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ABSTRACT
Recent advances in the biology of aging have uncovered many genetic and
environmental factors that influence aging and longevity. However, even with these
discoveries, we can still only explain a small proportion of the variance seen in longevity
within and among species. My thesis attempts to close this gap by employing
metabolomics, the study of all the small molecules in an organism. I first examine how
the metabolome changes with age, sex, and genotype in the fruit fly Drosophila
melanogaster. 1 find the metabolome is highly variable (and predictive of) all three
factors, and I find dramatic age related changes occurring in metabolic pathways
associated with monoamine neurotransmitters. I then take a comparative approach across
the Drosophila genus to determine how the metabolome is associated with longevity and
resistance to oxidative stress in the largest comparative metabolomics study to date. I find
that the metabolome varies considerably among species, and that much of the variability
is explained by interspecific variation in body weight. Within sexes, a large fraction of
the metabolome is associated with species differences in longevity and oxidative stress
resistance. Despite these strong correlations, the metabolome appears to contain only a

very weak phylogenetic signal. Finally, while Drosophila studies have the potential to



give many new insights into the basic biology of aging, results in the species can be
limited in their translational impact to humans. In this light, I attempt to understand the
metabolome’s association with age in a non-human primate, the common marmoset. [ use
a longitudinal approach and find the metabolome is highly predictive of age, and I can
identify metabolites that show consistent age-related trajectories within individuals.
Many of these changes are associated with oxidative stress and xenobiotic metabolism,
both of which are already known to be associated with age in other model organisms.
This suggests that the association between age and specific metabolic pathways might be
conserved across millions of years of evolution. Taken together, the results of this thesis
demonstrate the powerful potential metabolomics has to discover the underlying

biochemical pathways influencing natural variation in aging and longevity.
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CHAPTER 1

INTRODUCTION

The largest risk factor of mortality of an organism is its age; however, the genetic
and biochemical determinants of longevity are largely unknown. Advances in genetic
sequencing over the last decade have enabled researchers to use large scale genetic
mapping techniques to try to discover genes associated with age. However, these studies
are only able to determine genes that explain a small portion of the genetic variance seen in
longevity (reviewed in Murabito et al., 2012), and the metabolic consequences of these
genes are often unknown.

[ am attempting to fill this gap in our knowledge by using high sensitivity
metabolomics. Metabolomics is the study of all small molecules in an organism (less than
1000 Daltons), and it is the least studied of the major “omics” in biology. Metabolomics
studies have the potential to unlock the molecular mechanisms that govern many different
phenotypes of interest, and here I attempt to determine how aging and longevity in
multiple organisms are associated with the metabolome. If we can find a link between
metabolites and aging/longevity, we have the potential to bridge the gap between genotype
and phenotype.

My dissertation work is focused on understanding the link between aging and
metabolites in three separate studies. My first study attempts to discover the metabolome’s

association with age in one species, the fruit fly, Drosophila melanogaster. Then, [ move



onto a comparative study of eleven different Drosophila species to determine how the
metabolome changes across species and correlates with longevity. This evolutionary
approach allows me to determine if distantly related, long-lived Drosophila species have
similar metabolomic profiles. While the fruit fly provides an excellent model to understand
the basic biology of aging, they have over 800 million years of evolution between them and
humans, which can potentially limit their translational abilities. Therefore, my final work
focuses on the effects of age on the metabolomic profiles of the common marmoset,
Callithrix jacchus, a small short-lived primate, which is less than 40 million years diverged

from humans.

AGING

Age is the greatest risk factor for morbidity and mortality of an organism; and as
such, aging has been extensively studied over the last hundred years. In humans, vast
differences in longevity can be seen with about 25% of the variation due to genetic factors
(Herskind et al., 1996; Hjelmborg et al., 2006). Different theories of aging are commonly
argued in biology, including antagonistic pleiotropy, mutation accumulation, and oxidative
stress (reviewed in Hughes and Reynolds, 2005), and many of these theories rely on
specific genes affect aging. Yet the discovery of genes that are significantly associated with
longevity has been rare.

With the advent of next generation sequencing technologies, researchers believed
they would be able to determine the genetic basis of aging and longevity. The most widely
used technique in human aging studies has been association mapping using single

nucleotide polymorphism (SNPs) to correlate these genetic markers with the a long and



short lived individuals (reviewed in Murabito et al., 2012). However, even with thousands
of individuals in a study, SNP mapping often fails to find any gene that can be repeatably
found to be associated with longevity over multiple studies. The greatest repeatability
found has been with the APOE gene (Deelen et al., 2014; Ewbank, 2004), yet even this gene
is only able to explain a percent of the variance in longevity, leaving most of the genetic

variation in longevity (~25%) unaccounted.

METABOLOMICS

The failure of GWAS leaves a gap in our knowledge about the genetic variants that
underlie aging and longevity, so a new technique is needed to help us bridge the gap
between genotype and phenotype. Mapping individual metabolites has the potential to give
new insights into genes associated with longevity, and the study of all the metabolites in an
organism is referred to as metabolomics.

Metabolomics is among the least studied of all the major “omics”, but the
metabolome has the potential to be revolutionary in how we think about the genotype to
phenotype map (Figure 1.1). The metabolome sits right below the phenotype in the
genotype-phenotype pathway, and all lower levels affect it: the genome, transcriptome, and
proteome. The metabolome also incorporates the environment more than other levels, as
the environment can shift internally derived metabolites as well as many metabolites come
from external sources. There is a large component of the environment in aging variation,
and by understanding the metabolome we may be more easily able to tease apart the

genetic and environmental variation that affect aging and longevity.



Metabolomic studies are primarily carried out by one of two technologies: mass
spectroscopy and NMR (nuclear magnetic resonance) spectroscopy. Here, I focus on mass
spectroscopy technologies, as those were employed for this dissertation. Mass
spectroscopy involves detection of molecules and their abundance based on differences in
their chemical properties. Samples are run through a mass spectrometer (mass spec) and
are separated based on their mass to charge ratios (reviewed in Mishur and Rea, 2012). To
correctly separate the most metabolites, different columns and ionization modes are
utilized in the mass spec. First, both positive and negative ionization modes are always
used as they can detect two different sets of metabolites (Dettmer et al.,, 2007), and
different columns that samples are run through are also employed for the detection of
different metabolites. The two most commonly used columns are a reverse phase C18
column which can detect hydrophobic, often organic, molecules and an anion exchange
(AE) column which detects negatively charged metabolites. The use of multiple columns
allows for the detection of thousands of metabolites; however, many metabolites will go
undetected in the mass spec.

Recently, metabolomic studies have moved from only a hundred or so molecules to
the ability to detect thousands (Jones et al., 2012), which has become a problem for
metabolite identification. Each metabolite separated in the mass spec has an individual
mass to charge ratio (m/z) based on its chemical make-up; however, two metabolites with
the same chemical formula will have the same m/z, for example glucose and galactose. Two
metabolites with the same m/z can have different retention times in the mass spec to help
separate their identities; however, no annotation programs are yet able to incorporate

retention time in metabolite identification. The only other way to differentiate two



identical m/z requires expensive mass spectrometry/mass spectrometry (MS/MS)
techniques, which break up metabolites into pieces to determine true identity. However,
MS/MS is very costly and time consuming, such that it is not feasible on large-scale datasets

Recently, studies have begun to map genes to individual metabolites using SNP
mapping. These studies have found that individual SNPs can explain a large proportion of
the variance seen in an individual metabolite (Suhre and Gieger, 2012). If that metabolite is
correlated with a phenotype of interest, it can point to new candidate genes that may be
influencing that phenotype. An individual metabolite is only a small part of the larger
phenotype, so by mapping metabolites, researchers can begin to break down the
phenotype into smaller parts to find new candidate genes. Using metabolomics to find
metabolites associated with aging, and then mapping them back to the genome might be
the breakthrough needed to finally begin to understand the genetic basis of aging and

longevity.

METABOLOMICS AND AGING

Early metabolomics studies tended to focus on biomarkers of specific diseases (e.g.
Qiu et al., 2010; Slupsky et al., 2010), where metabolomic profiles of diseased individuals
are compared to healthy counterparts; however, recently more metabolomics studies have
begun to look at the metabolic consequences of aging and longevity, predominately in
model organisms. Studies have found specific metabolites associated with age in worms
(Fuchs et al., 2010), flies (Hoffman et al., 2014), and mice (Wijeyesekera et al., 2012).

In chapter two of this thesis, I focus on understanding the metabolomic correlates of

aging in the fruit fly, Drosophila melanogaster. In addition to being one of the most studied



model organisms in biology, the fruit fly is an ideal organism to understand aging and
longevity. With a relatively short lifespan (~90 days maximum), longevity experiments can
be easily completed and repeated, and genetic manipulations of candidate genes are
possible. While the fruit fly provides an excellent model of aging, few studies have
attempted to determine the metabolomic changes that occur with natural aging in the fly.
While previous metabolomics studies have been instrumental in our understanding
of the associations between metabolites and age, most studies only analyze several dozen
to a couple hundred metabolites, which represent only a small proportion of the entire
metabolome (Jones et al.,, 2012). The entire metabolome of an organism consists of tens of
thousands of metabolites, and my work centers on using high sensitivity metabolomics
techniques to get a better understanding of aging on the entire metabolome of an organism.
In chapter two, I determine how the metabolomic profile of the fruit fly, Drosophila
melanogaster, is changed with age, sex, and genotype and all their two-way interactions. |
find that hundreds of metabolites are associated with age, and many of these metabolites
are in metabolic pathways involving monoamine neurotransmitters and the carnitine
shuttle. Interestingly, I also find large interaction effects between age and both sex and
genotype, suggesting there are many metabolites whose age association is sex or genotype
specific. These results indicate if we can determine metabolites that vary with age across
more genotypes, we might be able to map specific metabolites to the genes that regulate

them.



COMPARATIVE STUDIES AND AGING

While studies of individual species are important in our understanding of aging and
longevity, they give us little insight into how the aging phenotype may have evolved. In this
light comparative studies have long been employed to understand the variation (or lack of)
that occurs between species, and how this variation evolved in response to adaptation
(Harvey and Pagel, 1991). Comparative studies have played extensive roles in studies of
longevity, senescence, and mortality (e.g. Promislow, 1991; Promislow and Harvey, 1990;
Promislow and Haselkorn, 2002); however, little is known about how biochemical
processes influence these traits across species.

Comparative studies analyzing metabolomic profiles have been extremely limited
and often focus on only clustering patterns of metabolites. One study on only a couple
dozen metabolites in sponges was able to show that metabolites could separate two
distinct groups of sponges studied (Ivanisevic et al., 2011). However, a large metabolomics
study of seven vertebrate species was not able to recapitulate their correct species
phylogeny (Park et al., 2012), with results suggesting metabolomic profiles of human were
more closely related to pigs than other primates. Yet a second study in primates suggests
the metabolome of primate brains shows large evolutionary conservation with little
changes due to the environment (Bozek et al., 2014). These contradictory results suggest
we still have a long way to go to completely understand how the metabolome evolves and
affects different phenotypes. This gap in our knowledge can be remedied by studying a
group of closely related species that have sequenced genomes (necessary to determine

how protein rates correlate with metabolite concentrations). The Drosophila species group



provides an ideal model to study how evolution affects the metabolome and its association
with longevity.

Ever since the 12 Drosophila genomes project was completed (Clark et al,, 2007),
dozens of Drosophila comparative studies have been completed to look at how the genome
evolves across the phylogeny (i.e., Greenberg et al,, 2008; Larracuente et al., 2008; Stark et
al,, 2007). These studies have shown that rates of non-synonymous to synonymous protein
change rates are smaller for proteins that catalyze enzymatic reactions compared to non-
enzymatic proteins (Larracuente et al., 2008), and levels of protein constraint are higher in
essential metabolic pathways compared to non-essential ones (Greenberg et al., 2008).
While these studies give us insights into how evolution works on proteins involved in
metabolic pathways, they do not show how the individual metabolites are affected by these
changes in protein sequence. This is important to understand as selection works on the
protein sequences, which catalyze metabolic reactions, so metabolites are the end product
of selective forces. Yet these effects are unknown. To begin to understand the effects of
selection on metabolite, we first need to know how metabolomic profiles vary between
species.

One study has attempted to determine how metabolite levels vary in relation to
changes in protein sequence. Using 35 genes in human erythrocytes cells, previously
defined metabolic flux ratios were discovered to correlate with the ratio of non-
synonymous to synonymous changes in gene sequences (Colombo et al., 2014). The
researchers found high flux enzymes were more constrained compared to those enzymes
with low flux rates. However, this study only focused on previously published flux

distributions, and it did not compare these values across different species (though multiple



primates were used to determine rates of protein evolution). There remains a huge gap in
our knowledge of how individual metabolite quantities, ratios, and variances across species
are influenced by rates of protein evolution, and there is no clear way to correctly analyze
these types of data, similar to problems seen with comparative transcriptome analyses
(Dunn et al., 2013; Schreiber et al., 2009).

In chapter three, I complete the largest metabolomic comparative study to date. |
analyze metabolomic data from eleven Drosophila species to begin to understand how
metabolite concentrations vary both within and between species. I find little phylogenetic
signal in the metabolome, and I discover large effects of sex, species, and body weight on
overall metabolomic profiles. I also find many metabolites that vary with longevity and
resistance to oxidative stress, but they tend to be associated in a sex specific manor. My
results suggest there is potentially great power in using comparative metabolomic studies

to understand the evolution of life history traits.

THE COMMON MARMOSET AS A MODEL OF HUMAN AGING
Drosophila provide an excellent group of species to study aging due to the fact that
they have a relatively short lifespan while being fairly easy to manipulate. However, fruit
flies are not always the best model for human aging for two reasons. First, they are not
phylogenetically closely related to humans (800 million years of divergence time), which
suggests aging correlates in Drosophila might not be found in humans unless they are
highly conserved, such as the insulin signaling pathway (Tatar et al., 2003). Second, to

completely understand the physiological changes that influence aging, longitudinal studies



must be completed that follow individuals across their entire life. However, longitudinal
studies looking at physiological traits in flies are impossible due to destructive sampling,
and longitudinal studies in humans can be done but are difficult to accomplish due to long
lifespans (Blumenthal, 1985). To remedy these two problems, non-human primates have
been studied, as their lifespans are shorter than humans, yet they are more closely related
phylogenetically to human than other model organisms. Here, I analyze metabolomic
profiles from a non-human primate model of aging, the common marmoset, to understand
the biochemical changes that occur with age.

The common marmoset, Callithrix jacchus, has recently been proposed as a new
model non-human primate for aging research (Fischer and Austad, 2011). The average
lifespan of the marmoset is relatively short (6-12 years), even compared to other non-
human primates, and they present with many clinical diagnoses similar to humans
(Nishijima et al., 2012; Tardif et al., 2011). The genome of the marmoset was recently
published (Worley et al., 2014) making it an ideal species to study aging with potential
translational properties to humans.

Previous longitudinal studies in primates have focused primarily on the effects of
different treatments on aging, especially calorie restriction (e.g., Colman et al., 2014), and
previous metabolic longitudinal studies tend to focus on responses to different conditions
(Lietal, 2012). While these studies are pivotal in gaining information about different
interventions that may delay aging, they do not look at the biochemical changes that occur
during the natural aging process.

While the marmoset provides an ideal non-human primate to study aging and

understand the metabolomic correlates that occur with age, little is known about these

10



biochemical changes that occur with age within the species. Previous research has shown
that many basic blood chemistry parameters can be correlated with age (Kuehnel et al.,
2012), and metabolomic correlates with specific, pre-defined metabolites of interest were
found to be associated with age (Roede et al., 2012). However, the effects of age on the
entire metabolome of the marmoset are unknown.

While no longitudinal marmoset metabolomics studies have been completed, a
couple of studies have attempted to determine longitudinal metabolite changes in humans,
yet these studies have often only followed individuals over only a couple of months (e.g.
Nicholson et al., 2011). One recent study was able to follow individuals over a seven year
time period discovering that metabolomic profiles tend to be conserved over the time
period in individuals; however they did not determine if specific metabolites were
changing with age across individuals (Yousri et al., 2014). And, even seven years is a
relatively short time to study changes for an individual that can easily live beyond 80 years.

