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Abstract

Vector bundles of conformal blocks on M0,n provide a collection of base point free divisors on

M0,n defined using representation theory. Specifically, from the data of a simple Lie algebra g, a

nonnegative integer ` (called the level), and an n-tuple of dominant integral weights ~λ, one can

construct the bundle V(g, ~λ, `). The first Chern classes of nontrivial such bundles are base point

free and so give rise to morphisms from M0,n to other projective varieties. By studying the divisor

classes, we can begin to classify the images of the induced maps.

The main results of this dissertation concern combinatorial aspects of bundles defined using slr

and sp2r. We give identities between the divisors, study the cones they generate, and the associated

morphisms. Our main tool involves a theorem known as Witten’s Dictionary, which allows us

to deploy methods of representation theory and combinatorics to analyze the behavior of vector

bundles of conformal blocks.
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Chapter 1

Introduction

1.1 The moduli space of stable n-pointed rational curves

The moduli space M0,n parameterizes stable rational curves with n marked points. A point in the

interior M0,n consists of an equivalence class [(C; p1, ..., pn)] where C is a smooth genus zero curve

(i.e., a rational curve, isomorphic to P1) and pi ∈ C for i = 1 to n are n distinct marked points of

C. We say that two such collections (C; p1, ..., pn) and (C ′; p′1, ..., p
′
n) are isomorphic if there is an

isomorphism φ : C → C ′ of the curves such that φ(pi) = p′i for i = 1 to n. We sometimes drop the

square brackets and write (C; p1, . . . pn) for the class [(C; p1, . . . pn)] when it is clear from context.

A point [(C; p1, ..., pn)] ∈M0,n can be represented by a curve C consisting of a tree of projective

lines with pi ∈ C for i = 1 to n distinct marked smooth points and every irreducible component

has at least three nodes or marked points (see Figure 1.1). By a tree of projective lines, we mean

a connected curve with irreducible components isomorphic to the projective line such that the

intersection points are ordinary double points and there are no closed circuits.

The space M0,n has many beautiful properties. For instance, it is a smooth projective variety

and a fine moduli space. The boundary points M0,n\M0,n correspond to reducible curves. The

boundary has a stratification in which the components are determined by the number of nodes on

a curve. The numerical equivalence classes of the one-dimensional strata are called F-curves (see

Definition 1.1) . A representative of each such class can be obtained by defining a map M0,4 →M0,n

[25, Thm. 2.2]. We give a description of such a map in the following definition.
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Figure 1.1: Representative of a point in boundary of M0,6

Definition 1.1. [25, Thm. 2.2] Let I1 t I2 t I3 t I4 = [n] be a partition of [n] = {1, ..., n} into four

nonempty, disjoint sets. Consider the morphism, φ : M0,4 →M0,n sending

(C; p1, p2, p3, p4) 7→ (X; q1, ..., qn)

where X is built from (C; p1, p2, p3, p4) in the following sense: If |Ii| ≥ 2, then attach a point

(P1; ai, {qj : j ∈ Ii}) ∈ M0,|Ii|+1 at the marked point ai ∈ P1 to the marked point pi ∈ C. If

|Ij | = 1, then label the point pj of (C; p1, p2, p3, p4) as qj . We refer to an F-curve as any element

in the numerical equivalence class of the image of φ and denote any such element by FI1,I2,I3,I4 .

The points (nodes or marked points) on the irreducible component of X associated to the original

marked points pi ∈ C are referred to as the attaching points.

1.2 Vector bundles of conformal blocks

A vector bundle of conformal blocks on M0,n is defined with three ingredients: a simple Lie algebra

g, a nonnegative integer ` called the level, and an n-tuple ~λ = {λ1, ..., λn} of dominant integral

weights of g at level ` (see Definition 2.5). We denote such a bundle V(g, ~λ, `). We denote the first

Chern class, the conformal blocks divisor, of such a bundle c1(V(g, ~λ, `). In this section, we briefly

define a fiber of V(g, ~λ, `) over a point in M0,n. For more details on the construction of the bundle

2



V(g, ~λ, `) see [46, 5, 17]. This construction was extended to be defined for general vertex algebras

in [19].

Let [ , ] denote the usual bracket on g and ( , ) the scaled Killing form on g (see Definition 2.1).

Definition 1.2. For a simple Lie algebra g and each i = 1 to n, one can define an affine Lie algebra

ĝi = g⊗ C((zi))⊕ C · c,

where C((zi)) is the field of Laurent power series over C in the variable zi and c belongs to the

center of ĝi. The bracket defined on simple tensors is

[
(X ⊗ f, αc), (Y ⊗ g, βc)

]
=
(

[X,Y ]⊗ fg, c(X,Y ) · Reszi=0(g(zi)df(zi))
)
,

for X,Y ∈ g and f, g ∈ C((zi)). This bracket is extended linearly to be defined on all of ĝi. We

also define the Lie subalgebra of ĝi

ĝ+
i = g⊗ ziC[[zi]].

For λi ∈ ~λ and nonnegative integer `, there is a ĝi-module Hλi at level ` and highest weight λi.

Hλi is characterized up to isomorphism by the property that the subspace of Hλi annihilated by

ĝ+
i is isomorphic as a g-module to Vλi (see [28, Chapt. 12] or [5, Sect. 1.6] for more details on the

construction of Hλi).

Let (C; p1, ..., pn) ∈ M0,n. The ring of regular functions on the curve C outside the marked

points p̄ = (p1, ..., pn) is given by O(C − p̄). For each i, a ring homomorphism

O(C − p̄)→ C((zi))

can be defined by expanding a function f ∈ O(C − p̄) about the point pi; denote this expansion

fpi . Let g(C − p̄) := g⊗O(C − p̄). The ring homomorphisms above induce maps

g(C − p̄)→ ĝi. (1.1)

3



Let H~λ := Hλ1 ⊗ ...⊗Hλn . Define the map

g(C − p̄)×H~λ → H~λ

by

(X ⊗ f) · (v1 ⊗ ...⊗ vn) 7→
n∑
i=1

v1 ⊗ ...⊗ vi−1 ⊗ (X ⊗ f)vi ⊗ vi+1 ⊗ ...⊗ vn,

where (X⊗f)vi is given in (1.1). By the Residue Theorem
∑n

i=1 Respi fpidgpi = 0 for nodal curves.

This can be used to show the map just defined is an action of g(C − p̄) on H~λ.

Definition 1.3. The fiber of the bundle V(g, ~λ, `) over the point (C; p̄), is

V(g, ~λ, `)|(C;p̄) = [H~λ]g(C−p̄),

where [H~λ]g(C−p̄) is the space of coinvariants of H~λ. This space is the largest quotient of H~λ on

which g(C − p̄) acts trivially. Its dual is the vector space of conformal blocks.

A dimension formula of the vector space in Definition 1.3 (i.e., the rank of the vector bundle

V(g, ~λ, `)) is given by the Verlinde formula and was conjecturally given by Verlinde in 1988 [48].

The formula has since been proven in various cases by a number of authors [12, 45, 6, 18, 32, 40, 33].

1.3 Motivation and main results

Central to representation theory is the study of symmetries, and often in representation theory one

sees important and sometimes unexpected identities. Since vector bundles of conformal blocks are

defined using representation theory, it may be no surprise, then, that conformal blocks are also

frequently subject to symmetries and unexpected identities [44, 3, 17, 22, 38, 2, 39, 11, 8, 30].

For instance, we know that there are additive identities between first Chern classes, the confor-

mal blocks divisors, which allow one to decompose conformal blocks divisors into sums of simpler

divisors, as long as certain rank conditions are satisfied [8, Prop. 19]. In this decomposition, one

of the summands is the first Chern class of a rank one bundle. One important class of rank one

bundles is the set of bundles in type A at level one. The associated morphisms have been described

4



[21, 22], and moreover, while there are an infinite number of these bundles, using the fact that the

images are constructed as GIT quotients, it has been shown that the cone of divisors they generate

is polyhedral [22, Thm.1.1].

With the importance of rank one bundles and the desire to determine the structure of the cone

generated by conformal blocks divisors, one may naturally ask the following questions.

Problem 1.4. 1. Describe sets S := {V = V(g, ~λ, `) | rank(V) = 1}.

2. Show that C(S) := ConvHull{c1(V) | V ∈ S} is finitely generated.

Our first main result completely determines a solution for this problem for bundles V(sl2, ~λ, `),

V(sp2`, ~λ
T , 1), and V(sl2m, ~λ, `) when the weight data is rectangular (see Definition 4.1). More

specifically, in the above cases, we give necessary and sufficient conditions on ~λ and ` which deter-

mine when the rank of such a bundle is zero, one, and larger than one. Explicitly, our first main

result is the following classification theorem.

Theorem 1.5. Let Vm = V(sl2m, (a1ωm, ..., anωm), `) be a vector bundle of conformal blocks such

that a1 ≥ a2 ≥ ... ≥ an and
∑n

i=1 ai = 2(k`+ p), for some integers p and k such that 1 ≤ p ≤ ` and

k ≥ 0. Define Λ :=
∑n

i=2k+2 ai where Λ := 0 if 2k + 2 > n. Then

1. rk(Vm) = 0 if and only if Λ < p;

2. rk(Vm) = 1 if and only if either

(a) Λ = p, or

(b) Λ > p and weight content is maximal (see Definitions 4.2 and 4.4); and

3. rk(Vm) > 1 if and only if Λ > p, and the weight content is not maximal.

Our approach to proving Theorem 1.5 is combinatorial and relies on work by Belkale and Witten

(see [9, 49]) that translates the rank of a vector bundle of conformal blocks defined with g = slr to a

coefficient appearing as a structure constant in a product of classes in the (quantum) cohomology of

the Grassmannian variety. This translation is known as Witten’s Dictionary and is stated explicitly

in Proposition 3.15. Using Witten’s Dictionary as a tool, we first establish the statement for sl2
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bundles in Section 4.2. We then apply a rank scaling statement for rank one bundles defined using

sl2m and rectangular weights, which relies partially on work of the authors of [10]. Further details

and proof of their results are given in Proposition 4.44.

The set S of rank one bundles described in Theorem 1.5 contains an infinite number of elements,

including all sl2 level one bundles. Following work of Fakhruddin [17, Thm. 4.3], C(S) forms a full

dimensional subcone of the nef cone Nef(M0,n). We prove this cone C(S) is finitely generated,

providing an answer to the second part of Question 1.4.

Theorem 1.6. Let S := {V = V(sl2m, (a1ωm, ..., anωm), `) | rk(V) = 1}. Then

C(S) := ConvHull{c1(V) | V ∈ S} is finitely generated.

To prove this, we show the following result.1

Theorem 1.7. Each element of C(S) can be expressed explicitly as an effective linear combination

of level one divisors.

Theorem 1.5, also gives information about vector bundles of conformal blocks for the Lie algebra

sp2` at level one, using the relationship

rank(V(sl2, ~λ, `)) = rank(V(sp2`, ~λ
T , 1))

from [17, Sect. 5.2.3], where ~λ = (a1ω1, ..., anω1) and ~λT = (ωa1 , ..., ωan). The same conditions on

(a1, . . . , an) given in Theorem 1.5 also determine when V = V(sp2`, ~λ
T , 1) has rank zero, one, and

greater than one.

Our next main result shows the first Chern classes of bundles for sp2` at level one are equal to

divisors of bundles for sl2 at level ` if and only if the rank of the bundles is zero or one (Theorem 1.8).

As an application, we show the cone generated by the divisors from such rank one bundles is

polyhedral: All extremal rays are spanned by first Chern classes of rank one bundles for sp2 at level

one. Using this result, we are able to explicitly describe the associated morphisms of these divisors

(see Section 5.4 and Proposition 5.14).

1See Theorem 6.11 for a precise statement.

6



Theorem 1.8. Let ~λ be an n-tuple of nonnegative integers of weights for sl2 at level ` or sp2` at

level one. Then for bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) the identity

c1(V(sl2, ~λ, `)) = c1(V(sp2`, ~λ
T , 1))

holds if and only if rk(V(sl2, ~λ, `)) = 1 or 0.

The final main result of this work shows that the divisors from bundles V(sp2`, ~λ, 1) are all

linearly equivalent when the Lie algebra rank ` is taken large enough.

Theorem 1.9. For a fixed n-tuple of nonnegative integers ~λ, there is an integer r(~λ) such that for

any ` ≥ r(~λ), the following identity holds,

c1(V(sp
2r(~λ)

, ~λ, 1)) = c1(V(sp2`, ~λ, 1)).

In Section 5.4 we explicitly compute the integer r(~λ) and determine when the bundle V(sp
2r(~λ)

, ~λ, 1)

is nontrivial.

We now give an outline of this dissertation. In Chapter 2, we provide background information

regarding the Lie algebras slr and sp2r important to our work for vector bundles of conformal blocks.

In Chapter 3, we describe our main tools and methods of investigation. Particularly, we focus on

Witten’s Dictionary, quantum Kostka computations, and known formulas for computing ranks and

first Chern classes of vector bundles of conformal blocks. In Chapter 4 we prove Theorem 1.5 and

show the cone generated by divisors from sl2 rank one bundles is polyhedral (Theorem 1.6). In

Chapter 5 we investigate bundles with sp2` at level one and prove Theorem 1.8. We end with

Chapter 6 in which we establish rank and divisor identities between bundles with sp2` at level one.

7



Chapter 2

The Lie Algebras slr+1 and sp2r

We begin by explicitly describing the two main Lie algebras of our study: slr+1 and sp2r. These are

the Lie algebras associated to the special linear group and symplectic group, respectively. We state

background information of both Lie algebras relevant to the study of vector bundles of conformal

blocks. For further information see [46], [5], and [17].

2.1 Notation and general background

For a simple Lie algebra g let h denote a Cartan subalgebra and h∗ denote the dual (Euclidean)

vector space. We use R to denote the root system,

R := {0 6= α ∈ h∗ : gα 6= 0},

where gα is the root space,

gα := {v ∈ g : ∀h ∈ h, ad(h)(v) := [h, v] = α(h)v}.

Let ∆ denote a fixed base for the root system R. This means ∆ is a basis of h∗ and each root

β ∈ R can be written as

β =
∑
α∈∆

cαα

8



with cα either all nonnegative or all nonpositive integers. The elements in ∆ are called simple

roots. The height of a root β is then the sum
∑
cα from the expression stated above. Since any

β ∈ R is either a nonnegative sum or nonpositive sum of simple roots, we can partition the root

system R into positive and negative parts (denoted R+ and R− respectively). The notion of height

of a root also provides an ordering on the root system and allows us to define a highest root. As is

conventional, the highest root is denoted θ.

The Killing form K( , ) : g× g→ C defined by K(X,Y ) := trace(adX ◦ adY ) is nondegenerate

on h and so provides an isomorphism φ : h→ h∗, given by

h 7→ φh : h→ C,

where, for H ∈ h,

φh(H) = K(h,H).

Using the map φ, we can define an inner product on h∗.

Definition 2.1. Let Tλ := φ−1(λ) ∈ h. For any µ, ν ∈ h∗, an inner product on h∗ is given by

(µ, ν) := K(Tµ, Tν).

In this document, we normalize this inner product so that (θ, θ) = 2, where θ is the highest root of

g.

For any positive root α ∈ R+, we have a notion of an sl2(α)-triple of g, that is, a triple of

elements {E,H,F} of elements in g with

H ∈ h, E ∈ gα, F ∈ g−α

and the following relationship with the commutator is satisfied,

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

9



The sl2(θ)-triple associated to the highest root θ, can be used to describe the ĝ-modules Hλ used

in the construction of the vector space of conformal blocks Definition 1.3 (see [28, Exer. 12.12] and

[5, Section 1.2]).

Definition 2.2. The weight lattice of g, denoted Λ, is a set of elements in h∗ given by

Λ := {λ ∈ h∗ : ∀α ∈ R, (λ, α) ∈ Z}.

Definition 2.3. For a fixed base ∆ a weight λ ∈ Λ is dominant if the pairing (λ, α) as in Defini-

tion 2.1 is nonnegative for all α ∈ ∆. The set of all dominant weights is denoted Λ+.

Definition 2.4. Given a fixed ordering on a base ∆ = {α1, ..., α`}, the fundamental weights,

denoted Ω = {ω1, ..., ω`}, are those weights forming a dual basis to the coroots of ∆ with inner

product as in Definition 2.1. That is, for any αj ∈ ∆ and ωi ∈ Ω the following holds,

2(ωi, αj)/(αj , αj) = δij ,

where δij = 1 if and only if i = j and δij = 0 otherwise. The coroot of a root α ∈ R is given by

α̌ := 2
(α,α)α.

Definition 2.5. For a fixed nonnegative integer ` ∈ Z≥0, the set of dominant weights for g at level

`, denoted P`(g), is the set of dominant weights which pair with the longest root θ to a value less

than or equal to `. This set is given by

P`(g) := {λ ∈ Λ+ : (λ, θ) ≤ `}.

2.2 The Lie algebra slr+1

The Lie algebra slr+1 is the complex simple Lie algebra of the special linear group SL(r + 1). We

first define the Lie algebra slr+1 and explicitly give components important to our study.

Definition 2.6. For r ≥ 1 the Lie algebra slr+1 consists of the following elements,
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slr+1 := {(r + 1)× (r + 1) matrices with entries in C and trace 0}.

The Lie bracket in slr+1 is given by the commutator [A,B] = AB −BA.

2.2.1 Basis and dimension

A basis for slr+1 is given by the following set of matrices

{Ei,j : 1 ≤ i ≤ r + 1, 1 ≤ j ≤ r + 1, i 6= j} ∪ {Ei,i − E1+i,1+i : 1 ≤ i ≤ r}, (2.1)

where Ei,j denotes an (r + 1)× (r + 1) matrix with a one in the (i, j) entry and zeros everywhere

else (these are often called the elementary matrices). This gives the dimension

dim(slr+1) = (r + 1)r + r = r2 + 2r.

A Cartan subalgebra of slr+1 is given by the following span of matrices,

h = Span{Ei,i − E1+i,1+i : 1 ≤ i ≤ r}.

These are exactly the diagonal matrices in the above basis for slr+1.

2.2.2 Roots and Weights

With the above choice of Cartan subalgebra, the roots for slr+1 are,

R =
{
εi − εj : 1 ≤ i ≤ r + 1, 1 ≤ j ≤ r + 1, i 6= j

}
,

where εi denotes the operator on a matrix M which reads off the (i, i) entry of M .

11



Remark 2.7. We can show that the basis element Ei,j (i 6= j) is in the root space εi − εj . That

is, for an element H`,m := E`,` − Em,m in the Cartan subalgebra, we have

[H`,m, Ei,j ] = H`,mEi,j − Ei,jH`,m = (εi − εj)(H`,m)Ei,j .

A base for the root system is given by,

∆ = {αi := εi − εi+1 | 1 ≤ i ≤ r}. (2.2)

With this base, the positive roots are

R+ =
{
εi − εj =

j−1∑
k=i

αk | 1 ≤ i < j ≤ r + 1
}
. (2.3)

The highest root is,

θ =

r∑
i=1

αi = ε1 − εr+1. (2.4)

2.2.3 Fundamental and dominant integral weights

With the base in (2.2), the fundamental weights are given by the following set,

Ω =

ωi :=
i∑

j=1

εj −
i

r + 1

r+1∑
k=1

εk | 1 ≤ i ≤ r

 . (2.5)

The dimension of the weight lattice Λ of slr+1 is,

dim(Λ) = |Ω| = dim(h) = r.
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The dominant integral weights for slr+1 are positive integer linear combinations of the fundamental

weights,

Ω+ =

{
r∑
i=1

ciωi | ci ∈ Z≥0

}
. (2.6)

Definition 2.8. For a fixed integer ` ∈ Z≥0 the dominant integral weights for slr+1 at level ` are

given by the following set,

P`(slr+1) =

{
r∑
i=1

ciωi | ci ∈ Z≥0 and
r∑
i=1

ci ≤ `

}
. (2.7)

Remark 2.9. In the ε basis, a dominant integral weight for slr+1 can be written as

λ =
r+1∑
i=1

(λ(i) − k)εi

for some constant integer k and integers λ(i). Since the highest root of slr+1 is θ = ε1 − εr+1, if

λ ∈ P`(slr+1), then the integers λ(i) will necessarily be weakly decreasing λ(1) ≥ · · · ≥ λ(r+1) ≥ 0

with ` ≥ λ(1) and λ(r+1) = 0 [47, Sect. 6.5.1]. We often denote such a weight as the r-tuple

(λ(1), . . . , λ(r)). The weight λ = (λ(1), . . . , λ(r)) corresponds to a unique Young diagram that fits

inside of an r × ` rectangle. Particularly, such a Young diagram is a collection of rows of boxes

with λ(i) boxes in the ith row (see Definition 3.7).

2.2.4 The sl2(θ)-triple in slr+1

With the highest root θ = ε1 − εr+1, from (2.4), the corresponding sl2(θ)-triple in slr+1 is given by

Hθ := E1,1 − Er+1,r+1, Xθ := E1,r+1, Yθ := Er+1,1. (2.8)

Recall the set {Hθ, Xθ, Yθ} being an sl2(θ)-triple means the following relationships with the com-

mutator hold,

[Hθ, Xθ] = 2Xθ, [Hθ, Yθ] = −2Yθ, [Xθ, Yθ] = −Hθ. (2.9)
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2.2.5 Example: sl3

We next study sl3. The basis of elements from (2.1) is the following set,

E1,1 − E2,2 =


1 0 0

0 −1 0

0 0 0

 , E0,1 =


0 1 0

0 0 0

0 0 0

 , E1,0 =


0 0 0

1 0 0

0 0 0

 ,

E2,2 − E3,3 =


0 0 0

0 1 0

0 0 −1

 , E2,3 =


0 0 0

0 0 1

0 0 0

 , E3,2 =


0 0 0

0 0 0

0 1 0

 ,

E1,1 − E3,3 =


1 0 0

0 0 0

0 0 −1

 , E1,3 =


0 0 1

0 0 0

0 0 0

 , E3,1 =


0 0 0

0 0 0

1 0 0

 .

We have written the basis in this order to indicate the sl2(α)-triples. In order, these rows

correspond to the sl2(ε1 − ε2), sl2(ε2 − ε3), and sl2(ε1 − ε3) triples of sl3. A Cartan subalgebra

corresponding to this basis is given by the (complex) span of the matrices,

E1,1 − E2,2 =


1 0 0

0 −1 0

0 0 0

 , E2,2 − E3,3 =


0 0 0

0 1 0

0 0 −1

 .

A base for the root system is given by ∆ =
{
ε1 − ε2, ε2 − ε3

}
. We denote α1 = ε1 − ε2 and

α2 = ε2 − ε3 as is convention. We also have |∆| = 2, showing that the weight lattice is two

dimensional. The highest root is the sum,

θ = α1 + α2 = ε1 − ε3.
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The fundamental weights of sl3 are

Ω =
{
ω1 = ε1 −

1

3
(ε1 + ε2 + ε3), ω2 = ε1 + ε2 −

2

3
(ε1 + ε2 + ε3)

}
.

The normalized Killing form on the fundamental weights is,

(ω1, ω1) = ||ω1||2 = 2/3,

(ω1, ω2) = 1/3,

(ω2, ω2) = ||ω2||2 = 2/3. (2.10)

For elements v, w in a Euclidean space V , we can compute the angle γ formed by v, w ∈ V using

the inner product ( , ) on V since

(v, w) = ||v||||w|| cos(γ).

This allows us to visually represent the 2-dimensional weight lattice associated to sl3 generated by

ω1 and ω2 as in Figure 2.1 (see also [20, p. 331]).

2.3 The Lie algebra sp2r

The Lie algebra sp2r is the complex simple Lie algebra of the symplectic group Sp(2r). We define

sp2r and explicitly give relevant information as we did for slr+1.

2.3.1 Definition and basis of sp2r

To define sp2r we first define the following 2r × 2r matrix S.

S :=

 0̄ Ir

−Ir 0̄


where Ir denotes the r × r identity matrix and 0̄ denotes the r × r zero matrix.
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Definition 2.10. For r ≥ 2 the Lie algebra sp2r consists of the following elements,

sp2r :=
{

2r × 2r matrices M with entries in C such that SM = −M tS
}
,

where −M t denotes the negative transpose of the matrix M . The Lie bracket in sp2r is given by

the commutator, [A,B] = AB −BA.

2.3.2 Basis and Dimension

Let Ei,j denote the 2r× 2r matrix with a one in the (i, j) entry and zeros everywhere else. A basis

for sp2r is given by the following set of matrices,

{Ei,i − Er+i,r+i : 1 ≤ i ≤ r} ∪ {Ei,j − Er+j,r+i : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i 6= j} ∪

{Ei,r+i : 1 ≤ i ≤ r} ∪ {Ei,r+j + Ej,r+i : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i < j} ∪ {Er+i,i : 1 ≤ i ≤ r}

∪{Er+i,j + Er+j,i : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i < j}. (2.11)

We have

dim(sp2r) = 2r2 + r.

A Cartan subalgebra of sp2r is given by the (complex) span,

h = Span{Ei,i − Er+i,r+i : 1 ≤ i ≤ r}.

These elements generating this set are exactly the diagonal matrices in the basis for sp2r from

(2.3.2).

2.3.3 Roots and weights

With our choice of Cartan subalgebra, the roots for sp2r are,
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R = {εi − εj : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i 6= j} ∪ {2εi : 1 ≤ i ≤ r}∪

{εi + εj : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i < j}∪

{−2εi : 1 ≤ i ≤ r} ∪ {−εi − εj : 1 ≤ i ≤ r, 1 ≤ j ≤ r, i < j}. (2.12)

Here again εi denotes the operator on a diagonal matrix M which gives the (i, i) entry of M .

A base for the root system associated to sp2r is given by,

∆ = {αi := εi − εi+1 | 1 ≤ i < r} ∪ {αr := 2εr}. (2.13)

With the base in (2.13) the positive roots are given by,

R+ = {εi − εj | 1 ≤ i < j ≤ r} ∪ {2εi | 1 ≤ i ≤ r} ∪ {εi + εj | 1 ≤ i < j ≤ r}. (2.14)

The highest root is

θ =
r−1∑
i=1

2αi + αr = 2ε1. (2.15)

2.3.4 Fundamental and dominant integral weights

With the base from (2.13), the fundamental weights are given by the following set,

Ω =

ωi =
i∑

j=1

εj | 1 ≤ i ≤ r

 . (2.16)

The dimension of the weight lattice Λ of sp2r is

dim(Λ) = |Ω| = dim(h) = r.
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The dominant weights for sp2r are positive integer linear combinations of the fundamental weights,

Λ+ =

{
r∑
i=1

ciωi | ci ∈ Z≥0

}
.

