) for the gauche-
trans (GT), trans-gauche (TG), trans-trans (TT), gauche-gauche (GG), and gauche′-gauche (G′G) rotamers
for the n-propylperoxy radical obtained using the ANO0/CCSD(T) level of theory (cm−1). See Figure 2.1
for the structural differences between the five rotamers.

GT TG TT GG G′G
Mode ω δν ν ω δν ν ω δν ν ω δν ν ω δν ν

1 3148 −152 2996 3146 −148 2999 3143 −154 2989 3148 −152 2996 3152 −152 3001
2 3139 −148 2991 3142 −155 2987 3140 −148 2992 3144 −147 2997 3148 −151 2997
3 3128 −148 2980 3132 −147 2985 3128 −149 2979 3132 −148 2985 3135 −148 2986
4 3110 −147 2963 3102 −147 2955 3105 −147 2958 3108 −147 2961 3096 −146 2949
5 3076 −122 2954 3075 −113 2962 3073 −108 2965 3077 −124 2954 3079 −126 2953
6 3062 −1041 2958 3054 −113 2941 3060 −982 2962 3055 −117 2938 3052 −883 2967
7 3045 −784 2967 3049 −905 2959 3046 −776 2969 3048 −847 2964 3045 −114 2931
8 1517 −44 1473 1515 −32 1483 1520 −43 1477 1514 −43 1471 1512 −41 1471
9 1509 −42 1467 1512 −53 1459 1510 −41 1468 1508 −45 1463 1507 −41 1466
10 1502 −47 1454 1501 −44 1457 1509 −41 1469 1486 −42 1444 1483 −39 1443
11 1487 −42 1445 1484 −45 1439 1500 −49 1451 1484 −40 1444 1478 −38 1441
12 1420 −36 1384 1423 −34 1389 1421 −34 1387 1423 −34 1389 1426 −34 1392
13 1409 −38 1371 1404 −42 1362 1415 −26 1389 1396 −35 1361 1395 −38 1357
14 1327 −30 1296 1372 −33 1340 1328 −29 1299 1374 −34 1340 1377 −34 1343
15 1322 −29 1293 1308 46 1354 1320 −32 1289 1302 −31 1271 1301 −22 1279
16 1281 −34 1248 1253 −32 1221 1261 −33 1228 1281 −31 1249 1282 −32 1250
17 1200 −29 1171 1168 −29 1139 1171 −30 1141 1187 −30 1156 1183 −27 1156
18 1133 −27 1106 1133 −27 1106 1157 −27 1130 1115 −28 1087 1115 −28 1087
19 1094 −35 1060 1104 −31 1073 1101 −29 1072 1096 −33 1063 1098 −34 1064
20 1056 −27 1028 1079 −25 1053 1064 −29 1035 1051 −16 1035 1061 −19 1042
21 961 −26 935 939 −24 915 980 −27 953 947 −18 930 932 −25 908
22 897 −12 885 913 −14 899 921 −15 906 895 −21 874 919 −14 905
23 876 −15 861 892 −16 876 891 −10 881 863 −15 848 844 −18 826
24 761 −5 757 752 −9 744 761 −5 756 757 −10 747 769 −9 760
25 557 −7 550 517 −5 513 488 −5 483 543 −5 538 525 17 542
26 373 −8 365 379 1 380 400 −5 394 431 −4 427 426 −5 421
27 262 0 261 301 −5 295 243 −12 231 290 −7 283 308 −4 304
28 241 −14 227 204 −15 189 198 −25 173 226 −8 218 236 −10 226
29 122 −9 113 134 −2 132 123 −3 120 153 −8 145 121 −6 115
30 102 −4 98 76 −6 69 82 −7 75 81 −4 77 97 −13 83

2.3.2 Energetics

The focal point results provide definitive results concerning the relative energies of the different rotamers.

The GG conformer lies lowest in energy. For each of the conformers, we have computed correlation corrections
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Table 2.2: Fundamental frequncies (cm−1) paired with the corresponding harmonic infrared intensities (km
mol−1) for each rotamer of the n-propylperoxy radical.

GT TG TT GG G′G
Stretch Mode ν Int. ν Int. ν Int. ν Int. ν Int.

C–H 1 2996 16.4 2999 28.3 2989 19.3 2996 16.1 3001 43.3
C–H 2 2991 18.1 2987 20.5 2992 26.3 2997 14.5 2997 21.0
C–H 3 2980 26.8 2985 15.5 2979 22.9 2985 23.4 2986 10.0
C–H 4 2963 4.2 2955 0.5 2958 9.7 2961 13.6 2949 0.3
C–H 5 2954 22.6 2962 28.1 2965 13.7 2954 22.7 2953 20.2
C–H 6 2958 12.9 2941 9.0 2962 10.7 2938 14.4 2923 11.4
C–H 7 2967 23.0 2959 20.8 2969 23.4 2921 20.8 2931 20.3

8 1473 5.1 1483 6.0 1477 3.3 1471 6.1 1471 8.0
9 1467 5.6 1459 6.5 1468 8.8 1463 5.6 1466 6.4
10 1454 1.0 1457 0.6 1469 4.6 1444 0.4 1443 0.2
11 1445 3.8 1439 0.8 1451 2.7 1444 4.1 1441 1.1

Cβ–Cγ 12 1384 4.7 1389 0.8 1387 4.1 1389 3.2 1392 0.7
Cα–Cβ 13 1371 3.2 1362 4.9 1389 9.0 1361 2.9 1357 13.1

14 1296 6.5 1340 0.8 1299 11.1 1340 6.5 1343 9.0
15 1293 0.8 1354 4.0 1289 0.9 1271 1.7 1279 0.0
16 1248 3.7 1221 1.8 1228 1.3 1249 4.5 1250 0.3
17 1171 2.9 1139 2.6 1141 2.3 1156 1.3 1156 1.1
18 1106 4.1 1106 0.6 1130 3.6 1087 5.1 1087 0.6

O–O 19 1060 19.3 1073 23.4 1072 27.6 1063 19.6 1064 28.4
20 1028 1.7 1053 0.7 1035 3.3 1035 1.8 1042 4.0
21 935 9.7 915 16.0 953 15.3 930 8.5 908 16.7
22 885 7.5 899 2.4 906 4.6 874 6.4 905 4.3
23 861 6.7 876 7.0 881 0.7 848 6.4 826 1.2
24 757 0.8 744 1.9 756 0.6 747 1.1 760 1.7
25 550 2.9 513 2.6 483 6.2 538 3.1 542 6.5
26 365 3.4 380 3.7 394 1.3 427 3.4 421 2.1
27 261 1.3 295 3.2 231 0.5 283 0.4 304 0.0
28 227 1.3 189 0.0 173 0.9 218 1.3 226 1.9
29 113 0.6 132 1.3 120 1.7 145 1.5 115 2.6
30 98 0.8 69 1.1 75 0.2 77 0.1 83 0.8

through CCSDT(Q). In every case, our results show good convergence at this level of correlation with the

largest difference between CCSDT/cc-pVDZ and CCSDT(Q)/cc-pVDZ being 0.02 kcal mol−1. None of the

relative corrections for core-correlation, zero-point vibrational energy or relativistic effects is larger than

0.01 kcal mol−1, and most often these should be considered to be nearly nil, given the numerical precision

associated with these results.

Considering the other computed energetic corrections evaluated here, it may be seen that the system

is fairly well behaved. Neither the core-correlation nor the DBOC corrections significantly adjust our pre-

dictions at the precision of 0.01 kcal mol−1. The largest correction predicted was the AZPVE correction

obtained from the anharmonic corrections to the potential energy surface. The AZPVE correction for the

lowest energy conformer (GG) is 62.19 kcal mol−1 (∼21750 cm−1) the AZPVE values reported in the focal
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point tables are relative to this. AZPVE serves to further distance our higher energy rotamers from the GG

rotamer by 0.07 kcal mol−1 in the case of the TG rotamer and 0.08 kcal mol−1 in the case of the TT rotamer.

The corrections themselves can be found in the reported focal point analysis tables (Tables 2.3–2.6).

Table 2.3: Focal point comparison of the energy difference between the gauche-trans (GT) rotamer and
lowest energy gauche-gauche (GG) rotamer (kcal mol−1).

Basis Set ∆Ee[UHF] δ[MP2] δ[SD] δ[SD(T)] δ[SDT] δ[SDT(Q)] ∆Ee[SDT(Q)]

cc-pVDZ +0.07 +0.36 −0.09 +0.03 −0.00 +0.00 [+0.36]
cc-pVTZ −0.17 +0.42 −0.11 +0.05 [−0.00] [+0.00] [+0.19]
cc-pVQZ −0.24 +0.42 −0.10 +0.05 [−0.00] [+0.00] [+0.13]
cc-pV5Z −0.26 [+0.42] [−0.10] [+0.05] [−0.00] [+0.00] [+0.12]

CBS [−0.26] [+0.42] [−0.09] [+0.05] [−0.00] [+0.00] [+0.12]
∆Ee (final) = ∆Ee[CBS CCSDT(Q)] + ∆EAZPVE[CCSD(T)/ANO0]

+ ∆core[CCSD(T)/cc-pCVTZ] + ∆rel[CCSD(T)/cc-pCVTZ] + ∆DBOC[HF/aug-cc-pVTZ]
= 0.12 − 0.002 + 0.0001 + 0.003 + 0.001 = 0.12 kcal mol−1

Table 2.4: Focal point comparison of the energy difference between the trans-gauche (TG) rotamer and
lowest energy gauche-gauche (GG) rotamer (kcal mol−1).

Basis Set ∆Ee[UHF] δ[MP2] δ[SD] δ[SD(T)] δ[SDT] δ[SDT(Q)] ∆Ee[SDT(Q)]

cc-pVDZ +0.01 +0.63 +0.00 +0.14 +0.00 +0.02 [+0.80]
cc-pVTZ −0.25 +0.59 +0.01 +0.16 [+0.00] [+0.02] [+0.53]
cc-pVQZ −0.34 +0.58 +0.01 +0.16 [+0.00] [+0.02] [+0.42]
cc-pV5Z −0.37 [+0.58] [+0.01] [+0.16] [+0.00] [+0.02] [+0.40]

CBS [−0.37] [+0.58] [+0.00] [+0.16] [+0.00] [+0.02] [+0.38]
∆Ee (final) = ∆Ee[CBS CCSDT(Q)] + ∆EAZPVE[CCSD(T)/ANO0]

+ ∆core[CCSD(T)/cc-pCVTZ] + ∆rel[CCSD(T)/cc-pCVTZ] + ∆DBOC[HF/aug-cc-pVTZ]
= 0.38 + 0.07 − 0.005

8 + 0.001 + 0.002 = 0.44 kcal mol−1

Table 2.5: Focal point comparison of the energy difference between the gauche′-gauche (G′G) rotamer and
lowest energy gauche-gauche (GG) rotamer (kcal mol−1)

Basis Set ∆Ee[UHF] δ[MP2] δ[SD] δ[SD(T)] δ[SDT] δ[SDT(Q)] ∆Ee[SDT(Q)]

cc-pVDZ +0.92 −0.28 +0.08 −0.06 +0.00 −0.01 [+0.65]
cc-pVTZ +0.84 −0.30 +0.08 −0.06 [+0.00] [−0.01] [+0.55]
cc-pVQZ +0.81 −0.33 +0.09 −0.07 [+0.00] [−0.01] [+0.50]
cc-pV5Z +0.80 [−0.34] [+0.10] [−0.07] [+0.00] [−0.01] [+0.48]

CBS [+0.80] [−0.35] [+0.10] [−0.08] [+0.00] [−0.01] [+0.47]
∆Ee (final) = ∆Ee[CBS CCSDT(Q)] + ∆EAZPVE[CCSD(T)/ANO0]

+ ∆core[CCSD(T)/cc-pCVTZ] + ∆rel[CCSD(T)/cc-pCVTZ] + ∆DBOC[HF/aug-cc-pVTZ]
= 0.47 + 0.02 + 0.001 + 0.004 + 0.0002 = 0.49 kcal mol−1

2.3.3 Structures

The equilbrium geometries reported were all obtained at the ANO0/CCSD(T) level of theory. A strict

convergence criterium (RMS force gradient ≤ 10−6) was required to ensure that the geometries obtained
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Table 2.6: Focal point comparison of the energy difference between the trans-trans (TT) rotamer and lowest
energy gauche-gauche (GG) rotamer (kcal mol−1)

Basis Set ∆Ee[UHF] δ[MP2] δ[SD] δ[SD(T)] δ[SDT] δ[SDT(Q)] ∆Ee[SDT(Q)]

cc−pVDZ +0.12 +0.99 −0.11 +0.16 −0.00 +0.02 [+1.18]
cc−pVTZ −0.41 +0.96 −0.10 +0.20 [−0.00] [+0.02] [+0.66]
cc−pVQZ −0.55 +0.96 −0.10 +0.20 [−0.00] [+0.02] [+0.52]
cc−pV5Z −0.58 [+0.96] [−0.10] [+0.20] [−0.00] [+0.02] [+0.49]

CBS [−0.59] [+0.96] [−0.10] [+0.20] [−0.00] [+0.02] [+0.49]
∆Ee (final) = ∆Ee[CBS CCSDT(Q)] + ∆EAZPVE[CCSD(T)/ANO0]

+ ∆core[CCSD(T)/cc-pCVTZ] + ∆rel[CCSD(T)/cc-pCVTZ] + ∆DBOC[HF/aug-cc-pVTZ]
= 0.49 + 0.08 − 0.004 + 0.002 − 0.004 = 0.57 kcal mol−1

were precise. The expectation of the spin-squared operator was found in each case to ensure that spin-

contamination was not greatly affecting our data. In every case, the expectation value was between 0.7611

and 0.7618. This can be compared to the ideal value of 0.75 for any doublet electronic state. This good

agreement allows further confidence in the validity of the present theoretical predictions.

Examining the geometries of all five rotamers, one can see that they are reasonably consistent. Comparing

the O-O bond length present in the peroxy moiety, one finds little difference. These bond lengths differ

between 1.344 and 1.346 Å for the five rotamers. The C-O bond distances show roughly the same amount

of variance. These C-O bond distances fall between 1.458 and 1.461 Å. The reported Cα-Cβ equilibrium

bond distances only range from 1.523 to 1.526 Å. Likewise, the reported Cβ-Cγ equilibrium bond lengths

lie between 1.535 and 1.536 Å. Much like their energies, the rotamers are similar with regard to the bond

distances between backbone atoms. The angles within all five rotamers are also reasonably similar to one

another. Figure 1 contains representations for all of the rotamers for general comparison of geometries.

Figure 2 shows the equilibrium structure of the lowest energy rotamer with bond distances and angles

labeled.

Because the rotamers are defined in terms of dihedrals, Newman projections for each of the rotamers

have been provided (Figure 2.3) in order to explicitly represent the dihedral angles of interest. It is of note

that the molecules do not always adhere to the intuitive 60°gauche dihedral and 180°trans dihedral. One

particular offender is the G′G rotamer whose OOCC dihedral is closer to 90 °than either of the idealized

dihedrals.
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Figure 2.1: Equilibrium structures including point-group symmetry for each of the rotamers of the n-
propylperoxy radical computed with the CCSD(T)/ANO0 method. See Supplemental Information for bond
distances and angles.

The effects of vibrational averaging are reported in Table 2.7. As can be seen from the table, the

vibrational averaging leads to an increase in bond distances in every case. As the molecule vibrates, the

nuclei are on average further from one anther. The greatest corrections for vibrational averaging occur

for bonds between carbon and hydrogen. This reflects the fact that these C-H bonds which contain the

lightest element will undergo relatively large amplitude vibrations. These corrections are very systematic

and lie between 0.0214 and 0.0221 Å. Heavier nuclei generally undergo smaller amplitude vibrations. Thus,

bond lengths involving these heavier atoms, carbon and oxygen in the case of the n-propylperoxy radical,

experience smaller corrections when vibrationally averaged. The smallest corrections observed were found

in the distance of the O-O bond. Given that the heaviest element present in the n-propylperoxy radical is

oxygen, this is our most massive bond. The corrections for the O-O bond distance lie between 0.0065 and

0.0068 Å, a full order of magnitude below the corrections for the C-H bond distances. These results support

the notion that internuclear distances involving bonds between heavier atoms will see smaller vibrationally

averaged corrections than those of bonds involving light atoms such as hydrogen.
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Figure 2.2: Equilibrium structure of the lowest energy gauche-gauche(GG) conformer of the n-propylperoxy
radical, computed with the CCSD(T)/ANO0 method, including labeled bond distances in Å and selected
bond angles in degrees

2.4 Conclusion

The five ground state rotamers of the n-propylperoxy radical have been studied using high-level ab initio

methods. Structures for all five of the rotamers are reported with the coupled cluster theory. Geometries for

all five rotamers are compared to one another and found to be similar with the exception of the characteristic

dihedral angles of these rotamers. Vibrationally corrected bond lengths utilizing the cubic force constants

obtained during anharmonic VPT2 computations are also reported. In every case, zero-point vibrations

lead to extended bond lengths. The amount of this vibrational extension is related to the anharmonicity

experienced by the vibrational modes involving the stretching of these bonds. The C-H bonds, whose

bond stretching modes have anharmonic corrections of roughly 150 cm−1 experience the greatest degree of

extension while the smallest extensions are reported for the O-O bonds whose anharmonic corrections are

between 29–35 cm−1.

Accurate relative single-point energies at the CCSDT(Q)/CBS level of theory are reported for each of

the rotamers by use of the focal point approach. The lowest energy rotamer is found to be the GG rotamer,

followed by the GT, TG, TT and G′G rotamers repectively. The resulting energies, much like the structures,

are similar. The reported energies suggest that any population of the n-propylperoxy radical would likely

30



Figure 2.3: Newmann projections for the OOCC and OCCC dihedral angels for each ground state rotamer
of the n-propylperoxy radical.
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Table 2.7: Equilibrium bond lengths (re) versus vibrationally averaged bond lengths (rg) at 0 K for each of
the rotamers of the n-propylperoxy radical.