In chapter four, I complete one of the largest metabolomic analyses in the
marmoset. [ take a longitudinal approach following a colony of marmosets over a period of
17 months in which metabolomic blood profiles were analyzed from three different time
points. Examining over 2000 metabolites, | was able to discover that the metabolome is
highly predictive of age, and as such the metabolome has the potential to become a new
biomarker of aging. Using a longitudinal approach allowed me to determine more
metabolic pathways associated with age than using individual time points on their own.
This is one of the longest longitudinal metabolomics studies completed to date, and it
shows the importance of using longitudinal studies when trying to determine metabolic

correlates with natural aging.
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SUMMARY

Here, [ lay the foundation for using metabolomics to understand the biochemical
changes that influence aging and longevity. If we can determine specific metabolites that
are correlated with longevity, then we have the potential to understand the genetic basis of
these traits by discovering the genes influencing the metabolite. The results of this thesis
have the ability to inform researchers about new hypotheses that could be integral to
understanding the differences in longevity between the sexes and across species. Here |
present the most comprehensive analysis of the metabolome on aging and longevity to

date.
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FIGURE LEGEND
Figure 1.1. Molecular pathway between genotype and phenotype. Interactions occur within

and among the different levels, and the environment can affect all levels.
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CHAPTER 2
EFFECTS OF AGE, SEXAND GENOTYPE ON HIGH-SENSITIVITY METABOLOMIC PROFILES

IN THE FRUIT FLY, DROSOPHILA MELANOGASTER?

1Hoffman ].M., Soltow Q.A., Li S., Sidik A., Jones D.P., and Promislow D.E.L. 2014. Aging Cell.

13(4): 596-604. Copyright 2014. Reprinted here with permission of publisher.
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ABSTRACT

Researchers have used whole genome sequencing and gene expression profiling to
identify genes associated with age, in the hope of understanding the underlying
mechanisms of senescence. But there is a substantial gap from variation in gene sequences
and expression levels to variation in age or life expectancy. In an attempt to bridge this gap,
here we describe the effects of age, sex, genotype and their interactions on high-sensitivity
metabolomic profiles in the fruit fly, Drosophila melanogaster. Among the 6800 features
analyzed, we found that over one-quarter of all metabolites were significantly associated
with age, sex, genotype or their interactions, and multivariate analysis shows that
individual metabolomic profiles are highly predictive of these traits. Using a metabolomic
equivalent of gene set enrichment analysis, we identified numerous metabolic pathways
that were enriched among metabolites associated with age, sex, and genotype, including
pathways involving sugar and glycerophospholipid metabolism, neurotransmitters, amino
acids, and the carnitine shuttle. Our results suggest that high-sensitivity metabolomic
studies have excellent potential not only to reveal mechanisms that lead to senescence, but
also to help us understand differences in patterns of aging among genotypes and between

males and females.

INTRODUCTION
Lifespan is a highly heritable trait. Over the past 20 years, researchers working on lab-
adapted organisms have been able to identify evolutionarily conserved genetic pathways
which, when knocked down or overexpressed, are able to dramatically increase lifespan.

These successes underscore two critical questions: first, at the molecular level, what are

21



the underlying mechanisms by which these genes affect longevity; second, at the
population level, do these same genes account for standing variation in longevity in natural
populations?

These questions are complicated by the fact that the age at which an individual dies
depends not only on its genotype, but also on a lifetime of effects accumulated through
environmental exposure, the environment-specific response of genes, and the downstream
physiological consequences of these complex factors. Fortunately, whole-genome
sequencing and genome-wide association (GWA) studies now make it possible to identify
segregating alleles that affect complex phenotypes such as body height, diabetes,
schizophrenia, and even longevity (Jeck et al., 2012). But GWA studies suffer from
numerous challenges, and these are further compounded in analyses of lifespan. First,
alleles identified in GWA studies typically explain just 0.1-1.0% of the variation in complex
traits (Park et al., 2010). Second, the genetic basis of lifespan appears, at least in part, to
differ between the sexes (Burger and Promislow, 2004). Third, lifespan includes a
substantial degree of stochasticity, varying dramatically even among genetically identical
individuals raised in a constant and identical environment (Kirkwood et al., 2005). Finally,
and perhaps most importantly, lifespan is a highly composite trait potentially influenced by
the functional decline of many underlying processes. To fully understand the genetics of
lifespan, we need to understand the genetics not simply of age at death, but rather of the
underlying causes of death.

Here we suggest that many of the challenges that we face in our attempts to define the
pathways that account for age-related declines in function, and for genetic variation in

these declines, can be resolved through the use of high-resolution metabolomics (Mishur
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and Rea, 2012). If we can decompose the physiological processes that influence morbidity
and mortality to their constituent components (i.e., the metabolome), we will be an
important step closer to bridging the gap between genotype and phenotype (Figure 2.1).
The metabolome is effectively a functional intermediate between genotype and phenotype.

Previous work illustrates how the metabolome can serve as a strong bridge between
genotype and phenotype. While allelic variation typically explains only a small fraction of
the variation in complex phenotypes, GWA studies of the metabolome have found genetic
variants capable of explaining up to 60% of the variance in the concentration of individual
metabolites (Suhre et al.,, 2011). The metabolome also appears to be a sensitive indicator of
age-related physiological changes both in invertebrates and vertebrates (e.g., Sarup et al,,
2012; Yu et al,, 2012). Moreover, different mutants that extend longevity share common
metabolomic signatures (e.g., Caenorhabditis elegans: Fuchs et al.,, 2010; Mus musculus:
Wijeyesekera et al., 2012).

While we have learned much from these initial studies, most have been limited by the
use of relatively low-sensitivity metabolomics technology, and by limited genetic
information. Studies of age and the metabolome have hitherto been carried out using
standard metabolomic methods, which typically measure concentrations of several
hundred metabolites, at most. This represents one percent or less of all the circulating
metabolites found within an individual animal (Jones et al., 2012). This would be the
equivalent of measuring just 300 genes in a ‘genome-wide’ screen in humans. Moreover,
most of these studies have not been able to distinguish metabolomic variation that is due to
genetic differences among individuals from variation due to non-genetic physiological

differences.
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Here we demonstrate the power of new, state-of-the-art high-resolution metabolomics
(Jones et al., 2012) to characterize the aging metabolome. Hardware and software advances
in high-resolution metabolomics now support extremely sensitive measurement of tens of
thousands of metabolites (Jones et al.,, 2012; Uppal et al., 2013), and these high-resolution
studies can be used to determine the effects of age on the entire metabolome (De Guzman
etal, 2012). We use high-resolution metabolomics to ask three specific questions. First, is
the metabolome a sensitive indicator of physiological state in the aging fly? Second, is the
high-sensitivity metabolome a useful biomarker of age, can it predict the age of an
individual, and moreover, can it explain sex- and genotype-specific variation in age. And
third, can metabolomic studies reveal novel pathways associated with natural variation in

aging?

METHODS
Fly stocks and culturing conditions
All analyses were carried out using a set of 15 inbred fruit fly genotypes randomly
chosen from the Drosophila Genome Reference Panel (DGRP, Mackay et al., 2012) (Table
S2.1). The DGRP consists of 192 fully-inbred and fully-sequenced strains of Drosophila
melanogaster, and is freely available from the Bloomington Drosophila Stock Center. Flies
were maintained in incubators at 24°C on a 12/12 light-dark cycle at ~50% humidity. For

all procedures, flies were maintained on standard yeast-molasses-agar-cornmeal medium.
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Collection of known-age flies

Prior to the onset of the study, fly cultures were expanded to include 4 bottles per
genotype, at which point 150 virgin males and females were collected over a 72-hour
period under light CO; anesthesia. For each sex and each of the 15 genotypes, we placed an
average of 27 individuals in each of 5 40-ml glass vials, for a total of 4032 flies distributed
among 150 vials. Flies were transferred to new vials very two days without anesthesia, at
which time the number of dead flies in each vial was recorded.

At seven time points (days 3, 10, 24, 36, 51, 66 and 81), we collected two samples of
three flies from each unique genotype-sex cohort without anesthesia, placed each sample in
a 1.5-ml Eppendorf tube, instantly froze the samples in liquid nitrogen, and then placed
these samples in a -80°C freezer until the end of the experiment. Not all genotypes survived
to age 81 d, and in some cases at later ages only one sample of three flies per genotype and
sex was collected.

Metabolomic analysis

Each frozen fly sample was homogenized using a Pellet Pestle® Motor in 150 pl
acetonitrile in water (2:1 v/v) containing an isotopic standard mix (Soltow et al.,, 2011) and
refrozen. Immediately before analysis, the samples were thawed, vortexed, and centrifuged
at 14,000 rpm for 10 min at 4 C. Extracts (100 pl) were randomized, placed in a
refrigerated autosampler and 10 pl volumes were analyzed in duplicate with dual
chromatography-mass spectrometry (DC-MS) platforms (Soltow et al., 2011), one using an
anion exchange (AE) column (Hamilton PRPX-110S, 2.1 mm x10 cm, Reno, NV) and the
other using a C18 column (Higgins Analytical, Targa, 2.1 mm x 10 cm, Mtn View, CA). C18

and anion exchange chromatography separate molecules based upon different chemical
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properties. C18 is also termed "reverse phase" chromatography because the 18-carbon
units are hydrophobic, retaining and separating chemicals with partial hydrophobic
character. Anion exchange, on the other hand, has positive charges on the column, which
retain and separate negatively charged molecules. The conditions used result in about
30% overlap between columns in chemicals detected.

Samples were fractionated with a formate or acetonitrile gradient, respectively, ionized
with electrospray ionization in the positive mode, and detected with an LTQ Orbitrap Velos
mass spectrometer (Thermo Fisher Scientific, San Jose, CA) with m/z from 85 to 2000 and
30,000 resolution. Data were extracted using apLCMS (Yu et al., 2009) as m/z features,
where an m/z feature is defined by m/z (mass/charge), RT (retention time) and ion
intensity (integrated ion intensity for the peak). As part of quality control, we also
generated a ‘fly standard’, consisting of a large volume of identical sample taken from 350
flies, which was run alongside samples daily to evaluate reproducibility. While some
overlap in metabolites between the two columns is expected, data from both columns
cannot efficiently be combined for analysis due to very different column chemistries which
can lead to the same metabolite showing different ion intensities and retention times.

Therefore, we analyzed data from both columns separately.

Data Analysis

Quality control
Many metabolites show significant stochastic variation even within samples, and thus
are likely to be uninformative. To minimize the impact of ‘noisy’ metabolites, prior to data

analysis, we carried out a set of quality control procedures to limit our analysis to the most
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informative metabolites. First, we only included metabolites with a signal to noise ratio
(SNR; = mean/sample standard deviation) = 15. Second, we log-transformed the data,
which led to a normal distribution of concentrations across all metabolites. Third, we
removed any metabolites that were missing from more than 5% of either all male samples
or all female samples. Fourth, we used the LSimpute imputation procedure (Bo et al., 2004)
to estimate the values of missing samples. Fifth, we limited our analysis to metabolites with
a mass-charge ratio of less than 900, as data collection parameters were optimized for m/z
< 900. Finally, once all these procedures were complete, we normalized the data such that

each sample had a mean value of 0.

Metabolite-specific analysis

All statistical analyses were carried out using the statistics package R.

We used a general linear model to test for the effects of age (4), sex (S) and genotype
(G) on metabolite intensity (Y):

Y=pu+A+S+G+AxS+AxG+ GxS + €
(1)

treating all predictors as fixed effects, where p is the grand mean and ¢ is the residual error.
We treated age as an ordered factor (effectively a categorical variable, with the proviso that
we know that age 3 < age 10, age 10 < age 24, and so forth). Due to small sample sizes and
not all genotypes being present, age 81 flies were removed, leaving 274 samples for
metabolite-specific analyses.

By including all parameters in the model, we are asking, for example, whether sex has a

significant effect on metabolite intensity after controlling for the effects of age and
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genotype. To determine significance for each factor in the model shown in Equation 1, we
set the false discovery rate (Benjamini and Hochberg, 1995b) at 1% using all P-values
associated with that specific factor. To obtain P-values for the effects of genotype and of its
interactions with age or sex, we carried out a likelihood ratio test using the 1rtest
function in the epicalc package in R.

We followed Hoffmann and Parsons (1988) to obtain approximate estimates of narrow-
sense heritability (h?) from the intraclass correlation (t) between lines. Here, t = o7 /(0 +
no2), where o7 and o2 are the between-line and within-line variances, respectively, and n
= 3 is the number of individuals within each sample. Within and between genotype
variances were determined using the 1me function in the package nlme in R, treating age
and sex as fixed effects and genotype (line) as a random effect. While Hoffmann and
Parsons (1988) and subsequent authors suggest various equations to convert t to h?, here

we present only the intraclass correlation.

Metabolome-wide analysis

To determine the degree to which metabolomic profiles could be used to predict sex or
age, we used the sparse partial least squares discriminant analysis function (splsda) as
implemented in the R package mixOmics (for sex and genotype), and partial least squares
regression as implemented by the mvr function in the pls package in R (for age). We set the
number of components as min (k-1), where k is the number of classes (2 for sex, 7 for age,
14 for genotype). For splsda, the number of metabolites included in the model was
determined using 10-fold cross validation in mixOmics. We chose the number of

metabolites to include in each analysis based on that number which minimized the
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Classification Error Rate (CER), using 10-fold cross validation. Supervised classification
schemes with relatively low numbers of samples and high numbers of variables can lead to
overfitting (Westerhuis et al., 2008). Accordingly, we compared observed Classification
Error Rates (CER) with mean CER (* 1 s.e.) obtained from ten permutation tests in which
the classification group (sex or age) was sampled randomly without replacement. This
comparison tells us whether the observed classification is any better than one would
expect by chance.

We used partial least squares to predict sample age using training and testing sets. In
this case, training sets consisted of 2/3 of all samples, and the model derived from this set
was used to predict the classification for the remaining 1/3 of the samples. We obtained R?
values using ten-fold cross validation and compared these values with R? values where the

class variable was permuted.

Metabolite annotation and tests of metabolite enrichment

In this study, we adopted a novel approach to perform putative metabolite
annotation and enrichment analysis in one step (Li et al., 2013). Theoretically, most
metabolites from mass spectrometry can match multiple metabolite compounds. The
program that we have used here, mummichog, selects the most probable metabolites from
these multiple candidates, based on the enrichment of metabolic networks and pathways,
since a biological process is expected to favor a more connected network over random
distributions. This approach has been validated on multiple experimental data sets (Li et
al., 2013). The fly metabolic network model from the MetaCyc database (Caspi et al., 2012)

and the reference model in mummichog (Li et al., 2013) were used to test the enrichment of
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pathways and networks. The null distribution in pathway analysis is based the permutation
of metabolite selections, which takes into full consideration of the aforementioned
multiple-matching problem.

We first determined subsets of metabolites to look for pathway enrichment. We ran
a model for both columns separately of only age, sex, and their interaction, and took the
250 most positively and 250 most negatively associated metabolites based on their P-value
for each parameter (age, sex, and the interaction between the two). This gave us 12
different subset lists (six from each column) that were then run through the program
mummichog for pathway enrichment analysis.

For age and genotype interactions, we ran a likelihood ratio test as described above
to determine those metabolites with a significant age-genotype interaction. We chose 250
metabolites with the smallest p-value for both the C18 and AE columns for enrichment

analysis.

