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ABSTRACT 

Force fields have recently begun to model electrostatic interactions with 
explicit charge densities composed of Gaussian functions.  A Gaussian multipole 
formalism is presented which is based on previous work done on Hermite Gaussian 
functions.  The treatment for Gaussian multipoles parallels standard derivations of 
Cartesian point multipoles.  The results obtained for Gaussian multipoles are used to 
develop a new polarization model based on induced Gaussian dipoles.  In contrast to 
the original induced point dipole model, the induced Gaussian dipole model is capable 
of finite interactions at short distances.  Aspects of convergence related to the induced 
Gaussian dipole model will be explored.  Results for polarization work, energy, and 
force have been derived for the induced Gaussian dipole model, and a discussion of 
how the model has been implemented into the AMBER molecular dynamics 
simulation program is provided.   

In addition, a method of parameterizing polarizabilities is presented.  This 
method is based on probing a molecule with point charges and fitting polarizabilities 
to electrostatic potential.  In contrast to the generic atom type polarizabilities fit to 
molecular polarizability tensors, probed polarizabilities are significantly more accurate 
in terms of reproducing molecular polarizability tensors and electrostatic potential, 
while retaining conformational transferability.  Polarizabilities and atomic partial 
charges are parameterized for the amino acids, and it is shown that including 
polarization significantly improves the electrostatic description of point charges over 
multiple conformations.  In addition, a polarizable and non-polarizble model for water 
and ammonia composed of point charges and induced Gaussian dipoles is presented 
by fitting to liquid phase heats of vaporization and density.  Results are also presented 
for fitting a polarizable and non-polarizable water model only to ab-initio data, and 
limitations of the point charge model are discussed. 
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1 Introduction 

1.1 Force Fields 

In recent years, molecular dynamics simulations have increasingly become a 

useful tool for studying large molecular systems.  Originally, simulations were used to 

study liquids.  As computing power increased, simulations were gradually applied to 

biomolecular systems such as proteins, carbohydrates, DNA, and lipids.  Today, 

simulations are routinely done on protein crystal structures to gain understanding of how 

these complicated structures operate. 

 Typical simulations usually involve 103 – 106 atoms.  For systems of this 

magnitude, the CPU requirements render electronic structure based methods impractical.  

For this reason, force fields have been developed as a set of simplified empirical energy 

equations capable of handling large molecular systems. 

 Early force fields were designed using intuitive notions of how atoms and 

molecules interact.  Atoms in a molecule vibrate about their equilibrium positions.  

Therefore, energy can be expanded in a Taylor series about equilibrium bond lengths r0 

and bond angles θ0.  A truncated Fourier series is employed to describe torsion rotations 

about bond axes.  The force field intramolecular energy, also called the valence energy, is 

given by eqn 1.1 
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Traditional force fields such as MM31-5, AMBER6-10/GLYCAM11-13, and CHARMM14-19 

have this functional form.  The valence energy is important in determining molecular 

geometries and vibrational frequencies.  Hagler20-22 et. al. has shown how to include 

higher order terms in the Taylor series by fitting to ab-initio conformational energies and 
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its derivatives.  The resulting force field, CVFF, accurately predicts ab-initio geometries 

and vibrational frequencies for a wide range of molecular systems. 

 In addition to the valence part, there is a second part of the force field, which 

models intermolecular interactions.  This non-bonded portion includes a long range 

electrostatic term, a short range exchange/repulsion, and a long range weakly attractive 

dispersion term.  In traditional force fields, electrostatic interactions are commonly 

modeled by point charges on each atom.  The short range repulsion and long range 

dispersion are often modeled by a 12-6 Lennard Jones potential.  The resulting non-bond 

energy is given by: 
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The non-bonded portion of the force field is particularly important because it largely 

determines condensed phase quantities such as thermodynamic properties of liquids and 

biomolecular-ligand interactions. 

 Recently, force fields, such as AMOEBA23-25, SIBFA26-28, and GEM29-31, have 

been proposed to more accurately model electrostatic interactions.  AMOEBA and 

SIBFA employ point multipoles, while the GEM force field is composed of an explicit 

charge density fitted using Gaussian basis sets.  The multipole and density based force 

fields are able to more accurately reproduce high-level ab-initio data such as dimer 

energies and geometries.  However, a drawback to these more elaborate force fields is the 

increase in CPU overhead.  As a first estimate, multipole-based force fields such as 

AMOEBA and SIBFA require 101 – 102 more CPU time over point charge force fields, 

while the density based GEM force field requires 101 – 103 more CPU time. 
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 The electrostatic and vdW interactions described above are constant with respect 

to molecular environment.  However, it is known that molecular dipole moments change 

significantly when transferred from gas to liquid phase.  Non-polarizable classical force 

fields based solely on additive models are not able to capture this effect.  Rather, 

permanent molecular dipole interactions are often enhanced to compensate.   

Including an explicit polarization term in the force field is a method to model 

these multi-body effects in condensed phases, while still being able to correctly calculate 

gas phase properties, such as dimer geometries and interaction energies.  Polarization is 

likely to be particularly important in accurate descriptions of biomolecular interactions.   

 One goal of this study is to develop a polarization model suitable for use in the 

AMBER and GLYCAM force fields.  Several polarization models such as the Drude 

oscillator32 33, fluctuating charges34, and induced dipoles24 35 36 have been suggested for 

use in water models.  This work will focus on the induced dipole polarization model, 

which places induced dipoles on each atom.  In this case, the induced dipole μv  on an 

atom is the product of the total electric field E
v

 and a scalar atomic polarizability α. 

E
vv αμ =      1.1 

The original induced dipole model of Applequist37 places induced point dipoles 

on each atom.  However, this model suffers from the so called ‘polarization catastrophe’: 

when two mutually interacting inducible dipoles with atomic polarizabilities α1 and α2 

diverge at a finite distance, given by: 

( ) 6/1
214 αα=R     1.2 

Thole38 has proposed a solution by applying a damping function to induced dipole – 

induced dipole interactions.  However, a drawback to this model is that it does not 



 4

prescribe how induced dipoles and permanent charges interact.  Ad-hoc assumptions are 

needed to define interactions between induced dipoles and other charges for the Thole 

model.   

 An interesting question arises: since force fields based on charge density have 

recently been proposed29-31 to model electrostatic interactions, is it possible to develop a 

polarization model based on charge density which does not contain the polarization 

catastrophe condition?  In this work, an induced dipole model based on density will be 

developed.  Before presenting a density based polarization model, it would be useful to 

first discuss electrostatic models based on charge density. 

 There is an interesting mathematical relationship between Gaussian functions and 

point multipoles.  Consider a charge density composed of a simple normalized Gaussian 

function with total charge q: 

)exp()( 22
3
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π
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For large exponents, the charge distribution becomes singular about the origin and 

behaves as a point charge or point monopole.  For this reason, the charge distribution in 

1.3 has been defined as a Gaussian monopole.  In chapter two, higher order Gaussian 

multipoles and their relationship with Cartesian point multipoles are explored.  A 

discussion of Cartesian tensors and Cartesian point multipoles is provided in appendix A.  

The results for Gaussian multipoles are used in chapter three to develop a polarization 

model based on induced Gaussian dipoles.   

There is an interesting property of the induced Gaussian dipole model which 

relates to the polarization catastrophe.  Since the interaction of two permanent Gaussian 

charge densities is finite at all distances, it might be expected that the interaction between 
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two induced Gaussian dipoles is finite at all distances.  However, for large Gaussian 

exponents, the induced Gaussian dipoles behave as induced point dipoles.  If the 

exponent is too large, the interaction is too strong and a polarization catastrophe can 

occur.  A relationship for the maximum size of the Gaussian exponent is derived which 

will prevent a polarization catastrophe at all distances. 

 In chapter four, the implementation of induced Gaussian dipoles into the 

molecular dynamics (MD) simulation program AMBER39 is presented.  Results for 

polarization energy, work, and force are derived for the induced Gaussian dipole model.  

The Ewald summation40-43 method for a system of charges in periodic boundary 

conditions is described.  A brief discussion of the Car-Parinello44 45 method to propagate 

induced dipoles during an MD simulation through an extended Lagrangian formalism is 

provided.  Finally, results from simulation output are presented. 

 Once a polarization model has been established, a procedure for obtaining 

parameters for the model is needed.  In chapter five, procedures to optimize atomic 

polarizabilities for the induced Gaussian dipole polarization model is discussed.  

Following Applequist and Thole, a set of atom type atomic polarizabilities are found by 

fitting to a collection of molecular polarizability tensors for the induced Gaussian dipole 

model, the Thole model, and the induced point dipole model.  The performance of all 

three induced dipole models is compared.  In addition to the conventional method of 

fitting atomic polarizabilities to molecular polarizability tensors, a second procedure is 

proposed to generate atomic polarizabilites.  This procedure is based on probing a 

molecule with point charges and calculating the electrostatic potential around the 
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molecule.  The ‘probed’ atomic polarizabilities are fit to the response potential, which is 

the potential in the presence of the charge probes minus the potential in vacuum. 

 In chapter six, probed polarizabilities and atomic point charges are generated for 

the amino acids.  Probed polarizabilities are fit to the response potential through the 

procedure presented in the previous chapter and atomic point charges are found by the 

conventional method of fitting to total electrostatic potential of a molecule in vacuum.  In 

order to make equal comparisons, a set of point charges is found with and without 

polarizability present.  By exploring multiple conformations of single amino acids, 

polarization is shown to make a significant improvement in the electrostatic description 

of point charges.  The charges and polarizabilities are tested on a 10 alanine peptide in 

the extended and α helical conformations. 

 In chapter seven, a polarizable and non-polarizable model for water and ammonia 

is presented.  The models are developed by fitting a Lennard Jones repulsion parameter 

and a charge scale factor to heats of vaporization and density.  Effective condensed phase 

charges for polarizable and non-polarizable force fields are discussed.  The models are 

tested by calculating dimer energies and comparing with ab-initio results.  An interesting 

question arises: can force field parameters be fit only to ab-initio data?  In a second 

procedure, the vdW repulsion parameter, the atomic charges, and the polarizabilities for 

water are optimized only to ab-initio data.  The model is tested by calculating the heats of 

vaporization and density.  Finally, limitations with the point charge model are discussed. 

 In addition to the work presented in the chapters, background material has been 

included in appendices.  As mentioned earlier, in appendix A, Cartesian tensors46 are 

discussed and a derivation of electrostatic interactions in terms of Cartesian point 
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multipoles47 48 is provided.  In appendix B, a derivation of how a molecule interacts with 

an external field49 is presented quantum mechanically through Rayleigh Schrödinger 

perturbation theory.  In appendix C, long range intermolecular perturbation theory49 is 

discussed.  The intermolecular energy or dimer energy up to second order can be 

separated into electrostatic, polarization, and dispersion contributions.  Finally, in 

appendix D, a derivation of the Ewald summation40-43 for point charges and point dipoles 

is provided. 
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2 Gaussian Multipoles 

 

2.1 Introduction 

 Cartesian point multipoles (see appendix A) provide an excellent description of 

electrostatic interactions between charge distributions which are sufficiently far away 

from one another.  However, at smaller separations when the charge distributions 

overlap, the assumptions used in the point multipole description are no longer valid.  An 

example of when two charge distributions overlap and multipole interactions do not 

accurately account for the electrostatic interaction is the water dimer.  Cisneros1-3 et. al. 

fit electron density through auxiliary basis sets to ab-initio electron density calculated at 

B3LYP/aug-cc-pVTZ by minimizing the Coulomb self energy of the molecule.  It was 

shown that a multipole description up to quadrapoles1 on each atom predicts an 

electrostatic interaction energy of -5.9 kcal/mol, while the ab-initio electrostatic energy of 

the water dimer was calculated to be -8.2 kcal/mol using constrained space orbital 

variation4 (CSOV) energy decomposition.  It is interesting to note that atomic point 

charges generated from the conventional method of optimizing to electrostatic potential 

predict an electrostatic interaction energy of -4.5 kcal/mol. 

 A more important reason to study density based electrostatic models is simulation 

stability.  Electrostatic models based on point multipoles diverge for small R as R-n for n 

≥ 1.  A point multipole model for electrostatic interactions may be justified in empirical 

force fields by using a strong repulsive vdw potential to counteract the attractive 

electrostatic potential interactions for small R.  However, this argument does not apply to 

polarization models based on induced point multipoles.  In the following chapter, the 
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induced dipole polarization model is discussed.  For small separations, induced point 

dipole – induced point dipole interactions diverge5 as (R – R0)-1.  Simulations that use the 

induced point dipole polarization model occasionally encounter ‘polarization 

catastrophes’ and fail when two atoms get too close.  On the other hand, electrostatic 

models based on explicit charge density are finite at all distances.  It will be shown in the 

following chapter that polarization interactions based on an induced charge density model 

is finite at all distances if the charge distribution is sufficiently diffuse.    

 A model based on charge density is needed to accurately model electrostatic and 

polarization interactions at short range and provide stability to simulations which use 

explicit polarization.  Recently, force fields and simulations6-8 have begun to use simple 

‘s’ orbital and ‘p’ orbital Gaussian charge densities to model electrostatic interactions.  In 

this chapter, Gaussian multipole9 charge distributions will be discussed as a smooth 

continuous generalization of Cartesian point multipole distributions.  At long range, 

Gaussian multipoles behave as point multipoles10.  At short range, Gaussian multipoles 

provide a more realistic description when charge distributions overlap which can be 

signifcant11. 

Before making a precise definition of a Gaussian multipole charge distribution, a 

simple example will serve as motivation for what follows.  Consider a simple radially 

symmetric Gaussian charge distribution with exponent β, total charge q, and center R
r

 

given by: 

)exp();(
22

3
)0( RrqRr

rrrr
−−⎟

⎠

⎞
⎜
⎝

⎛
= β

π
βρ    2.1.1 
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For small Gaussian exponents, the charge distribution is diffuse and for large exponents, 

the charge distribution is sharply localized around the center R
r

.  In section 2.4 and 2.7, 

the electrostatic potential will be derived for this charge distribution, and the result is 

given by: 

Rr

Rrerf
qRr rr

rr
rr

−

−
=

)(
);(0

β
ϕ     2.1.2 

where erf(x)2 is the error function12 defined by ∫ −≡
x

uduxerf
0

2 )exp(2)(
π

.  Notice for 

large x, erf(x) → 1.  Hence for a large Gaussian exponent β, the potential from the simple 

Gaussian charge distribution becomes: 

    
Rr

qRr rr
rr

−
≅

1);(0ϕ      2.1.3 

i.e. the potential due to a point charge or point monopole.  For this reason, the charge 

distribution in 2.1.1 is defined as a Gaussian monopole. 

In the following section, higher order Gaussian multipole charge distributions are 

defined, e.g. dipole, quadrapole, etc.  In sections 2.3 and 2.4, electrostatic interaction 

energies are derived between different Gaussian multipole charge distributions.   In 

section 2.5, it will be shown that in the limit of large Gaussian exponents, Gaussian 

multipoles behave like point multipoles.  In section 2.6, the force terms are derived for 

Gaussian multipoles.  This treatment parallels the force derivation for point multipoles 

given in appendix A.5.  In section 2.7, electrostatic potential and fields are derived for 

Gaussian multipole charge distributions.  In appendix A.7, it was shown that interaction 

energies between point multipoles can be conveniently expressed in terms of electrostatic 
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potential, field, or field gradient.  In order to formally treat Gaussian multipoles in a way 

that parallels point multipoles, ‘effective’ electrostatic potential and fields are introduced 

in section 2.8.  As in the case of point multipoles with ordinary potential and fields, 

interaction energies between Gaussian multipoles can be expressed in terms of ‘effective’ 

potentials and fields.  Finally, in section 2.9, Hermite Gaussian charge distributions are 

briefly discussed in the context of electronic structure calculations.  The results for 

electron repulsion integrals using Gaussian basis sets can be compared to electrostatic 

interaction energies between Gaussian multipoles.   

 

2.2 Gaussian Multipole Charge Distributions 

 A spherically symmetric charge distribution of a simple Gaussian monopole 

function with exponent β and charge q centered at R
r

 was given in 2.1.1 as: 

)exp();(
22

3
)0( RrqRr

rrrr
−−⎟

⎠

⎞
⎜
⎝

⎛
= β

π
βρ    2.2.1 

One subtle point should be addressed before proceeding.  In appendix A.2, Cartesian 

tensors are discussed in order to express results in condensed form.  A common 

convention that will be used in this treatment is to implicitly sum over repeated indices 

unless otherwise stated.  For example, the center vector R
r

 can be expressed in 

component form as pp xRxRxRxRR ˆˆˆˆ 332211 ≡++=
r

.  For vectors/tensors involving 

components (p =1,2,3 for x,y,z) or particles (i = 1,.. N), the particle index will usually be 

denoted (when possible) as a superscript and the component index as a subscript.  For 

example, the position of particle 2 is given by: pp xRR ˆ22 =
r

.  See appendix A.2 for a 

further discussion of Cartesian vector/tensors. 
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 A Gaussian dipole charge distribution with exponent β and dipole moment μv  

centered at R
r

 is defined as: 

)exp();(
22

3
)1( RrRr R

rrvrr
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅= β

π
βμρ    2.2.2 

The gradient is respect to the center coordinate, i.e. 
p

p
R

R
x

∂
∂

≡∇ ˆ  .  Similarly, a Gaussian 

quadrapole charge distribution with exponent β and Cartesian quadrapole tensor 

qppq xx ˆˆΘ≡Θ  is defined as 

)exp();(
22

3
),2()2( RrRr R

rrrr
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅Θ= β

π
βρ   2.2.3 

where ∇∇≡∇ )2(  is a second rank gradient tensor, and 
qp

pq
R

RR ∂∂
∂

Θ≡∇⋅Θ
2

),2(  is a 

tensor contraction of rank 2.  More generally, an nth order Gaussian multipole can be 

defined as an nth rank tensor contraction between an nth rank multipole moment 

nn ppp
n

ppp
n xxx ˆ..ˆˆ

2121

)(
...

)( Θ≡Θ  and an nth rank gradient ∇∇∇≡∇ ...)(n  of a simple normalized 

Gaussian function: 

)exp();(
22

3
),()()( RrRr Rnnn

rrrr
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅Θ= β

π
βρ   2.2.4 

The nth rank moment tensor )(nΘ  is symmetric with respect to interchanging component 

indices, i.e. )(
......

)(
......

n
pp

n
pp ijji

Θ=Θ  

 A motivation for defining these charge densities as Gaussian multipoles is that the 

nth ranked multipole moment integral13 (A.3.6) of the charge density );()( Rrn
rrρ  is )(nΘ , 

i.e. 
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    )()()(3 );()( 
!

1 nnn RrRrrd
n

Θ=−∫
rrρ    2.2.5 

For example, the total charge of );()0( Rr
rrρ  is q, since 

    qRrrd =∫ );( )0(3
rrρ      2.2.6 

This can be seen by using the following integral: 
β
πβ =−∫

∞

∞−

dxx )exp( 22 .  Before 

proving 2.2.5 by induction, it is noted that 2.2.4 can be expressed in terms of gradients 

with respect to r. 

)exp()1();(
22

3
),()()( RrRr rnnnn

rrrr
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇⋅Θ−= β

π
βρ   2.2.7 

since )()( RrFRrF rR
rrrr

−−∇=−∇ .  For brevity, suppose 0=R
r

.  Let )(nΔ  be the nth 

rank moment tensor of 2.2.7.  It will be shown that if )1()1( −− Θ=Δ nn , then )()( nn Θ=Δ . 

The (p1 p2 …pn) component )(nΔ  is given by: 

∫

∫

∫

∇∇∇Θ
−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅Θ

−
=

=Δ

)0;(.... 
!
)1(

)exp(.. 
!
)1(

)0;(.. 
!

1

)0(
..ppp

3

22
3

),()(
ppp

3

)(
ppp

3
...

212121

21

2121

rrrrrd
n

rrrrrd
n

rrrrrd
n

r
q

r
q

r
qqqq

n

rnn
n

n
ppp

nnn

n

nn

r

r

ρ

β
π
β

ρ

  2.2.8 

The integrand can be integrated by parts with respect to r
q1

∇ : 
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∫

∫

∫

∫

∇∇Θ∇
−

+∇∇Θ∇
−

+∇∇Θ∇
−

+∇∇Θ∇
−

=Δ

−

−

−

)0;(..)..( 
!
)1(  

..)0;(..)..( 
!
)1(  

)0;(....)( 
!
)1(  

})0;(....{ 
!
)1(

)0(
..ppp

3
1

)0(
..ppp

3
1

)0(
..ppp

3
1

)0(
..ppp

3
...

221121

221211

221211

22121121

rrrrrd
n

rrrrrd
n

rrrrrd
n

rrrrrd
n

r
q

r
qqqq

r
q

n

r
q

r
qqqq

r
q

n

r
q

r
qqqq

r
q

n

r
q

r
qqqq

r
q

n

ppp

nnn

nnn

nnn

nnnn

r

r

r

r

ρ

ρ

ρ

ρ

  2.2.9 

The first term is a surface term and is zero when evaluated at the boundary of 3D space.  

This can be seen by using the following identity14: ∫∫∫ =∇
SV

Sdxfxfxd
r

)()(3 , where f(x) is 

a continuous function, V is an arbitrary volume and S is a closed surface surrounding V.  

Since 
ii q

r
q r pp 11

δ=∇ , 2.2.9 becomes: 

})0;(..}....                                  

....{ 
!
)1(        

)0(
..ppp

pppppp
3

1

.

221121

211211

21

rrr

rrrrrd
n

r
q

r
qqqqq

qq

n

ppp

nnn

nn

n

rρδ

δδ

∇∇Θ

++
−

=

Δ

∫
−

    2.2.10 

Each of the individual terms is moment integral of rank n – 1, for which the theorem 

holds.  2.2.10 then becomes 

n

nnnn

ppp

pppppppppppp n
..

.......

21

12122121
)..(1

Θ=

Θ+Θ+Θ=Δ
   2.2.11 

where the last step made use that 
nppp ..21

Θ  is symmetric.   Therefore, the theorem holds 

for all n. 
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2.3 Interaction Energies 

 The electrostatic interaction energy between an nth order Gaussian multipole 

1),(nΘ  with exponent β1 centered at 1R
r

 and a mth order Gaussian multipole 2),(mΘ with 

exponent β2 centered at 2R
r

 is given by: 

'

)'exp(
' 

'
);'();(' 

222
2

212
1

2),(2),(1),(1),(
33

3
21

21
3312

rr

RrRr
rdrd

rr
RrRrrdrdU

mmnn

mn

nm

rr

rrrr

rr

rrrr

−

−−−−∇⋅Θ∇⋅Θ
⎟
⎠
⎞

⎜
⎝
⎛=

−
=

∫ ∫

∫ ∫

ββ

π
ββ

ρρ

 

The gradients are with respect to center coordinates and can be pulled out of the integral. 

00
2),(2),(1),(1),(12 UU mmnn

nm ∇⋅Θ∇⋅Θ=    2.3.1 

where U00 is the electrostatic energy between two Gaussian monopole charge 

distributions of unit charge: 

'

)'exp(
' |)(|

222
2

212
133

3
2121

00 rr

RrRr
rdrdRRU rr

rrrr
rr

−

−−−−
⎟
⎠
⎞

⎜
⎝
⎛≡− ∫ ∫

ββ

π
ββ   2.3.2 

 

2.4 Evaluation of U00 

The following derivation of U00 can be found in15.  U00 can be expressed as an 

integral of electrostatic potential );( 20 Rr
rrϕ from a Gaussian monopole with unit charge 

centered at 2R
r

  and a second charge Gaussian monopole charge density );( 10 Rr
rrρ  with 

unit charge centered at 1R
r

: 

∫= );();( 20103
00 RrRrrdU

rrrr ϕρ    2.4.1 

where: 
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)exp();(
212

1

3
110 RrRr

rrrr
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡ β

π
β

ρ    2.4.2 

∫ −

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

'

)'exp(
');(

222
23

3
220

rr

Rr
rdRr rr

rr
rr β

π
β

ϕ   2.4.3 

The denominator in 2.4.3 can be expressed in terms of a Gaussian integral: 

∫
∞

−−=
− 0

22 )'exp( 2
'

1 rrudu
rr

rr
rr

π
    2.4.4 

and then inserted back into 2.4.3,  

∫ ∫

∫ ∫
∞

∞

+

−
−−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
2
2

2

222
2

2
222

2
3

3
2

0

22222
2

3
3

220

)exp( )')(exp('2

)'exp( )'exp('2);(

β

β
β

ππ
β

β
ππ

β
ϕ

u

Rru
Xrurddu

rruRrrdduRr

rr
rr

rrrrrr

 

where 2
2

2

2
2

2

β
β

+
+

≡
u

Rru
X

rrr
.  Performing the integration over 'r  gives: 

∫
∞

+

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
2
2

2

222
2

22/3

2
2

2

3
220 )exp(2);(

β

β

β
π

ππ
β

ϕ
u

Rru

u
duRr

rr
rr   2.4.5 

Transform variables, 2
2

2

222
2

2
2

β

β

+

−
≡

u

Rru
x

rr

 

∫
−

−
−

=

2
2

0

2
2

20 )exp(21);(
Rr

xdx
Rr

Rr

rr

rr
rr

β

π
ϕ    2.4.6 

This result can be written in terms of the error function12. 

