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Abstract

Key foundational components of Big Data frameworks include efficient large-scale storage

and high-performance linear algebra. We discuss efficient implementations that utilize com-

pression techniques inspired by columnar relational databases for improving space and time

profiles for vector and matrix operations. In addition, linear algebra operations are inte-

grated with columnar relational algebra operations both in dense and compressed forms.

For several of the operations substantial speedups are obtained by operating directly on the

compressed relations, vectors and matrices. Advantages of mixing and matching relational

and linear algebra operations are also pointed out. Both serial and parallel implementations

are provided in the ScalaTion Big Data Analytics Framework.
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Chapter 1

Introduction

Data is growing at a rapid rate and there is an increasing demand for efficient storage

and faster analytics. Due to this ever-increasing amount of data, big data frameworks are

exploiting parallel and distributed processing and integration of databases with computa-

tional frameworks as well as novel approaches to data storage and computational algorithms.

Compression techniques used in columnar relational databases have been used to speed up

Online Analytical Processing (OLAP) operations. In this paper, we extend this work to more

advanced operations on vectors and matrices.

Data compression can be very helpful in meeting these goals. The obvious advantage of

compression is the savings in storage space. Besides that, it can also be used to improve an-

alytical performance. In traditional disk-based systems where disk I/O performance has been

a pinch point, compression is used to reduce the size of data traveling to and from disk and

improve the overall performance of the system. However, the availability of a large amount

of main memory at low prices has paved the way for in-memory platforms to do analytics.

Here the data are stored in main memory, and disk is used for persistence and recovery.

Thus the disk I/O performance is less of a concern for modern in-memory systems. In these

platforms, compression techniques are used in in-memory to reduce the memory footprint

and also to speed up performance by operating directly on compressed data.

Compression is widely used by big data platforms that adopt a column-wise approach

to store data on disk or memory [1, 2, 3, 4, 5]. It results in efficient compression because in

general there is greater repetition in columns than in rows. Some queries when working on

huge data sets require the output to only contain a few columns. In these kinds of queries,
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row-wise storage exhibits poor performance. Since the data are stored in rows, all the columns

have to be read but it is not the case with column storage.

Once data is compressed, we need to take into account the time spent on decompressing

during the execution of the query. This approach tends to exhibit poor performance as

decompression can take a substantial amount of time when the data sets are huge. However,

with certain compression techniques, we can operate directly on compressed data without

having to decompress [1]. This leads to a performance gain as executing analytical workloads

directly on compressed data will be faster compared to that of raw data, since the size of

data in contention is lesser. Run length encoding and dictionary encoding are examples of

such compression techniques.

Compression further improves the performance as it exhibits better cache utilization.

Cache is a small memory area that lies between the processors and main memory. It stores

data that are frequently accessed from main memory. Good utilization of cache memory

can help improve performance. Fetching data from the cache is faster than that from main

memory. The data requested is first checked to see if it is available in the cache. If data is

not present in the cache, it is fetched from main memory (cache miss). The performance of

in-memory algorithms tends to be better with fewer cache misses. With compression, more

content is packed in each cache line which reduces the number of cache misses. The same is

illustrated in [3].

Previously only certain types of analytics (mainly descriptive) were performed on top of

the databases and data scientists had to rely on other tools like R, SAS to perform advanced

statistical learning. The data set sizes may be huge (up to terabytes) and the procedure of

taking these data to the computation side turns out to be very slow [6]. Therefore, sampling

on the database has to be performed and a subset of actual data has to be extracted to

the statistical packages, which would result in loss of detail and affect prediction accuracy.

Also, another point to note is that statistical package and database running on the same

node leads to performance degradation as both are trying to acquire the same computing
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resources [6]. To mitigate these problems, the database community has taken a couple of

approaches. For example, in HP Vertica, a fast parallel transfer mechanism exists for moving

data to distributed R [6]. Initially, only metadata information is transferred to R which will

be used for subsequent data transfers. Post the metadata transfer, User Defined Functions

(UDFs) are used for data transfer. Each UDF transfers a certain segment of the table which

is partitioned based on the number of R instances available. UDFs do not read the table

content from disks as it uses memory buffers to store the content. There has also been work

trying to embed packages like R into data stores and executed via UDFs. However, this

workflow is single threaded [7].

An alternative approach is to provide the necessary linear algebra foundation at the

database level itself. Linear algebra forms the basis of statistical and analytical computa-

tions and providing support of fundamental datum objects like vectors and matrices in the

database opens up the possibility of computations at the database itself. By adopting this

approach, we eliminate the need for data transfers to an external statistical system and avoid

duplication of data across disparate systems. Matrices and vectors can also be manipulated

(read, updated and deleted) in the same way as database tables and columns.

The amount of sparse data being generated today is huge mainly due to the contribution

of various applications. As illustrated in [8], analytical platforms like column stores are well

equipped to handle the sparse nature of data. The wideness of data is not a concern as only

the columns required are read and processed. Sparseness can be handled as we can employ

different null compression techniques for each column based on its sparsity level. Another

important observation is that sparse data might contain columns that are highly sparse and

might not contribute to the analytics outcome. As illustrated in [9], in certain datasets, we

see that the size and variables run into millions. The design matrix for such data is huge and

results in reduced computational efficiency while applying analytic techniques like regression.

Dimensionality reduction techniques like min-wise hashing can be used to trim the design

matrix [9]. Regression on this reduced matrix increases the computational efficiency without
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compromising on accuracy. Compression along with the dimensionality reduction can be an

effective tool for improving performance.