GG GT TG GPG TT

∆E (kcal mol−1) 0.0 0.12 0.44 0.49 0.57

Bond re rg,0K re rg,0K re rg,0K re rg,0K re rg,0K

O2–O1 1.3456 1.3524 1.3459 1.3527 1.3442 1.3508 1.3460 1.3526 1.3449 1.3514

O2–Cα 1.4611 1.4730 1.4578 1.4692 1.4606 1.4725 1.4596 1.4715 1.4583 1.4698

Cα–H1 1.0965 1.1183 1.0982 1.1203 1.0970 1.1189 1.0965 1.1183 1.0977 1.1196

Cα–H2 1.0985 1.1205 1.0973 1.1192 1.0977 1.1196 1.0978 1.1199 1.0977 1.1196

Cα–Cβ 1.5239 1.5347 1.5234 1.5346 1.5227 1.5336 1.5260 1.5369 1.5219 1.5331

Cβ–H3 1.0990 1.1209 1.0986 1.1204 1.1000 1.1219 1.1001 1.1220 1.0994 1.1213

Cβ–H4 1.1008 1.1228 1.0995 1.1214 1.1003 1.1222 1.1014 1.1234 1.0994 1.1213

Cβ–Cγ 1.5350 1.5469 1.5357 1.5475 1.5357 1.5476 1.5348 1.5466 1.5361 1.5478

Cγ–H5 1.0976 1.1192 1.0974 1.1188 1.0974 1.1189 1.0969 1.1184 1.0973 1.1187

Cγ–H6 1.0977 1.1191 1.0992 1.1209 1.0977 1.1192 1.0979 1.1194 1.0991 1.1207

Cγ–H7 1.0996 1.1212 1.0994 1.1210 1.0995 1.1210 1.0988 1.1205 1.0991 1.1207

contain a mixture of all five rotamers. This mixing of energetically close states leads to difficulty in rotamer

specific spectroscopic detection of the n-propylperoxy radical. In light of this, fundamental frequencies have

been reported in order to assist with this difficult spectroscopic interrogation. With a goal of differentiating

the spectra reported for the rotamers, analyses of both the frequencies and intensities of the fundamental

vibrational modes is carried out. It is predicted that the most propitious way to specifically detect a given

rotamer may be to analyze the C-C bond stretching modes, reported in Table 2.1 as ν12 and ν13, occurring

near 1400 cm−1. Even if this rotamer-specific detection is not achieved, advances in spectroscopy may soon be

able to obtain a vibrationally resolved spectrum for the n-propylperoxy radical molecule. The spectroscopic

predictions presented in this paper should aid in the assignment of such spectra.
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2.5 Supplementary Information

2.5.1 gauche-gauche (GG) rotamer

Relative energy: 0.0 kcal mol−1

Molecular point group: C1

Atom x y z

O −1.022188 0.044387 −0.615324

O −1.699747 0.531878 0.440134

C −0.069169 −0.963637 −0.156620

H −0.621764 −1.687479 0.454072

H 0.270570 −1.442645 −1.084930

C 1.088390 −0.331312 0.606541

H 0.681960 0.176785 1.492283

H 1.729505 −1.149731 0.968311

C 1.903747 0.646000 −0.251477

H 2.728086 1.080861 0.328312

H 1.272449 1.466989 −0.615327

H 2.335012 0.136394 −1.125171

Table 2.8: Harmonic (ω), anharmonic correc-
tions (δν), and final fundamental frequencies
(ν) for the gauche-gauche (GG), rotamers for
the n-propylperoxy radical obtained using the
ANO0/CCSD(T) level of theory (cm−1).

GT
Mode ω δν ν

1 3148 −152 2996
2 3144 −147 2997
3 3132 −148 2985
4 3108 −147 2961
5 3077 −124 2954
6 3055 −117 2938
7 3048 −127 29579

8 1514 −43 1471
9 1508 −45 1463
10 1486 −42 1444
11 1484 −40 1444
12 1423 −34 1389
13 1396 −35 1361
14 1374 −34 1340
15 1302 −31 1271
16 1281 −31 1249
17 1187 −30 1156
18 1115 −28 1087
19 1096 −33 1063
20 1051 −16 1035
21 947 −18 930
22 895 −21 874
23 863 −15 848
24 757 −10 747
25 543 −5 538
26 431 −4 427
27 290 −7 283
28 226 −8 218
29 153 −8 145
30 81 −4 77
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2.5.2 gauche-trans (GT) rotamer

Relative energy: 0.12 kcal mol−1

Molecular point group: C1

Atom x y z

O -1.332905 0.483927 -0.275569

O -1.870963 -0.647561 0.215953

C 0.016465 0.648077 0.251031

H 0.275090 1.686783 0.005438

H -0.030652 0.529420 1.340884

C 0.989454 -0.336863 -0.384633

H 0.640853 -1.357027 -0.173464

H 0.974973 -0.200940 -1.475639

C 2.409357 -0.129053 0.162280

H 3.111280 -0.838146 -0.294549

H 2.439123 -0.279186 1.250801

H 2.771950 0.887115 -0.048771

Table 2.9: Harmonic (ω), anharmonic corrections
(δν), and final fundamental frequencies (ν) for the
gauche-trans (GT), rotamers for the n-propylperoxy
radical obtained using the ANO0/CCSD(T) level of
theory (cm−1).

GT
Mode ω δν ν

1 3148 −152 2996
2 3139 −148 2991
3 3128 −148 2980
4 3110 −147 2963
5 3076 −122 2954
6 3062 −10410 2958
7 3045 −7811 2967
8 1517 −44 1473
9 1509 −42 1467
10 1502 −47 1454
11 1487 −42 1445
12 1420 −36 1384
13 1409 −38 1371
14 1327 −30 1296
15 1322 −29 1293
16 1281 −34 1248
17 1200 −29 1171
18 1133 −27 1106
19 1094 −35 1060
20 1056 −27 1028
21 961 −26 935
22 897 −12 885
23 876 −15 861
24 761 −5 757
25 557 −7 550
26 373 −8 365
27 262 0 261
28 241 −14 227
29 122 −9 113
30 102 −4 98
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2.5.3 trans-gauche (TG) rotamer

Relative energy: 0.44 kcal mol−1

Molecular point group: C1

Atom x y z

O -0.888382 -0.294622 -0.347498

O -2.141970 -0.237133 0.134378

C -0.074460 0.743337 0.279912

H -0.514752 1.713538 0.018794

H -0.127727 0.597497 1.366589

C 1.346074 0.593511 -0.247641

H 1.332465 0.688641 -1.343409

H 1.928554 1.443253 0.138747

C 2.001355 -0.731941 0.167321

H 1.435732 -1.588108 -0.221715

H 3.028013 -0.797253 -0.215616

H 2.040897 -0.820754 1.262467

Table 2.10: Harmonic (ω), anharmonic corrections
(δν), and final fundamental frequencies (ν) for the
trans-gauche (TG), rotamers for the n-propylperoxy
radical obtained using the ANO0/CCSD(T) level of
theory (cm−1).

GT
Mode ω δν ν

1 3146 −148 2999
2 3142 −155 2987
3 3132 −147 2985
4 3102 −147 2955
5 3075 −113 2962
6 3054 −113 2941
7 3049 −9012 2959
8 1515 −32 1483
9 1512 −53 1459
10 1501 −44 1457
11 1484 −45 1439
12 1423 −34 1389
13 1404 −42 1362
14 1372 −33 1340
15 1308 46 1354
16 1253 −32 1221
17 1168 −29 1139
18 1133 −27 1106
19 1104 −31 1073
20 1079 −25 1053
21 939 −24 915
22 913 −14 899
23 892 −16 876
24 752 −9 744
25 517 −5 513
26 379 1 380
27 301 −5 295
28 204 −15 189
29 134 −2 132
30 76 −6 69

35



2.5.4 gauche′-gauche (G′G) rotamer

Relative energy: 0.47 kcal mol−1

Molecular point group: C1

Atom x y z

O -1.148334 0.345857 -0.389118

O -1.484118 -0.841571 0.148453

C -0.074306 0.963495 0.382459

H -0.211801 0.669616 1.429861

H -0.243214 2.042403 0.270134

C 1.295472 0.561285 -0.156560

H 1.356756 0.850623 -1.216194

H 2.040772 1.167793 0.381752

C 1.613219 -0.931130 0.009072

H 0.898111 -1.552928 -0.543425

H 2.621049 -1.151417 -0.366668

H 1.568712 -1.227244 1.066320

Table 2.11: Harmonic (ω), anharmonic corrections
(δν), and final fundamental frequencies (ν) for the
gauche-trans (GT), rotamers for the n-propylperoxy
radical obtained using the ANO0/CCSD(T) level of
theory (cm−1).

GT
Mode ω δν ν

1 3152 −152 3001
2 3148 −151 2997
3 3135 −148 2986
4 3096 −146 2949
5 3079 −126 2953
6 3052 −129 295913

7 3045 −114 2931
8 1512 −41 1471
9 1507 −41 1466
10 1483 −39 1443
11 1478 −38 1441
12 1426 −34 1392
13 1395 −38 1357
14 1377 −34 1343
15 1301 −22 1279
16 1282 −32 1250
17 1183 −27 1156
18 1115 −28 1087
19 1098 −34 1064
20 1061 −19 1042
21 932 −25 908
22 919 −14 905
23 844 −18 826
24 769 −9 760
25 525 17 542
26 426 −5 421
27 308 −4 304
28 236 −10 226
29 121 −6 115
30 97 −13 83
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2.5.5 trans-trans (TT) rotamer

Relative energy: 0.57 kcal mol−1

Molecular point group: Cs

Atom x y z

O -1.187097 0.472788 -0.000016

O -2.291325 -0.294882 0.000028

C -0.001656 -0.376569 -0.000034

H -0.040110 -1.010972 0.894891

H -0.040160 -1.011002 -0.894936

C 1.218215 0.533416 0.000001

H 1.183048 1.184488 0.885133

H 1.183058 1.184542 -0.885092

C 2.511501 -0.295357 0.000005

H 3.393351 0.357582 0.000153

H 2.568278 -0.939440 -0.888807

H 2.568251 -0.939472 0.888796

Table 2.12: Harmonic (ω), anharmonic corrections
(δν), and final fundamental frequencies (ν) for the
gauche-trans (GT), rotamers for the n-propylperoxy
radical obtained using the ANO0/CCSD(T) level of
theory (cm−1).

GT
Mode ω δν ν

1 3143 −154 2989
2 3140 −148 2992
3 3128 −149 2979
4 3105 −147 2958
5 3073 −108 2965
6 3060 −9814 2962
7 3046 −7715 2969
8 1520 −43 1477
9 1510 −41 1468
10 1509 −41 1469
11 1500 −49 1451
12 1421 −34 1387
13 1415 −26 1389
14 1328 −29 1299
15 1320 −32 1289
16 1261 −33 1228
17 1171 −30 1141
18 1157 −27 1130
19 1101 −29 1072
20 1064 −29 1035
21 980 −27 953
22 921 −15 906
23 891 −10 881
24 761 −5 756
25 488 −5 483
26 400 −5 394
27 243 −12 231
28 198 −25 173
29 123 −3 120
30 82 −7 75
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2.5.6 Resonances

In each case, the GG and G′G rotamer show two type-1Fermi resonances. In order to resolve these resonances,

contact matrices were constructed between the fundamental frequency and the frequencies of each of the

overtones. The fundamental frequency in each matrix interacts with the overtones via cubic force constants.

The interaction between overtones occurs via Darling-Dennison constants which are quartic force constants

between the overtones. We follow the same analysis as Li, Agarwal, Allen, and Schaefer.44 The analysis for

the GG rotamer is as follows:


ν7 φ7,8,8/4 φ7,9,9/4

φ7,8,8/4 ν8 ∗ 2 K8,8,9,9/2

φ7,9,9/4 K8,8,9,9/2 ν9 ∗ 2

 =


2920.7 24.5123 24.9006

24.5123 2941.3 0.454157

24.9006 0.454157 2926.2


Diagonalizing this matrix gives the following eigenvalues:


2964.1 0 0

0 2932.9 0

0 0 2891.3


The selected eigenvalue (2964 cm−1) reduces the anharmonic correction from –127 cm−1 to –84 cm−1.

The same analysis was applied to the resonances associated with the G′G rotmer.


ν6 φ6,8,8/4 φ6,9,9/4

φ6,8,8/4 ν8 ∗ 2 K8,8,9,9/2

φ6,9,9/4 K8,8,9,9/2 ν9 ∗ 2

 =


2923.1 −24.72 −26.09

−24.72 2941.5 0.9428

−26.09 0.9428 2931.8


Diagonalizing this matrix gives us the following eigenvalues:


2967.3 0 0

0 2935.8 0

0 0 2893.3


The adjusted frequency becomes 2967 cm−1 and the anharmonic correction is reduced from –129 cm−1 to

–88 cm−1
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CHAPTER 3

FUNDAMENTAL VIBRATIONAL ANALYSES OF THE HCN MONOMER, DIMER AND

ASSOCIATED ISOTOPOLOGUES∗

∗Reprinted from P.R. Hoobler, J.M. Turney, J. Agarwal, and H.F. Schaefer, ChemPhysChem, doi:10.1002/cphc.201800728,

with permission from Wiley Publishing
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3.1 Abstract

In this work we provide high level ab initio treatments of the structures, vibrational frequencies, and elec-

tronic energies of the HCN monomer and dimer systems along with several isotopologues. The plethora of

information related to this system within the literature is summarized and serves as a basis for comparison

with the results of this paper. The geometry of the dimer and monomer are reported at the all electron

coupled-cluster singles, doubles, and perturbative triples level of theory [AE-CCSD(T)] with the correla-

tion consistent quadruple-zeta quality basis sets with extra core functions (cc-pCVQZ) from Dunning. The

theoretical geometries and electronic structures are further analyzed through the use of the Natural Bond

Orbital (NBO) method and Natural Resonance Theory (NRT). At the AE-CCSD(T)/cc-pCVQZ level of

theory, the full cubic with semi-diagonal quartic force field for nine dimer and four monomer isotopologues

(the parent isotopologue along with 15N, 13C, and D derivatives) were obtained to treat the anharmonicity

of the vibrations via second order vibrational perturbation theory (VPT2). Lastly, the enthalpy change

associated with the formation of the dimer from two monomer units was determined using the focal point

analysis. Computations including coupled-cluster through perturbative quadruples as well as basis sets up

to six-zeta quality, including core functions (cc-pCVXZ, X=D,T,Q,5,6) were used to extrapolate to the AE-

CCSDT(Q)/CBS energy associated with this hydrogen-bond forming process. After appending anharmonic

zero-point vibrational, relativistic, and diagonal Born–Oppenheimer corrections, we report a value of –3.93

kcal mol−1 for the enthalpy of formation. To our knowledge, each set of results (geometries, vibrational

frequencies, and energetics) reported in this study represents the highest-level and most reliable theoretical

predictions reported for this system.

3.2 Introduction

The study of small, fundamental chemical systems has a rich history within ab initio quantum chemistry.59

The ability to predict small spectroscopic effects with high-accuracy and glean insight into the underlying

chemical behavior attracts chemists, both theoretical and experimental, to investigate systems like the hy-

drogen cyanide (HCN) dimer. The latest studies on the linear dimer system study both its spectroscopy60

and stabilization by complexation with a Lewis acid.61 The monomer has also been of great interest to those

studying pre-biotic chemistry62–66 due to the fact that its reactive polymerization can lead to the formation

of simple amino acids via diaminomaleonitrile,65 a tetramer of HCN.
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The linear chains formed by the hydrogen-bonded polymerization of HCN have been of great interest to

those studying the cooperative effect of hydrogen-bonding interactions on polymeric properties within the

gas phase.67–74 The dielectric constants found in the liquid75 and crystal phases76 of HCN also suggest a

cooperation of interactions between monomer units.

The interaction between monomers gives rise to spectral features that are of interest within this study.

The lowest frequency vibrational modes in the spectrum are degenerate inter-monomer bending modes.

These modes have frequencies measured near 40 cm−1 by gas phase IR.77 Low frequency modes with large

amplitudes are notoriously hard to accurately treat due to the “flatness” of the potential energy surface

associated with these modes. These modes may present a challenge for modern vibrational analysis methods

such as second-order vibrational perturbation theory (VPT2). Also interesting is the coupling of the C–H

stretching modes with the lower frequency modes of the dimer. It is here that a distinction between the

proton donor monomer and the proton acceptor monomer is necessary. In their 1999 study, Nauta and Miller

concluded that the internal (donor monomer) C–H stretch couples more favorably with lower frequency modes

than the external (acceptor monomer) C–H stretch.78 Coupled analysis of these modes is made more difficult

due to the reliance of the internal C–H stretch upon the highly anisotropic inter-monomer interaction.

Prior experimental work on the dimer system includes crystal studies76,79,80 as well as studies of the

dielectric constant of liquid phase HCN.75 Several groups employing microwave spectroscopy81–84 have de-

termined the rotational r0 structure and rotational constants of the parent and substituted isotopologues of

the dimer. Several IR studies, utilizing matrix isolation,85–91 gas phase,60,77,92–97 and super-fluid helium,78

have also added to the wealth of experimental results available for this dimer system. These experimental

findings are complimented by many theoretical studies.67,68,71,80,98–109 The fact that the HCN dimer has been

so well characterized, coupled with the size and symmetry of the system, allows us the opportunity to study

the system at a high level and determine the efficacy of our high-level methods to describe a non-covalently

bound system.

Many microwave studies and rotationally resolved IR studies report values for the rotational constant of

the HCN dimer. The earliest study to report the rotational constant for this dimer system was that of Legon

et al.81 This study reported rotational constants for the isotopically di-substituted dimers for both deuterium

and 15N. This work was closely followed by Brown et al.82 who measured a value for the rotational constant

in agreement with that of Legon et al. Along with the parent isotope, they also investigated the rotational

constant of the di-substituted 15N dimer isotope. From their study they were also able to obtain centrifugal

distortion constants (DJ). Buxton, Campbell, and Flygare83 later measured the rotational spectrum of

the dimer, and reported a rotational constant that was roughly 40 MHz lower than that of the previous

studies for the parent isotope. The Buxton study was able to achieve much colder temperatures110 (<10K)
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for their rotational spectrum leading them to conclude that the previous studies had not measured the

vibrational ground state.83 Along with corrected rotational constants, they reported a reliable r0 structure

for the dimer and isotopically substituted species.83 A later study by Fillery-Travis, Legon, Willoughby,

and Buckingham84 would add rotational constants, centrifugal distortion contants, and nuclear quadrupole

coupling constants for the deuterated, 15N dimer isotopologue. Rotationally resolved IR studies such as that

of Jucks and Miller,77 have reported rotational constants for the vibrational ground state that support the

values measured by Buxton and co-workers.

The most recent study of the dimer system, published by Mihrin and co-workers,60 studied the dimer

via Fourier transform tera-Hz spectroscopy. Utilizing this method, they were able to observe, to a very high

precision, the fundamental vibrational frequency, ν8 which they refer to as the “donor libration” vibrational

mode. This represents the first time that this particular mode has been experimentally observed. In addition

to the high-level experiment, they report theoretical results at the CCSD(T)-F12b/aug-cc-pVQZ level of

theory.