Remark 2.11. For λ =
∑r

i=1 ciωi ∈ Λ, a weight of sp2r, we have the following pairing of the

normalized Killing form of λ and the highest root θ,

(λ, θ) =
r∑
i=1

ci.

Definition 2.12. For a fixed integer ` ∈ Z≥0 the dominant integral weights for sp2r at level ` are

given by the following set,

P`(sp2r) =

{
r∑
i=1

ciωi : ci ∈ Z≥0 and
r∑
i=1

ci ≤ `

}
. (2.17)

2.3.5 The sl2(θ)-triple in sp2r

With the highest root, θ = 2ε1, the corresponding sl2(θ)-triple is given by

Hθ := E1,1 − Er+1,r+1, Xθ := E1,r+1, Yθ := Er+1,1. (2.18)

2.3.6 Example: sp4

We concretely state the above components for sp4. A basis for this Lie algebra is given by,

E1,1 − E3,3 =



1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0


, E2,2 − E4,4 =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1


, E1,2 − E4,3 =



0 1 0 0

0 0 0 0

0 0 0 0

0 0 −1 0


,
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E2,1 − E3,4 =



0 0 0 0

1 0 0 0

0 0 0 −1

0 0 0 0


, E1,3 =



0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


, E2,4 =



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


,

E1,4 + E2,3 =



0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0


, E4,1 + E3,2 =



0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0


,

E3,1 =



0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0


, E2,4 =



0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0


.

The Cartan subalgebra h is the (complex) span of the first two basis vectors in the above list. A

base for the root system is given by

∆ = {α1 := ε1 − ε2, α2 := 2ε2},

where αi is the conventional notation. The highest root is

θ = 2α1 + α2 = 2ε1,

and the set of positive roots is given by the set,

R+ =
{
α1 = ε1 − ε2, α2 = 2ε2, α1 + α2 = ε1 + ε2, 2α1 + α2 = 2ε1

}
.

The fundamental weights of sp4 are,

Ω = {ω1 = ε1 = α1 + α2/2, ω2 = ε1 + ε2 = α1 + α2}.
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The normalized Killing form on the fundamental weights is as follows,

(ω1, ω1) = ||ω1||2 = 1/2,

(ω1, ω2) = 1/2, and

(ω2, ω2) = ||ω2||2 = 1. (2.19)

Recall, in this case, the highest root is θ = 2α1 +α2 = 2ε1 = 2ω1. The length squared of this weight

is two in the normalization. The two dimensional weight system for sp4 generated by ω1 and ω2 is

represented in Figure 2.2 (see also [20, p. 331]).
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α1

α2

ω1

ω2

Figure 2.1: Weight system for sl3

ω1

ω2α2

α1

Figure 2.2: Weight system for sp4
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Chapter 3

Methods for Investigating Vector

Bundles of Conformal Blocks

In this chapter we describe the main tools we use to compute rank and determine the first Chern

class of bundles V(g, ~λ, `). We begin by describing factorization which allows one to compute the

rank of V(g, ~λ, `) with any g and level ` in terms of ranks of bundles with fewer weights. We then

relate bundles with slr+1 at level ` with those defined with sp2` at level one. We describe several

rank computation methods specific to bundles defined with slr+1. We conclude with stating several

formulas appearing in [17] that we use to determine first Chern classes in the chapters that follow.

3.1 Factorization

In [46, Prop. 2.2.6] the authors described an isomorphism of the fiber of a bundle V(g, ~λ, `) over a

point associated to a degenerate curve. This isomorphism is known as factorization and is proved

in [42, 2.4.2], [17, Prop. 2.4(2)], and [37, Thm.13]. The result of the isomorphism is that the fiber

of a bundle on M0,n over a point represented with a nodal curve can be understood as a sum

of products of bundles defined over irreducible components of the curve. The sum is taken over

all possible weights in P`(g); such weights are associated to the “gluing” or nodal point on the

irreducible components of the curve. We state the isomorphism specifically for vector bundles of
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conformal blocks defined over M0,n. Recall, for a point (C0; p1, ..., pn) ∈ M0,n, the marked points

pi are smooth points on C0.

Proposition 3.1. (Factorization). Let (C0; p1, ..., pn) be a point in M0,n with a node x0. Let

ν : C1 ∪ C2 → C0 be the normalization of C0 at x0, with ν−1(x0) = {x1, x2} and xi ∈ Ci. Let

ν−1(~p)i ∈ Ci denote the tuple of points corresponding to the preimage of those marked points ~p on

C0 landing on the component Ci (see Figure 3.1). Then

V(g, ~λ, `)|(C0;~p)
∼=

⊕
µ∈P`(g)

V(g, λ(C1) ∪ µ, `)|(C1;ν−1(~p)1) ⊗ V(g, λ(C2) ∪ µ∗, `)|(C2;ν−1(~p)i), (3.1)

where λ(Ci) = {λj |ν−1(pj) ∈ ν−1(~p)i} and particularly, x0 is not one of the marked points pi.

Figure 3.1: Normalization of a nodal genus 0 curve, C0

In this proposition, for a weight µ ∈ P`(g), the weight µ∗ ∈ P`(g) is the lowest weight of the

irreducible highest weight g-module Vµ with highest weight µ. Equivalently, the symbol ∗ represents

the involution on the weight lattice of g defined by µ∗ = σ(µ) where σ ∈W (g) is the longest word

in the Weyl group. In the case with g = sl2 the involution is the identity. Since this is one of our

main cases of interest, when we apply the factorization formula to sl2 we use µ∗ = µ.

The factorization formula is useful in computing ranks and first Chern classes of vector bundles

of conformal blocks. For example, one can compute the rank of a bundle by computing instead the

rank of the factorized sum which amounts to computing ranks of bundles on M0,n′ with n′ < n.

By applying factorization repeatedly (i.e., using the isomorphism to decompose a bundle over a

curve with multiple nodes) one can compute the rank of a bundle in terms of dimensions of fibers
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of bundles on M0,3. As another application, in [17, Prop. 2.7] Fakhruddin applies factorization

to compute the degree of any vector bundle of conformal blocks intersected with an F -curve (see

Proposition 3.17 and [17, Prop. 2.7]). As the set of F -curves spans the vector space of 1-cycles on

M0,n (see Observation 4.43(3)), by computing all such degrees determines the first Chern class.

3.2 Preliminaries relating V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1)

For the Lie algebra sl2 the dominant integral weights at level ` are given by aω1 where a ≤ ` is

some nonnegative integer and ω1 is the fundamental weight for sl2 (see Definition 2.8). For the

Lie algebra sp2` the dominant integral weights at level one are given by the fundamental weights

ωa where a ≤ ` is some nonnegative integer (see Definition 2.12). In this way, the set of dominant

integral weights at level ` for sl2 and at level one for sp2` are given by the following sets respectively,

P`(sl2) = {aω1}`a=0 and

P1(sp2`) = {0} ∪ {ωa}`a=1. (3.2)

For a fixed positive integer `, an n-tuple of integers ~λ = (a1, ..., an) such that 0 < ai ≤ ` determines

an n-tuple of weights (a1ω1, ..., anω1) ∈ P`(sl2)n or an n-tuple of weights (ωa1 , ..., ωan) ∈ P1(sp2`)
n.

In this document, we write ~λ to denote an n-tuple of nonnegative integers and the set of weights

that this n-tuple of integers refers to will be determined by context, where if an integer ai = 0

then the corresponding weight is the zero weight. When we want to be precise, we use ~λ to denote

the n-tuple in P`(sl2)n and ~λT to denote the n-tuple in P1(sp2`)
n. In order for the bundle to not

be necessarily trivial, we always assume the sum |~λ| =
∑n

i=1 ai is even. When starting with a

fixed integer ` ∈ Z>0 and an n-tuple of positive integers ~λ = (a1, ..., an), we will always assume

` ≥ a1 ≥ ... ≥ an > 0 (see Remark 3.16).

In [34, p. 42], Littelmann constructs a generalized Littlewood-Richardson rule which relates the

ranks of sl2 level ` bundles and sp2` level one bundles. We state this consequence of Littelmann’s

work in the following fact.
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Fact 3.2. For a fixed ` and n-tuple ~λ the vector bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) have the

same rank. That is,

rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ
T , 1)).

Such an equality on the ranks also follows from rank-level duality (equivalently, in this case,

“strange duality” for parabolic symplectic bundles, see the discussion in [1, Section 1.2]). Specifi-

cally, Abe shows in [1, 1.4] that over any smooth point of M0,n, the fiber of V(sp2r, ~λ, `) and the

fiber of V(sp2`, ~λ
T , r) are isomorphic where weights of ~λT are the transposed weights of ~λ. That is,

for a weight λ ∈ ~λ such that λ =
∑r

i=1 ciωi, the transposed weight λT =
∑r

i=1 iωci . In the case with

r = 1, the bundles V(sp2, ~λ, `) and V(sl2, ~λ, `) are equivalent, as all one dimensional Lie algebras are

isomorphic. This provides the following isomorphism of fibers over interior points (C; ~p) ∈M0,n,

V(sl2, ~λ, `)|(C;~p)
∼= V(sp2`, ~λ

T , r)|(C;~p). (3.3)

The proof of the isomorphism (3.3) given in [1, 1.4] relies on a geometric interpretation of the fibers.

Such a geometric interpretation does not necessarily extend to boundary points of M0,n (see [10,

Sect. 4.1]) and so the divisors, or first Chern classes, of the bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1)

are not necessarily linearly equivalent. Indeed, a main result of this dissertation (Theorem 1.8)

gives necessary and sufficient conditions for when the divisors c1(V(sl2, ~λ, `)) and c1(V(sp2`, ~λ
T , 1))

are linearly equivalent.

With the isomorphism of fibers in (3.3), equality of ranks of V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) (i.e.,

Fact 3.2) also follows. Because of this rank result, all rank computations and methods which we

discuss for bundles V(sl2, ~λ, `) can be applied to bundles V(sp2`, ~λ
T , 1).

To reduce confusion when referring to the rank of the bundle V(sp2`, ~λ, 1) or the rank of the

Lie algebra sp2` we distinguish these two ranks. We refer to the rank `, of the Lie algebra sp2`, as

the Lie rank and the rank of the vector bundle V(sp2`, ~λ, 1) as the vector bundle rank.
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3.3 Fusion rules for sl2

As mentioned above, using factorization (Proposition 3.1), the rank of V(g, ~λ, `) can be determined

by computing ranks of bundles on M0,3 (for example, by applying factorization to decompose a

fiber of the bundle over a completely degenerate curve in M0,n). The conditions determining the

ranks of such bundles are known as the fusion rules for g. An algorithm for computing fusion

rules for any Lie algebra g was determined by Kac and Walton and is known as the Kac-Walton

algorithm. It is straightforward to compute a closed formula for such rules for the Lie algebra sl2

[5, Lemma 4.2, Cor. 4.4]. However, for other Lie algebras, such closed formulas are not as easily

determined. A closed formula for sl3 was written in [7] and later verified in [4, Prop. 2.2]. We

state the fusion rules for sl2 of a bundle on M0,3 from [5, Cor. 4.4] as this is used extensively in

Section 3.5 and Chapters 4 and 5

Proposition 3.3. (Fusion rules for sl2) Let `, a, b, and c be fixed nonnegative integers with a, b, c <

`. Then

rk(V(sl2, ~λ, `)) = 1

if and only if a+ b+ c is even and the following four inequalities are satisfied,

a ≤ b+ c,

b ≤ a+ c,

c ≤ a+ b, and

a+ b+ c ≤ 2`.

(3.4)

If the above are not satisfied, then rk(V(sl2, ~λ, `)) = 0.

3.4 Rank tools for V(sl2, ~λ, `)

To compute the rank of a bundle V(sl2, ~λ, `) on M0,n, one could use factorization and the fusion

rules from Proposition 3.3. However, in the case of V(sl2, ~λ, `) with four weights defined on M0,4

there is a known formula for determining the rank. This formula was written in [44, Lemma 3.3].
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Lemma 3.4. Let `, a, b, c and d be fixed integers with ` ≥ a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c+ d =

2(`+s) for some integer s. The rank of rk(V(sl2, (a, b, c, d), `)) is given by the formula below, unless

the value is negative.

rk(V(sl2, (a, b, c, d), `)) =



1 + `− a if a+ d ≥ b+ c and s ≥ 0

1 + `− 1
2(a+ b+ c− d) if a+ d ≤ b+ c and s ≥ 0

1
2(b+ c+ d− a) + 1 if a+ d ≥ b+ c and s ≤ 0

1 + d if a+ d ≤ b+ c and s ≤ 0

If the value of the formula is negative, then rk(V(sl2, (a, b, c, d), `)) = 0.

The result in Lemma 3.5 is known as the Generalized Triangle Inequality and can be shown

using factorization and induction [2, Lemma 3.8].

Lemma 3.5 (Generalized Triangle Inequality). Let ` be a fixed nonnegative integer and ~λ =

(a1, ..., an) be a fixed n-tuple with ai ≤ `. If rk(V(sl2, ~λ, `)) > 0, then for all i ∈ {1, . . . , n} the

inequality holds,

ai ≤
∑
j 6=i

aj .

3.5 Plussing for V(sl2, ~λ, `) bundles

To determine the rank of an slr+1 bundle a method called “plussing” on the weights can be used

[10, Def. 8.2]. We state and prove the result for bundles V(sl2, ~λ, `) using factorization.

Proposition 3.6. Let ~λ = (a1, ..., an) be a fixed n-tuple of weakly decreasing positive integers such

that the sum |~λ| =
∑n

i=1 ai is even. Let ` be a fixed integer such that ` ≥ a1. Let I t J = [n] be

a partition into two disjoint subsets such that the size |I| is even. Let ~λ`−I denote the n-tuple of

weights given by {`− ai}i∈I ∪ {aj}j∈J . Then

rk(V(sl2, ~λ, `)) = rk(V(sl2, ~λ
`−I , `)).

Proof. First, suppose ~λ = (a, b, c), then the rank of V(sl2, ~λ, `) can be determined by the fusion

rules in Proposition 3.3.
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If the inequalities in (3.4) are satisfied, then the set of inequalities in (3.5) follow,

(`− b) ≤ (`− a) + c (3.5)

(`− a) ≤ (`− b) + c

(`− a) + (`− b) + c ≤ 2`

c ≤ (`− a) + (`− b).

By Proposition 3.3, these relationships imply rk(V(sl2, (`− a, `− b, c), `)) = 1. Hence, the result is

true for n = 3 weights. We now consider two cases determined by the parity of n.

First suppose n is some fixed odd integer. For our base case, we have shown the result holds

for n = 3 weights. For the inductive step, consider a second partition A t B = [n] such that

|B| = {i, j} with i ∈ I and j /∈ I. Let ~λî,ĵ be the (n−2)-tuple of weights from ~λ with weights in the

ith and jth spot removed (that is, the weights associated to those from set A). Using factorization

(Proposition 3.1) along the partition A tB, the rank of the original bundle becomes the following

(where all bundles are sl2 bundles at level `),

rk(V(~λ)) =
∑̀
µ=0

rk(V(~λî,ĵ , µ)) rk(V(λi, λj , µ)) (3.6)

=
∑̀
µ=0

rk(V(~λ
`−(I−i)
î,ĵ

, `− µ)) rk(V(`− λi, λj , `− µ))

= rk(V(~λ`−I)),

The second equality in (3.6) follows from the induction hypothesis and the base case; the first and

third equalities follow from factorization.

Now suppose n is even. This case follows from the odd result. Similar to the above, one can

compute the rank by factorizing along a partition A tB = [n] where B = {i, j} with now i, j ∈ I.
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Thus,

rk(V(~λ)) =
∑̀
µ=0

rk(V(~λî,ĵ , µ)) rk(V(λi, λj , µ)) (3.7)

=
∑̀
µ=0

rk(V(~λ
`−(I−B)

î,ĵ
, µ)) rk(V(`− λi, `− λj , µ))

= rk(V(~λ`−I)).

The second equality in (3.7) follows from the odd case (notice, the bundles in this sum each have

an odd number of weights); the first and third equalities follow from factorization.

3.6 Young diagrams and tableaux

As stated in Remark 2.9, dominant integral weights at level ` for slr+1 are parametrized by Young

diagrams in an r × ` rectangle. In Section 3.7, we see that such objects also parametrize certain

cohomology classes relevant to our study. In this section we define Young diagrams and related

objects.

Definition 3.7. A Young diagram (also referred to as a partition) is a collection of rows of boxes,

left-justified, with a weakly decreasing number of boxes in each row. A Young diagram can be

denoted by a weakly decreasing sequence of integers λ = (λ(1) ≥ · · · ≥ λ(r) ≥ 0) in which λ(i)

denotes the number of boxes in the ith row of the Young diagram λ. If λ(1) ≤ `, then we say that

the Young diagram fits inside of an r×` rectangle and we write λ ⊂ r×`. We denote |λ| =
∑r

i=1 λ
(i)

for the area or number of boxes in λ.

Definition 3.8. We use the word shape to refer to a collection of rows of boxes that are not

necessarily left-justified or weakly decreasing in number of boxes in each row. For Young diagrams

λ and ν such that ν ⊂ λ (i.e., each row of ν is less than or equal to the size of the corresponding

row of λ), the shape λ/ν is the complement of the diagram of ν in λ. See Example 3.9 for an

example. In the case that the shape ν has rows that are left-justified, we denote it as we would a

Young diagram, that is ν = (ν1, . . . , νr) where νi is the number of boxes in row i of ν.
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Example 3.9. With the Young diagrams λ = (4, 4, 3, 3) and ν = (4, 2, 2, 0) the shape λ/ν is

given by the complement of ν in λ. The figure below is the Young diagram λ with the boxes in ν

highlighted. The white boxes in the figure illustrate the shape λ/ν.

Definition 3.10. Let µ = (a1, . . . , an) be a collection on nonnegative integers. We refer to such an

n-tuple as content when referring to a collection of a1 1’s, a2 2’s, . . . , and an n’s. To help eliminate

confusion between the values of ai and the values of i in this collection, we refer to the number ai

as the amount of content and the number i as the flavor of the content.

Definition 3.11. Let µ = (a1, . . . , an) be a collection of nonnegative integers and λ a shape such

that |µ| = |λ|. A semistandard tableau on λ with content µ is a filling (or labeling) of the boxes

of λ with content µ such that flavors are weakly increasing (left to right) across rows and strictly

increasing (top to bottom) down columns. A semistandard tableau is proper for some fixed positive

integer r, if for each flavor i in the first column and row r+q (for q ≥ 1), the box in the last column

and row q is either not in λ or else contains flavor j with j ≤ i. See Example 3.12 for an example.

Sometime we omit the adjective semistandard and proper.

See Remark 4.9 for a discussion on the proper condition specific to our focus with r = 2.

Example 3.12. For the Young diagram λ = (4, 4, 3, 3) and collection of integers µ = (3, 3, 3, 2, 2, 1)

the figures below are semistandard tableaux with shape λ and content µ. For the integer r = 2,

the first semistandard tableau is proper and the second semistandard tableau is not. The boxes in

the second figure whose content flavor does not satisfy the proper condition are highlighted.

1 1 1 2
2 2 3 3
3 4 4
5 5 6

1 1 1 3
2 2 2 5
3 3 5
4 4 6

Definition 3.13. Let λ be a Young diagram. A rim hook of λ of size k is a collection of k contiguous

boxes in the bottom and right border of λ. See Example 3.14 for an example of a rim hook. A
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rim hook of size k added to λ is a collection of k contiguous boxes placed adjacent to the bottom

and right border of λ such that the resulting collection of boxes is a Young diagram. In the case

that k is longer than the number of boxes in the largest row of λ, extra boxes of the rim hook are

accumulated below the first column of λ. See Example 4.6 for an example of a rim hook added to

a Young diagram.

Example 3.14. For the Young diagram λ = (4, 4, 3, 3), a rim hook of size five starting in the

second column and ending in the fourth column of λ is shaded in the figure.

3.7 Witten’s dictionary and computing ranks

Let Gr(r,Cm) denote the Grassmannian of r-dimensional linear subspaces of the vector space Cm.

A basis for the integral cohomology H∗(Gr(r,Cm);Z) is given by Schubert classes. These classes

are parametrized by Young diagrams λ ⊂ r × (m− r) and denoted σλ. As in Definition 3.7 such a

Young diagram is given by a collection of r weakly decreasing integers λ = (λ(1) ≥ · · · ≥ λ(r) ≥ 0)

such that λ(1) ≤ m− r.

The (small) quantum cohomology ring QH∗(Gr(r,Cm);Z) is an associative ring with underlying

abelian group H∗(Gr(r,Cm);Z)⊗Z[q]. This quantum ring has an additive basis given by qdωλ where

d varies over all nonnegative integers and λ varies over all partitions in r× (m− r). A relationship

between fusion rings and quantum cohomology of the Grassmannian is established in [49, Sect. 4.7]

and stated in [9, Thm. 3.6]. Using this result and [9, Prop. 3.4, Eq. 3.10] an explicit translation

can be made from the rank of V(slr+1
~λ, `) to a coefficient appearing in a (quantum) cohomology

computation. This translation and the following result is often referred to as Witten’s Dictionary

[10, Thm. 2.4]. We state this translation below.

Proposition 3.15. Witten’s Dictionary.

For a fixed positive integer ` ∈ Z>0 and ~λ ∈ P`(slr+1)n, suppose there is some integer s such that

|~λ| = (r + 1)(`+ s). Then to compute rk(V(slr+1, ~λ, `)) we consider the following two cases:
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(1) If s ≤ 0, then rk(V(slr+1, ~λ, `)) is equal to the coefficient of the class of a point σ(`+s)r+1 =

σ(`+s,...,`+s) in the classical product:

σλ1 · ... · σλn ∈ H∗(Gr(r + 1,Cr+1+`+s)).

(2) If s > 0, then rk(V(slr+1, ~λ, `)) is equal to the coefficient of qs[pt] = qsσ(`,...,`) in the quantum

product:

σλ1 ∗ ... ∗ σλn ∗ σs`ω1
∈ QH∗(Gr(r + 1,Cr+1+`)),

where σs`ω1
is the s-fold quantum product σs(`,0,...,0).

Remark 3.16. The above products are commutative (see also [13, Sect. 3]) and the rank of

V(slr+1, ~λ, `) is invariant under the ordering of the weights in ~λ. For a bundle V(sl2, ~λ, `) or

V(sp2`, ~λ
T , 1) with weight ~λ = (a1, ..., an), we usually assume a1 ≥ ... ≥ an.

3.8 Kostka numbers and tableaux

According to [13, Eq. 10], to compute the classical or quantum product of a collection of n simple

classes in cohomology (i.e., classes of the form σ(ai,0,...,0) where ai is a positive integer) with a class

σλ, we use the following rule, where µ = (a1, ..., an). These calculations require enumerating certain

tableaux; see Section 3.6 for the definitions of these objects.

1. Classical: σ(a1,0,...,0) · ... · σ(an,0,...,0) · σλ =
∑
Kν
λ,µσν ∈ H∗(Gr(r + 1,Cr+1+`+s);Z), where we

sum over partitions ν ⊂ (r + 1)× (`+ s) such that |ν| = |λ|+
∑n

i ai.

The coefficient Kν
λ,µ is called the classical Kostka number. This number is equal to the number

of tableaux on the shape ν/λ with content µ.

2. Quantum: σ(a1,0,...,0)∗...∗σ(an,0,...,0)∗σλ =
∑
Kν
λ,µ,m(r+1, `)qmσν ∈ QH∗(Gr(r+1,Cr+1+`);Z),

where we sum over partitions ν ⊂ (r+1)×` and m ≥ 0 such that |ν|+m(r+1+`) = |λ|+
∑n

i ai

and µ = (a1, ..., an).

The coefficient Kν
λ,µ,m(r+1, `) is called the quantum Kostka number. This number is equal to

the number of proper tableaux with shape ν[m]/λ and content µ. The Young diagram ν[m]
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is obtained from ν by adding m rim hooks of size `+ 2 to the Young diagram ν each starting

in the first column and ending in the `th column.

In Section 4.1 we use this result to determine an explicit computation of the rank of a bundle

V(sl2, ~λ, `) by enumerating tableaux.

3.9 Degree formula for V(g, ~λ, `)

For any simple Lie algebra g, one can compute the intersection number of c1(V(g, ~λ, `)) with an

F -curve (Definition 1.1) by using [17, Prop. 2.7]. We state the formula here for later reference.

Recall from Definition 1.1, an F -curve, FI1,I2,I3,I4 is determined by a partition I1t I2t I3t I4 =

[n]. Let ~λIkµk be the |Ik|+ 1-tuple of weights (λi1 , ..., λik̃ , µ
∗
k) where Ik = {i1, ..., ik̃} and µ∗k is the

image of a weight µk ∈ P`(g) under the involution of the weight system of g determined by the

symmetry in the Dynkin diagram (see the discussion following Proposition 3.1).

Proposition 3.17. [17, Prop. 2.7] The following formula determines the degree of V(g, ~λ, `) re-

stricted to the curve FI1,I2,I3,I4 ,

deg(V(g, ~λ, `)|FI1,I2,I3,I4 ) =
∑

~µ∈P`(g)4

deg(V(g, ~µ, `))
4∏

k=1

rk(V(g, ~λIkµ
∗
k, `)),

where ~µ = (µ1, µ2, µ3, µ4).

In order to make the computation in Proposition 3.17, one must first compute degrees of bundles

with four weights. Bundles V(g, ~λ, `) with four weights live over M0,4
∼= P1, and hence, the degree of

such a bundle determines its divisor class. Fakhruddin has a formula in [17, Cor. 3.5] for computing

the degree of any bundle V(g, ~λ, `) → M0,4. This formula was specialized to bundles V(sl2, ~λ, `)

in [17, Prop. 4.2] and V(sp2`, ~λ
T , 1) in [17, Prop. 5.4]. We state these previous results and deduce

our own formula to relate the degree and rank of sp2` bundles at level one in Chapter 5. We write

these formulas explicitly in the following lemmas. Let `, a, b, c, and d be fixed integers such that

` ≥ a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c+ d = 2(`+ s) for some integer s. Set ~λ = (a, b, c, d).
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Lemma 3.18. [17, Prop. 4.2] The degree of the bundle V(sl2, ~λ, `)→M0,4, is given by

deg(V(sl2, ~λ, `)) =

 max{0, (`+ 1− a)s} if a+ d ≥ b+ c

max{0, (1 + d− s)s} if a+ d ≤ b+ c

Note that these two formulas are the same for a+d = b+ c. For in this case, we have 2(`+ s) =

a+ b+ c+ d = 2(a+ d) which implies a = `+ s− d. Using this substitution in the first formula, it

follows that the two rules in the formulas are equal.