RESULTS

We analyzed metabolomics data from 15 inbred lines from the Drosophila Genome
Reference Panel (DGRP, Mackay et al., 2012) (Table S2.1). After quality control (see
Experimental Procedures), our final dataset consisted of 293 biological samples, each of
which was run twice through each of two columns. Each sample provided measures for
3091 features from an anion exchange (AE) column, and 3714 features by reverse phase
(C18) liquid chromatography, for a total of 6805 features (note that some overlap occurs
between columns) (see Experimental Procedures below, and Soltow et al. 2011, for a

description of the differences between these two columns). Of the features detected, we
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were able to obtain putative molecular matches for 877 metabolites in the AE column and
717 metabolites in the C18 column based on mass-charge (m/z) ratio using the metabolite
prediction program mummichog (Li et al., 2013). In our individual metabolite analysis, we
define statistically significant effects on m/z concentrations using a conservative false
discovery rate a = 0.01 (Benjamini and Hochberg, 1995b). Seven of the fifteen lines used
here were putatively positive for Wolbachia infection (Table S2.1). Including Wolbachia
status in our statistical models had no appreciable effect on our conclusions, and so is not
discussed further.

We divide the presentation of results into three sections. First, we examine the broad
effects of age, sex and genotype (including measures of heritability) on individual
metabolites. Second, we identify metabolites that show significant interaction effects,
looking in particular at age x sex and age x genotype interactions. Third, we describe
specific types of metabolites that are enriched among all metabolites significantly

associated with these main effects and their interactions.

Main effects

The metabolome appears to be highly sensitive to physiological state, showing dramatic
variation in response to sex, age, and genotype (Table 2.1). The proportion of metabolites
significantly associated with the traits we measured varied from a low of 1% of C18
metabolites increasing with age to a high of almost 14% of AE metabolites that vary among
genotypes. In each case, effects of one variable were measured after controlling statistically
for the effects of the other two variables. For example, our test for the effect of genotype

held the effects of sex and age constant, effectively testing if there are significant
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differences in the intercept of m/z intensity versus age among genotypes. Figure 2.2 shows
two metabolites with confirmed identities with significant age effects and one with
significant sex effects. Note that sex effects are likely underestimated, because we only
included metabolites present in at least 95% of male samples and 95% of female samples.

As a separate measure of genetic effects, we used the intraclass correlation (t) among
the fifteen inbred lines as a measure of heritability (the percentage of total variation due to
genetic effects). We identified almost 300 metabolites with ¢t > 5% (134 C18 metabolites,
149 AE metabolites), with maximum value of t = 28.8% among AE metabolites (m/z =
693.2182) and t = 32.3% among C18 metabolites (m/z = 179.0844). The full distribution of
heritabilities is shown in Figure S2.1.

Supervised multivariate analysis revealed that the metabolome is strongly predictive of
sex and age. Partial least squares-discriminant analysis differentiated almost completely
between the metabolome of males and females (Figure 2.3) and among flies of different
ages (Figure S2.2). Similarly, using partial least squares regression, we found the
metabolome to be an accurate predictor of age. For both males and females, a model based
on a random sample of one third of all individuals was able to explain between 78% and

92% of the variance in age of the remaining two-thirds of samples (Figure 2.4).

Interaction effects

In addition to the substantial proportion of metabolites that showed significant age-
specific changes in intensity, or that differed significantly between sexes or genotypes, we
also found numerous metabolites associated with interaction effects (i.e., metabolites for

which the slope of change with age differs significantly between the sexes or among
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genotypes (Table 2.1)). One example of a known metabolite with an age x sex interaction is
shown in Figure 2.2.

Taken together, we found a total of 995/3091 metabolites (32.2%) in the AE column
and 995/3714 (26.8%) in the C18 column whose concentration was effected by age, sex,

genotype, or some interaction thereof.

Metabolite Enrichment

Using the program mummichog (Li et al., 2013), we asked whether subsets of
metabolites associated with a particular trait or trait combination were enriched for
specific classes of metabolites. Our analysis revealed a large number of metabolic pathways
whose constituent metabolites were overrepresented among all metabolites associated
with sex, age, and their interactions. The complete list is shown in Table S2.2.

Among metabolites that change with age, we identified four groups that are notable for
being strongly enriched for certain pathways, and being of specific interest from an aging
perspective. The first group, illustrated in Figure 2.5, includes metabolites associated with
sugar and glycerophospholipid metabolism. These two pathways are connected via
interactions with 4’-phosphopanthothenate. Metabolites associated with glycolysis,
including G6P, F6P, and ‘feeder’ molecules F1P, G1P, galactose 1-phosphate, trehalose 6-
phosphate, and mannose 6-phosphate, show a clear decline with age. Metabolites
associated with glycerophospholipid metabolism show both increases and declines with
age, and include sphingosine, phosphoryl ethanolamine, 1-L-myo-inositol-1-phosphate, and

phosphoryl choline.
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The second group of molecules is the carnitines, illustrated in Figure S2.3. These
molecules, which make up the carnitine shuttle, are a key component of fatty acid
metabolism, and show an almost uniform, highly significant decline with age.

The third and fourth groups, described in detail in Table 2.2, include amino acids and
neurotransmitters, including molecules involved in monoamine metabolism as well as well
as the inhibitory neurotransmitter y-aminobutyric acid (GABA) and its precursor arginine.

Among the 150 most heritable metabolites, we observed enrichment for two pathways
related to tryptophan metabolism—tryptophan degradation (AE: n = 4 observed / 8 total,
Pagj = 0.0034; C18: n = 2 observed / 7 total, Pagj = 0.023) and serotonin and melatonin

biosynthesis (AE: n =4/6, Pagj = 0.0028; C18: n = 2/7, Pagj = 0.023).

DISCUSSION

Beginning with Pletcher’s groundbreaking study on the transcriptome of aging fruit
flies (Pletcher et al., 2002), systems biological studies of aging in the fruit fly have focused
primarily on the transcriptome. Here we turned our attention to the metabolome, in an
attempt to determine the degree to which the metabolome a) is associated with
physiological state; b) can predict age, sex and genotype-specific variation in aging; and c)
might reveal novel metabolic pathways associated with natural genetic variation in aging.

While previous studies have looked at the effects of age, sex, or genotype on
metabolomic variation, this study is unique not only in its scope (i.e., the very large number
of metabolites analyzed), but also in its design. By including age, sex, and genotype, we
were able to measure the independent effects of all three of these fundamental biological

parameters simultaneously, as well as of their interactions, and to identify specific
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metabolic pathways associated with changes due to age, sex, and genotype. This study also
takes advantage in particular of new advances in high-resolution metabolomics (Jones et
al., 2012). With the availability of this new system, we can now identify tens of thousands
of features from samples as small as a few flies (2-3 mg of tissue, in this case).

We found that the metabolome is, indeed, highly sensitive to physiological state as
influenced by sex, by age and by underlying genotype, with as much as one-third of the
entire metabolome responding significantly to these factors or their interactions.
Moreover, the metabolome proved to be strongly predictive of sex and age. These findings
hold out the hope that metabolomic profiles might be a powerful biomarker of age. Further
studies are needed to determine whether samples that are younger or older than predicted
by their metabolomic profile would be relatively longer- or shorter-lived, respectively.

While this study set out to identify metabolites affected by age, the most dramatic
effects were found with respect to sex. In fact, we have likely underestimated the
proportion of metabolites that differ between the sexes, as we excluded all metabolites that
were absent in more than 5% of samples from either sex. Thus, metabolites that were
found consistently in one sex, but less so or not at all in the other sex, would have been
excluded from our analysis. Our finding of sex differences in multiple classes of metabolites
is consistent with earlier studies on flies showing sex differences in lipid profiles (Parisi et
al., 2011; Scheitz et al,, 2013).

Given these extensive differences, and the ease with which we are able to carry out
genetic manipulations in Drosophila, we should be able to use the fly as a model system to

identify the genetic basis of sex-specific differences in the metabolome.
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We found between 7% (C18) and 13% (AE) of all metabolites differed among
genotypes. This finding holds out the promise of addressing two critical issues. First, given
the strong genetic signature of variation in metabolites, we should be able to identify the
genetic basis of individual variation in metabolites in Drosophila, as others have done in
humans (e.g., Kettunen et al., 2012; Suhre and Gieger, 2012). Second, and of central interest
to aging research, we should be able to determine the extent to which genotype-specific
metabolite profiles are correlated with lifespan (and, of course, other traits of interest).
These results also fit well within the context of earlier work showing the effects both of life-
extending mutants (e.g., Fuchs et al., 2010; Wijeyesekera et al. ) and of selection on lifespan
(Sarup et al.,, 2012) on metabolite profiles. Whether these treatments can actually reverse
the effects of age on the metabolome requires more detailed analysis.

Perhaps the most unexpected finding was the considerable number of metabolites that
showed significant age-x-genotype interactions (Table 2.1). This finding was facilitated by
the fact that we were able to measure metabolites at seven different ages for 15 different
genotypes. Scaled up to a larger sample of genotypes, we are confident that future studies
should enable us to identify single genes associated not only with baseline metabolite
levels (e.g., Kettunen et al., 2012; Suhre et al., 2011), but also with the degree to which
metabolite concentrations change with age, and the impact of these changes on other age-
related traits.

The strong effect of a sex x age interaction on metabolomic profiles also holds out great
promise for our ability to better understand why sexes differ in longevity and in patterns of
age-associated disease. Previous studies have looked at the degree to which age and sex

affect metabolite concentration (Psihogios et al., 2008; Slupsky et al., 2007), though these
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studies have not looked specifically at interactions between sex and age. Going a step
further, we might ask whether we can identify genes that affect sex-differences in age-
specific trajectories of specific metabolites. While such a ‘third-order’ analysis is complex,
its feasibility is hinted at by the existence of numerous metabolites with statistically
significant three-way interaction between sex, age and genotype (C18: n = 56; AE: n = 34).

Our findings suggest not only that the metabolome might be a useful biomarker of
physiological state, but also that it might reveal novel pathways associated with age. The
age-related decline in carnitines was perhaps the most consistent pattern that we observed
here. Carnitines are critical for the transfer of fatty acids into the mitochondrion, where
they undergo [3-oxidation, generating acetyl-CoA, which then enters the TCA cycle. In their
study of aging in mice, Houtkooper et al. (2011) found a similar age related decline not only
in acylcarnitines, but also in genes associated with fatty acid metabolism. Similar declines
have also been seen in humans (e.g., Gomez et al.,, 2012), and numerous studies point to the
ameliorative effects of supplemental carnitines on senescence (e.g., Noland et al., 2009).
Our findings are consistent with another recent study in Drosophila showing age-related
changes in fatty acid profiles (Moghadam et al. 2013).

Amino acid (AA) balance is thought to explain the dramatic response of lifespan to
dietary restriction (Grandison et al., 2009), and AAs are important activators of the aging-
related Target of Rapamycin (TOR) pathway. We found AA enrichment among metabolites
that increased with age, that decreased with age, that were higher in males, and that
interacted between age and sex or age and genotype. These last two groups suggest that
amino acid levels might be useful in predicting differences in patterns of aging between

males and females, or among genotypes. In support of this potential, AAs were among the
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metabolites with the highest heritability, a finding consistent with previous studies on the
heritability of the metabolome (Kettunen et al., 2012; Rhee et al., 2013; Suhre et al., 2011).
Interestingly, the AAs that we identified as having the highest heritability were similar to
three of four AAs found to be highly heritable in humans, including isoleucine, proline and
glutamine (Suhre et al., 2011).

Among metabolites that declined with age, we also observed enrichment of those
associated with glycolysis and glycophospholipid metabolism. These two groups were
linked through pantothenic acid (Vitamin B), which is required for the conversion of
pyruvate (from glycolysis) to acetyl CoA, part of phospholipid biochemistry. Our data
suggest that at least in flies, glycolysis declines with age. We saw that overall, membrane
phospholipids declined with age, though some metabolites, such as
phosphatidylethanolamine and phosphatidylcholine, moved in opposite directions (Figure
5), an observation consistent with previous studies (Kostal et al., 2011). Studies in flies
have shown strong effects of thermal stress on membrane phospholipids (e.g., Overgaard et
al.,, 2008). Future studies might benefit from a focus on the degree to which the well-
established effect of temperature on lifespan is affected by changes in phospholipid
biochemistry.

In this study, biogenic amines were associated with age and sex, and tryptophan
metabolism in particular showed high levels of heritability. Previous studies in flies have
suggested that both dopamine and serotonin signaling might be important regulators of
aging (De Luca et al,, 2003; Vermeulen et al., 2006), either directly, or indirectly through

their interaction with insulin signaling pathways (Toivonen et al., 2009).
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Interestingly, we also saw enrichment for the tryptophan degradation pathway, to
kynurenine, among metabolites with the highest heritability. Recent work has implicated
this pathway to aging in both worms (Coburn et al., 2013) and flies (Oxenkrug et al., 2011).

Given the enrichment of these pathways among the most heritable metabolites, our
results offer hope that these pathways might help to explain variation in important fitness
traits, including survival, in natural populations. This might be especially true of sex-
specific differences in aging. Biogenic amines were found to be common not only among
metabolites that differed between males and females, but also among metabolites whose
age-specific trajectories were sex-specific (Table S2.1).

There are, of course, some limitations to this work. First and foremost, we do not yet
have a curated Drosophila metabolome. While we are able to obtain putative matches for
approximately one-quarter of all metabolites, these matches often carry considerable
uncertainty. In some cases, a single mass-charge ratio might match 10 or more putative
known molecules. Once the fly metabolome is curated, we will be able to more accurately
describe the dynamics of fly metabolic pathways. Moreover, in limiting our assay to
metabolites with m/z-ratios of less than 900, we have eliminated many components of lipid
metabolism, which is of interest to aging studies (Barzilai et al.,, 2001).

Second, our study relied on whole flies. We know that metabolomic profiles differ
among tissues in the fly (Chintapalli et al., 2013). Moreover, our whole-body analysis
includes the gut, and so includes potentially confounding metabolites from the large
bacterial flora found in the fly gut (Corby-Harris et al., 2007).

Third, while this is the largest-scale analysis of age-related change in the metabolome to

date, the data represent just one experiment (albeit a large-scale one). Changes that appear

39



to be related to age might, in fact, be due to secular environmental trends that occurred
over the 12-week course of the experiment (an often unstated concern of cohort aging
studies).

Our work has established the power and potential of the fly metabolome as a model to
both explain and predict variation in aging. In light of our findings, there are several
avenues for future research of immediate interest. To begin with, we have established that
there is substantial genetic variation in the metabolome, and that a large number of specific
metabolites are not only affected by age, but also show age-effects that vary by genotype.
Thus, we are confident that we can use metabolomic variation to tie together genotype
with phenotype, identifying genes that affect metabolites, and metabolites that affect
and/or reflect variation in lifespan. In this way, large-scale metabolomic studies hold out
much promise in helping us to complete the genotype-phenotype map for aging.
Furthermore, here we have focused on measures of individual metabolites. Recent work
suggests that as individuals age, we see changes not only in the levels of specific molecules,
but also in the way that these molecules interact with one another within intracellular
networks (Soltow et al., 2010). The metabolomic profiles we have described here should
allow us to examine age-specific changes in network structure, and in so doing, to generate
novel hypotheses regarding pathways that are robust or frail in the face of the aging
process. Finally, and as we mentioned earlier, we must now make it an urgent priority to
curate the metabolomes of all model organisms that are used in aging research. A recent
curation of the yeast metabolome has been made available (Jewison et al., 2012). To this we

now need to add the worm and the fly.
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FIGURE LEGENDS
Figure 2.1. To complete the map from genotype-phenotype (G-P), we face numerous
hurdles. First, the genome consists of complex epistatic networks of genes. Second, each
gene can have pleiotropic effects on multiple traits. Third, the causal path between a gene
and its downstream phenotype is far from direct, including effects on the transcriptome,
proteome and metabolome, and influenced by environmental effects. This figure suggests
that metabolome can provide a valuable intermediate stage to complete the G-P map,
identifying genetic and environmental factors that influence metabolomic profiles, and

then correlation metabolomic profiles with phenotypes of interest.