The rest of this document is organized as follows: Chapter 2 provides a brief overview

of the recent work in integrating linear algebra in databases and the use of compression in

column stores. In Chapter 3 we dig deeper into how compressed linear algebra is integrated

into columnar databases provided in ScalaTion [10], a platform for analytics and simulation

written in Scala. We pick run length encoding as the compression technique and explain why

and how it is adopted in ScalaTion. We provide a new efficient mutable data structure for

supporting run length encoding and provide examples as for how random access and updates

are performed. We also talk about the support of matrices and vectors as storage structures

and how they can be extracted from relations, updated and then saved back as relations. In

Chapter 3 we also touch on linear algebra operations that operate directly on compressed

data. Discussion of how these operations can be made faster using parallelism is given in

Chapter 4. Chapter 5 talks about how compressed linear algebra can be useful in advanced

analytical applications. Chapter 6 discusses the performance results and Chapter 7 presents

conclusions and future work.
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Chapter 2

Related Work

Data compression is widely used in different analytical platforms. Shark [4] is an example

of such platform that provides a uniform bed for relational and analytical processing. It is

built on top of Spark and includes several modifications to the out-of-box Spark engine for

optimal execution of queries. An example of such modification is an additional in-memory

columnar store. This enables Shark to use light-weight compression techniques like run length

encoding and dictionary encoding to enhance performance and save space. Spark SQL [2],

similar to Shark but with additional capabilities, also uses compression in its in-memory

columnar cache. Druid [5] is another open source, distributed big data platform that leverages

compression. It is mainly used for OLAP processing on real-time streaming data. Storage

units known as segments are replicated across the nodes in the cluster and are stored column-

wise. This helps Druid to apply efficient compression techniques to enhance performance.

Data compression is widely adopted in the NoSQL databases world mainly column stores

as they tend to achieve higher compression ratio. For example, [1] shows how compression

techniques are adopted in C-Store and come up with a query executor to operate directly on

compressed data. It also comes up with a tree based model that helps in deciding which com-

pression algorithm should be adopted. The model checks as to how the data are distributed

in the column to come up with a decision.

Data compression is also used in in-situ (in the same place) analytics. In-situ analytics has

been widely adopted by the scientific community and it involves providing simulation time

analytics. Since running simulation and analytics on the same computing environment would

cause performance degradation, it is advisable to perform both these tasks in parallel on
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independent computing resources. However, this approach comes with an I/O bottleneck. [11]

shows how compression is adopted to mitigate the costs of data transfer between simulation

and analysis environments. It provides insights as to where and what compression mechanism

should be used during the workflow.

There has been prior work on tightly integrating analytics with data stores mainly by

providing a linear algebra foundation. SciDB [12, 13] is an example of the same. It is a

database that is fine tuned to the scientific users. The data model used is an Array and this

is useful as the base for several advanced analytical algorithms like Regression, Classification

are linear algebra computations over arrays. SciDB provides a variety of ways to interact

with the data model. Array Query Language (AQL) is one of them where a user can execute

linear algebra operations via a SQL-like interface. Array Functional Language (AFL) gives

a procedural interface where primitive linear algebra operations can be grouped together

to provide a desirable result. Given the popularity of R, SciDB also provides a wrapper on

which R programs can run and access data residing in SciDB.

[14] shows how to integrate linear algebra into an in-memory columnar database. Inte-

grating the matrix data structure is done in a variety of ways. For example, an entire relation

with m rows and n columns is considered to be a matrix (m by n). Each of the n columns of

the matrix is stored separately in column storage. Another approach is where entire relation

content is put into a continuous sequence of values. The entire relation can also be converted

to a 3 column table containing the value, row, and column index. Each of these 3 columns

is again stored in separate column containers. It also supports Compressed Row Storage

(CSR) representation of matrices. In this case, it also embeds matrices as part of the DDL

and offers built in DML commands to process matrices.

MAD skills [15] is another research work related to this area. Here SQL and UDFs are

used to formulate linear algebra expressions. It provides a layer of C++ on top of DBMS.

This layer helps in type mapping between C++ and database, better error handling and also
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provides the mathematical library to perform advanced learning algorithms (e.g., k -Means,

Regression).

The R language has an RLE class in its base package [16]. Using this class, atomic1

vectors can be stored in run length encoding format. RLE in R stores the elements in an

atomic vector as a series of pairs of a value and the length of its contiguous occurrence.

The lengths and values can also be accessed as individual lists. In R, rle() is extended

with seqle() where contiguous elements with a common slope or delta are compressed.

This helps in encoding linear sequences. In ScalaTion, we store the starting position of

the value along with the value and the length of contiguous occurence. The advantage of

this is faster random access, while the disadvantage is it requires more space. For example,

ScalaTion would require 33 percent more space than R for doubles.

1Not a list, see https://stat.ethz.ch/R-manual/R-devel/library/base/html/rle.html
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Chapter 3

Integrating Compressed Linear Algebra

3.1 RLE Vectors

In run length encoding the original sequence of values is replaced with the value and number

of times the value repeats. In ScalaTion we also record the starting position of the value

along with the value and number of repetitions [1]. This information constitutes a Triplet

and is represented as (value, count, startPos). An example of the Triplet is shown in Fig.