Lemma 3.19. [44, Lemma 3.3] Let V(sl2, ~λ, `) be a bundle over M0,4.

If s ≥ 0, then

deg(V(sl2, ~λ, `)) = rk(V(sl2, ~λ, `)) · s

If s ≤ 0, then deg(V(sl2, ~λ, `)) = 0.

Lemma 3.20. [17, Prop. 5.4] Let V(sp2`, ~λ
T , 1) be a bundle over M0,4.

If a ≤ `+ s, then

deg(V(sp2`, ~λ
T , 1)) =



max{0, (`+ 1− a)(`+ 2s− a)/2} if a+ d ≥ b+ c and 0 < s

(`+ s+ 1− a)(`+ s− a)/2 if a+ d ≥ b+ c and 0 ≥ s

max{0, (1 + d− s)(d+ s)/2} if a+ d ≤ b+ c and 0 < s

d(d+ 1)/2 if a+ d ≤ b+ c and 0 ≥ s

If a > `+ s, then deg(V(sp2`, ~λ
T , 1)) = 0.

Similar to the reasoning of equality of the formulas in Lemma 3.18 when a+ d = b+ c, we can

show equality of the formulas for each case of s by using the substitutions a = `+ s− d.

Remark 3.21. Variations of these formulas have appeared in previous work. The original formula,

from which we obtain Lemma 3.19, first appeared in [17, Prop. 4.2]. Further simplifications were

made by B. Alexeev and stated in [44, Lemma 3.3]. The formula in Lemma 3.20 first appeared

in [17, Prop. 5.4] with certain conditions of the weights implicitly assumed. We briefly justify the

additional condition in our formula in Lemma 3.20.
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Claim 3.22. If a > `+ s, then rk(V(sp2`, ~λ
T , 1)) is zero and thus,

deg(V(sp2`, ~λ
T , 1)) = 0.

Proof. We use the Generalized Triangle Inequality in (Proposition 3.5 [2, Lemma 3.8]) to show

rk(V(sp2`, ~λ
T , 1)) = 0, from this the degree result follows. The Generalized Triangle Inequal-

ity is for ranks of sl2 bundles, so by Fact 3.2, this inequality provides a condition for when

rk(V(sp2`, ~λ
T , 1)) is necessarily zero. The Generalized Triangle Inequality gives that if a > b+ c+d

then rk(V(sp2`, ~λ
T , 1)) = rk(V(sl2, ~λ, `)) = 0. If we assume a > `+s then since a+b+c+d = 2(`+s),

it follows immediately that a > b+ c+ d and so rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ
T , 1)) = 0.

By comparing the degree formula in Lemma 3.20 with the rank formula for a bundle V(sl2, ~λ, `)

(and hence V(sp2`, ~λ
T , 1)) in [44, Lemma 3.3], we can rewrite the degree formula for a bundle

V(sp2`, ~λ
T , 1) → M0,4 in terms of rank. We deduce the analogous degree formula for that of

V(sl2, ~λ, `)→M0,4 in Lemma 3.19 but for bundles V(sp2`, ~λ
T , 1)→M0,4.

Lemma 3.23. Let V(sp2`, ~λ
T , 1) be a bundle over M0,4.

If a ≤ `+ s, then

deg(V(sp2`, ~λ
T , 1)) =



rk(V(sp2`, ~λ
T , 1))(`+ 2s− a)/2 if a+ d ≥ b+ c and 0 < s

rk(V(sp2`, ~λ
T , 1))(`+ s− a)/2 if a+ d ≥ b+ c and 0 ≥ s

rk(V(sp2`, ~λ
T , 1))(d+ s)/2 if a+ d ≤ b+ c and 0 < s

rk(V(sp2`, ~λ
T , 1))d/2 if a+ d ≤ b+ c and 0 ≥ s

Otherwise, deg(V(sp2`, ~λ
T , 1)) = 0.

Comparing degree terms in Lemma 3.19 and Lemma 3.23, we obtain the following result.

Corollary 3.24. For bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) over M0,4, the following inequality

holds:

deg(V(sl2, ~λ, `)) ≤ deg(V(sp2`, ~λ
T , 1)).
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Chapter 4

Rank One and Finite Generation for

Bundles V(sl2m, ~λ, `)

In this chapter we prove Theorem 1.5 and Theorem 1.6 regarding the rank classification of bundles

V(sl2, ~λ, `) and the finite generation of first Chern classes c1(V(sl2m, ~λ, `)) with rectangular weights.

This work has also been written in [26].

We begin in Section 4.1 by recalling and summarizing a description of the data defining bundles

V(sl2m, ~λ, `). We then combine Witten’s Dictionary (see Section 3.7) with the Kostka formulas (see

Section 3.8) to describe a method to determine the rank of a bundle V(sl2, ~λ, `) as an enumeration of

explicitly defined tableaux (Lemma 4.8). We end Section 4.1 by stating several definitions relevant

to our approach and describe an algorithm for constructing tableaux. In Section 4.2 we prove our

main result, Theorem 1.5, by applying the Reverse Fill Algorithm from Section 4.1. In Section 4.3,

we describe the decomposition of the rank one bundles described in Theorem 1.5 and thus prove

Theorem 1.6. In the final section, we give a proof of the scaling statement, Proposition 4.44,

communicated to us by the authors of [10].

4.1 Definitions and lemmas

Recall, we defined the dominant integral weights at level ` for the simple Lie algebra slr+1 in

Definition 2.8. By Remark 2.9, the dominant integral weights at level ` for slr+1 are parametrized
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by Young diagrams in a r × ` rectangle (see Definition 3.7). Thus, such a weight is given by an

r-tuple of integers λ = (λ(1), ..., λ(r)) such that ` ≥ λ(1) ≥ ... ≥ λ(r) ≥ 0. The Young diagram

associated to this weight contains r rows with λ(i) boxes in the ith row. Recall that |λ| :=
∑r

i=1 λ
(i)

is the area of the weight λ. With this notation, a basis of the fundamental dominant weights ωi

for slr+1 is written ωj = (1, . . . , 1, 0, . . . , 0) where |ωj | = j. If ~λ = (λ1, ..., λn) is a collection of n

dominant integral weights, then the total area of the weights is the sum of the areas of all weights

in this collection, |~λ| =
∑n

i=1 |λi|. In order to define a vector bundle of conformal blocks with

slr+1, weight ~λ, and level ` it is necessary that |~λ| = (r + 1)(`+ s) for some integer s. The Young

diagrams corresponding to a collection of weights for bundles we analyze in Theorem 1.5 all look

rectangular. We refer to these weights as such.

Definition 4.1. A collection of n weights ~λ for the Lie algebra sl2m is called rectangular if ~λ =

(a1ωm, ..., anωm). In this case, the Young diagrams corresponding the weights in ~λ are all rectangles

of height m. We often write ~λ as (a1, ..., an) when the fundamental dominant weight ωm is clear

from context.

4.1.1 Maximal weights

In order to distinguish vector bundles of sl2 which have rank one for maximal reasons, we state two

definitions. Given the data of a vector bundle V(sl2, ~λ, `) with ~λ = (a1ω1, . . . , anω1) we will always

assume a1 ≥ ... ≥ an. We sometimes call the n-tuple of integers µ := (a1, ..., an) the content (as in

Definition 3.11) associated to the weight ~λ but refer to these objects interchangeably. We will see

the reason for this in Section 4.1.2.

Definition 4.2. A collection µ = (a1, ..., an), of content containing n flavors, is `-maximal if n− 3

or more flavors have amounts of size `.

Remark 4.3. Suppose there are integers k ≥ 0 and 1 ≤ p ≤ ` such that
∑n

i=1 ai = 2(k` + p),

content µ = (a1, ..., an) being `-maximal implies one of two situations depending on the parity of

n. If n is odd then n = 2k + 1 or n = 2k + 3 and if n is even then n = 2k + 2 or n = 2k + 4.

Definition 4.4. A collection µ = (a1, ..., an), of content containing n flavors is sum-maximal if∑n
i=1 ai = 2m` where n = 2m or n = 2m+ 1.
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Remark 4.5. Suppose there are integers k ≥ 0 and 1 ≤ p ≤ ` such that
∑n

i=1 ai = 2(k` + p),

content µ = (a1, ..., an) being sum-maximal implies k = m− 1 and p = `. When n is odd, this also

implies the sum Λ from Theorem 1.5 contains only two terms.

We now apply Witten’s Dictionary (see Section 3.7) to a bundle V(sl2, ~λ, `).

4.1.2 Witten’s Dictionary and classical Kostka applied to sl2

For a bundle V(sl2, ~λ, `) with weight ~λ = (a1, ..., an) such that |~λ| =
∑n

i=1 ai = 2(`+s) for an integer

s ≤ 0, Witten’s Dictionary (Proposition 3.15) and the classical Kostka equation (Section 3.8) give

rk(V(sl2, (a1ω1, ..., anω1), `)) = K
(`+s,`+s)
(a1,...,an) , (4.1)

where K
(`+s,`+s)
(a1,...,an) is the number of tableaux with Young diagram (`+s, `+s) given by a rectangular

box with two rows, each with `+ s boxes, and filled with content (a1, ..., an).

4.1.3 Witten’s Dictionary and quantum Kostka applied to sl2

For a bundle V(sl2, ~λ, `) with weight ~λ = (a1, ..., an) such that |~λ| =
∑n

i=1 ai = 2(`+s) for an integer

s > 0, Witten’s Dictionary (Proposition 3.15) and the quantum Kostka equation (Section 3.8) give

rk(V(sl2, (a1ω1, ..., anω1), `)) = K
(`,`)
`ω1,(a1,...,an,`s−1),s

(2, `), (4.2)

where K
(`,`)
`ω1,(a1,...,an,`s−1),s

(2, `) is the number of proper tableaux with shape ν[s]/λ and content

(a1, ..., an, `
s−1) (the superscript denotes the number of content of amount `). Here ν = (`, `), λ =

(`), and ν[s] is obtained from ν by adding s rim hooks to ν of size `+ 2 starting in the first column

of ν and ending in the `th column (see Figure 4.1 and Definitions 3.13 and 3.8).

To carry out the quantum computation, we must first consider the shape ν[s]/λ. We give an

example to motivate the general shape of ν[s]/λ. We refer the reader to Section 3.6 and [13] for

more information on the description of these objects.

Example 4.6. Let ` = 4, we construct the tableau ν[s]/λ, s = 5, ν = (4, 4), and λ = (4). The

s = 5 rim hooks of size `+ 2 = 6 that have been added to ν are distinguished from each other with
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ν = (`, `) =

`︷ ︸︸ ︷
. . .
. . .

λ = (`) =

`︷ ︸︸ ︷
. . .

Figure 4.1: Young diagrams in Equation 4.2

a different shade. The Young diagram λ has been deleted from ν[5].

We generalize this example to describe the shape of ν[s]/λ for any integer s > 0 and ` > 0.

Lemma 4.7. Let ν = (`, `) and λ = (`) be Young diagrams and s > 0. Let p, k be integers

such that 1 ≤ p ≤ ` and s = (k − 1)` + p (the relevance of such integers will become apparent in

Lemma 4.8 when analyzing the area of a weight vector), then ν[s]/λ = (`s+2k−1, p2).

Proof. Following the construction of the tableau in Example 4.6, we see that if we add 0 < s < `

rim hooks of size `+ 2 to ν, we add s new rows with ` boxes in each row (full rows) and two rows,

each with s boxes in each row. When we add s = ` rim hooks, we add s = ` full rows of size ` and

an additional two rows of size `. When p = 0, the resulting shape ν[s]/λ will be a rectangle with

(k − 1)(`+ 2) + 1 rows.
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4.1.4 Tableaux to count ranks of sl2 bundles

Lemma 4.8. For V1 as in Theorem 1.5, the rank of V1 is equal to the number of proper (semi-

standard) tableaux with content µ = (a1, ..., an) given by ~λ on Young diagram % := (`2k, p2) (see

Figure 4.2). The shape % is a vertical concatenation of two rectangular shapes, one of dimension

2k × ` and one of dimension 2× p.

% =

`︷ ︸︸ ︷
. . .
. . .
. . .
. . .

Figure 4.2: Young diagram % = (`2k, p2) for rank computations

Proof. First, for s ≤ 0, we have k = 0 and p = `− s. Comparing the lemma statement in this case

to the description of the coefficient in Equation 4.1 yields equivalent descriptions.

When s > 0, we consider the description of the coefficient in Equation 4.2. We must analyze

the number of proper (semistandard) tableaux on the diagram ν[s]/λ from Lemma 4.7 with content

(`s−1, a1, ..., an). The smallest content flavors (from 1 to s − 1) each have size `. Since columns

must be strictly increasing, we must fill rows 1 to s− 1 in ν[s]/λ with the first s− 1 content flavors

of size `, each such flavor fills the entire row. The remaining boxes must now be filled with the

remaining content (a1, ..., an). These remaining boxes consist of the shape % described in the lemma

statement. In this case, the shape is a Young diagram.

This concludes that the rank computation in Equation 4.1 and 4.2 is equivalent to counting the

number of proper tableaux on % as claimed in the lemma.

Remark 4.9. For the Young diagram %, described in this lemma, the proper condition is equivalent

to the condition that the flavor in the first column and p row be greater than or equal to the flavor

in the final column and p− 2 row. This means that for a given tableau, if any flavor i is contained
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in three (or fewer) consecutive rows, the tableau will be proper. Due to this remark, the tableaux

we create in Section 4.2 are all proper.

4.1.5 The Reverse Fill Method for filling Young diagrams with content

We now describe a method of placing content in a Young diagram to produce a tableau. We utilize

this method to construction tableaux in the proof of Theorem 1.5.

Let λ denote a Young diagram in a r × ` box. We denote B(a,b) the box of λ in row a and

column b. We consider boxes in a diagram to have lexicographical ordering with row and column.

That is, B(a,b) ≤ B(a′,b′) if and only if a < a′ or else (a = a′ and b ≤ b′). We refer to the boxes

of λ as being larger or smaller if we are referring to this ordering and higher or lower if they are

visually displayed in that manner (i.e., box B(a,b) is higher than box B(a′,b′) if a < a′).

Definition 4.10. Define the low-row of a diagram λ to be all of the boxes of λ, B(a,b), such that

B(a+1,b) is not a box of λ. The first row of the low-row of λ is the highest row containing such a

box, note that this row will necessarily be the ith row of λ where i is the number of boxes in the

last column of λ. We use lλ = (l
(1)
λ , ..., l

(k)
λ ) to denote the sizes of the low-row of λ. If r is the total

number of rows of λ, then for t such that 1 ≤ t ≤ k = r − i + 1, the value l
(t)
λ is the number of

low-row boxes in the (i+ t−1)th row of λ. In this case, since the boxes of the low-row are contained

in the i to r rows of λ, we say the low-row contains r − i+ 1 rows.

Remark 4.11. With this definition we require l
(1)
λ 6= 0; this convention considers the highest

(vertical) row of a low-row as the first row. However, if i denotes the row of λ that contains the

first row of the low-row of λ, then we could have l
(t)
λ = 0 if the i+ t− 1 and i+ t rows of λ contain

the same number of boxes (i.e., there are no boxes Bi+t−1,b in row i+ t− 1 such that Bi+t,b is not

a box in λ). See Example 4.12 for an example of this. We omit the subscript λ if the diagram we

are referring to is clear. Note that the number of boxes in the low-row of λ will be equal to the

length of the first row of λ and the number of rows of λ containing the low-row cannot be larger

than the total number of rows of λ.
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Example 4.12. The boxes in the low-row of the Young diagram λ = (4, 4, 3, 3) are shaded in the

figure. The low-row lengths are given by (1, 0, 3).

With a (partial) filling of a Young diagram λ, we define λ(i) to be the Young diagram obtained

from λ by removing all boxes containing content of flavors i or larger1. For λ in r × ` and content

µ = (a1, ..., an) such that
∑n

i=1 ai = |λ| we describe an algorithm for placing content µ in the boxes

of λ. This algorithm has been programed in Macaulay2 and is available on the author’s website

[27]. The code includes programs to compute the low-row of a tableau and create the semistandard

tableau produced by the Reverse Fill Method of a given set of content with a given Young diagram.

Algorithm 1 Reverse Fill Method

For i = n to 1 (in decreasing order) place all content ai of flavor i in the largest boxes of the
low-row of λ(i+ 1) (the ordering on boxes in a low-row is inherited by the ordering of the boxes of
λ). Continue until either all content is placed, resulting in a tableau, or content ai does not fit in

the low-row of %(i+ 1).

Example 4.13. Let λ = (7, 7, 7, 7, 5, 5) and µ = (7, 6, 6, 6, 6, 6, 1) the following is the result of the

Reverse Fill Method for placing µ in λ.

1 1 1 1 1 1 1
2 2 2 2 2 2 3
3 3 3 3 3 4 4
4 4 4 4 5 5 6
5 5 5 5 6
6 6 6 6 7

4.1.6 Notation and definitions for describing the decomposition of sl2m divisors

The following weight vector and vector bundle are used in Theorem 6.11(1).

1We again refer the reader to [13] for more background definitions related to Young diagrams and tableaux
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Definition 4.14. For Vm = V(sl2m, (a1ωm, ..., anωm), `) and k, p integers as in Theorem 1.5, with

A,B ⊂ {0, ..., n} define the weight vector and vector bundle,

~vA,B := (v1ωm, ..., vnωm) and

VA,B := V(sl2m, ~vA,B, 1),

where vi = 1 if i ∈ ({1, ..., 2k + 1} − A) ∪ B and vi = 0 otherwise. In the case that A or B is a

singleton set (which is typically the case in our work, see Theorem 6.11) we denote the set by its

one element. In the case that A or B is empty, we denote the set with a zero, 0. This convention

is used to simplify our notation when decomposing a divisor of an sl2 bundle (see Section 4.3).

Example 4.15. As an example of Definition 4.14, for n = 9, k = 2, and m = 2, the weight

vector with 9 weights (ω2, ω2, 0, ω2, ω2, 0, 0, ω2, 0) can be written as ~v3,8. In this case, A = {3} and

B = {8}.

The following weight vector and vector bundle are used in Theorem 6.11(2) and (3).

Definition 4.16. For j ∈ {0, 1, ..., n}, let

~vĵ := (v1ωm, ..., vnωm) and

Vĵ := V(sl2m, ~vĵ , 1),

where vi = 1 if i 6= j and vj = 0.

4.2 Rank classification of the vector bundles V(sl2m, ~λ, `)

In this section we prove Theorem 1.5. As in the statement of Theorem 1.5, let V1 = V(sl2, ~λ, `) be

the vector bundle of conformal blocks with weakly decreasing weights ~λ = (a1ω1, ..., anω1), where

|~λ| = 2(k`+p) for some integers k and p with k ≥ 0 and 1 ≤ p ≤ ` and Λ :=
∑n

i=2k+2 ai. We denote

the content produced by the weight vector ~λ as µ = (a1, ..., an) and use notation % from Lemma 4.8
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to refer to the diagram in Figure 4.2. The main lemmas and propositions in this section have been

programed into Macaulay2 and are available at the author’s website [27].

4.2.1 Rank greater than zero

In this section, we show the construction of proper tableaux to conclude when ranks are necessarily

positive.

Proposition 4.17. If Λ ≥ p then a proper tableau can be constructed on the Young diagram

% = (`2k, p2) with content µ using the Reverse Fill Method (see Algorithm 1).

The following lemma is the main technical result used in the proof of the above proposition. In

this lemma, we analyze the low-row of the diagrams %(i) that are produced after carrying out the

Reverse Fill Method with content (ai, ..., an) on %. We use the result to justify the construction

of a proper tableau with content µ on shape % using the Reverse Fill Method in the proof of

Proposition 4.17.

Lemma 4.18. For a collection of weakly decreasing content (a1, ..., an), the following statements

hold for the low-row of shape %(i) obtained after placing content (ai, ..., an) in shape % using the

Reverse Fill Method.

1. The low-row of %(i) will contain at most three rows. We denote the low-row of %(i) as

(l
(1)
i , l

(2)
i , l

(3)
i ).

2. After placing content ai−1 into %(i) using the Reverse Fill Method, the low-row of %(i − 1)

will satisfy 0 ≤ l(3)
i−1 ≤ l

(3)
i ≤ p.

3. If the amount of content ai−1 of flavor i − 1 is such that l
(3)
i ≤ ai−1, then l

(3)
j ≤ aj−1 for all

j ≤ i.

4. If l
(3)
i 6= 0 for some i, then the amount of content of flavor t − 1 ≥ i, must be either 0 <

at−1 < l
(3)
t or l

(2)
t + l

(3)
t ≤ at−1 ≤ l(1)

t + l
(2)
t + l

(3)
t

Proof. We observe that the initial low-row of % is (l
(1)
% , l

(2)
% , l

(3)
% ) = (`− p, 0, p) contains three rows.

Inductively, we consider what happens when placing content ai−1 into %(i) in the Reverse Fill
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Method. There are three cases we must consider, determined by the amount ai−1 relative to the

low-row of %(i). Consequences of each case follow immediately; we compute the resulting low-row

of %(i− 1) explicitly below. For an example of each case, see Example 4.20.

Case 1: 0 < ai−1 < l
(3)
i , content of flavor i − 1 does not fill the third row of the low-row of

%(i). After placing ai−1 content of flavor i − 1, the low-row of %(i − 1) will be (l
(1)
i−1, l

(2)
i−1, l

(3)
i−1) =

(l
(1)
i , l

(2)
i + ai−1, l

(3)
i − ai−1).

Case 2: l
(3)
i ≤ ai−1 < l

(2)
i + l

(3)
i , content of flavor i− 1 fills the third row of %(i) but does not

fill the second row of the low-row of %(i). After placing ai−1 content of flavor i− 1, the low-row of

%(i− 1) will be (l
(1)
i−1, l

(2)
i−1, l

(3)
i−1) = (l

(1)
i + ai−1 − l(3)

i , l
(2)
i + 2(l

(3)
i )− ai−1, 0).

Case 3: l
(2)
i + l

(3)
i ≤ ai−1 ≤ l

(1)
i + l

(2)
i + l

(3)
i , content of flavor i − 1 fills the third and second

row of the low-row of %(i). After placing ai−1 content of flavor i− 1, the low-row of %(i− 1) will be

(l
(1)
i−1, l

(2)
i−1, l

(3)
i−1) = (ai−1− l(2)

i − l
(3)
i , (l

(1)
i + l

(2)
i + l

(3)
i )− (ai−1− l(2)

i − l
(3)
i )− (l

(3)
i ), l

(3)
i ). Additionally,

the sum of the second and third rows in the low-row increase, l
(2)
i−1 + l

(3)
i−1 = l

(2)
i + l

(3)
i + (l

(1)
i + l

(2)
i +

l
(3)
i )− ai−1.

Analyzing the result of each case outlined above, we see that placing content ai−1 will have

the following effect in all cases, 0 ≤ l
(3)
i−1 ≤ l

(3)
i . Inductively, it follows that l

(3)
i ≤ l

(3)
% = p and

l
(1)
i ≤ l

(1)
% ≤ `− p for any shape %(i), showing the first two statements of the Lemma. The last two

statements in the Lemma follow from the content (a1, ..., an) being weakly decreasing and analyzing

the inequalities in each case.

Remark 4.19. The statement of Lemma 4.18 (3) implies that if ai is in Case 2 or 3 (in the proof

of the Lemma), then all remaining content to place will also be in Case 2 or 3. The statement of

Lemma 4.18 (4) implies that if the third row of the low-row of %(i) is nonzero, then all previously

placed content must be in Case 1 or 3 (in the proof of the Lemma). In the remaining discussion,

when referring to cases in the lemma, we mean that to refer to the three cases appearing in the

proof of the lemma.

Example 4.20. We begin with shape %(i) = (9, 9, 5, 3) with low-row (4, 2, 3) shaded in the image

below. We demonstrate the effect on the low-row after filling with content ai−1 with amount relative
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to each case above.

In the following cases, the boxes in the low-row of %(i) which are filled with content i − 1 are

darkly shaded and the new low-row for %(i− 1) is lightly shaded.

Case 1: 0 < ai−1 = 2 < 3. After filling the low-row (4, 2, 3) with 2 content values the low-row

becomes (4, 4, 1)

Case 2: 3 ≤ ai−1 = 4 < 5. After filling the low-row (4, 2, 3) with 4 content values the low-row

becomes (5, 4, 0)

Case 3: 5 ≤ ai−1 = 7 ≤ 9. After filling the low-row (4, 2, 3) with 7 content values the low-row

becomes (2, 4, 3)

.

Proof of Proposition 4.17. We show that all flavors from content µ can be placed in % using the

Reverse Fill Method.

As noted in Algorithm 1, if the Reverse Fill Method finishes by using all content from µ, the

result will be a tableau and by Remark 4.9, this tableau will be proper. We now show that indeed,

the Reverse Fill Method with content µ in shape % and Λ ≥ p will always complete.
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By the description of the Reverse Fill Method, content flavor i can always be placed using this

method if ai ≤ l(1)
i+1 + l

(2)
i+1 + l

(3)
i+1 (i.e., content of flavor i fits in the low-row of %(i+ 1)). When this

sum, l
(1)
i+1 + l

(2)
i+1 + l

(3)
i+1, is equal to `, then as ai ≤ ` for all content in µ, the algorithm continues.

Let m denote the smallest content flavor such that l
(1)
m+1 + l

(2)
m+1 + l

(3)
m+1 = `. We analyze the

shape of %(m) after placing content am.

If m = 1, then %(1) is empty (as |µ| = |%|). A proper tableau has thus been created.

Thus, assume m > 1 and after filling with content of flavor m and larger, the low-row of %(m)

is such that 0 < l
(1)
m + l

(2)
m + l

(3)
m < `. We show %(m) = (r1, r2) for some nonegative integers

0 ≤ r2 < r1 < `.