Figure 2.2. Specific metabolites associated with age (A, C), sex (D) and their interaction (B)
(P <4 x 1011 in all cases). Blue dots indicate males and red dots indicate females; the value
on the age-axis for (B) and (D) is shifted between the sexes for illustrative purposes only.
Confirmed metabolite identities include (A) Oleoylcarnitine; (B)

1-0Oleoylglycerophosphoethanolamine; (C) Stearoylcarnitine; and (D) Glutamine.

Figure 2.3. First component value from partial least squares discriminant analysis showing
strong separation of males and females. (A) AE column (minimum classification error rate
(CER) based on 10-fold validation = 0.017, using four metabolites. After permuting the
class variable (sex), CER = 0.385 = 0.008 [mean * standard error, n = 10 permutations]).
(B) C18 column (minimum CER = 0.021 based on 25 metabolites. After permutation, CER =

0.371 + 0.015 [mean * s.e., n = 10 permutations]).
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Figure 2.4. Predicted versus observed age, for C18 males (A), AE males (B), C18 females (C)
and AE females (D). In each case, two thirds of all samples were chosen at random to
construct a model using partial least squares regression. This model was then used to
predict values for the remaining one-third of the samples. Predictions were repeated
twenty times in each case, and the figures shown here represent cases close to the mean R?
value. The red line represents a 2"d-order polynomial fit to the data, and the dashed grey
line is the isometric line. These results are consistent with R? values obtained from 10-fold
cross validation scores based on sparse PLS on the full data set (R? values: AE males: 0.92;
AE females 0.83; C18 males: 0.88; C18 females: 0.78). In all four cases, R? values for

permuted data sets were less than 0.05.

Figure 2.5. The network shown here represents output from mummichog analysis with
color hue determined by the sign and size and color intensity determined by the magnitude
of the regression coefficient in the age model (blue is positive, red is negative). The
metabolites are putatively annotated based on m/z ratio. This particular module is
enriched for metabolites associated with glycolysis, for metabolites that feed the glycolytic
pathway, and for metabolites associated with glycophospholipid metabolism (P = 0.04, see

text for details).

Figure S2.1. Histogram of intraclass correlations among all metabolites for AE (top) and

C18 (bottom) columns.
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Figure S2.2. Sparse partial least squares discriminant analysis is able to distinguish
samples of different ages, where age is treated as a factor rather than a continuous variable

as in Figure 2.4, with relatively high accuracy.

Figure S2.3. Carnitine shuttle pathway from mummichog analysis of metabolites, with color

and intensity determined by the sign and magnitude of the regression coefficient in the age

model (blue is negative, red is positive).
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Table 2.1. Number and percentage of metabolites associated with age, sex, genotype and

their interactions for AE and C18 columns.

Parameter # of AE metabolites % of AE total | # of C18 metabolites % of C18 total

Increase with Age 76 2.5% 36 1.0%
Decrease with Age 96 3.1% 167 4.5%
Increase in Males 267 8.6% 133 3.6%
Increase in Females 381 12.3% 431 11.6%
Genotype 423 13.7% 292 7.9%
AgexSex 71 2.3% 167 4.5%
AgexGenotype 137 4.4% 542 14.6%
SexxGenotype 26 0.8% 15 0.4%
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Table 2.2. List of specific amino acids and neurotransmitters associated with different age

parameters. Age 1 and Age | refer to metabolites that either increase or decrease with age,

respectively. A x S and A x G refer to metabolites with significant interaction effects

between age and sex or age and genotype, respectively. Effects are all significant after

correction for multiple comparisons with a False Discover Rate of 0.01 (see text). Note that

isoleucine and leucine co-elute under our conditions and have identical mass-charge ratios

so cannot be distinguished.

Metabolite Effect

Amino Acids

Tryptophan Age 1,Age |,AxG

Isoleucine/Leucine Age 1, Age |,AxG

Arginine Age |

Phenylalanine Age !

Methionine AxS

Proline AxS AxG

Threonine AxS AxG

Aspartate AxG

Glutamine AxG
Neurotransmitters

N-acetyl-serotonin Age |

4-alpha-Hydroxytetrahydrobiopterin Age 1,AxS

5-hydroxy-L-tryptophan Age 1,A xS

Tetrahydrobiopterin AxG

L-Dopa Age |,A xS

Dopamine Age |

GABA Age 1, Age |
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Figure 2.4
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SUPPLEMENTARY INFORMATION
Table S2.1. Bloomington Stock Center numbers, DGRP numbers, and wolbachia status for

those inbred lines analyzed in this study.

Bloomington | DGRP no. | Core40? Wolbachia

25174 | RAL-208 Core40 No
25181 | RAL-315 Core40 No
25185 | RAL-358 Core40 No

25186 | RAL-360 Core40 Yes
25187 | RAL-362 Core40 Yes

25188 | RAL-375 Core40 No
25190 | RAL-380 Core4d0 Yes
25192 | RAL-399 Cored0 No
25197 | RAL-517 Cored0 No

25198 | RAL-555 Core4d0 Yes
25201 | RAL-712 Cored0 Yes
25204 | RAL-765 Core40 No
25206 | RAL-786 Core4d0 Yes
25210 | RAL-859 Cored0 Yes
25745 | RAL-714 Core40 No
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Table S2.2. Mummichog enrichment analysis for sets of analytes significantly associated

with specific factors. For sake of clarity we only include pathways that are enriched with at

least three analytes.

Column Significant predictor Pathway Obs. | Ref. | P-value Q\(,jirjzw

C18 Age genotype interaction | Zymosterol Biosynthesis 4 12 0.0257 0.0008
Cc18 Age genotype interaction | Purine deoxyribnucleoside degradation 3 6 0.016 0.0008
AE Age genotype interaction | arginine biosynthesis IV 4 12 0.1088 0.0054
AE Age genotype interaction | citrulline-nitric oxide cycle 3 7 0.085 0.0059
AE Age genotype interaction | isoleucine biosynthesis from threonine 3 8 0.1206 0.0086
AE Age genotype interaction | tRNA charging pathway 5 20 0.2016 0.0099
AE Age genotype interaction | uridine-5'-phosphate biosynthesis 3 10 0.2039 0.0175
AE Down with age Isoleucine degradation | 4 8 0.0331 0.0009
AE Down with age Purine Deoxyribonucleosides degradation 4 8 0.0331 0.0009
AE Down with age 2-methylbutyrate biosynthesis 3 5 0.0379 0.0014
AE Down with age Beta-carboline biosynthesis 3 5 0.0379 0.0014
AE Down with age Dopamine Degradation 4 10 0.075 0.0016
AE Down with age Serotonin and melatonin biosynthesis 3 6 0.0663 0.0021
AE Down with age Coenzyme A biosynthesis 3 6 0.0663 0.0021
AE Down with age Leucine degradation | 4 11 0.1026 0.0022
AE Down with age L-carnitine biosynthesis 3 7 0.1018 0.0031
AE Down with age Glycolysis Il 3 10 0.2374 0.0103
AE Down with age Glycolysis Ill (Thermotoga) 3 11 0.2879 0.0147
AE Down with age Glycolysis | 3 11 0.2879 0.0147
AE Down with age Ei'z:/:‘t‘:e':f?zo'e ribonucleotide 3| 11| 02879 0.0147
AE Down with age FormyITHF biosynthesis | 3 12 0.3392 0.0205
AE Down with age Gluconeogenesis 3 13 0.3902 0.0278
AE Down with age tRNA Charging pathway 4 20 0.457 0.0301
c18 Down with age Ei‘:li:‘i:;gl‘i’shosph°°"gosac°ha”de 4| 4| o.0009 0.0007
Cc18 Down with age Zymosterol Biosynthesis 6 12 0.0092 0.0008
Cc18 Down with age Purine Deoxyribonucleosides degradation 3 6 0.0685 0.0026
Cc18 Down with age Acetylneuraminate biosynthesis | 3 7 0.105 0.0037
Cc18 Down with age Dopamine Degradation 3 8 0.1473 0.0053
AE Increase in Females Catecholamine biosynthesis 5 9 0.0181 0.0006
AE Increase in Females Choline biosynthesis Il 3 4 0.026 0.0011
AE Increase in Females Betaxanthin biosynthesis (via dopamine) 3 4 0.026 0.0011
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AE Increase in Females Phosphatidylcholine biosynthesis 3 6 | 0.0953 0.003
AE Increase in Females 4-hydroxyproline degradation | 3 7 | 0.1432 0.0049
AE Increase in Females Isoleucine biosynthesis from threonine 3 8 | 0.1971 0.0077
AE Increase in Females Salvage pathways of pyrimidine ribonucleotides 3 8 | 0.1971 0.0077
Cc18 Increase in Females Dolichyl-diphosphooligosaccharide biosynthesis 4 4 | 0.0003 0.0021
Cc18 Increase in Females Zymosterol Biosynthesis 5| 12 | 0.0127 0.0025
Cc18 Increase in Females Acetylneuraminate biosynthesis | 3 7 | 0.0507 0.0046
C18 Increase in Females Dopamine Degradation 3 8 | 0.0736 0.0055
AE Increase in Males Arginine degradation X (arginine monooxygenase 3 2| 0.0152 0.0003
pathway)
AE Increase in Males Arginine degradation VI (arginase 2 pathway) 3 7 0.091 0.0011
AE Increase in Males Catecholamine biosynthesis 3 9 | 0.1706 0.0024
AE Increase in Males tRNA Charging pathway 4] 20 | 0.4196 0.0099
Cc18 Increase in Males L-carnitine biosynthesis 3 6 0.032 0.0065
AE !\legatlvg 38€ sex Betaxanthin biosynthesis (via dopamine) 3 4 | 0.0492 0.001
interaction
Negati
AE negative age sex tRNA Charging pathway 7|20 | 02052 | 0.0021
interaction
AE !\legatlvg 38€ sex Catecholamine biosynthesis 4 9 | 0.1606 0.0024
interaction
Negati
AE . cea IV? a8 sex Lipoate biosynthesis and incorporation Il 3 6 | 0.1653 0.0037
interaction
AE !\legatlvg 3B€ sex Serotonin and melatonin biosynthesis 3 6 | 0.1653 0.0037
interaction
AE !\legatlvg a8 sex 5-aminoimidazole ribonucleotide biosynthesis | 41 11 | 0.2799 0.0061
interaction
AE !\legatlvg 3B€ sex Isoleucine biosynthesis from threonine 3 8 | 0.3157 0.0111
interaction
AE !\legatlvg 38€ sex Purine Deoxyribonucleosides degradation 3 8 | 0.3157 0.0111
interaction
AE !\legatlvg 3B€ sex Folate Transformations 3 | 10 | 0.4682 0.027
interaction
AE ?osmve-age sex NAQ biosynthesis from 2-amino-3-carboxymuconate 3 s | 0.0as8 0.0004
interaction semialdehyde
Positi
Cc18 . os! |ve-age sex Dolichyl-diphosphooligosaccharide biosynthesis 4 4 | 0.0003 0.0003
interaction
Cc18 ?osmve-age Sex Zymosterol Biosynthesis 5| 12 | 0.0127 0.0004
interaction
Positi
Cc18 . os! |ve-age sex Acetylneuraminate biosynthesis | 3 7 | 0.0507 0.0013
interaction
c18 Positive age sex Dopamine Degradation 3| 80073 | 00019
interaction
AE Up with age Serotonin and melatonin biosynthesis 3 6 | 0.0901 0.0038
AE Up with age tRNA Charging pathway 6 | 20 | 0.1719 0.0041
AE Up with age Isoleucine biosynthesis from threonine 3 8 | 0.1876 0.0109
AE Up with age Isoleucine degradation | 3 8 | 0.1876 0.0109
AE Up with age uridine-5'-phosphate biosynthesis 3| 10 | 0.3014 0.0274
AE Up with age Leucine degradation | 3|11 0.36 0.0408
AE Up with age 5-aminoimidazole ribonucleotide biosynthesis | 3|11 0.36 0.0408
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Figure S2.1
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CHAPTER 3

A COMPARATIVE ANALYSIS OF THE DROSOPHILA METABOLOME?

2Hoffman ].M., Samuelson A., and Promislow D.E.L. To be submitted to Evolution.
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ABSTRACT

Comparative studies have been often been utilized to understand how life history
traits evolve, and recently, comparative “omics” have come to the forefront as a powerful
way to determine the molecular causes and consequences of adaptation and evolution.
However, while comparative genomics and transcriptomics have been heavily studied,
metabolomics, the study of all the small molecules in an organism, has been largely
ignored, and the role of metabolites in shaping life history evolution is unknown. To fill this
gap, we studied variation in the metabolome across eleven Drosophila species. Further, we
determined the associations between the metabolome and both longevity and resistance to
oxidative stress. We first discovered that individual metabolites did not contain
phylogenetic signal, but the entire metabolome taken together showed some concordance
between the known Drosophila phylogeny and one estimated from the metabolome alone.
We then found that a large proportion of the metabolome is correlated with sex, species,
and body weight, and many metabolites are associated with longevity in a sex specific
manner. Finally, we found that amino acids and TCA cycle metabolites are enriched among
all metabolites associated with longevity. Here, we have shown the power of metabolomics
to help us understand the molecular mechanisms that underlie variation across species in

important fitness traits, including longevity and oxidative stress resistance.
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INTRODUCTION

The comparative method has long been employed to address a wide range of
biological questions, helping us to understand species’ relatedness, how species adapt to
new environments, and how and why phenotypic traits coevolve among groups of species
(Harvey and Pagel, 1991). The earliest comparative studies focused on the measurement of
individual phenotypic traits (e.g. Damuth, 1981; Harcourt et al., 1981), including many life
history traits (e.g. Harvey et al,, 1991; Promislow, 1991; Promislow and Harvey, 1990;
Promislow and Haselkorn, 2002), and drew important conclusions that were often missed
by studying a single species. Recently, “omics” methods have come to the forefront of
comparative studies, with the goal of understanding adaptation at the molecular level.
Comparative genomics has taught us largely about how genetic sequences evolve (e.g. Clark
etal., 2007; Scally et al., 2012), as well as how transcriptomes change across organs and
species (e.g. Brawand et al., 2011; Lu et al,, 2008) However, little is known about the newer
“omics” technologies, including the proteome, the microbiome, and the focus of this study,
the metabolome.

Metabolomics, the study of all the small molecules in an organism, integrates both
the genome (through proteins regulating metabolite flux) and the environment (both
responses to the environment and molecules from external sources). As such it has the
potential to inform us about how life history traits evolve at the molecular level by
discovering how metabolic correlates associated with life history traits change across
species. By identifying metabolic associations with life history traits across species, we can
learn about the molecular mechanisms that underlie life history traits. A metabolomic

perspective is imperative to completely understand how adaptation has affected species at
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the biochemical level; however, the literature on comparative metabolomic studies is
scarce.

While there is large potential for understanding the evolution of the metabolome by
utilizing comparative studies, few have actually attempted to determine how the
metabolome has evolved across taxa. One study in sponges discovered that metabolomic
profiles could distinguish two distinct groups of species, already known to be different
(Ivanisevic et al., 2011), though this study only looked at a small subset of metabolites. A
study across seven mammal species determined the metabolome could not recapitulate the
phylogeny of the species (Park et al,, 2012), and surprisingly, principal component analysis
suggested that humans are more similar to mice than to new world primates. At the same
time, other studies have shown that the metabolome reflects genetic divergence across
primate species and does not appear to be largely influenced by the environment (Bozek et
al., 2014), but there may be signatures of adaptation to different diets within primates
(Blekhman et al., 2014). Across the limited comparative metabolomics literature, we see
conflicting results that suggest we still do not understand the effects of different
evolutionary forces on the metabolome. These studies also did not examine how
adaptation via life history trait evolution may be associated with changes in metabolomic
profiles. Here, we suggest that studies on closely related Drosophila species might allow us
to begin to grasp how the selection has shaped the metabolome and its connections to life
history traits.