3.1 . We see that the sequence of 1’s in the original run of values is replaced by a triplet (1,

4, 0 ). Similarly, the sequence of 2’s is replaced by (2, 3, 4 ).

(a) Original run of values

(b) Run of triplets

(c) ReArray

Figure 3.1: Run length encoding
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Storing the values as Triplets will definitely save a substantial amount of space, but

the real challenge is in making the operations faster. In order to speed up execution of

linear algebra and analytical operations, we need an efficient mutable storage structure that

provides fast random access and updates. To satisfy this requirement we use ReArray to

store the triplets. ReArray is a modified version of Resizable Array implementation provided

in Scala. An example of ReArray is shown in Fig.3.1 (c). An RLE vector is nothing but a run

length encoded vector. It internally contains a ReArray to hold all the triplets corresponding

to the actual values.

Random access of a triplet in an RLE Vector is very straightforward and fast as it involves

just an array lookup. Fast random access to an individual value in an RLE vector is more

challenging. Since the triplets are ordered based on the startPos in the ReArray we take the

binary search approach to find the first triplet whose startPos is greater than the index. Once

we have this triplet we just pull out the value associated with it. By taking this approach

we provide random access with logarithmic complexity.

Finding the mean of values is an important analytical operation and is nothing but the

sum divided by the number of values. For doing a sum operation on an RLE vector, we go

through every triplet summing the product of its value and count. This approach exhibits

better performance when compared to the dense counterpart where we have to go through

every value in the vector. The implementation of sum (S) operation in the RLE vector is

shown below.

def sum = v.foldLeft (0.0) ((s, a) => s + (a.value * a.count))

foldLeft is a functional combinator provided by Scala and the function it takes is applied

to each element of the data structure it is called on. The data structure here is v and the

function is summing the product of value and count of each triplet a.

Variance is a critical operation in statistical analysis. Given a sample, variance gives

you information on how far the values are from the mean. Let s2 be the sample variance

(unbiased) and is calculated as follows
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s2 =
1

n− 1

n∑
i=1

(xi − µ)2 (3.1)

where (x1, x2, ..., xn) are samples of random variable X, n is the sample size and µ is the

mean. The above equation can be reduced as follows which is more efficient for computation.

s2 =
1

n− 1

n∑
i=1

x2i −
S2

n
(3.2)

The implementation in ScalScalaTionaTion to calculate the sample variance (unbiased)

for the elements of a vector is shown below.

def variance = (normSq - sum * sum / nd) / (nd - 1.0)

sum gives the sum of elements in the vector and nd the number of elements in the vector as

a double. normSq gives the Euclidean norm squared and is the dot product of the vector with

itself. For calculating the dot product of two dense vectors, we simply iterate through both

the vectors adding up the product of corresponding elements in both the vectors. However,

in the case of RLE vector, we take advantage of triplets. Due to highly repetitive values,

the number of triplets is very less compared to the actual values. Thus iterating through

the triplets take lesser time than through actual values. We take the approach of a 2-way

merge during the calculation of the dot product as the intervals of corresponding triplets

might overlap. The more the repetitive nature in the values, the faster the dot product of

RLE vector will be when compared to dense vector.

Update operation on a RLE vector is a complex operation encompassing several sce-

narios. [17] shows how RLE data are updated using count indexes in logarithmic time. In

ScalaTion, updating RLE data would cause the ReArray to grow, shrink or stay the same

in size. shiftLeft, shiftRight, shiftLeft2 and shiftRight2 implementations are provided in Sca-

laTion (as part of ReArray) to achieve the same. If the dense vector is compressed to a

RLE vector of size C, where C is the number of triplets, then the complexity of the shift

10



operations are O(C). Let us go through few of the update scenarios in detail here. Fig.3.2

shows the original run of values and the initial state of the ReArray.

Figure 3.2: Data and Initial state of Rearray

Let us consider the case where we update index i = 99 to the value 20. First, the triplet

that contains the index position is determined using a binary search approach. Let us call

this triplet as curr and the one before and after as prev and next. Since the index we are

trying to update is the startPos of curr and its count is greater than 1, we just do a check

with the prev. We see that the new value 20 is equal to the value of prev. Thus the count of

curr is decremented by 1 while the count of prev and startPos of curr is incremented by 1.

This is shown in Fig.3.3.

Fig.3.4 explains one of the scenarios where ReArray grows in size. Here we update index

i = 99 to the value 30 and it is not equal to the value of prev. In this case we do a shiftRight

where we shift every triplet right by one position starting from curr. This causes the ReArray

to grow in size by 1 making (50, 4, 99) as the next now. After the shift, we modify curr

(value, count) and next (count, startPos). The triplets that are modified and undergo a
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change in position due to the shift are highlighted.

Figure 3.3: Update i = 99 to 20

Figure 3.4: Update i = 99 to 30

When we update index i = 103 to 50 the ReArray shrinks by 1. curr is now (60, 1, 103).

Since the count of curr is 1, the new value is compared to the value of both prev and next

as it can be equal to either one or both. Since it is only equal to the value of prev we do a
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shiftLeft on curr. It shrinks the ReArray by removing curr and making the triplet (70, 1,

104) as the new curr now. Once the shift is done we increment the count of prev to complete

the update. Fig.3.5 depicts this scenario.

Figure 3.5: Update i = 103 to 50

There exist update scenarios that cause the ReArary to grow or shrink in size by 2.

shiftRight2 and shiftLeft2 caters to such scenarios.