2

2
220

)(
);(

Rr

Rrerf
Rr rr

rr
rr

−

−
=

β
ϕ     2.4.7 



 21

Before evaluating the electrostatic energy, 2.4.6 can be transformed into another useful 

form by letting 
2Rr

xt rr
−

≡  

  ∫ −−=
2

0

22220 )exp(2);(
β

π
ϕ RrtdtRr

rrrr    2.4.8 

The electrostatic energy can be found by inserting 2.4.8 into 2.4.1 

∫

∫ ∫

+

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
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⎜⎜
⎝

⎛
=
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2
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1

22122
1
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1

3
1

0

222212
1

3
3

1
00

)exp(2

)exp()exp(2

β

β

β

β

β
π

ππ
β

β
ππ

β

t

RRt

t
dt

RrtRrrddtU

rr

rrrr

  2.4.9 

Now let 22
1

22122
12

t

RRt
v

+

−
≡

β

β
rr

, 00U  becomes 

    

12

12
12

0

2
1200

)(

)exp(21
12

12

R
Rerf

vdv
R

U
R

β
π

β

=

−= ∫
   2.4.10 

where 
2
2

2
1

21
12

ββ

ββ
β

+
≡  and 2112 RRR

rr
−≡ . 

 

2.5 Gaussian Multipoles and Point Multipoles 

 The expression 2.4.10 for U00 can now be substituted into 2.3.1 to arrive at the the 

electrostatic interaction energy 12
nmU  between an nth and mth order Gaussian multipole: 

   

12

12
121),(2),(1),(

12

12
122),(2),(1),(1),(12

)(
)1(

)(

R
Rerf

R
Rerf

U

mnmnm

mmnn
nm

β

β

+∇⋅ΘΘ−=

∇⋅Θ∇⋅Θ=
  2.5.1 
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In the last step, 1∇  does not act on 2),(mΘ .  In particular, the Gaussian multipole energies 

up to dipole- dipole are given by: 

monopole-monopole  12

12
122112

00
)(

R
Rerf

qqU
β

=     2.5.2.a 

monopole-dipole  12

12
1212112

01
)(

R
Rerf

qU
β

μ ∇⋅−=
r    2.5.2.b 

dipole-dipole   12

12
121),2(2112

11
)(

R
Rerf

U
β

μμ ∇⋅−=
rr    2.5.2.c 

 If the large exponent limit is applied to the interaction energies in 2.4.1,  

β1, β2, β12 → ∞, and erf(x) → 1 as x → ∞, and the nth mth Gaussian multipole interaction 

energy becomes: 

   12
1),(2),(1),(12 1)1(

R
U mnmnm

nm
+∇⋅ΘΘ−=     2.5.3 

i.e. the interaction energy of point multipoles in A.4.14. 

In the expression for Gaussian charge density, the exponent determines how 

localized or diffuse the density is about the center. 

    
22

3

0 );( RreqRr
rrrr −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β

π
βρ     2.5.4 

For small exponents, the charge density is diffuse and spread out in space.  For large 

exponents, the charge density becomes sharply localized near the center.  In the large 

exponent limit, the charge density for the Gaussian monopole becomes that of a point 

charge. 

   )(lim )3(
3

22

Rrqeq Rr rrrr

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

∞→
δ

π
β β

β
    2.5.5 

Use has been made by one of the representations of the 3D Dirac-Delta function16   
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22
3

)3( lim)( RreRr
rrrr −−

∞→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=− β

β π
βδ     2.5.6 

2.6 Force and Torque 

The following treatment for forces between Gaussian multipoles is almost 

identical to the derivation given for point multipoles in appendix A.5 and is summarized 

here for completeness.  The force on particle 1 1F
r

 due to the nth – mth rank Gaussian 

multipole interaction between particle 1 and 2 is defined as the negative gradient with 

respect to particle 1  

     1211
nmUF −∇=

r
     2.6.1 

The multipole moment 1),(nΘ  on each atom can be defined with respect to the constant 

global reference frame 321 ˆ,ˆ,ˆ xxx  or a local (body) coordinate frame 321 ˆ,ˆ,ˆ xxx ′′′ .  The local 

coordinate frame of atom 1 can be defined in terms of atom 1’s position 1R
r

and also the 

positions of atom 1’s neighbors aR
r

 and bR
r

.  The local frame is related to the global 

frame by a rotation matrix Dqp. 

qqp
q

qqpp xDxDx ˆˆˆ
3

1
=≡′ ∑

=

    2.6.2 

The components of 1),(nΘ  in the global frame 1),(
...

n
rpq

GΘ  are related to the components in  

the local (body) frame 1),(
...

n
rpq

BΘ  by  

1),(
''...''''

1),(
... .. n

rqp
B

rrqqpp
n

rpq
G DDD Θ=Θ    2.6.3 

The derivative of 1),(nΘ  with respect to 1∇  was derived in appendix A.5 and is given by: 

rqp
n

rtq
GT

st
v
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v

n xxxD
R
D

xn ˆ..ˆˆˆ 1),(
...1

1),(1 Θ
∂

∂
=Θ∇   2.6.4 
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Therefore, the force on atom 1 is given by: 

12

12
121),1(2),(1),(1
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r

   2.6.5 

The first term on the right side of 2.6.5 is a torque term since it is a derivative with 

respect to orientation.  The second term is a derivative of energy with respect to 

translation of the distance between the two multipoles and is the ordinary translational 

force term.  Finally, it should be noted that the interaction 12
nmU  contributes force terms to 

atom 1 and atom 2, and also to the neighbors of atom1 and atom 2. 

 

2.7 Electrostatic Potential and Field 

 The electrostatic potential can be defined in two equivalent ways.  In appendix 

A.6, the electrostatic potential was defined as the variation in energy of a system when an 

infinitesimal point charge was added to the system, 
q
U

q δ
δϕ

δ 0
lim
→

≡ 14.  Potential can also be 

defined as a Coulomb integral over charge density ρ(r), given by: 

     ∫ −
≡

'
1)'(')( 3
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rrdr rr

r ρϕ     2.7.1 

This definition was used in 2.4.3 for the calculation of φ0, the electrostatic potential of a 

Gaussian monopole with unit charge.  Using the definition for potential in 2.7.1, the 

electrostatic potential for a Gaussian multipole with charge density by 2.2.4 is: 
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Using the result for 0ϕ  in 2.4.7 
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   2.7.3 

 It will prove useful in the next section to apply the other definition of electrostatic 

potential (
q
U

q δ
δϕ

δ 0
lim
→

≡ ) to Gaussian multipoles.  From 2.5.1, the interaction energy 

between a Gaussian monopole (n = 0) and an mth order Gaussian multipole is given by: 

   12
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qU mmm
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If the large exponent limit is take for the monopole, β1 → ∞, then β12 → β2 and the 

Gaussian monopole becomes a point charge, and 2.7.4 becomes 

   12
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The electrostatic potential is then 
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  2.7.6 

which is equivalent to 2.7.3 (if rR rr
≡1  is the field point). 

 In appendix A.6.4, the electric field E
r

 is defined as the negative field gradient of 

potential: );();( 21121 RRRRE
rrrrr

ϕ−∇≡ .  Hence, the electric field for an mth rank Gaussian 

multipole can be found from 2.7.6 to be: 



 26

  
12

12
21),1(2),(

21121

)(
)1(

);();(

R
Rerf

RRRRE

mmm

mm

β

ϕ

+∇⋅Θ−=

−∇=
rrrrr

   2.7.7 

The nth ranked field gradient14 of an mth ranked point multipole is defined in A.6.6.  For 

am mth ranked Gaussian multipole, the nth ranked field gradient is given by: 
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   2.7.8 

 In the point multipole limit, β2 → ∞ and 1)( 12
2 →Rerf β , so that the potential, 

field, and field gradients become: 
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which is equivalent to A.6.3, A.6.5, and A.6.6. 

 

2.8 ‘Effective’ Electrostatic Potential and Field 

In section A.6, it was shown that interaction energies for point multipoles could 

be conveniently expressed in terms of potential and its gradients.  In this section, 

‘effective’ electrostatic potential and field are defined.  The motivation for this is to be 

able to express interaction energy between Gaussian multipoles in terms of ‘effective’ 

potentials and fields.   

The interaction energy of a point monopole (n = 0) with a point multipole of rank 

m is given by A.6.7: 
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ϕ  is the potential due to the point multipole of 

rank m.  On the other hand, the interaction energy of a Gaussian monopole with a 

Gaussian multipole of rank m is given by: 

   12

12
121),(2),(112

0
)(

)1(
R

Rerf
qU mmm

m
β

∇⋅Θ−=  

However, in the Gaussian multipole case, );( 21112
0 RRqU mm

rr
ϕ≠ , since 

12

12
21),(2),(21 )(

)1();(
R

Rerf
RR mmm

m
β

ϕ ∇⋅Θ−=
rr

 contains the wrong exponent (β2 ≠  β12). 

It would be useful to be able to express energy in terms of field and potential for 

Gaussian multipoles.  However, the Gaussian multipole energy is an integral over two 

charge densities, and the potential/fields are integrals over a single charge density.  

Therefore, the Gaussian multipole energy can not be expressed in terms of ordinary 

potential/fields.   

In the definition for electrostatic potential in (
q
U

q δ
δϕ

δ 0
lim
→

≡ ), the potential is 

defined as the variation in energy when an infinitesimal point charge is added to the 

system.  If the point charge q is replaced with an infinitesimal Gaussian charge q~  with 

exponent β1, the ‘effective’ potential ϕ~  can be defined as: 
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The difference between the true potential in 2.7.6 and the ‘effective’ potential in 2.8.1, is 

the exponent β2 → β12.  In a similar manner, the nth rank field gradient of the ‘effective’ 

potential from an mth order Gaussian multipole is defined as: 
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 Now the interaction energy between Gaussian multipoles can be expressed in 

terms of ‘effective’ potential and fields.  The energy between a Gaussian monopole and 

an mth order Gaussian multipole is given by: 
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The energy for a Gaussian dipole with an mth order Gaussian multipole is given by: 

   

);(
~

)(
)1(

21)1(1

12

12
121),1(2),(1

1

RRE

R
Rerf

U

m

mmm
m

rrrr

r

⋅−=

∇⋅Θ−= +

μ

β
μ

   2.8.4 

In general, the interaction energy for an nth order Gaussian multipole with an mth order 

Gaussian multipole is given by: 
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The main reason for introducing ‘effective’ potentials is to simplify energy 

interactions between Gaussian multipoles and to develop a formalism for Gaussian 

multipoles which parallels that of point multipoles.  As mentioned earlier, the general 

method of evaluating interaction energy between two charge densities involves an 

integral over two coordinate systems.  However, the field involves only a single integral.  
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The second charge density is implicitly integrated into the ‘effective’ potential.  In the 

following two chapters, a polarization model based on induced Gaussian dipoles is 

developed.  It is first postulated that ‘effective’ fields rather than ordinary fields are used 

to polarize the charge density by inducing a dipole moment on the atom.  Later, it is 

shown that the results for polarization energy, work, and force are greatly simplified 

when ‘effective’ fields rather than ordinary fields are used to induce polarization.   

 

2.9 Gradient Tensors  

 In section A.6, tensor gradients of 
R
1  were evaluated for point multipoles.   For 

Gaussian multipoles, tensor gradients of the form 
R

Rerfn )()( β
∇  are needed.  From the 

definition in A.2.14, the nth ranked tensor gradient of 
R

Rerf )(β can be expressed in 

component form as: 
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The first four tensor gradients are evaluated as:  
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where Rx β≡ , and the dimensionless )(xBn
17 18 functions are defined by: 
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In practice, the numerical evaluation of )(xBn  using 2.9.6 is unstable for small x.  

However, )(xBn  is finite and continuously differentiable when x is small.  Starting with 

the Taylor series12 for ∑
∞

=
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+
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=
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π
, a Taylor series can be derived for  

)(xBn  and used to approximate )(xBn  when x is small: 
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For large x, the asymptotic limit of erf(x) → 1 holds, and the following relationship can 

be used to approximate )(xBn  when x is large: 
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The Gaussian multipole interaction energies up to dipole-dipole are given by 

2.2.5a, 2.2.5b, 2.2.5c.  When the results for the tensor gradients are inserted into the 

energies, the result is: 
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 The potential at 1R
r

 for a Gaussian monopole with charge q2 or dipole 2μr  and 

exponent β2 located at 2R
r

is given by: 
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The ‘effective’ potentials onto a Gaussian particle with exponent β1 are found by simply 

by replacing β2 with β12 in 2.9.12 and 2.9.13. 
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The ‘effective’ fields are found by taken the n = 1 and m = 0, 1 in 2.8.2 
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2.10 Relation to Hermite Gaussian Functions  

 In gas phase electronic structure calculations, Gaussian functions19 are often used 

as a basis because all necessary one and two electron integrals have analytic solutions.  

Two electron Coulomb integrals of the form in 2.10.1 are needed. 
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μχ  is a Cartesian Gaussian basis function of the form: 
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where pqrN  is a normalization constant, XxxR −≡ , YyyR −≡ , ZzzR −≡ , and 

zZyYxXR ˆˆˆ ++≡
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 is a nuclear center.  The set of Cartesian Gaussian functions can be 

linearly transformed into the set of Hermite Gaussian functions of the form: 
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The Gaussian multipoles )(nΘ  defined in this work are tensor contractions between 

multipole moments and the set of Hermite Gaussian functions with t+u+v = n.  One 

method of evaluating the electron repulsion integrals of 2.10.1 is to first transform the 

Cartesian Gaussian basis into a Hermite Gaussian basis.  The nuclear center derivatives in 

2.10.3 can be pulled out of the integral.  The integral can then be evaluated in terms of 

simple s-orbital Gaussian functions or Gaussian monopoles as in the calculation of U00.  

Recursion relationships, such as the McMurchie-Davidson20 scheme, are used to evaluate 

the integrals for higher angular momentum (higher order Gaussian multipoles) in terms of 

a Boys’ function of order n defined by: 
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The following relationship for derivatives holds: 
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The zeroth order Boys’ function can be transformed15 in the erf(x) function as: 
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Using these two relationships, it can be shown that 
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 Though the final results are identical, the formalism in this work differs from that 

used in electronic structure theory.  The approach for evaluating the interaction between 

Gaussian multipoles in this work parallels that of point multipoles, in order for 

comparisons to be made at each stage.  Instead of using McMurchie-Davidson recursion, 

the treatment here used explicit Cartesian gradients (2.9.2 - 2.9.5).  The function Bn(x) in 

2.9.6 was used instead of the Boy’s functions Fn(x).  For more details on electron integral 

evaluation in electronic structure calculations, see Molecular Electronic Structure 

Theory15. 
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3 Gaussian Polarization Model 

 

3.1 Introduction 

In recent years, including polarization in molecular dynamics simulations has 

been the center of a considerable amount of effort1-5.  It is known that molecular dipole 

moments change significantly when transferred from gas to liquid phase; non-polarizable 

classical force fields based solely on additive models are not able to capture this effect.  

Rather, permanent molecular dipole interactions are often enhanced to compensate6.   

Including an explicit polarization term in the force field is a method to model 

these multi-body effects in condensed phases, while still being able to correctly calculate 

gas phase properties, such as dimer geometries and interaction energies.  Polarization is 

likely to be particularly important in accurate descriptions of biomolecular interactions.  

A further important advantage of using a polarizable force field relates to parameter 

development.  Polarizable force fields fit to ab-initio data would be expected to do well 

both in gas and condensed phase.  

 Several polarization models such as the Drude oscillator7 8, fluctuating charges9, 

and induced dipoles10 11 12 have been suggested for use in water models.  However, the 

induced dipole model1 2 4 5 and the fluctuating charge model2 3 5 seems to have received 

the most attention in terms of force field development. The simplest induced dipole 

model places isotropic inducible point dipoles on each atom.  If hyperpolarization effects, 

as might arise from strong electric fields, are absent, then the induced dipole responds 

linearly with respect to electric field.  In this case, the induced dipole μv  on an atom is the 

product of the total electric field E
v

 and a scalar atomic polarizability α. 
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E
vv αμ =      3.1.1 

The total electric field is composed of the external electric field from permanent charge 

sources 0E
v

 and the contribution from other induced dipoles.  In order to reproduce 

molecular polarizability tensors using isotropic atomic polarizabilities, induced dipoles 

within the same molecule should interact with one another13.  Applequist et. al. found 

parameters for this model by fitting atomic polarizabilities to experimental molecular 

polarizability tensors14.   

The development of the interacting induced point dipole model was an important 

step in modeling polarization because it led to accurate calculations of molecular 

polarizability tensors.  The most serious drawback to using the original point dipole 

model is known as the polarization catastrophe.  This phenomenon happens when two 

mutually interacting inducible dipoles with atomic polarizabilities α1 and α2 diverge at a 

finite distance, given by: 

( ) 6/1
214 αα=R     3.1.2 

During a molecular dynamics simulation, this situation leads to non-physical forces and 

velocities causing the simulation to fail.  Thole15 16 remedied this problem by applying a 

damping function to dipole-dipole interactions.  As an added feature, the damped model 

resulted in an improved fit to the molecular polarizability tensor data relative to the 

Applequist point dipole model. 

An alternative to the damped interaction model by Thole, which was explored in 

the previous chapter, is to employ interacting Gaussian densities rather than point 

dipoles17 18.  An advantage of using a charge distribution model over the Thole model is 

that it may be readily generalized to other multipole moments.  For example, a point 
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charge could be replaced by a Gaussian ‘s’ orbital, and a dipole could be replaced by a 

‘p’ orbital19.  It was shown in chapter two that point multipoles  are the large exponent 

limit of Gaussian multipoles.  Indeed, multipoles in current force fields1 could be 

replaced by Gaussian multipole (Hermite Gaussian) charge densities20, which effectively 

damp short range electrostatic interactions and provide a more realistic description of 

penetration effects, which can be significant in dimer geometries21 22. 

A peculiar aspect of the Gaussian model that relates to the polarization 

catastrophe should be pointed out.  If the inducible point dipoles are replaced by 

inducible Gaussian dipoles, it might be expected that the interaction remains finite, since 

the interaction of two permanent Gaussian dipoles is finite at all distances.  However for 

large exponents, the Gaussian dipoles start to behave like point dipoles, which interact 

strongly.  If the exponents are too large, the interaction is too strong and a polarization 

catastrophe can occur.  A relationship between the minimum diffuseness of the Gaussian 

exponent β and atomic polarizability α, namely:  
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is derived that will prevent a polarization catastrophe. 

 

A similar analysis was performed on the Thole model15, {ρ(u) = 3a/4π exp(−au3)}, and 

the maximum value of the damping parameter a was found to be 1.0. 

One focus of this study is to develop an induced Gaussian dipole polarization 

model.  In the following section, results from chapter two pertaining to Gaussian 

monopoles and dipoles are summarized.  In section 3.3, the induced Gaussian dipole 
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polarization model is introduced as a generalization of the induced point dipole model.  

The procedure to calculate molecular polarizability tensors from atomic polarizabilities is 

discussed in this section.  In section 3.4, the molecular polarizability tensor is derived 

explicitly for the important case of a diatomic molecule.  In section 3.5, the polarization 

catastrophe for the Gaussian and Thole model is discussed, and a proof of 3.1.3 is 

provided.  Finally, in section 3.6, an equivalent definition of molecular polarizability as a 

derivative of molecular dipole with respect to external field is given.  As an example, the 

molecular polarizability tensor is calculated for water using the procedure outlined in 3.4 

and also as a numerical derivative of induced molecular dipole with respect to external 

field.   

 

3.2 Gaussian Model 

In chapter two, Gaussian multipoles were discussed.  In this section, the results 

for Gaussian monopoles and dipoles are summarized.  In particular, the dipole-dipole 

interaction matrix is defined and relationships for electric potential and fields needed for 

the Gaussian polarization model are stated.   

It was shown in appendix A.7 that interaction energies between point multipoles 

can be expressed in terms of potential, field, or field gradient.  In order to generalize 

Gaussian multipoles from point multipoles, ‘effective’ potentials and fields were defined 

between Gaussian multipoles in section 2.8.  Interaction energies between Gaussian 

multipoles can be expressed in terms of ‘effective’ potential and fields.  The ordinary 

electrostatic potential is defined as the variation in energy when an infinitesimal point 

charge (or point monopole) is added to the system.  The ‘effective’ potential is defined as 
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the variation in energy when an infinitesimal Gaussian monopole is added to the system.  

‘Effective’ potential between Gaussian multipole charge distributions are convenient 

because it implicitly takes into account both charge distributions as continuous charge 

densities.  In the following section, it is postulated that ‘effective’ fields rather than 

ordinary electric fields are used to induce polarization.  In chapter four, it is shown that 

the use of ‘effective’ fields greatly simplifies the polarization energy, work, and force. 

A Gaussian monopole density with nuclear center at R
r

, charge q, and exponent β 

is given by (2.2.1): 
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Similarly, a Gaussian dipole density with dipole moment μr  is given by (2.2.2): 
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The interaction energies between Gaussian monopole and dipole densities at 1R
r

 and 2R
r

 

with exponents β1 and β2 are derived in chapter two and given by 2.9.9, 2.9.10, and 

2.9.11: 
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The Gaussian dipole – dipole energy in 3.2.5 can be expressed in terms of a dipole – 

dipole interaction matrix 12T  

212112
11 μμ rr

⋅⋅−= TU ,    3.2.7 

in which 12
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pp xRR ˆ1212 ≡
r

and qppq xx ˆˆδ≡I  (identity matrix) are expressed in vector/tensor notation 

(see appendix A.2). 

The ordinary potential φ0 at 1R
r

 of a Gaussian monopole at 2R
r

 with charge q2
 and 

exponent β2 is given by 2.9.12: 
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Similarly, the ordinary potential φ1 at 1R
r

 of a Gaussian dipole at 2R
r

 with dipole 2μr  and 

exponent β2 can be evaluated from 2.9.13: 
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In section 2.8, it was shown that interaction energies could be expressed in terms 

of ‘effective’ potentials and fields.  The ‘effective’ field of a Gaussian monopole with 
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charge q2 and exponent β2 at 2R
r

 onto another Gaussian particle with exponent β1 at 1R
r

 is 

given by 2.9.16: 
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The ˜ symbol has been dropped on ‘effective’ field for clarity.  The ‘effective’ field of a 

Gaussian dipole with dipole 2μr  and exponent β2 at 2R
r

 onto another Gaussian particle 

with exponent β1 at 1R
r

 is given by 2.9.17: 
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  3.2.13 

The ‘effective’ fields are used to induce dipoles in the Gaussian dipole polarization 

model. 

 

3.3 Gaussian Polarization Model 

The section follows the treatment of Applequist12 and Thole13 by deriving the 

molecular polarizability tensor for linear isotropic polarizabilities using induced Gaussian 

dipoles.  The main difference between this treatment and that of Applequist or Thole is 

that the dipole-dipole interaction matrix 12T  is given by 3.2.8 and the electric fields used 

are ‘effective’ electric fields (3.2.12 and 3.2.13) between Gaussian particles.   