To identify coevolutionary patterns between life history traits and the metabolome,
the fruit fly genus Drosophila offers a potentially powerful model. Flies are often thought of

as a classic molecular genetic model with most studies focusing on one species, Drosophila
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melanogaster. However, the Drosophila genus has also been studied in a comparative light
to understand phenotypic adaptation. Early Drosophila comparative studies usually
focused on very specific phenotypes (e.g. Capy et al.,, 1993; Coyne and Orr, 1989; Kambysel
and Heed, 1971; Partridge et al.,, 1987; Schnebel and Grossfield, 1983). But recently, with
the advent of whole genome sequencing, the Drosophila genus became the first to receive
large genomic comparative analyses with the sequencing of 12 closely related species
(Clark et al., 2007).

Since the sequencing of the 12 Drosophila genomes, the Drosophila genus has
become a powerful model for comparative genomics, and researchers now understand the
genetic basis of adaptation and speciation (e.g. Clark et al.,, 2007; Lu et al., 2008; Stark et al,,
2007) to a degree not previously possible. With regards to metabolic evolution in
Drosophila, researchers have found that rates of sequence evolution differ for enzymatic
versus non-enzymatic proteins (Larracuente et al., 2008); as well as differences in
evolution rates for essential versus non-essential proteins across the Drosophila phylogeny
(Greenberg et al., 2008). However, the association of life history traits with metabolic
pathways and individual metabolites is unknown.

To begin to fill this gap in our knowledge, we completed the largest comparative
metabolomic study to date using eleven different Drosophila species. We assess the degree
to which metabolomic variation in steady state levels is captured within species versus
among species. We then ask if phylogenetic signatures exist within individual metabolites
as well as the extent to which metabolomic profiles recapitulate the true phylogeny. Finally,
we determine if individual metabolites and metabolic pathways are associated with life

history variation among species.
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METHODS
Species and lines
Eleven species of Drosophila with sequenced genomes were utilized for this project:
D. melanogaster, D. simulans, D. sechellia, D. ananassae, D. erecta, D. yakuba, D. willistoni, D.
pseudoobscura, D. persimilis, D. mojavensis, and D. virilis. All species except D. mojavensis
were obtained from the UCSD Drosophila species stock center

(https://stockcenter.ucsd.edu/). D. mojavensis lines were obtained from Luciano Matzkin

at the University of Alabama at Huntsville. To enable us to distinguish species differences
from genotype affects, we obtained three wild type lines from each species with the
exception of D. yakuba and D. erecta, of which we were only able to obtain one wild type
strain. Our final longevity analysis consisted of only two lines of D. mojavensis, D. persimilis,

and D. willistoni due to insufficient collection of one genotype of each species.

Media

To control for the many effects diet has on the metabolome, all lines were reared on
the same diet, consisting of banana, molasses, corn syrup, yeast, agar, methylparaben (to
reduce fungal growth), ethanol, and water.

For the oxidative stress assay, we used three different types of media. Control
medium consisted of agar, dextrose, propionic acid (to reduce fungal growth), and water.
For the paraquat medium, we combined agar, dextrose, propionic acid, and water. Paraquat
was then dissolved in water and added in replacement of some water to make a final 1.3

mM paraquat medium. Finally, for the H202 medium we combined agar, dextrose, propionic
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acid, and water. We then used freshly opened hydrogen peroxide in place of some water

such that the medium had a concentration of 2% H20..

Longevity Assay

Flies were placed in bottles on banana medium and allowed to mate and lay eggs
for 48 hours. Adults were removed from bottles, and the eggs were allowed to develop at
24°C and approximately 60% humidity. Virgin males and females were collected under CO;
anesthesia and placed into vials with banana food within 8 hours of eclosion, except D.
virilis, which was collected within 12 hours of eclosion. Approximately 20 flies were placed
in each vial, and collection took place over 48 hours. Total number of vials and flies
analyzed per line are given in Table S1. Flies were transferred onto new food three times
over a seven day period before the start of the longevity assay. On the seventh day, flies
were transferred into vials randomized and scanned into the Drosophila longevity program
dLife (Linford et al., 2013). dLife allows for the researcher to be blind to the vial identities,
such that biases in calling of deaths are minimized. Flies were then transferred onto new
food three times a week and dead flies were counted and recorded into dLife at each

transfer. Recording in dLife continued until all flies in all vials were deceased.

Body weight analysis
Flies were collected simultaneously during the longevity collection for body weight
analysis. When flies were five days old, they were frozen in groups of five from each sex

and line with three replicate samples for each line by sex combination. Weights were
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averaged over the three replicates and then divided by five to attain an average weight per

fly (Table S3.1), giving us only a single weight value for each genotype.

Oxidative Stress Assay

Flies were reared as described for the longevity assay until eclosion, and after the
collection of virgins, flies were held on banana food for two days after the last day of
collection (48 hours of collection). Flies were placed on one of three treatments as
described above: control food, 1.3mM paraquat, or 2% hydrogen peroxide.

Most lines consisted of one vial of control food and three vials each of paraquat and
H20: food with each vial consisting of approximately 20 flies. Total numbers of flies
analyzed for oxidative stress resistance are in Table S3.1. Flies were randomized into their
respective food vial using dLife as in the longevity assay. After the first 24 hours, flies were
then checked every 12 hours; at each checkpoint the number of dead flies were counted
and recorded in dLife. After 5-7 days, flies were transferred onto new food to prevent the
food from drying out. After 3 weeks, the longevity study was ended with those flies still

alive being censored for final oxidative stress analysis.

Metabolomics Assay

Flies were reared and collected as virgins as described in the longevity assay. Flies
were held on banana food and transferred every two days until they were five days old.
They were then placed in 1.5 mL tubes in groups of 10 flies, and tubes were flash frozen in

liquid nitrogen and placed in a -80°C freezer to be extracted.
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Fly extractions began with homogenizing tissue samples in 200uL water using a
tissuelyser (TissueLyser II, Qiagen) for 6 minutes at 25 Hz. Samples were then incubated
for 30 minutes in 800uL methanol on dry ice. The suspension was then tissuelysed again
for 10 minutes at 25Hz, and then spun at 13000 rpm for 10 minutes at 4°C. The
supernatant was then removed and placed in a new tube for metabolomics analysis. These
supernatants were then dried using a speedvac at 30°C. Metabolomics analysis was
completed at the Raftery lab at the University of Washington using liquid chromatography

coupled to quadrupole time of flight mass spectroscopy in negative ion mode.

Data analysis

All statistical analyses were completed in the program R (R Core Team, 2013) unless
otherwise stated.

Lifespan: We first determined average, median, and maximum longevities by sex for
each unique genotype. Results of the longevity experiment were compared across lines to
determine differences that exist both within and between species. We used a Kaplan-Meier
analysis to plot longevity curves for each sex and species and to determine if their survival
curves were significantly different.

Oxidative stress analysis: First we determined correlations between resistance to
paraquat and body weight, median longevity, and maximum longevity using a Pearson
correlation. Then we repeated the analysis for hydrogen peroxide. This analysis allowed us
to discover if the ability to resist oxidative stress was the same across different stressors.

Metabolomics analysis: Metabolomics data were first log-transformed to normalize

data. We then removed all metabolites that were not present in at least 80% of samples.
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We first determined if a phylogenetic signal was present in the metabolome using Pagel’s K
(Pagel, 1994), an estimate of phylogenetic signal for individual phenotypes. Using the
known Drosophila species phylogeny, we used the picante package (Kembel et al., 2010)
in R to discover Pagel’s K for each individual metabolite, using species metabolite
concetration mean as the trait value. We corrected for multiple comparisons using a false
discovery rate (FDR) at a=0.05 (Benjamini and Hochberg, 1995). We then determined if
the entire metabolome could recapitulate the true species phylogeny. We first took the
species’ mean of each individual metabolite. Then using this matrix, computed a distance
matrix based on Euclidian distance, and ran the resulting distance matrix through a
neighbor-joining tree building algorithm (Saitou and Nei, 1987) in the ape package
(Paradis et al., 2004). We then tested for concordance between the true species phylogeny
and our metabolomic phylogeny using a permutation test (999 permutations) of Kendall’s
W (Kendall and Smith, 1939), which is a non-parametric test of concordance between two
distance matrices. The null hypothesis is no concordance exists between the two matrices,
and test statistics range from zero (no concordance) to one (completely concordant).

To discover the association between body weight, sex, and species on each
individual metabolite, we ran an ANOVA for each metabolite including body weight, sex,
species, and genotype to determine which metabolites were associated with sex and body
weight. To correct for multiple comparisons, a factor was considered significant if it passed
a FDR at a=0.05. Samples with missing data were removed from this analysis.

Next, we sought to know how metabolite values were associated with longevity
measures. We ran an analysis of variance with median longevity as the dependent variable

with body weight, metabolite concentration, and species as fixed predictor effects. The
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sexes were run separately with missing data removed from the analysis. Then we ran the
same analysis except instead of median longevity we used maximum longevity, paraquat
median longevity, or hydrogen peroxide median longevity. For the oxidative stress
resistance models, we also included median longevity as a predictor. For all the ANOVAs
described above we again used an FDR of 0.05.

For all the individual factors analyzed in the ANOVAs, we then ran metabolic
enrichment analysis to determine if metabolites associated with a specific factor were
enriched for specific metabolic pathways. This was completed using the enrichment
program mummichog (Li et al., 2013), in which mass to charge ratios are used for
annotation and enrichment. For this analysis, we utilized the D. melanogaster reference
metabolic pathway. Pathways were considered to be significant if their adjusted p-value
was less than 0.05 and if the number of metabolites found in a pathway was greater than
two.

We then completed an unsupervised principal component analysis (PCA) to
determine if specific components of the entire metabolomic profile were associated with
sex, species, or median longevity. We used the made4 package (Culhane et al.,, 2005) to get
coordinates for the first 6 principal components, and we determined associations with
body weight, sex, and species using a linear model. For this analysis, missing data were

imputed using the java program LSimpute (Bo et al., 2004).
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RESULTS
Longevity results

Final analysis consisted of 26 genotypes across 11 species. Measure of fly longevity
for each sex and genotype are shown in Table S3.1. In nine species females had significantly
greater longevity than males (Figure S3.1), and in one species, D. ananassae, males lived
significantly longer. D. erecta showed no significant differences between the sexes, and D.
virilis was the longest-lived species in all natural longevity measures with a maximum
longevity of 170 days (Table S3.1, Figure 3.1). Body weight was significantly associated
with median and maximum longevity in both males and females (Pearson correlation:
P<0.0001 for both). We also found that both median and maximum longevity varied among
species, and among genotypes within species (ANOVA: P<0.0001 for both).

While there were significant differences found in longevity between species and
sexes (Figure 3.1), we also observed large differences within species (Table S3.1). We also
found that coefficients of variations differed over two fold across species from a low of 24%
in D. simulans females to a high of 61% in D. erecta females (Table 3.1).

Our oxidative stress analysis showed large variation between different stressors.
Strong correlations were seen between median longevity and paraquat resistance (Figures
3.2 and 3.3); however, there was no significant correlation between hydrogen peroxide
resistance and median longevity. Also, body weight was significantly correlated with
paraquat resistance (Pearson correlation: P=0.0005) but not hydrogen peroxide resistance
(Pearson correlation: P=0.083, Figures 3.2 and 3.3). Even though the correlations between

natural longevity and paraquat and hydrogen peroxide were different, we found a
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correlation between survival on paraquat and hydrogen peroxide in both sexes (Figures 3.2
and 3.3).
Metabolomics results

Our final metabolomic dataset consisted of 253 metabolites across 159 samples. Of
these metabolites 89 had a known metabolite identity, 127 had a known chemical formula
but no structural identity, and 36 had a mass to charge ratio only. Looking at the variance
averages across each individual metabolite, we found the variance within a genotype was
low on average (mean=0.042, min=0.0029, max=0.2834). A larger variance was seen within
species (mean=0.059, min=0.0033, max=0.3433), and the largest variance was seen across
all species (mean=0.08, min=0.0035, max=0.466).

First we looked for a phylogenetic signal in the metabolome. Overall, we find that for
individual metabolites, there is little phylogenetic signal, and for no metabolites did Pagel’s
K reach statistical significance after controlling for multiple comparisons. We also failed to
find a significant phylogenetic signal in median as well as maximum longevity (Pagel’s K P-
value >0.05). The entire metabolome also could not recapitulate the Drosophila phylogeny
(Figure 3.4). However, it could correctly place together two sets of sister taxa. D. mojavensis
and D. virilis as well as D. pseudoobscura and D. persimilis. Our statistical test of
concordance between the true phylogeny and our metabolomic phylogeny returned a
Kendall’s W statistic of 0.599 with a p-value of 0.089. A W statistic of 0.599 suggests the
metabolomic phylogeny shows some concordance with the true species phylogeny, but the
non-significant p-value indicates the test was unable to reject the null hypothesis that there

is no congruence between the two phylogenies.
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Using analysis of variance, we discovered a large number of individual metabolites
associated with sex and body weight (Table 3.2, Figure 3.5). When we analyzed the sexes
separately, we found about 30% of the metabolome is associated with median longevity
(Table 3.2, Figure 3.6 and 3.7); however there is less than 40% overlap in the metabolites
associated with longevity in each sex. We also find large numbers of metabolites associated
with maximum longevity and resistance to oxidative stress (Table 3.2).

We carried out enrichment analysis among metabolites that were significantly
associated with sex, species, body mass, and longevity (Table 3.3). Mummichog was able to
putatively identify 205 (81%) of all the metabolites analyzed. We were unable to determine
any metabolic pathways that were significantly different among species, but we were able
to discover two pathways associated with body weight and eight metabolic pathways
enriched for sex differences (adjusted p-value<0.05 for all pathways). Using our sex-
specific analyses, we were able to find pathways associated with median longevity (3 in
female sand 4 in males), maximum longevity (4 in females), resistance to paraquat (1 in
males), and resistance to hydrogen peroxide (3 in males) (Table 3.3). For many of the
different longevity factors we find pathways associated with amino acids, arginine
degradation, and the TCA cycle.

Our unsupervised clustering analysis (PCA) showed large effects of body weight,
sex, and species on metabolomic profiles (Table S3.2). PC1 and PC2 explained 20% and
13%, respectively, of the variation seen in the metabolome, and PC1 and PC2 were both
associated with body weight, sex, and species. Figures 3.8 and 3.9 show PCs associated with

sex and species, respectively.
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DISCUSSION

As was expected, our comparative longevity analysis found large differences
between species in median and maximum longevity, and this is consistent with previous
Drosophila studies (Durbin and Yoon, 1986; Schnebel and Grossfield, 1983). It is worth
noting that D. virilis did live to a maximum of 170 days, which appears to be longer than
any previously published longevity measure in the genus. Interestingly we also discovered
that extensive variation exists within species with respect to longevity and response to
stressors. Even though all our lines were wild-type derived, extreme differences were often
seen within species. Most comparative studies only use one genotype of a species, and here
we show this may not be valid for many species because one line may not represent the
large amounts of variation seen within a species. This could potentially confound studies as
researchers may actually be comparing genetic variation not interspecific variation. The
results of this study suggest that all future comparative studies, especially of life history
traits, need multiple genotypes per species to be analyzed

We also found the metabolome is highly associated with sex, species, body weight,
and longevity. While 70% of the metabolites in the metabolome varied among species, only
21% varied among genotypes. This suggests most of the variation in the metabolome is
contained among species more than within species. While this result is not unexpected, this
is the first study to demonstrate differences in metabolomic variances within and among
species.

Not surprisingly, we discovered sex is highly correlated with the metabolome, both
through individual metabolites and our principal components analysis. Many previous

studies have found large effects of sex on the metabolome in different species (e.g. Hoffman
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et al.,, 2014; Lawton et al,, 2008; Slupsky et al., 2007), and our enrichment analysis suggests
sex differences in the metabolome are reflected in large part by variation in amino acids
including arginine, proline, serine, and alanine. Proline metabolic pathways made up 25%
of the enriched sex pathways in our analysis. Very little research appears to be done on the
sex differences in proline, but one previous study found proline increases with age in
females but not males (Kouchiwa et al., 2012). This is consistent with our results, where
metabolites found in our mummichog analysis in the proline pathways had significantly
higher concentrations in females compared to males.