3.2 RLE Matrices

RLE matrix contains a collection of RLE vectors that constitute a matrix. Fig.3.6 shows a

relation and its equivalent RleMatrixD. The RleMatrixD consists of four RleVectorDs each

representing a column of the relation. The RleMatrixD and RleVectorD operate on data

of type double. RLE matrix internally consists of an array to hold the RLE vectors. This

internal structure helps in providing constant time access to every column of a matrix.
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Col 1 Col 2 Col 3 Col 4

1.7 2.1 6.2 5.8
1.7 3.5 6.2 5.8
1.7 3.5 6.2 6.4
2.1 3.5 4.2 6.4
2.1 3.5 4.2 6.4
...

...
...

...
3.5 6.2 1.5 2.5
3.5 6.2 1.5 2.5

(a) Relation with 4 columns and 100 rows
RleV ectorD ((1.7, 3, 0), (2.1, 2, 3), . . . (3.5, 2, 98))
RleV ectorD ((2.1, 1, 0), (3.5, 4, 1), . . . (6.2, 2, 98))
RleV ectorD ((6.2, 3, 0), (4.2, 2, 3), . . . (1.5, 2, 98))
RleV ectorD ((5.8, 2, 0), (6.4, 3, 2), . . . (2.5, 2, 98))


(b) RleMatrixD

Figure 3.6: A Relation and its equivalent run length encoded matrix

Matrix multiplication is a critical linear algebra operation used in various fields of science.

Let us first take a look at the general definition of matrix multiplication. If A =
[
aij
]

is an

m-by-n matrix and B =
[
bij
]

is an n-by-p matrix then the product AB =
[
abij
]

will be an

m-by-p matrix and is defined as follows:

abij =
n∑

k=1

aikbkj (3.3)

If you observe the above equation, you see that each element in the resultant matrix
[
abij
]

is

a dot product of ith row and jth column of A and B, respectively. In ScalaTion, we can use

an alternative linear algebra operator (mdot) to yield the results of matrix multiplication.

AB = AT mdot B (3.4)

The same fundamental rule applies when multiplying two RLE matrices too. As seen pre-

viously, each RLE vector contained within the RLE matrix is a column vector. Creating an

RLE matrix during extraction will make each RLE vector within the matrix a row vector.
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Then matrix multiplication is reduced to mdot of two RLE matrices and the code snippet

below shows the implementation of the same.

def mdot(b: RleMatrixD): RleMatrixD =

{

val vv = Array.ofDim [RleVectorD] (b.dim2)

for (j <- b.range2) {

vv(j) = RleVectorD (for (i <- range2) yield

v(i) dot b.v(j))

} // for

new RleMatrixD (dim2, b.dim2, vv)

} // mdot

The result of the above dot product is another RLE matrix. It will have the number of

columns equal to that of the second matrix. Thus initially we create an empty array(vv) of

size b.dim2 to hold the RLE vectors that constitute the resultant product matrix. dim1 and

dim2 gives the number of rows and columns of the RLE matrix where range2 is an ordered

sequence from 0 until b.dim2. Since we have taken the transpose of the first relation before

extracting the RLE matrix, v(i) gives us the ith row and b.v(j) gives the jth column RLE

vectors respectively. Each column of the resultant matrix is compressed to a RleVectorD and

then assigned accordingly to the array vv. Finally, we return the new matrix that has the

same number of rows (dim1 ) as the first matrix and the same number of columns (b.dim2 )

as the second matrix.

ScalaTion also supports a slightly different variant of the dot product similar to

MATLAB [18]. This dot product yields a vector as the result and is nothing but the dot

product of corresponding column vectors of both the matrices. The code below shows the

implementation of the same.

def dot (b: RleMatrixD): VectoD =

{

if (dim1 != b.dim1) flaw ("dot", "incompatible")

RleVectorD (for (j <- range2) yield v(j) dot b.v(j))

} // dot

More details about running and extending the code are given in Appendix A.
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3.3 Interoperability of Relations and Matrices

ScalaTion has the ability to extract matrices and vectors from relations, perform opera-

tions and then transform the result back to relations. In the example below for calculating

the revenue for the southern Atlantic states, columns 1 to 4 of sales item1 relation (dates by

states) are converted to a RleMatrixD x by specifying the kind as COMPRESSED. Similarly

price item1 relation is converted to a RleMatrixD y. z is the resulting vector after performing

the dot product of the x and y matrices. This gives the revenue per state for item1. The

revenue for item1 is added to the revenue relation.

val sales_item1 = Relation ("Sales_Item1",

Seq ("Date", "FL", "GA", "NC", "SC"), ...

0,"SIIII")

val price_item1 = Relation ("Price_Item1",

Seq ("Date", "FL", "GA", "NC", "SC"), ...

0,"SDDDD")

val revenue = Relation ("Revenue", -1, null, "Item",

Seq ("Date", "FL", "GA", "NC", "SC")

sales_item1.show()

price_item1.show()

val x = sales_item1.toMatriD (1 to 4, COMPRESSED)

val y = price_item1.toMatriD (1 to 4, COMPRESSED)

val z = x dot y

revenue.add ("Item1" +: z())

revenue.show ()

For the complete code see RelationTest5 object http://www.cs.uga.edu/~jam/scalation_

1.2/src/main/scala/scalation/relalgebra/Relation.scala.