Recall, the sum of the rows in the low-row of %(i + 1) is equal to the number of boxes in the

largest row of %(i+ 1). It must be that %(m+ 1) contains a row with ` boxes and the largest row of

%(m) contains less than ` boxes. Since content am is placed in at most one column of each row in

%(m+ 1), the shape %(m+ 1) must contain exactly one row with ` boxes, and such a row must also

contain boxes in the low-row of %(m+ 1) in order for content am to be placed in it. Additionally,

this row must be the first row of % as content is placed (using the Reverse Fill Method) in the

lowest rows of %(m + 1) first. From Lemma 4.18 (1), the low-row of %(m + 1) is contained in at

most three consecutive rows of %; since one such row is the first row of %, the shape %(m + 1) has

at most three nonzero rows. From this, we infer %(m + 1) = (`, l
(2)
m+1 + l

(3)
m+1, l

(3)
m+1) (with possibly

l
(2)
m+1 = 0 or l

(3)
m+1 = 0).

Our assumptions imply am content of flavor m is placed in %(m + 1) = (`, l
(2)
m+1 + l

(3)
m+1, l

(3)
m+1)

and the largest row of %(m) is less than `. Considering the cases of Lemma 4.18 for which this

happens, it must be that am is in Case 3 of Lemma 4.18 and l
(1)
m+1 + l

(2)
m+1 + l

(3)
m+1 = `. From this

case, it follows that after placing content am, we have %(m) = (` − (am − l(3)
m+1 − l

(2)
m+1), l

(3)
m+1, 0).

Letting r1 = `− (am − l(3)
m+1 − l

(2)
m+1) and r2 = l

(3)
m+1, we can write the shape %(m) after filling with

content am as %(m) = (r1, r2) with 0 ≤ r2 < r1 < `.

We now show the remaining content can be placed in %(m) using the Reverse Fill Method. We

consider two possible cases of %(m).
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First, if r2 = 0, then the shape %(m) = (r1) is a single row. As |µ| = |%|, the remaining content

must be less than r1 (the size of the low-row of %(m)). The Reverse Fill Method can thus continue

with the remaining content. This completes the proof in this case.

Now suppose r2 6= 0. Let j be the maximum content such that aj ≥ l(3)
j+1 (i.e., aj is in Case 2 or

3 of Lemma 4.18). We can show that j ≥ 2k + 2 and all content aj , ..., aj−q (for some q such that

m = j − q) is in Case 3 of Lemma 4.18.

First, as the sum
∑n

i=2k+2 ai = Λ ≥ p and the low-row of % is (`, 0, p), some content from

the sum Λ satisfies aj ≥ l
(3)
j+1 (and so, in particular, aj is in Case 2 or 3 of Lemma 4.18). By

Lemma 4.18 (3) all subsequent content placed after aj in the Reverse Fill Method will be in Case

2 or 3 of Lemma 4.18.

Additionally, our assumption r2 6= 0 implies %(m+ 1) has three nonzero rows and am is in Case

3 of Lemma 4.18. By Lemma 4.18 (4) all content placed before am (i.e., flavor larger than m) is in

Case 1 or 3 of Lemma 4.18.

Together, these two results imply content aj , ..., aj−q is in Case 3 of Lemma 4.18 and content

an, ..., aj+1 is in Case 1 of Lemma 4.18. By Lemma 4.18, we have l
(2)
j+1 + l

(3)
j+1 = p and the low-row

of %(j) after placing content aj is:

l
(2)
j + l

(3)
j = p+ `− aj .

And similarly, for any i from j to j − q we have l
(2)
i + l

(3)
i = l

(2)
i+1 + l

(3)
i+1 + (`− ai) (this follows from

Case 3 of Lemma 4.18). We can conclude the sum of the low-row of %(j − q) after placing content

aj−q, ..., an in the Reverse Fill Method satisfies:

l
(2)
j−q + l

(3)
j−q = r2 + (r1 − r2) = p+

j∑
i=j−q

(`− ai).

Furthermore, using this equality with the remaining sum, we obtain
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j−q−1∑
i=1

ai = r1 + r2 > r1 = r2 + (r1 − r2) = p+

j∑
i=j−q

(`− ai)

j−q−1∑
i=1

ai > p+ (q + 1)`−
j∑

i=j−q
ai.

Solving for q gives,

j−q−1∑
i=1

ai +

j∑
i=j−q

ai > p+ (q + 1)`,

n∑
i=1

ai > p+ (q + 1)`,

2k`+ 2p =
n∑
i=1

ai > p+ (q + 1)`,

2k`+ p > (q + 1)`,

2k`+ ` > (q + 1)`,

2k > q.

Using this last inequality and that j ≥ 2k + 2, we obtain

m = j − q > 2k + 2− 2k = 2.

It remains to fill %(m) with content (a1, ..., am−1) for some m− 1 ≥ 2. Since m− 1 ≥ 2 there are at

least two flavors in the remaining content to fill in the two rows %(m) = (r1, r2).

Since am with shape %(m+ 1) is in Case 3 of Lemma 4.18 we have that am > l
(3)
m+1 = r2. Since

content amounts are weakly decreasing, we have that am−1 ≥ am and so it follows, am−1 ≥ r2.

Thus there is enough content of flavor m− 1 ≥ 2 to fill the second row of r2 boxes in %(m).
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Additionally, since content is weakly decreasing, we also have
∑m−2

i=1 ai ≥ am−1. The remaining

am−1 − r2 amount of content of flavor m − 1 will be am−1 − r2 < r1 − r2 and so we can continue

the Reverse Fill Method with content flavor m− 1 and %(m− 1) will be %(m− 1) = (r1 + r2− am),

that is, one row. The Reverse Fill Method will then continue with the remaining content. This

completes the proof in this case.

4.2.2 Rank one and zero

We now justify the sufficient conditions of Λ in Theorem 1.5 for rank to be zero and one. As in the

previous section, let V1 and Λ be defined as in Theorem 1.5 and % and µ the Young diagram and

content as in Lemma 4.8 from the data of V1.

Lemma 4.21. If Λ < p, then rk(V1) = 0.

Proof. Applying Lemma 4.8, we show there are no possible tableaux with shape % and content µ.

In order to produce a tableau, the largest content flavors must be placed in rows with larger

boxes than smaller flavors. Since a1 ≥ ... ≥ an and Λ < p, we must fill the final 2k + 2 row (which

contains p boxes) with the largest flavors (a2k+2, ..., an). However, since the amount of content of

flavor 2k + 2 to n (i.e.,
∑n

i=2k+2 ai) is less than p, we will not entirely fill this last row with this

content. After placing the content (a2k+2, ..., an) the remaining collection of empty boxes creates a

shape with a column of length 2k+ 2. Such a column cannot be filled with the remaining content,

(a1, ..., a2k+1) with flavors all less than 2k + 2 in strictly decreasing order. Thus, no such tableau

exists.

Lemma 4.22. If Λ = p, then rk(V1) = 1.

Proof. By Proposition 4.17 we know a proper tableau T~λ exists with shape % and content µ given

by ~λ. We show this tableau cannot be modified.

The construction of T~λ places content flavors from 2k+2 to n entirely in the 2k+2 row of % with

p boxes. Any modification of a such content would move a content flavor from (a1, ..., a2k+1) (the

content not in Λ) into row 2k+ 2. This would contradict column content flavors strictly increasing.

Arguing by induction, we can show that content (a1, ..., a2k+1) must be placed in % as described

in the Reverse Fill Method. As %(2k+2) contains columns with 2k+1 rows, content a2k+1 must be
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placed in the lowest rows of %(2k + 2) in such columns and the remaining content must be placed

in the next largest boxes so as to maintain weakly increasing rows. And so, content a2k+1 must

be placed in the largest boxes in the low-row of %(2k + 2). Since the Reverse Fill Method does

produce a tableau (Proposition 4.17), after placing content a2k+1 in this way, the shape %(2k + 1)

now contains a column with exactly 2k rows and the same reasoning can be applied to content

a2k to argue that content a2k must be placed in the %(2k + 1) using the Reverse Filled Method.

Continuing with this same reasoning, it follows that all content (a1, ..., a2k−1) must also be placed

using the Reverse Fill Method. We can thus conclude that the Reverse Fill Method is the only way

to create a tableau with shape % and content µ.

By applying Lemma 4.8, we obtain that rk(V1) = 1. See Example 4.23 for the tableau in a

situation that Λ = p.

Example 4.23. For the vector bundle V1 = V(sl2, (6, 6, 5, 5, 5, 2, 1), 6), we have k = 2, p = 3,

and Λ =
∑7

i=6 ai = 3 = p. The following is the only tableau which can be produced on shape

% = (6, 6, 6, 6, 3, 3) with content µ = (6, 6, 5, 5, 5, 2, 1). This shows rk(V1) = 1. The content in the

sum Λ is shaded.

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 4
4 4 4 4 5 5
5 5 5
6 6 7

.

Lemma 4.24. If Λ > p and weight content µ = (a1, ..., an) is `-maximal (see Definition 4.2), then

rk(V1) = 1.

Proof. In this argument we use the smallest content amounts to show there is only one possible

tableau on % with content µ from ~λ in Lemma 4.8. The tableau constructed in this argument will

be the same as T~λ constructed using the Reverse Fill Method in Proposition 4.17. We further

analyze the possible construction of a tableau in this specific case to conclude there is only one

such possible tableau.
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From Remark 4.3 and Λ > p, either n = 2k + 2 if n is even or n = 2k + 3 if n is odd. We

examine each case of the parity of n.

First, if n is odd, then we have n = 2k + 3. We must have the highest n− 3 rows of the Young

diagram % from Lemma 4.8 filled with the first n − 3 content flavors of size `. The boxes of T~λ

containing content (an−2, an−1, an) has shape %̃ = (p, p).

We seek to fill the remaining shape with content (an−2, an−1, an), the remaining empty boxes

form the shape,

. . .

. . .

two rows of length p. Since n− 2k − 1 = 2, we have assumed an−1 + an > p.

If n is even then n = 2k+2. Again, the highest n−3 rows of the Young diagram % from Lemma

4.8 must be filled with the first n− 3 content flavors of size `. In this case, the empty boxes create

the shape %̃ = (`, p, p) and our remaining content is (an−2, an−1, an).

In either situation, in order to produce a tableau with three content flavors, the largest content

of flavor n must be placed in the largest boxes, the smallest content of flavor n−2 must be placed in

the smallest boxes, and the remaining content of flavor n− 1 must then be placed in the remaining

boxes. Such placement is equivalent to the Reverse Fill Method of (an−2, an−1, an) in shape %̃ and

describes the only possible filling to produce a tableau.

Considering the unique placement of content (a1, ..., an−3), we confirm there is a unique tableau.

By applying Lemma 4.8, we obtain that rk(V1) = 1.

See Example 4.25 for a tableau with content that is `-maximal.

Example 4.25. For the vector bundle V(sl2, (6, 6, 6, 6, 2, 2, 2), 6), we have k = 2, p = 3, and

Λ =
∑7

i=6 ai = a6 + a7 = 2 + 2 = 4 > p. The following is the only tableau which can be produced

on % with content (6, 6, 6, 6, 2, 2, 2). This shows rk(V) = 1. The content from Λ is shaded. This can

52



be compared to Example 4.23.

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 6
6 7 7

.

Example 4.26. For the vector bundle V1 = V(sl2, (5, 5, 5, 5, 5, 3, 3, 3), 5), we have k = 3, p = 2,

and Λ =
∑8

i=8 ai = a8 = 3 > p. The following is the only tableau which can be produced with

content (5, 5, 5, 5, 5, 3, 3, 3) with shape % = (`6, 22). This shows rk(V1) = 1. The content from the

sum Λ is shaded.

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 7 8
7 7
8 8

Lemma 4.27. If Λ > p and weight content µ = (a1, ..., an) is sum-maximal (see Definition 4.4),

then rk(V1) = 1.

Proof. Observe from Definition 4.4, if content is sum-maximal, then the Young diagram used to

compute the rank (see Lemma 4.8 and Remark 4.5) is a rectangle of size 2m× ` where n = 2m or

n = 2m+ 1.

If n is even, then each content must be of size `. It follows immediately that there is only one

proper tableau in Lemma 4.8.

If n = 2m + 1 and Λ = an−1 + an ≥ p, then by Proposition 4.17 the Reverse Fill Algorithm

produces a semi standard tableau with content (a1, . . . , a2m+1) with shape 2m×`. One can observed

that in this case, each row i of the tableau constructed, will contain content of flavor i or i + 1.

Thus, to create a new tableau from this constructed one, we would have to switch a content of

flavor i + 1 in row i with a flavor i + 2 in row i + 1. However, in order for the modified column,

now containing content flavor i + 2 in its ith row, to be strictly increasing flavors in rows i + 1 to
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2m = n− 1 would at least require content from flavors i+ 3 to i+ (2m− i) + 2 = 2m+ 2 = n+ 1.

Since our content flavors are only between 1 and n, this cannot happen.

Example 4.28. For the vector bundle V1 = V(sl2, (4, 3, 3, 3, 3), 4), we have k = 1, p = ` = 4, and

Λ =
∑5

i=4 ai = a4 + a5 = 6 > p. The following is the only tableau which can be produced with

content (4, 3, 3, 3, 3) with shape % = (`4). This shows rk(V1) = 1. The content from the sum Λ is

shaded.

1 1 1 1
2 2 2 3
3 3 4 4
4 5 5 5

With Lemmas 4.22, 4.24, and 4.27 above, we have shown all necessary conditions in the state-

ment of Theorem 1.5 for m = 1.

4.2.3 Rank greater than one

We now show the proper tableau as constructed in Proposition 4.17 can be modified when ~λ is not

`-maximal or sum-maximal to create a new proper tableau with the same shape and content. We

use this to determine when the rank is larger than one. To begin, we use the following lemma.

Lemma 4.29. If Λ > p, the tableau, T~λ, constructed in Proposition 4.17 using the Reverse Fill

Method with content µ given by weight ~λ contains a column in which content increases by an

increment larger than one.

Proof. Given Λ > p, we have that content of flavor 2k + 2 appears in a row smaller than the final

2k+2 row of % and let r denote this row. Denote by s the smallest column of T~λ containing content

flavor 2k + 2 in row r. Consider the content flavors in column s. We can show that some content

in column s must increase by an increment larger than one.

If such was not the case, then since content of flavor 2k + 2 is in some row r < 2k + 2, flavor

in row one of column s must necessarily be larger than 1 (by assuming each flavor appearing in

column s above row r decreases by one increment from boxes in row r to 1). Since T~λ is a tableau,

content of flavor 1 must fit inside the s− 1 boxes in row one. Thus, we have a1 < s.
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However, we can show that for j ≤ 2k + 1, content amounts must be aj > s. Indeed, since s is

the smallest column containing content flavor 2k + 2 and flavor 2k + 1 is in row r − 1 and column

s, content of flavor 2k + 1 must also appear in row r and columns 1 to s, this implies a2k+1 > s.

Since content amounts are weakly decreasing, aj ≥ a2k+1 > s for j = 1 to 2k.

Proposition 4.30. Let T~λ be the tableau constructed in Proposition 4.17 using the Reverse Fill

Method with content µ given by weight ~λ. If ~λ is not `-or sum-maximal and Λ > p, then T~λ can be

modified to create a new proper tableau on % with content µ.

Proof. In this proof, we analyze four cases. We describe procedures to create a proper tableau

with shape % and content µ by modifying the placement of content in T~λ. In Cases 1-3, boxes

of T~λ are identified with the same parameters and content contained in these boxes are switched,

however, the justification that this procedure produces a tableau is different in each case. In Case

4, a slightly different procedure must take place. Examples 4.31 4.32, 4.33, and 4.34 illustrate these

four cases.

Let s1 denote the leftmost column of T~λ in which content increases by an increment larger than

one. We know such a column exists by Lemma 4.29 for some s1 ≤ p since Λ > p.

Let r + 1 denote the first row in column s1 in which content has increased by an increment

larger than one. It follows that r ≤ 2k+ 1, content in box Br,s1 is of flavor r, box Br+1,s1 contains

flavor d ≥ r + 2, and ad < `. Indeed, if a1 = `, then by the Reverse Fill Method, we would have

content of flavor a− 1 in Br,s1 with r + 1 ≤ d− 1 (recall, the largest rows of % contain ` boxes).

Since T~λ was filled using the Reverse Fill Method and box Br+1,s1 has flavor d and Br,s1 has

flavor r, all content ad−1, ..., ar+1 of flavors d− 1 to r + 1 are in at most the r and r + 1 row of %.

Particularly, all content in row r − 1 must have flavor smaller than r + 1.

Let b denote the largest flavor in row r smaller than d and larger than r. Let s2 denote the

largest column such that Br,s2 contains flavor b. We show that in Cases 1-3 that flavor b and column

s2 exist. And that switching content of flavor b in Br,s2 with content of flavor d in Br+1,s1 will

result in a new proper tableau with shape % with content µ.

Case 1: s1 = 1.

55



If s1 = 1, then since Br,1 contains content r, there are at most ad − 1 other boxes in row r

above content d in row r+ 1. As all columns are strictly increasing, we must have flavor d− 1 with

d > d − 1 > r in row r. Since ad−1 ≥ ad, it follows that ad−1 > ad − 1 and so the largest column

containing content b = d− 1 must be above a box containing content larger than d (or such a box

is not in %).

It follows that switching content of flavor b in Br,s2 with content of flavor a in Br+1,s1 will result

in a new proper tableau with shape % and content µ. See Example 4.31 for such a case.

Case 2: s1 > 1 and r ≤ 2k.

Since r ≤ 2k, row r+2 is a row in %. Since s1 > 1, we have that columns 1, ..., s1−1 increase by

increments of size one, thus, content r+ 2 is in row r+ 2 of % in boxes Br+2,1, ..., Br+2,s1−1. We can

further show that d = r + 2; if this was not the case, then by the Reverse Fill Method, content of

flavor d must appear in row r+3 below the content of flavor r+2. From the choice of s1, this would

force d = r+3. And specifically, %(r+3) would have the form (`− (s1−1), 0, s1−1) (a jump in the

low-row). However, from Lemma 4.18 a low-row of this form only appears for %(n+ 1) (the initial

shape %). However, if n + 1 = r + 3, then n = r + 2, contradicting a content flavor of d in µ. In

summary, columns 1 to s1 contain s1 amounts of content of flavor r+2 (in boxes Br+2,1, ..., Br+2,s1−1

and Br+1,s1) and s1−1 amounts of content flavor r+1 (in boxes Br+1,1, ..., Br+1,s1−1). Since content

amounts are weakly increasing ar+1 ≥ ar+2 so after placing r + 1 in the s1 − 1 boxes in row r + 1,

there must be additional content of flavor r + 1 to place in row r. The largest box in the low-row

of %(r + 2) in row r will contain flavor r + 1 and must be above content of flavor larger than r + 2

(or such a box may not be in %). Denote the column containing this largest box s2.

It follows that switching content of flavor r + 1 in Br,s2 with content of flavor r + 2 in Br+1,s1

will result in a new proper tableau with shape % and content µ. See Example 4.32 for an illustration

of this case.

Case 3: s1 > 1, r = 2k + 1, and n ≥ j + 1.

Now, suppose r = 2k + 1. In this case, row r + 1 with box Br+1,s1 containing content flavor

a is in the final 2k + 2 row of %. Since s1 > 1, we have that content of flavor r + 1 = 2k + 2 is

in row r + 1 = 2k + 2 in the boxes Br+1,1, ..., Br+1,s1−1 and content a is only contained in row

r + 1 = 2k + 2.
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Since Λ =
∑n

i=2k+2 ai > p there must be content of flavor 2k + 2 = r + 1 in row r = 2k + 1. It

follows that content r+ 1 = 2k+ 2 will be placed in column p of row 2k+ 1 above a box containing

content flavor n > j.

It follows that switching content of flavor 2k + 2 in Br,p with content of flavor a in Br+1,s1 will

result in a new proper tableau with shape % and content µ. See Example 4.33.

Case 4: s1 > 1, r = 2k + 1 and n = j.

In this case, a different modification of T~λ than in Cases 1-3 must take place.

As in the previous situation with s1 > 1 and r = 2k + 1, we have that content of flavor

r+ 1 = 2k+ 2 is in row r+ 1 = 2k+ 2 in boxes B2k+2,1, ..., B2k+2,s1−1, content of flavor r = 2k+ 1

is in boxes B2k+1,1, ..., B2k+1,s1 , and content of flavor a = 2k+ 3 is in B2k+2,s1 . Our parameters are

thus, r = 2k + 1 and n = a = r + 2 = 2k + 3.

Now, with n = 2k + 3, the sum Λ contains only two content flavors. Additionally, since

Λ = a2k+2 +a2k+3 > p, row 2k+1 must also contain content of flavor 2k+2 and so we have a strict

inequality, s1 < p. Let s3 denote the smallest column such that B2k+1,s3 contains content 2k + 2

(we will have s1 < s3 ≤ p). See Figure 4.3 for an illustration of the 2k, 2k + 1, and 2k + 2 rows of

T~λ for such a case.

s1 s3 `

2k 2k 2k 2k . . . 2k + 1 2k + 1

r 2k + 1 2k + 1 2k + 2 2k + 2

2k + 2 2k + 3 2k + 3 2k + 3

Figure 4.3: Tableau in Case 4 of Proposition 4.30

We have previously shown, all content in row r − 1 must have flavor smaller than r + 1. And

so, for this case, it follows that all content in row 2k has flavor smaller than 2k + 2.
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However, since ~λ is not `-maximal, and n = 2k+ 3, we have a2k < `. So box B2k,` must contain

content of flavor 2k + 1.

In this case, it follows that switching content of flavor 2k + 1 in B2k,` with content of flavor

2k + 2 in B2k+1,s3 will result in a new proper tableau with shape % and content µ. These selected

boxes are highlighted in Figure 4.3.

We now illustrate examples for each case in the proof of Proposition 4.30. In each example, the

first tableau is constructed using the Reverse Fill Method, the boxes containing content to switch

are highlighted. The tableau obtained from the switching the highlighted content is illustrated.

Example 4.31. Consider the vector bundle V = V(sl2, (3, 3, 3, 2, 2, 1), 4). In this case, we have

n = 6, ` = 4, k = 1, p = 3 and Λ =
∑6

i=4 ai = 2 + 2 + 1 = 5 > p. We are in Case 1 of

Proposition 4.30 with parameters r = 3 and d = 5. The tableau T~λ, constructed using the Reverse

Fill Method, is first illustrated below. Content of flavors 4 and 5 to be switched specified by the

description in Proposition 4.30 is shaded. As one can check, switching the flavors in these boxes

produces a new proper tableau. Additionally, rk(V ) = 6.

1 1 1 2
2 2 3 3
3 4 4
5 5 6

1 1 1 2
2 2 3 3
3 4 5
4 5 6

Example 4.32. Consider the vector bundle V = V(sl2, (4, 3, 2, 2, 1), 5). In this case, we have

n = 5, ` = 5, k = 1, p = 1 and Λ =
∑5

i=4 ai = 2 + 1 > p. We are in Case 2 of Proposition 4.30. The

tableau T~λ, constucted using the Reverse Fill Method, is first illustrated below. Content of flavors

2 and 3 to be switched specified by the description in Proposition 4.30 is shaded. As one can check,

switching the flavors in these boxes produces a new proper tableau. Additionally, rk(V ) = 2.

1 1 1 1 2
2 2 3 3 4
4
5

1 1 1 1 3
2 2 2 3 4
4
5

Example 4.33. Consider the vector bundle V = V(sl2, (5, 5, 3, 3, 1, 1), 5). In this case, we have

n = 6, ` = 5, k = 1, p = 4 and Λ =
∑6

i=4 ai = 3 + 1 + 1 = 5 > p. We are in Case 3 of
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Proposition 4.30 with parameters r = 3, b = 4, and s1 = 3. The tableau T~λ, constucted using the

Reverse Fill Method, is first illustrated below. Content of flavors 4 and 5 to be switched specified

by the description in Proposition 4.30 is shaded. As one can check, switching the flavors in these

boxes produces a new proper tableau. Additionally, rk(V ) = 2.

1 1 1 1 1
2 2 2 2 2
3 3 3 4
4 4 5 6

1 1 1 1 1
2 2 2 2 2
3 3 3 5
4 4 4 6

Example 4.34. Consider the vector bundle V = V(sl2, (4, 3, 3, 2, 2), 4). In this case, we have

n = 5, ` = 4, k = 1, p = 3 and Λ =
∑5

i=4 ai = 2 + 2 = 4 > p. We are in Case 4 of Proposition 4.30

since r = 3 and n = d = 5. The tableau T~λ, constucted using the Reverse Fill Method, is illustrated

below. Content of flavors 3 and 4 to be switched specified by the description in Proposition 4.30

is shaded. As one can check, switching the flavors in these boxes produces a new proper tableau.

Additionally, rk(V ) = 2.

1 1 1 1
2 2 2 3
3 3 4
4 5 5

1 1 1 1
2 2 2 4
3 3 3
4 5 5

We are now able to conclude the following result.

Proposition 4.35. If Λ > p and content µ is not `-or sum-maximal then rk(V1) > 1.

Proof. By Proposition 4.17, a proper tableau can be constructed with shape % and content µ. If ~λ is

not `-or sum-maximal, then the tableau T~λ construction in Proposition 4.17 satisfies Lemma 4.29.

Hence by Proposition 4.30, more than one proper tableau can be produced with shape % and content

µ. By Lemma 4.8, we can conclude rk(V1) > 1.

4.2.4 Main Theorem

We collect our results together to prove the main theorem.
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Proof of Theorem 1.5. By collecting the results from Lemmas 4.21 to 4.27 and Proposition 4.35 we

can conclude the statement of the main theorem for the case m = 1. By the scaling property in

Proposition 4.44, we conclude the full statement of Theorem 1.5.

4.3 Decomposition of first Chern classes of rank one bundles

divisors

We now prove our final result which describes the decomposition of first Chern classes of rank

one bundles appearing in Theorem 1.5 into an effective sum. We write this sum explicitly in

Theorem 6.11. To reduce notation, we write the sum using the vector bundles VA,B and Vĵ we

defined in Definitions 4.14 and 4.16.