Another recent vibrational study on the dimer system was performed via superfluid helium nanodroplet

infrared spectroscopy. This study, performed by Nauta and Miller in 1999,78 reports a frequency of 3308.07

cm−1 for the acceptor C–H stretch (ν1) as well as a frequency of 3237.57 cm−1 for the donor C–H stretch

(ν2). For the C–N stretching modes, an argon matrix study by Pacansky in 1977 reports frequencies of

2112 and 2093 cm−1 for ν3 and ν4, respectively.86 Pacansky was also able to assign peaks for the degenerate

H-C-N bending for both monomer units. The higher frequency of the bending modes belongs to the bonded

HCN bend while the lower frequency belongs to the free HCN bend. Finally, Jucks and Miller94 were able

to assign the lowest frequency dimer bending mode in their rotational resolved gas-phase IR study.

The goal of this research is to provide a comprehensive, very high level theoretical treatment of the HCN

dimer as an example dealing with a linear polyatomic system that contains important long-range, anisotropic

interactions.

3.2.1 Theoretical Methods

Reference geometries for both the monomer and dimer were optimized using the coupled-cluster singles,

doubles, and perturbative triples [CCSD(T)] level of theory. This level of theory was coupled with the

cc-pCVQZ basis set, a large (396 functions for the dimer and 198 functions for the monomer), quadruple-ζ

basis set that also includes tight functions necessary for describing the core (1s-like) electrons of carbon and

nitrogen in the HCN monomer and dimer. By including the core electrons explicitly within the computations

we obtain AE-CCSD(T)/cc-pCVQZ geometries. This pairing of theory and basis set has been shown to

provide good results for anharmonic analysis of linear systems containing carbon multiple bonds.111,112
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Complimenting these geometry optimizations, natural bond orbital theory along with natural resonance

theory have been used to elucidate meaningful bonding effects relevant to the dimer geometry. This analysis

was done at the B3LYP/cc-pVTZ level of theory within the NBO 5.0113 computational suite with utilization

of natural resonance theory.114–116

Vibrational analysis for the monomer and dimer species along with isotopologues was performed via

VPT2, utilizing full cubic and semi-diagonal quartic force-fields. The equilibrium geometry used for each of

the isotopologues was the AE-CCSD(T)/cc-pCVQZ geometry of the parent. This is valid because without

vibrational averaging, the equilibrium geometry is based upon electronic structure and independent of the

mass of nuclei. In order to compute the semi-diagonal quartic force field, normal coordinates were used, which

are by nature mass-dependent. The result of this was that each istopologue was obtained with a unique set

of displacements. Further analysis testing the effect of removing ν5 and ν9, along with the associated force

constants, from the VPT2 treatment was done using the PYVPT2 program of Agarwal.50

The focalpoint analysis (FPA)14–16,117 was used to accurately determine the enthalpy of formation of

the dimer from two monomer units. Using the aforementioned reference geometries, single point energies

computed with coupled-cluster theory up through perturbative quadruple excitations [CCSDT(Q)], utilizing

Dunning’s core basis sets through six-ζ quality (cc-pCV6Z). Extrapolations to the complete basis set (CBS)

limit were made via Feller’s18 three-point scheme for Hartree–Fock (HF) energies

EHF(X) = E∞HF + ae−bX (3.1)

and Helgaker’s19 two-point extrapolation scheme for correlated methods:

Ecorr(X) = E∞corr + aX−3 (3.2)
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Within single-point energy computations, approximations were accounted for using several well-known

corrections. In order to account for possible non-adiabatic effects the diagonal Born–Oppenheimer correc-

tion was computed at the HF/cc-pCVTZ level of theory. Corrections for the non-relativistic assumption

concerning the wave function were computed using second-order direct perturbation theory of the Dirac

equation (DPT2)118–122 computed at the CCSD(T)/cc-pCVTZ level of theory. The final correction to the

electronic energies was the addition of zero-point vibrational energies. These corrections were based upon the

anharmonic frequencies obtained from the VPT2 treatment previously described. The enthalpy of formation

of the dimer from monomer units was determined as the difference in twice the monomeric enthalpy and

the final enthalpy of the dimer. All optimized geometries, force constants, and single point energies were

obtained using CFOUR 2.0.49

3.3 Results

Figure 3.1: The equlibrium geometry of the HCN monomer and dimer obtained with the AE-CCSD(T)/cc-
pCVQZ level of thoery. All bond lengths labeled in Angstroms.

3.3.1 Geometry

The geometry for the dimer may be compared with previous studies. Buxton and co-workers83 reported a

rotationally determined r0 structure for the dimer with an inter-monomer C· · ·N of 3.2874 Å. By adding the

C-H and N· · ·H distances of our re geometry we can report this distance at 3.2879 Å. This result is closer

to experiment than should be expected when comparing r0 to re structures. However, when paired with the

computed rotational constant at the AE-CCSD(T)/cc-pCVQZ which shows excellent agreement (Table 3.1),

we can be confident that we have the correct structure for the dimer.
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Table 3.1: Rotational constants (MHz) for the HCN dimer and several isotopomers obtained at the AE-
CCSD(T)/cc-pCVQZ level of theory.

Isotopologue Be B0 B0 exp.
HC14N· · ·HC14N 1748.115 1740.547 1745.810a

HC15N· · ·HC15N 1686.742 1679.399 1684.288a

HC15N· · ·HC14N 1732.607 1724.884 1729.921a

HC14N· · ·HC15N 1702.388 1695.337 1700.302a

DC14N· · ·DC14N 1661.720 1657.209 1661.18b

DC15N· · ·DC15N 1605.445 1600.933 1604.495c

DC15N· · ·HC15N 1607.496 1601.122 1605.695c

HC15N· · ·DC15N 1684.941 1679.569 1683.374c

a - Buxton et al.83 b - Georgiou et al.123 c - Fillery-Travis et al.84

Table 3.2: Comparison of the Natural Populations of the C-H σ∗ orbitals within the HCN monomer, and
analogous monomer-like units within the dimer.

σ∗CH Population

Monomer 0.011
Donor HCN 0.023

Acceptor HCN 0.010

It can be seen that the monomer-like fragments of the dimer show some distortion with respect to the

lone monomer. In fact, three of the four bonds within the monomer units show at least a slight lengthening

with the largest such increase occuring in the proton-donor C–H bond. The only bond to contract slightly

is the proton-acceptor C–N triple bond. These results may be viewed in light of the current understanding

of hydrogen-bonding as studied by electronic structure theory. Our NBO-NRT results, discussed below, will

become helpful in resolving these trends.

Comparing the orbital occupations for the monomer and dimer, it may be seen that the electron popu-

lation within the antibonding σ∗CH orbital of the proton donor increases with dimer formation. In fact, the

population more than doubles, going from a natural population of 0.011 in the lone monomer to 0.023 in the

dimer, according to NBO theory. The populations of the σ∗CH orbitals are reported in Table 3.2. The σ∗CH of

the proton acceptor actually sees a slight decrease in population which alone would cause the bond length to

contract. However, this effect is met with a corresponding decrease in population of the σCH orbital. These

effects appear to nearly perfectly cancel out, and the result is a bond length that is only slightly elongated.

The changes to the lengths of the triple bonds present in the dimer can be better understood through this

same NBO analysis. According to the NBO analysis, there are relevant donations from the σ C-N bonding

orbitals into the adjacent σ∗ C-H antibonding orbitals on the same monomer unit. At the same time, NBO

shows a donation from the σ C-H bonding orbitals into the adjacent σ∗ C-N antibonding orbitals. The

combined effect of these donations should lead to a bond stretching. Overall, the outer C-N triple bond

experiences a slight stretching although very slight and is almost unchanged due to dimer formation. The
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Table 3.3: Natural population analysis comparing the HCN monomer and dimer systems.

Atom Natural Charge Core Valence Rydberg Total

HCN Dimer
H 0.231 0.000 0.768 0.001 0.769
C 0.131 1.999 3.840 0.029 5.869
N −0.350 2.000 5.318 0.032 7.350
H 0.240 0.000 0.758 0.002 0.760
C 0.078 1.999 3.891 0.032 5.922
N −0.330 2.000 5.301 0.030 7.330

HCN Monomer
H 0.222 0.000 0.776 0.002 0.778
C 0.078 1.999 3.892 0.031 5.922
N −0.300 2.000 5.271 0.030 7.300

internal C-N triple bond, however, shows a slight contraction, meaning that another effect is overtaking

the loss of bonding and increase in anti-bonding character. This result is likely explained via the natural

population analysis which shows that the nitrogen is becoming more negatively charged while the carbon

becomes more positively charged. These results have been reported in Table 3.3. This favorable shift in

charges most likely results in an attractive electrostatic force which leads to the observed bond contraction.

As noted by a referee, this contraction of the triple bond could also be attributed to changes in the dipole

moment of each of the monomer units. Contraction of the CN bond in the acceptor along with elongation

of the CH bond in the donor increases the dipole moment for each monomer unit. This in turn leads to an

increase in the attractive electrostatic dipole-dipole forces during the formation of the dimer. A recent study

by McDowell124 shows results for related systems that would be consistent with this view.

3.3.2 Fundamental Frequencies

Dimer Frequencies

We report the theoretical vibrational frequencies in Table 3.4 along with frequencies reported from experi-

mental studies for comparison.

VPT2 analysis occasionally experiences issues with Fermi resonance type terms based upon accidental

near degeneracy between fundamentals and vibrational hotbands or strong interactions observed as large

cubic force constants.5 Our results show no Fermi resonances between the modes. This is determined using

the default CFOUR49 cutoffs of 50 cm−1 for the difference between cubic force constants and 80 cm−1

for cubic force constants themselves as indicators of resonances which may have adverse effects upon the

vibrational analysis. Therefore, we are able to report clean results at our level of theory for every mode

present in both the monomer and dimer.
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Table 3.4: Harmonic and anharmonic vibrational frequencies (in cm−1) obtained at the CCSD(T)/cc-pCVQZ
level of theory with comparison to experiment.

AE-CCSD(T)/cc-pCVQZ Expt. Values
Mode Description ω δν ν
ν1(σ) Acc. C–H str 3440 −130 3310 3308.32a,3308.07b

ν2(σ) Don. C–H str 3363 −115 3248 3241.56a,3237.57b

ν3(σ) Acc. C–N str. 2147 −32 2114 2104.6c,2112d

ν4(σ) Don. C–N str. 2127 −27 2100 2094.7c,2093d

ν5(σ) H · · · N str 118 −6 112 101e

ν6(π) Don. HCN bend 814 −41 773 796f

ν7(π) Acc. HCN bend 735 −9 726 733f

ν8(π) (HCN)2 bend 136 −16 120 119.12g

ν9(π) (HCN)2 bend 46 −9 37 40.75a

a - Jucks and Miller77,94 - Gas-phase IR b - Nauta and Miller78 Superfluid He c - Dyke et al.125 Raman
d - Pacansky et al.86 Ar Matrix e - Legon et al.123 Microwave
f - Satoshi et al.126 Ar Matrix g - Mihrin et al.60 THz Radiation

Several gas-phase vibrational frequencies have been reported for the dimer, which are most useful for

comparison with our results. We also include frequencies obtained in liquid helium droplets78 which show

only minor differences from gas-phase values and argon matrix frequencies which show minor differences

from the gas-phase values. Nevertheless, all these values represent high-level experimental work that has

been done on this system, and are thus worthy of discussion.

The gas-phase frequencies reported within two 1988 studies performed by Jucks and Miller77,94 are a

reliable experimental source for comparison with our computed frequencies. It can be seen that the frequen-

cies we report for both the acceptor (3310 cm−1) and donor (3248 cm−1) C–H stretching fundamentals, ν1

and ν2 respectively, show close agreement with the reported gas-phase values (3308.32 and 3241.56 cm−1

for ν1 and ν2 respectively). In particular, the value of the fundamental frequency for ν1 shows remarkable

agreement with the gas-phase experiment. It can be seen that ν2 shows somewhat poorer agreement between

our results and gas-phase experiment than its counterpart. The general difficulty of modeling the modes

involving the hydrogen bond, which is evident throughout our results, will be discussed at the end of this

section.

The same gas-phase studies77,94 reported a value for the intermolecular bending mode as the difference

between the combination band ν1 + ν9 and the hot band originating from a state in which one quantum

of vibrational energy was already present in the ν9 mode. By subtracting the band origins for both of

these transitions, they estimate that the fundamental frequency for ν9 is 40.75 cm−1 which is in satisfactory

agreement with the value of 37 cm−1 that we report for this fundamental within our analysis.

For comparison to the C–N stretching modes (ν3 and ν4) of the dimer, we look to the experiments of

Dyke et al. who observed frequencies for the dimer via coherent anti-Stokes Raman spectroscopy for ν3

47



and infrared spectroscopy for ν4.125 They also obtained frequencies for the deuterated system which we will

discuss later in this paper. The frequencies reported in their study show excellent agreement again with our

computed frequencies although some variance is seen. As with the C–H stretching modes, we see that our

computed fundamental for an external (C–H for the acceptor monomer and C–N for the donor monomer)

vibrational motion (ν4) shows better alignment with experiment than that for the the internal vibrational

motion.

The intermonomer stretch, ν5 was observed as a vibrational satellite in the rotational study of Legon and

coworkers.123 We do see a large percent error, roughly 10% (but only 11 cm−1), between the experimental

frequency and theory. Legon and coworkers do not directly observe the vibrational band but determine

the value based upon a fit to their observed rotational spectrum. Their fit was based upon fixed monomer

geometries which raises some concern given that the monomer units show some distortion upon formation of

the dimer. We find no reason to doubt the efficacy of our theoretical methods based upon this discrepancy,

though further investigation of this mode presents an interesting avenue for future study.

The only dimer bands that have not been assigned in the gas-phase are the analogs of the degenerate

monomer unit bends ν6 and ν7. These bands have been identified via argon matrix isolation.126 It can be

seen that our values differ somewhat from those found in the matrix. Looking at the reported spectrum

of Satoshi and coworkers, it can be seen that the peak at 796 cm−1 is very broad which is not surprising

given that it is the bending modes associated with the proton donor monomer unit. The spectrum shows a

significant tail feature which, if taken into account, would bring the results into much better agreement with

our computed frequencies. The lower peak they report at 733 cm−1 is a much sharper and intense peak. We

see a much smaller difference of 7 cm−1 (< 1% difference) associated with this mode. We conclude that with

the proper considerations, our theoretical frequencies are in acceptable agreement with these experimental

results.

The last mode to be discussed is the most recently observed. Mihrin and coworkers60 very recently

observed the ν8 band via THz spectroscopy utilizing synchrotron radiation. Our value matches to within

one wavenumber and represents an excellent comparison for our VPT2 results.

Mihrin and coworkers60 also did a high-level theoretical workup of the vibrational spectrum of the HCN

dimer species, though they did not go beyond the harmonic approximation. They report frequencies at the

CCSD(T)-F12b explicity correlated level of theory while utilizing an augmented quadruple-ζ quality basis set

(aug-cc-pVQZ). This represents a different, comparable theoretical approach which can lead to worthwhile

discussion, even if restricted to the harmonic level. The augmented functions they use can help describe long

range interactions such as the hydrogen bonding interaction which forms the dimer. Core basis functions,

included in our research, are used with the intention of describing the densely populated multiple bonds

48



within the monomer units themselves. As it is, the theoretical harmonic frequencies reported in both studies

show overall agreement, never differing by more than 10 cm−1. This may mean that quadruple-ζ basis sets

are large enough that they may be reaching the saturation point of basis functions where only very small

effects will be observed by increasing basis set size.

Removal of Low-Frequency Modes

Modes that are difficult to treat at second order of perturbation theory may negatively influence the analysis

for each of the other modes. Low-frequency modes can be problematic for VPT2. Bending modes, in

particular ν9, can be difficult to describe via vibrational perturbation theory. It is worthwhile to determine

the effect of removing these more problematic modes. We have done this analysis for the lowest frequency

modes ν5 and ν9. The analysis was done using the PYVPT2 program of Agarwal.50 It is worth mentioning

that the VPT2 equations and cutoffs for defining resonances used within this program are identical to those

used in CFOUR. The only difference between these results and those in Table 3.4 is the removal of low-lying

modes and their force constants from the VPT2 procedure. In Table 3.5, we present this analysis, completed

for only the parent isotopologue. From the results in Table 3.5, it can be seen that removal of the lowest

frequency modes has some marginal effect on the frequencies observed. The removal of only ν9 appears to

bring our results into the best agreement with the experimental results found in Table 3.4. Although the

agreement for ν1 gets slightly worse, most of the other modes show some sort of marginal improvement. The

most improved mode appears to be ν5, which sees a change of 5 cm−1 with respect to the initial analysis.

This 5 cm−1 change brings the theoretical value closer to experiment by roughly half of the difference found

in Table 3.4. The other π modes show very small changes, with ν6 seeing slight improvement and ν8 seeing

slight detriment with respect to experiment.

Another mode where our results are less than perfectly matched with experiment was that of ν5, which

prompts us to consider it in this analysis. Removal of ν5, the lowest frequency mode of σ symmetry, from

our analysis yields less favorable results than that of ν9. None of the σ modes changes by more than a

wavenumber. The π modes show small corrections with the exception of ν9 which shows a change of 4 cm−1.

This does bring the computed frequency into better agreement with the experimental frequency reported in

Table 3.4. However, the fact that these two modes both show a strong effect on one another, coupled with

the fact that they show the largest percent differences within our original results leads us to examine the

effect of removing both modes from our analysis. The frequencies obtained in this way can be seen in Table

3.5. One can readily see that this has adverse effects upon ν1 but shows mild improvement or has no effect

upon the remaining σ modes.
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Table 3.5: Comparison of fundamental frequencies obtained while removing the lowest frequency modes from
the VPT2 analysis

Modes Removed
No Modes Removed ν9 ν5 ν9,ν5 ν8 ν9,ν8,ν5

Mode ω δν ν δν ν δν ν δν ν δν ν δν ν
1 3440 −130 3310 −135 3305 −130 3310 −136 3304 −132 3308 −136 3304
2 3363 −115 3247 −119 3244 −117 3246 −121 3242 −127 3236 −132 3231
3 2147 −34 2113 −35 2112 −34 2113 −33 2113 −39 2107 −29 2117
4 2127 −28 2099 −32 2094 −28 2099 −32 2094 −44 2083 −27 2100
5 118 −6 112 −11 107 0 118 0 118 −4 114 0 118
6 814 −40 773 −38 775 −39 775 −35 779 −31 782 −25 788
7 735 −9 726 −12 724 −9 726 −11 724 −10 726 −12 723
8 136 −16 120 −19 117 −15 121 −18 118 0 136 0 136
9 46 −11 35 0 46 −7 39 0 46 −21 26 0 46

Monomer Frequencies

The vibrational frequencies for the monomer have been known for much longer than the dimer. Observed in

1956 by Plyler and coworkers,127 the frequencies have been reported in this paper. Their values of 3311.4

cm−1, 2096.61 cm−1 and 711.90 cm−1 agree well with our results shown in Table 3.6. Much like what was

found for the dimer, our results are in best agreement with the C–H stretching mode, ν1(σ). We do very

well with all of the monomer modes showing that our method very effectively treats the monomer. Because

within the dimer we still see very monomer-like behavior, our success with the monomer lends additional

weight to the validity of our dimer results.