For a more complex real world example where we extract matrices from relations and

perform operations refer to the Solar Radiation application (see Appendix B).
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Chapter 4

Parallelization

Scala’s library contains parallel collections [19]. This inbuilt parallelism within the collection

helps programmers easily embed parallelism into their code. For example, in dot operation

on RLE matrix we use the Range collection (range2 ) for traversal in the for loop. This for

loop can be made parallel by using ParRange collection as below.

for (j <- range2.par) yield v(j) dot b.v(j)

As shown above calling par on the sequential range will give a reference to the parallel

range. The entire collection is broken down to into subsets of smaller elements and each

subset is assigned a thread to execute. Since thread creation is expensive, creating a new

thread for each subset is not optimal. Scala uses Java Fork/Join Framework [20] to achieve

better performance. This framework enables scalable and efficient parallelism in performing

the computations. In this framework, computation is broken down into tasks and each task is

assigned to a worker thread. The result from all these tasks are combined/joined to produce

the final result. However, in multicore environments, the performance is determined by how

well the tasks are scheduled among different processors. The Fork/Join framework uses work

stealing for task scheduling wherein once a worker’s queue is empty, it tries to grab a task

from any other random worker’s queue to achieve faster computations. We can also specify

the desired amount of parallelism or number of threads in the fork/join pool. For example,

the below line of code sets the parallelism level to 12.

new java.util.concurrent.ForkJoinPool(12)
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Chapter 5

Extending Compressed Linear Algebra to Advanced Analytical

Applications

Advanced analytics usually deal with large amounts of data demanding an efficient approach

in each step of the analytics. Compressed linear algebra can be used in these applications to

get performance gains.

A covariance matrix is a structure capturing covariance in multidimensional data. Covari-

ance determines how much two variables change with respect to each other. Computing the

covariance matrix is required by advanced analytical techniques like Principal Component

Analysis (PCA) [21], which can use either Eigenvalue analysis or Singular Value Decompo-

sition (SVD). PCA has applications in various fields including but not limited to finance,

pharmacy, biology. Covariance matrix also finds its use in the area of portfolio management.

The active portfolio management discussed in [22], for example, considers covariance matrix

as a measure of risk when considering risk-return tradeoffs. Covariance matrix which when

implemented using compressed linear algebra in ScalaTion optimizes not just in compu-

tation but also in storage.

Given a data matrix X ∈ Rm×n, X̄ is an estimator of the mean vector and Σ̄(X) is an

estimator of the covariance matrix and are calculated as follows

X̄ = [X̄∗,1, . . . , X̄∗,n] (5.1)

Σ̄(X) =
(X − X̄)T(X − X̄)

n− 1
(5.2)
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Chapter 6

Performance Evaluations

Following the philosophy of open science [23] we have set up the experiments in such a way to

facilitate other researchers to build upon our results by executing on different platforms and

even implementing additional operators (for details see www.cs.uga.edu/~jam/scalation_

1.2/README.html). We used UGA Zcluster do the performance testing. Zcluster is the

computing environment provided by the Georgia Advanced Computing Resource Center

(GACRC). The tests were run on compute nodes having 12 core Intel Xeon processors and

256GB of memory. To make sure that RLE vectors contains varied amounts of run lengths

we adopted the below formulas.

Max Repetitions = mrep = (nrlp).toInt (6.1)

Repetitions = Rep = RandomInteger (1, mrep) (6.2)

Expected Repetitions = E (Rep) =
mrep + 1

2
(6.3)

Expected Number of Triplets = nc =
2n

mrep + 1
(6.4)

Expected Compression Ratio = cr =
n

nc

=
mrep + 1

2
(6.5)

For example, if the run length parameter (rlp) is 0.2, then a vector of n = 100 million

will have values whose Rep can be anything from 1 to 39 (mrep). Equations 6.4 and 6.5 gives

the formulas to calculate theoretical values of nc and cr which would be 5 million and 20.

Therefore, storing the dense vector requires 800 million (8 ∗ n) bytes, while the Rle vector

requires 80 million ((8 + 4 + 4) ∗ nc) bytes. The space compression ratio is
cr
2

, which equals

10 in this case. We considered the rlp to be 0.2, 0.3 and 0.4 in our experiments. Each time
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value recorded is the average of 100 runs. Compute nodes whose load was more than 4 before

running the job were not considered (see Appendix D).
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6.1 Variance

Table 6.1 shows the time taken in milliseconds for variance operation and Fig 6.1 shows the

graph. The performance of RLE and dense is very similar when the size is 100K. However,

we can see that the RLE vector performs better with increasing size. RLE vector with rlp of

0.4 performs better than 0.2 and 0.3 variants as it has a better compression ratio with fewer

triplets.

Table 6.1: Variance

100K 1M 10M 100M

Dense 1.333 5.910 58.902 571.656

Rle (0.2) 1.482 3.365 25.022 130.731

Rle (0.3) 1.238 1.308 4.921 26.903

Rle (0.4) 0.706 1.120 1.560 4.315

Figure 6.1: Running times of variance operation

Fig 6.2 shows the speed up in parallel implementation of variance in RLE vector. There

is a good amount of speed up as we increase the number of threads. We see an increase
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in the speedup factor as the number of threads increases. However, we see the speed up

factor tends to drop a bit when the number of threads is 10 or more. More investigation

needs to be done to understand the cause of this behaviour. For this analysis we consid-

ered the size to be 100M and the rlp to be 0.2. The rlp of 0.2 is picked to be conservative.