Theorem 4.36. In the case rk(Vm) = 1 the first Chern class c1(Vm) decomposes into an effective

sum of ` first Chern classes of the form c1(V(sl2m, ~λ
′, 1)) where the weight vector ~λ′ is determined

by the original weight ~λ = (a1ωm, ..., anωm). We state the explicit decomposition for each possible

form of weights. The sum always reduces to ` nonzero terms. As in Theorem 1.5, let p and k be

integers such that
∑n

i=1 ai = 2(k` + p) with 1 ≤ p ≤ ` and k ≥ 0. Define Λ :=
∑n

i=2k+2 ai where

Λ := 0 if 2k + 2 > n.

1. When Λ = p:

c1(Vm) =
2k+1∑
i=1

(`− ai) · c1(Vi,0) +
n∑

j=2k+2

aj · c1(V0,j).

2. When Λ > p, content is `-maximal, and

(a) n is odd:

c1(Vm) = (`− p) · c1(V2k+1,0) +
n∑

j=2k+1

(p− aj) · c1(Vĵ),

(b) n is even:
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c1(Vm) = p·c1(V0̂)+(a2k−p)·c1(V2k+1,0)+(a2k+1−p)·c1(V2k,0)+(a2k+2−p)·c1(V{2k,2k+1},2k+2).

3. When Λ > p and content is sum-maximal:

c1(Vm) =

n∑
i=1

(`− ai) · c1(Vî).

Our method used to decompose a first Chern class involves the rank one peeling result from [8,

Prop. 19]. We state this result here in the special case of rank one bundles from Theorem 1.5.

Proposition 4.37. If ~µ ∈ P`(sl2m)n and ~ν ∈ P˜̀(sl2m)n such that

rk(V(sl2m, ~µ+ ~ν, `+ ˜̀)) = rk(V(sl2m, ~µ, `)) = rk(V(sl2m, ~ν, ˜̀)) = 1

then

c1(V(sl2m, ~µ+ ~ν, `+ ˜̀)) = c1(V(sl2m, ~µ, `)) + c1(V(sl2m, ~ν, ˜̀)).

The result of Proposition 4.37 allows us to decompose c1(Vm), where Vm is a bundle as in

Theorem 1.5 of rank one, by describing a decomposition of the weight data ~λ that can be associated

to rank one bundles. As a first step, we show in Lemma 4.38 that a decomposition of ~λ can be

obtained from separating content in the final column of the unique tableau constructed to compute

the rank of Vm. Repeating this decomposition, we can completely decompose c1(Vm) into an

effective sum of ` terms as described in Proposition 6.11.

Lemma 4.38. Let V1 = V(sl2, ~λ, `) be a bundle of rank one from Theorem 1.5 with ` > 1 and T

the unique tableau constructed using the Reverse Fill Method with content µ from weight ~λ. Let

(c̃1, ..., c̃n) denote the content appearing in the final column of T (note that each c̃i = 0 or 1). Let

~λ−c = ((a1 − c̃1)ω1, ..., (an − c̃n)ω1) (i.e., the weight data from content not in the final column of

T). Then,

rk(V(sl2, ~λ
−c, `− 1)) = 1.
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Proof. We show this result using the rank one classification determined in Theorem 1.5.

Using the notation of Theorem 1.5, the final row of the tableau constructed in Proposition 4.17

to compute rk(V1) will contain 2k+ 2 or 2k boxes, where |~λ| =
∑n

i=1 ai = 2(k`+ p). Thus, we will

have one of the following cases

|~λ−c| = 2(k(`− 1) + p− 1) or |~λ−c| = 2(k(`− 1) + p),

determined by the final column of T containing 2k + 2 or 2k boxes respectively. Since ` > 1, if we

were to remove a column of size 2k + 2 then it must be that p > 1 and so the integers kc and pc

associated to ~λ−c in Theorem 1.5 will be

kc = k

and

pc = p− 1 or pc = p.

Denote Λc =
∑n

i=2kc+2(ai−c̃i) for the sum in Theorem1.5 associated to the weight ~λ−c. Particularly,

since kc = k, the sums Λc and Λ contain the same flavors.

If Λ = p, then the content from Λ fits exactly in the 2k + 2 row of T (see Lemma 4.22). If the

final column of T contains only 2k boxes, then Λc = Λ (as no content from the sum Λ was removed

from the last column). If the final column of T contains 2k + 2 boxes, then it contains exactly one

content from Λ, so Λc = Λ− 1. But also in this case, we have pc = p− 1, and so Λc = pc.

Now suppose Λ ≥ p and ~λ is `−maximal. This implies that removing the final column from T

removes content from each ai = ` in the content µ. The weight λ−c will be (`− 1)−maximal (that

is, it will contain the same number of weights of size `− 1 that ~λ contains of size `). As all content

from Λ is first filled into the entire final 2k+ 2 row of T , removing the final column of T will leave

Λc ≥ pc.

Finally, suppose Λ ≥ p and ~λ is sum-maximal. In this case, we have |~λ| = 2m` with n = 2m

or n = 2m + 1. In either case, the final column of T contains 2m boxes. Thus |~λ−c| = 2m(`− 1),

showing that ~λ−c is also sum-maximal at level `−1. Similar to the previous cases, since the content

from Λc is filled into the entire final 2m row of T , removing the final column of T will leave Λc ≥ pc.
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In each of the above cases, Theorem 1.5 implies rk(V(sl2, ~λ
−c, `− 1)) = 1.

4.3.1 Description of column content when Λ = p

We see from Lemma 4.38, that to explicitly describe the bundles appearing in our method of

decomposing c1(V1), we must describe the content in each column of the tableau constructed to

compute rk(V1). We describe the content in each column of the unique tableau constructed in

Proposition 4.17 using the Reverse Fill Method for the case that Λ = p. Let j be a column of this

tableau.

If j is such that p < j ≤ `, then the jth column contains 2k boxes with content from flavors 1

to 2k + 1 which are strictly increasing. There is at most one occurrence between consecutive rows

in this column where the content flavors increase by two and all other content flavors increase by

exactly one. Denote ij the flavor missing by this increase of size two from column j. The weight

vector obtained from the content of this column is ~vij ,0 (see Definition 4.14).

If j is such that 1 ≤ j ≤ p, then the jth column contains 2k + 2 boxes in which the content

in the first 2k + 1 rows are precisely the flavors 1 to 2k + 1 and the final box contains a content

flavor from {2k + 2, ..., n}. Let ij denote this flavor. The weight vector given by the flavors in this

column is given by ~v0,ij . The transpose of column j has the following form:

1 2 . . . 2k 2k + 1 ij
.

For example, consider the conformal block, V = V(sl2, (9, 8, 8, 8, 8, 8, 8, 2, 1), 9). In this case,

` = 9, k = 3, p = 3. For each column j, if j = 4, ..., 9, the content ij − 1 and ij + 1 are lightly

shaded (or else not in this column, see column j = 4). For columns j = 1, 2, 3 the content ij is

darkly shaded. In this example, i1 = 8, i2 = 8, i3 = 9, i4 = 7, i5 = 6, i6 = 5, i7 = 4, i8 = 3, and

i9 = 2.

63



1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 4 4
4 4 4 4 4 4 5 5 5
5 5 5 5 5 6 6 6 6
6 6 6 6 7 7 7 7 7
7 7 7
8 8 9

4.3.2 Proof of divisor decomposition

We now prove our result on the decomposition of c1(Vm).

Proof of Theorem 6.11. Let V1 be a rank one bundle. As in the statement of Lemma 4.38, let ~λ−c

be the weight vector obtained by removing the content from ~λ in the final column of the tableau

produced in Proposition 4.17. The results of Lemmas 4.38 and 4.8 imply,

rk(V(sl2, ~λ
−c, `− 1)) = 1.

As nontrivial slr bundles at level one are also rank one [17, Sect. 5.2.1], we have,

rk(V(sl2, ~vi`,0, 1)) = 1,

where ~vi`,0 is the weight vector associated to column `.

By Proposition 4.37, the first Chern class decomposes as,

c1(V1) = c1(V(sl2, ~λ
−c, `− 1)) + c1(Vi`,0).

We repeat this decomposition now with the rank one vector bundle V(sl2m, ~λ
−c, ` − 1). This

process continues until we have completely decomposed the original divisor into a sum of level one

divisors. Observing the behavior of the weight content in column j with p < j and j ≤ p of the

tableau produced in Proposition 4.17 allows us to conclude the explicit equations in the theorem

statement.
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Example 4.39. We demonstrate the decomposition of c1(V1) from Theorem 6.11 with

V1 = V(sl2, (9, 8, 8, 8, 8, 8, 8, 2, 1), 9). We have |~λ| = 2(3 · 9 + 3), and so k = 3, p = 3, and∑9
i=2(3)+2 ai = 2 + 1 = 3 = p. By Theorem 1.5, rk(V1) = 1.

The unique tableau from Lemma 4.22 is the following:

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 4 4
4 4 4 5 4 4 5 5 5
5 5 5 5 5 6 6 6 6
6 6 6 6 7 7 7 7 7
7 7 7
8 8 9

Each column of this tableau gives the weight content associated to the tableau for the divisors

of level one in the decomposition in Theorem 6.11. For columns j = 4 to 9, the content flavors

ij − 1 and ij + 1 associated to missing content flavor ij in column j are highlighted (or else not in

column j if ij − 1 is the box content in the last box of the column). For columns j = 1 to 3 boxes

containing content flavors of ij are highlighted (see Section 4.3.1)

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 4 4
4 4 4 5 4 4 5 5 5
5 5 5 5 5 6 6 6 6
6 6 6 6 7 7 7 7 7
7 7 7
8 8 9

From this, we see that the divisor decomposes as

c1(V ) = c1(V2,0) + c1(V3,0) + c1(V4,0) + c1(V5,0) + c1(V6,0) + c1(V7,0) + 2(c1(V0,8)) + c1(V0,9).

4.4 Rank one vertical scaling

In this section, for the Lie algebra slr and the set of dominant integral weights P`(slr), we describe

two types of scaling operations on the Lie data referred to as vertical and horizontal (Definition 4.40

and 4.41). We state results on the vector bundles and first Chern classes of bundles obtained by
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scaling the Lie data defining a rank one bundle on M0,n. Below, we let λ =
∑r−1

j=1 ajωj ∈ P`(slr),

m ∈ N, and set V = V(slr, ~λ, `) with ~λ = (λ1, ..., λn).

Definition 4.40. The vertical scaling of a weight λ is defined to be the weight λ(m) =
∑r−1

j=1 ajωmj ∈

P`(slmr). We denote Vm = V(slmr, ~λ(m), `), where ~λ(m) = (λ1(m), ..., λn(m)) to be the bundle

obtained by vertically scaling the Lie data.

Definition 4.41 (see Def. 2.5 [10]). The horizontal scaling of a weight λ is defined to be the weight

mλ =
∑r−1

j=1 mcjωj ∈ Pm`(slr). We denote V[m] = V(slr,m~λ,m`), where m~λ = (mλ1, ...,mλn) to

be the bundle obtained by horizontally scaling the Lie data.

The following result is a special case of horizontal projective rank scaling for bundles of rank

one (cf. [10, Thm. 3.1]). This was proved initially for bundles with g = slr at level one in [22,

Prop. 1.3] and generalized to bundles with projective rank scaling in [10, Thm. 3.1].

Claim 4.42 (Horizontal projective rank scaling). For V = V(slr+1, ~λ, `) of rank one, the bundles

V[m] for m ∈ N are also rank one and the first Chern classes are related by the identity, c1(V[m]) =

m · c1(V).

The analogous vertical scaling result for rank one bundles also holds. The precise statement

and proof, communicated by Belkale, Gibney, and Kazanova, are given in Proposition 4.44. The

main methods in the argument involve: (1) rank-level duality of the fiber of the bundle over a

smooth point [38, Cor. 4], (2) intersection theoretic computations using formulas by Fakhruddin

[17, Prop. 2.7], and (3) factorization formulas of vector bundles of conformal blocks (as in [17,

Prop. 2.2]). In Observation 4.43, we summarize three results of rank one bundles used in the

argument. These observations follow from the fact that the set of F -curves spans the vector space

of 1-cycles on M0,n and the rank of a bundle can be computed using factorization with a partition

of the weights determined by an F -curve.

Observation 4.43.

(1) For V = V(g, ~λ, `) of rank one, there is at most one nonzero term in the summation to compute

rank by factorization along the partition determined by an F -curve, F .
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(2) Particularly, the four weights ~µ = (µ1, µ3, µ3, µ4), indexing this nonzero term determine

deg(V|F ) = deg(V(g, ~µ, `)) [17, Prop. 2.7].

(3) Two divisors c1(V) and c1(V′) on M0,n are linearly equivalent if and only if the divisors

intersect all F -curves in the same degree.

Proposition 4.44. Let V = V(slr, ~λ, `) be a bundle on M0,n such that rk(V) = 1, then rk(Vm) = 1

and c1(Vm) = m · c1(V)

Proof. If V has rank one, then by taking its rank-level dual (see [38, Cor. 4]), one obtains the rank

one bundle V(sl`, ~λ
T , r), where ~λT = (λ̃1

T
, ..., λ̃n

T
) with λ̃i the modified Young diagram obtained

by adding `− λ(1)
i columns of length r to the Young diagram λi (see Section 7.1 in [38]) and λ̃i

T
is

the transpose of the Young diagram λ̃i. The weight λ̃i corresponds to adding trivial representations,

ω0, to the weight λi so that λ̃i has λ̃
(1)
i = `. Now, by Claim 4.42, V(sl`,m~λ

T ,mr) also has rank

one. By taking the rank-level dual of this bundle, one obtains V(slmr, ~λ(m), `) = Vm and so also

has rank one. One can check that indeed, normalizing the weights (mλ̃i
T

)T (i.e., removing columns

of length mr from the Young diagrams corresponding to the weight (mλ̃i
T

)T ) appearing in the

rank-level dual of the scaled bundle, correspond to the desired scaled weights ~λ(m).

For any F -curve, we can apply the rank result to the rank one bundle with four weights,

V(slr, ~µ, `), in Observation 4.43(2) associated to the bundle V, to deduce rk(V(slmr, ~µ(m), `)) = 1.

Since we showed rk(Vm) = 1, the scaled weight ~µ(m) must be the weight from Observation 4.43(2)

for the bundle Vm. In Lemma 4.45 we show m · deg(V(slr, ~µ, `)) = deg(V(slmr, ~µ(m), `)). From

Observation 4.43 (2, 3) the proposition follows.

Lemma 4.45. Let V = V(slr, ~λ, `) be a bundle on M0,4 with ~λ = (λ1, λ2, λ3, λ4) and Vm be the

bundle obtained by vertically scaling the Lie data (Definition 4.40). If rank(V) = 1, then

m · degV = degVm.

Proof. Assuming rk(V) = 1, it follows from the first argument in Proposition 4.44 that for all

m ≥ 1, rk(Vm) = 1. By Claim 4.42 we then also have rk(Vm[m]) = 1.

To compute the degree of a four weighted bundle, we use Fakhruddin’s formula [17, Cor. 3.5],
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degV(slr, (λ1, λ2, λ3, λ4), `) =
1

2(r + `)

{
4∑
i=1

ĉr(λi)−{ ∑
λ∈P`(slr)

ĉr(λ)
{ ∑
{a}t{bc}={234}

rkV(slr, (λ1, λa, µ), `) rkV(slr, (λb, λc, µ
∗), `)

}}}
. (4.3)

In this formula, ĉr(λ) is the scalar by which the Casimir element of slr acts on the irreducible slr

representation Vλ (see for example [14, IX.7.6] or [16, p. 511]). Since V is rank one, there is exactly

one weight µ ∈ P`(slr) such that

rkV(slr, (λ1, λa, µ), `) rkV(slr, (λb, λc, µ
∗), `) = 1 (4.4)

for each a = 2, 3, 4 in the indexing set of the final sum in Equation 4.3 (and zero otherwise). Thus,

this sum indexing over µ ∈ P`(slr) in Equation 4.3 reduces to a sum of three terms. Equation 4.3

can be written as,

degV =
1

2(r + `)

{
4∑
i=1

ĉr(λi)−
3∑
j=1

ĉr(µj)

}
, (4.5)

where µj ∈ P`(slr) are the three weights making each case of a for Equation 4.4 true. By the rank

scaling result of Proposition 4.44 and Claim 4.42, the (vertically and horizontally) scaled weights

mµj(m) ∈ Pm`(slmr) will also be those appearing in the similarly reduced degree computation for

Vm[m]. This implies,

degVm[m] =
1

2(mr +m`)

{
4∑
i=1

ĉmr(mλi(m))−
3∑
j=1

ĉmr(mµj(m))

}
. (4.6)

From the definition of the Casimir operator ([14, IX.7.6] or [16, p. 511]) a formula for the

Casimir scalar for slr and weight λ =
∑r−1

i=1 ciωi can be computed. We write one such standard

formula below in Equation 4.7. An equivalent formula, using another choice of basis can be found

in [35, Sect. 6].

ĉr(λ) =
1

r

r−1∑
i=1

(r − i)ic2
i +

2

r

∑
1≤i<j≤r−1

(r − j)icicj +

r−1∑
i=1

(r − i)ici. (4.7)
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We observe that the relationship of the Casimir scalar for slr and weight λ, and slmr and scaled

weight mλ(m) is

ĉmr(mλ(m)) = m3ĉr(λ).

Using this relationship and Claim 4.42 with the rank one bundles Vm and Vm[m] leads to

degVm =
1

m
degVm[m]

=
1

m

1

2(mr +m`)

{
4∑
i=1

m3ĉr(λi)−
3∑
j=1

m3ĉr(µj)

}

=
1

(m2)

1

2(r + `)
(m3)

{
4∑
i=1

ĉr(λi)−
3∑
j=1

ĉr(µj)

}

= m
1

2(r + `)

{
4∑
i=1

ĉr(λi)−
3∑
j=1

ĉr(µj)

}

= m · degV.

When the weight vector ~λ has rectangular weights, the converse of the rank relationship in

Proposition 4.44 is also true. The argument in the first paragraph in the proof of Proposition 4.44

can be reversed to obtain the following result.

Corollary 4.46. For V = V(sl2m, ~λ, `), we have rk(V) = 1 if and only if rk(Vm) = 1.
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Chapter 5

Divisor Equivalence of Bundles

V(sl2, ~λ, `) and V(sp2`, ~λT , 1)

In this chapter, we investigate the first Chern classes of bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) (see

Section 3.2) and prove Theorems 1.8 and 1.9. Our methods involve comparing intersection numbers

of c1(V(sl2, ~λ, `)) and c1(V(sp2`, ~λ
T , 1)) with an arbitrary F -curve by applying the intersection

formula in Proposition 3.17 (from [17, Prop. 2.7]) and using Fact 3.2 on the equality of the rank

terms appearing in this formula for bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1). In Section 5.1 we restate

the results of Theorem 1.5 in the case when V(sl2, ~λ, `) is a bundle over M0,4 in order to describe

the four pointed bundles appearing in the intersection formulas of rank one bundles. In Section 5.2

we prove Theorem 1.8 by first showing the result for bundles with four weights (see Lemma 5.4).

With this result and the observation made in Observation 5.2 for intersection numbers of rank one

bundles, it follows that for n > 4, the corresponding intersections numbers of c1(V(sl2, ~λ, `)) and

c1(V(sp2`, ~λ
T , 1)) are equal if the four pointed bundles appearing in the intersection formulas from

Proposition 3.17 are rank one (or zero) bundles. In Proposition 5.7 we show such a condition with

all F -curves implies the original bundles have rank one or zero. We end this chapter in Section 5.4

by explicitly describing the maps from rank one (or zero) bundles given by c1(V(sl2, ~λ, `)) and

c1(V(sp2`, ~λ
T , 1)).
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5.1 Rank one classification of V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) with four

weights

In Theorem 1.5 a complete description of ~λ and ` is given to determine when the rank of V(sl2, ~λ, `)

is one. Due to the equality of ranks of bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) in Fact 3.2 this

result also applies to bundles V(sp2`, ~λ
T , 1). We state this result explicitly for four pointed bundles

V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) by specializing the classification in Theorem 1.5 to this case.

Lemma 5.1. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined with a fixed ~λ = (a, b, c, d) at level `

such that a+ b+ c+ d = 2(`+ s), for some integer s. Then rk(V(sl2, ~λ, `)) = rk(V(sp
2`,~λ,1

)) = 1 if

and only if one of the following sets of conditions is satisfied:

1) s ≥ 0,

2) a, b, c, d ≥ s, and

3) a = ` or d = s,

or
1) s < 0 and

2) a = `+ s.

Furthermore, rk(V(sl2, ~λ, `)) = rk(V(sp
2`,~λ,1

)) > 1 if and only if one of the following sets of

conditions is satisfied:
1) s ≥ 0,

2) a, b, c, d > s, and

3) a 6= `,

or
1) s < 0 and

2) a < `+ s.

5.2 Proof of divisor equivalence for rank one bundles

In this section we prove Theorem 1.8. Our method is to show the divisor classes c1(V(sl2, ~λ, `))

and c1(V(sp2`, ~λ
T , 1)) intersect all F -curves in the same degree if and only if the bundles have rank

one (or zero). As the set of F -curves spans the vector space of 1-cycles on M0,n (see Observa-

tion 4.43(3)), this will conclude our result.

We first note the following observation for rank one bundles.

Observation 5.2. For V(g, ~λ, `) of rank one, there is at most one nonzero term in the intersection

formula in Proposition 3.17 from [17, Prop. 2.7]. Particularly, this potential nonzero term is the

degree of a four pointed bundle with rank one.
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From this observation, together with the equality of ranks in Fact 3.2, the following simplification

for computing degrees for rank one bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) is deduced.

Corollary 5.3. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined for a fixed ` and ~λ. If rk(V(sl2, ~λ, `)) =

1, then for any F -curve, FI1,I2,I3,I4 , there is a four-tuple of nonnegative integers ~µ = (a, b, c, d) such

that

deg(V(sl2, ~λ, `)|FI1,I2,I3,I4) = deg(V(sl2, ~µ, `))

and

deg(V(sp2`, ~λ
T , 1)|FI1,I2,I3,I4) = deg(V(sp2`, ~µ, 1)).

From this corollary, it follows that to compare intersection numbers for rank one bundles V(sl2, ~λ, `)

and V(sp2`, ~λ
T , 1), we need only compare four pointed degrees of rank one bundles. We now prove

a result about such bundles.

Lemma 5.4. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined with a fixed ~λ = (a, b, c, d) and integer

` such that a+ b+ c+ d = 2(`+ s), for some integer s. Then

rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ
T , 1)) = 1 or 0

if and only if

deg(V(sl2, ~λ, `)) = deg(V(sp2`, ~λ
T , 1)).

Particularly, in the case when degrees are equal, they are equal to max{0, s} and when they are

not equal, deg(V(sl2, ~λ, `)) < deg(V(sp2`, ~λ
T , 1)).

Proof. We first prove the forward direction. If the rank of the bundles is zero, then degree formulas

will be consistent (both zero, implying the bundles are trivial). Assume then that rk(V(sl2, ~λ, `)) =

rk(V(sp2`, ~λ
T , 1)) = 1. We show the degree formulas in Lemmas 3.19 and 3.20 are equal. To do this,

we compare the corresponding degree formulas in the four cases determined by the relationship of

a, b, c, d, `, and s in Lemma 3.20. We go through the first case; the other cases follow from similar

calculations.
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In the first case of Lemma 3.20, suppose a + d ≥ b + c and s ≥ 0. Since we are assuming

rk(V(sl2, ~λ, `)) = 1, Lemmas 3.19 and 3.20 give

deg(V(sl2, ~λ, `)) = s (5.1)

and

deg(V(sp2`, ~λ
T , 1)) = max{0, (`+ 1− a)(`+ 2s− a)/2}. (5.2)

Now, since a ≤ ` and s ≥ 0 the value (`+1−a)(`+2s−a)/2 in (5.2) is nonnegative. Furthermore,

since rk(V(sp2`, ~λ
T , 1)) = 1, Lemma 5.1 implies d ≥ s and either a = ` or d = s. However, since

a+ b+ c+ d = 2(`+ s) and a+ d ≥ b+ c it follows that a+ d ≥ `+ s and so indeed, a = `. Using

this, the right-hand side of (5.2) becomes,

(`+ 1− `)(`+ 2s− `)/2 = s,

showing (5.1) and (5.2) are equal and hence deg(V(sp2`, ~λ
T , 1)) = deg(V(sl2, ~λ, `)).

For the reverse implication, assume rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ
T , 1)) > 1. From Lemma 5.1

we can assume s > 0 and both a < ` and d > s. We compare the four point degree formula from

[17, Prop. 4.2] for sl2 bundles with our corresponding formula for sp2` in Lemma 3.20. We must

consider two cases.

Case 1: a+ d ≥ b+ c. We compare,

deg(V(sl2, ~λ, `)) = max{0, (`+ 1− a)s}

and

deg(V(sp2`, ~λ
T , 1)) = max{0, (`+ 1− a)(`+ 2s− a)/2}.
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With our assumptions, it follows that both values are nonzero. Since a < `, it follows that `−a
2 > 0

and so (`+ 1− a)s < (`+ 1− a)(`+ 2s− a)/2. This shows deg(V(sl2, ~λ, `)) < deg(V(sp2`, ~λ
T , 1)) .

Case 2: a+ d < b+ c. We compare,

deg(V(sl2, ~λ, `)) = max{0, (1 + d− s)(s)} and

deg(V(sp2`, ~λ
T , 1)) = max{0, (`+ 1− d)(d+ s)/2}.

With our assumptions, both values are nonzero (as d > s) and deg(V(sl2, ~λ, `)) < deg(V(sp2`, ~λ
T , 1)).

The results of Lemma 5.4 and the method of computing vector bundle rank using factorization

(Proposition 3.1) in the discussion of Observation 5.2 allow us to explicitly determine when two

intersection numbers for c1(V(sl2, ~λ, `)) and c1(V(sp2`, ~λ
T , 1)) with an arbitrary number n of weights

are equal. We summarize this result in the following corollary.

Corollary 5.5. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined for some fixed integer ` and n-tuple

~λ. Given a partition {1, ..., n} = I1 t I2 t I3 t I4 determining an F -curve on M0,n, the intersection

numbers for c1(V(sl2, ~λ, `)) and c1(V(sp2`, ~λ
T , 1)) are equal on that F -curve if and only if the four

pointed bundles appearing as the degree terms in Proposition 3.17 (from [17, Prop. 2.7]) are rank

one or zero bundles. Furthermore, the following relation always holds

deg(V(sl2, ~λ, `)|FI1,I2,I3,I4) ≤ deg(V(sp2`, ~λ
T , 1)|FI1,I2,I3,I4).