We also include vibrational frequencies of three isotopologues in Table 3.6. The effects shown by isotopic

substitution can be seen to be very similar to those in the dimer. The greatest effect can be seen with

deuterium substitution, and though its largest effect can be seen, as expected in the C–D stretch, the C–N

stretch and bending modes also show large shifts of 8% and 20% relative to the frequencies of the parent

isotopologue. Substituting nitrogen-15 has a much smaller effect, which is in line with previous discussion.

The relative change in mass by substitution of deuterium is much larger than the relative change in mass

from nitrogen-15. This in turn has a much larger effect upon the reduced mass associated with each of

the vibrational modes. The larger isotopic shift by deuteration is in contrast with smaller shift caused by

addition of nitrogen-15 that we observe, as expected.

Isotopologues

Given the amount of research that has been produced for the isotopologues of the dimer system, we seek to

provide a comprehensive theoretical set of predictions for comparison with existing experimental data and

for prediction of properties of non-standard isotopologues which have not been studied before. Specifically,
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Table 3.6: Anharmonic vibrational frequencies (in cm−1) of the HCN monomer, parent and associated
isotopologues, obtained at the CCSD(T)/cc-CVQZ level of theory. Experimental frequencies from Plyler et
al.127 are included for comparison with the with the parent isotopologue.

ν1(σ) ν2(σ) ν3(π)
This work 3313 2102 715

Plyler et al. 3311.4 2096.61 711.90
DCN 2632 1930 571

HC15N 3312 2070 715
DC15N 2624 1905 570
H13CN 3295 2069 710

we have chosen to study isotopologues for which rotational constant data exists, but no vibrational frequency

data has been reported. For reference, the rotational results, along with our predicted rotational constants,

can are reported in Table 3.1.

Table 3.7 contains the harmonic and fundamental vibrational frequencies for the parent isotopologue

and each of the relevant non-standard isotopologues. The predictably large shifts in C–H frequencies upon

deuteration provide the most readily apparent trend that can be seen in the results in Table 3.7. This is due

to the combination of the fact that these are the largest frequency modes and the fact that deuteration has

the largest impact on the reduced mass associated with these modes. The opposite argument can be used

to rationalize the computed lack of shifts in the intermonomer hydrogen bond stretching mode.

By suggestion of a referee, we look to an interesting analysis utilized by Buckingham and Fan-Chen128

which explores the difference in energy between hydrogen bonds and deuterium bonds. They’re analysis,

using the frequencies reported by King and Nixon85 they predict DCN· · ·HCN would be energetically favored

over HCN· · ·DCN by 5 cm−1. Using our values for the modes computed here, we find that we agree

qualitatively that the hydrogen-bonded dimer should be energetically favored but only by 3.5cm−1. Despite

the fact that this is a very small energetic difference, the difference between hydrogen and deuterium bonds

represents an interesting area of thought and research.

Upon deuteration and addition of 15N, these modes show very little shift. The low frequency of this mode

and the relatively large reduced mass of these modes mean that the isotopic substitution has very little effect

upon the frequencies. Thus there are no shifts of greater than 4 cm−1 for these modes.
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One of the more interesting results that can be seen is the shifts in the C–N stretching modes due to

deuteration of the monomer unit. The large isotopic shifts, 177 cm−1 for ν3 and 186 cm−1 for ν4, are partly

due to the large frequencies. These shifts represent a shift of less than 10% of the modes of the standard

isotopologue, compared to the 20% isotopic shifts that we see in the C–H stretching frequencies. Though

they are smaller, they speak to the fact that hydrogen/deuterium is involved in the vibrational mode, despite

it being labeled a C–N stretch. Looking at the displacements, the H/D–C moiety behaves as a single entity,

leading to an isotopic shift when each monomer unit is deuterated.

Our results within Table 3.7 also include data for the carbon-13 substituted dimer systems. It can be

seen that the heavier isotope does cause a shift in the C–H stretching modes. This effect is much less

than that of deuteration but is observable with a difference of 17 cm−1 for the acceptor stretch with the

acceptor carbon substituted and 18cm−1 for the donor C–H stretch with the donor carbon substituted with

the heavier isotope. These shifts are roughly 0.5% with respect to the fundamentals of the parent isotope

which is significantly smaller than the effect of deuteration.

The last observation of note regards the degree to which the individual monomer units maintain their

own identity, despite the somewhat strong hydrogen bond between them. It is clear from the results in

Table 3.7 that an isotopic change in one monomer unit has little to no effect on the vibrational frequencies

computed for the other monomer. This is observed unanimously and may be rationalized by the fact that

the electronic structures of the monomer units themselves are not changed much upon dimerization. The

subtle charge transfer effects discussed in the NBO section of this paper, although they lead to an attractive

interaction between the monomers, do not have a large effect on the monomer-like molecular orbitals. In the

end, this means that the normal modes, with the exception of the intermonomer modes, which only exist

upon dimerization, remain monomer-like, as they result from forces on the nuclei which are similar to the

forces felt within the monomers.

3.3.3 Energetics

The results of the focal point analysis of the 2 HCN → (HCN)2 association energy are presented in Table

3.8. It can be seen that the system shows excellent convergence both with regard to correlation and basis

set size. Looking at the purely electronic results, we can use the highest level of correlation [(Q)] with the

cc-pCVTZ basis set increment as a rough estimate in the error of our answer. This gives our electronic

energy at this geometry a rough error estimate of 0.01 kcal mol−1. Given the earlier discussion of the quality

of our geometry, this electronic energy can definitely be considered trustworthy for comparison to other

reported values. The largest correction to the electronic energy is, unsurprisingly, the anharmonic zero-

point vibration energy (AZPVE). The AZPVE correction is positive, thus reducing the computed binding
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Table 3.8: Focal point analysis for the enthalpy of formation of the HCN dimer from two monomer units.

RHF MP2 CCSD CCSD(T) CCSDT CCSDT(Q) ∆Ee
DZ −4.72 −0.78 +0.42 −0.10 +0.02 −0.01 [−5.18]
TZ −4.21 −0.75 +0.29 −0.10 +0.01 −0.01 [−4.77]
QZ −4.14 −0.75 +0.27 −0.11 [+0.01] [−0.01] [−4.73]
5Z −4.11 −0.76 +0.26 −0.12 [+0.01] [−0.01] [−4.71]
6Z −4.10 −0.77 +0.26 −0.12 [+0.01] [−0.01] [−4.72]

CBS LIMIT [−4.10] [−0.79] [+0.27] [−0.12] [+0.01] [−0.01] [−4.74]
∆H0 (AE-CCSDT(Q)/CBS) = ∆Ee[AE-CCSDT(Q)/CBS]

+ ∆EAZPVE[VPT2/AE-CCSD(T)/cc-pCVQZ]
+ ∆rel[DPT2/AE-CCSD(T)/cc-pCVTZ] + ∆DBOC[RHF/cc-pCVTZ]

= −4.74 + 0.80 + 0.01 + 0.00 = −3.93 kcal mol−1

energy. This positive correction is expected due to the fact that the dimer contains additional inter-monomer

vibrational modes not present in each individual monomer unit. By appending this correction we report a

value that is more accurately described as an enthalpy of formation rather than a purely electronic energy.

The other two corrections we use to refine our computations are of a smaller magnitude with only the

relativistic correction from DPT2 appreciably affecting our results.

If we compare our results to those previously obtained via theory and experiment, we expect that our

value of −3.93 kcal mol−1 to be highly reliable. A smaller (in absolute energy) value of −3.4 kcal mol−1 was

reported Kofranek et al.68 The enthalpy was computed at the HF level of theory using a custom double-zeta

quality basis set. The ZPVE correction used was based upon harmonic vibrational frequencies computed

with a smaller custom basis set.

The energy of the hydrogen bond of the dimer has been studied by King and co-workers129 at the MP2/6-

31G* level of theory. Utilizing this method, they report a bond energy of 4.96 kcal mol−1. If we apply our

AZPVE correction of 0.8 kcal mol−1 to their reported bond energy we obtain an enthalpy of bond formation

of 4.16 kcal mol−1 which aligns reasonably well with the results of our focal point analysis.

Experimentally, Buxton and co-workers fit the binding of the dimer to a Leonard-Jones potential using

their observed force constant for the intermolecular stretching mode and equilibrium monomer separation.

Using the depth of their computed potential well, they report a binding energy of 4.4 kcal mol−1 for the

dimer.83 This too, shows fair agreement with our theoretical results. The latest value from Mihrin and

coworkers60 for the energy of dimer formation is a so-called “semi-experimental” result which uses the

CCSD(T)-F12b/aug-cc-pV5Z association energy corrected by the zero-point vibrational energy of exper-

imental frequencies. They also approximate the zero-point energy contributed by ν6 and ν7, for which

gas-phase data is unavailable. They obtain a value of 4.11 kcal mol−1. This is in decent agreement with

our values which include both higher order coupled-cluster corrections and a purely theoretical zero-point

vibrational energy correction which is 0.69 kcal mol−1 larger than their semi-experimental value.
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3.4 Conclusion

We present here a comprehensive theoretical treatment of the HCN monomer, dimer and several isotopo-

logues, many of which allow for direct experimental comparison. This high-level treatment performed at

the CCSD(T)/cc-pCVQZ level of theory should provide excellent results for the dimer geometry. This is

supported through the comparison of experimental rotational constants in Table I. Further investigation of

the dimer geometry was done through the use of NRT as part of NBO analysis. The NBO method reveals

the presence of charge transfer effects from the nitrogen lone pair of the proton acceptor monomer to the

antibonding orbital of the proton donor C–H antibonding orbital. The effects of the transfer lead to the

changes in monomer-like geometries discussed within the geometry section of the paper.

Further, the anharmonic frequencies obtained through VPT2 analysis were compared to existing experi-

mental vibrational frequencies and found to be in good agreement with the existing gas-phase results. For

the two modes where gas-phase data have not been reported, we discuss the effects of solid-argon matrices

upon molecular vibration frequencies. Theoretical comparison was made between our results and those com-

puted recently by Mihrin and coworkers.60 With only subtle differences between the results for the harmonic

frequencies computed in the two studies, it was suggested that the basis sets, in both cases quadruple-ζ

quality, are near basis set saturation. Increasing basis set size will have only marginal effects on the theo-

retical frequencies. This makes our treatment of the anharmonicity in the molecule even more valuable as it

represents fundamental frequencies with a large basis set for the system.

The vibrational section of the paper finished with a discussion of the effects of isotopic substitution on

the vibrational frequencies. Several observed isotopic shifts were rationalized based on the isotopic effect

upon the reduced mass of normal modes. At the end of the analysis, it was determined that the normal

modes remained primarily monomer-like upon formation of the dimer.

The final section of the paper presents the enthalpy of formation of the hydrogen bond determined using

the FPA. The FPA yielded an energy at the AE-CCSDT(Q)/CBS level of theory of 4.74 kcal mol−1. After

appending diagonal Born–Oppenheimer, relativistic and anharmonic ZPVE corrections to our focal point

result, we report a value of 3.93 kcal mol−1 for the enthalpy of formation. This was compared to previous

theoretical and experimental results and found to be in fair agreement..

Overall, this study represents the most comprehensive theoretical study of the HCN dimer system and

provides a discussion of many different relevant molecular effects.
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3.5 Supplementary Information

The cubic and quartic forcefields used for the VPT2 analysis within this paper can be found within the sup-

plementary information found along with the published paper at the following doi:10.1002/cphc.201800728.
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CHAPTER 4

STUDY OF SUBSTITUTION EFFECTS UPON ALUMINYL ANIONS AS CARBENE

ANALOGS∗

∗ P. R. Hoobler, N. Villegas-Escobar, J. M. Turney, and H.F. Schaefer, to be submitted
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4.1 Abstract

In this study, we elucidate substituent effects upon the electronic structure of carbene-like aluminyl anions.

These carbenoid species have been of recent synthetic interest and have been proposed as a pathway to

hydrogen energy storage. We provide high level ab initio geometries and energies for both the methylene-

like aluminyl anion species and several substituted derivatives, including amino-, hydroxy-, fluoro-, cyano-,

isocyano-, and nitro-containing species. The geometries of each species is reported at the CCSD(T)/aug-cc-

pV(T+d)Z level of theory. Energetic analysis of the formation of each of the substituted anions is reported

as the result of two schemes. The first scheme is isodesmic in nature and inspired by recent findings within

the literature. The second scheme is hypohomodesmotic in nature. The energies are further refined through

the use of the focal point approach utilizing coupled cluster methods up to perturbative quadruples and

basis sets through five-zeta quality. The relative energies reported from these schemes are compared to one

another and existing literature. The efficacy of these schemes for determining the relative energies of forming

the aluminyl anion species is discussed. Further insight into the geometries and energies is gained through

the use of natural bond orbital (NBO) anlaysis at the B3LYP/aug-cc-pVDZ level of theory. It is concluded

that electrostatic effects have a large impact upon geometries. Likewise, the ability of substituents to donate

electrons into the empty p-orbital of aluminum has a sizeable impact upon the energies obtained from each

scheme.

4.2 Introduction

Aluminyl anion compounds are carbenoids in that they are divalent with six valence electrons. Often de-

scribed as low-valent, aluminum (I),130–139 compounds, this class of molecules has been an interest to the

chemistry community for quite sometime. Carbenes have a long rich history in both theory and experi-

ment(cite Schaefer and experiment) due to their unique electronic structure and resultant reactivity. Alu-

minum (I) compounds have been synthesized for some time130,131 but the earliest compounds were tetrameric

(Al4X4) and non-carbenoid. The carbenoid compounds of aluminum (I) were not realized until recently.136

The first aluminyl carbenoid species was synthesized in 2000 by Roesky and co-workers. This synthesis of

the monomeric carbenoid, [HC(CMeNAr)2Al]136 was achieved through the use of a very bulky bi-dentate

ligand which formed two Al–N bonds.

The synthesis of nucleophilic aluminyl anion, coordinated with potassium ions has renewed the interest

in this group of compounds. These systems are also known to be significant σ donors which have been

theoretically predicted to have the ability to break H–H bonds and form hydrogenated species.140–146 These

hydrogenated species then may be utilized as a catalyst for further reaction,147–149 or as a form of hydrogen
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storage for use within energy production.150,151 If realized, this form of hydrogen storage could have a

significant impact upon the energy industry. In light of this, it behooves us to gain a greater understanding

of these compounds.

A number of theoretical studies have been undertaken on the arduengo-type aluminyl carbenoids in light

of periodic trends. A paper by Metzler-Nolte152 does an analysis of the boryl and aluminyl analogs of

the simplest arduengo-type carbene. This was added to later by Sundermann, Reiher, and Schoeller who

additionally treated the gallium and indium species.153 Within their study, geometries were obtained at

the B3/6-31G++g(d,p) level of theory, utilizing relativistic effective core potentials for the larger elements

within the series. Their study focused primarily on determining the electron affinity of each of the species,

which they approximated as the difference between singlet/triplet carbene-like electron configurations and the

lowest lying doublet. In general, the electron affinity increased going down the periodic table. They attribute

this to the fact that larger elements within the group were able to donate the electron to the neighboring

electronegative nitrogen atoms. This charge delocalization allows for energetic lowering of the group 13

anions, or an increase in the electron affinity of the neutral doublet. Another interesting finding within the

study was the fact that the bonding between the group 13 metal and the neighboring nitrogens became

significantly more ionic in character going from boron to aluminum. Another study in 2007 by Tuononen

and coworkers154 extended the same analysis to neutral group 14, cations of group 15 and dications of group

16 in addition to the group 13 carbene analogs. Their conclusions, obtained through natural bond orbital

analysis, agree that the bonding between aluminum and the nitrogen ligand were primarily ionic in nature.

Although larger species resembling n-heterocyclic carbenes are now in synthetic use and have been of

interest for some time, the amount of literature on simple carbenoids within the aluminyl anion family is

lacking. With the recent spectroscopic observation of a simple aminocarbene within an argon matrix,155 it is

possible that more interest will be given to these simple systems which represent an outstanding opportunity

for collaboration between theory and experiment. Quantum chemistry has the ability to look at electronic

structure effects on geometries, vibrational frequencies, and energies of these simple carbenoid structures.

There is a rich history of theory being used to study carbenes.59 With proper analysis, species which are

more energetically favored over others may also be predicted, giving guidance to experimentalists looking to

observe these previously unstudied species spectroscopically.

When computing energies of chemical processes, often there is a large separation between the magnitude

of the total energies (large and of no experimental interest) and the energy of processes (relatively small

and of great interest). Modest errors in the total energies computed for a system can even have qualitative

effects upon the interpretation of results. This makes obtaining reactions energies directly of large systems

to chemical or even sub-chemical accuracy (≤1 kcal mol−1) possible only with the most expensive methods,
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which are not viable for many systems of chemical interest. A way to reduce the effect of these errors on

results is to devise a scheme in which errors within similar systems cancel out. One way to achieve this error

cancellation is to ensure that the types of bonds on each side of a model reaction are as similar as possible.

In theory then, all bonds of the same type should incur some systematic error due to the method used.

When total energies are subtracted, these errors cancel out leaving less error in the result. The derivation

of schemes is not all that straight forward, and thus several different schemes have been developed. For

a quality review of different schemes, we recommend the papers by Wheeler and co-workers.156,157 Within

this study, we discuss the use of both the isodesmic and hypohomodesmotic schemes to model the energy

of formation of each carbenoid, each with their own strengths. The goal is to determine with these small,

fundamentally “simple” systems, the efficacy of these schemes in studying carbenoid structures.