Figure 6.2: Speed up of variance operation in RLE vector where size = 100M and rlp = 0.2

6.2 Matrix Dot Product (dot and mdot)

The table below shows the time taken in milliseconds for the dot operation.

Table 6.2: Dot

500K*250 750K*300 1M*350 1.25M*400 1.5M*450

Dense 405.638 714.498 1197.545 1647.284 2142.262

Rle (0.2) 461.318 818.163 1107.707 1497.648 1865.432

Rle (0.3) 147.938 224.670 301.713 399.585 473.636

Rle (0.4) 43.085 60.868 81.587 100.199 130.547
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In certain cases, the dense fares better than the RLE (500k * 250 and 750K * 300

with rlp = 0.2). The load on the Zcluster nodes might be a reason for this behavior. The

numbers also indicate that the run length encoded variants tend to perform better than

the dense as the size increases. Fig 6.3 shows the graph corresponding to the running time.

Figure 6.3: Running times of dot operation

Table 6.3 shows the time taken in milliseconds for the mdot operation. Unlike dot, in

mdot we see that the run length encoded variant performs better than dense for all the sizes

considered. Fig 6.4 shows the graph corresponding to the running time.

Table 6.3: Mdot

125K*100 200K*150 250K*200 500K*250

Dense 38028.92 126918.615 298669.35 922944.293

Rle (0.2) 5629.317 14854.119 33083.823 88135.299

Rle (0.3) 1851.427 4719.289 9629.486 24308.794

Rle (0.4) 580.6 1604.591 3177.852 6678.272
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Figure 6.4: Running times of mdot operation

Figure 6.5: Speed up of dot operation in RleMatrix where size = 1.5M * 450 and rlp = 0.2

Fig 6.5 and 6.6 show the speed up achieved in parallel implementations of dot and mdot

operations. We achieve close to 8 times speed up and see there is an increase in speed up as
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the number of threads increase.

Figure 6.6: Speed up of mdot operation in RleMatrix where size = 500K * 250 and rlp = 0.2

6.3 Covariance Matrix

Table 6.4: Covariance matrix using dot

125K*100 250K*150 375K*200 500K*250

Dense 41480.927 178702.386 548189.092 1241232.450

Rle (0.2) 7628.197 30503.018 72769.150 152110.244

Rle (0.3) 2899.550 10165.394 23363.203 44020.599

Rle (0.4) 1192.539 3955.631 8604.610 15456.106

Table 6.4 and 6.5 show the time in milliseconds taken to compute covariance matrix using

dot and mdot operation. Computing the covariance matrix using mdot is faster than using

dot. However, we see that the run length encoded variant performs better than the dense in

either of the cases. For example, even with the case of rlp being 0.2, where there the number
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Table 6.5: Covariance matrix using mdot

125K*100 250K*150 375K*200 500K*250

Dense 34361.954 167792.864 456690.646 948004.948

Rle (0.2) 4262.414 16638.372 40070.643 82930.099

Rle (0.3) 1437.823 5326.554 12374.461 23354.191

Rle (0.4) 466.196 1615.642 3512.591 6577.679

of triplets is more, the RLE variant is around 8 to 12 times faster than dense when we use

mdot to compute covariance matrix. While using dot to compute covariance matrix the RLE

variant is around 6 to 8 times faster. Fig 6.7 and 6.8 show the graphs. The graphs show

running times in log scale for ease of display.

Figure 6.7: Running times of computing covariance RleMatrix
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Figure 6.8: Running times of computing covariance RleMatrix

Figure 6.9: Speed up of computing covariance RleMatrix using dot where size = 500K * 250
and rlp = 0.2

Figures 6.9 and 6.10 show the speed up in the parallel implementations. We see that using

mdot operation to compute covariance matrix tends to give better speedup when compared

to using dot operation. While using dot we see that the speed up is close to 5 times whereas
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for mdot it is 6 times.

Figure 6.10: Speed up of computing covariance RleMatrix using mdot where size = 500K *
250 and rlp = 0.2

Besides syntheic data, preliminary testing of real world datasets has been conducted (see

Appendix C).
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Chapter 7

Conclusions and Future Work

In this research we show how Run Length Encoding (RLE) compression technique, com-

monly used in columnar relational databases, is added into to a comprehensive linear algebra

package provided by the ScalaTion open source big data framework. This allows matrices

and vectors to be stored with considerably less space and in some cases provided exceptional

speed up. We also show how the use of the ScalaTion framework for parallel execution

makes it easy to convert sequential codes to parallel implementations. The scope of extending

compressed linear algebra to advanced analytical applications is shown by taking the example

of a covariance matrix. Exceptional speed up is achieved in computing the covariance matrix

sequentially as well as in parallel. We also show how integration of columnar relational and

linear algebra provides efficient and convenient means for carrying out ad-hoc analytical

studies.

In the future, we plan to support handling of distributed data in ScalaTion. We would

work on exploring the tradeoffs of using sparsity versus compression and also see how to

utilize these techniques in advanced predictive analytics. Also, a faster form of update on

RLE vector will be explored. ScalaTion can also be made to adopt Apache Arrow [24],

an in-memory columnar data layer that can be shared across systems. This would make

ScalaTion compatible with other platforms making it easier to transfer analytical data to

and from these platforms. This would result in saving of computing resources which would

otherwise be spent on serializing and deserializing data. Open source big data projects like

Hadoop, HBase, and Spark are working with Apache Arrow.
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Appendix A

Developers Guide

ScalaTion is available under MIT license1 and the source code for the current release

(1.2) is available on the web.2 ScalaTion uses sbt as the build utility tool and installation

instructions are given in the home page. The ScalaDoc for the entire source code can be

accessed from the home page3. The source code for dense and Run Length Encoded (RLE)

variants of vectors and matrices is under the scalation.linalgebra package. The parallel

flavor is present in scalation.linalgebra.par package.