As we prove in Proposition 5.7, if a vector bundle V(sl2, ~λ, `) or V(sp2`, ~λ
T , 1) satisfies the

conditions in Corollary 5.5 with every possible partition determining an F -curve (see Definition 1.1)

then this also implies the bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) have rank one. The argument in

the proposition uses the following result. To reduce notation, we carry out the argument for sl2

bundles and write V~λ = V(sl2, ~λ, `) where we have fixed a level `.
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Lemma 5.6. Fix an integer ` ≥ 0 and n-tuple of weights ~λ = (λ1, ..., λn) ∈ P`(sl2)n. Let µ̃ < µ ∈

P`(sl2). If

rk(V
(~λ,µ)

), rk(V
(~λ,µ̃)

) > 0,

then also

rk(V
(~λ,µ̃+2)

) > 0.

Proof. We show this result by induction on the number n of weights in ~λ.

Let µ̃ < µ ∈ P`(sl2) be as in the lemma statement. As stated in Sections 3.2 and 3.4, the

weights µ̃ and µ will have the same parity. If µ̃ + 2 = µ, then the lemma is vacuous, thus assume

µ̃+ 2 < µ.

For our base case, we show the result for n = 2. In this case, we have:

rk(Vλ1,λ2,µ) = 1

and

rk(Vλ1,λ2,µ̃) = 1.

From the three point fusion rules with weights λ1, λ2, µ and λ1, λ2, µ̃ (3.4) the fusion rules with

λ1, λ2, µ̃+ 2 follow. Thus,

rk(Vλ1,λ2,µ̃+2) = 1.

Now, suppose the statement holds for n ≥ 2. We show the result for n + 1 weights in ~λ. The

rank of V
(~λ,µ)

and V
(~λ,µ̃)

can be computed using factorization along the partition {1, 2, 3, ..., n} t

{n+ 1, n+ 2}. This gives the following sums, which, by the assumption of the lemma are nonzero.

rk(Vλ1,λ2,...,λn,λn+1,µ) =
∑

ν∈P`(sl2)

rk(Vµ,λn+1,ν) rk(Vλ1,λ2,...,λn,ν) > 0 (5.3)

rk(Vλ1,λ2,...,λn,λn+1,µ̃) =
∑

ν̃∈P`(sl2)

rk(Vµ̃,λn+1,ν̃) rk(Vλ1,λ2,...,λn,ν̃) > 0 (5.4)
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Using the same partition, we can compute the rank of a bundle with weights (~λ, µ̃+ 2),

rk(Vλ1,λ2,...,λn,λn+1,µ̃+2) =
∑

˜̃ν∈P`(sl2)

rk(Vµ̃+2,λn+1,˜̃ν
) rk(Vλ1,λ2,...,λn,˜̃ν) > 0. (5.5)

We show the sum in (5.5) contains a nonzero term.

Let ν and ν̃ be two fixed weights appearing as nonzero terms in (5.3) and (5.4) respectively.

Explicitly, we have

rk(Vµ,λn+1,ν), rk(Vλ1,λ2,...,λn,λn+1,ν), rk(Vµ̃,λn+1,ν̃), rk(Vλ1,λ2,...,λn,ν̃) > 0 (5.6)

We consider three possible cases for the relationship between these weights.

Case 1: ν̃ < ν.

We show that ν̃ or ν̃ + 2 is a weight appearing as a nonzero term in (5.5). We consider two

subcases.

Case 1(a): µ̃+ 2 ≤ a+ ν̃.

In this case, we show ν is a weight appearing as a nonzero term in (5.5). Using the assumption

of this subcase and the fusion inequalities (3.4) with weights µ̃, a, ν̃, the fusion inequalities with

µ̃+ 2, a, ν̃ follow. Thus

rk(Vµ̃+2,λn+1,ν̃) > 0.

By (5.6) the following term is nonzero in the sum (5.5),

rk(Vµ̃+2,λn+1,˜̃ν
) rk(Vλ1,λ2,...,λn,˜̃ν) > 0.

Case 1(b): µ̃+ 2 > a+ ν̃.

We now show ν̃ + 2 is a weight appearing as a nonzero term in (5.5). Since µ̃ ≤ a + ν̃ (3.4),

parity of the three weights and the assumption of this subcase implies µ̃ = a+ ν̃. We consider the

fusion inequalities with weights µ̃ + 2, a, ν̃ + 2. The first three fusion inequalities follow directly.

We must check a+ (µ̃+ 2) + (ν̃ + 2) ≤ 2`.
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Suppose this was not the case, we derive a contradiction. Assume a + (µ̃ + 2) + (ν̃ + 2) > 2`.

But as we also have µ̃ = a+ ν̃, it would follow that

a+ (µ̃+ 2) + (ν̃ + 2) = (a+ ν̃) + µ̃+ 4 = 2µ̃+ 4 > 2`,

and so

µ̃+ 2 > `.

This would imply µ̃ = ` or µ̃+ 1 = ` which contradicts µ̃+ 2 < µ ≤ `. Thus, the fusion rules must

also be satisfied for weights µ̃+ 2, a, ν̃ + 2 and so rk(Vµ̃+2,λn+1,ν̃ + 2) > 0.

Since ν̃ < ν, the inductive assumption implies

rk(Vλ1,λ2,...,λn,˜̃ν+2) > 0,

which allows us to conclude the following term is nonzero in the sum (5.5)

rk(Vµ̃+2,λn+1,ν̃+2) rk(Vλ1,λ2,...,λn,ν̃+2) > 0.

Case 2: ν̃ = ν.

We can assume ν̃ = ν are the only weights associated to a nonzero term in the sum of (5.3) and

(5.4) in order to avoid repeating a case. More specifically then, the only possible weights ν and

ν̃ for which rk(Vν,a,µ) > 0 and rk(Vν̃,a,µ̃) > 0 are the same weights ν = ν̃. For two fixed weights

(say, µ and a) fusion inequalities determine such possible weights ν with nonzero rank terms Vν,a,µ.

Thus, the upper and lower bounds on the weight ν determined be the fusion rules must be the

same with weights µ, a and µ̃, a. This implies:

max{a− µ, µ− a} = max{a− µ̃, µ̃− a} = min{2`− µ− a, a+ µ} = min{2`, µ̃− a, a+ µ̃}.

Since we have assumed µ̃ < µ (and given the above equality) the maximum and minimum can

be determined, providing,

µ− a = a− µ̃ = 2`− µ− a = a+ µ̃.
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From these equalities, we can deduce the following relations.

µ̃ = 0 a = `/2 (5.7)

µ = ` ν = `/2

We show that ν is a weight appearing as a nonzero term in (5.5). From our deductions, we

consider rk(Vν,a,µ̃+2) = rk(V`/2,`/2,2). That this term is nonzero follows directly from checking the

three pointed fusion rules (3.4) with weights `/2, `/2, 2. By the nonzeroness of the term associated

to ν = ν̃ in (5.6), we can deduce

rk(Vν,a,2) rk(Vλ1,λ2,...,λn,ν) > 0,

and thus contributes a nonzero term to the sum of (5.5).

Case 3: ν̃ > ν.

We show ν̃ is a weight appearing as a nonzero term in (5.5). First, we can assume ν + 2 = ν̃.

If this was not the case, then by (5.6) and our inductive assumption it follows that

rk(Vλ1,λ2,...,λn,ν+2)

is also nonzero. Repeating this argument, say m times, we can continue until we obtain

rk(Vλ1,λ2,...,λn,ν+2m) > 0.

We can now take ν to be the weight ν + 2(m− 1) and continue the case with this weight for ν.

With this additional condition, the fusion inequalities with weights ν, a, µ and the fusion in-

equalities with weights ν̃, a, µ̃, then the fusion inequalities with weights ν, a, µ̃ + 2 follow. This

shows rk(Vν,a,µ̃+2) > 0. From (5.6), we also have rk(Vλ1,λ2,...,λn,ν) > 0 and so, the product of these

nonzero terms provides a nonzero term in (5.5).

Proposition 5.7. Let V(sl2, ~λ, `) be defined for some fixed ` and n-tuple ~λ. Let {1, ..., n} =

I1tI2tI3tI4 be any partition into nonempty sets. Consider the sum in the rank computation using

factorization along any such partition. If the four pointed bundles appearing in the factorization
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sum associated to the weights in the indexing set of the sum (i.e., the ‘attaching’ or ‘gluing’ weights)

have rank one or zero, then rk(V(sl2, ~λ, `)) = 1.

To prove Proposition 5.7, we first prove Lemma 5.8 and show the result for a bundle with

five weights. We then use induction on the number of weights to prove the general statement of

Proposition 5.7.

Lemma 5.8. Let V(sl2, ~λ, `) be defined for some fixed ` and weights ~λ = (a, b, c, d, e) such that

rk(V(sl2, ~λ, `)) > 0. If the rank computation along any partition {1, 2, 3, 4, 5} = I1 t I2 t I3 t I4

into nonempty sets has rank one or zero terms for the four pointed bundles appearing in the terms

in the rank factorization sum (see (5.8) below for where the bundles with four attaching weights

appear explicitly), then rk(V(sl2, ~λ, `)) = 1.

Proof. As in the Lemma statement, let V(sl2, ~λ, `) be a bundle with weights ~λ = (a, b, c, d, e) (we use

this notation to match the notation from Lemma 5.1). Using the result of plussing (Proposition 3.6,

see [10, Def. 8.2]), we can assume four of our weights are a, b, c, d ≤ `
2 . Further, suppose a ≥ b ≥

c ≥ d. Consider the partition [5] = {1}t{2}t{3}t{4, 5}. Using factorization along this partition,

we have the following computation (where ~µ = (µ1, µ2, µ3, µ4) and we denote V~λ for the bundle

V(sl2, ~λ, `))

rk(V(sl2, ~λ, `)) =
∑

~µ∈P`(sl2)4

rk(V~µ) rk(Va,µ1) rk(Vb,µ2) rk(Vc,µ3) rk(Vd,e,µ4). (5.8)

Using the fusion rules for sl2 in (3.4), the two pointed rank terms are nonzero (and equal to

one) if and only if the two weights are equal. Hence, equation 5.8 reduces to,

rk(V(sl2, ~λ, `)) =
∑

µ∈P`(sl2)

rk(Va,b,c,µ) rk(Vd,e,µ). (5.9)

The assumption of the Lemma is that rk(Va,b,c,µ) = 1 or 0 for any µ ∈ P`(sl2). In order to deduce

the original bundle has rank one, we first show there is only one nonzero term appearing in (5.9);

we will then show such a term is one.

First, since rk(V(sl2, ~λ, `)) > 0, we know there must be at least one nonzero term in (5.9)

(otherwise the bundle would have rank zero). For contradiction, suppose there are at least two
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nonzero terms in (5.9), that is,

rk(V(sl2, ~λ, `)) ≥ rk(Va,b,c,µ) rk(Vd,e,µ) + rk(Va,b,c,µ̃) rk(Vd,e,µ̃) ≥ 2 (5.10)

and µ 6= µ̃; particularly, let’s assume µ̃ < µ. As we previously discussed, by the fusion rules for sl2

in (3.4), in order to two nonzero rank terms, the weights d, e must not be zero. With our previous

assumption we have a ≥ b ≥ c ≥ d > 0. Further, let s and s̃ be integers such that

a+ b+ c+ µ = 2(`+ s) (5.11)

and

a+ b+ c+ µ̃ = 2(`+ s̃). (5.12)

Since µ̃ < µ, it follows that s̃ < s and parity provides the further relation µ̃ + 1 < µ. Solving

for s in the above set of equations, we obtain the relationship

s = s̃+
µ− µ̃

2
(5.13)

There are three possible cases between s̃ and s arising from the conditions in the classification

of rank one bundles (Lemma 5.1): s̃ < s < 0, s̃ < 0 ≤ s, and 0 ≤ s̃ < s.

Case 1: s̃ < s < 0.

In this case, the second collection of conditions in Lemma 5.1 must be satisfied for weights

{a, b, c, µ} and {a, b, c, µ̃}. Hence, the largest weight in each set must be equal to ` + s and ` + s̃

respectively. Since we assumed the weights are ordered a ≥ b ≥ c, the largest weight in the set

{a, b, c, µ} is either a or µ and the largest weight in the set {a, b, c, µ̃} is either a or µ̃. If the largest

weight in each collection is a, then we would have a = `+ s̃ = `+ s, implying s̃ = s. And similarly,

if the largest weights in each collection are µ and µ̃, then a+ b+ c = `+ s = `+ s̃, implying s̃ = s.

Hence, we must have µ the largest weight in the set {a, b, c, µ} and a the largest weight in the set

{a, b, c, µ̃}. This implies µ = `+ s and a = `+ s̃.

We further consider two subcases:

Case 1(a): µ̃+ 2 < µ.
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From this assumption, (5.11), and (5.12), it follows that s̃+ 1 < s. Consider the term indexed

by the weight µ̃ + 2 ∈ P`(sl2) in the sum (5.9). Since we are assuming the terms associated to µ

and µ̃ in (5.10) are nonzero, it must be that rk(Vd,e,µ) = rk(Vd,e,µ̃) = 1, the fusion inequalities with

weights d, e, µ and d, e, µ̃ imply the fusion inequalities with weights d, e, µ̃+ 2 are satisfied, and so

rk(Vd,e,µ̃+2) = 1. Furthermore, consider rk(Va,b,c,µ̃+2), the assumption of the Lemma is that the

rank of this bundle must be one. However, we have

a+ b+ c+ (µ̃+ 2) = 2(`+ s̃) + 2 = 2(`+ s̃+ 1),

which by Lemma 5.1, implies the largest weight in the set {a, b, c, µ̃+ 2} must be equal to `+ s̃+ 1.

However, since µ̃ ≤ a = ` + s̃, the largest weight is µ̃ + 2, implying µ̃ = ` + s̃ + 1. From (5.12)

a + b + c = ` + s̃ + 1 follows and from (5.11) a + b + c = ` + s follows. Together, these equalities

contradict s̃ + 1 < s. Hence, it must be that µ̃ + 2 < ` + s̃ + 1 and so rk(Va,b,c,µ̃+2) > 1, a

contradiction to the Lemma.

Case 1(b): µ̃+ 2 = µ.

We derive a contradiction. From µ̃+ 2 = µ, it follows that s = s̃+ 1 and

a+ b+ c+ µ = 2`+ 2s̃+ 2.

Recall, in Case 1 we also have µ = `+ s and a = `+ s̃. Together, this implies

(`+ s̃) + b+ c+ (`+ s̃+ 1) = 2`+ 2s̃+ 2,

forcing b = 1 and c = 0. This contradicts the weights a, b, c, d being nonzero.

Case 2: s̃ < 0 ≤ s.

First, from rk(Va,b,c,µ) = 1, the rank one classification result in Lemma 5.1 implies a, b, c, µ ≥ s

and one of the following is satisfied

(a) c = s < µ (c is smallest weight),

(b) µ = s ≤ c (µ is smallest weight),
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(c) µ = ` (µ is largest weight).

If (a), then since a+ b+ c+ µ = 2`+ 2s it follows

a+ b+ µ = 2`+ s.

As ` ≥ a+ b (by plussing the weights, see Proposition 3.6), this would give,

`+ µ ≥ 2`+ s

forcing µ = ` and s = 0 (that is, condition (c) from Lemma 5.1 is implied) and so we can ignore

this as a separate case.

If (b), then we obtain a contradiction. Recall, we are assuming

a+ b+ c ≤ `

2
+
`

2
+
`

2
=

3

2
`,

but µ = s forces a+ b+ c = 2`+ s ≥ 2` (as s ≥ 0).

If (c), it follows that

a+ b+ c = `+ 2s.

By the Generalized Triangle Inequality for rk(Va,b,c,µ) (Proposition 3.5) it follows that

a+ b+ c ≤ µ = `,

forcing s = 0 and

a+ b+ c = `. (5.14)

Now we consider rk(Va,b,c,µ̃) = 1. Again, using the classification of rank one from Lemma 5.1,

we must have the largest weight of {a, b, c, µ̃} equal to `+ s̃. We consider two cases for this largest

weight.

Case 2 (a): a = `+ s̃ is the largest weight in {a, b, c, µ̃}.
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We show such a bundle cannot satisfy the conditions of the lemma. With the assumption in

Case 2 and a ≤ `
2 , we have a = `+ s̃ ≤ `

2 forcing s̃ ≤ − `
2 . From (5.13) and s = 0, it follows that

0 = s̃+
µ− µ̃

2
≤ − `

2
+
µ− µ̃

2
.

Now, substituting µ = ` into this inequality, it follows,

0 ≤ −µ̃,

forcing µ̃ = 0. Using µ̃ = 0 and (5.14),

2`+ 2s̃ = a+ b+ c+ µ̃ = a+ b+ c = `.

This shows s̃ = −`
2 (which requires ` to be even) and forces a = `

2 and b+ c = `
2 .

In summary, we have shown µ = ` and µ̃ = 0 are the two attaching weights appearing as

nonzero terms in (5.9). Since we are assuming these terms are nonzero, it must also be that

rk(Vd,e,`) = rk(Vd,e,0) = 1. Thus, the inequalities from the fusion rules in (3.4) with weights

d, e, ` and d, e, 0 are satisfied. Particularly, rk(Vd,e,0) = 1 implies d = e and rk(Vd,e,`) = 1 implies

d + e = `. From this, we must have d = e = `
2 . We can conclude then that our five weights are

~λ = ( `2 , b, c,
`
2 ,

`
2) with b+ c = `

2 .

With such a ~λ, consider the rank computation using factorization along the partition {1} t

{2, 3} t {4} t {5}. This gives the sum,

rk(V~λ) =
∑

µ∈P`(sl2)

rk(V `
2
, `
2
, `
2
,µ) rk(Vb,c,µ).

By the assumption in the lemma,

rk(V `
2
, `
2
, `
2
,µ) rk(Vb,c,µ) = 1 or 0, (5.15)

for any µ ∈ P`(sl2). We show this is not true for the weight µ = `
2 .

First, consider rk(Vb,c, `
2
). With b+ c = `

2 , it is straightforward to check the fusion inequalities

with b, c, `2 in (3.4) are satisfied, so rk(Vb,c,µ) = 1.
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Now consider rk(V `
2
, `
2
, `
2
, `
2
). From the rank formula in Proposition 3.4 (see [44, Lemma 3.3]), we

compute

rk(V `
2
, `
2
, `
2
, `
2
) = 1 +

`

2
> 1.

This contradicts the product in (5.15).

Case 2 (ii): µ̃ = `+ s̃ is the largest weight in {a, b, c, µ̃}.

If µ̃ = `+ s̃, then by (5.14), ` = a+ b+ c = `+ s̃ < ` (recall, Case 2 assumption is s̃ < 0 ≤ s),

a contradiction.

Case 3: 0 ≤ s̃ < s.

From Case 2, if we assume a, b, c ≤ `
2 , s ≥ 0, and rk(Va,b,c,µ) = 1 it follows that µ = `. Since we

are now also assuming s̃ ≥ 0 and rk(Va,b,c,µ̃) = 1, it follows that µ̃ = `. This contradicts µ̃ < µ. We

conclude the sum in (5.9) consist of one nonzero term. Particularly, since this term is a product of

two ranks each equal to one, the sum is one and hence a bundle with five weights that satisfies the

assumptions of the lemma has rank one.

We now use induction on the number of weights of a bundle to prove Proposition 5.7.

Proof of Proposition 5.7. In Lemma 5.8, we show the result of the proposition for n = 5 weights,

this provides our base case of the induction. Now assume the proposition holds for a bundle with

n ≥ 5 weights, we show the case with ~λ = (λ1, λ2, ..., λn, λn+1) follows.

Consider the factorization sum using the partition {1}t{2}t{3}t{4, . . . , n+1} with `
2 ≥ λ1 ≥

λ2 ≥ λ3 (by plussing the weights, see Proposition 3.6). The rank computation using factorization

with this partition gives the sum,

rk(V~λ) =
∑

µ∈P`(sl2)

rk(Vλ1,λ2,λ3,µ) rk(Vλ4,λ5,...,λn+1,µ). (5.16)

As in Lemma 5.8, we first show that this sum contains at most one nonzero term. For con-

tradiction, suppose µ̃ < µ ∈ P`(sl2) are associated to nonzero terms in the sum (5.16). Then by

Lemma 5.6, since rk(Vλ4,λ5,...,λn+1,µ), rk(Vλ4,λ5,...,λn+1,µ̃) > 0 it follows that we also have

rk(Vλ4,λ5,...,λn+1,µ̃+2) > 0, (5.17)
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(with the cases that µ̃+ 2 = µ or µ̃+ 2 < µ).

By the assumption of the Proposition,

rk(Vλ1,λ2,λ3,µ) = 1 (5.18)

and

rk(Vλ1,λ2,λ3,µ̃) = 1. (5.19)

As in Lemma 5.8 with five weights (cf. (5.11) and (5.12)), let s and s̃ be integers such that

λ1 + λ2 + λ3 + µ = 2(`+ s) (5.20)

and

λ1 + λ2 + λ3 + µ̃ = 2(`+ s̃). (5.21)

The same relation between s and s̃ from (5.13) holds and we again have three possible cases between

s̃ and s resulting from the conditions in the classification of rank one bundles in Lemma 5.1. The

arguments and results with five weights in Lemma 5.8 can be used to reason with the bundles in

(5.18) and (5.19); specifically, we can follow the same arguments using a = λ1, b = λ2, c = λ3.

Case 1: s̃ < s < 0.

We consider the two subcases considered in the n = 5 argument of Lemma 5.8.

Case 1 (a): µ̃+ 2 < µ.

Repeating the argument in Case 1(a) with n = 5, it follows that rk(Vλ1,λ2,λ3,µ̃+2) > 1. By (5.17),

this contradicts the assumption of the proposition (if we didn’t have (5.17), then it might be that

the product that appears in the factorization sum is zero because the term (5.17) is zero).

Case 1 (b): µ̃+ 2 = µ. The same argument with n = 5 weights derives a contradiction.

Case 2: s̃ < 0 ≤ s.

Following the argument with n = 5, we must consider when µ = ` is the largest weight in

{λ1, λ2, λ3, µ}. We further consider the two subcases determined by the largest weight; that is we

consider when λ1 = `+ s̃ or µ̃ = `+ s̃ are the largest weights in {λ1, λ2, λ3, µ̃}. Recall, in the n = 5

argument, assuming µ̃ = `+ s̃ is the largest weight derives a contradiction; this contradiction would

85



similarly be derived in this case. Thus we just consider the case that λ1 = `+ s̃ is the largest weight

in {λ1, λ2, λ3, µ̃} and from this assumption the following relations are deduced (again, following the

argument with n = 5 weights),

µ = ` s = 0 λ1 = `/2 (5.22)

µ̃ = 0 s̃ = −`/2 λ2 + λ3 = `/2.

Consider the weight µ̃+2 = 2 in the sum (5.16). Given the nonzero rank of the bundle in (5.17),

the assumption of the proposition is that rk(Vλ1,λ2,λ3,µ̃+2) = 1. We will derive a contradiction by

deducing from the rank one classification results in Lemma 5.1 that such a bundle has rank larger

than one. We compute, λ1 + λ2 + λ3 + 2 = 2(` + s̃) + 2 = 2(` − `/2 + 1). Then ŝ = −`/2 + 1 is

the parameter appearing in Lemma 5.1 with the bundle Vλ1,λ2,λ3,µ̃+2. Since λ3 = `
2 is the largest

weight in {λ1, λ2, λ3, 2}, it follows from Lemma 5.1 that rk(Vλ1,λ2,λ3,2) > 1.

Case 3: 0 ≤ s̃ < s.

Here, the same contraction from the n = 5 argument is deduced. Specifically, we obtain

µ = ` = µ̃ which contradicts µ̃ < µ.

It follows that the sum in (5.16) reduces to one term,

rk(V(sl2, ~λ, `)) = rk(Vλ1,λ2,λ3,µ) rk(Vλ4,λ5,λ6,...,λn+1,µ). (5.23)

We must show that this term is one. Particularly, since we are assuming rk(Vλ1,λ2,λ3,µ) = 1, we

must show

rk(Vλ4,λ5,λ6,...,λn+1,µ) = 1.

We proceed by showing the bundle Vλ4,λ5,λ6,...,λn+1,µ satisfies the assumptions in the Proposition.

Since this bundle now has n − 1 < n weights, by our inductive assumption, we will conclude this

bundle has rank one.

Let I1 t I2 t I3 t I4 = {4, 5, ..., n+ 1} be any partition. We want to show that the four weight

bundles appearing in the rank factorization sum with the bundle Vλ4,λ5,λ6,...,λn+1,µ and partition

I1 t I2 t I3 t I4 have rank one.
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We begin by computing the rank of the original bundle V(sl2, ~λ, `) using the partition [n] =

{1, 2, 3} t {I1 t I2 t I3 t I4}. In the following ~µ = (µ1, µ2, µ3, µ4) and λIi = {λj}j∈Ii . This gives,

rk(V(sl2, ~λ, `)) =
∑

ν∈P`(sl2)

rk(Vλ1,λ2,λ3,ν) rk(Vλ4,λ5,λ6,...,λn+1,ν)

=
∑

ν∈P`(sl2)

rk(Vλ1,λ2,λ3,ν)
( ∑
~µ∈P`(sl2)4

rk(V~µ) rk(VλI1 ,ν,µ1) rk(VλI2 ,µ2) rk(VλI3 ,µ3) rk(VλI4 ,µ4)
)

=
∑

ν∈P`(sl2)

∑
~µ∈P`(sl2)4

rk(Vλ1,λ2,λ3,ν) rk(V~µ) rk(VλI1 ,ν,µ1) rk(VλI2 ,µ2) rk(VλI3 ,µ3) rk(VλI4 ,µ4)

=
∑

~µ∈P`(sl2)4

∑
ν∈P`(sl2)

rk(Vλ1,λ2,λ3,ν) rk(V~µ) rk(VλI1 ,ν,µ1) rk(VλI2 ,µ2) rk(VλI3 ,µ3) rk(VλI4 ,µ4)

=
∑

~µ∈P`(sl2)4

rk(V~µ)
( ∑
ν∈P`(sl2)

rk(Vλ1,λ2,λ3,ν) rk(VλI1 ,ν,µ1)
)

rk(VλI2 ,µ2) rk(VλI3 ,µ3) rk(VλI4 ,µ4)

=
∑

~µ∈P`(sl2)4

rk(V~µ) rk(Vλ1,λ2,λ3,λI1 ,µ1) rk(VλI2 ,µ2) rk(VλI3 ,µ3) rk(VλI4 ,µ4).