Isodesmic reaction schemes158,159 are those that preserve the number of each type of bond. In terms

of hydrocarbons, for which these types of analyses were initially developed, an isodesmic reaction has the

same number of C–H, C–C, C=C, and C≡C bonds within the reactants and products. This allows for

some error cancellation between similar bonds. The more strictly defined hypohomodesmotic reaction takes

the isodesmic methodology a step further. Not only does the number of each type of bond stay the same,

but the hybridization of each central bonding atom must be the same as well. This recognizes that the

bonding environment inside sp3, sp2, and other hybrid orbitals are inherently different. If these differences

are not accounted for in an energetic scheme, desired cancellation of error does not occur as nicely and direct

comparison of energies is not as easily accomplished. Wheeler and co-workers156 developed a hierarchy even

within the definition of homodesomotic that they used to analyze different reactions involving hydrocarbons.

In light of these definitions, we propose to use two different schemes in order to compare the energetic effects

of different aluminyl anion substituents as directly as possible.

The first scheme can be found in the study by Schreiner and Eckhardt,155 they proposed an isodesmic

scheme for comparison of heterocarbenes. Modeled after theirs, we intend to do the following:

ÄlH−2 + [R1 −AlH2 −R2]− → AlH−4 + [R1 − Äl−R2]− (4.1)

This scheme preserves the number of each bond-type all of which are single bonds between aluminum and

hydrogen or aluminum and the two substituents (R1 and R2) one of which may also be a hydrogen. The

shortcoming of this technique is that it does not preserve the orbital hybridization across the aluminum

species. This is because the ground state of the carbene like structure is a singlet that is largely sp2 hybridized

while the aluminum that is tetravalent in each case is sp3 hybridized. This changing of hybridization may itself

affect the energy of Al-Rx bonds causing confusion when it comes to direct comparison as some substituents
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may feel the effect of the change in hybridization more than others. The energetic difference then does not

result purely as a result of the breaking and forming of bonds.

The second scheme seeks to complement the first by using only sp2 hybridized aluminum atoms. Because

aluminum is naturally trivalent, we can change our scheme to the following:

ÄlH−2 + [R1 −AlH−R2]→ AlH3 + [R1 − Äl−R2]− (4.2)

In this way, we avoid the changing of hybridization on each of the central aluminums. The reaction energy

should benefit from as much cancellation of error as possible. However, an astute chemist may also point

out that we are now undergoing a shift in charge between an anion and a neutral species.

Although both schemes have potential shortcomings, they are both worthy of consideration. It may even

be that they are both useful in different situations.

We will also compare these schemes to reactions in which we displace hydrogen or hydride with the

neutral substituent(s) or anion substituent(s) respectively. We call these schemes the neutral replacement

scheme and the anionic replacement scheme.

Results for direct comparison of the isodesmic results are available from the 2007 paper by Tuononen

and coworkers. They predicted the hydrogenation energy of the methylene derivative to be exothermic by

11 kcal mol−1. They also predicted, with an isodesmic scheme, that the hydrogenation of the arduengo type

carbene analog is energetically unfavored by roughly 200 kcal mol−1 compared to the methylene analog.154

They attributed this large energetic difference to the loss of π delocalization between the p-block atom and

neighboring nitrogens as a result of hydrogenation.

The numbers obtained from these two schemes, although not meaningful in and of themselves, provide

a chance to develop an appropriate scheme for the handling of these carbenoid species. Ideally, the best of

these schemes may be applied to larger aluminyl anion species which are being developed synthetically.

4.3 Theoretical Methods

The geometry for each species was obtained at the coupled cluster level of theory including single, double,

and perturbative triple excitations [CCSD(T)] using the augmented correlation-consistent triple-ζ quality

basis set of Dunning17 labeled CCSD(T)/aug-cc-pVTZ. The augmented functions were included to account

for the fact that the majority of our species are anions which require diffuse functions to properly model

the larger electron cloud. In addition to augmentation functions, specific functions were added to the basis

sets used for aluminum to explicitly describe 3d-like contributions to the electronic structure of the species

studied.160 These functions, referred to as tight-d functions have been found to be necessary to allow for
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Figure 4.1: Simple structures of the different species discussed. Species A is the simplest Arduengo-type
carbene. Species B is the simplest carbenoid structure. Species C is the basic structure for the hypohomod-
esmotic energy scheme. Species D is the basic structure for the isodesmic energy scheme.

smooth convergence of relative energies, particularly when extrapolated to the complete basis set limit

for species containing period 4 elements and beyond.161 The geometries were tightly converged upon the

minimum of the potential energy surface. The gradients were converged in each case to RMS ≤10−9. To

confirm that each of these species is a true minimum on the potential energy surface, we performed harmonic

vibrational frequency analysis to confirm that the frequencies are positive.

Focal point analysis14–16,117 (FPA) was used to obtain energies that are highly converged with respect

to both correlation and basis set. Single point energies were computed at the coupled cluster level including

single, double, triple, and perturbative quadruple excitations [CCSDT(Q)]. The correlation-consistent basis

sets of Dunning including augmented functions, up through five-ζ quality (aug-cc-pVXZ, X=D,T,Q,5), in-

cluding tight-d functions for the aluminum, were used to approach the basis set limit. Extrapolations to the

complete basis set were performed for Hartree–Fock energies using the three-point scheme of Feller18:

EHF(X) = E∞HF + ae−bX (4.3)
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These extrapolations were performed with the results utilizing basis sets of TZ, QZ and 5Z quality. The

extrapolations for each correlated method were performed using Helgaker’s two-point extrapolation scheme19:

Ecorr(X) = E∞corr + aX−3 (4.4)

These extrapolations were performed with the results utilizing basis sets of TZ and QZ quality. The electronic

energy was further refined by an additive correction at the CCSDT(Q)/aug-cc-pVDZ level of theory. The

computations through perturbative triples were run using the ECC module of CFOUR where the additive

perturbative quadruples correction was run using the NCC coupled cluster module by Matthews.162 The

result in each case is then an electronic energy that is considered to be of coupled cluster through perturbative

quadruple excitations at the complete basis set quality [CCSDT(Q)/CBS]. All energetic computations were

computed within CFOUR.

Rationale for the observed geometries and energies was gained through the use of natural bond orbital

theory (NBO)113 including the use of natural resonance theory (NRT).114–116 These computations were done

with the NBO 5.0 program as interfaced with Q-Chem163 at the B3LYP/aug-cc-pVDZ level of theory.

4.4 Results

4.4.1 Geometries

Aluminyl Anions

These species mimic the valence electronic structure of carbenes. We only consider the singlet state of each

aluminyl anion species as the triplets are expected to be much higher in energy. The geometrical parameters

that are relevant to each species are reported in Table 4.1. In order to study different bonding effects, the

methylene derivative (R1 = R2 = H) is used as a baseline with deviations from those geometrical parameters,

in particular the R1-Al-R2 bond angle, being of interest. What we can see is that we can divide our species

into two particular groups, one of strong π donors (hydroxy, amino and fluoro aluminyl anions) and one

of weakly π donating (cyano, isocyano, and nitro anions). For those substituents that are π donating, the

bond order between the substituent and the aluminum increases and thus contracts. A good comparison to

observe this trend is the difference in the bond angles for the amino species and the isocyano species.

The bond angle within the monoamino species is nearly the same as in the methylene derivative. Accord-

ing to the NBO results, both the hydrogen as well as the amino nitrogen carry negative charge. The resulting

bond angle is the result of balancing out the repelling negative charges of the nitrogen and hydrogen while

maximizing positive interaction with the positive charge on the aluminum. Within the diamino species, we
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see an increase in the bonding angle, now between two nitrogens bound to the central aluminum. These

nitrogens are more negatively charged than the nitrogen in the monoamino species, with natural charges

of –1.518 and –1.486 respectively. This causes a greater interaction strength between the nitrogens and

aluminum, but also causes repulsion between the two very negatively charged nitrogens within the diamino

case.

Contrasting that case with the isocyano, it can be seen that the isocyano species have a smaller inter-

substituent bond angle than methylene. The same forces at work in the amino case are at work here. The

first thing to notice is the much longer Al–N bonds that are present in the isocyano case. This is due to

the fact that there is much less significant donation from the isocyano compared to the amino group. This

means that the bond is weaker and thus elongated. It is also worth noting that the magnitude of the natural

charge on the nitrogen is smaller in magnitude in the isocyano species (–0.943 and –0.971 in the mono-

and disubstituted species respectively. A repulsion argument can again be used. The bond angle becomes

smaller as the attractive forces of bonding to the aluminum and repulsion of negative natural charges on the

nitrogens even out. Ultimately these arguments are sufficient to explain the trends observed in most of the

species.

Table 4.1: Geometries of simple singlet aluminyl anion species (R1–Al–R2) computed at the CCSD(T)/aug-
cc-pV(T+d)Z level of theory (tight d-functions on aluminum). All bond lengths given in angstrom (Å) and
all bond lengths in degrees.

R1 R2 6 R1–Al–R2 r(Al–R1) r(Al–R2)

H H 95.2 1.689 1.689
H OH(syn) 97.1 1.728 1.799
H OH(anti) 98.4 1.692 1.795

OH(in) OH(in) 103.9 1.797 1.797
OH(in) OH(out) 99.5 1.799 1.784

OH(out) OH(out) 101.2 1.782 1782
H NH2 96.0 1.700 1.859

NH2 NH2 99.4 1.860 1.860
H CN 92.1 1.673 2.093

CN CN 92.0 2.074 2.074
H NC 93.2 1.678 1.969

NC NC 93.0 1.948 1.948
H F 98.6 1.711 1.734
F F 102.0 1.727 1.727

A look at the dihydroxy species will give some interesting insight into other effects present within these

species. The in-in dyhydroxy species suffers from steric repulsion between the hydrogens which are pointed

at one another in the plane. This steric repulsion causes the bond angle between the hydroxy substituents

to widen, resulting in the largest bond angle reported in Table 4.1. The in-out dihydroxy species has a

significantly smaller bond angle than the other two dihydroxy species. One of two things is causing this.
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First, the oxygen-aluminum bond lengths are mismatched, meaning that the intersubstituent bond angle

decreases further than the in-in conformer before repulsion effects between the negatively charged oxygens

takes effect. The other effect that could be occurring would be an attractive force between the positively

charged “in” hydrogen and the negatively charged “out” oxygen. This attractive force would pull the two

substituents together, decreasing the bond angle between them. The out-out conformer undergoes the same

type of forces as that of the amino species. Contracted bond lengths due to increase π interaction of the

lone pairs of oxygen and the empty p-orbital of alumium strengthen and shorten the alumium oxygen bond

and the bond angle between oxygen atoms then increases.

Trivalent aluminyl species

The species for the hypohomodesmotic energy scheme are derived from the neutral AlH3 molecule. The

reference molecule is of D3h symmetry. As such the bond angles are seen as deviating from the “ideal” of

120°. The common geometrical parameters found in each of these species are listed in Table 4.2. In essence,

one could look at these geometries as the addition of a proton (H+) to each of the aluminyl anion species.

This results in a structure where the lone pair of the aluminum atom serves to form an aluminum-hydrogen

bond. Because the hybridization of the aluminum atom does not change, the geometries remain planar

and markedly similar to the aluminyl anion species. The intersubstituent angles become much larger in

these structures. The reason for this being that the lone pair that was previously on the aluminum has

become a bonding pair with a the proton. The lone pair was in the HOMO of the anion species and was

markedly diffuse. This diffuse negative charge forced the other bonding pairs closer together. The electrons

now occupying a much less diffuse bonding orbital allow the intersubstituent angle to increase. Still some

interesting effects are observed within these geometries that can be traced through NBO analysis. The

structures for each of these species can be found in Figure 4.3.

A first observation is the ubiquitous contraction of the aluminum-containing bonds compared to the car-

benoid species. These contractions are roughly 0.01 Åin every case which is very significant. In investigating

the reason for this contraction, one will find that the AlH3 molecule is known to be a “magic cluster”164

whereby the ratio of aluminum to hydrogen has a particularly favorable impact on the electronic structure.

Some work has been done on larger clusters of aluminum and hydrogen to develop rules for this “magic”

effect165 but their equations do not apply to such a small cluster. Typically, these magic clusters come about

because of a closed subshell of orbitals, resulting in strong bonds and good separation between bonding or-

bitals and anti-bonding orbitals. In the case of the purely hydrogentated species in this paper, we find that

the greatest HOMO-LUMO gap exists for the AlH3 species. We report these results, along with the Al–H

stretching frequencies for all three species in Table 4.3. It can be seen that the HOMO-LUMO gap of 12.1 eV
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Table 4.2: Geometries for the hypohomodesmotic analysis of the type R1–AlH–R2 computed at the
CCSD(T)/aug-cc-pV(T+d)Z (tight d-functions on Al) level of theory. All bond lengths given in angstrom
(Å) and all bond lengths in degrees.

R1 R2 6 R1–Al–R2 r(Al–R1) r(Al–R2) r(Al–H)

H H 120.0 1.582 1.582 1.582
H OH 120.1 1.580 1.705 1.573

OH(in) OH(in) 124.4 1.700 1.700 1.562
OH(in) OH(out) 118.4 1.702 1.697 1.568

OH(out) OH(out) 118.8 1.698 1.698 1.574
H NH2 117.8 1.580 1.776 1.580

NH2 NH2 119.9 1.778 1.778 1.577
H CN 117.1 1.569 1.947 1.569

CN CN 115.1 1.929 1.929 1.558
H NC 116.7 1.568 1.818 1.568

NC NC 115.2 1.798 1.798 1.554
H F 117.2 1.572 1.655 1.572
F F 117.7 1.645 1.645 1.556

Table 4.3: Comparison of the HOMO-LUMO gaps, the Al–H stretching frequencies and Al–H bond lengths
in the different substituted carbenoids, alane derivatives and AlH−4 derivatives.

ÄlH−2 AlH3 AlH−4

Substituent Al–H ωAl−H ∆EHOMO−LUMO Al–H ωAl−H ∆EHOMO−LUMO Al–H ωAl−H ∆EHOMO−LUMO

H 1.689 1492 4.44 1.582 1937 12.14 1.645 1729 8.57
OH(syn) 1.728 1342 4.67 1.580 1939 12.34 1.637 1718 8.24
OH(anti) 1.692 1457 4.45 1.573 1969 12.34 - - -

NH2 1.699 1437 4.33 1.580 1946 11.66 1.656 1706 7.79
CN 1.674 1552 5.38 1.569 1998 12.34 1.623 1783 9.39
NC 1.681 1526 5.21 1.568 2002 12.52 1.623 1787 9.16
F 1.709 1392 4.71 1.572 1980 12.59 1.640 1733 8.62

is much higher than the other two species and the accompanying Al–H stretching frequency is much larger.

This is expected as it is known that aluminum prefers to form trivalent compounds. It is worth considering

how this might affect the results of the hypohomodesmotic reaction scheme. It is informative to look at how

substitution affects these values in light of the fact that they are very telling of electronic structure affects

of substitution. Values for all singly-substituted species can be found in Table 4.3.

Within the dihydroxy family of structures we again see that the “in” structure has the largest 6 OAlO.

This is again attributed to the steric repulsion of the hydrogen atoms pointed directly at one another.

Likewise the same reason is to blame for the expansion of the 6 NAlN in the diamino molecule. The steric

repulsion of the in plane hydrogens forces the two substituents apart.

Electrostatic repulsion plays a decisive role in the 6 R1AlR2 reported in Table 4.2. Substituents such as

cyano and isocyano groups are able to form smaller bond angles than hydrogen because they form longer

bonds with the central aluminum atom. These longer bonds allow smaller bond angles without repulsion
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forces dominating. Also, these groups are not bulky like the amino groups meaning that steric repulsion

further away from the central atom does not largely affect the intersubstituent bond angle.

Tetravalent aluminyl species

The species for the isodesmic energy scheme are derivative of alumanuide (AlH−4 ). This species is tetrahedral,

like methane. The bond angles within alumanuide start at the tetrahedral angle (≈ 109.57°). The structures

are inherently different within this group of molecules because the hybridization of the central aluminum

atom has changed from sp2 to sp3. There is no longer an empty p-orbital on the central aluminum which

means that the π donation energy lowering is no longer available. This has an effect of breaking the amino

subsituents out of planarity. The amino species now have an sp3 hybridized central nitrogen atom. The loss

of π donation also has a significant effect on the energies of the amino species which will be discussed below.

As in the case of the hypohomodesmotic structuree, there is a contraction of Al–H bonds compared to

the carbenoid derivative. Looking at the information in Table 4.3 you can see that these structures lie in the

middle between the two sets of HOMO-LUMO gaps. If this lowering of the HOMO relative to the LUMO

prevents as much population in anti-bonding orbitals, it is no surprise to see that bonds are contracting.

Because the hybridization has changed, we see that the planarity of the diamino and dihydroxy groups

has been eliminated. This has distinct effects upon the electronic structure and resulting energies that we

will discuss later. One other effect that this causes is that we now have to consider three separate structures

for the diamino species. We have maintained the naming system that was used for the dihydroxy structures

to avoid confusion. The structures considered here however, do have symmetry. When both amnio groups

are pointed either in or out, the symmetry of the structure is C2v whereas the in-out structure is of Cs

symmetry. Of the three structures considered however, the out-out structure proves to not be a minimum on

the potential energy surface. Analysis of the vibrational frequencies shows one imaginary mode, a symmetry

breaking twisting mode. This mode arises from the fact that the two lone pairs of the amino groups are

pointed directly at one another. The in-in and the in-out conformers do not suffer from this repulsion

interaction and so they are found to be minima.

For similar reasons, the dihydroxy family within the tetravalent species are not minima in any of the

symmetric conformations (in-in, in-out, out-out) that were minima within the hypohomodesmotic scheme.

This is likely due repulsive forces that exist when the hydrogens point toward either each other or toward the

other oxygen. The hybridization of the central aluminum atom forces the bond angles in these structures to

be much tighter. This forces the O–H bonds out of planarity with each other and into a twisted structure

possessing C2 symmetry.
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Table 4.4: Geomtries for the isodesmic analysis of the type R1–AlH2–R2 computed at the CCSD(T)/aug-
cc-pV(T+d)Z (tight d-functions on Al) level of theory. All bond lengths given in angstrom (Å) and all bond
angles in degrees.