We discovered that almost 30% of the metabolome is correlated with longevity in
each sex (Table 3.2). Of the metabolites associated with longevity, less than 40% of the
metabolites are the same across the two sexes, suggesting the metabolic influences on
aging and longevity are potentially different across the two sexes. Similar patterns are seen
in our maximum longevity and resistance to oxidative stress analysis with many different
metabolites seen associated in the two sexes. This is consistent with previous work in D.
melanogaster that showed large age-by-sex interactions (Hoffman et al.,, 2014), and these
results suggest metabolomics may have the power to understand why we often seen large
differences in aging and longevity between the two sexes.

Our enrichment analyses on longevity found many metabolic pathways associated
with longevity and resistance to oxidative stress. We found large effects of biosynthesis and
degradation of different amino acids, especially proline, aspartate, and arginine. These
results indicate that both the biosynthesis and degradation of different amino acids may be

affecting longevity and oxidative stress resistance in Drosophila. Future studies of
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manipulations of these metabolites are necessary to understand to what extent they are
directly influencing longevity.

The TCA-cycle also showed up regularly in our enriched longevity pathways.
Previous work has shown the citric acid cycle may play an important role in regulating
longevity and well as paraquat resistance (DaCunha and DeOliveira, 1996). Interestingly
we see TCA cycle enrichment in female maximum longevity and male paraquat resistance.;
however, in neither sex does resistance to hydrogen peroxide show TCA cycle enrichment.
Previous studies have shown that paraquat causes reactive oxygen species production by
altering electron transport in the mitochondria (Bus and Gibson, 1984), while hydrogen
peroxide cause reactive oxygen species production throughout the cell. This might explain,
at least in part, why TCA-cycle metabolites are associated with paraquat resistance but not
hydrogen peroxide resistance. Interestingly, with the exception of arginine degradation, no
metabolic pathways were enriched in both paraquat and hydrogen peroxide resistance
groups. The difference in the mechanisms of paraquat and hydrogen peroxide might also
explain why paraquat resistance correlates with natural longevity while resistance to
hydrogen peroxide does not. This coincides with the fact that most longevity studies with
an oxidative stressor tend to utilize paraquat (e.g. Bjedov etal., 2010; Zou et al., 2000).

This is the largest comparative study of the metabolome to date. While we found
that individual metabolites generally failed to have any significant phylogenetic signal, we
did discover the entire metabolome could recapitulate some parts of the known phylogeny.
At the level of individual metabolites, this could be due to a lack of power—we have
relatively few species, and individual metabolite levels are highly sensitive to

environmental as well as genetic and phylogenetic variation. The metabolome-wide
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analysis likely eliminates at least some of this environmental variation, leading to some
evidence for a phylogenetic signal. Our phylogenetic test of congruence found evidence for
some similarities between the true species phylogeny and the metabolome derive
phylogeny, and while the p-value was not statistically significant (P=0.089), it is suggestive
of some phylogenetic concordance. The metabolome derived phylogeny places sister
species D. pseudoobscura and D. persimilis together as well as D. virilis and D. mojavensis
(they are not sister species but are most closely related of the species analyzed here). We
also discover D. melanogaster and D. simulans group together, but D. sechellia does not
cluster with these two species, as would be expected based on evolutionary history.
Drosophila sechellia has evolved the ability to survive on Morinda citrifolia (Jones, 2005),
which contains high levels of oxalic acid. This adaptation might have caused a shift in this
species’ metabolic pathways such that their metabolomic profile is no longer similar to
related species. It is also interesting to note that all these species were reared in the same
laboratory environment, so this metabolomic shift appears to be an evolved character, not
a response to the environment. By studying those individual metabolites that are catalyzed
my proteins from recently discovered genes (Huang and Erezyilmaz, 2015) that detoxify
oxalic acid, we may be able to determine the metabolic consequences that cause D. sechellia
to have such a distinct metabolomic profile.

In this study, we only analyzed those metabolites that were present in at least 80%
of all samples, such that all metabolites analyzed here were present in at least some
samples in all 11 species. However, the original data set included almost 2000 metabolites
in one or more samples. Future analyses will be completed on the entire dataset to discover

if specific metabolites are found on one branch of the phylogeny but not others. If we can
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determine metabolites showing this pattern, they may give us insight into how metabolic
pathways evolve or are regulated.

Our phylogenetic reconstruction places D. virilis, D. mojavensis, D. pseudoobscura,
and D. persimilis as most closely related to each other with respect to their metabolomes; a
pattern also observed in our PCA analysis. These four species differ from the other species
in our study in that they have markedly slower development time (3 week generation
verses 2 weeks for all the other species). This suggests that the metabolome potentially
contains signatures of physiological pathways related to development. Previous research
has shown that the metabolome is highly variable during development (An et al., 2014),
and the adult metabolome is significantly affected by developmental temperature
(Hariharan et al.,, 2014). However, all previous developmental metabolomic studies have
only looked at D. melanogaster. While not analyzed in this study, future analyses should
look at how the metabolome changes in response to different natural developmental
conditions and how shifts in developmental environments might shape the metabolome of

different species.

Caveats

This work sets the stage for a new and powerful approach to understanding the
underlying mechanisms of interspecific variation and adaptation. While the scope of this
worKk is large, there were several limitations. First, flies used for metabolomics sampling
were not collected at the same time as the flies in the longevity analysis. Because the two
samples came from different experiments, there potentially could be noise caused by the

differences in the laboratory environment between the two experiments. However, we still
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find many metabolites associated with median and maximum longevity, so it appears the
different times of the experiment did not affect our ability to detect associations between
metabolites and longevity. Second, because of destructive sampling, we could not measure
metabolomic profiles for the exact flies used in our longevity analysis. Therefore, we can
only use statistical measures of longevity (median, maximum) to find metabolomic
correlations. If we could sample the individual flies and measure their true longevity, we
might be better able to find metabolomic correlates with longevity. However, this is not
possible in flies; but it could potentially be conducted across different species of captive
rodents. Lastly, we sampled all flies for metabolomics at the same age, and then asked what
associations with longevity were found. We implicitly assume that the best predictors of
life history traits are early-age steady-state levels. However, it might be that age-related
trajectories of individual metabolites are more indicative of changes in physiology and life
history traits (e.g. Hoffman et al., 2014). We might be able to find longevity correlates if we
sample flies at different ages and correlate the age-related changes in metabolite levels
with longevity.

Finally, while greater than any previous study, our sample sizes within genotypes,
among genotypes, and among species were smaller than we would have liked. We only
analyzed three replicate samples per sex-by-genotype combination. While each sample did
contain ten flies, this might not be enough to actually represent the environmental
variation seen within inbred genotypes. Increased metabolomic sampling would give much
more power to this study. Also, we attempted to use three wild type genotypes for each
species; however, for two species (D. erecta and D. yakuba) we only had one genotype. This

could have affected our phylogenetic reconstruction because for D. erecta and D. yakuba we
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only ended up with six metabolomic samples per species, which could potentially explain
why these two species were relatively isolated in the metabolome-derived phylogeny.
Ideally, we need more genotypes for these two species to place the two species into their
correct place on the metabolomic phylogenetic reconstruction. The lack of genotypes for
these two species also meant we had fewer flies to make overall species longevity
measures. Lastly, we had vastly different numbers of flies analyzed per genotype and
treatment (Table S3.1). Many species had hundreds of flies per longevity analysis while
others only had tens. This could have biased the longevity measures in the metabolomic

analysis correlates due to small sample sizes for some of the species and genotypes.

Conclusion

Here we have presented the largest comparative metabolomics study ever
completed, and we are the first to quantify the metabolomic variation that exists at the
species and genotype level. We show the metabolome cannot recapitulate the entire
phylogeny. However, related species often group together, and some potentially large
adaptive changes are seen. We also find the metabolome is highly associated with sex,
species, and body weight, and we find large effects of longevity and resistance of oxidative
stressors, though they are different between the sexes. This study is the first to show the
enormous power comparative metabolomic studies have to understand the metabolic
consequences of evolution, and to generate new hypotheses about why aging and longevity

vary across species.
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FIGURE LEGENDS
Figure 3.1. Longevity curves for each species and sex analyzed. Each species is represented
by a separate color, and females (solid lines) and males (dashed lines) are pictured

separately.

Figure 3.2. Correlations body weight, median longevity, paraquat resistance, and hydrogen

peroxide resistance for all genotypes of females.

Figure 3.3. Correlations body weight, median longevity, paraquat resistance, and hydrogen

peroxide resistance for all genotypes of males.

Figure 3.4. Plot of true species phylogeny (left) and metabolite phylogeny (right). The true
species phylogeny was used to test for phylogenetic signal among individual metabolites.
The metabolite phylogeny was constructed using a neighbor-joining algorithm. Lines

between trees connect the same species. Kendall’s W test of congruence p-value 0.08

Figure 3.5. Plot of two metabolites affected by weight (left) and sex (age). P<0.0001 for

both metabolites. Red lines/dots represent females, blue lines/dots represent males.

Figure 3.6. Plot of four individual metabolites associated with longevity in females. ANOVA

P<0.0001 for all metabolites after controlling for body weight and species.
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Figure 3.7. Plot of four individual metabolites associated with longevity in males. ANOVA

P<0.0001 for all metabolites after controlling for body weight and species.

Figure 3.8. PCA plot of metabolome colored by sex. Females (blue). Males (red). Axes
shown are PC 1 and PC 2 that explain 20.3% and 13.0% of the variance respectively. Axis 2

is associated significantly with sex (Table S2, P<0.0001).

Figure 3.9. PCA correlates with species. PC2 and PC4 are shown, These PCs were chosen
because of best visualization of the species. Colors represent different species. Both axes

are significantly correlated with species (Table S2).

Figure S3.1. Longevity plots for each species (all genotypes combined). Colors denote sexes:

females (red) and males (blue). P-values indicate survival differences from Kaplan-Meier

analysis of sex.
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Table 3.1. Coefficients of variation for longevity for all sexes and species.

Coefficient of
Species Sex Variation
D. ananassae male 36
D. ananassae female 45
D. erecta male 31
D. erecta female 61
D. melanogaster male 29
D. melanogaster female 42
D. mojavensis female 41
D. mojavensis male 51
D. persimilis female 31
D. persimilis male 45
D. pseudoobscura female 38
D. pseudoobscura male 55
D. sechellia male 26
D. sechellia female 40
D. simulans female 24
D. simulans male 38
D. virilis female 35
D. virilis male 45
D. willistoni female 34
D. willistoni male 39
D. yakuba female 31
D. yakuba male 49
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Table 3.2. All metabolites found to be significant with different factors. For the sex specific

factors, we controlled for body weight and species.

Metabolites Proportion
Factor Significant ~ Metabolites
Sex 104 41.11%
Species 176 69.57%
Genotype 53 20.95%
Body Weight 145 57.31%
Females
Median Longevity 71 28.06%
Maximum Longevity 104 41.11%
Paraquat Resistance 128 50.59%
H202 Resistance 61 24.11%
Males
Median Longevity 77 30.43%
Maximum Longevity 98 38.74%
Paraquat Resistance 61 24.11%
H202 Resistance 76 30.04%
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Table 3.3. Pathway enrichment within groups of metabolites associated with different

predictors. Only those pathways with adjusted p-values < 0.05 are shown. Letter in factor

level indicates which sex was affected: F- females and M- males.

pP-
Pathway Factor Factor Mets  Total Mets  value
Gluconeogenesis Weight 5 5 0.0152
Salvage pathways of adenine Weight 4 4 0.0364
FormyITHF biosynthesis | Sex 3 3 0.0091
Gluconeogensis Sex 4 5 0.0113
Arginine degradation VI (arginase 2 pathway) Sex 4 5 0.0113
Amino Acids Sex 7 11 0.0186
Proline biosynthesis Il Sex 3 4 0.0352
Proline biosynthesis Ill Sex 3 4 0.0352
Arginine degradation | (arginase pathway) Sex 3 4 0.0352
TCA cycle variation Ill Sex 3 4 0.0352
Tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde = Median Longevity -F 3 3 0.0004
Salvage pathways of adenine Median Longevity -F 3 4 0.0007
Amino Acids Median Longevity - F 3 11 0.0444
Amino Acids Median Longevity- M 7 11 0.0062
FormyITHF biosynthesis | Median Longevity- M 3 3 0.0092
Aspartate degradation Median Longevity- M 3 3 0.0092
Glycogen degradation Median Longevity- M 3 4 0.0279
Tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde  Maximum Longevity- F 3 3 0.0073
Arginine degradation X ( arginine monooxygenase pathway) Maximum Longevity- F 3 3 0.0073
Salvage pathways of adenine Maximum Longevity- F 3 4 0.0239
TCA cycle variation Ill Maximum Longevity- F 3 4 0.0239
Paraquat Resistance-
TCA cycle variation Ill M 3 4 0.0019
Tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde H202 Resistance- M 3 3 0.0039
Amino Acids H202 Resistance- M 5 11 0.0207
Arginine degradation VI (arginase 2 pathway) H202 Resistance- M 3 5 0.0211
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Correlations Across Longevity Measures- Females
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SUPPLEMENTARY INFORMATION

Table S3.1. Genotypes, numbers of flies, and basic longevity measures for all species

analyzed. All longevity measures are median unless otherwise stated.

P. Longevity represents paraquat longevity. Natural longevity measures are in days.

Oxidative stress longevities are in hours.

105

Longevity H202 Paraquat Max H,0, P.
Species Line Sex (mg) Flies flies flies Longevity Longevity Longevity Longevity
D. ananassae Ana-00 F 1.44 118.00 34.00 18.00 30.51 44.50 90.20 120.76
D. ananassae Ana-00 M 0.84 115.00 43.00 40.00 49.03 100.52 59.72 107.92
D. ananassae Ana-12 F 1.11 117.00 111.00 94.00 51.51 96.04 204.50 204.50
D. ananassae Ana-12 M 0.67 86.00 104.00 98.00 65.48 114.49 132.04 168.14
D. ananassae Ana-15 F 0.85 61.00 95.00 73.00 67.97 90.99 84.26 179.95
D. ananassae Ana-15 M 0.61 96.00 78.00 76.00 76.95 114.49 72.50 96.14
D. erecta Ere-00 F 1.12 19.00 32.00 19.00 42.00 79.46 59.72 120.76
D. erecta Ere-00 M 0.61 16.00 37.00 20.00 55.02 67.97 24.10 66.11
D. melanogaster Mel-14 F 0.83 35.00 57.00 40.00 67.97 74.95 155.93 252.07
D. melanogaster Mel-14 M 0.52 34.00 124.00 112.00 49.03 84.00 84.26 168.14
D. melanogaster Mel-56 F 0.66 88.00 147.00 119.00 76.95 93.53 96.14 179.95
D. melanogaster Mel-56 M 0.45 102.00 100.00 89.00 65.48 93.53 96.14 120.76
D. melanogaster Mel-61 F 1.15 114.00 19.00 20.00 42.00 62.99 84.26 59.72
D. melanogaster Mel-61 M 0.67 76.00 38.00 37.00 49.03 60.99 84.26 72.50
D. mojavensis Moj-1002 F 1.13 111.00 14.00 19.00 65.48 100.52 242.37 265.51
D. mojavensis Moj-1002 M 0.91 78.00 19.00 20.00 40.00 60.99 168.14 179.95
D. mojavensis Moj-2008 F 1.26 121.00 NA NA 49.03 86.50 NA NA
D. mojavensis Moj-2008 M 1.03 100.00 NA NA 35.01 107.56 NA NA
D. persimilis Per-17 F 1.07 91.00 132.00 115.00 42.00 65.48 72.50 107.92
D. persimilis Per-17 M 0.79 95.00 97.00 80.00 26.01 58.52 48.25 84.26
D. persimilis Per-23 F 1.36 89.00 NA NA 47.02 86.50 NA NA
D. persimilis Per-23 M 1.06 119.00 NA NA 44.50 65.48 NA NA
D. pseudoobscura Pse-217 F 1.57 132.00 13.00 20.00 37.51 65.48 59.72 84.26
D. pseudoobscura Pse-217 M 1.15 56.00 19.00 18.00 19.00 42.00 48.25 72.50
D. pseudoobscura Pse-33 F 1.11 67.00 19.00 7.00 51.51 79.46 59.72 84.26
D. pseudoobscura Pse-33 M 0.97 33.00 7.00 0.00 23.49 58.52 59.72 NA
D. pseudoobscura Pse-96 F 1.07 90.00 143.00 132.00 52.76 79.46 84.26 107.92
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Table S3.2. First six principal components and associations with sex, species and body

weight. Numbers under factors represent p-values from linear model.