The symmetric molecular polarizability tensor mol
pqα  is defined by: 
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   3.3.1 

where molμv  is the induced molecular induced dipole and 0E
r

 is a constant external 

electric field applied to the molecule.  In order to calculate the molecular polarizability 
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tensor from induced Gaussian dipoles, consider a molecule composed of N atoms each 

with an isotropic polarizability αi assigned to it.  The induced dipole on particle i iμr  is 

the product of the atomic polarizability αi and the total ‘effective’ field due to permanent 

charges iE ,0
r

and the ‘effective’ field due to other induced dipoles, ∑
≠

⋅
ij

jij μrT . 
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⋅+= ∑

≠ij

jijiii E μαμ rrr T,0     3.3.2 

This is a linear equation for iμr , which can be rewritten as 

0E=μA      3.3.3 

where μ  and 0E  are 3N column vectors, and A  is a 3N x 3N matrix given by: 
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 3.3.4 

or in tensor particle-component notation, 

ij
pqpqiji

ij
pq TA −= δδ

α
1     3.3.5 

where δij is the kronecker delta function, defined by δij = 1 (i = j) and δij = 0 for (i ≠ j).  

As in chapter two, for tensors involving components (p =1,2,3 for x,y,z) and particles (i = 

1,.. N), the particle index will usually be denoted (when possible) as a superscript and the 

component index as a subscript.  Solving forμ  in 3.3.3, 

E1−= Aμ      3.3.6 
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Since the total induced molecular dipole is found by summing the induced atomic 

dipoles, the calculated molecular polarizability tensor mol
pqα  is the direct sum of 1−A  over 

particle number. 

     ∑∑
= =

−=
N

i

N

j

ij
pqpq A

1 1

,1molα     3.3.7 

A small technical note should be made regarding ‘effective’ fields for the external 

constant field acting upon the molecule in 3.3.1.  Since the field is constant, ‘effective’ 

field is the same as ordinary field because a constant field can be created by a large point 

charge a far distance away, i.e. a point charge outside the range of the Gaussian 

exponents.  ‘Effective’ fields differ from ordinary fields when atoms are close enough 

that their Gaussian charge distributions overlap.   

 If the assumption of linear isotropic atomic polarizabilities were generalized to 

linear anisotropic polarizabilities, iα  becomes a symmetric polarizability matrix i
pqα and 

the equation for induced dipoles (3.3.2) becomes (in component form): 
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where repeated component indices q and r have been summed over.  This can be 

expressed as 0E=μA  where the A matrix takes the form: 

     ij
pqij

i
pq

ij
pq TA −= − δα ,1     3.3.9 

where i
pq

,1−α  is the inverse of anisotropic atomic polarizability tensor i
pqα for particle i.  

The molecular polarizability can be found by inverting A as in 3.3.6 and then taking the 

direct sum as in 3.3.7. 
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3.4 Diatomic Molecule 

In the case of a diatomic molecule, the molecular polarizability tensor has 2 

independent components: one parallel to the bond axis ||α  and another perpendicular to 

the bond axis ⊥α .  By considering 2 particles interacting in 1 dimension, these 

components can be explicitly derived for the Gaussian model by solving for 1μr  and 2μr  

in 3.3.2 using the result for the dipole – dipole interaction matrix 12T  (3.2.8).   

0E
r

1μr

2μr

A

0E
r

1μr2μr

B

 

Figure 3.1 Two induced dipoles interacting parallel (A) and perpendicular (B) to a 
constant external electric field.  

 

Consider the case of two particles whose bond axis is parallel to the external field 

in Figure 3.1A.  Suppose the external field and the separation is along the ŷ  axis.  In this 

case, ŷ11 μμ =
r , ŷ22 μμ =

r , yRR ˆ12 =
r

, yEEE ˆ02,01,0 ==
rr

, 

{ }ITT )(ˆˆ)( 12
2

12
3

12
2112 xByyxRRB −== ββ .  The equation for induced dipoles (3.3.2) 

becomes: 
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where  

)()()( 12
2 xBxBxxF −≡     3.4.2 

3.4.1 can be solved for μ1 and μ2, yielding the following result: 
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The total induced dipole along the bond axis is 21|| μμμ += , and the molecular 

polarizability along the bond axis is given by: 
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Now consider the case of two particles whose bond axis is perpendicular to the 

external field as in Figure 3.1B.  Suppose the external field is along the ŷ  axis, and the 

separation is along the x̂  axis.  In this case, ŷ11 μμ =
r , ŷ22 μμ =

r , xRR ˆ12 =
r

, 

yEEE ˆ02,01,0 ==
rr

, { }ITT )(ˆˆ)( 12
2

12
3

12
2112 xBxxxRRB −== ββ .  The equation for dipoles 

(3.3.2) becomes: 
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which can be solved for μ1 and μ2, yielding the following result: 
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The total induced dipole perpendicular to the bond axis is 21 μμμ +=⊥ , and the 

molecular polarizability perpendicular the bond axis is given by: 
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 In the point dipole limit, 31
1)(
x

xB ≅  and 52
3)(
x

xB ≅  (2.9.8).  Therefore, 

2

2)(
x

xF ≅  and the molecular polarizability tensor parallel and perpendicular to the bond 

axis reduce to: 
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3.5 Polarization Catastrophe 

In the introduction, it was stated that the exponent parameter in the Gaussian 

model should be sufficiently diffuse in order for a polarization catastrophe not to occur.  

This condition, given by 3.1.3, 

3
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π
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β     3.5.1 

will now be proved. 

Consider two interacting inducible dipoles with polarizabilities α1 and α2 

separated by a distance R along the x-axis.  Since induced dipoles parallel to the 

separation axis interact more strongly than dipoles that are perpendicular to their 

separation axis, it suffices to consider dipoles interacting parallel to their separation axis.  
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In order for the interaction between two dipoles to be finite, the denominator in 3.4.4 

should be positive. 

1)()(6
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21 <xFxFβαα     3.5.2 

where F(x) is defined in 3.4.2 by: 
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.  F(x) is plotted 

in Figure 3.2.   

 

Figure 3.2 Plot of  F(x) = x2B2(x) – B1(x) 
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be the maximum value of F(x) which occurs at x = 0.  If β1 and β2 are chosen such that 

2,1  

83
4

0.1

3
1 =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
< i

i

i

π
α

β    3.5.5 



 49

then 3.5.2 is valid for all x.   

Proof: 
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Substituting βi (3.5.5) and F0 (3.5.4) into 3.5.8 gives: 
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i.e. 3.5.2 is satisfied.  

A similar analysis can be applied to the Thole model.  The dipole-dipole 

interaction is23: 

{ }))1()1(1(31 33 23
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where 

     
6
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21 )( αα

Ru ≡      3.5.11 

In 1 dimension, the molecular polarizability tensor for Thole can be solved for explicitly 

as in section 3.4: 
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A catastrophe doesn’t occur as long as the denominator of 3.5.12 is positive.   

0)(~1 2 >− uF      3.5.15 

Let  
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which occurs at u = 0.  The catastrophe condition then becomes: 

1~)(~ 2
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2 <≤ FuF      3.5.17 

i.e. a < 1.0.   

Finally, in the point dipole case, a polarization catastrophe occurs when the 

denominator 3.4.8 is zero, i.e. ( )6
1

214 αα=R .  This was stated in the introduction (3.1.2). 
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3.6 Results 

 For small external fields, the induced molecular dipole is linearly related to the 

external electric field, i.e. 
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   3.6.2 

where 0
qE  a constant external electric field , mol

pμ  is the induced molecular dipole, and 

mol
pqα  is the dipole-dipole molecular polarizability tensor.  This equation can be expressed 

in tensor form: 

0molmol
qpqp Eαμ =     3.6.1 

For larger external fields, the induced molecular dipole is a power series in external field 

(B.2.37): 

    ..00mol0molmol ++= rqpqrqpqp EEE βαμ    3.6.2 

where mol
pqrβ  is defined as the dipole-dipole-dipole first hyperpolarizability tensor 

(B.2.31).  Therefore, a second definition of molecular polarizability tensor is given by 

(B.2.23): 
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The procedure for calculating the molecular polarizability tensor outlined in 

section 3.3 can be tested numerically by calculating a finite difference derivative of 

induced dipole with external field using 3.5.3. 
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A small constant electric field perturbation ΔEq is applied to each atom for all three 

directions (q = 1, 2, 3).  The induced dipoles )(i
qp EΔμ  are then calculated iteratively 

using 3.3.1 for each atom (i = 1, .. N) in all three directions (p = 1,2,3).   )0(i
pμ  need not 

be calculated because the induced dipoles are zero for zero external field.  The total 

induced molecular dipole is given by the sum of induced atomic dipoles 

∑
=

Δ=Δ
N

qpqp EE
1i

imol )()( μμ .  Finally, the finite difference molecular polarizability tensor in 

3.6.4 may be calculated by dividing by ΔEq. 

 

 As an example, atomic polarizabilities (α) and exponents (β) for water were found 

(by a procedure to be discussed later) to be αO =  0.6830 Å3, βO = 1.5484 Å-1 for oxygen 

and αH = 0.2515 Å3, βH = 3.1603 Å-1 for hydrogen.  In Table 3.1, the molecular 

polarizability tensor for water is calculated exactly using the procedure from section 3.3, 

and also numerically using 3.6.4 with ΔEq = 10-4 eÅ-2.  Notice the errors in the finite 

difference numerical derivative are on the same order as the finite difference 10-4 - 10-5. 

 αXX αYX αYY αZX αZY αZZ 
Exact 1.10715 -0.11682 1.18976 0.00000 0.00000 0.84381 

Numerical 1.10711 -0.11679 1.18970 0.00000 0.00000 0.84379 
Table 3.1 Exact and numerical finite difference molecular polarizability tensor (Å3) for 
water calculated using the induced Gaussian dipole polarizability model. 
 

3.7 Conclusions 

An induced Gaussian dipole polarization model was developed as a generalization 

of the induced point dipole model.  The main drawback to the original induced point 

dipole model of Applequist is the polarization catastrophe condition which occurs when 
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the distance between two induced point dipoles approaches ( )6
1

214 αα=R  and the 

polarization interaction diverges.  It was shown the interaction between two induced 

Gaussian dipoles is finite for all distances if the Gaussian exponent β is sufficiently 

diffuse: 
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As in Applequist and Thole, the procedure to calculate molecular polarizability tensors 

from induced Gaussian dipoles was outlined in section 2.3.  The molecular polarizability 

tensor was calculated explicitly for the case of a diatomic molecule with induced 

Gaussian dipoles, induced Thole dipoles, and induced point dipoles.  The procedure to 

calculate the molecular polarizability tensor was also tested numerically by calculating a 

finite difference derivative of induced dipole with respect to external field. 

 A drawback to the Thole model is that the model is essentially a damping function 

between induced dipole – induced dipole interactions.  Though it solves the polarization 

catastrophe problem, it does not prescribe a method to calculate interactions between 

induced dipoles and permanent charges.  Ad hoc assumptions are needed to define 

interactions between induced dipoles and permanent charges.  Moreover, if future studies 

indicate induced quadrapoles are important, there is no clear path to generalize Thole to 

include higher order multipoles. 

 On the other hand, all interactions are well defined in the induced Gaussian dipole 

model because the Gaussian dipole is based on a charge density.  It is straightforward to 

evaluate the interaction of an induced Gaussian dipole with another induced Gaussian 

dipole or any other source of permanent charge (e.g. point charges, point multipoles, or 
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Gaussian multipole charge densities).  The main assumption in the induced Gaussian 

dipole model was the use of ‘effective’ electric fields rather than ordinary electric fields 

to induce polarization.   

One reason that ‘effective’ fields rather than ordinary electric fields are used to 

polarize the induced Gaussian dipole is because the induced Gaussian dipole is a charge 

density defined over a finite volume.  If ordinary electric field is used, it is only defined 

at a single point; i.e. that of the Gaussian dipole atomic center.  ‘Effective’ fields 

implicitly integrates out the effect that the induced Gaussian dipole is a charge density 

delocalized over a finite volume.   
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4 Implementation of Induced Gaussian Dipoles into  

Molecular Dynamics Simulations: AMBER 

 

4.1 Introduction 

 In the previous chapter, the induced Gaussian dipole polarization model was 

introduced as a generalization of the induced point dipole model.  The calculation of 

molecular polarizability tensors and the polarization catastrophe condition was discussed.  

This chapter will focus on implementing induced Gaussian dipoles into a molecular 

dynamics simulation program.   

Polarization energy1 2, work, and force3 have been derived previously for an 

induced point dipole interacting with an external field.  In this chapter, polarization 

energy, work, and force are derived for a system of induced Gaussian dipoles interacting 

with a source of permanent charges.  In section 4.2, polarization energy is derived for a 

collection of induced Gaussian dipoles interacting with one another and an external field 

source.  When a charge distribution becomes polarized due to the presence of an external 

field, work is done because there is movement of charge.  The total polarization energy is 

composed of the electrostatic interaction energy of the Gaussian dipoles and the work 

needed to polarize the dipoles.  In section 4.3, polarization force is derived as the 

negative gradient of polarization energy with respect to particle position.  It was shown in 

appendix A.4 and A.5 that permanent dipoles experience a translational force term and an 

orientation force term due to torque.  Since the polarization energy is the sum of the 

electrostatic energy of the induced dipoles U and the work to polarize the dipoles V, the 

polarization force can be calculated as the sum of two contributions, FU and FV.  FU is the 
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negative gradient of U with respect to particle position and FV is the negative gradient of 

V.  It is shown that the torque term from both FU and FV exactly cancel so that there is no 

torque term for induced dipoles.  It is interesting to note that the final form of the force on 

induced Gaussian dipoles is identical to the force on a permanent Gaussian dipole 

without the orientation torque term. 

It was mentioned in the previous chapter that in order to generalize the induced 

point dipole polarization into the induced Gaussian dipole model, ‘effective’ electric 

fields rather than ordinary electric fields are used to induce polarization.  One reason to 

use ‘effective’ fields is that electrostatic energy can be conveniently expressed in terms of 

‘effective’ potentials and fields (see section 2.8).  Another reason to use ‘effective’ fields 

to induce polarization is that the dipole-dipole interaction matrix is symmetric with 

respect to particle interchange.  In the following derivation of polarization force, a key 

assumption is that the dipole-dipole interaction matrix be symmetric with respect to 

particle interchange.  This assumption would not hold if ordinary electric fields between 

Gaussian particles were used to induce polarization.  Finally, ordinary fields act upon a 

single point, and the induced Gaussian dipole is a charge density delocalized over a finite 

volume.  The ‘effective’ field implicitly integrates out the effect that the field point is 

over the induced Gaussian dipole density. 

 Molecular simulations are frequently performed under periodic boundary 

conditions.  A system with periodic boundary conditions interacts with images of itself 

replicated over again in all three dimensions.  A solid crystal would be an example, of a 

periodic system.  In order to simulate the effects of solvent at long range, simulations of 

biological systems often use periodic boundary conditions.  Long range electrostatic 
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interactions converge slowly and special techniques such as Ewald summation4 - 7 or 

Particle Mesh Ewald8 - 12 (PME) are used to speed convergence of the electrostatic 

interactions.  A brief derivation of the Ewald summation method for point charges and 

point dipoles is provided in appendix D.  In section 4.4, the results from appendix D are 

summarized.  This is followed by a brief discussion of how a periodic system of point 

charges and Gaussian dipoles can be calculated as a short range correction to the results 

for a periodic system of point charges and point dipoles. 

 In section 3.3, it was noted that the induced dipoles can be calculated by solving a 

system of linear equations.  Typically, this is done by making an initial guess for the 

induced dipoles and then calculating the induced dipoles (3.3.2) iteratively until self-

consistency is achieved.  For large systems, this method can be expensive during a 

molecular dynamics simulation.  An alternative method of calculating the induced dipoles 

is to use a Car-Parinello13 (CP) extended Lagrangian scheme.  Initially, the induced 

dipoles are calculated exactly by solving the set of linear equations for induced dipoles 

iteratively.  The induced dipoles along with their velocities are then treated as dynamical 

variables.  Equations of motion are derived from a Lagrangian for the induced dipoles so 

that the induced dipoles propagate in such a way that their values fluctuate around their 

true values.  This method has previously been implemented in molecular dynamics 

simulations10 14 - 16.  A brief discussion of the Lagrangian dipole propagation scheme is 

described in section 3.5. 

 Finally in section 3.6, simulation results are provided in the form of AMBER 

output.  The force for induced Gaussian dipoles is compared with a finite difference 

derivative of energy.  During a molecular dynamics simulation, the polarization energy as 
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calculated exactly by the iterative method is compared to the polarization energy from 

propagating the induced dipoles using the CP Lagrangian scheme for a box of 341 waters 

simulated in the NPT ensemble  

 

4.2 Polarization Energy 

In this section, polarization energy is derived for a system of induced Gaussian 

dipoles interacting with one another and a permanent external field composed of point 

charges.  The electrostatic energy of the system is derived in terms of a permanent – 

permanent charge interaction, a permanent – polarizable, and a polarizable – polarizable 

interaction.  Following the discussion on electrostatic energy, the polarization work and 

total polarization energy is derived for the system of induced Gaussian dipoles.   

 

Electrostatic Energy 

 Consider a system composed of N atoms with permanent charges and induced 

Gaussian dipoles iμr  (i = 1, 2.. N).  The permanent charges could be point charges, point 

multipoles, or Gaussian multipoles.  The total electrostatic energy totU of the system can 

be expressed as a sum of contributions: 

polpolpoltot UUUU −− ++= 000     4.2.1 

where 00U  is the electrostatic energy of permanent charges with permanent charges, 

polU −0  is the electrostatic energy of permanent charges with induced Gaussian dipoles, 

and polpolU −  is the electrostatic energy of induced Gaussian dipoles with induced 

Gaussian dipoles. 
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 The calculation of the permanent charge – permanent charge energy 00U  follows 

straightforwardly from the electrostatic model, e.g.  

∑
≠

=
N

ji
ij

ji

R
qqU

2
100        for point charges 

 ∑∑
≠

∇∇⋅ΘΘ=
N

ji mn
ij

jminjmin

R
U

,

),(),(),(),(00 1
2
1    for point multipoles 

∑∑
≠

∇∇⋅ΘΘ=
N

ji mn
ij

ij
ijjminjmin

R
Rerf

U
,

),(),(),(),(00 )(
2
1 β

  for Gaussian multipoles   

The electrostatic energy of an induced Gaussian dipole iμr  with a permanent charge can 

be expressed in terms of ‘effective’ field );(,0 jiij RRE
rrr

→  from the permanent charge at jR
r

 

onto the induced dipole at iR
r

, i.e.  (2.8.4) is given by: 

    );(,00 jiijipol
ij RREU

rrrr →− ⋅−= μ    4.2.3 

where the ˜ symbol on the ‘effective’ field in 2.8.4 has been dropped for clarity.  For 

example, the ‘effective’ field from a point charge is given by: 

)(

)(
);(

1
3

,0

ij
ii

ijj

ij

ij
ijijiij

RBRq
R

Rerf
qRRE

ββ

β

r

rrr

=

−∇=→

   4.2.4 

The total electrostatic energy between a system of induced Gaussian dipoles interacting 

with permanent charges is given by: 

∑
=

− ⋅−=
N

i

iiipol REU
1

,00 )(
rrrμ     4.2.5 

where )(,0 ii RE
rr

 is the total ‘effective’ field on induced dipole i due to the permanent 

charges. 
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    ∑
=

→=
N

j

jiijii RRERE
1

,0,0 );()(
rrrrr

    4.2.6 

The interaction energy between two Gaussian dipoles is given by (3.2.7): 

212112
11 μμ rr

⋅⋅−= TU , where { }IxBxBRR
rrrr

)()( 12
12122

12
3

12
12 −= ββT  is the dipole – dipole 

interaction matrix in 3.2.8.  Therefore, the total interaction of a system of Gaussian 

dipoles is given by: 

    ∑
≠

− ⋅−=
N

ji

ijjipolpolU Tμμ rr

2
1     4.2.7 

 The permanent – permanent charge interaction energy 00U  does not affect 

polarization energy or work, and it need not be considered now.  Therefore, the 

electrostatic energy of polarization polU is defined as: 

∑∑
≠=

−−

⋅−⋅−=

+≡
N

ji

ijji
N

i

iii

polpolpolpol

RE

UUU

Tμμμ rrrrr

2
1)(

1

,0
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   4.2.8 

 

Polarization Work and Energy 

A charge distribution )(rrρ  becomes polarized or perturbed in the presence of an 

external electric field E
r

.  There is work involved in polarizing a charge distribution 

because charge is being moved due to the external field.  In the case of Gaussian dipoles, 

the polarizable charge distribution is given by 2.2.2: 

)exp()(
22

3

Rrr R
rrvr

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅= β

π
βμρ   4.2.9 

The total polarization energy W is the sum of the polarizable electrostatic interaction 

energy polU  and the work needed to polarize the charge distribution V. 
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VUW pol +=      4.2.10 

From 4.2.8, polU  can formally be expressed as a function of the induced dipoles iμr  and 

the permanent ‘effective’ fields at the positions of induced dipoles )(,0,0 iii REE
rrr

≡ .  

Ultimately, iE ,0
r

 is a linear function of the permanent charges jq  (multipole moments, 

charge densities, etc).  However for brevity, polU  may be considered a function of iμr  

and iE ,0
r

.  Hence, W and V are also functions of iμr  and iE ,0
r

, i.e. 

),( ,0 ii EWW
rrμ=      4.2.11 

The polarizable charge distribution )(rrρ  or dipoles iμr  organizes itself so that W is a 

minimum with respect to variations in )(rrρ  at constant permanent field1 iE ,0
r

.   
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where i
pμ  is any component of p

i
p

i x̂μμ ≡
r .  If the polarizable charge distribution )(rrρ  

or dipoles iμr  are held fixed, the charges do not move and the work is zero1. 
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Therefore, the derivative in W with respect to iE ,0
r

 at constant iμr  is given by: 
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For small variations in iμr  and iE ,0
r

, the variation in W is given by: 

i
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Inserting 4.2.14 and 4.2.12 into 4.2.15, yields: 
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From 4.2.8,  

i
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p iE
U μ

μ
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⎜
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∂
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r
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The total polarization energy may be found by integrating 4.2.16 from zero 

external permanent field to the full permanent field specified by the permanent charges 

jq .  Suppose jj qq λ→  where 10 ≤≤ λ , then i
p

i
p EE ,0,0 λ→  because the ‘effective’ field 

is linearly related to the permanent charges.  Therefore, λdEEd i
p

i
p

,0,0 )( = , and the total 

work is given by: 

∫−=
1

0

,0 i
p

i
p EdW λμ     4.2.18 

However, i
pμ  is determined from solving the linear equations (2.4.3):  

0E=μA      4.2.19 

where μ  and 0E  are vectors of size 3N and jk
qrqrjkj

jk
qr TA −≡ δδ

α
1     is a 3N x 3N matrix 

defined in 3.3.5 (or 3.3.9 for anisotropic atomic polarizabilities).  Solving for μ  in 4.2.19  

     01E−= Aμ      4.2.20 

or in component form, j
q

ij
pq

i
p EA ,0,1−=μ .  This can be inserted into 4.2.18 with 

i
p

i
p EE ,0,0 λ→ : 
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The work needed to polarize the system can be found by: 
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where iE
r

is the total ‘effective’ electric field on induced dipole i given by:   

    ∑
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,0 Tμr
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    4.2.23 

 

4.3 Polarization Force 

 In the previous section, the polarization energy ∑
=

⋅−=
N

j

jj EW
1

,0

2
1 rrμ  (4.2.21) was 

derived for a system of induced Gaussian dipoles iμr  interacting with one another and an 

‘effective’ field iE ,0
r

 due to permanent charges (4.2.6).   In tensor component notation, W 

is given by (where repeated indices are summed over): 

     j
q

j
q EW ,0

2
1 μ−=     4.3.1 

The polarization force on particle i is defined as the negative gradient of polarization 

energy W (4.3.1) with respect to the coordinates of particle i. 
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In order to calculate the first term in 4.3.2, i
p

j
q

x∂
∂μ

 must be evaluated.  The induced 

dipoles i
pμ  are linearly related to external field j

qE ,0 , by (4.2.20) : 

j
q

ij
pq

i
p EA ,0,1−=μ     4.3.3 

where jk
qrA  is defined in 3.3.5 (and in 3.3.9 for anisotropic atomic polarizabilities):   

 jk
qrqrjkj

jk
qr TA −≡ δδ

α
1      4.3.4 

Before proceeding, it should first be noted that the dipole dipole interaction 

matrix jk

jk
jk

j
r

j
q

jk
qr R

Rerf
xx

T
)(β

∂
∂

∂
∂

≡  is symmetric with respect to particle interchange 

kj
qr

jk
qr TT = and component interchange jk

rq
jk

qr TT = .  Therefore, jk
qrA  in 4.3.4 is also 

symmetric.  It is straightforward to show that if a matrix A  is symmetric and has an 

inverse, then the inverse 1−A  is also symmetric.  Therefore, jk
qrA ,1−  in 4.3.3 is also 

symmetric, i.e. kj
rq

jk
rq

kj
qr

jk
qr AAAA ,1,1,1,1 −−−− === .   