The last line follows from factorizing rk(Vλ1,λ2,λ3,λI1 ,µ1) with the partition of weights {λ1, λ2, λ3}t

{λI1 , µ1} in reverse.

The assumption of the proposition is that all ranks rk(V~µ) appearing in this sum are one or zero.

Since the partition I1 t I2 t I3 t I4 was an arbitrary partition of {4, 5, 6..., n+ 1}, we can conclude

that the assumption of the proposition is satisfied for the n − 2 weight bundle Vλ4,λ5,λ6,...,λn+1,µ.

By our inductive assumption, the rank of this bundle is one.

Remark 5.9. In Observation 5.2 we discussed the converse of Proposition 5.7. Specifically, for a

vector bundle of rank one, when we compute the rank using factorization along any partition of

{1, ..., n} determined by an F -curve, the sum in the factorization formula is one term equal to one.

We summarize our results of this section with the proof of our main result.

Proof of Proposition 1.8. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined for a fixed integer ` and n-

tuple ~λ. Observation 5.2 and Proposition 5.7 show that such bundles have rank one if and only

if the rank calculated by factorizing along the partition of the n weights determined by any F -

curve has rank one on the four pointed bundles associated to the four attaching weights. By
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Lemma 5.4, the degrees of four pointed bundles V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) are equal if and only

if the corresponding bundles have rank one or zero, and otherwise, by Corollary 3.24 the degree

term of V(sp2`, ~λ
T , 1) is larger. Hence, such bundles will have equal intersection on every F -curve

if and only if the bundles have rank one or zero.

5.3 Examples of divisor identities

Here we give examples illustrating Theorem 1.8 and emphasize the necessity of the rank one con-

dition in Theorem 1.8. In the first two examples, the bundle V(sl2, ~λ, `) has certain properties

described in previous work, however the first Chern classes c1(V(sl2, ~λ, `)) and c1(V(sp2`, ~λ, 1)) are

not linearly equivalent. Particularly, Example 5.10 illustrates an sl2 bundle that has projective rank

scaling ([10, Def. 2.16]) and in Example 5.11 the level (or Lie rank) is above the critical level for

sl2 (see Remark 6.2). In Example 5.13 we illustrate two rank one bundles with linearly equivalent

divisors classes (see proof of Proposition 5.16).

Example 5.10. Let ` = 5 and weights be given by ~λ = (4, 4, 4, 4). Consider the bundles:

V(sl2, ~λ, `) = V(sl2, (4, 4, 4, 4), 5) and V(sp2`, ~λ, 1) = V(sp2·5, (4, 4, 4, 4), 1).

We have that |~λ| = 12 = 2(5+1) (showing that ` = 5 is at the critical level for V(sl2, ~λ, `)). The

ranks of these bundles are, rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ, 1)) = 2. However, the degree formulas in

Section 3.9 give deg(V(sl2, ~λ, `)) = 6 while deg(V(sp2`, ~λ, 1)) = 7.

Note that in Example 5.10 since rk(V(sl2, ~λ, `)) = 2, the bundle V(sl2, ~λ, `) is said to have

projective rank scaling [10, Def. 2.16]. This example shows that such divisors are not linearly

equivalent with the corresponding sp2` bundle at level one.

Example 5.11. Let ` = 5 and ~λ = (2, 2, 1, 1). Consider the bundles:

V(sl2, ~λ, `) = V(sl2, (2, 2, 1, 1), 5) and V(sp2`, ~λ, 1) = V(sp2·5, (2, 2, 1, 1), 1).

88



Computing ranks gives (for example, by using the Macaulay2 package [43]), rk(V(sl2, ~λ, `)) =

rk(V(sp2`, ~λ, 1)) = 2. Furthermore, we have that |~λ| = 6 = 2(5 − 2) and so ` is above the critical

level (or stabilizing Lie rank). Using the formulas in Lemmas 3.19 and 3.20, we obtain that

deg(V(sl2, ~λ, `)) = 0 and deg(V(sp2`, ~λ, 1)) = 1.

Example 5.12. Let ` = 5 and ~λ = (4, 4, 4, 4, 3, 3). Consider the bundles,

V(sl2, ~λ, `) = V(sl2, (4, 4, 4, 4, 3, 3), 5) and V(sp2`, ~λ, 1) = V(sp2·5, (4, 4, 4, 4, 3, 3), 1).

Computing ranks (for example, by using the Macaulay2 package [43]), we have rk(V(sl2, ~λ, `)) =

rk(V(sp2`, ~λ, 1)) = 2. Using [31], a Macaulay2 code to compute the divisor class of a vector bundle

of conformal blocks on M0,6, we can explicitly write the divisor of each bundle V(sl2, ~λ, `) and

V(sp2`, ~λ, 1) in the nonadjacent basis of Pic(M0,6), the divisor class group of M0,6, in terms of

boundary divisors (see [36, Example 4.4]). For a subset I ⊂ [6] such that |I| ≥ 2, the divisor class

δI is the closure of the collection of points in M0,6 represented by a curve with one node, separating

the marked points corresponding to I on one irreducible component and the marked points corre-

sponding to Ic on the other irreducible component. We give the coordinates of each divisor class

with the basis ordered as {δ13, δ14, δ15, δ24, δ25, δ26, δ35, δ36, δ46, δ124, δ125, δ134, δ135, δ136, δ145, δ146}.

This shows the divisors are not linearly equivalent.

This computation gives,

c1(V(sl2, ~λ, `)) = (12, 6, 12, 12, 6, 12, 12, 0, 12, 2, 2, 6, 24, 2, 2, 6)

and

c1(V(sp2`, ~λ, 1)) = (14, 8, 14, 14, 8, 14, 14, 3, 14, 4, 4, 8, 28, 4, 4, 8).

We end with an example illustrating two bundles of rank one which by Theorem 1.8 do have

linearly equivalent first Chern classes.

Example 5.13. Let ` = 5 and ~λ = (5, 5, 5, 3, 1, 1). Consider the bundles,

V(sl2, ~λ, `) = V(sl2, (5, 5, 5, 3, 1, 1), 5) and V(sp2`, ~λ, 1) = V(sp2·5, (5, 5, 5, 3, 1, 1), 1).
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Computing ranks, we have rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ, 1)) = 1. We can explicitly write each

divisor in the nonadjacent basis of Pic(M0,6) as in Example 5.12. This gives equality

c1(V(sl2, ~λ, `)) = c1(V(sp2`, ~λ, 1)) = (5, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 2, 4, 4, 0, 0).

5.4 Generalized Veronese quotients and maps given by rank one

sl2 and sp2` bundles

There are birational models of M0,n given by so called generalized Veronese quotients, V d
γ,A. These

projective varieties parametrize configurations of n weighted points lying on (limits of) weighted

Veronese curves of degree d in projective d space. They were first constructed in [21] with Sn-

invariant weights A on the n marked points and weight γ = 0 on the underlying curve. They

were later generalized in [22, 23]. These moduli spaces receive birational morphisms from M0,n

and are constructed as GIT quotients generalizing Kapranov’s birational model of M0,n given by

(P1)n//SL(2) in [29].

In the case γ = 0 the birational contractions

ϕ0,A : M0,n → V d
0,A

are known to correspond to conformal blocks divisors in type A at level 1, c1(V(slr+1, ~λ, 1)) [22,

Thm. 3.2]. The higher level divisors c1(V(sl2, (ω1)n, `)) are also know to give contractions with

ϕ `−1
`+1

,A [23].

From Theorem 1.7 we have that for V(sl2, ~λ, `) of rank one we can explicitly write c1(V(sl2, ~λ, `))

as a sum of divisors for sl2 at level one. Using this decomposition, the description of the maps from

divisors at level one in [22, Thm. 3.2], and Theorem 1.8, we obtain the following result about the

maps from the divisors c1(V(sl2, ~λ, `)) = c1(V(sp2`, ~λ
T , 1)) when rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ

T , 1)) =

1.

Proposition 5.14. Let V(sl2, ~λ, `) and V(sp2`, ~λ
T , 1) be defined for some fixed ` and n-tuple ~λ. Let

|~λ| = 2(d`+ p) for some d ≥ 0 and ` > p ≥ 0. If rk(V(sl2, ~λ, `)) = rk(V(sp2`, ~λ
T , 1)) = 1, then the
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contraction φD given by D = c1(V(sl2, ~λ, `)) = c1(V(sp2`, ~λ
T , 1)) maps to a product of ` generalized

Veronese quotients,

φD : M0,n →
p∏
i=1

V d
0,( 1

2
)2d+2 ×

∏̀
j=p+1

V d−1
0,( 1

2
)2d
.

Remark 5.15. The map φD first factors through a product of ` forgetful maps, where in each

factor we have forgotten all but either 2d+ 2 or 2d marked points. By a dimension count, the map

φD is not surjective to this product. Furthermore, the following result shows the map φD does not

factor through a smaller product of these generalized Veronese quotients when d > 1.

Proposition 5.16. The map φD in Proposition 5.14 does not factor through a smaller product of

these generalized Veronese quotients when d > 1.

Proof. Write c1(V(sp2`, ~λ
T , 1)) = c1(V(sl2, ~λ, `)) =

∑`
i=1 c1(V(sl2, ~λi, 1)), then no linear combi-

nation with fewer terms of divisor classes from sl2 level one bundles is linearly equivalent to

c1(V(sp2`, ~λ
T , 1)) = c1(V(sl2, ~λ, `)).

Indeed, the divisors c1(V(sl2, ~λi, 1)) are such that |~λi| = 2d+ 2 or 2d (where d is obtained from

~λ as in Proposition 5.14). In [17, Sect. 4.2] Fakhruddin explains that such divisors are nontrivial

when d > 1 and shows they form a basis of the Picard group Pic(M0,n) [17, Thm. 4.3]. Hence,

there is only one way to write c1(V(sl2, ~λ, `)) in this basis.

Example 5.17. Let V(sp2`, ~λ
T , 1) = V(sp2·9, (ω9, ω8, ω8, ω8, ω8, ω8, ω2, ω1), 1). It was shown in [26,

Example 5.3] that the bundle V(sl2, ~λ, `) = V(sl2, (9ω1, 8ω1, 8ω1, 8ω1, 8ω1, 8ω1, 8ω1, 2ω1, 1ω1), 9) has

rank one and the first Chern class decomposes as a sum of first Chern classes of sl2 bundles at level

1. That is, c1(V(sl2, ~λ, `)) decomposes into a sum

c1(V(1,1,1,1,1,1,1,1,0)) + c1(V(1,1,1,1,1,1,1,1,0) + c1(V(1,1,1,1,1,1,1,0,1))+

c1(V(1,1,1,1,1,1,0,0,0)) + c1(V(1,1,1,1,1,0,1,0,0)) + c1(V(1,1,1,1,0,1,1,0,0))+

c1(V(1,1,1,0,1,1,1,0,0)) + c1(V(1,1,0,1,1,1,1,0,0)) + c1(V(1,0,1,1,1,1,1,0,0)).

The subscript of these bundles denotes the weights. For example, V(1,1,1,1,1,0,1,0,0) is the sl2 bundle

at level one and weights (ω1, ω1, ω1, ω1, ω1, 0, ω1, 0, 0). Such a decomposition is seen from the column
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data of the unique tableau formed to compute rank(V(sl2, ~λ, `)) (see Figure 5.1). In this tableau,

each column corresponds to a level one first Chern class in the sum. The image of such a map is

then into a product of generalized Veronese quotients as in Claim 5.14 where in each component,

we have forgotten the zero weights determined by the corresponding level one first Chern class in

the decomposition. By our result of Proposition 1.8, the first Chern class c1(V(sl2, ~λ, `)) is linearly

equivalent to c1(V(sp2`, ~λ
T , 1)) and the corresponding maps contract the same F-curves.

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 3
3 3 3 3 3 3 3 4 4
4 4 4 5 4 4 5 5 5
5 5 5 5 5 6 6 6 6
6 6 6 6 7 7 7 7 7
7 7 7
8 8 9

Figure 5.1: The unique tableau determining rk(V(sl2, ~λ, `))
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Chapter 6

Rank and Divisor Identities of

Bundles V(sp2`, ~λ, 1)

We now investigate bundles V(sp2`, ~λ, 1) with sp2` at level one. In this chapter we prove Theorem 1.9

which states that the first Chern classes c1(V(sp2`, ~λ, 1)) become fixed when ` is taken large enough.

In Section 6.1 we explicitly define the rank ` above which such divisors become fixed. In Section 6.3

we prove Theorem 1.9 by first showing in Section 6.2 that ranks of bundles V(sp2`, ~λ, 1) strictly

increase when the Lie algebra rank ` increases in a certain range (Proposition 6.5). We provide

several examples in Section 6.4 to show linear equivalence of certain divisors V(sp2`, ~λ, 1) for various

Lie algebra ranks `. We end this chapter by stating several consequences of our results.

6.1 Stabilizing Lie rank

We now define a term and divisor class that will be used to describe the relationship between divisor

classes associated to sp2` at level one when ` is taken large enough.

Definition 6.1. Let ~λ = (a1, ..., an) be an n-tuple of weakly decreasing nonnegative integers such

that |~λ| =
∑n

i=1 ai is even. We define the stabilizing Lie rank associated to ~λ to be,

r(~λ) =
|~λ|
2
− 1.
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If r(~λ) ≥ a1 (i.e., ~λ ∈ P1(sp
2r(~λ)

)n), then we call c1(V(sp
2r(~λ)

, ~λ, 1)) the stable Lie divisor for ~λ.

Remark 6.2. Interpreting ~λ = (a1, ..., an) in Definition 6.1 as a set of n dominant integral weights

for sl2, the value of r(~λ) in Definition 6.1 is called the critical level of ~λ [17, Sect. 4.3] (see also [11,

Def. 1.1] for a general definition of critical level associated to bundles of type slr+1). Additionally,

one can show that if a1 > r(~λ) then rk(V(sl2r, ~λ, 1)) = 0 (and hence the divisor is trivial) for any

integer r. Because of this, we will assume the weight vector ~λ is such that a1 ≤ r(~λ).

Recall from Section 3.2, that we refer to the rank `, of the Lie algebra sp2`, as the Lie rank and

the rank of the vector bundle V
sp2`,

~λ,1
as the vector bundle rank.

6.2 Ranks of sl2 bundles below critical level

We now go through a brief interlude to show several results on ranks of conformal blocks bundles

for sl2 with a fixed set of weights as the level defining the bundle varies. By Fact 3.2 our results in

this section are relevant for sp2` bundles at level one when the Lie algebra rank ` increases within

a certain range. We use the results of this discussion to prove Theorem 1.9 in Section 6.3.

Throughout this section, we fix an integer ` ≥ 0 and a vector of weakly decreasing integers

~λ = (a1, a2, ..., an) with n ≥ 4. We denote r(~λ) the stabilizing Lie rank (or the critical level for sl2)

associated to this fixed ~λ (see Definition 6.1 and Remark 6.2).

6.2.1 Ranks of bundles at varying levels for sl2 and n = 4

To compute the rank of V(sl2, (a1, a2, a3, a4), `) we use the formula in Lemma 3.4.

Lemma 6.3. Fix some ` ≥ 0 and ~λ = (a1, a2, a3, a4) and r(~λ) as in Definition 6.1. Let t be some

integer such that ` = r(~λ) + 1− t. We have the following rank relationships:

1. If t > 0, then

rk(V(sl2, ~λ, r(~λ) + 1− t)) = rk(V(sl2, ~λ, r(~λ) + 1))− t.

2. If t ≤ 0, then the vector bundle rank becomes fixed,

rk(V(sl2, ~λ, r(~λ) + 1− t)) = rk(V(sl2, ~λ, r(~λ) + 1)).
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Remark 6.4. In the first case with t > 0, we also say that ` is at or below the critical level for ~λ.

In the second case with t ≥ 0 we say that ` is above the critical level for ~λ.

Proof. This result follows immediately from computing the ranks rk(V(sl2, ~λ, r(~λ) + 1 − t)) and

rk(V(sl2, ~λ, r(~λ) + 1)) in the formula in Lemma 3.4. Particularly, when t > 0, we have a1 + a2 +

a3 + a4 = 2(` + s) with s > 0 and when t ≤ 0 we have a1 + a2 + a3 + a4 = 2(` + s) with s ≤ 0.

These cases of s determine the formula to follow in Lemma 3.4. In either case, the comparison of

the rank of V(sl2, ~λ, r(~λ) + 1 + t) with the rank of V(sl2, ~λ, r(~λ) + 1) follows.

6.2.2 Ranks of bundles at varying levels for sl2 and n ≥ 4

We now show that the ranks of sl2 bundles with a fixed, arbitrary number of weights strictly

increases or becomes fixed when the level is increased. We show explicitly the range of the level for

which the rank increases.

Proposition 6.5. Let t be some integer such that ` = r(~λ) + 1 − t. We have the following rank

relationships:

1. If t > 0, then

rk(V(sl2, ~λ, `)) < rk(V(sl2, ~λ, r(~λ) + 1)).

2. If t ≤ 0, then

rk(V(sl2, ~λ, `) = rk(V(sl2, ~λ, r(~λ) + 1)).

Remark 6.6. We can make the same remark Remark 6.4. That is, in the first case with t > 0, we

also say that ` is at or below the critical level for ~λ. In the second case with t ≤ 0 we say that ` is

above the critical level for ~λ.

Proof. We show the first case by induction on the number of weights. The second case will follow

from Witten’s Dictionary (Proposition 3.15).

Recall, in this section, we are assuming n ≥ 4. In Lemma 6.3 we showed for n = 4 the

conclusion follows. For any integer 4 ≤ k ≤ n, define the k-tuple of weights ~λk := (a1, . . . , ak) and
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integer r(~λ)(k) :=
∑k

i=1 ai/2− 1. For our inductive assumption, we assume that for any k < n and

` = r(~λ)(k) + 1− t, if t > 0 then we have a strict inequality of ranks,

rk(V(sl2, ~λk, r(~λ)(k) + 1− t)) < rk(V(sl2, ~λk, `+ 1)). (6.1)

We want to show this relationship is true for k = n. Let ` = r(~λ)(n) + 1 − t for some t > 0.

Using factorization with the partition {1, ..., n−2}t{n−1, n} we can compute the following ranks,

rk(V(sl2, ~λn, `)) =
∑

µ∈P`(sl2)

rk(V(sl2, (~λn−2, µ), `)) rk(V(sl2, (an−1, an, µ), `)) and (6.2)

rk(V(sl2, ~λn, `+ 1)) =
∑

µ∈P`+1(sl2)

rk(V(sl2, (~λn−2, µ), `+ 1)) rk(V(sl2, (an−1, an, µ), `+ 1)), (6.3)

We now compare each term in the sums (6.2) and (6.3).

First observe that if µ ∈ P`(sl2), then µ ∈ P`+1(sl2) and so a weight µ that appears in the sum

(6.2) will also appear in the sum (6.3). Note, that the value of the ranks may be zero. However,

with our inductive assumption, we have the following relationship between these terms,

rk(V(sl2, (~λn−2, µ), `)) rk(V(sl2, (an−1, an, µ), `))

≤ rk(V(sl2, (~λn−2, µ), `+ 1)) rk(V(sl2, (an−1, an, µ), `+ 1)). (6.4)

It follows immediately that,

rk(V(sl2, ~λn, `)) ≤ rk(V(sl2, ~λn, `+ 1)). (6.5)

We want to show that such a relationship is strict.

Consider the weight vector (~λn−2, µ) from (6.2). The critical level for this weight vector is

r(~λn−2, µ)(n− 1) (i.e., stabilizing Lie rank for (~λn−2, µ)). From our inductive assumption, we have

that the relationship in (6.4) is strict whenever ` = r(~λn−2, µ)(n−1)+1− t′ for some t′ with t′ > 0.
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Making the substitution r(~λn−2, µ)(n − 1) = (
∑n−2

i=1 ai + µ)/2 − 1, we can restate this condition

to be that the relationship is strict whenever ` ≤ (
∑n−2

i=1 ai + µ)/2. Hence, the inequality in (6.5)

is strict and our conclusion follows whenever we have at least one µ in the sum (6.2) such that

` ≤ (
∑n−2

i=1 ai + µ)/2.

Suppose then that each µ in the sum (6.2) is such that

` > (

n−2∑
i=1

ai + µ)/2. (6.6)

In this case, just comparing terms appearing in (6.2) and (6.3) from µ ∈ P`(sl2) does not guarantee

an increase in ranks between each term in the sum. In such a situation, we show that the sum (6.3)

includes an additional nonzero term not in the sum (6.2) and can thus conclude a strict inequality.

Suppose µ is the largest weight appearing as a nonzero term in (6.2). Using (6.6) and recalling

we have ` = r(~λ)(n) + 1− t with t > 0, we obtain,

n−2∑
i=1

ai + µ < 2` ≤ 2(`+ t) = 2(r(~λ)(n) + 1) =

n∑
i=1

ai. (6.7)

From this, two relationships follow,

µ < an−1 + an, (6.8)

an−1 + an + µ < 2`. (6.9)

Here (6.9) follows from the assumption that the weights are weakly decreasing, a1 ≥ ... ≥ an−2 ≥

an−1 ≥ an. Combining (6.8) and (6.9), we obtain a strict inequality, µ < `, from which the weak

relationship follows, µ + 2 ≤ ` + 1. Hence, µ + 2 ∈ P`+1(sl2) and appears as a possible weight for

a term in the sum (6.3). Furthermore, comparing (6.8) and (6.9) with the three point fusion rules

(3.4), we can conclude rk(V(sl2, (an−1, an, µ + 2), ` + 1)) = 1 so is nonzero in the sum (6.2). We

must now consider rk(V(sl2, (a1, ..., an−2, µ+ 2), `+ 1)).

By (6.6), assuming µ is the largest weight in a nonzero term in the sum (6.2), we must have∑n−2
i=1 ai + µ = 2p for some p < ` (this condition on p follows from (6.7)). And so also

∑n−2
i=1 ai +
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µ + 2 = 2(p + 1). Now, since rk(V(sl2, (a1, ..., an−2, µ), `)) > 0, it follows from the nonzero rank

condition for sl2 bundles in Theorem 1.5 that
∑n−2

i=2 ai+µ ≥ p and so also
∑n−2

i=2 ai+µ+ 2 ≥ p+ 1.

Again, using the result of Theorem 1.5, we can conclude rk(V(sl2, (an−1, an, µ+ 2), `+ 1)) > 0.

Recall, that all other weights µ ∈ P`(sl2) appearing in the sum (6.2) satisfy the weak inequality

in (6.4). Since µ was assumed to be the largest weight in (6.2), the weight µ+ 2 does not appear in

the rank calculation for level ` in (6.2) but does contribute a new nonzero term in the sum (6.3).

This allows us to conclude the relationship in (6.5) is strict. This concludes the first case of the

Proposition with t < 0.

In the second case, with ` = r(~λ) + 1 − t and t ≤ 0 the rank computation using Witten’s

Dictionary (Proposition 3.15) is the same calculation for all t in this range. This shows the equality

of the ranks. This same method was used in the proof of vanishing above critical level showed in

[11, Section 4].

Remark 6.7. Work by Alex Yong, Anders Buch and others has resulted in bounds on the structure

constants for the product of Schubert classes (e.g., [41, 15, 50]). However, such results compare

values within a fixed quantum cohomology ring of the Grassmannian. The result of Proposition 6.5

describes the behavior of structure constants appearing in products of Schubert classes across

different rings. That is, the coefficients we analyze appear in products of cohomology classes living

in the cohomology rings of Grassmannian varieties with varying parameters.

In Section 6.4, we show examples of ranks of bundles with varying level to demonstrate this

rank behavior.

6.3 Proof of Proposition 1.9

To prove Proposition 1.9 we show the bundles in the statement have equal intersection with any

F -curve. To make this comparison, we first establish the result for bundles on M0,4. We use

notation as in the degree formula of Lemma 3.20.
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Lemma 6.8. For a fixed level ` and ~λ = (a, b, c, d), let r(~λ) be the stabilizing Lie rank and let t

be some integer such that `+ t = r(~λ) + 1. If t ≤ 1 then we have equality,

deg(V(sp
2r(~λ)

, ~λ, 1)) = deg(V(sp2`, ~λ, 1)).

This result follows immediately from comparing the formulas in Lemma 3.20. Using the language

of the stabilizing Lie rank, this lemma says that the degrees of divisors with sp2` at level one with

four weights become equal when the Lie rank ` is chosen to be at or above the stabilizing Lie rank

for the weight vector ~λ. We are now ready to prove this result for an arbitrary number of weights.

Proof of Proposition 1.9. Let ~λ = (a1, ..., an) be an n-tuple of weakly decreasing integers such that

|~λ| =
∑n

i=1 ai is even. Using Definition 6.1, the stabilizing Lie rank is the integer r(~λ) such that

|~λ| = 2(r(~λ) + 1). Now suppose ` is some integer such that ` ≥ a1 and ` > r(~λ). Thus, we can

write |~λ| = 2(` + t) with t ≤ 1 (i.e., ` ≥ r(~λ) as specified by the proposition statement). We

denote V~λ,` := V(sp2`, ~λ, 1) to simply notation throughout this section. We want to show linear

equivalence,

c1(V~λ,r(~λ)
) = c1(V~λ,`).

We compare the intersection numbers of these two bundles with an arbitrary F -curve, FI1,I2,I3,I4 ,

determined by a partition {1, ..., n} = I1 t I2 t I3 t I4. The formula in Proposition 3.17 (from [17,

Prop. 2.7]) provides the following degree computations,

deg(V~λ,r(~λ)
|FI1,I2,I3,I4 ) =

∑
~µ∈P1(sl

2r(~λ)
)4

deg(V
~µ,r(~λ)

)
4∏
i=1

rk(V
(λIi ,µi),r(

~λ)
) (6.10)

deg(V~λ,`|FI1,I2,I3,I4) =
∑

~ν∈P1(sl2`)4

deg(V~ν,`)
4∏
i=1

rk(V(λIi ,νi),`
) (6.11)

where λIj denotes the weight vector with weights ai for i ∈ Ij and ~µ = (µ1, µ2, µ3, µ4) and ~ν =

(ν1, ν2, ν3, ν4) denote the attaching weight vectors.
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First, we show that the attaching weights ~ν = (ν1, ν2, ν3, ν4) appearing in the degree term of

(6.11) are all such that νi ≤ r(~λ). This will allow us to take the above sums over the same set of

integers.