% Variance
PC Body weight Sex Species Explained

1 4.82E-24 0.041 8.32E-14 20.32%
2 1.74E-13 2.03E-11 3.87E-09 12.95%
3 0.271 0.009 3.19E-24 6.28%
4 0.082 1.12E-07 2.64E-25 5.91%
5 0.010 0.002 0.001 3.95%
6

0.467 5.48E-05 5.17E-12 3.27%
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CHAPTER 4
A LONGITUDINAL ANALYSIS OF THE EFFECTS OF AGE ON THE METABOLOME IN THE

COMMON MARMOSET, CALLITHRIX JACCHUS?

3Hoffman ].M., Tran V., Wachtman L., Jones D.P., and Promislow D.E.L. To be submitted to

Experimental Gerontology.
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ABSTRACT

Aging and longevity are both complex phenotypes that are difficult to study in
humans due to their long lifespan, and as such non-human primate models have been
extensively employed to understand the factors that influence aging and longevity. While
most non-human primate studies have focused on the rhesus macaque, the common
marmoset has recently been presented as new model of aging. However, little is known
about the metabolic changes that occur throughout the life of the marmoset. Here we
utilize high sensitivity metabolomics to understand the biochemical changes that are
associated with age in the common marmoset. We tracked 2,104 metabolites over a 17-
month period (3 separate time points), and we discover hundreds of metabolites that are
associated with age after controlling for sex and genotype. We also discover the entire
metabolome is both correlated with and predicative of age, and we suggest the
metabolome has the potential to be an excellent biomarker of aging. We find significant
enrichment in age-associated metabolites for metabolic pathways involved in oxidative
stress and xenobiotic metabolism, suggesting these biochemical pathways might play an
important role in the basic mechanisms of aging in primates. We show the power of using a

longitudinal approach to understand the biochemical changes that occur with age.

INTRODUCTION
Many studies have attempted to determine biomarkers of age and mortality of
individuals; however, most have been unsuccessful with the most accurate biomarkers only

explaining a percent or so of the variation seen in aging and longevity. One reason for the
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failure of these studies may be that they are usually cross-sectional. There are molecular
changes that occur throughout an individual’s life that may have profound effects of
mortality, yet are not discovered in traditional aging studies. The most meaningful
biomarkers might be those whose long-term trajectories, rather than static values at one
time point, predict pathology or death. In this light, the gap in our knowledge can be filled
at least in part by looking at longitudinal studies across the life of different individuals.
Many longitudinal studies in humans have identified genetic and environmental correlates
with longevity (e.g. Colditz and Hankinson, 2005; Ferrucci, 2008); however, these studies
take many decades to complete. Therefore, we were interested in developing a model
system to more easily identify longitudinal changes in systems biology phenomena that
could predict healthspan. With this goal in mind, we believe non-human primates could
play a pivotal role.

Small, relatively short-lived non-human primates offer a powerful, translational
model to understand the causes and correlates of aging. Though most studies have utilized
large primates, such as the rhesus macaque, recent studies have pointed to the common
marmoset (Callithrix jacchus) as an ideal non-human primate model of aging (Fischer and
Austad, 2011; Tardif et al., 2011). Marmosets have age-associated pathologies also seen in
humans, and they have a relatively short lifespan (average 8-12 years and maximum 16.5-
21.5) compared to other well-studied primates (Nishijima et al., 2012; Tardif et al., 2011),
and half that of the most studied the rhesus macque.

We believe that by studying the biochemical changes that occur throughout the life
of the marmoset, we may be able to better detect specific, accurate biomarkers of aging.

Metabolomics, the study of all the small molecules in an organism, allows for
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understanding of all metabolic changes that occur over time. Previous metabolomics
studies in primates have used cross-sectional approaches to identify metabolites correlated
with age (Muehlenbein et al., 2003), and longitudinal studies of metabolites in primates
have been confined to earlier developmental stages (Higley et al., 1992). Thus, the effects of
natural aging global metabolite profiles in primates are unknown.

Few studies have attempted to utilize metabolomics in the common marmoset. Prior
studies of age-related biochemical changes in marmosets have focused on specific subsets
of blood chemistry parameters (Kuehnel et al., 2012) and metabolites (Roede et al., 2012).
However, the effects of age on global metabolome profiles are unknown. The metabolome
represents all the small molecular components of metabolic pathways, and previous
research in model organisms has shown that the analysis of metabolites has the potential
to determine metabolic pathways that might be implicated in aging (Fuchs et al.,, 2010;
Hoffman et al., 2014; Houtkooper et al.,, 2011). Previous primate metabolomics research
has usually focused on biomarkers of specific diseases, not the affects of natural aging (Liu
etal., 2013; Patterson et al,, 2011), leaving a potentially important gap in our
understanding of the metabolic pathways associated with natural aging.

Here, we take advantage of the marmoset’s short lifespan to gain insight into the
longitudinal changes in the metabolome, and use this system as a potential model for
human aging metabolomics. While the common marmoset has been proposed as a new
non-human primate model of aging, very little is known about how its biochemical makeup
changes with age, other than basic blood chemistry measures (Kuehnel et al., 2012). We

present the first longitudinal study of age related changes in the metabolome of a large
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colony of marmosets, and we suggest the metabolome has the potential to be an excellent
biomarker of aging.
METHODS

Marmosets

Our final dataset consisted of 229 unique marmosets with some metabolomics data
of which 84 had data in each of the three time points. The animals ranged in age from 1-17
years with an average age of 6.3 years, and age distributions in each time point are shown
in Figure 4.1.
Sample Collection

Marmosets were housed at the New England Primate Research Center and were
maintained as described in (Roede et al., 2012). Blood samples were collected at three
different time points over a 17-month period (June 2012, October 2012, and November
2013) during routine physical exams of the animals under sedation with 0.2mL of ketamine
as described in Roede et al. (2012). Data were collected from well over 100 animals at each
time point (156 in June 2012, 175 in October 2012, and 144 in November 2013).
Metabolomic analysis

Metabolites were analyzed by high-resolution mass spectrometry (MS; LTQ-Velos
Orbitrap, Thermo Fisher) coupled to liquid chromatography (LC) using a reverse-phase
C18 column (Soltow et al., 2013). Briefly, 50 pL of plasma was added to 100 pL of
acetonitrile and 2.5 pL containing stable isotope standards. Samples were mixed, incubated
at 4°C for 30 min, and centrifuged to remove protein. Supernatants were analyzed in
triplicate by LC-MS (Go et al,, 2014; Soltow et al,, 2013). Data were extracted using apLCMS

(Yuetal, 2009) with xMSanalyzer (Uppal et al,, 2013) as m/z features, where an m/z
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feature is defined by m/z (mass-to-charge ratio), retention time, and ion intensity (Johnson
etal, 2010).
Data analysis

All data analyses were completed using the statistics package R (R Core Team, 2013)
unless otherwise stated. For each time point, the data structure originally consisted of over
20,000 metabolites measured for each individual, and each individual sample was run in
triplicate technical replicates. We first removed those metabolites with a high within
replicate variance as described in (Hoffman et al., 2014), using a signal-to-noise ratio of 15.
Then all metabolomics data were log-transformed. These control measures were executed
separately for each time point.

Next, to ensure we were analyzing the same metabolites across the three replicate
time points, we used the R package xMSanalyzer (Uppal et al., 201b), which uses both
the mass to charge (m/z) ratio and the column retention time to combine the same
metabolites from different datasets. Metabolites were considered identical across the time
points if they had m/z ratios within 10 parts per million of each other and their retention
times varied by less than 10 seconds.

To determine the effects of age on metabolite intensity we used a general linear
model controlling for the effects of both sex and weight on metabolite intensity. For this
analysis, each metabolite within each time point was run individually. Metabolites can
show heteroscedasticity due to increasing variances in older animals. To correct for this
potential problem, we first ran a Breuch Pagan test on our linear model to test for
heteroscedasticity. If none was found, we continued using our linear model, and if

heteroscedasticity was discovered, we controlled for it by using a covariance matrix of the
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linear model employed in the 1mtest package (Zeileis and Hothorn, 2002). To correct for
multiple comparisons, we used a conservative false discovery rate (FDR) (Benjamini and
Hochberg, 1995a) at a =0.01. We then determined the number of sampling time points at
which each metabolite appeared to be correlated with age.

Among metabolites associated with age within each time point, we looked for
specific metabolic pathways that were overrepresented using the pathway enrichment
program mummichog (Menni et al., 2013). Mummichog annotates m/z features and
determines specific metabolic pathway enrichment using the MetaCyc database (Caspi et
al., 2014). In particular, we set mummichog to query the “human” reference metabolic
pathway, as it is the mostly closely related organism to the marmoset for which metabolite
profiles and pathways have been well defined. P-values are calculated from a permutation
test. For this analysis, we considered pathways significantly enriched for a factor if the
mummichog-adjusted p-value was less than 0.05.

To determine if the changes observed across ages within a time point continued
across time within each individual, we sought metabolites with significant longitudinal
changes in intensity across all time points. The longitudinal analysis was carried out by
implementing a random effects model in the nlme package (Pinherio et al., 2012), with
age, sex, and weight as fixed effects and individual as a random effect. Thus, we wanted to
determine if the changes with age continued across time within each individual. For this
analysis, each individual sample was centered to a mean of zero to be able to better
compare the same metabolites across different time points. To correct for multiple

comparisons we again used an FDR of 0.01. Mummichog was then run on the significant

115



metabolites to determine if the same pathways were enriched for age as when the time
points were run individually.

After running these analyses on individual metabolites, we then ran both
unsupervised (principal components analysis) and supervised (partial least squares
discriminant analysis) clustering analysis on each time point individually. For these
analyses only, samples with missing data were converted to zero. First, we ran principle
components analysis (PCA) using the made4 package (Culhane etal., 2005) and
determined if the principle components axes were correlated with age. Then, we used
partial least squares discriminate analysis (PLSDA) as implemented in the DiscriMiner
package (Sanchez and Determan, 2103) to discover if metabolomic profiles could predict
the response of age in each time point. For this analysis the sexes and time points were run
separately. For each group, we used 200 randomly drawn metabolites, and set the PLS
component number to 10. For each group, this analysis was repeated ten times. We then
repeated this analysis using randomly permuted ages to control for the fact that PLSDA

might predict age even for randomly permuted data, given the large number of metabolites.

RESULTS
After quality control and combining of similar metabolites across time points, we
were left with 2104 metabolites found in each time point to use for further statistical
analyses. Of these metabolites, we were able to putatively annotate only 311 using the
program mummichog.
We first identified those metabolites that changed with age within each individual

time point. Different numbers of metabolites were found to vary with age when controlling
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for weight and sex across the three time points (615 metabolites in June 2012, 885 in
October 2012, and 171 in November 2013). Two specific metabolites are shown in Figure
4.2. Fifty-six metabolites were significantly affected by age in all three time points.
However, they did not necessarily change in the same direction. Eight metabolites were
found to always increase with age, while two were found to decrease with age in each time
point (Figure 4.3). This left 46 metabolites that while significantly affected by age their
slopes were in different directions across the three time points. Interestingly, of these 46
metabolites, over half (27) showed a pattern of increasing with age in the October 2012
and November 2013 time points while decreasing with age in the June 2012 time point.

At the level of individual metabolites, surprisingly few showed consistent age-
related correlations across time points. However, at the pathway level, our mummichog
pathway enrichment did find similar pathways involved in the changes with age. We were
able to find a total of 28 metabolic pathways that were significantly enriched for
metabolites that changed with age in at least one time point. Among these, six metabolic
pathways that were enriched for age related metabolites in each of the June 2012 and
October 2012 time points (Table 4.1). Only one metabolic pathway was found to be
significantly changing with age in the November 2013 time point.

We then ran a random effects model on all three time points combined; using
individual as a random effect, we found 382 metabolites that significantly changed with age
(example in Figure 4.4). These metabolites were significantly enriched for 26 different
metabolic pathways (Table 4.1). Of these 26 pathways, five were found to also be
associated with age in the June 2012 and October 2012 time points individually. One

metabolic pathway of the five (arsenate detoxification I) was found to be associated with
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age within each of the three time points as well as the longitudinal data (across all three
time points). Two of these five pathways are directly involved in oxidative stress (ubiquinol
biosynthesis and lipoate biosynthesis). Xenobiotic metabolism had one significant pathway
(arsenate detoxification) in June 2012, October 2012, and the longitudinal data, while a
second xenobiotic pathway (nicotine degradation) was significant in June 2012 and the
longitudinal analysis.

After our analysis of individual metabolites we ran global unsupervised and
supervised clustering analyses on each time point individually. In our unsupervised
principle components analysis, we found that PC1 in both the June 2012 and October 2012
time points was significantly associated with age (Figure 4.5), and explained very similar
proportions of the variance at both time points (13.7% and 13.9% respectively). For the
November 2013 time point PC5 was significantly correlated with age (3.4% of the variance
explained). Our PLSDA shows that the metabolome can accurately predict the age of an
animal. One example, from June 2012 females, is shown in Figure 6. R-squared values for
observed versus predicted ages varied from 0.60+0.02 (mean * 1 s.e,, November 2013
males) to 0.82+0.02 (November 2013 females). For permuted age data, r-squared values
varied from 0.38+0.05 (June 2012 females) to 0.58+0.05 (Nov 2013 females). In all cases,
PLSDA was able to fit age with far greater accuracy for actual data than for randomly

permuted age data (Figure S4.1).

DISCUSSION
We have shown that high-sensitivity metabolomic analysis of marmoset blood

samples reveals many metabolites significantly associated with age. The metabolome of the
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marmoset is highly variable, and finding repeatability across different time points can be
difficult. However, by using metabolic pathway enrichment analyses we have been able to
find specific metabolic pathways that were associated with age across all time points, and
many of these metabolic pathways were also found in our random effects longitudinal
model.

Many of the pathways significantly correlated with age have been found to be
associated with age in other organisms. Metabolism related to monoamine biosynthesis
(i.e. catecholamines and dopamine) has previously been implicated in aging flies (Hoffman
etal.,, 2014), and it has long been known that changes in dopamine and catecholamines
change dramatically with age in rhesus macaques (Goldmanrakic and Macbrown, 1981).
While the monoamine result was not completely repeatable across the time points, our
results combined with previous research suggests there maybe some evolutionary
conservation of metabolic pathways that are influenced by aging. Future studies need to
test perturbations of these metabolites and metabolic pathways to determine their direct
effect on aging.

While the variation across marmosets and time points was often large, we were able
to more accurately distinguish metabolites that significantly change with age by combining
all the time points in a random effects model. We found five metabolic pathways associated
with age across two time points (June 2012 and October 2012) and also in the longitudinal
analysis. One of these pathways was also significantly enriched in the November 2013
dataset (arsenate detoxification).

Interestingly, the most repeatable metabolic pathways found to be associated with

age in the marmoset are involved in oxidative stress, a major area of aging research. Both
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ubiquinol biosynthesis and lipoate biosynthesis are implicated in mitochondrial function
with ubiquinol being involved with mitochondrial electron transport while the lipoate
metabolic pathway is directly involved in oxidative stress resistance. Previous work in aged
rats has shown that supplementation of lipoic acid can reduce oxidant production in the
heart to levels seen in young rats (Suh et al.,, 2001), and ubiquinol ratios have been
suggested to be an accurate representation of oxidative stress in humans (Yamashita and
Yamamoto, 1997). These results suggest that the changes in the ability to cope with
oxidative stress may be major contributing factors of aging in the marmoset.