 The derivative of 4.3.3 is given by: 
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i
p
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x
A
∂

∂ − ,1

 can be found by first noting that for any matrix A  which has an inverse, 1−A  
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In 4.3.7, it was noted that jk
qrA ,1−  is symmetric and therefore, k

r
kj
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j

q EA ,0,1−=μ .  From 4.3.4, 
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Note that i must be equal to j or k.  4.3.8 becomes: 
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It is straightforward to evaluate i
p
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i
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 is the gradient of the ‘effective’ field from permanent charges.  As an example, for 

point charges i
p

j
q

x
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 can be found from 4.2.4 and 4.2.6 to be: 
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4.3.11 can be evaluated further by expressing the gradient tensors in terms of Bn(x) as in 

2.9.2 – 2.9.6.  Equations 4.3.10 and 4.3.11 can be used to evaluate the force in 4.3.7 for a 

system of induced Gaussian dipoles and point charges. 

 It is interesting to note that if ordinary electric fields and not ‘effective’ electric 

fields were used to induced the Gaussian dipoles, 
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would not be symmetric with respect to particle interchange, kj
qr

jk
qr TT ≠ .  Therefore, jk

qrA  

and jk
qrA ,1−  would also not be symmetric for particle interchange, and the assumptions 

used in 4.3.7 to derive the force would not be valid.  If anisotropic atomic polarizabilities 

were used, jk
qrA  would still be symmetric for particle number and component number, and 

the results for polarization energy, work, and force would still hold. 
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 It is also interesting to note that the final equation for polarization force (4.3.8) is 

the same result for a permanent Gaussian dipole interacting with a permanent field if the 

torque term i
p

j
q

x∂
∂μ

 was neglected.  The reason is that if the force were derived in terms of 

electrostatic energy U and work components V, the torque terms exactly cancel.  To 

illustrate this, matrix notation is used in the following derivation for clarity and brevity.  

Let μ , 0E , and E  be 3N column vectors for induced dipoles, external permanent 

‘effective’ field, and total ‘effective’ field.  Furthermore, let T and A  be 3N x 3N 

symmetric matrices defined in 3.3.4.  In this notation, the electrostatic interaction energy 

Upol (4.2.8) and work V (4.2.22) becomes: 

μμμ ⋅⋅−⋅−= T
2
10EU pol     4.3.12 

EV ⋅= μ
2
1       4.3.13 

The total field E  can be expressed in terms of 0E , μ , and T from 4.2.23 as: 

μ⋅+= T0EE      4.3.14 

The induced dipole is related to total electric field through the atomic 

polarizabilities, i.e. iii E
rr αμ =  (and iii E

rr
⋅= αμ  for anisotropic atomic polarizabilities).  

This can be expressed in matrix notation by: 

    E⋅= αμ       4.3.15 

where α is a 3N x 3N diagonal matrix containing the atomic polarizabilities (block 

diagonal symmetric matrix containing atomic polarizability tensors for the anistropic 

model).  The work in 4.3.13 can then be expressed in terms of μ  and α-1: 
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    μμ ⋅⋅= −1α
2
1V      4.3.16 

The force contributions from Upol and V are given by the negative gradients of 4.3.12 and 

4.3.16, respectively: 
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Therefore, the total force is given as the sum of 4.3.17 and 4.3.18 
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which agrees with 4.3.8.  Notice the torque term E
x
⋅

∂
∂μ  exactly cancels when FU is 

added to FV. 

 The above analysis suggests that a possible method of implementing polarization 

energy, work, and force is given as follows:  First calculate the purely electrostatic energy 

of the permanent charges and induced dipoles.  Calculate the total (‘effective’) electric 

field (4.3.14) and the force on the dipoles (4.3.8 or 4.3.19).  Then add the polarization 
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work EV ⋅= μ
2
1  to the total electrostatic energy.  This is essentially the algorithm that 

was previously implemented in AMBER for point charges and induced point dipoles. 

 

4.4 Extension to Periodic Systems: Ewald Summation 

 As mentioned in the introduction, molecular dynamics simulations are often run 

under periodic boundary conditions in order to remove the artificial boundary from the 

sides of a simulation box or unit cell.  The electrostatic interaction energy of the unit cell 

with itself and all periodic images of itself is given by:  

( )( )∑∑ ∑
+

∇⋅−∇⋅+=
i j n

ij
ijjiii

point
nR

qqU
r rr

rr 1
2
1 *μμ   4.4.1 

where the sides of the box are rar  and 332211 ananann rrrr
++=  is a unit cell translation 

vector (ni are integers).  The * indicates that if 0=nr , omit the ji =  term and any other 

terms in the ‘masked list’, e.g. do not count 1-2  or 1-3 Coulomb interactions between 

atoms that are bonded to or near each other.     

 Coulomb interactions decay slowly as 1/r.  Consequently, the sum in 4.4.1 is a 

conditionally convergent series.  In practice, the series converges very slowly.  The 

Ewald summation method was devised in order to significantly speed the convergence of 

4.4.1 for periodic systems.  In the Ewald method, the Coulomb energy is separated into 

parts.  A Fourier series called the reciprocal sum is used to calculate the slowly varying 

periodic part of the Coulomb energy.  The other part of the energy, called the direct sum 

energy, converges rapidly with distance.  The direct sum energy is mainly due to particle 

interactions which are near one another and can be truncated at a specified non-bonded 

cutoff, typically ~8Å.  In addition, there is also a self-interaction correction to the energy 
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and an energy correction to account for the ‘masked pairs’, which are interaction pairs 

purposely not included in 4.4.1 (e.g. 1-2 or 1-3 Coulomb interactions).  A brief derivation 

of the Ewald summation method of point charges and point dipoles is provided in 

appendix D.  The result for energy is given by D.13 and D.14: 
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where ∫
∞

−=−≡
x

uduxerfxerfc )exp(2)(1)( 2

π
 is the complementary error function 

which decays rapidly for x > 1.  Urec is the reciprocal sum energy, which is calculated in 

Fourier space.  Udir is the direct sum energy which converges quickly in coordinate space 

and is truncated outside a non-bond cutoff, typically 8Å.  Uadj is the correction for the 

‘masked pairs’, e.g. 1-2 or 1-3 Coulomb interactions.  Uself is the self-interaction 

correction, i.e. it is a correction for the i = j term for 0=nr .  There are also reciprocal, 

direct, self, and adjusted terms to the potential, field, and force (see appendix D). 

The Ewald summation method was devised to speed convergence of the sum 

(4.4.1), and the method is essentially exact.  The energy for a periodic system of point 

charges and point dipoles is given in 4.4.2.  In a periodic system of point charges and 

Gaussian dipoles, the exact electrostatic interaction energy is given by: 
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where nrr ijnij rrr
+≡, .  The difference between UGauss in 4.4.4 and Upoint in 4.4.1 is a 

correction 
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Since erfc(x) decays rapidly for x > 1, the correction for Gaussian dipoles also decays 

rapidly in distance.  The force correction i
corrF
r

 can be found by taking the negative 

gradient of 4.4.5, (without the 
x∂

∂μ torque term). 
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 The electrostatic potential for a periodic system of point charges and point dipoles 

is given by:  

( )∑ ∑
′

∇⋅−=
j n

nij
ijji

point r
qr

r

rr
,

* 1)( μϕ    4.4.7 

The ‘effective’ electrostatic potential on a Gaussian dipole i for a periodic system of point 

charges and Gaussian dipoles is given by: 



 73

∑ ∑∑ ∑
′′

∇⋅−=
j n

nij

nij
ijij

j n
nij

nij
iji

Gauss r
rerf

r
rerf

qr
rr

rr
,

,
*

,

,
* )()(

)(
β

μ
β

ϕ   4.4.8 

Therefore, the correction to the ‘effective’ potential for Gaussian dipole i is given by the 

difference between φGauss and φpoint: 
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The correction to the total ‘effective’ field on Gaussian dipole i is given by the negative 

gradient of 4.4.9: 
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The gradient tensors ( )
r

rerfcn β)(∇  are evaluated in D.2.24 – D.2.26.   

The algorithm implemented into AMBER is given by the following: 

1) Calculate point charge and point dipole Ewald terms for electrostatic energy, force, 

and field.  There is no dipole torque term to the force (see discussion at the end of 

section 4.3). 

2) Calculate the Gaussian dipole correction for energy, force, and total ‘effective’ field.  

3) The induced dipoles are calculated using the total corrected field. 

4) The polarization work is calculated from the induced dipoles and the total field.  This 

work is then added to the electrostatic interaction energy of the Gaussian dipoles to 

yield the total polarization energy. 
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4.5 Induced Dipole Iterative Methods 

 The induced dipoles (3.3.2) can be calculated exactly by solving a system of 

linear equations.  Typically, this is accomplished by making an initial guess of the 

induced dipole and calculating a new set of induced dipoles from the field of the old set 

of induced dipoles.  This procedure is done iteratively until self-consistency is achieved.  

In matrix notation, the predicted set of induced dipoles at the (k+1)th iteration is given by: 

( )kk E μμ ⋅+=+ Tα 0
1      4.5.1 

It was found that in some cases, the dipoles did not converge, but fluctuated about mean 

values.  In order to dampen the fluctuations in solving systems of linear equations 

through iterative algorithms, Successive Over-Relaxation (SOR) methods17 take a 

weighted average over the predicted and previous induced dipole: 

( ) kkk E μμμ )1(0
1 Ω−+⋅+Ω=+ Tα    4.5.2 

Ponder and Ren18 have recommended a value for Ω of 0.7. 

 

4.6 Lagrangian Dipole Propagation 

As noted in the introduction, the iterative method of solving for the induced 

dipoles can be expensive during a molecular dynamics simulation.  An alternative to the 

iterative procedure is to use a Car-Parrinello13 (CP) extended Lagragian method10 14-16.  

Originally, the CP method was developed for density functional molecular dynamics.  

The electronic ground state of the system is initially calculated.  The electronic ground 

state follows the nuclear motion adiabatically through equations of motion that are 

derived from a Lagrangian.  A similar scheme has been developed for propagating 
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induced dipoles.  This CP dipole propagation scheme has previously been implemented 

into AMBER10 for induced point dipoles. 

 In this scheme, the induced dipoles iμr and atomic positions irr  along with their 

velocities iμ&r  and ir&r  are treated as dynamical variables.  The Lagrangian of the system is 

given by: 
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where mi is the mass of the particle and M is the fictitious mass of the induced dipole.  U 

is the sum of the permanent – permanent charge energies, the electrostatic energy of the 

dipoles, and the work to polarize the dipoles expressed by: 
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The Lagrangian equations of motion for the atomic positions are given by: 
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where iF ,00
r

 is the force due to permanent charges and ipolF ,
r

 is the polarization force 

given by 4.3.8.   The Lagrangian equations of motion for the induced dipoles are given 

by: 
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The dipoles iμr  fluctuate about the mean value ii E
r

α  which is the true value of the 

dipoles.   

 The dipole velocities iμ&r  are maintained at a constant temperature which is small 

using a Berendsen19 thermostat.  If ∑
=

⋅=
N

i

iiM
k

T
12

1
3
2 μμ &r&r  is the current temperature of 

the dipoles (k is Boltzmann’s constant) and the T0 is the reference temperature, then the 

dipole velocities iμ&r  are scaled at each time step by  
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where Δt is the time step and τ is a time constant.  The reference temperature is kept 

small T0 = 1K so that the dipole velocities iμ&r  and accelerations iμ&&r are small, and 

therefore, the dipoles are kept close to their true values.  The dipole mass M is also kept 

small so that the dipoles can quickly adjust to the nuclear motion.  However, if M is too 

small, the dynamics quickly become unstable.  For a 1fs time step, it has been empirically 

determined10 that M = 0.3 leads to a stable simulation for induced point dipoles.  When 

the CP algorithm was tested with the induced Gaussian dipoles, it was found that for 

many liquids that τ = 1.0 ps leads to stable simulations with averaged polarization 

energies near their true values.  For strongly polar systems, τ had to be smaller at 0.1 ps.  
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For larger values of τ, gradual heating occurred in the simulations, which was indicated 

by an increase in average polarization energy over time.   

 

4.7 Results 

This section will present some results of the induced Gaussian dipole 

implementation into AMBER.  From a CPU cost perspective, the cost of the induced 

Gaussian dipole correction is only slightly more expensive than the previously existing 

induced point dipole scheme.  The main reason for this is that the energy correction in 

4.4.5 decays rapidly with distance.  A typical value of the Gaussian exponent for the 

induced dipoles is 1.0 Å-1.  At this value, the non-bond cutoff for the energy correction is 

around 4.89 Å for a tolerance of 10-12.  This leads to an overall CPU overhead of the 

induced Gaussian dipole polarization model over the previous induced point dipole 

polarization model of approximately 30%.   

 During the implementation of induced Gaussian dipoles, numerous tests were 

done on gas phase dimers.  In Table 4.1, analytic forces are compared to numerical forces 

obtained by a finite difference approximation. 

 

F (analytic)    = -1.09908219  0.42747651  0.00000000 
F (numerical) = -1.09908099  0.42747700 -0.00000100 

 
F (analytic)    = -0.20124978  0.01732015  0.00000000 
F (numerical) = -0.20125099  0.01732000 -0.00000000 

 
F (analytic)    = -0.33547487  0.18759862 -0.14361461 
F (numerical) = -0.33547499  0.18759799 -0.14361500 
Table 4.1 Exact and Numerical finite difference forces for the induced Gaussian dipole 
polarization model in AMBER. 
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 The CP Lagrangian dipole propagation scheme, which was previously 

implemented into AMBER, was test on the new induced Gaussian polarization model.   

A box of 341 polarizable waters (the Force Field parameters of the water will be 

discussed in chapter seven) was simulated for 500 ps in the NPT ensemble.  The 

temperature and pressure were monitored using a Berendsen19 thermostat with 

temperature and pressure coupling constants, τT = 1.0 ps, and τP = 1.0 ps, respectively.  

The atomic positions and velocities were integrated through the Velocity Verlet 

algorithm, with constraints placed on bond lengths through the SHAKE20 21 algorithm.  

The induced dipoles were propagated with the CP Lagrangian method with temperature 

coupling constants for the induced dipoles, τ = 1.0 ps and 0.1 ps.  The induced dipoles 

were also calculated iteratively with a tolerance of 10-5 D for RMSD of the dipoles 

between successive iterations.  The average number of iterations per time step at this 

tolerance is 4.35.   
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Figure 4.1 Plot of polarization energy versus time for a simulation using iterative (exact) 
calculation for induced dipoles and Lagrangian propagation with τ = 1.0 ps and τ = 0.1 ps. 
 

In Figure 4.1, the exact polarization energy as calculated by the iterative method 

is compared to the polarization energy as calculated using the CP induced Gaussian 

dipoles for τ = 1.0 ps and τ = 0.1 ps on the box of 341 polarizable waters.  The average 

polarization energies and fluctuations (in kcal/mol) are -1312.12 ± 13.61, -1313.12 ± 

13.76, -1314.72 ± 13.56 for the simulations with CP induced dipoles (τ = 1.0), CP 

induced dipoles (τ = 0.1 ps), and the iterative (exact) method, respectively.  Notice the 

average polarization energy (-1312.12) for the CP dipoles with the long coupling constant 

to temperature τ = 1.0 ps is slightly higher energy than the polarization energy (-1313.12) 

for CP dipoles with the short coupling constant to temperature τ = 0.1 ps.  Both average 

polarization energies with CP induced dipoles are higher in energy than the average 

polarization with exact induced dipoles (-1314.72).  This should be expected because the 
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CP induced dipoles were designed to fluctuate around the exact induced dipoles, and the 

polarization energy is a minimum at the exact induced dipoles (4.2.12).  Therefore, any 

deviation from the exact induced dipoles will yield a higher polarization energy.  

Therefore, the CP induced dipoles with the larger coupling constant with temperature (τ = 

1.0) fluctuated more and had a higher polarization energy than the CP induced dipoles 

with the smaller coupling constant (τ = 0.1).  However, the difference in polarization 

energies between the CP induced dipoles and the exact induced dipoles is small, and it 

appears that using CP induced dipoles is a good approximation.    

 

4.8 Conclusions 

 The induced Gaussian dipole polarization model has been implemented into the 

AMBER molecular dynamics program.  The polarization work, energy, and force has 

been derived for a system of induced Gaussian dipoles interacting with one another and 

an external field from permanent charges.  Previous derivations of polarization work, 

energy, and force were given for an induced point dipole interacting with an external 

field due to permanent charges only. 

 Simulations are frequently performed under periodic boundary conditions.  A 

brief discussion of the Ewald summation method for point charges and point dipoles was 

provided and a derivation of the method can be found in appendix D.  It was shown that a 

periodic system of point charges and induced Gaussian dipoles can be treated as a short 

range correction to a periodic system of point charges and induced point dipoles.  The 

nonbond cutoff for the short range correction was found to be ~5 Å. 
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 During a molecular dynamics simulation, the induced dipoles can be calculated 

exactly by solving a system of linear equations iteratively.  For strongly interacting 

systems, Successive Over-Relaxation (SOR) methods can be applied to converge the 

system of linear equations.  This method can be expensive during a molecular dynamics 

simulation.  Alternatively, it was shown that the CP Lagrangian method can be used to 

propagate induced dipoles.  The polarization energies from CP induced dipoles were 

found to be only slightly higher (-1312.12, -1313.12 kcal/mol) than the polarization 

energies calculated from exact induced dipoles (-1314.72).  This is explained by the fact 

that the polarization energy is a minimum when the exact induced dipoles are used. 
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5 Gaussian Dipole Polarizabilities 

5.1 Introduction 

In this chapter, the Gaussian induced dipole model is compared with the damped 

Thole1 model and the Applequist2 point dipole model.  In the same spirit as Thole and 

Applequist, transferable atom type polarizabilities will be found for all three models by 

fitting to molecular polarizability tensors calculated at the B3LYP/cc-pVTZ level.   

Polarizabilities generated by fitting to molecular polarizability tensor data are 

convenient in that they are transferable among related molecular classes, however they 

are limited in accuracy because they rely on the assumption of atom types.  For example, 

all oxygen atoms are grouped into one class and assigned the same polarizability, 

regardless of the neighboring environment.  In this work, an independent procedure for 

generating atomic polarizabilities will be presented.  It is based on probing a molecule 

with point charges3 4 or external electric fields5 and calculating the response electrostatic 

potential.  The response electrostatic potential is the potential generated by the molecule 

in the external field of the point charge probes minus the potential of the molecule in 

vacuum.  Atomic polarizabilities are then fit to this response potential on a grid of points 

encompassing the molecule.  Just as atomic charges fit to the electrostatic potential are 

found to reproduce molecular dipole moments6 7 8, probed polarizabilities fit to the 

electrostatic response potential are found to reproduce molecular polarizability tensors.  

In contrast to atom type polarizabilities, probed polarizabilities are optimized for specific 

molecules improving accuracy.   

While non-transferable, Gaussian probed polarizabilities are readily computed.  

Like fitted atomic partial charges, probed polarizabilities are not transferable between 



 84

molecules.  However, probed polarizabilities are conformationally invariant which is 

important for electrostatics of flexible molecules.   

In the next section 5.2, methods used to optimize atomic polarizabilities are 

discussed.  The procedure to fit a set of atom type polarizabilities to a large number of 

molecular polarizability tensors is described.  The alternative method of fitting 

polarizabilities to response potential generated by probing a molecule with point charges 

and then sampling the electrostatic potential is then discussed.  In section 5.3, results 

from both fitting methods are presented.  The atom type polarizabilities fit to the tensor 

are given for the Gaussian model, the Thole model, and the Applequist point dipole 

model.  The performance of all three models is examined by comparing the results for 

atom type polarizabilities.  Following the discussion on atom type polarizabilities fit to 

the tensor, results of probed polarizabilities fit to the response potential are presented.  

Gaussian probed polarizabilites were found for a variety of organic molecules and 

compared with Gaussian atom type polarizabilities by examining the quality of fit for 

molecular polarizability tensor and response potential.  Results of molecules with highly 

anisotropic molecular polarizability tensors are given, and limitations in assuming 

isotropic atomic polarizabilities are discussed.  Finally, probed polarizabilities are 

generated for a flexible molecule at one conformation.  This set of polarizabilities is 

tested on many other conformations to investigate how transferable the polarizabilities 

are with respect to different geometries of a molecule.   
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5.2 Methods 

Atom Type Polarizability Parameterization 

In order to compare the Gaussian model with other induced dipole models, a set 

of atom type (AT) specific atomic polarizabilities has been optimized by fitting to 

molecular polarizability tensors as in Thole1 and Applequist2.  The geometries were 

optimized, and molecular polarizability tensors were calculated at the B3LYP/cc-pVTZ 

level for a training set of 127 organic molecules.  In this work all ab initio calculations 

were performed at the B3LYP/cc-pVTZ level using Gaussian 989.  Atomic 

polarizabilities were fit to this data using the Gaussian Model, the damped Thole model, 

and the Applequist point dipole model.  For the Gaussian Model, the exponents β were fit 

with a single adjustable parameter a.   

3
1

83
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
α

β a     5.2.1 

The Thole model studied in this work is the same as that implemented in the AMOEBA 

force field10.  

)exp(
4
3)( 3auau −=
π

ρ     5.2.2 

As in the Gaussian model, the parameter a in the Thole model was also allowed to vary.  

For both the Gaussian and Thole model, the polarization condition (see section 3.5) 

requires  

1≤a      5.2.3 

The atomic polarizabilities were fit to the six independent components of the molecular 

polarizability tensor ),,,,( molmolmolmolmolmol
zzzyzxyyyxxx , αααααα  over the molecular training set.   
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The root mean squared deviation (RMSD) in the tensor elements for a given molecule, 

αrmsd, is defined by: 

    ( )∑ −≡
6

,

2mol,0mol
rmsd 6

1
qp

pqpq ααα    5.2.4 

 where mol
pqα  is the tensor calculated by the model and mol0,

pqα  is the ab initio reference 

tensor.  The fitting function χ2 is defined as the sum of the squares of individual 

molecular tensor RMSDs:     
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2
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2 1 αχ     5.2.5 

where N is the number of molecules.  The total RMSD over the data training set is then 

2χ .  χ2 was optimized using the non-linear least squares Levenberg-Marquardt 

algorithm11.  Tensor errors Δα are defined for each molecule as the tensor RMSD divided 

by the average eigenvalue of the molecular polarizability tensor αeigen. 

eigen

rmsd 
α
α

α ≡Δ      5.2.6 

 

Probed Polarizability Parameterization Algorithm 

Molecules were probed with point charges positioned around the molecule.  For 

each probe charge, the electrostatic potential is computed on a grid of points 

encompassing the molecule.  The atomic polarizabilities along with the exponent 

parameter a were fit to the response electrostatic potential comprised of the probed 

electrostatic potentials minus the vacuum electrostatic potential.  

The ChelpG8 electrostatic grid was used with a grid spacing of 0.3 Å and an outer 

grid radius of 2.8 Å for each atom.  The inner grid radii used were 1.45 Å for H, 1.5 Å for 
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C, 1.7 Å  for N, O, F, and 2.3 Å  for second and third row elements.  Point charges were 

placed along bond axes outside the vdW surface of the molecule defined by probe radii 

on each atom.  The probe radii were chosen to be large enough to be outside the vdW 

radii of each atom, but close enough to adequately sample the polarization response.  The 

probe radii were set to 2.0 Å for H, 2.5 Å for first row atoms (C, N, O, F), 3.0 Å for 

second row atoms (P, S, Cl) and 3.5 Å for third row atoms (Br).  For each bond, both 

atoms comprising the bond were probed separately.  A single probe charge was set along 

the bond axis as in Figure 5.1A.  Initially the probe was placed on the bond axis at the 

probe radii distance.  However, if the probe charge happened to be inside any other 

atom’s probe radius, the distance along the axis was increased in increments of 0.3 Å up 

to a maximum of 5.0 Å.  If at 5.0 Å the probe charge was still inside another atom’s 

probe radii, the probe charge was discarded.  For sp2 hybridized atoms or atoms 

containing lone pairs, an additional point charge was placed above and below the plane at 

the same distances from the nuclei as the bond axis probes as in Figure 5.1B. 