R1 R2 6 R1–Al–R2 6 H–Al–H r(Al–R1) r(Al–R2) r(Al–H)

H H 109.5 109.5 1.645 1.645 1.645
H OH 106.9 107.9 1.637 1.794 1.650

OH(twist) OH(twist) 111.5 113.5 1.789 1.789 1.639
H NH2 107.4 108.2 1.656 1.887 1.644

NH2 (in) NH2 (in) 118.2 117.5 1.888 1.888 1.641
H CN 106.5 112.3 1.623 2.043 1.623

CN CN 105.5 115.6 2.019 2.019 1.605
H NC 106.5 112.3 1.623 1.927 1.623

NC NC 104.8 116.1 1.897 1.897 1.603
H F 108.6 110.3 1.640 1.725 1.640
F F 108.2 113.0 1.714 1.714 1.360

Empty p-orbital donation

As with aminocarbene155, we see that all of the amino complexes adopt planar structures which permits the

lone pairs to be in resonance with the empty p-orbital of the aluminum atom within the singlet structure.

This is also supported by the NBO results obtained for these species. In both the divalent and trivalent

aminoaluminyl species their is a large second-order energy within the NBO analysis. These are listed in

Table 4.6. It can be seen that the hydroxyaluminyl anions also have a sizable donation energy into the

empty p-orbital of the aluminum. However, by the smaller value obtained from the NBO analysis, it can

be seen that this effect is much less pronounced than in the aminoaluminyl species. The comparison with

fluroaluminyl anions shows that these compounds have less donation from the fluorine lone pair into the

empty p-orbital of aluminum than the corresponding amino and hydroxy species. This is most likely due to

the high electronegativity of fluorine which makes it much less likely to donate electrons to a neighboring

atoms.

4.4.2 Energetics

Isodesmic Reaction Energies

In this section, we compare the results from modeling the isodesmic reaction scheme found in equation 4.1.

These results can be found in Table 4.6. These results have the advantage that they all of the species within

the scheme carry a negative charge. The effect of the natural diffuseness of the electron cloud in each of

these ions should cancel out allowing us to examine the effect of breaking and forming bonds (or lone pairs)

within a similarly charged electron environment.
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The greatest energetically favored species in the case of the Isodesmic reaction scheme show general

agreement with the results of Eckhardt and Schreiner155, in that the amino and hydroxy groups have the

lowest focal pointed reaction energy. The lowest focal pointed energy belonged to the twist conformation

of the dihydroxy species with an isodesmic reaction energy of −15.83 kcal mol−1. The diamino (in-in) is

nearly isoenergetic within the scheme with an energy of −15.40 kcal mol−1. Although these results agree

qualitatively with those of the Schreiner study, the values we get for the energies of reaction are much smaller.

For the diamino case, they report a stabilization enthalpy of −91.2 kcal mol−1. The values obtained for the

aluminyl anion case are approximately 5.5 times smaller than those for the carbene case. Although the levels

of theory (B3LYP and FPA) for the two sets of results differ, a difference this large must be due to a chemical

reason. One possible cause is that there is a large difference in the energy gaps between the carbene species

(C̈H2 and ÄlH−2 and the methane species (CH4 and AlH−4 ). The energy of this transformation is what needs

to be overcome by the substituted analogs in order for the reaction scheme to give a negative energy. If the

AlH−4 species has a lower relative energy compared to the carbene than methane does to methylene, our

results would have energies much closer to zero.

There is a definite separation between the energies observed for those species with possible unhybridized

p-orbitals and those without. The highest reaction energies were obtained for the cyano and isocyano species,

who have no possibility of having an unhybridized p-orbital on the atom bound to the aluminum. Again

a consideration needs to be made as to what is gained as the substituted reactant forms the substituted

carbenoid product. Those with empty p-orbitals go from an sp3 hybridized center to an sp2 hybridized

center allowing for an energy lowering interaction that was completely unavailable before. The mere sigma

donating substituents do not gain from this energetic stabilization. This perhaps means that this scheme

is biased toward species which have possibly unhybridized p-orbitals. It behooves us in this case to try to

balance out this energetic effect using a scheme that maintains the hybridization of aluminum so that an

entire category of energetic interactions does not appear on only one side of the model reaction.

Hypohomodesmotic Reaction Energies

In this section, we compare the results from modeling the aluminyl anion formation energy within the

hypohomodesmotic reaction scheme found in equation 2. These results benefit from the fact that the hy-

bridization of the central aluminum atoms remains constant throughout the entire reaction. The bonds

broken and formed should be directly comparable as they are formed by the most similar of orbitals. The

results can be found in Table 4.6. Looking at the convergence of the focal point tables within this scheme,

it can be seen that the energies within our scheme are well converged. The incremented focal point tables

show that most of the energies have corrections of less than chemical accuracy (1 kcal mol−1) at CCSD(T)
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and all are converged to that level at CCSDT. Upon observation of the energies obtained by the scheme, the

results are surprising. Given nitrogen’s propensity to donate to the π system of molecules, the planar mono-

and diamino anions should show a significant energetic favorability. Also in question are the results for the

mono-and dihydroxy, and the monofluoro anions. The mono-hydroxy carbenes are nearly isoenergetic within

the scheme and the dihydroxy carbenes show a marked improvement but are favored energetically on a much

lower scale than the cyano, isocyano and nitro anions. Our hypohomodesomotic rankings do not agree with

the results of Schreiner’s isodesmic scheme.155 Where their results favor the amino and hydroxy carbenes,

our hypohomodesmotic scheme shows these aluminyl anions to be the least energetically favored.

NBO analysis can be used to shed some light on this most interesting disagreement. Ultimately, it points

to a potential pitfall of this scheme in that the strongest π donating species benefit from extra energetic

lowering upon the addition of the proton. The proton, being more electronegative than the aluminum actually

draws electrons away from the aluminum, making it increase in positive charge more than the charge of a

single electron. This leaves the aluminum able to accept additional electron density. In the case where the

neighboring atom contains at least one lone pair (N, O, and F), this causes a significant increase in the

donation of electrons to the empty p-orbital of the aluminum. In the mono-substituted anions, one can see

this increase in donation to the empty p-orbital through the NBO results.

The case of amino carbenes is so severe, that additional bonds are formed according to the NBO analysis.

Within the NBO results for the monoamino anion, there is no donation into the empty p-orbital from the

lone pair on the nitrogen. This is because formally, there is a double bond formed between these two centers.

Although this formal double bond is formed in both the anion and once a proton is added, the energy of the

double bond NBO’s decreases significantly. This decrease in the energy of the bonding orbitals causes and

energetic lowering of the reactant side of our scheme. This in turn causes the interesting results observed

for the schemes within the energy. For the diamino case, the trivalent aluminum complex forms a 3-center,

4-electron “hyberbond” which is not present within the diamino anion. This “hyperbond” essentially shows

the degree to which π delocalization occurs within this species. Again this energetic lowering of the products

results in a positive energy within the hypohomodesmotic scheme. Although interesting, the near equal

energies between the mono- and diamino energies appears to be merely coincidental.

In the evaluation of the hypohomodesmotic scheme for determining comparable energies for the system

at hand, perhaps more work needs to be done. Although it is true that the scheme does not appear to

treat the amino, hydroxy, and fluoro species consistently with the weakly π donating species, it may still

be useful for determining relative stability of either strong or weak π donating species. It appears that

the cyano, isocyano and nitro species are able to be compared directly as they all give energies that are

somewhat similar. Particularly encouraging within the cyano results is that dicyano energy is roughly twice
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Table 4.5: A comparison of the energies (in kcal mol−1) obtained from the hypohomodesmotic, isodesmic,
direct-anion, and direct-neutral energy schemes obtained through Focal Point Analysis. Complete focal point
results can be found in Tables 4.7 – 4.50.

Species Isodesmic Hypohomodesmotic Anion Replacement Neutral Replacement
OH −6.61 −0.70 −22.00 −47.38

(OH)2 −15.83 −7.78 −48.95 −99.70
NH2 −8.99 +3.68 −22.48 −22.66

(NH2)2 −15.40 +3.71 −45.03 −45.40
CN −0.81 −20.38 +15.20 −56.40

(CN)2 −2.31 −40.43 +33.99 −109.20
NC −1.18 −18.34 +15.95 −55.64

(NC)2 −4.60 −38.87 +32.58 −110.60
F −3.16 −5.37 −17.85 −80.03
F2 −10.92 −19.48 −43.71 −168.07

the magnitude of the monocyano species. In the case of weakly π donating species, it appears to treat

different species consistently. However, it is not recommended to use this scheme where the species span

a wide range of π donating ability, thereby limiting its scope. An area of further study would be to test

this scheme upon a set of molecules containing only Arduengo type aluminyl anions. These species contain

aromatic stabilization by inclusion of the empty p-orbital which is an extreme version of π donation. It is

possible that this scheme is able to treat a collection of only these types of species with consistency.

Comparison to Replacement Energetic Analyses

In Table 4.5, we have reported the focal-point energies for the two energetic schemes studied in this paper

with the computation of the energy of formation of each aluminyl anion species as replacements of hydrogen

and hydride with the substituent species. One can see that the reaction energies vary considerably between

schemes used. The individual performances by substituent groups can vary in the relative order as well.

Take for example the dicyano species. In the anion replacement computations, the dicyano species shows

the least favorable energy, with products predicted to be less stable than the reactants by nearly 34 kcal

mol−1. However, in the neutral replacement computations, we see that it is favored by over 100 kcal mol−1.

This apparent discrepancy points out the inherent bias that is present in these replacement schemes, related

to the electron affinity of the bare substituents. In the cyano family of species, has a large electron affinity.

The neutral radical species as it replaces the hydrogen atom, takes on a large amount of electron density. In

the case of the anion replacing hydride, the cyano group is forced to donate electron density in order to form

a bond to the aluminum. This can be seen in the natural charges on each atom in the neutral and anionic

substituents with the natural populations in the cyanoaluminyl anion. The charge on the nitrogen, as the

most electronegative atom, is quite telling in this case. The charge on the nitrogen is −0.423 in the neutral
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Table 4.6: The E(2) energies from the natural bond orbital analysis donation into the lone pair and final
CCSDT(Q)/CBS energies (in kcal mol−1) from energy schemes

R1 R2 Carbene-Derivative Hypohomodesmotic Hypo en
H OH(syn) 14.05 19.79 −0.14
H OH(anti) 14.35 19.79 −0.70

OH(in) OH(in) 11.37 17.42 −5.20
OH(in) OH(out) 11.48,12.28 17.38,17.69 −7.21

OH(out) OH(out) 12.33 17.61 −7.78
H NH2 – – +3.68

NH2 NH2 15.29 17.78 +3.71
H F 10.62 15.41 −5.37
F F 9.12 13.73 −19.48
H CN 2.09 4.69 −20.38

CN CN 2.06 4.88 −40.43
H NC 3.30 7.50 −18.34

NC NC 2.95 7.48 −38.87
H NO2 – – −32.63

substituent, −0.787 in the anionic subsitutent, and −0.543 in the cyanoaluminyl anion species. The shift is

even more exaggerated in the dicyano case where the natural charge on each nitrogen is −0.502, which is

almost the same as in the neutral. This shift in the electron density either toward the nitrogen (in the case

of the neutral replacement) or away from the nitrogen (in the case of the anion replacement) explains the

large shift in both the cyano and isocyano families.

The hydroxy-, amino- and fluoro-substituted species see the opposite effect occuring. These species

are the most energetically lowered by formation of bonds between anionic versions and have the greatest

negative energies for the anionic replacement calculations. This is again because of the electron density that

is donated between these species and the empty p-orbital on the aluminum. This is why a stark contrast

between these species and the cyano- and isocyanoaluminyl anions within the anion replacement energy

scheme. Although these atoms are highly electronegative, they are able to take advantage of greater bonding

within the carbenoid structures than the cyano and isocyano species.

4.5 Conclusion

We have shown that the geometries of all three types (carbenoid, AlH3-like and AlH−4 -like can be explained

through simple bonding concepts such as electrostatics, sterics and orbital occupations.

The isodesmic and hypohomodesmotic schemes used to determine the relative formation energies of the

different carbenoid species were evaluated using focal point analysis. The isodesmic scheme largely favored

the strongly π donating species. This is due to the fact that the tetravalent species could not possibly

benefit from a delocalized π system because of hybridization. This large change in the bonding structure
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Figure 4.2: Geometries of the carbenoid aluminyl anion species
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Figure 4.3: Geometries of the species used for hypohomodesmotic energy scheme
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Figure 4.4: Geometries of the species used for isodesmic energy scheme.
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of molecules in turn leads to a bias within the energetic scheme that lowers the energy of the substituted

product somewhat artificially compared to the substituted reactant.

The hypohomodesmotic scheme maintains the hybridization of the central aluminum atom however un-

dergoes a change in charge between the substituted trivalent reactant and product carbenoid. The added

proton within the reactant was shown to draw electron density away from the central aluminum, leading

to an increase in the π delocalization within the neutral reactant species. This has the largest effect upon

those species which are strongly π donating and thus the reaction energies were shown to increase. In the

case of the amino group, both the mono- and diamino groups were shown to prefer the reactants including

the non-substituted carbenoid species. This is an answer that defies logic and is shown to be a weakness of

the scheme. The scheme may be useful however in cases where the π donating ability of all structures being

studied is roughly equivalent.

The anion replacement energy scheme was shown to favor the same species that were favored in the

isodesmic scheme. Just like in the isodesmic case, it can be concluded that the strength of the π interaction

exhibited in the amino-, hydroxy- and fluoro species lowers the reaction energy to favor the products. The

cyano and isocyano anions have a high electrophilicity which leads to a positive reaction energy in the anion

replacement scheme. The neutral replacement scheme for these species shows a large preference for the

products. This is because of the increase in electron density on the CN moiety as the neutral forms a bond

with the anionic aluminum.

Given the widely varying results obtained by each energetic scheme, it is difficult to conclude that any of

them is better than the others. It is a good suggestion to understand the bias that is present in the scheme

chosen.
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4.6 Focal Point Tables

Table 4.7: Incremented focal point talbe for the amino isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −7.62 −1.95 +1.28 −0.48 +0.04 −0.08 [−8.81]
aug-cc-pVTZ −7.91 −1.70 +1.26 −0.49 [+0.04] [−0.08] [−8.87]
aug-cc-pVQZ −8.00 −1.69 +1.23 −0.49 [+0.04] [−0.08] [−8.98]
aug-cc-pV5Z −8.00 [−1.69] [+1.22] [−0.49] [+0.04] [−0.08] [−8.99]
CBS LIMIT [−7.99] [−1.68] [+1.21] [−0.49] [+0.04] [−0.08] [−8.99]

Table 4.8: Incremented focal point talbe for the diamino (in−in) isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −13.68 −2.65 +2.31 −0.67 +0.09 −0.11 [−14.73]
aug-cc-pVTZ −14.22 −2.26 +2.22 −0.70 [+0.09] [−0.11] [−14.98]
aug-cc-pVQZ −14.43 −2.29 +2.13 −0.70 [+0.09] [−0.11] [−15.31]
aug-cc-pV5Z −14.44 [−2.30] [+2.10] [−0.70] [+0.09] [−0.11] [−15.36]
CBS LIMIT [−14.44] [−2.31] [+2.07] [−0.70] [+0.09] [−0.11] [−15.40]

Table 4.9: Incremented focal point talbe for the Hydroxy isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −5.04 −2.29 +1.08 −0.54 +0.04 −0.07 [−6.82]
aug-cc-pVTZ −4.93 −2.17 +1.13 −0.55 [+0.04] [−0.07] [−6.55]
aug-cc-pVQZ −5.02 −2.14 +1.12 −0.56 [+0.04] [−0.07] [−6.63]
aug-cc-pV5Z −5.03 [−2.13] [+1.12] [−0.56] [+0.04] [−0.07] [−6.62]
CBS LIMIT [−5.02] [−2.12] [+1.12] [−0.57] [+0.04] [−0.07] [−6.61]
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Table 4.10: Incremented focal point talbe for the dihydroxy (twist) isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −12.66 −4.70 +2.38 −1.05 +0.10 −0.14 [−16.08]
aug-cc-pVTZ −12.46 −4.51 +2.46 −1.10 [+0.10] [−0.14] [−15.66]
aug-cc-pVQZ −12.63 −4.45 +2.42 −1.13 [+0.10] [−0.14] [−15.83]
aug-cc-pV5Z −12.63 [−4.43] [+2.41] [−1.13] [+0.10] [−0.14] [−15.84]
CBS LIMIT [−12.62] [−4.41] [+2.39] [−1.14] [+0.10] [−0.14] [−15.83]

Table 4.11: Incremented focal point talbe for the Cyano isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ +0.29 −1.57 +0.35 −0.33 +0.05 −0.07 [−1.27]
aug-cc-pVTZ +0.45 −1.49 +0.48 −0.33 [+0.05] [−0.07] [−0.90]
aug-cc-pVQZ +0.48 −1.43 +0.46 −0.33 [+0.05] [−0.07] [−0.84]
aug-cc-pV5Z +0.48 [−1.41] [+0.45] [−0.33] [+0.05] [−0.07] [−0.82]
CBS LIMIT [+0.48] [−1.39] [+0.45] [−0.33] [+0.05] [−0.07] [−0.81]

Table 4.12: Incremented focal point talbe for the Dicyano isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −0.40 −2.90 +0.84 −0.64 +0.11 −0.13 [−3.11]
aug-cc-pVTZ −0.07 −2.81 +1.04 −0.64 [+0.11] [−0.13] [−2.50]
aug-cc-pVQZ −0.06 −2.68 +1.02 −0.65 [+0.11] [−0.13] [−2.39]
aug-cc-pV5Z −0.05 [−2.63] [+1.01] [−0.65] [+0.11] [−0.13] [−2.35]
CBS LIMIT [−0.04] [−2.59] [+1.00] [−0.65] [+0.11] [−0.13] [−2.31]

Table 4.13: Incremented focal point talbe for the Isocyano isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −0.26 −1.54 +0.33 −0.33 +0.09 −0.06 [−1.78]
aug-cc-pVTZ +0.14 −1.51 +0.43 −0.33 [+0.09] [−0.06] [−1.25]
aug-cc-pVQZ +0.14 −1.46 +0.42 −0.33 [+0.09] [−0.06] [−1.21]
aug-cc-pV5Z +0.14 [−1.44] [+0.41] [−0.33] [+0.09] [−0.06] [−1.19]
CBS LIMIT [+0.15] [−1.42] [+0.41] [−0.33] [+0.09] [−0.06] [−1.18]