Consider all possible terms in (6.11) and let |Ii| :=
∑

j∈Ii aj , the sum of just those weights

appearing in a partition determined by Ii. By the the Generalized Triangle Inequality for ranks

of sl2 bundles (Proposition 3.5) and Fact 3.2, in order for the rank of V(λIi ,νi),`
to be nonzero it is

necessary that

νi ≤ |Ii|. (6.12)

Thus, in order for a term in (6.11) to be nonzero, it is necessary that this condition holds for

i = 1, 2, 3, 4. Adding all such inequalities gives,

4∑
i=1

νi ≤
4∑
i=1

|Ii| =
n∑
i=1

ai = 2(r(~λ) + 1). (6.13)

Suppose for some weight νk ∈ ~ν, we had r(~λ) + 1 < νk; it would follow that

4∑
i=1

νi ≤
4∑
i=1

|Ii| = 2(r(~λ) + 1) < 2νk.

Canceling νk from this inequality would imply
∑

i∈{1,2,3,4}−{k} νi < νk. So by the Generalized

Triangle Inequality with these weights rk(V~ν,`) = 0. This implies the degree, deg(V~ν,`), is zero.

This shows that all nonzero terms in (6.11) have attaching data ~ν such that each νi ≤ r(~λ) + 1.

We need to check that in fact this inequality is strict so that all attaching data in (6.11) are such

that νi ≤ r(~λ). For contradiction, assume for some k, νk = r(~λ) + 1, we compute deg(V~ν,`). Using

(3.20), it follows immediately that deg(V~ν,`) = 0.

We can thus assume that all nonzero terms appearing in the sums (6.10) and (6.11) have

attaching weights ~µ and ~ν with µi, νi ≤ r(~λ). Particularly, we can assume corresponding terms in

these sums have the same attaching data. To finish the proof, we compare corresponding terms in

each sum and show they are equal.

First, we compare rank factors. Consider the following ranks,
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rk(V
(λIi ,µi),r(

~λ)
) and rk(V(λIi ,µi),`

). (6.14)

Define σi to be the integer such that 2σi := |λIi |+ µi, then from Proposition 6.5, we see that these

ranks will be equal whenever we have σi ≤ r(~λ). So suppose r(~λ) < σk for some k = 1, 2, 3, or 4.

Without loss of generality (and clarity in the following argument) we assume k = 1. From this, it

follows
4∑
i=1

|λIi | = 2(r(~λ) + 1) ≤ 2σ1 = |λI1 |+ µ1,

(where the strict inequality of our assumption provides the weak inequality r(~λ)+1 ≤ σ1). Canceling

|λI1 | gives the relationship,
∑4

i=2 |λIi | ≤ µ1.

Using this relationship, (6.13), and the Generalized Triangle Inequality for rk(V~µ,`) we have,

µ2 + µ3 + µ4 ≤
4∑
i=2

|λIi | ≤ µ1 ≤ µ2 + µ3 + µ4.

The equality follows,

µ1 = µ2 + µ3 + µ4. (6.15)

Consider the degree factors deg(V
~µ,r(~λ)

) and deg(V~µ,`) appearing in (6.10) and (6.11) for the

attaching weight µ as in (6.15). By Lemma 3.20 the degree is zero. Hence, terms in the sums

associated to such ~µ are also zero. Thus, we can always assume σi ≤ r(~λ) and thus rank factors

are equal.

We now compare the corresponding degree factors in each sum (6.10) and (6.11). In order for

the product of rank factors (in either sum) to not necessarily be zero, the relationship in (6.13) must

be satisfied (using notation ~µ = (µ1, µ2, µ3, µ4) for the attaching weights). From this relationship

and Lemma 6.8 it follows that the four pointed degree factors are equal.

We can now conclude that the terms appearing in (6.10) and (6.11) are always equal, concluding

the proposition.

It was shown for sl2, that for V = V(sl2, ~λ, `) to be nontrivial is equivalent to ` ≤ r(~λ) and

0 < rk(V) (see [11, Prop. 1.3]). Considering the degree formula for sp2` divisors in Lemma 3.20, the
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Table 6.1: Divisors and ranks for V` = V(sp2`, ~λ, 1) and varying `

` c1(V`) rk(V`)
5 (7, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1, 3, 7, 6, 1, 1) 3

6 (11, 4, 2, 9, 4, 4, 3, 3, 2, 4, 2, 6, 12, 10, 3, 3) 7

7 (12, 5, 3, 10, 5, 5, 4, 4, 3, 5, 3, 7, 14, 11, 4, 4) 10

8 (12, 5, 3, 10, 5, 5, 4, 4, 3, 5, 3, 7, 14, 11, 4, 4) 11

9 (12, 5, 3, 10, 5, 5, 4, 4, 3, 5, 3, 7, 14, 11, 4, 4) 11

10 (12, 5, 3, 10, 5, 5, 4, 4, 3, 5, 3, 7, 14, 11, 4, 4) 11

nontrivality of sp2r divisors above stabilizing Lie rank follows whenever the rank of the stabilizing

Lie bundle is nonzero. We state this nonvanishing result explicitly below.

Corollary 6.9. Let c1(V(sp
2r(~λ)

, ~λ, 1)) be the stable Lie divisor for a fixed n-tuple, ~λ. Then if

rk(V(sp
2r(~λ)

, ~λ, 1)) > 0, the divisor c1(V(sp2r, ~λ, 1)) is nontrivial for all r ≥ r(~λ).

6.4 Examples

Here we give an example to illustrate our results on ranks and first Chern classes of bundles

V(sp2`, ~λ, 1) with varying Lie (algebra) rank, `. Particularly, we use this example to illustrate the

rank behavior of Lemma 6.5 and the stable Lie divisor of Theorem 1.9 for bundles with sp2` and

level one.

Example 6.10. Let ~λ = (5, 4, 3, 2, 1, 1). We consider the bundles, V` := V(sp2`, ~λ, 1) for varying

`. Using the same ordering on the nonadjacent basis of Pic(M0,6) as in Example 5.11, we compute

the divisor class and rank of each V`. The stabilizing Lie rank for ~λ is r(~λ) = 7. By Proposition 1.9

the divisors defined at or above r(~λ) = 7 are all equal. By Lemma 6.5 the ranks of the bundles with

Lie rank at or above r(~λ) + 1 are equal. This is shown from computations displayed in Table 6.1.

6.5 Consequences for conformal blocks of Type C at level one

The main propositions of our results in this chapter have several consequences to the study of

understanding conformal blocks divisors in Nef(M0,n). Specifically, we combine the results of
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Proposition 1.8 with previous results related to vector bundles of conformal blocks with sl2 to

conclude several consequences for bundles with sp2` at level one.

The finite generation of the cone of all conformal blocks divisors in Nef(M0,n) is an open

question. This problem was considered for conformal blocks with sln at level one in [22] and for

bundles with sl2 of rank one in [26]. Using these results, we are able to make the following conclusion

related to conformal blocks with sp2` at level one.

Corollary 6.11. Let S := {V = V(sp2`, ~λ, 1) | rk(V) = 1}. Then

C = convHull{c1(V) | V ∈ S},

is the same cone as that generated by conformal blocks divisors with sl2 and rank one. Particularly,

C is finitely generated.

Another open problem in the study of vector bundles of conformal blocks is to determine

necessary and sufficient conditions for when a conformal blocks divisor is nonzero [8, Question 1].

Due to results in [17, Prop. 4.3] and [8, Cor. 3.6] we can conclude the following nonvanishing result

for sp2` conformal blocks at level one.

Corollary 6.12. For a fixed integer ` and n-tuple of weights ~λ ∈ P1(sp2`)
n, let r(~λ) be the

stabilizing Lie rank as in Definition 6.1. Then we have the following nonvanishing result

c1(V(sp2`, ~λ, 1)) is nontrivial ⇔ rk(V(sp2`, ~λ, 1)) > 0 and rk(V(sp
2r(~λ)

, ~λ, 1)) > 0.

Additionally, using the decomposition of [8, Prop. 1.2], Proposition 1.8 provides new decompo-

sition and scaling identities for the divisors c1(V(sp2`, ~λ, 1)) with rk(V(sp2`, ~λ, 1)) = 1.

Corollary 6.13. Let ~µ = (ωa1 , ..., ωan) such that 0 < ai ≤ m and ~ν = (ωb1 , ..., ωbn) such that

0 < bi ≤ ` (so that ~µ ∈ P1(sp2m)n and ~ν ∈ P1(sp2`)
n). If rk(V(sp2m, ~µ, 1)) = rk(V(sp2`, ~ν, 1)) = 1

then

c1(V(sp2(m+`), (ωa1+b1 , ..., ωan+bn), 1)) = c1(V(sp2m, ~µ, 1)) + c1(V(sp2`, ~ν, 1)).

Iterating this result leads to the following scaling behavior.
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Corollary 6.14. Define VN := V(sp2(N`), (ωNa1 , ..., ωNan), 1) for (ωa1 , ..., ωan) ∈ P1(sp2`)
n and

N ≥ 1. If V1 has rank one, then we have the following divisor identity:

c1(VN ) = Nc1(V1).

Remark 6.15. Similar scaling behavior appears for slr+1 in [8, Cor. 4.6], for sl2 and ~λ = (ω1, ..., ω1)

in [24, Prop. 5.2], and analogous results for so2r+1 and ~λ = (ω1, ..., ω1) in [39, Thm. 1.2].
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Appendix A

Young diagrams in rank computations

In these appendices, we expand on some of the tools used in the document. Some of these examples

and results were preliminary to the construction and generalization of results in this document.

A.1 Young diagrams (shapes)

In this section we expand on the construction of the Young diagram shapes in Lemma 4.8 used to

compute ranks of sl2 bundles.

First, Witten’s Dictionary (Section 3.15) gives us that rk(V(sl2, (a1, ..., an), `)) is equal to the

coefficient, K
(`,0)
(`,0),(a1,...,an,`,...,`),s

(2, `), of the term qsσ(`,0) in the following product:

σa1 ∗ ... ∗ σan ∗ σs−1
` ∗ σ` ∈ QH∗(Gr(r, r + `)).

From the section on quantum Kostka numbers (Section 3.8), the desired coefficient in this

product is the number of tableau with shape ν[s]/λ, where ν = (`, `) and λ = (`, 0) as in Figure A.1,

and content (a1, ..., an, `, ..., `). This content contains our original content flavors and amounts with

s− 1 additional flavors with ` amounts of each flavor. That is, we have

V(sl2, (a1ω1, ..., anω1), `) = K`ω2

`ω1,(a1,...,an,`,...,`),1
.
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To carry out this computation, we first consider the shape ν[s]/λ, where ν and λ are the same as

in Figure A.1. We give an example to motivate the general shape.

ν = (`, `) =

`︷ ︸︸ ︷
. . .
. . .

λ = (`, 0) =

`︷ ︸︸ ︷
. . .

Figure A.1: Young diagrams ν = (`, `) and λ = (`, 0)

Example A.1. Let ` = 5, we construct the tableau ν[s]/λ for s = 1, ..., 6 and ν and λ as given in

Figure A.1 by adding rim hooks to ν each containing `+ 2 = 5 + 2 = 7 boxes.

s = 1, ν[1]/λ

s = 2, ν[2]/λ

s = 3, ν[3]/λ
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s = 4, ν[4]/λ

s = 5, ν[5]/λ

s = 6, ν[6]/λ

We can generalize this example to describe the shape of ν[s]/λ for any integers s > 0 and ` > 0.

Lemma A.2. Let ν = `ω2, λ = `ω1 and s > 0. Let p,m be integers such that 1 ≤ p ≤ ` and

s = m`+ p. Then we obtain the following Young diagram, (`(m(`+2)+p+1), p2),

ν[s]/λ = . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . .
. . .
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(highlighted boxes indicating λ). After removing λ, this shape is a vertical concatenation of the

two rectangular shapes, one of dimension (m(`+ 2) + p+ 1)× ` :

`︷ ︸︸ ︷
. . .
. . .
. . .
. . .

and one of dimension 2× p :
p︷ ︸︸ ︷
. . .
. . .

.

Proof. Following the construction of the tableau in the above example, we see that if we add s < `

rim hooks, we add s new rows with ` boxes in each row (full rows) and two rows, each with s boxes

in each row. When we add s = ` rim hooks, we add s = ` full rows and two rows of size `, that is 2

full rows. When p = 0, this will close up the shape giving a rectangle of m(`+ 2) + 1 full rows.

Using the results of Lemma A.2, we can prove Lemma 4.8. We work out the full proof here.

Lemma A.3. For V = V(sl2, (a1, ..., an), `), and integers s,m, and p such that
∑n

i=1 ai = 2(`+ s)

with s = m`+ p > 0, and 1 ≤ p ≤ `, the rank of V is equal to the number of proper tableaux with

content (a1, ..., an) on shape, (`2(m+1), p2),

. . . . . .

. . . . . .

. . . . . .

. . .

. . .

.

This is a vertical concatenation of the two rectangular shapes, one of dimension (2(m+ 1))× `,
`︷ ︸︸ ︷
. . .
. . .
. . .

and one of dimension 2× p,
p︷ ︸︸ ︷
. . .
. . .

.

113



Proof. As in Section 4.1.3, let ν = (`, `) and λ = (`) be Young diagrams. We show the empty boxes

in ν[s]/λ after placing the content (`s−1) from (a1, . . . , an, `
s−1) forms a Young diagram given by

(`2(m+1), p2). The lemma result then follows from Witten’s Dictionary.

From Remark 3.16 the number we want to compute is independent of the ordering of the content,

(a1, . . . , an, `
s−1); thus, we can choose to make A1 = `, ..., As−1 = ` and consider creating a tableau

on ν[s]/λ with content (`s−1, a1, . . . , an).

Since rows must be strictly decreasing in flavor, we must fill the first row with A1 = ` amount

of 1’s, the second row with A2 = ` amount of 2’s, and continue filling full rows of ` boxes in the

shape ν[s]/λ from Lemma A.2 until we have filled the s− 1 row with As−1 = ` amount of (s− 1)’s.

This was the only way to place the s− 1 content flavors of size ` into ν[s]/λ. The remaining empty

boxes of ν[s]/λ creates the Young diagram (`2(m+1), p2). Thus, the total number of tableaux with

shape ν[s]/λ and content (`s−1, a1, . . . , an) is equal to the total number of tableaux with shape

(`2(m+1), p2) and content (a1, . . . , an).

For convenience in Lemmas 4.7 and 4.8, we denote k = m+ 1.

A.2 Rank of V(sl2, ~λ, `) at critical level

We now demonstrate computations of quantum Kostka numbers to determine ranks of vector

bundles of conformal blocks of type sl2 at the critical level [11, Def. 1.1]. That is, we compute

ranks of the vector bundles, V(sl2, (a1ω1, ..., anω1), `) when
∑
ai = 2(`+ 1). Bundles at the critical

level were the first type of bundles we considered at the beginning of our search for the general

result obtained in Theorem 1.5.

Let V = V(sl2, (a1ω1, ..., anω1), `) for a fixed ` and n-tuple of weights ~λ = (a1ω1, ..., anω1) with

` ≥ a1 ≥ ... ≥ an > 0. By Witten’s Dictionary, we have

rk(V) = K
(`,`)
`ω1,(a1,...,an),1
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That is, we compute Kν
λ,µ,1(2, `) with ν = (`, `), ν[1] = (`, `, `, 1, 1), λ = (`, 0), and ν[1]/λ =

(`, `, 1, 1). These shapes are given in Figure A.2 (the boxes in the (2 + `)-rim hook added to ν are

highlighted in the figure).

ν = . . .
. . .

ν[1] = . . .
. . .
. . .

λ = . . .

ν[1]/λ = . . .
. . .

.

Figure A.2: Shapes for computing rk(V) for V at critical level

To compute the rank we must find the number of proper tableaux with shape ν[1]/λ and content

(a1, ..., an). Note that for any n, the shape ν[1]/λ above will be the same for sl2 and any fixed `.

The n in the calculations changes the number of flavors in content ν = (a1, ..., an), it does not affect

the parameters ν,m, λ, or the shape of the tableaux we are using to determine rank. For different

values of ` the shape will look similar with the first two rows having ` boxes in each row.

The content of ν[1]/λ must be strictly increasing in the columns (top to bottom) and weakly

increasing in the rows (left to right). The shape of ν[1]/λ will have proper content if and only if

a ≥ ã and b ≥ b̃,
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where a, ã, b, b̃ are the flavors in shape ν[1]/λ, as follows

. . .

. . . ã

. . . b̃

a

b

A.2.1 Ranks of bundles at critical level when n = 4

We now further restrict our focus to bundles V = V(sl2, (a1ω1, ..., anω1), `) at critical level and with

four weights.

Lemma A.4. If (a1ω1, a2ω1, a3ω1, a4ω1) are four nonzero weights of level ≤ ` such that a1 + a2 +

a3 + a4 = 2(`+ 1) then

rkV(sl2, (a1ω1, a2ω1, a3ω1, a4ω1), `) = 1

if and only if

ai = ` or ai = 1 for some weight ai.

Proof. First, with four weights, our content will contain the flavors 1, 2, 3, and 4. As we fill in

ν[1]/λ with such content, since columns must be strictly increasing, the first column in ν[1]/λ (see

Figure A.2) must be filled with increasing values as follows,

. . .
1 . . .
2 . . .
3
4

We have reduced our problem to finding the number of proper tableaux with content (a1 −

1, ..., a4 − 1) on a Young diagram of shape 2× (`− 1).

Case 1: ai = `.

If ai = ` we can assume this is true for a4 (rank is invariant with respect to the order of the
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weights, see Remark 3.16) and so we have `− 1 amount of content with flavor 4 remaining. Since

the remaining `− 1 columns (each with two boxes) must be strictly increasing the full second row

of the empty boxes must be filled with content flavor 4. This takes up all of the a4 − 1 remaining

content. We now have the following shape to fill with the remaining content (a1− 1, a2− 1, a3− 1),

1 . . .

a row of `− 1 boxes, the empty boxes of,

. . .
1 . . .
2 4 4 . . . 4 4
3
4

Now, for the remaining content (a1 − 1, a2 − 1, a3 − 1), there will be one and only one way to

place this content in a single row in weakly increasing order.

Case 2: ai = 1.

We can assume a2 = 1 (again, rank is invariant on order of weights, Remark 3.16). As discussed

above, we will have to fill in the shape below with the content (a1 − 1, 0, a3 − 1, a4 − 1).

. . .
1 . . .
2 . . .
3
4

Again, to maintain strictly increasing columns and weakly increasing rows, we must have the

a4 content in the last row and the a1 content in the first row. This gives the following tableau,

. . .
1 1 1 . . . 1
2 . . . 4 4 4
3
4

This will give us two disjoint rows to fill in with the remaining a3 − 1 content. Indeed, these

rows will be disjoint as we can assume a1, a4 ≥ a3, from which it follows that a1 +a4 ≥ (2(`+ 1))/2
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since the sum of all weights is 2(`+ 1) and we have assumed a1, a4 are the largest. There will then

be only be one way to fill two disjoint rows with the a3 − 1 amount of content of flavor 3.

In the above two cases, we have determined that there is only one possible way to fill the shape

ν[1]/λ with content µ. Thus, the valueKν
λ,µ,1(2, `) and hence the rkV(sl2, (a1ω1, a2ω1, a3ω1, a4ω1), `),

will be one in either case.

Case 3: 1 < ai < ` for all i = 1, 2, 3, 4.

We can begin this discussion in the same way. We want to fill the shape ν[1]/λ with content

(a1, a2, a3, a4). The first column of ν[1]/λ is already determined as above and we can assume a1, a4

are the largest amount of content and so a1 + a4 ≥ ` + 1. As discussed above, in order for any

such content to be strictly decreasing down columns we must have the a1 1’s in the beginning of

the first row and a4 4’s in the end of the second row. This again will give us two disjoint rows to

fill in with the remaining (nonzero) content (a2 − 1, a3 − 1) in the empty boxes below,

. . .
1 1 1 . . . 1
2 . . . 4 4 4
3
4

We can see that there is more than one way to fill in these empty boxes with the remaining

content so that we have a proper tableau. One option is to place a2 − 1 number of 2’s in the top

row immediately after the 1’s, continuing to the second row if necessary, and then fill the remaining

boxes with a3−1 3’s. A second option is to fill the end of the first row with the a3−1 3’s, continuing

to the empty boxes at the end of the second row if necessary. These will produce two different

proper tableaux. If a3− 1 is less than or equal to the number of empty boxes in the first row, then

the first tableau created will have flavor 3 in the second row; the second tableau created will not.

If a3 − 1 is greater than the number of empty boxes in the first row, then the first method will

produce a tableau with flavor 2 in the first row and the second method will not.

This covers all of the cases of weights (a1ω1, a2ω1, a3ω1, a4ω1) at the critical level.
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A.2.2 Ranks of bundles at critical level when n > 4

We now extend the results of Section A.2.1 to include ranks of bundles V = V(sl2, (a1ω1, ..., anω1), `)

at critical level with n > 4 weights. We show that any such bundle at critical level will have rank

larger than one.

Claim A.5. Let V = V(sl2, (a1ω1, ..., anω1), `) for some fixed integer ` > 3 and n > 4 integers

` ≥ a1 ≥ ... ≥ an > 0 such that
∑n

i=1 ai = 2(`+ 1), then rk(V) > 1.

Proof. As we discussed in the introduction to this section, we can compute the rank by calculating

the Kostka coefficient,

K
(`,`)
(`),(a1,...,an,1).

This number is the number of ways to fill the shape ν[1]/λ (see Figure A.2) with content (a1, ..., an, 1)

to obtain a proper semistandard tableau. We show there are two methods to do this.

We make two observations. First, as we reasoned in the n = 4 case, the first a1 boxes of the first

row must contain all content of flavor 1 and the last an − 1 boxes of the second row must contain

all content of flavor n. Additionally, the last (fourth) box of the first column must have content

n (this is so the tableau is proper). Hence, any such proper semistandard tableau must have the

filling as in Figure A.3 with a1 amount of flavor 1 and an amount of flavor n. We now show two

methods to fill the remaining content (a2, ..., an−1). For each method, we reason that the resulting

object is a proper semistandard tableau.

1 1 1 1
n n n

n

Figure A.3: Filling of content a1 and an

Method 1: Fill the remaining empty two boxes in the first column of Figure A.3 with content

of flavor 2 and n− 1. Place the remaining content (a2 − 1, a3, ..., an−2, an−1 − 1) in the remaining

empty boxes left to right, top to bottom, by placing all content a2 − 1 of flavor 2, followed by

content a3 of flavor 3, etc. See Figure A.4 for an example of a filling using this method.
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Method 2: Fill the remaining empty two boxes in the first column of Figure A.3 with content of

flavor 2 and n−2. Place the remaining content (a2−1, a3, ..., an−3, an−2−1, an−1) in the remaining

empty boxes left to right, top to bottom, by placing all content a2 − 1 of flavor 2, followed by

content a3 of flavor 3, etc. See Figure A.5 for an example of a filling using this method.

We now show that Method 1 and 2 each result in a distinct proper semistandard tableau.

First, each tableau has weakly increasing content flavors left to right in the rows. Indeed, the

initial content placement, as in Figure A.3, is of content of flavor 1 or n and both methods specified

placement of flavor 2 in the second row, first column. The remaining flavors to fill in the first and

second rows are between 2 and n − 1, all of which are either greater than or equal to 1 (initial

content in first row) or less than or equal to n (initial content at end of second row). We specified the

placement of the remaining content in either case to exhaust content amounts in weakly increasing

order. Thus the two rows will have content flavors weakly increase.

Now, each filling will have strictly increasing column content flavors. This is clear in the first

column, since n > 4 which implies 1 < 2 < n− 1 < n (for the first method) and 1 < 2 < n− 2 < n

(for the second method). Additionally, each column in the tableau containing a 1 or n (the initial

placed content) will be strictly increasing (since no other content of such flavor remains). And since

content amounts are weakly decreasing ai ≥ ai+1 the placement of content in first row, followed by

second row (in each case) will not result in any column (of two boxes) with the same content flavor

i.

Finally, in each method, the tableau will be proper. We must check that the content in the

final box of the first row is less than or equal to n− 1 (in the first method) and n− 2 in the second

method. Thus, it is sufficient, for either case to show that such content, denote this content flavor

j is such that j ≤ n − 2. For contradiction, assume this wasn’t the case, and so j = n − 1. Then

the amount of content of flavor n − 1 must be an−1 ≥ ` − 1 − (an − 1) + 1 = ` − an + 1, the sum

of the number of empty boxes in the second row and one box from the first row (i.e., those boxes

that containing content of flavor n − 1). This would imply an−1 + an ≥ ` + 1. Since weights are

weakly decreasing, this would further imply

a1 + a2 + an−2 + an−1 + an > 2`+ 2.
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However since 2`+ 2 =
∑n

i=1 ai ≥ a1 + a2 + an−2 + an−1 + an, this would provide a contradiction.

Thus, content of flavor j in the last column of the first row must be j ≤ n− 2.

Since each method of filling involves placing a different flavor in the third box in the first column,

the resulting tableaux are distinct. Hence, the rank of the bundle V is larger than one.

Example A.6. Let V = V(sl2, (6, 5, 3, 2, 2, 2), 9) be an sl2 bundle with weights (6, 5, 3, 2, 2, 2) at

level 9. We check that 6 + 5 + 3 + 2 + 2 + 2 = 20 = 2(9 + 1) so V is at critical level. The following

are the tableaux produced in Claim A.5 using Method 1 and Method 2.

1 1 1 1 1 1 2 2 2
2 2 3 3 3 4 4 5 6
5
6

Figure A.4: Tableau produced from Method 2 of Claim A.5

1 1 1 1 1 1 2 2 2
2 2 3 3 3 4 5 5 6
4
6

Figure A.5: Tableau produced from Method 2 of Claim A.5
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