  

A B

 

Figure 5.1 Probe Charge on Acetamide: Bond axis probe on C-H (A) and out of plane 
amide probe on amido N (B). 

 

While the molecular polarizability tensor error depends weakly on the magnitude 

of the probe charge, it depends strongly on the sign of the charge.  Thus, it was found that 
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both positive and negative charges at each probe position are necessary.  The probe 

charge magnitudes needed to be large enough to cause a measurable response in the 

electric potential, but not so large that hyperpolarization effects occur.  In Figure 5.2, the 

error in molecular polarizability tensor Δα is plotted against probe charge magnitude for 

some sp3 and sp2 first row molecules.  Optimal probe charges of ± 0.8e for first row sp3 

atoms (C, H, O, N, F), ± 0.5e for sp2 first row atoms (C, O, N), and ± 1.1e for second and 

third row atoms (P, S, Cl, Br) were inferred from the tensor errors.   

 

Figure 5.2 Tensor Error Dependence Δα on Probe Charge Magnitudes for: sp3 C,N,O,H 
(Left)  and  sp2 C,N,O (Right). 
 

As an example, consider the probe positioning procedure for water in Figure 5.3.  

For each OH bond, a separate positive probe is placed next to both atoms making up the 

bond.  This gives 4 bond axis probes.  Since water has an atom with lone pairs, positive 

probes are also placed above and below the plane containing the lone pair atom, giving 2 

out of plane probes and 6 positive probes altogether.  Negative charge probes are also 

placed at the same positions as the positive probes, giving 12 probe charges total.  

Another example is methane with 4 bonds and no lone pair or sp2 atoms.  The number of 

probe charges for methane is therefore 16. 
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Figure 5.3 Positions of Probe Charges for Water 

 

Probed polarizabilities for the Gaussian model were simultaneously fit to each 

grid of response electrostatic potentials generated by the point charge probes.  The 

response electrostatic potential is the probed potential minus the vacuum potential.  This 

response potential is directly compared with the potential arising from the Gaussian 

dipoles (3.2.11): 
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The induced dipoles were allowed to interact through ‘effective’ electric fields with one 

another (3.2.13): 
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and the external probe charges (3.2.12): 
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.  The induced dipoles were determined iteratively using 3.3.2.: 
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For each molecule, the optimizable parameters were the atomic polarizabilities 

and a single Gaussian exponent parameter a (5.2.1).   If M is the number of grid of points 

from the ChelpG scheme and P is the number of charge probes, the fitting function χ2 is 

defined by: 

∑∑
= =

Δ−
⋅

=
M

i

P

jPM 1 1

2QM
ij

Gauss
ij

2 )(1 ϕϕχ    5.2.11 

where Gauss
ijϕ (5.2.7) is the induced Gaussian dipole potential and QM

ijϕΔ  is the ab initio 

response potential at the ith grid point of the jth probe charge, respectively.  The response 

potential QM
ijϕΔ  is given by: 

)vacuum(QM
i

QM
ij

QM
ij ϕϕϕ −≡Δ    5.2.12 

where QM
ijϕ  is the ab initio potential at the ith grid point with the jth probe charge and QM

iϕ
 

(vacuum) is the ab initio vacuum potential at the ith grid point.  χ2 was optimized using 

the non-linear least squares Levenberg-Marquardt algorithm11.  The RMSD in response 

potential φrmsd is given by the square root of χ2. 

2
rmsd χ=ΔV      5.2.13 

Since the induced dipoles are linearly related to external electric field E1−= Aμ  

(3.3.6), the contribution from intra-molecular polarization is constant and only the 

response potential need be considered.  By subtracting the vacuum potential from the 

total potential, the only contribution to the response potential is from induced dipoles 

arising from the external point charge source.  The Gaussian inducible dipoles are 

allowed to interact with one another and the probe charge.  In this way, the computed 

polarizabilities are unaffected by either the intramolecular polarization or the choice of 
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the permanent electrostatic model (e.g. point charges6 7 8, point multipoles1 12, Hermite 

Gaussian functions13 (Gaussian multipoles)).  Thus, the permanent electrostatic model 

may be selected and optimized subsequent to the derivation of the polarizabilities13.   

 

5.3 Results 

Tensor Fit Atom Type Polarizabilities 

The Gaussian, Thole, and Point Dipole models were fit to ab initio molecular 

polarizability tensors for selected atom types as described in section 5.2.1.  For both the 

Gaussian and Thole models, the optimized parameters included the atomic 

polarizabilities and a single adjustable variable a, which represents the diffuseness or 

strength of the interactions.  Generally, the larger the value of a, the stronger the induced 

dipole – induced dipole interactions.  The optimized value of a for the Gaussian model 

(0.957), and for the Thole model (0.662) were both below 1.0, satisfying the catastrophe 

condition (See Appendix).  The point dipole model has no damping correction, which is 

equivalent to allowing a → ∞ in either the Thole or Gaussian models.   

As in the original Thole1 paper, the atom types were generally the elements.  An 

extra atom type was also set aside for an aromatic/alkene carbon atom.  In order to study 

ionic parameters relevant to amino acids, ammonium N and H and carboxylate O atom 

types were also added.  The optimized parameters, the RMSD values for the fits, and the 

errors for all three models are given in Table 5.1.  For the 127 molecules studied, the 

Gaussian model (3.67 % avg. error) performed slightly better than the Thole model (3.81 

% error) and much better than the point dipole model (7.78% error).   
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Atom Type 
 

Gaussian  
a  = 0.957 

Thole 
a = 0.662 (0.572)a 

Applequist 
∞→a  

H 0.381 0.416  (0.427)a 0.181 (0.135)b 
HP (ammonium H+) 0.141 0.119 0.051  
C 1.090 1.010 (1.334)a 0.727 (0.878)b 
C   (aromatic, alkene) 1.362 1.407 0.620  
N 0.801 0.709 (1.073)a 0.456 (0.530)b 
NP (ammonium N+) 0.408 0.387 0.470 
O 0.612 0.605 (0.837)a 0.303 (0.465)b 
O2 (acid O-) 1.025 1.207 0.413  
F 0.315 0.283 0.311 (0.320)b 
Cl 1.921 1.844 1.778 (1.91)b 
Br 2.934 2.791 2.734 (2.88)b 
S 2.742 2.461 2.152 
P 1.545 1.282 1.787 
αrmsd (Å3)  0.260 0.280 0.615 
Δα (%) 3.67  3.81  7.78 
Table 5.1 Atom type (AT) polarizabilities (Å3) for Gaussian, Thole, and Applequist Point 
dipole models 
aValues in parenthesis taken from Ref1 
bValues in parenthesis taken from Ref2. 
 

The original polarizabilities found by Thole1 and Applquist2 in Table 5.1 were 

optimized by fitting to experimental gas phase molecular polarizability tensors.  In 

general, these polarizabilities should be larger in magnitude than those fit from the 

B3LYP/cc-pVTZ data.  Diffuse functions were not included in the cc-pVTZ basis set, in 

order to underestimate the gas phase polarizability to better approximate what is believed 

to be the liquid state polarizability15 16 17. 

The point dipole polarizabilities are smaller than the damped Thole or Gaussian 

polarizabilities.  Point dipoles interact more strongly, because there is no damping and 

the parameters are smaller to compensate.  A similar trend also exists between the Thole 

and Gaussian model; for most atom types, the polarizabilities in Thole are slightly 

smaller than in the Gaussian model.  The reason for this is probably due to the fact that 

the Thole model density )exp(~ 3rβρ −  decays faster than the Gaussian density 
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)exp(~ 2rβρ − .  This would imply that the damping in the Thole model decays quicker 

than in the Gaussian model.  Therefore, the Thole model is slightly more similar to the 

point dipole model than is the Gaussian model.  To compensate for this behavior, the 

Thole polarizabilities and the damping parameter a are smaller than in the Gaussian 

model (a was defined in both models so that the polarization catastrophe occurs at a = 

1.0).   

The molecular polarizability tensor calculated from ab initio (QM) and the three 

models (Gauss, Thole, Point Dipole) are given, along with percent errors, for the 

illustrative case of benzene in Table 5.2.  The results for the Gaussian model are almost 

identical to the Thole model, both with a tensor error Δα of 2.7%.  For the point dipole 

model, Δα is significantly larger at 11.0%.  Benzene was chosen as an example because 

aromatic compounds are a well-known case in which the point dipole model does not 

adequately reproduce the molecular polarizability tensor.  Specifically, the component of 

the tensor perpendicular (z) to the molecular plane (xy) is underestimated.  This is due to 

weak point dipole parameters interacting strongly with each other in the plane but not 

perpendicular to the plane.   

 XX YX YY ZX ZY ZZ Δα (%) 
Gauss 11.86 0.00 11.86 0.00 0.00 4.78 2.7 
Thole 11.85 0.00 11.85 0.00 0.00 4.74 2.7 
Applquist 10.67 0.00 10.67 0.00 0.00 2.75 11.0 
QM 11.45 0.00 11.45 0.00 0.00 5.01  
Table 5.2 Molecular polarizability tensor (Å3) using atom type (AT) polarizabilities for 
benzene  

 

Though the Gaussian model gave a better fit than did the Thole model, the 

performance difference between the two models is small.  This is in agreement with 

Thole’s original work, in which seven different damping functions all gave similar 
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RMSD fits to the data.  As stated earlier, the main advantage of the Gaussian model over 

the Thole model is that point multipoles can be readily generalized to Gaussian multipole 

charge densities.   

 

Comparison of Probed Polarizabilities with Atom Type Polarizabilities 

The probed method was applied to several test organic molecules.  For each 

molecule, the error in the molecular polarizability tensor Δα (5.2.6) and the RMSD in the 

response field ΔVrmsd (5.2.9) are calculated using the probed polarizabilities and presented 

in Table 5.3.  In order to compare with the generic atom type (AT) parameters, Δα and 

ΔVrmsd are also calculated using the set of AT polarizabilities.  In virtually all cases, Δα 

and ΔVrmsd are significantly smaller for the molecule specific probed polarizabilities than 

the transferable AT polarizabilities.  

Since the probed polarizabilities are fit to the response field, it is not surprising 

that these parameters perform significantly better than the AT parameters.  For example, 

the ΔVrmsd (in 10-3e/Å) for water is 1.02 using the probe polarizabilities and 3.02 using the 

AT polarizabilities.  Another example is ammonia, in which ΔVrmsd is 1.67 using the 

probe polarizabilities and 2.72 using the AT parameters.  The average of ΔVrmsd over all 

28 molecules was found to be 2.01 for the probed polarizabilities and 3.04 for the AT 

polarizabilities.  In other words, the RMSD in the response potential was on average 50% 

larger using the AT polarizabilities over the probed polarizabilities.  

As can be seen from Table 5.3, the probed polarizabilities also resulted in much 

better tensor fits Δα than did the AT polarizabilities.  The probed parameters had an 

average tensor error of 1.37% with a maximum error of 2.65%.  This can be compared 
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with the transferable AT parameters, which had an average error of 6.42% and a 

maximum error of 21.76%.  This is remarkable since the AT parameters were fit to the 

tensor, while the probed polarizabilities used no tensor information in the fit.   

The AT parameters do reasonably well if the molecule of interest was included in the 

atom type training set.  As an example from Table 5.3, the probed polarizabilities gave a 

tensor error Δα of 1.44% for dimethyl ether and 1.79% for dimethyl sulfide.  The AT 

parameters gave acceptable results for both molecules (2.32% and 2.99% errors 

respectively).  However, both of these molecules were used in the atom type (AT) 

training sets.  On the other hand, sulfate and sulfuric acid were not included in the AT 

training set.  For sulfate, Δα = 20.77% and for sulfuric acid, Δα = 21.76% using the AT 

parameters.  This can be compared with the results using the probe polarizabilities: Δα = 

0.88% for sulfate and Δα = 1.15% for sulfuric acid.  The large errors in the AT 

parameters can be understood by examining the sulfur (S) polarizability.  The probed 

parameters predicted α = 1.2 Å3 for S in sulfate, while the AT parameters used a generic 

sulfur value of α = 2.7 Å3.  The AT polarizability for S of 2.7 Å3 might be appropriate for 

thiols, however sulfate S is oxidized which should shift much of the electron density to 

the oxygens thereby lowering the polarizability of S.  Of course, a new atom type could 

be added for sulfate S, and the parameters refit.  An advantage of the probed molecule 

approach is that it eliminates the need to arbitrarily assign atom types or refit parameters. 
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 a Δα (%)
Probed

Δα (%)
Atom 
Type

ΔVrmsd  
(10-3 e/Å) 
Probed 

ΔVrmsd  
(10-3 e/Å) 

Atom Type 
Acetamide 0.906 1.30 2.33 1.61 2.06

Acetate Anion 0.942 1.99 4.72 3.30 4.18
Acetic Acid 0.920 1.55 7.04 1.61 2.30

Acetone 0.919 1.70 2.62 1.84 1.95
Ammonia 0.851 2.22 8.47 1.67 2.72

Ammonium Cation 0.901 0.10 16.83 0.63 2.50
Benzene 0.966 0.85 2.33 2.24 2.58

Butadiene 0.984 2.45 7.13 2.45 2.85
Dimethyl Ether 0.955 1.44 2.32 2.19 2.25

Dimethyl Sulfide 0.948 1.79 2.99 2.50 2.91
Ethane 0.939 1.10 1.28 1.89 1.94
Ethene 0.961 2.65 6.39 2.19 2.65

Formaldehyde 0.974 2.13 2.83 2.22 2.33
Formamide 0.937 1.45 2.89 1.54 2.03

Hydrogen Sulfide 0.893 1.78 13.20 3.68 5.55
Methane 0.901 0.05 2.21 1.89 2.03

Methanethiol 0.943 2.14 5.61 2.42 3.19
Methanol 0.948 1.10 5.30 1.79 2.36

Methyl Amine 0.931 1.68 3.20 2.13 2.46
N-methyl formamide 0.935 1.33 2.72 1.90 2.21

Phosphate 0.799 1.02 0.72 2.79 3.51
Phosphoric Acid 0.891 0.12 8.63 1.65 3.43

Propene 0.952 0.88 4.31 2.11 2.37
Pyridine 0.955 0.95 1.90 2.14 2.55

Pyrole 0.868 1.60 6.26 2.08 2.96
Sulfate 0.955 0.88 20.77 1.58 7.43

Sulfuric Acid 0.958 1.15 21.76 1.38 6.84
Water 0.877 2.09 15.04 1.02 3.02

Average 0.926 1.37 6.42  2.01 3.04
Table 5.3 Comparison of probed and atom type polarizabilities 
 

 The AT parameters were fit over a large collection of data to get the overall 

optimal molecular polarizability tensors.  It is possible that the fitting procedure for the 

AT parameterization incorrectly assigned the atomic polarizabilities, but is still able to 

reproduce the tensor.  As an example, the probed and AT atomic polarizabilities are given 

for acetamide in Figure 5.4.  In Table 5.4, the molecular polarizability tensor is given for 

both models and compared with the reference ab initio (QM) value.  Since Δα = 1.30% 
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for the probed and Δα = 2.33% for the AT parameters, both sets are able to reproduce the 

tensor.  However, the AT polarizabilities are 20% smaller than probed polarizabilities for 

the amido C, N, and O atoms while the AT polarizabilities on the polar H atoms are 30% 

larger to compensate.  The probed polarizabilities suggest that the amido C (αC = 1.20 Å3) 

is more polarizable than the methyl C (αC = 1.08 Å3).  In general, the probe 

polarizabilities find that sp2 C is more polarizable than sp3 C (e.g. αC = 1.05 Å3 for ethane 

and αC = 1.40 Å3 for ethene).   

 
Figure 5.4 Probed and (Atom Type) polarizabilities in Å3 for acetamide 
 
 
 
 
 
 

 

 XX YX YY ZX ZY ZZ Δα (%) 
Probe 6.07 -0.03 5.80 0.00 0.00 3.88 1.3 
AT 6.12 -0.15 5.87 0.00 0.00 3.68 2.3 
QM 6.08 0.11 5.77 0.00 0.00 3.79  

Table 5.4 Molecular polarizability tensor (Å3) for acetamide calculated by B3LYP/cc-
pVTZ (QM) and probed polarizabilities (Probe) and atom type Polarizabilities (AT) for 
the Gaussian model 
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Figure 5.5 Probed and (Atom Type) Polarizabilities in Å3 for water 

 
 XX YX YY ZX ZY ZZ Δα (%) 

Probe 1.11 -0.12 1.19 0.00 0.00 0.84 2.1 
AT 1.32 -0.25 1.50 0.00 0.00 0.88 15.0 
QM 1.14 -0.09 1.20 0.00 0.00 0.82  

Table 5.4 Molecular polarizability tensor (Å3) for water calculated by B3LYP/cc-pVTZ 
(QM) and probed polarizabilities (Probe) and atom type Polarizabilities (AT) for the 
Gaussian model 
 

A final example of the performance of the probed polarizabilities is given by the 

important case of water.  The atomic polarizabilities are given in Figure 5.5 and the 

molecular polarizability tensors are given in Table 5.5.  The tensor error Δα is 2.09 % 

using the probed polarizabilities and 15.04% for AT parameters.  As noted earlier, the 

RMSD in response potential ΔVrmsd (10-3e/Å ) is three times smaller using the probed 

polarizabilities (1.02) than the AT parameters (3.02).  The poor results for water using the 

AT parameters are somewhat surprising since water was included in the AT training set.  

Furthermore, when two new AT polarizabilities were added specifically for water, αO and 

αH, and these polarizabilities were fit only to the tensor for water, then Δα was found to 

be 2.02% (the exponent parameter a was constrained to 0.879 to avoid overfitting).  This 

would imply that the probed polarizabilities with Δα = 2.09% is near the limit which 

would best reproduce the molecular polarizability tensor in the context of the isotropic 

induced Gaussian dipole model. 
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Limitations with the Isotropic Model 
The probed polarizability scheme works well for ordinary organic molecules 

containing C, O, N, H, S and P.   The optimized exponent parameter a had an average 

value of 0.926, which is below the polarization catastrophe upper bound of 1.0.  In 

general, sp3 hybridized molecules performed slightly better than sp2 molecules, (e.g. Δα = 

1.10 % for ethane, Δα = 2.65 % for ethene).  A possible reason for this is that the 

isotropic atomic polarizability model studied in this paper assumes spherically symmetric 

induced dipoles on each atom.  The electron density around an sp3 hybridized molecule 

should be more spherically isotropic than a molecule which is sp2 hybridized.  Further 

evidence suggest that highly symmetric molecules give better results than molecules of 

lower symmetry, (e.g. Δα = 0.10% for ammonium cation, Δα  = 2.22% for ammonia).   

 

Diatomic ||α  ⊥α  Δα (%) 
 QM Probe QM Probe  

F2 1.567 1.197 0.431 0.722 27.9 
Cl2 5.519 5.140 2.370 2.663     6.7 
Br2 8.350 7.938 3.777  4.050     4.3 
Table 5.6  ||α  and ⊥α  in Å3  for diatomic halides using probed polarizabilities.  In all 
cases, a → ∞, indicating point dipole behavior. 
 
 

To further test the limits of the isotropic atomic polarizability Gaussian model, 

polarizabilities were computed for diatomic halides (Table VI.).  During the optimization, 

the exponent parameter a diverged to infinity implying point dipole behavior, and large 

errors occurred in the molecular polarizability tensors.  These discrepancies can be 

rationalized by looking at the two independent tensor components: ||α  (3.4.4) which is 

the tensor component parallel to the bond axis and ⊥α  (3.4.7) which is perpendicular to 
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the bond axis.  In the diatomic halides, ||α  is too small and ⊥α  is too large.  For example 

in F2, the ab initio values are ||α  = 1.567 and ⊥α  = 0.431, and the optimized model 

values are ||α  = 1.197 and ⊥α  = 0.722.  In a purely additive polarization model, in which 

the isotropic induced dipoles do not interact with each other, the molecular polarizability 

tensor is isotropic, e.g.  ⊥= αα ||  in the diatomic case.  It is the interaction between the 

isotropic induced dipoles that causes anisotropy in the tensor, and ⊥> αα ||  in the 

diatomic molecule case.  The larger the interaction, the greater the difference between 

||α and ⊥α .  The largest possible interaction is that of no field damping or induced point 

dipoles.  For the diatomic halides, even point dipoles did not provide a sufficiently strong 

interaction to accurately reproduce ||α  and ⊥α .   The worst case is F2, with Δα = 27.9%.  

These large differences between ab initio and derived values for ||α and ⊥α  implies that 

isotropic atomic polarizabilities on atoms alone are not a good approximation for 

diatomic halides or any other highly anisotropic molecule.  If anisotropic atomic 

polarizabilities were used10, then the atomic polarizability tensor could have different 

components parallel and perpendicular to the bond axis.  This would allow for the 

possibility of correctly calculating ||α  and ⊥α  for the molecule even in the absence of 

induced dipole - induced dipole interactions.  Anisotropic induced dipoles would be 

necessary to reproduce the tensor correctly for highly anisotropic molecules such as F2.  

Anisotropic induced dipoles can be represented by generalizing the scalar atomic 

polarizability α to an atomic polarizability tensor αpq.   
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The poor performance of the isotropic Gaussian model for the diatomic halides is 

due to a limitation in assuming isotropic atomic polarizabilities and not to the Gaussian 

model or the probed polarizabilities.  To illustrate this, polarizabilities were fit solely to 

the tensor of F2 for the point dipole, Gaussian and Thole models in Table 5.7.  For the 

Gaussian and Thole models, the exponent parameter a was constrained to the maximum 

value of 1.0.  The tensor errors Δα were 26.8 % for the point dipole model, 27.2 % for the 

Thole model, and 30.3 % for the Gaussian model.  The Thole model agreed more with 

the point dipole model than did the Gaussian model.  This is further evidence that the 

Thole model behaves slightly more like point dipoles than the Gaussian model.   

 

 ||α  ⊥α  Δα  (%) 
Point Dipole (a → ∞) 1.340 0.771 26.8 % 
Thole  (a = 1.0) 1.325 0.772 27.2 % 
Gauss (a = 1.0) 1.232 0.784 30.3 % 
QM 1.566 0.430  
Table 5.7  ||α  and ⊥α  in Å3 for F2 using polarizabilities fit to the tensor for the Point 
Dipole, Thole, and Gaussian models. 
 
 

However, the results for the diatomic halides mentioned above do not pose a 

serious limitation to the isotropic induced Gaussian model.  Reasonable results were 

obtained when the probed method was applied to acid halides and halogenated organic 

molecules in Table 5.8.  The exponent parameter a for the non-halide atoms was allowed 

to optimize (except for HF) while the halide exponent parameter was constrained to the 

maximum value of 1.0.  The tensor errors Δα are much smaller for these halogen 

containing compounds cases (0.6% – 4.4%).  Other anisotropic molecules not presented 

in Table 5.8 were also studied, many of which gave reasonable results for Δα:  2.0% for 

N2, 5.1% for CN-, 3.2% for CO, 2.4% for ethyne, 2.3% for CO2, and 2.0% for CS2.   
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 aH,C Δα (%) 
CH3F 0.954 0.6 
CH3Cl 0.933 3.3 
CH3Br 0.922 3.6 
HF 1.000 4.4 
HCl 0.834 1.5 
HBr 0.779 1.0 
Table 5.8 Tensor error Δα and exponent parameter a for halogenated molecules.  a = 1.0 
for F, Cl, Br and a was allowed to optimize for C and H (except for HF) 
 

Effects of Molecular Conformation 
It would be highly desirable if the probed atomic polarizabilities could be fit to a 

single molecular conformation.  To examine the extent to which polarizabilities were 

sensitive to conformation, probed polarizabilities optimized for a single geometry were 

tested on other conformations generated by rotating internal torsion angles.  It was found 

that probed polarizabilities generated from a single geometry could reproduce both the 

molecular polarizability tensor and also the response potential. 