Table 4.14: Incremented focal point talbe for the diisocyano isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −3.13 −3.22 +0.99 −0.67 +0.18 −0.13 [−5.98]
aug-cc-pVTZ −2.07 −3.23 +1.16 −0.67 [+0.18] [−0.13] [−4.77]
aug-cc-pVQZ −2.09 −3.11 +1.14 −0.68 [+0.18] [−0.13] [−4.69]
aug-cc-pV5Z −2.08 [−3.06] [+1.13] [−0.68] [+0.18] [−0.13] [−4.65]
CBS LIMIT [−2.08] [−3.01] [+1.12] [−0.69] [+0.18] [−0.13] [−4.60]

Table 4.15: Incremented focal point talbe for the luoro isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −2.12 −1.36 +0.39 −0.26 +0.04 −0.02 [−3.32]
aug-cc-pVTZ −1.98 −1.28 +0.44 −0.28 [+0.04] [−0.02] [−3.07]
aug-cc-pVQZ −2.08 −1.25 +0.43 −0.29 [+0.04] [−0.02] [−3.17]
aug-cc-pV5Z −2.08 [−1.24] [+0.43] [−0.29] [+0.04] [−0.02] [−3.16]
CBS LIMIT [−2.08] [−1.23] [+0.42] [−0.30] [+0.04] [−0.02] [−3.16]
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Table 4.16: Incremented focal point table for the difluoro isodesmic reaction energy

Basis Set RHF +d MP2 +d CCSD +d CCSD(T) +d CCSDT +d CCSDT(Q) NET
aug-cc-pVDZ −8.52 −3.46 +1.30 −0.61 +0.09 −0.04 [−11.23]
aug-cc-pVTZ −8.08 −3.36 +1.41 −0.69 [+0.09] [−0.04] [−10.68]
aug-cc-pVQZ −8.28 −3.33 +1.37 −0.72 [+0.09] [−0.04] [−10.92]
aug-cc-pV5Z −8.28 [−3.31] [+1.35] [−0.73] [+0.09] [−0.04] [−10.92]
CBS LIMIT [−8.26] [−3.30] [+1.34] [−0.74] [+0.09] [−0.04] [−10.92]

Table 4.17: Incremented focal point table for the amino hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +4.42 −2.63 +1.63 −0.56 +0.10 −0.07 [+2.90]
aug-cc-pVTZ +4.91 −2.55 +1.62 −0.53 [+0.10] [−0.07] [+3.48]
aug-cc-pVQZ +4.87 −2.42 +1.61 −0.52 [+0.10] [−0.07] [+3.57]
aug-cc-pV5Z +4.89 [−2.38] [+1.60] [−0.52] [+0.10] [−0.07] [+3.62]
CBS LIMIT [+4.90] [−2.34] [+1.60] [−0.51] [+0.10] [−0.07] [+3.68]

Table 4.18: Incremented focal point table for the diamino hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +5.93 −6.07 +3.10 −1.24 +0.17 −0.14 [+1.74]
aug-cc-pVTZ +7.10 −5.80 +3.19 −1.22 [+0.17] [−0.14] [+3.29]
aug-cc-pVQZ +7.01 −5.51 +3.15 −1.20 [+0.17] [−0.14] [+3.47]
aug-cc-pV5Z +7.04 [−5.41] [+3.14] [−1.20] [+0.17] [−0.14] [+3.59]
CBS LIMIT [+7.06] [−5.31] [+3.13] [−1.19] [+0.17] [−0.14] [+3.71]

Table 4.19: Incremented focal point table for the hydroxy (syn) hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET

Table 4.20: Incremented focal point table for the hydroxy (anti) hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −0.06 −2.51 +1.32 −0.50 +0.10 −0.07 [−1.72]
aug-cc-pVTZ +0.77 −2.48 +1.36 −0.49 [+0.10] [−0.07] [−0.81]
aug-cc-pVQZ +0.74 −2.43 +1.37 −0.49 [+0.10] [−0.07] [−0.78]
aug-cc-pV5Z +0.76 [−2.41] [+1.37] [−0.49] [+0.10] [−0.07] [−0.74]
CBS LIMIT [+0.77] [−2.38] [+1.37] [−0.49] [+0.10] [−0.07] [−0.70]

Table 4.21: Incremented focal point table for the dihydroxy (in−in) hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −3.20 −5.90 +2.54 −1.06 +0.18 −0.12 [−7.57]
aug-cc-pVTZ −1.26 −5.82 +2.64 −1.09 [+0.18] [−0.12] [−5.47]
aug-cc-pVQZ −1.30 −5.65 +2.62 −1.10 [+0.18] [−0.12] [−5.38]
aug-cc-pV5Z −1.25 [−5.59] [+2.61] [−1.10] [+0.18] [−0.12] [−5.28]
CBS LIMIT [−1.21] [−5.53] [+2.60] [−1.11] [+0.18] [−0.12] [−5.20]
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Table 4.22: Incremented focal point table for the dihydroxy (in−out) hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −5.44 −5.71 +2.63 −1.03 +0.18 −0.12 [−9.50]
aug-cc-pVTZ −3.50 −5.67 +2.73 −1.06 [+0.18] [−0.12] [−7.45]
aug-cc-pVQZ −3.53 −5.53 +2.71 −1.07 [+0.18] [−0.12] [−7.37]
aug-cc-pV5Z −3.48 [−5.49] [+2.71] [−1.08] [+0.18] [−0.12] [−7.28]
CBS LIMIT [−3.45] [−5.44] [+2.70] [−1.08] [+0.18] [−0.12] [−7.21]

Table 4.23: Incremented focal point table for the dihydroxy (out−out) hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −5.74 −5.85 +2.81 −1.12 +0.17 −0.14 [−9.87]
aug-cc-pVTZ −4.04 −5.75 +2.91 −1.15 [+0.17] [−0.14] [−8.00]
aug-cc-pVQZ −4.10 −5.61 +2.89 −1.16 [+0.17] [−0.14] [−7.94]
aug-cc-pV5Z −4.06 [−5.56] [+2.89] [−1.16] [+0.17] [−0.14] [−7.86]
CBS LIMIT [−4.02] [−5.51] [+2.88] [−1.16] [+0.17] [−0.14] [−7.78]

Table 4.24: Incremented focal point table for the cyano hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −21.43 +0.34 +0.18 −0.16 +0.07 +0.02 [−20.99]
aug-cc-pVTZ −20.95 +0.27 +0.21 −0.08 [+0.07] [+0.02] [−20.45]
aug-cc-pVQZ −20.93 +0.32 +0.18 −0.06 [+0.07] [+0.02] [−20.41]
aug-cc-pV5Z −20.92 [+0.33] [+0.16] [−0.06] [+0.07] [+0.02] [−20.39]
CBS LIMIT [−20.91] [+0.35] [+0.15] [−0.05] [+0.07] [+0.02] [−20.38]

Table 4.25: Incremented focal point table for the dicyano hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −42.75 +1.02 +0.36 −0.20 +0.12 +0.06 [−41.39]
aug-cc-pVTZ −41.91 +0.82 +0.40 −0.05 [+0.12] [+0.06] [−40.56]
aug-cc-pVQZ −41.91 +0.93 +0.32 −0.02 [+0.12] [+0.06] [−40.50]
aug-cc-pV5Z −41.89 [+0.97] [+0.29] [−0.01] [+0.12] [+0.06] [−40.46]
CBS LIMIT [−41.87] [+1.01] [+0.26] [−0.01] [+0.12] [+0.06] [−40.43]

Table 4.26: Incremented focal point table for the isocyano hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −16.35 −4.95 +1.96 −0.40 +0.21 −0.18 [−19.71]
aug-cc-pVTZ −14.99 −5.22 +2.10 −0.42 [+0.21] [−0.18] [−18.50]
aug-cc-pVQZ −14.99 −5.16 +2.13 −0.42 [+0.21] [−0.18] [−18.42]
aug-cc-pV5Z −14.99 [−5.14] [+2.14] [−0.43] [+0.21] [−0.18] [−18.38]
CBS LIMIT [−14.98] [−5.12] [+2.15] [−0.43] [+0.21] [−0.18] [−18.34]

Table 4.27: Incremented focal point table for the diisocyano hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −35.26 −9.96 +4.09 −0.78 +0.40 −0.34 [−41.85]
aug-cc-pVTZ −32.33 −10.46 +4.37 −0.84 [+0.40] [−0.34] [−39.20]
aug-cc-pVQZ −32.37 −10.30 +4.41 −0.86 [+0.40] [−0.34] [−39.06]
aug-cc-pV5Z −32.34 [−10.25] [+4.43] [−0.86] [+0.40] [−0.34] [−38.96]
CBS LIMIT [−32.32] [−10.19] [+4.44] [−0.86] [+0.40] [−0.34] [−38.87]
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Table 4.28: Incremented focal point table for the fluoro hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −6.17 −0.60 +0.50 −0.08 +0.09 −0.00 [−6.27]
aug-cc-pVTZ −5.24 −0.64 +0.51 −0.08 [+0.09] [−0.00] [−5.37]
aug-cc-pVQZ −5.23 −0.66 +0.50 −0.09 [+0.09] [−0.00] [−5.38]
aug-cc-pV5Z −5.21 [−0.66] [+0.50] [−0.09] [+0.09] [−0.00] [−5.37]
CBS LIMIT [−5.21] [−0.67] [+0.50] [−0.09] [+0.09] [−0.00] [−5.37]

Table 4.29: Incremented focal point table for the difluoro hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −20.29 −2.33 +1.45 −0.35 +0.17 −0.02 [−21.36]
aug-cc-pVTZ −18.12 −2.48 +1.47 −0.42 [+0.17] [−0.02] [−19.39]
aug-cc-pVQZ −18.08 −2.53 +1.44 −0.44 [+0.17] [−0.02] [−19.45]
aug-cc-pV5Z −18.05 [−2.55] [+1.43] [−0.45] [+0.17] [−0.02] [−19.46]
CBS LIMIT [−18.03] [−2.57] [+1.42] [−0.46] [+0.17] [−0.02] [−19.48]

Table 4.30: Incremented focal point table for the nitro hypohomodesmotic reaction energy.

Basis Set RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −36.10 +3.08 −1.14 +0.43 +0.08 +0.12 [−33.53]
aug-cc-pVTZ −35.22 +3.01 −1.05 +0.54 [+0.08] [+0.12] [−32.53]
aug-cc-pVQZ −35.22 +2.99 −1.11 +0.56 [+0.08] [+0.12] [−32.58]

aug−aug-cc-pV5Z −35.22 [+2.98] [−1.13] [+0.57] [+0.08] [+0.12] [−32.61]
CBS LIMIT [−35.22] [+2.97] [−1.15] [+0.58] [+0.08] [+0.12] [−32.63]
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Table 4.31: Incremented focal point table for the direct formation of the hydroxy aluminyl anion from
hydroxide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −25.27 +7.84 −4.00 +0.76 +0.23 +0.12 [−20.32]
aug-cc-pVTZ −27.48 +8.65 −4.21 +1.15 [+0.23] [+0.12] [−21.55]
aug-cc-pVQZ −27.94 +8.83 −4.47 +1.26 [+0.23] [+0.12] [−21.97]
aug-cc-pV5Z −27.99 [+8.89] [−4.56] [+1.29] [+0.23] [+0.12] [−22.02]
CBS LIMIT [−27.99] [+8.96] [−4.66] [+1.33] [+0.23] [+0.12] [−22.00]

Table 4.32: Incremented focal point table for the direct formation of the dihydroxy aluminyl anion from
hydroxide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −55.02 +15.67 −8.03 +1.53 +0.43 +0.25 [−45.16]
aug-cc-pVTZ −59.66 +17.22 −8.56 +2.30 [+0.43] [+0.25] [−48.02]
aug-cc-pVQZ −60.50 +17.57 −9.09 +2.50 [+0.43] [+0.25] [−48.84]
aug-cc-pV5Z −60.62 [+17.70] [−9.28] [+2.57] [+0.43] [+0.25] [−48.95]
CBS LIMIT [−60.63] [+17.83] [−9.48] [+2.65] [+0.43] [+0.25] [−48.95]

Table 4.33: Incremented focal point table for the direct formation of the amino aluminyl anion from amide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −24.96 +6.09 −2.97 +0.76 +0.18 +0.08 [−20.81]
aug-cc-pVTZ −27.30 +7.11 −3.38 +1.05 [+0.18] [+0.08] [−22.25]
aug-cc-pVQZ −27.40 +7.21 −3.65 +1.13 [+0.18] [+0.08] [−22.44]
aug-cc-pV5Z −27.39 [+7.25] [−3.75] [+1.16] [+0.18] [+0.08] [−22.46]
CBS LIMIT [−27.38] [+7.29] [−3.86] [+1.20] [+0.18] [+0.08] [−22.48]

Table 4.34: Incremented focal point table for the direct formation of the diamino aluminyl anion from amide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −50.26 +12.54 −6.16 +1.62 +0.35 +0.20 [−41.71]
aug-cc-pVTZ −54.67 +14.46 −7.03 +2.17 [+0.35] [+0.20] [−44.53]
aug-cc-pVQZ −54.86 +14.65 −7.60 +2.34 [+0.35] [+0.20] [−44.92]
aug-cc-pV5Z −54.85 [+14.72] [−7.80] [+2.40] [+0.35] [+0.20] [−44.98]
CBS LIMIT [−54.83] [+14.80] [−8.01] [+2.47] [+0.35] [+0.20] [−45.03]

Table 4.35: Incremented focal point table for the direct formation of the cyano aluminyl anion from cyanide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +18.93 −2.20 −1.29 −0.01 +0.20 −0.12 [+15.51]
aug-cc-pVTZ +17.57 −1.52 −1.21 +0.08 [+0.20] [−0.12] [+15.01]
aug-cc-pVQZ +17.71 −1.41 −1.26 +0.09 [+0.20] [−0.12] [+15.21]
aug-cc-pV5Z +17.67 [−1.38] [−1.27] [+0.09] [+0.20] [−0.12] [+15.20]
CBS LIMIT [+17.65] [−1.34] [−1.29] [+0.09] [+0.20] [−0.12] [+15.20]

Table 4.36: Incremented focal point table for the direct formation of the dicyano aluminyl anion from cyanide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +41.85 −5.15 −2.29 −0.04 +0.39 −0.25 [+34.51]
aug-cc-pVTZ +39.17 −3.74 −2.18 +0.12 [+0.39] [−0.25] [+33.51]
aug-cc-pVQZ +39.42 −3.48 −2.25 +0.13 [+0.39] [−0.25] [+33.97]
aug-cc-pV5Z +39.36 [−3.38] [−2.28] [+0.13] [+0.39] [−0.25] [+33.97]
CBS LIMIT [+39.30] [−3.29] [−2.30] [+0.14] [+0.39] [−0.25] [+33.99]
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Table 4.37: Incremented focal point table for the direct formation of the isocyano aluminyl anion from
cyanide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +16.79 +2.12 −2.77 +0.26 +0.18 +0.07 [+16.64]
aug-cc-pVTZ +14.72 +3.14 −2.72 +0.42 [+0.18] [+0.07] [+15.82]
aug-cc-pVQZ +14.77 +3.30 −2.83 +0.46 [+0.18] [+0.07] [+15.94]
aug-cc-pV5Z +14.74 [+3.36] [−2.87] [+0.47] [+0.18] [+0.07] [+15.94]
CBS LIMIT [+14.72] [+3.41] [−2.91] [+0.48] [+0.18] [+0.07] [+15.95]

Table 4.38: Incremented focal point table for the direct formation of the diisocyano aluminyl anion from
cyanide.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ +33.49 +5.20 −5.76 +0.57 +0.29 +0.19 [+33.97]
aug-cc-pVTZ +29.32 +7.33 −5.76 +0.91 [+0.29] [+0.19] [+32.29]
aug-cc-pVQZ +29.42 +7.67 −5.99 +0.97 [+0.29] [+0.19] [+32.56]
aug-cc-pV5Z +29.36 [+7.79] [−6.07] [+1.00] [+0.29] [+0.19] [+32.56]
CBS LIMIT [+29.32] [+7.92] [−6.15] [+1.02] [+0.29] [+0.19] [+32.58]

Table 4.39: Incremented focal point table for the direct formation of the fluoro aluminyl anion from fluoride.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −20.51 +7.34 −4.17 +0.75 +0.27 +0.09 [−16.22]
aug-cc-pVTZ −22.58 +8.02 −4.19 +1.17 [+0.27] [+0.09] [−17.22]
aug-cc-pVQZ −23.50 +8.30 −4.41 +1.29 [+0.27] [+0.09] [−17.95]
aug-cc-pV5Z −23.57 [+8.40] [−4.49] [+1.34] [+0.27] [+0.09] [−17.96]
CBS LIMIT [−23.53] [+8.50] [−4.57] [+1.39] [+0.27] [+0.09] [−17.85]

Table 4.40: Incremented focal point table for the direct formation of the difluoro aluminyl anion from fluoride.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −47.95 +13.64 −8.06 +1.34 +0.52 +0.16 [−40.35]
aug-cc-pVTZ −52.10 +15.02 −8.14 +2.15 [+0.52] [+0.16] [−42.40]
aug-cc-pVQZ −53.94 +15.57 −8.60 +2.39 [+0.52] [+0.16] [−43.91]
aug-cc-pV5Z −54.08 [+15.77] [−8.77] [+2.48] [+0.52] [+0.16] [−43.93]
CBS LIMIT [−53.99] [+15.98] [−8.94] [+2.57] [+0.52] [+0.16] [−43.71]
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Table 4.41: Incremented focal point table for the direct formation of the hydroxy aluminyl anion from
hydroxyl radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −28.25 −26.07 +13.79 −2.17 +0.27 −0.30 [−42.74]
aug-cc-pVTZ −29.17 −27.24 +14.16 −2.93 [+0.27] [−0.30] [−45.21]
aug-cc-pVQZ −29.46 −28.06 +14.02 −3.07 [+0.27] [−0.30] [−46.61]
aug-cc-pV5Z −29.46 [−28.35] [+13.97] [−3.12] [+0.27] [−0.30] [−46.99]
CBS LIMIT [−29.43] [−28.65] [+13.92] [−3.17] [+0.27] [−0.30] [−47.38]

Table 4.42: Incremented focal point table for the direct formation of the dihydroxy aluminyl anion from
hydroxyl radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −60.99 −52.14 +27.55 −4.33 +0.50 −0.58 [−90.00]
aug-cc-pVTZ −63.03 −54.55 +28.20 −5.87 [+0.50] [−0.58] [−95.34]
aug-cc-pVQZ −63.56 −56.20 +27.89 −6.16 [+0.50] [−0.58] [−98.11]
aug-cc-pV5Z −63.56 [−56.78] [+27.78] [−6.26] [+0.50] [−0.58] [−98.91]
CBS LIMIT [−63.51] [−57.40] [+27.66] [−6.37] [+0.50] [−0.58] [−99.70]