Unit test code for the linear algebra implementations (e.g., vectors and matrices) is

under the testing.linalgebra package. To run all the unit test cases via sbt we can use

the test command. To run test cases of a specific implementation test-only command

can be used. For example, the following sbt commands can be used to perform unit testing

on RleVectorD and RleMatrixD classes. These classes store and operate on values of double

datatype.

test-only testing.linalgebra.RleVectorD_T

test-only testing.linalgebra.RleMatrixD_T

1ScalaTion License File: http://www.cs.uga.edu/~jam/scalation_1.x/LICENSE.html
2ScalaTion Home Page: http://www.cs.uga.edu/~jam/scalation_1.x/README.html
3ScalaDoc: http://www.cs.uga.edu/~jam/scalation_1.x/README.html#scaladoc
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Appendix B

Solar Radiation Application

A Solar Radiation application included as part of ScalaTion performs basic analytics on

solar radiation and meteorological data. The data is provided by the National Solar Radiation

Database (NSRDB1). Hourly Global Horizontal Radiation (GHR2) data of 40 sites from the

years 1961 to 1990 is considered. For the dataset go to the ScalaTion home page. The

following commands can be used to run the application.

$ unzip ~Download/solar-radiation-40.zip

$ mv solar-radiation-40.csv $SCALATION_HOME/data/analytics

$ sbt

> run-main apps.analytics.SolarRadiation

The code for the application is shown in B.1. Data is read from the csv file (solar-radiation-

40.csv 3) and a relation (solarRel) is created. Dense (solarMat) and Rle (solarRleMat)

matrices are spun from the relation. The GHR mean value of every city is calculated from

the dense matrix and stored in mu. Similarly cmu stores the GHR mean values calculated

from the Rle matrix. Highest and lowest averages along with the corresponding site are

printed. We calculate the time required to compute the mean vectors (mu and cmu). The

average time for 5 iterations is considered. We also output the size of data for each column

before and after compression.

1NSRDB Web Page: http://rredc.nrel.gov/solar/old_data/nsrdb/
2NSRDB Data: http://rredc.nrel.gov/solar/old_data/nsrdb/1961-1990/hourly/
3solar-radiation-40.csv: scalation_1.x/data/analytics/solar-radiation-40.csv
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B.1 Code

object SolarRadiation extends App with PackageInfo

{

val fName = BASE_DIR + "solar-radiation-40.csv"

val solarRel = Relation (fName, "solarRel", -1, null, ",")

val solarMat = solarRel.toMatriD (0 to 39)

val solarRleMat = solarRel.toMatriD (0 to 39, MatrixKind.COMPRESSED)

.asInstanceOf [RleMatrixD]

val siteInfo = solarRel.colName

val mu = VectorD (for (j <- solarMat.range2) yield

solarMat.col (j).mean)

val cmu = RleVectorD (for (j <- solarRleMat.range2) yield

solarRleMat.col (j).mean)

println ("Highest average computations")

println (s" Dense matrix: Site = ${siteInfo (mu.argmax ())},

average = ${mu.max ()}")

println (s" Rle matrix: Site = ${siteInfo (cmu.argmax ())},

average = ${cmu.max ()}")

println ("Lowest average computations")

println (s" Dense matrix: Site = ${siteInfo (mu.argmin ())},

average = ${mu.min ()}")

println (s" Rle matrix: Site = ${siteInfo (cmu.argmin ())},

average = ${cmu.min ()}")

println (s" Size of columns in dense matrix: ${solarMat.dim1}")

println (s" Size of columns in Rle: ${solarRleMat.csize}")

val itr = 6

val denseTimeVec = new VectorD (itr)

val rleTimeVec = new RleVectorD (itr)

for (i <- 0 until itr) {

denseTimeVec (i) = timed { VectorD (for (j <- solarMat.range2)

yield solarMat.col (j).mean) }._2

rleTimeVec (i) = timed { RleVectorD (for (j <- solarRleMat.range2)

yield solarRleMat.col (j).mean) }._2

} // for

println ("Avg time taken by Dense: "+denseTimeVec.slice (1).mean+" ms")

println ("Avg time taken by Rle: "+rleTimeVec.slice (1).mean+" ms")

} // SolarRadiation object
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B.2 Output

The output of the SolarRadiation application is shown in the figure below. We see that in

this case, there is no gain in space after compression. For example, the size of the first column

is 153595. Since each triplet takes 16 bytes, the total space required post compression for the

first column would be 2457520 bytes. Without compression, the first column would require

2103744 bytes.

However, we see good improvement in computation time. Computating the mean vector

from compressed data is around 4 times faster than computing from dense data.

Figure B.1: Output of SolarRadiation application
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Appendix C

Census Application

Census application included as part of ScalaTion performs basic analytics on US census

data of the year 1990. The dataset is available for download from the UCI Machine Learning

Repository webpage1. The size of the dataset is around 360MB and the following sbt com-

mand can be used to run the application.

run-main apps.analytics.Census

The code for the application is shown in C.1. Data is read from the CSV file and a dense

matrix (censusMat) is created. A Rle (censusRleMat) matrix is created from the dense

matrix. Creating a relation directly currently gives slow performance and needs to be looked

into to make it faster. We calculate the number of people who are born in the US and who

already have a job. This computation is done via both the dense and the Rle matrices. We

finally calculate the time required to do this calculation. The average time for 5 iterations

is considered. The time required to build the Rle and the dense matrices are also recorded.