The effects of multiple torsion conformations on molecular polarizability tensor 

using a single set of atomic polarizabilities were tested on glycine dipeptide in Figure 5.6.  

The torsion angles φ ≡ C1-N1-C2-C3 and ψ ≡ N1-C2-C3-N2 along the main axis were 

considered.  The geometry was fully optimized at the B3LYP/cc-pVTZ level (φ,ψ = 180°, 

180°), and atomic polarizabilities were generated for this single geometry using the 

probed method.  The torsion angles φ and ψ were then rotated from 45° to 315° in 

increments of 30°.  The two angles were constrained to the rotated values, while the rest 

of the geometry was allowed to relax.  The molecular polarizability tensors for these 

constrained geometries were then calculated using the probed atomic polarizabilities 

generated from the single optimized geometry (φ,ψ = 180°, 180°) and then compared 

with the reference ab initio values at those rotated geometries.  The error in the tensor Δα 
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is presented for φ and ψ in Figure 5.7.  Over the conformational space, the variation in the 

tensor between the optimized and the rotated geometries reached as high as 17.2% and 

averaged to 12.8%.  Despite the large variation in the tensor, the error in the tensor Δα 

never increased above 1.5%, and the average of Δα over all conformations was found to 

be 0.87%.    Similar results were found by rotating a single torsion angle along the X-C-

C-Y axis for ethylene glycol, fluoropropane, and NH2CH2CH2CO2⎯. 

 

Figure 5.6 Glycine Dipeptide.  φ ≡ C1-N1-C2-C3 and ψ ≡ N1-C2-C3-N2 

 

 

Figure 5.7 Tensor error Δα (%),  dependence on φ and ψ  for glycine dipeptide 
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The RMSD in the response potential ΔVrmsd was also found to be essentially 

invariant across multiple torsion conformations.  The geometry of NH2CH2CH2CO2⎯ was 

optimized and a set of probed polarizabilities were generated for this geometry, α0.  At 

the fully optimized geometry, the torsion angle along the main axis of NH2CH2CH2CO2⎯, 

ωNCCC, was found to be 65.9°.  ωNCCC was then rotated and constrained to 0°, 60°, 120°, 

and 180° while the rest of the geometry was allowed to relax.  Four new sets of probed 

polarizabilities were generated at each new torsion configurations, αi (i = 1..4).   

 

  

Figure 5.8   ΔVrmsd dependence on torsion angle for NH2CH2CH2CO2⎯ angles using 
probed polarizabilities generated at the fully optimized geometry (blue, ■) and 
polarizabilities generated specifically for each torsion geometry (red, ▲). 
 

 

In Figure 5.8, the response field RMSD ΔVrmsd was plotted for each of the rotated 

geometries using the optimized geometry set of polarizabilities, α0, and also the set of 

polarizabilities generated specifically for that geometry, αi.  It was found the relative 

error for ΔVrmsd between the two sets of polarizabilities was less than 1.0 % for all 4 

torsion geometries (Figure 5.8).  This can be compared with an average relative error for 
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ΔVrmsd between the probed and the AT polarizabilities of ~50% (Table 5.3).  Similar 

results were also found for ethylene glycol and fluoropropane.   

 
5.4 Conclusions 

The Gaussian polarization model has been examined as an alternative to the Thole 

model.  Originally, the Thole model was designed to fix the polarization catastrophe 

problem associated with the point dipole model.  In the Thole model, a damping function 

is applied to keep short-range induced dipole - induced dipole interactions finite.  It was 

proved in section 3.5 that the induced Gaussian dipole model also avoids the polarization 

catastrophe if the Gaussian exponent is sufficiently ‘diffuse’.  A relationship on the 

maximum size of the Gaussian exponent and the polarizability was derived.  A similar 

condition was also derived for the Thole model.  In both the Gaussian and Thole models, 

the catastrophe condition is satisfied if the exponent parameter a is less than 1.0 (5.2.1 

and 5.2.2). 

The performance of the point dipole, Thole, and Gaussian isotropic induced 

dipole models have been compared by optimizing atom type atomic polarizabilities to 

molecular polarizability tensors calculated at the B3LYP/cc-pVTZ level on a data set of 

127 organic molecules.  The Gaussian model (3.67% avg. tensor error) performed 

slightly better the Thole model (3.81%) and much better than point dipole model 

(7.78%).  The limits of using isotropic atomic polarizabilities can be seen by analyzing 

highly anisotropic molecules such as diatomic halides.  For these examples, the 

parameters tended towards strongly interacting point dipoles.  To better represent these 

less common cases, anisotropic atomic polarizabilities are needed.  



 106

When atom type polarizabilities are derived by fitting to a data set of molecular 

polarizability tensors, a question arises: how transferable are these atom type parameters.  

Here, it was found that atom type polarizabilities are transferable only to the extent that 

the atom types are appropriately identified.  An alternative method of optimizing 

polarizabilities, which is molecule specific, was also presented.  It is based on probing a 

molecule with point charges and fitting the polarizabilities to the response field.  The 

approach is similar to the derivation of atomic partial charges by electrostatic potential 

fitting, and many of the ideas were borrowed from the well-known ChelpG method.  The 

probed polarizabilities were tested against atom type polarizabilities over 28 molecules.  

In all cases, the probed polarizabilities showed a significant improvement over the 

transferable atom type parameters.  The probed method gave an average tensor error Δα 

of 1.41% and a maximum tensor error of 2.7%.  This can be compared with the 

transferable atom type polarizabilities which yielded an average tensor error of 6.5% and 

a maximum error of 21.8%.  The probed polarizabilities also predicted the response 

potential significantly better than the transferable atom type parameters.  The average of 

response potential RMSD ΔVrmsd (in 10-3e/Å ) over the 28 molecules was 2.01 for the 

probed polarizabilities and 3.04 for the AT polarizabilities. 

  The probe charge method is capable of generating polarizabilities that are specific 

to the molecule and are therefore sensitive to each atoms chemical environment.  For 

example, it was found that the polarizability on the carbon atom for methane, methanol, 

and fluoromethane was found to be 1.05, 0.85, and 0.75 Å3, respectively.  These values 

agree with chemical intuition in that electron withdrawing groups should lower the 

electron density and therefore the polarizability on the carbon atom.  In general, it would 
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be difficult to arrive at this level of sensitivity by fitting to tensor data alone because the 

molecular polarizability tensor has at most six independent components.  In most cases, 

polarizabilities for a single molecule containing many atom types cannot be fit to the 

tensor alone because there is simply not enough data.  Notably, it may be possible to use 

the probe method to derive transferable atom type polarizabilities.  The probed charge 

method could be carried out separately on a large collection of molecules.  The resulting 

parameters could be compared and generalizations relating atom types could then be 

made.  However, if atom specific partial charges are used, it would seem natural to also 

assume atom specific polarizabilities. 

It was also found that atomic polarizabilities are not sensitive to geometric 

rotations about torsion angles, as shown in the glycine dipeptide and NH2CH2CH2CO2⎯.  

Both the molecular polarizability tensor and the response potential could be accurately 

reproduced over multiple conformations using a single set of probed polarizabilities.  

This very fortunate result is important in the construction or application of force fields for 

molecular simulation. 

The atomic polarizabilities presented in this work are independent of the 

permanent electrostatic model used.  The atom type polarizabilities were fit to molecular 

polarizability tensors and the probed polarizabilities were fit to the response electrostatic 

potential.  Intramolecular polarization effects can be accounted for later when the 

permanent electrostatic model is fit.  In this way, the atomic polarizabilities generated 

could be used in any electrostatic model; for example, point charges, point multipoles or 

Gaussian multipole charge densities.   
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Both the Thole and Gaussian isotropic polarizability models perform well for 

most organic molecules.  Although the Gaussian model did slightly better than the Thole 

model over the 127 molecule atom type training set, the difference between the two in 

terms of performance is small.  Although it was not tested, the probed procedure could be 

applied to the Thole model and still be expected to generate accurate results.  The Thole 

model is somewhat arbitrary, since in the original Thole paper, seven different damping 

functions performed equally well in terms of fitting to tensor data.  The main advantage 

of the Gaussian model over the Thole model is the possible generalization of other point 

multipoles to Gaussian charge densities. 
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6 Amino Acid Atomic Polarizabilities/Partial Charges 

 

6.1 Introduction 

 Including polarization in protein force fields has received a considerable amount 

of attention.  Kollman1-3 et. al. has introduced induced point dipoles of Applequist into 

the AMBER force field.  Brooks4-6 et. al. and Freisner7 8 et. al. has developed fluctuating 

charge protein polarizable force fields for use in the CHARMM force field.  Ponder9-11 et. 

al. has developed the AMOEBA polarizable protein force field employing induced Thole 

dipoles for the polarization model and point multipoles to represent permanent 

electrostatic interactions.  This chapter will focus on developing probe polarizabilities for 

the induced Gaussian dipole model and atomic point charges for the amino acids. 

In the preceding chapter, a method to parameterize atomic polarizabilities was 

presented.  The method is based on probing a molecule with point charges and 

calculating the electrostatic potential through electronic structure calculations.  The probe 

polarizabilities are then fit to the response electrostatic potential.  Probed polarizabilities 

were tested on a variety of organic molecules and shown to consistently yield 

significantly lower RMSD fits for both molecular polarizability tensor and response field 

as compared to the conventional method of fitting atom type polarizabilities to molecular 

polarizability tensors.  In this chapter, results will be presented for probed polarizabilities 

generated for the amino acids. 

 The polarization model determines the electrostatic properties of a molecule in the 

presence of external electric fields, while the permanent electrostatic model determines 

the electrostatic properties of a molecule in vacuum, i.e. in the absence of an external 
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field.  For large molecules, such as amino acids or nucleic acids, it should be expected 

that a molecule can polarize itself as its conformation changes.  Rules for intramolecular 

polarization can be developed to account for how the permanent charge distribution 

affects the polarizable charge distribution in a flexible molecule.  It was remarked in 

chapter 5, that polarizabilities can be fit by removing the effect of intramolecular 

polarization.  By fitting to response electrostatic potential (the probed potential minus the 

vacuum potential), the contribution from the permanent electrostatic model is exactly 

canceled for linear polarizable models.  Hence, the probed polarizabilities are 

independent of electrostatic model.  Once polarizabilities have been determined, the 

electrostatic model can then be fit in the presence of polarization using rules for 

intramolecular polarization.   

 Though results have been derived for the more general cases of point multipoles 

and Gaussian multipole charge densities, atom centered point charges will be the 

permanent electrostatic model in this study.  Point charges have been optimized for the 

amino acids using the conventional method of fitting to electrostatic potential (ESP) 

surrounding the molecule12-14.  The point charges are simultaneously fit to multiple 

geometric conformations in order to investigate the effects of intramolecular polarization. 

 A commonly used rule to treat intramolecular polarization is to neglect3 9 11 15 or 

screen4-8 short range interactions between atoms that are bonded to one another.  In 

AMBER3 15, 1-5 and greater charge – induced dipole interactions at calculated at full 

strength, the 1-4 charge – induced dipole interactions are scaled, and the 1-2 and 1-3 

interactions are neglected.  A 1-2 interaction is defined as a pair of atoms that are bonded 

to each other.  A 1-3 interaction is defined as a pair of atoms that share a bond with a 
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middle atom.  Similarly, a 1-4 interaction is a pair of atoms that is separated by two 

middle atoms, and a 1-5 interaction is a pair of atoms separated by three atoms.  In earlier 

studies, the optimal 1-4 scaling factor has not been precisely defined.  Suggested values 

have ranged from 0.5 to 0.8.  By treating the 1-4 scaling factor as an optimizable 

parameter during the calculations, a value is reported here which improves the ESP fits 

for single amino acids over multiple conformations. 

 In addition to generating amino acid charges/polarizabilities for use in future 

simulations, another goal of this study is to investigate how inclusion of polarizability 

improves the electrostatic description of force fields.  It will be shown that inclusion of 

polarization significantly improves dipole moments and electrostatic potential of single  

amino acids over multiple conformations.  The effect of polarizability becomes greater 

for larger molecules and systems.  As a final test of polarization, the ESP was calculated 

for a 10-alanine peptide in the idealized fully extended and α-helical conformations.  The 

charges fit to a single alanine amino acid were tested on the 10 alanine peptide 

conformation with and without polarization included.  It will be shown that polarizability 

significantly improves the ESP potential, particularly when the peptide is in the α-helix 

conformation when amide groups in close proximity to one another become polarized.   

 

6.2 Methods 

 

Probed Polarizabilities 

The method to fit probed polarizabilities is described extensively in section 5.2.  

In this section, a discussion of how probed polarizabilities were generated for amino 
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acids will be provided.  Single amino acid structures were constructed with an acetate 

(ACE) cap on the N-terminus end and an N-methyl (NME) group cap on the C-terminus 

end as in figure 6.1.  The geometry of each amino acid structure was initially optimized at 

the B3LYP/cc-pVTZ level.  Since probed polarizabilities were found to be 

conformationally invariant (see 5.3.4), probed polarizabilities were generated at 

B3LYP/cc-pVTZ level of theory at the B3LYP/cc-pVTZ optimized geometry.  All ab-

initio calculations were performed with Gaussian 9816. 

 

 

N1

C2
C3

N4

C5

NME ACE
BACKBONE

SIDECHAIN

 

Figure 6.1 Amino Acid (alanine) with the N-methyl (NME) and acetate (ACE) caps.  φ ≡ 
C2-C3-N4-C5 and ψ ≡ N1-C2-C3-N4 

 

Once probed polarizabilities have been determined for each of the individual 

amino acid structures, the polarizabilities for the amino acid backbone, the ACE cap, and 

the NME cap were averaged over all amino acids.  Probed polarizabilities for the side-

chains were re-optimized with the averaged polarizabilities for the backbone, the ACE 

cap, and the NME cap constrained to their averaged values.  The measured results are the 

RMSD in the response field ΔVrmsd (5.2.13), the error in molecular polarizability tensor 

Δα (5.2.6), and the average of the eigenvalues of the molecular polarizability tensor αeigen. 
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Point Charges 

 After the polarizabilities have been established, optimization of the point charges 

can proceed.  In order to account for intramolecular polarization, a 1-4 charge – induced 

dipole scaling factor was also allowed to be a freely optimizable parameter.  The point 

charges along with the 1-4 scaling factor were optimized to electrostatic potential (ESP) 

on a ChelpG grid.  As discussed in section 5.2, a ChelpG13 grid consists of a rectangular 

grid of points with a 0.3 Å spacing.  Points in between an outer and inner radius for each 

atom were kept, while points outside the radii were discarded.  The outer radii were set to 

2.8 Å for each atom.  The inner radii were set to 1.45 Å for H, 1.5 Å for C, 1.7 Å for N 

and O, and 2.3 Å for S. 

Several geometric conformations were used during the fit.  The different 

geometries were found by rotating the (φ ,ψ) torsion angles of the amino acid backbone 

(see Figure 6.1).  The range of (φ ,ψ) torsion angles were selected to be representative of 

populated regions from a Ramachandran plot.  Two sets of (φ ,ψ) coupled torsion angles 

were used.  In the first set, φ = -120°, -105°, -90°, -75° and ψ = 90°, 105°, 120°, 135°, 

150°, 165° (in increments of 15°).  The second set of (φ ,ψ) was φ = -120°, -105°, -90°, -

75° and ψ = -60°, -45°.  Additionally, uncoupled single torsion rotations were added for 

amino acids with long polar sidechains in order to better sample the conformation space.  

The rotated torsion angles were constrained to their respective values while the rest of the 

molecule was free to relax at the B3LYP/cc-pVTZ level.   

For each amino acid, the point charges and the 1-4 scaling factor were optimized 

to electrostatic potential calculated at B3LYP/cc-pVTZ for all the conformations.  The 

fitting function is given by: 
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where Vij is the electrostatic potential due to the point charges and induced Gaussian 

dipoles and QM
ijV  is the B3LYP/cc-pVTZ electrostatic potential at the ith grid point of the 

jth geometry.  The RMSD in electrostatic potential tot
rmsdVΔ  is the square root of χ2. 

2χ=Δ tot
rmsdV      6.2.2 

The electrostatic potential is a linear function of charges.  However, the potential is a 

quadratic function when considering both the charges and the 1-4 scaling factor.  

Therefore, the non-linear least squares Levenberg-Marquardt algorithm has been used to 

optimize the parameters.  In addition, constraints for total charge were used in the 

optimization.  The total charge on each of the ACE, NME, and protein backbone units 

was constrained to have a net charge of zero, while the total charge of the sidechains was 

constrained to have a net charge of that particular amino acid: -1, 0, or +1. 

 A well known artifact of fitting point charges to electrostatic potential (ESP) is 

the large artificial charges that develop on methyl or CH2 groups.  For example, a simple 

ChelpG calculation (at the B3LYP/cc-pVTZ level) predicts the charges on carbon and 

hydrogen to be -0.320 and +0.080, respectively for methane and 0.0132e and -0.0044e for 

ethane.  Notice the sign change on the carbon in going from methane to ethane.  At long 

range, electrostatic interactions between alkanes are small due to their apolar nature.  For 

example, the permanent molecular dipole of isopropane is 0.132 D (Debye) (calculated at 

B3LYP/cc-pVTZ) while the molecular dipole of isopropanol is 1.54 D.   

The combined charge of the alkyl group is more stable that the actual charges on 

the alkyl group.  For example, a ChelpG calculation of methyl amine predicts the alkyl 
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carbon and hydrogen charge to be 0.312e and -0.035e, respectively.  The RMSD in ESP 

is 7.06 (10-3 e/Å).  Notice the combined charge on the entire CH3 group is 0.207e.  If the 

alkyl hydrogen charge is constrained to be zero, the charge on the carbon now optimizes 

to 0.182e, and the RMSD in ESP is 7.14 (10-3 e/Å).  Since the new carbon charge of 

0.182e is close to the CH3 group charge of 0.207e, and since the RMSD in ESP did not 

increase significantly, it can be concluded that the charges on alkyl hydrogens are not 

significant.  For this reason, all alky hydrogen point charges were constrained to be zero. 

 The performance of the charges was judged on the basis of the RMSD in total 

electrostatic potential tot
rmsdVΔ  and the molecular dipole d

r
 for each conformation given 

by: 

∑
=
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K
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    6.2.3 

where K is the number of atoms and qi is the charge, irr is the position of atom i, and iμr  

is the induced Gaussian dipole of atom i.  The induced Gaussian dipoles were allowed to 

interact with one another and the permanent charges through scaled 1-4 interactions and 

full strength 1-5 and greater interactions.  For each conformation, the molecular dipole 

d
r

 can be directly compared with the molecular dipole calculated at B3LYP/cc-pVTZ.  If 

ad
r

 is the molecular dipole for conformation a predicted by the model and aQM d
r

 is the 

B3LYP/cc-pVTZ molecular dipole, then the RMSD for the permanent dipole at 

conformation a is given by: 

2)( aQMaa
rmsd ddd

rr
−=Δ     6.2.4 

For each amino acid, the dipole RMSD’s were averaged over each conformation and 
given by rmsddΔ  : 
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In order to compare the magnitude of the molecular dipoles with the RMSD fits for the 

dipole, an averaged dipole magnitude for each amino acid was also calculated as: 
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 In addition to the amino acid charges fit in the presence of polarizability, a second 

set of amino acid charges were optimized using an identical procedure without 

polarizabilitiy present (i.e. the polarizabilities were set to zero).  The second set of 

charges optimized without polarizability was generated in order to investigate how much 

polarization improves the force field. 

 

10-Alanine Test Case 

 In order to test the effect of polarization in a protein, a 10-alanine peptide was 

constructed in two conformations.  The first conformation is in an idealized α-helix with 

each (φ ,ψ) angle set to (-60°, -60°) as in Figure 6.2A.  The second geometry is an 

idealized fully extended conformation with each (φ ,ψ) angle set to (180°, 180°) as in 

Figure 6.2B.   
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Figure 6.2 10-alanine peptides in α-helix form (A) with (φ ,ψ) = (-60°, -60°) and 
extended conformation (B) with (φ ,ψ) = (180°, 180°) 
 
 

For both conformations, the (φ ,ψ) angles were constrained to their respective values 

while the rest of the geometry was allowed to relax at the B3LYP/6-31G* level.  The 

electrostatic potential was calculated at the B3LYP/cc-pVTZ level on the B3LYP/6-31G* 

optimized geometries.  The charges that were fit to a single alanine with and without 

polarizability present were tested on the 10-alanine peptide to see how well it reproduces 

electrostatic potential. 

 

6.3 Results 

 

Probed Polarizabilities 

 Probed polarizabilities were calculated for the amino acids with ACE and NME 

caps.  Once the initial probed polarizabilities were found, the polarizabilities on the 

amino acid backbone, the ACE cap, and the NME cap were averaged over all the amino 

acids.  The actual values of the averaged polarizabilities are given in Figure 6.3.  The 

polarizabilities (Å3) on the sp2 hybridized amide groups are larger than their sp3 

hybridized counterparts.  For example, the polarizabilities on the sp2 backbone carbonyl 
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oxygen and the ACE cap carbonyl oxygen are 0.829 and 0.826, respectively.  From 

previous calculations on small organic molecules not listed, the probe polarizabilities on 

the sp3 hybridized oxygen atom in methanol, dimethyl ether, and water are 0.710, 0.749, 

and 0.684, respectively.  The polarizabilities on the sp2 backbone amide nitrogen and 

NME cap amide nitrogen are 1.365 and 1.349, respectively.  This can be compared to the 

polarizabilities on sp3 nitrogen of 1.107 and 1.080 for methyl amine and ammonia, 

respectively.  As a final observation, the polarizabilities on the alkyl carbons directly 

attached to amide nitrogen are smaller in magnitude than the polarizabilities on alkyl 

carbons not attached to electronegative atoms.  The polarizabilities on the alkyl carbons 

directly attached to the amide nitrogen are 0.694 (on the NME cap) and 0.728 (sp3 

backbone α-carbon), while the polarizabilities on the ACE cap methyl carbon is 1.042.  

The amide group is an electronegative electron withdrawing group and has the effect of 

reducing the polarizability on alkyl carbon.  In general, this level of sensitivity in 

polarizability parameters would not be possible if conventional atom type polarizabilities 

fit to molecular polarizability tensors were used. 

1.200
1.042

1.365
0.728

1.298
1.349

0.694

0.826

0.829 0.428
0.283

0.521

0.289

0.423

 

Figure 6.3 Averaged polarizabilities for the amino acid backbone, ACE cap, and NME 
cap. 
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The RMSD and errors in the fits are presented in Table 6.1 for each amino acid.  

In order to see the relative magnitudes of the molecular polarizability tensor, the average 

eigenvalues αeigen of the molecular polarizability tensor are calculated at the B3LYP/cc-

pVTZ level and listed in column 2 of Table 6.1.  In general, the magnitude of the 

molecular polarizability tensor is proportional to the size of the amino acid.  In column 3 

of Table 6.1, the error in the molecular polarizability tensor is listed for the probed 

polarizabilities.  The maximum error is 2.9% for GLU and the average error is 0.92%.   