Xenobiotic metabolism also appears to be a largely associated with the aging
metabolome in the marmoset. Both arsenate detoxification and nicotine degradation
(which was significant in June 2012 and the longitudinal study) are involved in the
xenobiotic metabolic pathway, and previous research in mice has shown that longer-lived
strains exhibit increases in expression of genes linked to xenobiotic metabolism (Amador-
Noguez et al., 2007; Steinbaugh et al., 2012). Furthermore, there is evidence that the
breakdown of xenobiotics can lead to the production of free radicals (Chignell, 1985),
which in turn might accelerate aging. Therefore, in the marmosets it appears changes in the
ability to counter oxidative stress and break down the oxidative stressors themselves
maybe fundamental factors involved in the aging process.

Strikingly, of the 56 metabolites that are significantly affected by age in all three
time points, close to half (27) show a pattern of common slopes in October 2012 and
November 2013, and opposite slopes in June 2012 (Figure 4.3). This potentially could be
caused by a seasonal effect in the animals; however, to test this striking time-by age

hypothesis additional time points are required. Surprisingly, even though we find
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significant changes between metabolite concentrations in the different time points, the
underlying enriched pathways are relatively consistent across time points, suggesting that
changes in metabolic pathways may be more important biologically than the individual
metabolites.

There was relatively little overlap among time points in the specific metabolites
associated with age. However, our unsupervised principal component analysis suggests
some repeatability in the importance of age in the metabolome. For both June 2012 and
October 2012, the first principal component (PC) was significantly correlated with age. Our
PCA analysis for the November 2013 dataset also found the metabolome to be associated
with age, but only for the fifth PC, which explained a much smaller portion of the overall
variance in the metabolome. Overall, our PCA analysis correlates nicely with our individual
metabolite analysis, where more metabolites were found to be significantly associated with
age in the June 2012 and October 2012 time points as opposed to the November 2013
sample. Interestingly, the June 2012 dataset shows a distinct pattern between young (<9
years) and old marmosets. This suggests there could be an environmental difference
between the young and old animals such that something happened to the old marmosets
when they were younger that did not affect the young marmosets. However, this same
pattern is not observed in either of the later time points, so this environmental explanation
might be incorrect, and the pattern in the June 2012 time point is caused by something
unknown to us.

Our PLSDA shows that metabolomic profiles can fairly accurately predict age of an
individual marmoset. This suggests the metabolome has the potential to be an ideal

biomarker of aging. Previous studies have suggested the epigenome is a powerful
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biomarker of aging (Hannum et al., 2013; Horvath, 2013), and our analysis, as well of
previous work in flies (Hoffman et al., 2014), present the metabolome as potentially a
superior biomarker of aging. Metabolomic profiling is both cheaper and easier than
methylome assays, and metabolomic results have the potential to influence specific
targeted interventions that cannot be accomplished with the epigenome. To determine the
power of the metabolome as a biomarker, it will be interesting to note in the future, if those
marmosets whose predicted age is younger than actual age, live longer than the rest, and
vice versa for those animals with a predicted age higher than biological age.

While we were able to analyze thousands of metabolites and find hundreds that
significantly change with age, there were several limitations to this study. First,
metabolomic profiles are known to change on a daily basis and even cyclically within the
day (Queiroz, 1974). However, we could not draw marmoset samples on the same day
much less the same time of day. These daily changes could explain, in part, the large
variances seen in metabolite concentrations even within animals of the same age, which
might have limited our ability to detect metabolites that change with age. However, this
does suggest that those metabolites we did find to change with age are probably due to
actual signal and not background noise, making our findings all the more impressive, given
what we assume to be a large number of unmeasured variables affecting metabolite levels
in our samples.

Second, blood samples were drawn while the primates were anesthetized with
ketamine, which could potentially disrupt normal metabolomic profiles. While the effects of
ketamine on blood metabolomics are unknown, previous research in macaques has shown

that ketamine does not change blood hormones levels and has less pronounced effects than
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other forms of anesthesia (Zaidi et al., 1982). This suggests that while ketamine probably
does have some unknown effects on the metabolome, its overall metabolomic effects
should be fairly minimal. To determine the actual effects of ketamine, we need to compare
populations with blood samples drawn with and without ketamine as an anesthetic.

Next, the parameters we used to combine metabolites across time points were
conservative (especially the retention time). Each time point had over 10,000 metabolites
left after quality control, but only 2104 could be conservatively said to be the same across
all three time points, which suggests that we probably discarded many metabolites that
were actually found in all three datasets. If we had utilized more metabolites for the study,
we might have been better able to find metabolic pathways that changed with age
repeatedly across all time points.

Finally, our study was limited by the lack of metabolite annotation matches
available. Very little is known about specific marmoset metabolites, so we used the human
metabolome as the reference. However, mummichog was only able to annotate a small
proportion of the metabolites used in this study (~15%). The lack of annotation of all 2104
metabolites used in the study coupled with the few metabolites found to be associated with
age in the November 2013 time point might be the main reason we were unable to
determine metabolic pathways associated with age in that specific time point. Our analyses
suggest that better annotation of the marmoset metabolome is needed to more accurately
determine the effects of natural aging.

While we find large effects of xenobiotic metabolism, we cannot discount the idea
that some of the metabolites may have been misannotated. Nicotine degradation and

arsenate detoxification are both results of compounds that we would not normally expect
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to be present in marmosets. However, we are utilizing high sensitivity metabolomics, which
has the capability to detect more rare metabolites than targeted analyses. If any of the
marmoset caretakers were smokers, then the marmosets may have indirectly been exposed
to some nicotine products, which could be detected in our high sensitivity analysis, and
arsenic can be found naturally in some groundwater. Therefore, there is a real possibility
that these results are true signals in the marmoset metabolome.

Here we have presented the first large-scale longitudinal metabolomics study in a
non-human primate. The metabolome of the marmoset is highly variable and finding
repeatability across time points proved difficult, yet we were still able to determine many
metabolic pathways that are associated with natural aging. Many of the most repeatable
metabolic pathways were involved in oxidative stress resistance in some capacity,
suggesting oxidative stress may be a major contribution to marmoset aging. We believe
longitudinal studies are underutilized as a method for determining changes in metabolites
and metabolic pathways that are involved in the aging process, and future metabolomics
studies should try to incorporate multiple measurements of the same individuals. The
marmosets in this colony will continue to be followed, and as the animals age and die, we
will hopefully be able to determine long-term changes in metabolomic profiles that are

predictive of risk of morbidity and mortality.
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FIGURE LEGENDS
Figure 4.1. Age distributions for each of three time points. Y-axis represents rankings of
marmosets from oldest to youngest for females (left) and males (right). Each point on the
x-axis represents the time points from which blood serum samples are taken (1-3 time

points per animal).

Figure 4.2. Plot of two specific metabolites correlation with age from the June 2012 time

point.

Figure 4.3. Plot of three individual metabolites across three time replicates. Rows

correspond to specific metabolites whose m/z ratio is shown on the y-axis. Columns
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correspond to the three time points analyzed. Each plot shows a different time point with a

significant change with P<1x10-3.

Figure 4.4. Specific metabolite with longitudinal changes with age. Each black line
represents the changes in metabolite concentration across an individual marmoset. Red

line is the overall linear model of all data.

Figure 4.5. Plot of PCs significantly associated with age. June 2012 and October 2012 are

both PC1 while November 2013 is PC5. P-values< 3x10-9,

Figure 4.6. Sunflower plot of PLSDA observed vs. predicted ages. Points represent
individual marmosets from June 2012. Red sunflowers indicate multiple marmosets based

on the number of leaves shown.

Figure S4.1. Differences in variances explained in different time points for observed

(orange) and randomized (blue) data. Males are represented on the left with females on the

right.
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Table 4.1. Metabolic pathways enriched for age in each time point individually and all

combined for the longitudinal analysis. Pathways shown in bold have significant age effects

in June 2012, October 2012, and the longitudinal analysis.

Pathway June-2012 October-2012 November-2013 | Longitudinal

Ubiquinol-10 biosynthesis 1.94E-04 4.82E-03 8.42E-05
Nicotine degradation IV 2.51E-03 8.42E-05
Oxidized GTP and dGTP detoxification 9.08E-03 1.17E-04
GDP-glucose biosynthesis 1.18E-03 2.29E-04
Nicotine degradation Il 2.62E-02 5.65E-04
lipoate biosynthesis and incorporation Il 3.40E-03 3.14E-02 7.25E-04
GDP-L-fucose biosynthesis Il (from L-fucose) 3.40E-03 7.25E-04
Xanthine and xanthosine salvage 3.14E-02 7.25E-04
Biotin-carboxyl carrier protein assembly 7.25E-04
CMP-<i>N<i>-acetylneuraminate biosynthesis | (eukaryotes) 3.14E-02 7.25E-04
Phenylalanine degradation IV (mammalian via side chain) 5.05E-03 8.84E-04
(S)-reticuline biosynthesis Il 5.05E-03 8.84E-04
Amino acids 1.16E-03 2.74E-02 1.64E-03
arsenate detoxification | (glutaredoxin) 9.08E-03 5.50E-03 5.69E-03 1.91E-03
Methionine degradation | (to homocysteine) 9.08E-03 1.91E-03
Salvage pathways of pyrimidine ribonucleotides 9.08E-03 1.91E-03
tRNA splicing 9.08E-03 1.91E-03
UDP-<i>N</i>-acetyl-D-galactosamine biosynthesis II 9.08E-03 1.91E-03
GDP-mannose biosynthesis 9.08E-03 1.91E-03
Pyrimidine deoxyribonucleotides de novo biosynthesis 1.91E-03
Glycogen biosynthesis Il (from UDP-D-Glucose) 1.91E-03
Catecholamine biosynthesis 1.93E-02 4.13E-03
Molybdenum cofactor biosynthesis 1.93E-02 4.13E-03
Zymosterol biosynthesis 2.62E-02 1.99E-02 4.75E-03
Dopamine degradation 3.47E-02 7.69E-03
Bile acid biosynthesis neutral pathway 1.21E-02 1.27E-02
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Adenine and adenosine salvage Il 3.40E-03 3.14E-02
Selenocysteine biosynthesis Il (archaea and eukaryotes) 3.40E-03

Spermine and spermidine degradation | 1.93E-02

NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde 5.50E-03
Alpha-tocopherol degradation 3.14E-02
CDP-diacylglycerol biosynthesis | 3.14E-02
Trans/trans farnesyl diphosphate biosynthesis 3.14E-02
Asparagine biosynthesis | 3.14E-02
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CHAPTER 5

CONCLUSIONS

Ever since the human genome project was completed 15 years ago, scientists have
eagerly jumped into using next generation technologies to determine the effects of the different
“omics” on phenotypes of interest, including many studies on aging and longevity. However,
while many of these “omics” have been extensively studied, metabolomics (the study of all the
small molecules in an organism) has been largely ignored until the past couple of years. In this
dissertation, I have attempted to determine the relationship between the metabolome and age and
longevity within and across species. I have shown that individual metabolites can be strongly
correlated with age, and I speculate that they might potentially influence the longevity of an
organism. Morever, the entire metabolome can be a powerful predictor, and potential biomarker,
of age.

In my first study, I discovered that the metabolome of Drosophila melanogaster is highly
associated with age, sex, and genotype. This experiment was one of the first metabolomic
analyses to use high sensitivity metabolomics to determine the effects of age on an extremely
diverse array of metabolites in an organism. In addition to understanding how individual
metabolites vary with age, I found several metabolic pathways associated with age, including
some that were already known to be correlated with aging and longevity (monoamine
neurotransmitters) and new metabolic pathways that previously not been implicated largely in
aging (the carnitine shuttle). One of the most intriguing findings was the different interaction

effects with age. First, the effects of age on hundreds of metabolites differed between the sexes.
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This suggests that future aging work should look at metabolomic effects of aging on both sexes
because they may yield different results, and these results may lead to new insights into why we
see differences in longevity between the sexes. Also, we found many age by genotype
interactions. Most aging studies focus on only one specific genotype of a species. However, my
results indicate genetic variation can greatly affect the metabolome of an organism, suggesting
future studies need to incorporate multiple genotypes in aging studies to determine if
metabolomic changes with age are relatable to the entire species or are genotype specific. While
no actual genetic mapping was done in this study due to insufficient numbers of genotypes, the
large numbers of age by genotype interactions suggest that future mapping of metabolites with
these interactions might lead to new candidate genes that directly affect aging.

Next, [ expanded my earlier work to understand the metabolomic consequences of aging
across different species. I have completed one of the first cross species comparative
metabolomics studies to focus on the effects of longevity on the metabolome, as well as one of
the largest comparative metabolomics studies ever completed. First, it is notable that unlike
virtually all other comparative studies, I included multiple genotypes within each species. This
enables me to distinguish the potential confounding effects of genetic variation from variation
among species. This suggests future comparative studies need to incorporate multiple genotypes
of the same species to more accurately determine what is a true species effect instead of a
genotype effect. I found individual metabolites do not have a large amount of phylogenetic
signal; however, the metabolome combined together is able to recapitulate some parts of the
known species phylogeny. Finally, I discovered many metabolites associated with species, sex,
and body weight, as well as many metabolites associated with longevity in a sex specific manor.

This result suggests, as also seen in my work on D. melanogaster, future metabolomic studies
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need to incorporate both sexes, as metabolomic profiles appear to be very sex specific, and the
biochemical pathways that influence aging and longevity may be different between the sexes.
More metabolomic studies on the sexes may also give us new insights into why females are often
longer lived than males of the same species. I also discover many metabolic pathways associated
with longevity and resistance to oxidative stress, and some of these are the same as in my
previous study of only D. melanogaster (amino acids). This study only looked at flies from one
time point, and some of my previous unpublished work suggests it might be trajectories of
metabolites (not static values) that can most influence (or be predictive of) aging. Future
comparative metabolomic studies of aging need to incorporate samples from different ages to
fully understand the metabolomic consequences of aging.

In my final study, I use a translational model of human aging, the common marmoset, to
look longitudinally to discover how the metabolome of an individual changes as it ages naturally.
This is the first longitudinal metabolomics study to be completed in the marmoset, as well as the
largest longitudinal metabolomics study completed to date. Interestingly, I find substantial
evidence for oxidative stress associations with aging in these animals, giving support to the
oxidative theory of aging. There also were large numbers of metabolites changing with age
associated with xenobiotic metabolism, suggesting the ability of organisms to deal with external
xenobiotics may be directly influencing the aging phenotype. I also find the metabolome of the
marmoset is highly predictive of age, and as this study is ongoing, it will be interesting to
discover if those marmosets whose metabolome predicts a younger age than their biological age
live longer than other marmosets. I also hope to be able to predict metabolites associated with

morbidity and mortality of these animals. The results of this study suggest to completely
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understand the effects of natural aging on an individual, we need to employ longitudinal studies,
and the metabolome may be the biomarker of age that has been elusive to researches for years.

Here I have shown the power of the metabolome to determine different metabolic factors
that influence aging and longevity, and I have laid the groundwork for future studies to utilize
the metabolome as a potential biomarker of aging. Future work needs to expand on this
dissertation to begin to fully understand the metabolic causes and consequences of natural aging
and longevity. With more metabolomic profiles for more Drosophila melanogaster genotypes,
we will be able to complete genetic mapping on metabolites associated with age to discover new
candidate aging genes that normal SNP mapping studies have not been able to find. Comparative
studies have the potential to influences our understanding of the evolution of the metabolome
and its association with life history traits. By understanding the biochemical pathways associated
with life history evolution, we may be finally able to determine why large variation in longevity
exists among related species as well as between the sexes of the same species. Finally, I suggest
more longitudinal studies need to be completed to understand the metabolic progression of
aging; while I will continue to work on the longitudinal marmosets study, more species need to
be included in longitudinal studies to determine if changes seen in the marmosets are actually

relatable to other species, both closely and distantly related.
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