1Census Data: https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
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C.1 Code

object Census extends App

{

val fName = "USCensus1990_data.csv"

// FIX : to check why it is slow

// var censusRel = Relation (fName, "census", "D" * 69, -1, ",")

// val censusMat = censusRel.toMatriD (1 to 68)

// val censusRleMat = censusRel.toMatriD (1 to 68,

// MatrixKind.COMPRESSED)

// .asInstanceOf [RleMatrixD]

print ("Build dense matrix")

val censusMat = time {MatrixD (fName, 1)}

print ("Build rle matrix")

val censusRleMat = time {RleMatrixD (censusMat)}

val jobDense = censusMat.col (4). filterPos (x => x == 1.0)

val jobRle = censusRleMat.col (4). filterPos (x => x == 1.0)

val usBornDense = censusMat.col (5). filterPos (x => x == 0.0)

val usBornRle = censusRleMat.col (5).filterPos (x => x == 0.0)

// Print the statistics

println (s" Dense Matrix: Number of US Born =

${usBornDense.size}")

println (s" Rle Matrix: Number of US Born =

${usBornRle.size}")

println (s" Dense Matrix: Number of people who have a job =

${jobDense.size}")

println (s" Rle Matrix: Number of people who have a job =

${jobRle.size}")

println (s" Dense Matrix: Born in the US and have a job =

${usBornDense.intersect(jobDense).size}")

println (s" Rle Matrix: Born in the US and have a job =

${usBornRle.intersect(jobRle).size}")

// Space information before and after RLE compression

val compRatios = (censusRleMat.csize.toDense.toDouble /

censusMat.dim1.toDouble).recip

val avgcompRatios = compRatios.mean

println (s" Size of columns in dense matrix: ${censusMat.dim1}")
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println (s" Size of columns in Rle: ${censusRleMat.csize}")

println (s" Compression ratio column wise: ${compRatios}")

println (s" Average compression ratio of columns: ${avgcompRatios}")

//Compute the time

val itr = 6

val denseTimeVec = new VectorD (itr)

val rleTimeVec = new RleVectorD (itr)

for (i <- 0 until itr) {

denseTimeVec (i) = timed { val usBornDense = censusMat.col (5)

.filterPos (x => x == 0.0)

val jobDense = censusMat.col (4)

.filterPos (x => x == 1.0)

}._2

rleTimeVec (i) = timed { val usBornRle = censusRleMat.col (5)

.filterPos (x => x == 0.0)

val jobRle = censusRleMat.col (4)

. filterPos (x => x == 1.0)

}._2

} // for

println (s"Dense: $denseTimeVec")

println (s"Rle: $rleTimeVec")

println ("Average time taken by Dense: "

+denseTimeVec.slice(1).mean+" ms")

println ("Average time taken by Rle: "

+rleTimeVec.slice(1).mean+" ms")

} // Census object
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C.2 Output

The output of the Census application is shown in the figure below. We see that the average

compression ratio across all the columns is close to 12. We also acheive improvement in

computation time. Computation via Rle is around 1.7 times faster than computation via

dense.

Figure C.1: Output of Census application
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Appendix D

Script to check system load and execute

The following Python script is used to check the system load before executing a Scala job.

It uses the uptime command to know about the system load. It gives you the average load

over the past 1, 5 and 15 minutes. The load over the past 1 and 5 minutes is checked to see

whether it is less than the cutoff. If yes, the job is executed. If no, the script checks again

after 5 seconds for a maximum of 10 times.

#!/usr/local/bin/python2.7

import subprocess

import time

command = "scala -cp $SCALATION_CLASSES testing.linalgebra.RleVectorD_T"

cutoff = 4

p = subprocess.Popen("uptime", stdout=subprocess.PIPE, shell=True)

(output, err) = p.communicate()

loadstr = (output.strip().split(":"))[-1]

load = loadstr.split(",") #delimeter for linux

#load = loadstr.split(" ") #delimeter for mac

def checkAndRun(load1,load2):

for i in xrange(10):

print (i)

if (load1 < cutoff and load2 < cutoff):

q = subprocess.Popen(command,stdout = subprocess.PIPE,

shell = True)

(output,error) = q.communicate()

print (output)

return

time.sleep(5)

checkAndRun(float(load[-3]),float(load[-2]))
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Appendix E

Developer ToDo List

1. Storing the Relation in compressed form.

2. Produce transpose directly from the Relation.

3. Speed up loading of Relation.

4. Modify census example to include columns where it makes sense to apply operators

like mean.

5. Provide examples that intermix relational algebra and linear algebra.

6. Ability to read from compressed files.

7. Ability to read from HDFS.

8. Ability to read from RDD.

9. Consider using Apache Arrow.

10. Place database on server with high speed connection for analytics. e.g. try RDMA.

11. Find a more efficient update method.

12. Compare various compression techniques. e.g. Dictionary Encoding, RLE and Sparsity.

13. Try sorting the data to improve RLE compression.

14. Investigate on the drop in speed up factor for variance operation when the number of

threads is 10 or more.
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