 

Amino Acid αeigen (Å3) 
 

Δα (%) 
All Free 

Δα (%) 
Averaged 
Backbone 

ΔVrmsd  
(10-3 e/Å) 
All Free 

ΔVrmsd  
(10-3 e/Å) 
Averaged 
Backbone 

ALA 13.68 0.85 1.14 1.52 1.53 
ARG (+) 21.93 0.78 1.80 1.46 1.48 
ASN 16.82 1.04 1.04 1.40 1.42 
ASP  () 17.02 1.15 0.96 1.80 1.85 
CYS 16.53 0.82 1.07 1.79 1.83 
GLN 18.64 0.62 0.88 1.42 1.43 
GLU () 18.97 2.90 0.87 2.99 3.10 
GLY 11.86 0.45 1.74 1.52 1.62 
HIS 20.27 1.20 1.02 1.64 1.68 
ILE 19.04 0.58 0.67 1.61 1.62 
LEU 19.11 0.56 0.71 1.61 1.62 
LYS+ (+) 20.02 1.26 1.49 1.58 1.58 
MET 20.35 0.99 1.19 1.66 1.67 
PHE 23.22 0.91 0.93 1.63 1.63 
SER 14.26 0.77 1.06 1.45 1.46 
THR 16.07 0.60 0.86 1.45 1.45 
TRP 27.80 0.97 1.45 1.80 1.89 
TYR 24.12 0.85 0.89 1.57 1.58 
VAL 17.26 0.68 0.78 1.56 1.56 
Average  0.92 1.01 1.66 1.69 
Table 6.1 Probed Polarizabilities for the Amino Acids.  Probed Polarizabilities for the 
Amino Acids.  In column 2, αeigen is the average eigenvalues of the molecular 
polarizability tensor.  Columns 3 and 4 contains the error in the polarizability tensor for 
the freely optimizable polarizabilities and constrained backbone polarizabilities, 
respectively.  Column 5 and 6 contains the RMSD in response potential for the freely 
optimizable polarizabilities and constrained backbone polarizabilities, respectively. 
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After the initial probed polarizabilities of the amino acids have been established, 

the polarizabilities for the backbone, the ACE cap, and the NME cap were averaged over 

all the amino acids.  The polarizabilities for the side-chains were then refit while the 

backbone, the ACE cap, and the NME cap polarizabilities were constrained to their 

averaged values.  In column 4, the errors in molecular polarizability tensor for the 

averaged backbone polarizabilities are given.  It is interesting to note that the errors do 

not increase significantly when using averaged backbone polarizabilities.  The average 

error in the tensor was 0.92% when the polarizabilities on all the atoms were free to 

optimize and 1.01% when the polarizabilities were constrained to the averaged backbone 

values.  The RMSD in response potential ΔVrmsd follows a similar trend.  The average 

value ΔVrmsd over the amino acids was 1.66 (10-3 e/Å) using the initial set of polarizabilities 

which were all free to optimize, while the average of ΔVrmsd using the averaged backbone 

polarizabilities is 1.69.  Since the polarizabilities were fit to the response field, ΔVrmsd is 

always larger for the averaged backbone polarizabilities because there are fewer 

parameters to fit.  However, the effect is small.  The average of ΔVrmsd for the amino 

acids (1.66 or 1.69 10-3 e/Å) can be compared to the average of ΔVrmsd (2.01 10-3 e/Å) for 

the test set of organic molecules in Chapter 5.  The results indicate that the polarizabilities 

on the backbone, ACE, and NME groups on all the amino acids are quite similar to one 

another. 
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Point Charges 

 Point charges were fit to the total electrostatic potential over several 

conformations of single amino acids with ACE and NME caps with and without 

polarizability present.  The set of probed polarizabilities used was the set whose amino 

acid backbone, ACE cap, and NME cap were averaged over the amino acids while the 

sidechains were refit.  In addition, a 1-4 charge – induced dipole scaling factor was 

treated as an optimizable parameter for the charge optimization with polarization present.  

In Table 6.2, the optimized 1-4 charge-induced dipole scale is given for each amino acid.  

The values ranged from 0.07 to 0.21.  The average value over the amino acids was found 

to be 0.13.  Similar results were obtained for other organic molecules not listed, such as 

fluoropropane, ethylene glycol, and H2NCH2CH2COO-.  For this reason, the 1-4 charge – 

induced dipole scaling factor was set to 0.1 and kept at that value for the rest of the 

calculations. 

 

Amino Acid 1-4 Charge-Induced 
Dipole Scale 

Amino Acid 1-4 Charge-Induced 
Dipole Scale 

ALA 0.071 LEU 0.099 
ARG (+) 0.210 LYS+ (+) 0.138 
ASN 0.182 MET 0.108 
ASP  () 0.134 PHE 0.136 
CYS 0.213 SER 0.068 
GLN 0.108 THR 0.108 
GLU () 0.102 TRP 0.169 
GLY 0.084 TYR 0.168 
HIS 0.093 VAL 0.115 
ILE 0.171   
Average 0.13 
Table 6.2 Optimal 1-4 Charge-Induced Dipole Scale Factors for each amino acid. 
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Point charges were refit with polarizability present using the 1-4 scaling factor of 

0.1.  In addition, a set of point charges was optimized without polarizability present, i.e. 

the polarizabilities were set to 0.0.  Once the charges have been initially determined for 

each amino acid individually, the charges on the amino acid backbone, the ACE cap, and 

the NME cap were averaged over all the amino acids.  The averaged charges with and 

without polarizability present are given in Figure 6.4. 
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Figure 6.4 Averaged charges with and (without) polarizability for the amino acid 
backbone, ACE cap, and NME cap. 
 

The RMSD for total electrostatic potential tot
rmsdVΔ  (6.2.2) over all of the 

conformations is listed in column 3 of Table 6.3 for the charges fit without polarizability 

and in column 5 for the charges fit with polarizability.  In all cases, tot
rmsdVΔ  is lower for 

charges optimized with polarizability than without.  The average of tot
rmsdVΔ  over all amino 

acids is 6.70 (10-3 e/Å) without polarizability and 5.81 (10-3 e/Å) with polarizability.   

In order to see the relative magnitudes of the potential, the absolute value of the 

potential ||V was averaged over all the conformations and given in column 1 of Table 



 125

6.3.  For the charged amino acids ARG, ASP, GLU, and LYS+, ||V  is larger by an order 

of magnitude than the uncharged amino acids.   

 

  Non_polarizable Polarizable 
Amino 
Acid 

||V  
 

tot
rmsdVΔ  

 (All Free) 

tot
rmsdVΔ   

 (Average 
Backbone) 

tot
rmsdVΔ   

 (All Free) 

tot
rmsdVΔ   

 (Average 
Backbone) 

ALA 25.45 5.67 7.02 5.11 5.14
ARG (+) 185.13 7.07 9.69 4.96 4.98
ASN 29.69 6.27 7.27 5.52 6.33
ASP  () 207.07 9.76 18.31 6.48 6.64
CYS 26.93 7.61 9.22 7.15 7.82
GLN 29.86 5.49 6.26 4.81 4.85
GLU () 200.43 8.57 17.43 5.94 7.02
GLY 27.89 6.12 7.57 5.25 5.38
HIS 29.67 6.94 8.05 6.36 6.54
ILE 21.41 5.39 6.55 5.23 5.36
LEU 21.43 5.50 6.62 5.13 5.21
LYS+ (+) 187.48 7.05 9.07 4.87 4.94
MET 24.66 6.80 7.60 6.41 6.46
PHE 23.29 6.99 7.94 6.60 6.63
SER 28.20 6.29 7.62 5.73 5.94
THR 27.69 6.21 7.55 5.97 6.15
TRP 26.35 7.32 8.40 6.97 7.13
TYR 25.95 7.20 8.22 6.59 6.67
VAL 22.60 5.57 7.09 5.43 5.62
Average  6.70 8.72 5.81 6.03
Table 6.3 Results for total electrostatic potential.  Column 2 contains the average of the 
absolute value of total electrostatic potential.  Column 3 and column 5 contain the RMSD 
in total electrostatic potential tot

rmsdVΔ for the optimized charges for amino acids with and 
without polarizability present.  Column 4 and column 6 contain tot

rmsdVΔ  for the optimized 
charges with and without polarizability present for averaged backbone charges. 
 
 

As in the case for the polarizabilities, the backbone charges were averaged over 

the amino acids and then the sidechains refit.  Columns 4 and 6 contain tot
rmsdVΔ  for the 

backbone averaged charges without and with polarizability, respectively.  The effect of 

using averaged backbone charges without polarizability is more severe for the charged 



 126

amino acids ASP and GLU.   tot
rmsdVΔ  nearly doubles in both cases: 9.76 → 18.31 for ASP 

and 8.57 → 17.43 for GLU.  For charges optimized with polarizability, the effect of 

averaging backbone charges is less drastic.  tot
rmsdVΔ  increases modestly for the charged 

amino acids: 6.48 → 6.64 for ASP and 5.94 → 7.02 for GLU.  In going from all 

optimizable charges to averaged backbone charges, the average of tot
rmsdVΔ  over all the 

amino acids changes from 6.70 → 8.72 for charges without polarizability and 5.81 → 

6.03 for charges with polarizability.   

 Another electrostatic property that can be used to make comparisons is molecular 

dipole moment.  In order to see the relative sizes of the molecular dipole, the average 

magnitude of the molecular dipole (6.2.6) calculated at the B3LYP/cc-pVTZ level is 

given in column 2 of Table 6.4.  For the charged amino acids, the total molecular dipole 

depends on the origin of the reference coordinate system and is omitted.  The dipole 

moments are calculated at each conformation using the optimized point charge and 

induced Gaussian dipole model (6.2.3).  The conformation averaged RMSD in dipole 

moment rmsddΔ  (6.2.5) is given in column 3 and column 5 of Table 6.4 for the optimized 

point charges without and with polarizability, respectively.  Polarizability decreases the 

RMSD for dipoles by a factor of two or more in most cases.  The average of rmsddΔ  over 

amino acids was 0.421 D for charges without polarizability and 0.186 D for charges with 

polarizability.  Similar results were obtained for the backbone averaged charges.  In this 

case, the average of rmsddΔ  was 0.987 D for backbone averaged charges without 

polarizability and 0.258 D for charges with polarizability.   
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  Non_polarizable Polarizable 
Amino 
Acid 

|| d
r

 rmsddΔ   
(All Free) 

rmsddΔ  
(Average 

Backbone) 

rmsddΔ   
(All Free) 

rmsddΔ  
(Average 

Backbone) 
ALA 2.89 0.216 0.714 0.124 0.139
ARG (+) * 0.712 1.468 0.225 0.250
ASN 4.28 0.478 0.831 0.168 0.462
ASP  () * 0.909 2.933 0.299 0.303
CYS 3.35 0.337 0.763 0.286 0.531
GLN 3.44 0.365 0.591 0.140 0.140
GLU () * 0.804 2.830 0.276 0.755
GLY 2.93 0.251 0.760 0.109 0.172
HIS 5.50 0.385 0.804 0.142 0.171
ILE 2.81 0.222 0.625 0.116 0.142
LEU 2.82 0.269 0.620 0.120 0.175
LYS+ (+) * 0.562 1.231 0.202 0.264
MET 3.07 0.302 0.610 0.149 0.216
PHE 3.11 0.464 0.718 0.235 0.184
SER 3.68 0.309 0.742 0.171 0.248
THR 4.12 0.285 0.676 0.177 0.211
TRP 4.00 0.523 0.788 0.221 0.147
TYR 3.48 0.476 0.696 0.185 0.136
VAL 2.83 0.214 0.773 0.178 0.325
Average  0.421 0.987 0.186 0.258
Table 6.4 Dipole moment (D) of the amino acids.  Column 2 contains the magnitude of 
the B3LYP/cc-pVTZ molecular dipole averaged over conformations.  Column 3 and 5 
contain the RMSD of the dipole averaged over conformations for the charges fit with and 
without polarizability.  Contain 4 and 6 contain the same quantity with averaged 
backbone charges. 
 

Alanine Decapeptide 

 In order to test the effect of polarization in a large peptide, a 10 alanine peptide 

was constructed in the α-helix and fully extended conformation as in Figure 6.1.  The 

charges optimized to a single alanine (with and without polarizability present) were tested 

on the 10 alanine peptide.  As mentioned in section 6.2, the (φ ,ψ) angles were 

constrained to (-60°, -60°) for the idealized α-helix and (180°, 180°) for the idealized 

fully extended conformation, while the rest of the geometry was optimized at the 

B3LYP/6-31G* level.  The electrostatic potential (ESP) around the 10 alanine peptide 
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was calculated as the same level of theory used to optimize the charges, B3LYP/cc-

pVTZ. 

 In the center of the α-helix, polarization is expected to be particularly important 

because of hydrogen bonds between amide groups in adjacent turns of the helix.  A non-

polarizable force field would not be expected to perform well in environments where 

polarization is important unless effective charges that compensate for the lack of 

polarization are used.  A method to find effective charges is to simply scale the gas phase 

charges.  The charges fit for a single alanine were scaled by λ = 1.00, 1.05, 1.10, .. 1.30 

and then tested on the 10 alanine peptide in both conformations.  In Figure 6.5, the 

RMSD in potential Vrmsd for the α-helix is plotted at different charge scaling factors using 

the set of charges optimized to a single alanine with and without polarizability present.  

In order to compare these fits to what would be the best possible fit, a third set of ‘best’ 

charges was optimized specifically for the 10 alanine in the α-helix conformation.  The 

RMSD in potential Vrmsd for the ‘best’ charges was found to be 6.12 (10-3 e/Å).  When the 

charge scale factor λ was 1.0, i.e. charges optimized to a single alanine, Vrmsd = 18.38  

(10-3 e/Å) for the charges without polarizability, and Vrmsd = 14.40 for the charges with 

polarizability.  As the charge scaling factor was increased, Vrmsd for both sets of charges 

decreased.  The optimal charge scale factor for charges without polarizability was found 

to be 1.25.  In other words, the gas phase non-polarizable charges had to be scaled up by 

25% to best reproduce the electrostatic potential for an α-helix.  This number can be 

compared to the ratio between the gas phase dipole of water 1.8 D and what is believed to 

be the liquid phase dipole of 2.2-2.7 D, i.e. the dipole is scaled by 1.2 to 1.5.  It is 

interesting to note that the charges with polarizability also should be scaled to best 
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reproduce the condensed phase ESP for the α-helix .  Though as expected, the optimal 

scale factor for charges with polarizability (1.15) is less than the optimal scale factor for 

charges without polarizability (1.25).   For charges with polarizability, Vrmsd = 8.15 (10-3 

e/Å) at the optimal charge scale factor 1.15, and Vrmsd = 9.67 (10-3 e/Å) at the optimal 

charge scale factor 1.25 for charges without polarizability. 
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Figure 6.5 Vrmsd for 10 alanine α-helix using scaled charges optimized to a single alanine. 
 

 In a perfect electrostatic/polarization model, it would be expected that the charges 

would not need to be scaled.  Therefore, either the polarization model or the polarizing 

field of the electrostatic model is underestimating the polarization effect.  It was recently 

shown that the ab-initio electrostatic energy of a water dimer calculated at B3LYP/6-

31G* is -8.32 kcal/mol17.  If point charges were optimized to the electrostatic potential 

calculated at the B3LYP/6-31G* level, the point charges predict a dimer electrostatic 

energy of -5.31 kcal/mol.   Point charges significantly underestimate the electrostatic 

energy at short range dimer distances.  It would be expected that the point charges also 

underestimate the electric fields at short range dimer distances.  At long range, the 

dominant electrostatic interaction is between the permanent molecular dipoles of the 

molecule (if the molecular dipoles are not zero).  Since point charges optimized to 
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electrostatic potential reproduce molecular dipole moments, point charges accurately 

reproduce electrostatic interactions at long range.  In the α-helix, amide groups in close 

proximity to one another are the main source of polarization.  At short range, the 

polarizing electric field due to the point charges is underestimated and this is the reason 

why the charges need to be scaled by 15%. 
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Figure 6.6 Vrmsd for 10 alanine in the fully extended conformation using scaled charges 
optimized to a single alanine. 
 
 

The other conformation that was studied is the fully extended conformation when 

all of the (φ, ψ) angles are (180°, 180°), (see Figure 6.1).  Vrmsd was plotted at different 

charge scales in Figure 6.6 for charges with and without polarizability.  For charges with 

polarizability, a charge scaling factor λ of 1.0 (no charge scaling) excellently reproduces 

the ESP.  For λ  = 1.0, the RMSD in ESP is 5.75 (10-3 e/Å) for the charges with 

polarizability and 7.52 for charges without polarizability.  These numbers can be 

compared with Vrmsd = 5.18 for the ‘best’ possible set of charges optimized specifically to 

the extended 10 alanine.  In this conformation, the polarization response is adequately 

reproduced because the strongly polarizing amide groups are separated by a much farther 
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distance.  At the longer distances, the polarizing fields due to the point charges can be 

expected to be more accurate than at short distances. 

 

6.4 Conclusions 

 Probed polarizabilities were determined for the amino acids, the NME cap, and 

the ACE cap.  The average error in the molecular polarizability tensor over the amino 

acids is 0.92% and the average error in the response potential is 1.66 10-3 e/Å.  The effect 

of averaging the polarizability on the amino acid backbone, the NME cap, and the ACE 

cap is not significant.  When the polarizabilities on the sidechains were refit with the 

averaged backbone, NME cap, and ACE cap polarizabilities kept constant, the averaged 

error in the molecular polarizability tensor increased to 1.01% and the error in the 

response field increased to 1.69 10-3 e/Å.  This can be compared to an average error in the 

molecular polarizability tensor of 1.37% and an error in the response potential of 2.01  

10-3 e/Å for the test set of organic molecules in Table 5.3.  The results indicate that 

averaging atomic polarizabilities over amino acid backbones is a good approximation.  

This suggests that atomic polarizabilities for other biomolecules, such as saccharides, can 

be found by generating probed polarizabilities for a set of structures and then averaging 

the polarizabilities over related atom types.  

 Atomic point charges were fit to the total ESP for the amino acids over multiple 

conformations with and without polarizability present.  In each case, polarizability 

improved the error in the total ESP and also the error in the total molecular dipole.  The 

error in the total electrostatic potential averaged over the amino acids was found to be 

6.70 10-3 e/Å without polarizability present and 5.81 10-3 e/Å with polarizability present.  
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When the charges were averaged over the amino acid backbones and the sidechain 

charges reoptimized, the error in the total ESP increased to 8.72 10-3 e/Å without 

polarizability present and 6.03 10-3 e/Å with polarizability present.  A similar 

improvement was found with the molecular dipole moment.  The error in the molecular 

dipole averaged over amino acids was found to be 0.421 D without polarizability present 

and 0.186 D with polarizability present.  When the backbone charges were averaged and 

the sidechain charges refit, the error in the dipole moment increase to 0.987 D without 

polarizability present and 0.258 D with polarizability present. 

 The results discussed above indicate that polarization improves the electrostatic 

description of single amino acids over multiple conformations.  The polarizabilities and 

atomic charges fit to the single amino acids were tested on a 10-alanine peptide in an 

idealized fully extended and α-helical conformation.  The ESP was calculated using the 

charges optimized to a single alanine with and without polarizability present.  In the α-

helical conformation, the results indicate that point charges without polarizability should 

be scaled larger by 25% and that point charges with polarizability should be scaled larger 

by 15%.  A possible reason why the charges with polarizability need to be scaled by 15% 

is that point charges underestimate electric fields at short distances.  The field applied to 

the induced dipoles is too weak.  In the fully extended conformation, the point charges 

with polarizability adequately reproduce the ESP and do not need to be scaled.  These 

results indicate that further improvements can be made if more sophisticated electrostatic 

models, e.g. point multipoles or Gaussian multipole charge densities are used in place of 

point charges. 
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7 Optimization of van der Waals Parameters: Water and Ammonia 

 

7.1 Introduction 

 In biomolecular force fields such as AMBER1-6/GLYCAM7-9 and CHARMM10-15, 

the non-bond energy is composed of an electrostatic term, a recently added polarization 

term, and a van der Waals (vdW) term.  The vdW term is modeled by a 12-6 Lennard-

Jones potential of the form: 

612)(
r

C
r
A

rV abab −=     7.1.1 

The r -12 term models the short range exchange/repulsion part of the non-bond energy and 

the r -6 term models the attractive long range dispersion contribution. 

 Many groups have devoted a significant amount of time in developing parameters 

for the vdW potential.  Jorgensen16-19 et. al. has created the OPLS  force field by fitting 

atom type point charges and vdW parameters to liquid phase heats of vaporization and 

density for pure solvents calculated through Monte Carlo simulations.  MacKerell20-22 et. 

al. has developed a two step hybrid approach of fitting vdW parameters to ab-initio data 

and then adjusting the resulting parameters to match heats of vaporization and density for 

pure solvents. 

 In terms of force field parameter development, fitting to ab-initio data is ideal 

because of the wealth of information available.  When optimizing to experimental data, 

typically there are a few measured experimental quantities in which to fit to.  For 

example, when fitting to heats of vaporization and density, there are two experimentally 

measured data points per solvent.  On the other hand, MacKerell has fit Lennard-Jones 

parameters to ab-initio dimer data by probing molecules with He and Ne atoms.  Many 
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data points can be obtained for interaction energy by probing different atoms and 

extending the probe trajectory.  

However, there are two major obstacles in fitting vdW parameters to ab-initio 

data.  The first problem is accuracy of the ab-initio method.  It has been shown that 

extremely high ab-initio methods23 24, e.g. CCSD(T)/aug-cc-pV5Z, are needed to 

accurately calculate dispersion energies between the noble gases.  This level of theory is 

perhaps too expensive to fit an entire force field.  York and Giese25 26 have proposed an 

empirical method of obtaining high quality ab-initio data for weakly attractive dimer 

systems.  The method takes a linear combination of ab-initio energies calculated at lower 

levels of theory and, by using basis set extrapolation techniques, predicts dimer energies 

at the CCSD(T) level. The small dimer energies for noble gases are the result of weak 

dispersion interactions.  For example, the Ar-Ar dimer energy23 is 0.270 kcal/mol.  On 

the otherhand, interactions between hydrogen bonded dimers are dominated by 

electrostatic interactions.  For example, an accurate estimate27 of the water dimer energy 

is 5.02 kcal/mol.  Lower levels of ab-initio theory28, e.g. MP2/6-311++G(3d,p) and 

B3LYP/6-311++G(3d,p), can be used to reasonably estimate dimer energies and 

geometries of hydrogen bonded systems.  MacKerell20 has fit Lennard-Jones parameters 

to MP3/6-311++G(3d,3p), which appears to be a reasonable compromise between 

accuracy and CPU expense.   

However, a more important question arises: is the functional form of the force 

field with point charges and a Lennard-Jones potential accurate enough that ab-initio data 

can be used?  This work will attempt to answer this question by finding vdW parameters 

for water by two different approaches.  In the first approach, vdW parameters are found 
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for water with and without polarizability present by optimizing to heats of vaporization 

and density through molecular dynamics (MD) simulations.  The resulting vdW 

parameters are tested on dimer energies calculated at the MP2/cc-pVTZ level with the 

counterpoise correction29 utilized to account for basis set superposition error (BSSE).  It 

is shown that polarizability makes a significant improvement in reproducing ab-initio 

dimer energies.  However, it would be interesting to check how well vdW parameters 

optimized to ab-initio dimer data reproduce liquid phase properties.  In the second 

procedure, vdW parameters for water are found by fitting to dimer energies calculated at 

the BSSE corrected MP2/cc-pVTZ level.  The heats of vaporization and density are 

calculated from the ab-initio optimized parameters.  Though polarization makes a 

significant improvement, it is shown the ab-initio optimized parameters poorly reproduce 

the liquid phase properties.  In the last section, dimer energies on the water dimer 

potential energy surface are explored.  Pure electrostatic contributions30 to the ab-initio 

dimer energy are compared to the electrostatic interactions predicted by point charges.  

The results indicate that the errors in fitting vdW parameters to ab-initio data for water is 

not due to a limitation in the level of ab-initio theory (BSSE corrected MP2/cc-pVTZ), 

but a fundamental limitation in assuming atom centered point charges and a 12-6 

Lennard-Jones vdW potential. 

In earlier studies1-23, the vdW parameters Aab and Cab are usually expressed in 

terms of σ and ε. 
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In this case, 12
abababA σε=   and 62 abababC σε= .  For a given atom type a, vdW parameters 

σa and εa are assigned.  The combining rule for vdW parameters between two different 

atom types a and b in AMBER or CHARMM is baab σσσ +=  and baab εεε = .  The 

minimum of V(r) in 7.1.2 occurs at σab, and V(σab) = εab is the well-depth at the minimum.  

This functional form is particularly convenient for determining vdW parameters of noble 

gases.  For example, the dimer distances σaa and well-depths εaa for He-He, Ne-Ne, and 

Ar-Ar dimers calculated23 at the CCSD(T)/t-aug-cc-pV5Z level are 3.00, 3.16, and 3.80 

Å, respectively for the minimum energy separation distance and 0.020, 0.080, and 0.262 

kcal/mol for the well-depth, respectively. 