Table 4.43: Incremented focal point table for the direct formation of the amino aluminyl anion from aminyl
radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −8.71 −19.93 +12.32 −2.17 +0.28 −0.26 [−18.46]
aug-cc-pVTZ −10.20 −20.61 +12.34 −2.72 [+0.28] [−0.26] [−21.18]
aug-cc-pVQZ −10.23 −21.24 +12.21 −2.83 [+0.28] [−0.26] [−22.06]
aug-cc-pV5Z −10.21 [−21.46] [+12.17] [−2.86] [+0.28] [−0.26] [−22.35]
CBS LIMIT [−10.20] [−21.69] [+12.12] [−2.90] [+0.28] [−0.26] [−22.66]

Table 4.44: Incremented focal point table for the direct formation of the diamino aluminyl anion from aminyl
radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −16.91 −39.50 +24.43 −4.25 +0.54 −0.49 [−36.18]
aug-cc-pVTZ −20.25 −40.99 +24.40 −5.37 [+0.54] [−0.49] [−42.16]
aug-cc-pVQZ −20.45 −42.25 +24.13 −5.58 [+0.54] [−0.49] [−44.09]
aug-cc-pV5Z −20.49 [−42.69] [+24.04] [−5.65] [+0.54] [−0.49] [−44.74]
CBS LIMIT [−20.49] [−43.17] [+23.94] [−5.73] [+0.54] [−0.49] [−45.40]

Table 4.45: Incremented focal point table for the direct formation of the cyano aluminyl anion from cyano
radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −55.69 −27.68 +28.77 −0.79 +1.75 +0.23 [−53.41]
aug-cc-pVTZ −56.23 −30.06 +29.46 −0.69 [+1.75] [+0.23] [−55.54]
aug-cc-pVQZ −55.86 −31.17 +29.81 −0.66 [+1.75] [+0.23] [−55.89]
aug-cc-pV5Z −55.83 [−31.57] [+29.94] [−0.64] [+1.75] [+0.23] [−56.12]
CBS LIMIT [−55.84] [−31.99] [+30.07] [−0.63] [+1.75] [+0.23] [−56.40]
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Table 4.46: Incremented focal point table for the direct formation of the dicyano aluminyl anion from cyano
radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −107.39 −56.10 +57.83 −1.61 +3.50 +0.45 [−103.33]
aug-cc-pVTZ −108.44 −60.82 +59.15 −1.42 [+3.50] [+0.45] [−107.57]
aug-cc-pVQZ −107.71 −63.00 +59.88 −1.35 [+3.50] [+0.45] [−108.23]
aug-cc-pV5Z −107.65 [−63.77] [+60.14] [−1.33] [+3.50] [+0.45] [−108.67]
CBS LIMIT [−107.66] [−64.59] [+60.41] [−1.31] [+3.50] [+0.45] [−109.20]

Table 4.47: Incremented focal point table for the direct formation of the isocyano aluminyl anion from cyano
radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −57.84 −23.36 +27.29 −0.52 +1.73 +0.42 [−52.28]
aug-cc-pVTZ −59.08 −25.40 +27.95 −0.34 [+1.73] [+0.42] [−54.72]
aug-cc-pVQZ −58.80 −26.46 +28.24 −0.29 [+1.73] [+0.42] [−55.16]
aug-cc-pV5Z −58.76 [−26.84] [+28.34] [−0.26] [+1.73] [+0.42] [−55.38]
CBS LIMIT [−58.76] [−27.24] [+28.45] [−0.24] [+1.73] [+0.42] [−55.64]

Table 4.48: Incremented focal point table for the direct formation of the diisocyano aluminyl anion from
cyano radical.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −115.76 −45.75 +54.36 −1.00 +3.39 +0.89 [−103.87]
aug-cc-pVTZ −118.29 −49.75 +55.57 −0.62 [+3.39] [+0.89] [−108.80]
aug-cc-pVQZ −117.71 −51.85 +56.14 −0.51 [+3.39] [+0.89] [−109.64]
aug-cc-pV5Z −117.65 [−52.60] [+56.35] [−0.47] [+3.39] [+0.89] [−110.08]
CBS LIMIT [−117.64] [−53.38] [+56.56] [−0.43] [+3.39] [+0.89] [−110.60]

Table 4.49: Incremented focal point table for the direct formation of the fluoro aluminyl anion from fluorine.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −58.00 −28.98 +13.01 −1.52 +0.20 −0.20 [−75.49]
aug-cc-pVTZ −57.79 −30.61 +13.74 −2.51 [+0.20] [−0.20] [−77.18]
aug-cc-pVQZ −58.33 −31.71 +13.56 −2.68 [+0.20] [−0.20] [−79.17]
aug-cc-pV5Z −58.26 [−32.11] [+13.50] [−2.74] [+0.20] [−0.20] [−79.60]
CBS LIMIT [−58.14] [−32.52] [+13.43] [−2.80] [+0.20] [−0.20] [−80.03]

Table 4.50: Incremented focal point table for the direct formation of the difluoro aluminyl anion from fluorine.

RHF +δ MP2 +δ CCSD +δ CCSD(T) +δ CCSDT +δ CCSDT(Q) NET
aug-cc-pVDZ −122.94 −59.00 +26.31 −3.21 +0.37 −0.42 [−158.89]
aug-cc-pVTZ −122.51 −62.26 +27.72 −5.21 [+0.37] [−0.42] [−162.31]
aug-cc-pVQZ −123.62 −64.46 +27.34 −5.55 [+0.37] [−0.42] [−166.34]
aug-cc-pV5Z −123.46 [−65.24] [+27.20] [−5.67] [+0.37] [−0.42] [−167.22]
CBS LIMIT [−123.22] [−66.06] [+27.06] [−5.80] [+0.37] [−0.42] [−168.07]
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4.7 Harmonic Frequencies

See Fig. 4.2-4.4 for the structures of the molecules.

All frequencies reported were computed at the

CCSD(T)/aug-cc-pV(T+d)Z level of theory.

4.7.1 ÄlH−2 Derivatives

Table 4.51: ÄlH−2

Harmonic Frequencies
Mode ω

1 1492
2 1481
3 802

Table 4.52: Hydroxy (anti)

Harmonic Frequencies
Mode ω

1 3862
2 1457
3 783
4 650
5 597
6 482

Table 4.53: Hydroxy (syn)

Harmonic Frequencies
Mode ω

1 3850
2 1342
3 786
4 644
5 548
6 482

Table 4.54: Dihydroxy(in-in)

HARMONIC FREQUENCIES
Mode ω

1 3789
2 3787
3 737
4 650
5 611
6 568
7 351
8 253
9 160

Table 4.55: Dihydroxy(in-out)

Harmonic Frequencies
Mode ω

1 3853
2 3794
3 737
4 698
5 661
6 626
7 403
8 328
9 229

Table 4.56: Dihydroxy (out-out)

Harmonic Frequencies
Mode ω

1 3855
2 3851
3 738
4 709
5 660
6 638
7 361
8 315
9 237
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Table 4.57: Amino

Harmonic Frequencies
Mode ω

1 3613
2 3510
3 1552
4 1437
5 737
6 647
7 558
8 498
9 307

Table 4.58: Diamino

Harmonic Frequencies
Mode ω

1 3608
2 3608
3 3481
4 3475
5 1557
6 1539
7 656
8 651
9 614
10 527
11 418
12 253
13 214
14 190
15 57

Table 4.59: Cyano

Harmonic Frequencies
Mode ω

1 2124
2 1552
3 666
4 383
5 238
6 205

Table 4.60: Dicyano

Harmonic Frequencies
Mode ω

1 2139
2 2138
3 452
4 412
5 335
6 242
7 205
8 194
9 91

Table 4.61: Isocyano

Harmonic Frequencies
Mode ω

1 2078
2 1526
3 677
4 419
5 199
6 162
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Table 4.62: Diisocyano

Harmonic Frequencies
Mode ω

1 2086
2 2081
3 470
4 442
5 302
6 188
7 156
8 146
9 96

Table 4.63: Fluoro

Harmonic Frequencies
Mode ω

1 1392
2 651
3 640

Table 4.64: Difluoro

Harmonic Frequencies
Mode ω

1 669
2 637
3 250
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4.7.2 AlH3 Derivatives

Table 4.65: AlH3

Harmonic Frequencies
Mode ω

1 1936
2 1936
3 1933
4 794
5 794
6 712

Table 4.66: Hydroxy

Harmonic Frequencies
Mode ω

1 3926
2 1968
3 1938
4 859
5 771
6 668
7 628
8 493
9 435

Table 4.67: Dihydroxy (in-in)

Harmonic Frequencies
Mode ω

1 3943
2 3941
3 2011
4 909
5 804
6 675
7 607
8 543
9 522
10 356
11 310
12 246

Table 4.68: Dihydroxy (in-out

Harmonic Frequencies
Mode ω

1 3937
2 3929
3 1988
4 923
5 795
6 688
7 625
8 571
9 516
10 376
11 343
12 235

Table 4.69: Dihydroxy (out-out)

Harmonic Frequencies
Mode ω

1 3940
2 3939
3 1961
4 938
5 780
6 693
7 628
8 535
9 511
10 364
11 308
12 245

Table 4.70: Amino

Harmonic Frequencies
Mode ω

1 3663
2 3573
3 1945
4 1941
5 1582
6 829
7 753
8 728
9 616
10 495
11 442
12 423
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Table 4.71: Diamino

Harmonic Frequencies
Mode ω

1 3668
2 3667
3 3580
4 3580
5 1955
6 1586
7 1577
8 876
9 770
10 713
11 671
12 543
13 513
14 381
15 356
16 354
17 272
18 199

Table 4.72: Cyano

Harmonic Frequencies
Mode ω

1 2193
2 1998
3 1984
4 774
5 618
6 546
7 541
8 205
9 198

Table 4.73: Dicyano

Harmonic Frequencies
Mode ω

1 2199
2 2198
3 2037
4 673
5 592
6 522
7 492
8 337
9 213
10 199
11 186
12 86

Table 4.74: Isocyano

Harmonic Frequencies
Mode ω

1 2093
2 2002
3 1986
4 779
5 625
6 618
7 552
8 151
9 137

Table 4.75: Diisocyano

Harmonic Frequencies
Mode ω

1 2098
2 2085
3 2052
4 720
5 639
6 597
7 495
8 282
9 148
10 133
11 127
12 81
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Table 4.76: Fluoro

Harmonic Frequencies
Mode ω

1 1980
2 1971
3 845
4 769
5 636
6 553

Table 4.77: Difluoro

Harmonic Frequencies
Mode ω

1 2036
2 926
3 781
4 656
5 503
6 264
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4.7.3 AlH−4 Derivatives

Table 4.78: AlH−4

Harmonic Frequencies
Mode ω

1 1729
2 1639
3 1639
4 1639
5 778
6 778
7 778
8 758
9 758

Table 4.79: Hydroxy

Harmonic Frequencies
Mode ω

1 3885
2 1718
3 1643
4 1608
5 816
6 798
7 772
8 724
9 660
10 568
11 527
12 70

Table 4.80: Dihydroxy (twist)

Harmonic Frequencies
Mode ω

1 3879
2 3879
3 1712
4 1656
5 790
6 770
7 759
8 714
9 682
10 641
11 587
12 481
13 299
14 181
15 134

Table 4.81: Amino

Harmonic Frequencies
Mode ω

1 3563
2 3480
3 1706
4 1645
5 1597
6 1562
7 807
8 799
9 758
10 743
11 627
12 573
13 489
14 388
15 117
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Table 4.82: Diamino

Harmonic Frequencies
Mode ω

1 3549
2 3549
3 3469
4 3468
5 1699
6 1661
7 1562
8 1561
9 780
10 755
11 738
12 734
13 646
14 597
15 574
16 481
17 413
18 387
19 234
20 202
21 95

Table 4.83: Cyano

Harmonic Frequencies
Mode ω

1 2163
2 1784
3 1731
4 1731
5 779
6 773
7 773
8 552
9 552
10 438
11 234
12 234

Table 4.84: Dicyano

Harmonic Frequencies
Mode ω

1 2175
2 2175
3 1837
4 1811
5 772
6 715
7 570
8 527
9 482
10 460
11 336
12 241
13 237
14 220
15 90

Table 4.85: Isocyano

Harmonic Frequencies
Mode ω

1 2114
2 1787
3 1731
4 1731
5 791
6 780
7 780
8 560
9 560
10 479
11 187
12 187
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Table 4.86: Diisocyano

Harmonic Frequencies
Mode ω

1 2120
2 2114
3 1846
4 1817
5 783
6 737
7 568
8 548
9 529
10 505
11 279
12 182
13 180
14 175
15 92

Table 4.87: Fluoro

Harmonic Frequencies
Mode ω

1 1733
2 1652
3 1652
4 818
5 783
6 783
7 671
8 569
9 569

Table 4.88: Diflouro

Harmonic Frequencies
Mode ω

1 1748
2 1686
3 799
4 789
5 699
6 665
7 571
8 568
9 250
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CHAPTER 5

CONCLUSION

The dissertation presented here began with a review of methods and analyses used within computational

quantum chemistry, with an emphasis on those used to obtain results in the studies presented. The following

chapters presented the results for three studies that show the capabilities of methods to elucidate properties

of chemical systems.

In Chapter 2, the results for the computation of relative energies of the rotamers of the n-propylperoxy

radical were reported. Although these results had been obtained by lower-level method, we were able to

refine the literature upon these relative energies. Energies were reported at the CCSDT(Q)/CBS level of

theory Our results agreed with previous literature that the gauche-gauce conformer was the lowest in energy.

The nearly isoenergetic gauche-trans was found to be only 0.12 kcal mol−1 higher in energy than the lowest

energy conformer. The highest energy rotamer, the trans-trans rotamer, was reported to have a relative

energy of only 0.57 kcal mol−1 at the CCSDT(Q)/CBS level with corrections added. It was discussed how

the anharmonic zero-point vibrational energy served to separate the rotamers by the greatest amount of any

of the corrections that were added during the focal point analysis. It was discussed how the rotamers would

be very hard to distinguish spectroscopically due to their very similar vibrational frequencies. It was posited

that the best way to differentiate the rotamers via vibration was to use the frequencies of the C–C stretching

vibrations in conjunction with the accompanying harmonic intensities in order to accomplish rotamer specific

detection.

In addition to vibrational frequencies, VPT2 methods were utilized to obtain the vibrationally averaged

structures of the rotamers. Although all bonds showed a lengthening due to vibrations, it was found that

the C–H bonds showed the largest increase in length. This was attributed to the fact that the hydrogen

atoms are much lighter than the other atoms in the system and undergo larger amplitude motions. The

larger amplitude motions are more affected by the anharmonicity of the associated potential energy surface

causing the vibrational averaging to have the largest effect upon these bond lengths.
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In Chapter 3, the linear, hydrogen-bonding hydrogen cyanide (HCN) dimer was investigated. The geome-

try for the dimer and monomer were computed at the CCSD(T)/cc-pCVQZ level of theory. These geometries

were analyzed using Natural Bond Orbital (NBO) analysis. The monomer units within the dimer showed

modest distortion. The largest difference was the C–H bond of the proton donor monomer extending from

1.0655 Å to 1.0718 Å. NBO analysis showed an increase in the population of the σ∗ anti-bonding orbital

of the monomer C–H. Other changes in bond lengths were attributed to electrostatics and smaller electron

donation effects.

Another set of results reported within this study is the set of anharmonic frequencies for the parent

isotopologue. The parent has been well studied and it was found that the fundamental frequencies reported

agreed well with literature. The agreement between the C–H stretches computed an the literature values

was particularly good although, better than can be typically attributed to the method used. The worst

agreement with experiment was reported for the inter-monomer stretch which for which theory overestimated

the fundamental frequency by roughly 10%. Our results were compared to recent harmonic theoretical

results and found to be comparable though distinct due to the fact that our frequencies were corrected for

anharmonicity. The effect of removing certain modes from the VPT2 analysis was observed to see if it would

yield improvement in the fundamental frequencies compared to experiment. In particular, it was shown

that removing ν5 and ν9 individually from the VPT2 anlaysis led to improvement of the other compared to

experiment, but had deleterious effects upon the other modes.

Fundamental frequencies for substituted isotopologues were reported in Table 3.7. The frequencies were

all computed using VPT2 at the CCSD(T)/cc-pCVQZ level of theory. The isotopic effects upon the computed

frequncies was explained to be the result of changes in the reduced mass of vibrational modes. The largest

changes in frequencies occured upon deuteration because this substitution led to the greatest change in

reduced mass of modes.

Finally, the energy of the formation of the dimer was reported to be –3.93 kcal mol−1. The pure electronic

energy was well converged at the CBS/CCSDT(Q) using FPA. The resulting energy was shown to be in good

agreement with recent calculations60 as well as experiments.

Chapter 4 dealt with the carbenoid system known as the aluminyl anion. Related systems have been re-

ported to have the ability to activate strong sigma bonds such as H–H bonds.140–146 Within this dissertation,

simpler forms of the carbenoid were studied in order to better understand the electronic effect of different

substituents to the aluminyl anion. The geometries of all systems included in the chapter were computed at

the aug-cc-pV(T+d)Z level of theory. The augmented functions were necessitated by the diffuse electronic

cloud characteristic of anionic species. The geometries were further interrogated through the use of NBO

anlaysis. The relatively non-electronegative aluminum nucleus within each species is shown to have a positive
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natural charge due to the fact that each substituent studied here is more electronegative. The electrostatic

attraction between the aluminum and the neighboring atoms had a distinct impact on the observed bond

lengths and angles between substitutents. These geometries are reported in Tables 4.1, 4.2, and 4.4.

Another large section of the chapter was spent discussing two schemes for determining the relative energies

of formations of substituted aluminyl anions. The first scheme was isodesmic in nature and yielded similar

results as a similar scheme from the recent literature.155 The other scheme, hypohomodesmotic in nature,

showed vastly different results for the energies of formation for substituted aluminyl anions. The reasons for

this discrepency were discussed within the paper and attributed mostly to the treatment of π delocalization

effects.
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[134] Purath, A.; Dohmeier, C.; Ecker, A.; Schnöckel, H.; Amelunxen, K.; Passler, T.; Wiberg, N.

Organometallics 1998, 17, 1894–1896.

[135] Sitzmann, H.; Lappert, M. F.; Dohmeier, C.; Üffing, C.; Schnöckel, H. J. Organomet. Chem. 1998,
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