In our studies, it was found that the parameter surface of fitting σ and ε for carbon 

and hydrogen to heats of vaporization and density of alkanes, alkenes, and aromatic 

compounds has a flat surface or shallow minimum.  In other words, multiple sets of 

significantly different parameters yielded similar quality of fits to heats of vaporization 

and density for carbon and hydrogen containing compounds.  In order to reduce the 

number of parameters, a different combining rule for Aab and Cab is employed in this 

study.  Molecular dipole-dipole dispersion coefficients mol
ABC  have been determined 

experimentally31-36.  The molecular dispersion coefficient between a pair of molecules A 

and B mol
ABC  can be modeled as a pairwise sum of atom-atom contributions, i.e. 

∑∑
∈ ∈

=
Aa Bb

ab
mol
AB CC .  Parameters for C, H, N, O have been fit to the experimental molecular 

dispersion coefficients37 38 through the Slater-Kirkwood39 combination rule (see appendix 

C.3 for a derivation) 
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In 7.1.3, Cab is the dispersion coefficient between atom a and atom b, and αa and αb are 

the atomic polarizabilities for atom a and atom b, respectively.  In this study, the 

dispersion parameters Caa and αa determined by Yang and Wu38 for the Slater-Kirkwood 

combination rule are employed in the Lennard-Jones potential.  The repulsion parameter  

Aab is expressed in terms of atom type repulsion parameters Aa and Ab by the following 

combination rule: 

baab AAA =      7.1.4 

The atom type repulsion parameters Aa are optimized to heats of vaporization and 

density. 

 The choice of atomic point charges is particularly important to condensed phase 

properties.  In non-polarizable force fields, charges optimized to the electrostatic 

potential (ESP) calculated at the HF/6-31G* level40 have been employed because they 

overestimate the gas phase dipole by ~20-30%.  For example, the experimental gas phase 

molecular dipole of water is 1.85 D, while HF/6-31G* predicts the molecular dipole to be 

2.19 D.  Another example is ammonia.  The experimental and HF/6-31G* molecular 

dipoles of ammonia are 1.5 D and 1.95 D, respectively.  It is interesting to note that the 

B3LYP/cc-pVTZ level, which has been employed throughout this work, predicts the 

molecular dipole of water and ammonia to be 1.91 D and 1.58 D, respectively.  In this 

study, atomic point charges are found for water and ammonia by optimizing to the ESP 

calculated at the B3LYP/cc-pVTZ level.  In order to account for condensed phase effects 

in the atomic charges, a charge scale factor λch is an optimizable parameter in the vdW 
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optimizations.  Hence, the atom type repulsion parameter Aa and the charge scale factor 

λch are optimized to heats of vaporization density. 

 

7.2 Methods 

Dispersion Parameters Cab 

 As mentioned in the introduction, the Slater Kirkwood combination rule along 

with the parameters optimized by Yang and Wu were employed for the calculation of the 

Cab dispersion term in the Lennard-Jones potential 7.1.1.  In the published values, the 

atomic polarizabilities αa have been transformed into ‘effective’ number of electrons Na: 

22 9/16 a
aaa CN α≡  (7.1.3) with a similar expression for Nb.  In terms of Na and Nb, the 

Slater-Kirkwood equation is given by: 
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These parameters have been used, with a caveat.  The vdW parameters on polar 

hydrogens (i.e. hydrogens attached to O or N) are either zero or set to small values in 

OPLS.  Simulations of liquid water have indicated that small vdW parameters on the 

polar hydrogens are preferred when considering heats of vaporization and density.  Ab-

initio calculations of water dimers also have indicated that vdW parameters on polar 

hydrogen should be small.  For this reason, the dispersion coefficients for polar 

hydrogens CHH were set to zero.  All of the dispersion contribution is placed on the 

oxygen COO and nitrogen CNN atom types.  Therefore, two new atom types were 

introduced: OH2 for oxygen with 2 attached hydrogens, and NH3 for nitrogen with 3 

attached hydrogens.   Caa and Na parameters were found for the two new atom types by 



 141

fitting to molecular dispersion coefficients calculated by the model of Yang and Wu.  The 

standard non-linear least squares Levenberg-Marquardt algorithm41 has been employed to 

optimize the parameters. 

 

Force Field Parameters 

 Point charges were optimized to the ESP and probed polarizabilities were 

optimized to the response ESP calculated at the B3LYP/cc-pVTZ level for water and 

ammonia.  All ab-initio calculations were performed with Gaussian 9842.  The charges, 

polarizabilities, and polarizability exponents are given in Table 7.1 for water and Table 

7.2 for ammonia.  The rigid TIP3P43 water geometry, with a fixed bond length of 0.9572 

Å and a fixed bond angle of 104.52°, was employed in the water model.  The ammonia 

bond lengths were constrained to 1.01 Å with the SHAKE44 algorithm, while the 

AMBER6 force field was employed to model the flexible bond angles.  The H-N-H 

equilibrium bond angle and force constant are 109.50° and 35.0 kcal/mol/°, respectively.   

 

Element Charge q (e) Polarizability α (Å3) Exponent β (Å-1) 
O     -0.6936 0.6822 1.548 
H      0.3468 0.2522 2.156 
Table 7.1 Initial charges, polarizabilities, and polarizability exponents for water 
optimized at the B3LYP/cc-pVTZ level. 
   

Element Charge q (e) Polarizability α (Å3) Exponent β (Å-1) 
N -0.8871 1.0865  1.2866 
H 0.2957     0.29731 1.9817 
Table 7.2 Initial charges, polarizabilities, and polarizability exponents for ammonia 
optimized at the B3LYP/cc-pVTZ level. 
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Calculation of Heats of Vaporization and Density 

 Molecular dynamics (MD) simulations were performed through the sander 

module of AMBER6.  Simulations were run with a 1 fs time steps in both the NVT and 

NPT ensembles, which were maintained in those conditions with a Berendsen45 

thermostat.  A non-bond cutoff of 8Å with Particle Mesh Ewald (PME)46 and a 

continuum correction for the Lennard-Jones potential were employed to calculate long 

range interactions.  In the simulations with polarization, induced dipoles were propagated 

by the Car-Parinello Lagrangian scheme46 (see section 4.6), with coupling constant τμ = 

0.1 ps.  The protocol to calculate the heat of vaporization and density from molecular 

dynamics simulation is given by: 

1) Equilibrate the solvent with 50ps of simulation in the NVT ensemble, with 

Berendsen temperature coupling constant, τT = 0.1 ps. 

2) Equilibrate the solvent with 150ps in the NPT ensemble with Berendsen 

temperature and pressure coupling constants, τT = 0.1 ps and τP = 0.1 ps. 

3) Simulate the solvent for 300ps in the NPT ensemble with Berendsen temperature 

and pressure coupling constants, τT = 1.0 ps and τP = 1.0 ps.  Average the density 

and non-bond energy Eliq over the simulation and write the coordinates of the 

solvent box to an output file every 2 ps.  The coordinates of the solvent molecules 

are used to calculate the intra-molecular non-bond energy Eintra.  The intra-

molecular non-bond energy is averaged over solvent molecules and time.  

The heat of vaporization is calculated by: 

RTEEH intraliquidvap +−=    7.2.3 
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Optimization to Heats of Vaporization and Density 

 The repulsion parameters Aaa and the charge scale λch parameter were optimized 

to heats of vaporization Hvap and density d using the non-linear least squares Levenberg-

Marquardt algorithm41.  Since the simulation averaged properties Hvap and d are accurate 

to the second or third decimal place, numerical derivatives of heat of vaporization Hvap 

and density d were estimated by a fit to the data.  The parameters were perturbed forward 

and backward, and a derivative was fit to a straight line passing through the three points.  

The derivative step size is 0.01*X, where X is the current value of the parameter.  Fully 

automated code was written to optimize the parameters and keep track of the simulations 

on multiple processor computer clusters.   

 

Ab-initio Dimer Test 

Three configurations of the water dimer illustrated in Figure 7.1 were optimized 

at the MP2/cc-pVTZ level.  After the initial optimization, the relative geometries of the 

waters were translated along the directions of the arrows in Figure 7.1.  Ab-initio energies 

of the dimer geometries were calculated along the trajectory at the MP2/cc-pVTZ level 

with BSSE accounted for through the counterpoise correction29.  The dimer energy 

between two molecules A and B is the energy of the A-B complex minus the energy of A 

and B, i.e. Edimer = E(AB) – E(A) – E(B). 
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A. Dimer 1 B. Dimer 2 C. Dimer 3

 

Figure 7.1 Water dimer geometries. 

 

Optimization to Ab-initio Energy 

 The vdW repulsion parameter AO for water was optimized to the ab-initio water 

dimer energies calculated along the trajectories in Figure 7.1 at the BSSE corrected 

MP2/cc-pVTZ level.  As mentioned earlier, the charges and probed polarizabilities were 

calculated at the B3LYP/cc-pVTZ level.  However, the difference between charges and 

polarizabilities fit to data calculated at the MP2/cc-pVTZ level and the B3LYP/cc-pVTZ 

level are neglible.  In order to illustrate this, the charges and polarizabilites optimized at 

the MP2/cc-pVTZ level and the B3LYP/cc-pVTZ level are given in Table 7.3.  Notice 

the charge on oxygen is -0.6992 at the MP2/cc-pVTZ level and -0.6936 at the B3LYP/cc-

pVTZ level.  This difference does not significantly affect the results. 
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Element Charge q (e) Polarizability α (Å3) Exponent β (Å-1) 
O    -0.6992 (-0.6936) 0.6847 (0.6822) 1.5326 (1.548) 
H     0.3496 (0.3468) 0.2385 (0.2522) 2.1783 (2.156) 
Table 7.3 Charges, polarizabilities, and polarizability exponents for water calculated at 
the MP2/cc-pVTZ and (B3LYP/cc-pVTZ) level. 
 

The charge scale factor was set to 1.0 in order to reproduce dimer energies at long range.  

The parameters were optimized through the standard non-linear least squares Levenberg-

Marquardt algorithm.  Only energies within 5kcal/mol of the dimer energy minimum 

were used in the fit, in order to discard points at short range when large exchange 

repulsion energies dominate the ab-initio dimer energy and the 12-6 potential function is 

not expected to accurately account for this. 

 

7.3 Results 

 

Cab Dispersion Optimization 

 The parameters Caa and Na for the atom types: H, C(sp3), C(sp2), C(sp), N, O(sp3), 

and O(sp2) are taken from the model of Yang and Wu38, and are listed in Table 7.4.  The 

new atom type parameters for OH2 and NH3 were fit to 504 pairs of molecular 

dispersion coefficients calculated using the parameters of Yang and Wu as reference data.  

The OH2 and NH3 parameters are also listed in Table 7.4.  Notice the parameters for 

OH2 and NH3 are larger than the parameters for N, O(sp3), and O(sp2) because the OH2 

and NH3 parameters implicitly take into account hydrogen. 
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Atom Type Caa Na 
Ha 39.00 0.80 
C(sp3)a 303.7 2.49 
C(sp2)a 377.0 2.49 
C(sp)a 409.8 2.49 
Na 265.5 2.82 
O(sp3)a 160.0 3.15 
O(sp2)a 175.3 3.15 
OH2 624.3 4.46 
NH3 1224.0 5.16 
Table 7.4 Dispersion parameters for Slater-Kirkwood combination rule.   
               aValues taken from reference35. 
 

Some examples of molecular dispersion coefficients calculated from the new OH2 and 

NH3 parameters are compared to the molecular dispersion coefficients using the 

parameters of Yang and Wu in Table 7.5.  Notice the molecular dispersion coefficients 

calculated from the new optimized parameters match the model of Yang and Wu to the 4-

5 significant figures.  The RMSD fit to the Yang and Wu model for the 504 molecular 

pairs is 0.0209 kcal/mol/Å6.  The experimental values (if available) are also given for 

comparison.  The main reason for not fitting directly to experimental data was to avoid 

the possibility of over-fitting parameters to insufficient experimental data. 

Pair New Model Yang Modela Experimentb 
H2O – H2O 624.262 624.293 624.1 
H2O – methane 1054.501 1054.493 1051.9 
H2O – NH2CH3 1616.691 1616.657 - 
H2O – CO2 1140.734 1140.829 1168.0 
H2O – benzene 3823.546 3823.601 3822.4 
H2O – NH3 872.332 872.312 872.6 
NH3 –  NH3 1223.980 1223.969 1226.8 
NH3 – methane 1482.584 1482.583 1479.9 
NH3 – benzene 5380.787 5380.803 5390.5 
NH3 – CO2 1593.235 1593.270 1630.1 
NH3 – phenol 5816.642 5816.648 - 
H2O – dimethyl ether 2112.946 2112.983 - 
Table 7.5 Molecular Dispersion Coefficients in (kcal/mol/Å6).  a  Calculated values using 
parameters from reference38.  bExperimental values taken from references31-36 38. 
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Optimization of Water to Heats of Vaporization and Density 

 The dispersion parameter for water was placed on the oxygen (COO = 624.3) as 

described in the previous section, while the hydrogen dispersion parameter was set to 

zero (CHH = 0.0).  The repulsion parameter on hydrogen AH was set to 1.0, while the 

repulsion parameter on oxygen AO and the charge scale factor λch factor were optimized 

to heats of vaporization and density for a range of temperatures: 273°, 298°, 323°, and 

348°.  The optimized parameters are given for the models with and without polarizability 

in Table 7.6.  The original non-polarizable TIP3P43 46 water model is also given for 

comparison.  In order to illustrate the actual size of the repulsion parameter in terms of an 

atomic radius, the repulsion and dispersion term were converted in terms of σ and ε, i.e. 
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=ε .  As expected, the charge scale factor is smaller 

for parameters optimized with polarizability (λch = 1.130) than without (λch = 1.255).  The 

charge scale factors agree with the results from the 10 alanine peptide in chapter 6.  The 

non-polarizable charges optimized to a single alanine had to be scaled up by 25% to best 

reproduce the electrostatic potential for 10 alanine in the α helical conformation, while 

the charges with polarizability need only be scaled up by 15%.  In the model with 

polarizability, the repulsion parameter is larger with σO = 1.86 Å than in the model 

without polarizability σO = 1.76 Å.  The non-polarizable model can be compared with the 

TIP3P water model, which was also fit to heats of vaporization and density.  The non-

polarizable model charges are slightly larger than TIP3P and the repulsion parameter is 

slightly smaller than TIP3P.  It should be noted that TIP3P was optimized with a 9Å non-

bond cutoff and no long range corrections for electrostatic or Lennard-Jones potential, 
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while the new optimized models employed both PME and continuum corrections to the 

Lennard-Jones. 

 

 Polarizable Non-Polarizable TIP3Pa 
σO (Å)     1.860     1.756     1.768 
εO (kcal/mol)     0.118     0.167     0.152 
AOO (10-3 kcal/molÅ12)   822.0  581.4  582. 
AHH (10-3 kcal/molÅ12)     1.0     1.0     0.0 
COO (kcal/molÅ6)  624.3  624.3  595. 
CHH (kcal/molÅ6)     0.0     0.0     0.0 
λch     1.130     1.255     1.203 
qO    -0.7836    -0.8704   -0.834 
qH     0.3918     0.4352    0.417 
Table 7.6 Optimized parameters for water with and without polarizability present.  
aValues taken from reference47. 
 

The actual values of the heats of vaporization are given in Table 5.4 and the densities are 

given Table 7.7.  Notice the density d is a monotonically decreasing function of 

temperature.  This is indicative of the simple atom centered point charge water model that 

is studied here.  The values of the parameters are fit in such a way that the error in density 

is balanced for the different temperatures.  For example, at a temperature of 248° K, the 

density in the non-polarizable model (d = 1.0252 g/ml) is overestimated compared to 

experiment (d = 0.9896 g/ml).  However, at a temperature of 348° K, the density (d = 

0.9466 g/ml) is underestimated compared to experiment (d = 0.9748 g/ml).  Similar 

trends follow in the polarizable water model and in the TIP3P water model. 
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T (K°) Hvap (no 
polarizability) 

Hvap 
(polarizability) 

Hvap 
(experiment) 

273 10.93 11.054 10.76 
298 10.68 10.701 10.51 
323 10.42 10.360 10.25 
348 10.18 10.032  9.991 
RMSD 0.175 0.185  
Table 7.7 Heats of vaporization (kcal/mol) for optimized water models with and without 
polarizability.   
 

T (K°) d (no polarizability) d (polarizability) d (TIP3Pa) d (experiment) 
248 1.0252 1.0263 1.049 0.9896 
273 1.0108 1.0179 1.023 0.9998 
298 0.9921 0.9956 1.002 0.9970 
323 0.9710 0.9729 0.977 0.9880 
348 0.9466 0.9479 0.953 0.9748 
RMSD 0.0223 0.0229 0.0306  
Table 7.8 Density (g/ml) for optimized water models with and without polarizability.  
aValues taken from reference44. 
 

 The performance of the non-polarizable water model is similar to that of TIP3P.  

The heat of vaporization at T = 298° K is 10.68 (kcal/mol) for the non-polarizable model, 

10.45 for TIP3P42, and 10.51 for the experimental result.  The RMSD in density over the 

temperatures from 248-348° K is 0.0223 g/ml for the non-polarizable model, 0.0229 g/ml 

for the polarizable model, and 0.0306 g/ml for TIP3P.  This is interesting because the two 

proposed models had 2 optimizable parameters (AO and λch), while the TIP3P model had 

3 optimizable parameters, (σO, εO, and λch).  This can be partially explained by the 

dispersion parameter COO between the proposed model (624.3) and TIP3P (595) are 

similar (see Table 7.6).  However, it also indicates the possibility of over-fitting too many 

vdW parameters to the data.  Both the charge scale λch and well-depth parameter ε model 

the attractive interaction between the molecules.   When considering heat of vaporization 



 150

and density only, there is perhaps not enough information to uniquely assign both λch and 

ε.   

 The effect of placing a repulsion parameter on the water hydrogen was also 

investigated.  In table 7.9, the repulsion parameter on hydrogen AH was varied from 0.01 

to 20, while the charge scale λch and the oxygen repulsion parameter σO (AO) were 

optimized.  As the hydrogen repulsion parameter increased, the repulsion on oxygen 

decreased and the charge scale λch increased to compensate.  It appears that the lowest 

error in both heat of vaporization and density occurred for the smallest value of hydrogen 

repulsion parameter.  This is perhaps the reason why TIP3P32 47, TIP4P43 47, and TIP5P49 

models do not have vdW parameters on the polar hydrogen.  A small, but non-zero 

repulsion parameter was placed on hydrogen AH = 1.0 for purposes of simulational 

stability. 

 

AH = (AHH)1/2 σO λch d (RMSD) Hvap (RMSD) 
0.01 1.770 1.227 0.0218 0.2782 
0.1 1.767 1.229 0.0218 0.2855 
0.5 1.761 1.241 0.0215 0.3029 
1.0 1.756 1.255 0.0224 0.3158 
5.0 1.724 1.320 0.0292 0.3531 
10.0 1.693 1.360 0.0345 0.3617 
20.0 1.628 1.397 0.0399 0.3497 
Table 7.9 Optimization results for water without polarizability are given for different 
repulsion parameters on hydrogen.   
 

vdW Optimization of Ammonia 

 A model for ammonia was optimized with and without polarizability to heats of 

vaporization and density through a procedure similar to that employed for water 

described earlier.  The optimized parameters for ammonia are given in Table 7.10.  In this 
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case, the charge scale λch is 1.214 without polarizability and 1.104 with polarizability.  

This can be compared with the scale factors for water, 1.255 without polarizability and 

1.130 with polarizability.   

 

 Non-Polarizable Polarizable 
σN (Å)       1.858       1.8785 
εN  (kcal/mol Å6)       0.225       0.211 
ANN (10-3 kcal/molÅ12) 1661.1 1773.7 
AHH (10-3 kcal/molÅ12)     25.0    25.0 
CNN (kcal/molÅ6)  1224.0 1224.0 
CHH (kcal/molÅ6)        0.0       0.0 
λch        1.214       1.104 
qN       -1.3191      -1.1991 
qH        0.4397       0.3997 
Table 7.10 Optimized parameters for ammonia with and without polarizability present.   
 

As in the case for water, the repulsion parameter for polar hydrogen AH was 

varied, while the charge scale λch and the nitrogen repulsion parameter AN (σN) were 

optimized for the non-polarizable ammonia model.  The hydrogen repulsion parameter 

AH was varied from 0.1 to 50, and the results are given in Table 7.11.  In contrast to water 

model, the RMSD errors in both heat of vaporization and density decreased when 

repulsion is placed on the polar hydrogen of the non-polarizable ammonia model.  A 

value of AH = 5.0 was selected as a value to study ammonia.  The heats of vaporization 

and density are given in Tables 7.12 and 7.13, respectively.  It is interesting to note that 

RMSD errors for heat of vaporization and density are higher in the polarizable model 

than in the non-polarizable model with the repulsion parameter AH = 5.0.   
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AH = (AHH)1/2
 σN (Å) λch d (RMSD) 

(g/ml) 

Hvap (RMSD) 
(kcal/mol) 

0.1 1.915 1.205 0.01344 0.0934 
1.0 1.901 1.203 0.01124 0.0686 
5.0 1.858 1.214 0.00798 0.0401 
10 1.809 1.222 0.00810 0.0300 
20 1.711 1.226 0.00743 0.0164 
50 1.435 1.202 0.00737 0.0087 
Table 7.11 Effect of placing a repulsion parameter AH on the polar hydrogen of 
ammonia.  Average RMSD errors in heats of vaporization and density for simulations 
without polarizability. 
 

  T 
(K°) 

Hvap (no polarizability) Hvap (polarizability) Hvap (experiment) 

233 5.713 5.803 5.648 
243 5.537 5.611 5.531 
253 5.431 5.406 5.408 
263 5.240 5.221 5.277 
273 5.096 5.036 5.140 
RMSD 0.040 0.094  
Table 7.12 Heats of vaporization (kcal/mol) for optimized parameters for ammonia with 
and without polarizability. 
 

T (K°) d (no polarizability) d (polarizability) d (experiment) 
233 0.6997 0.7043 0.6896 
243 0.6810 0.6847 0.6775 
253 0.6676 0.6625 0.6649 
263 0.6446 0.6414 0.6519 
273 0.6266 0.6193 0.6385 
RMSD 0.00799 0.0123  
Table 7.13 Density (g/ml) for optimized parameters for ammonia models with and 
without polarizability.   
 

Ab-initio Dimer Test 

The polarizable and non-polarizable water models obtained by optimizing the 

charge scale λch and oxygen repulsion parameter AO (σO) to heats of vaporization and 

density were tested on ab-initio dimer energies.  The dimer energies were calculated at 

the BSSE corrected MP2/cc-pVTZ level along the three trajectories illustrated in Figure 
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7.1.  In Figure 7.2, the dimer energy calculated by ab-initio, the polarizable model, and 

the non-polarizable model are plotted as the O..H distance is varied for dimer 1 in Figure 

7.1A.  Similarly the dimer energies along the trajectories for dimer 2 in Figure 7.1B and 

dimer 3 in Figure 7.1C are given in Figure 7.3 and Figure 7.4, respectively. 
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Figure 7.2 Polarization Energy (kcal/mol) for Dimer 1 in Figure 1A.  r (Å) is the O..H 
distance. 
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Figure 7.3 Polarization Energy (kcal/mol) for Dimer 2 in Figure 1B.  r is the O..O 
distance. 
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Figure 7.4 Polarization Energy (kcal/mol) for Dimer 3 in Figure 1C.  r is the O..O 
distance. 

 

The minimum dimer energies and distances at the minimum energy along the 

trajectory are given in Table 7.14 and Table 7.15, respectively.  Both the polarizable and 

non-polarizable water models have dimer energies which are lower than the ab-initio 

dimer energy for all three trajectories.  For dimer 1, the minimum along the trajectory for 

the ab-initio dimer energy is E = -4.61 kcal/mol which occurs at the O..H distance r = 

1.94 Å.  This can be compared to the dimer energy along the trajectory for the non-

polarizable water model E = -6.63 kcal/mol at r = 1.85 and for the polarizable water 

model E = -5.34 kcal/mol at r = 1.92.  The non-polarizable water model agrees with the 

dimer energy for TIP3P43 of -6.50 kcal/mol.  The larger dimer energy for the non-

polarizable model as compared to the polarizable model can be attributed to a larger 

charge scale and a smaller repulsion parameter.  Similar results occur for the other two 

water dimers.  The errors in the dimer energies for the polarizable model range from 0.73 

kcal/mol to 1.73 kcal/mol, while in the non-polarizable model the errors in dimer energy 

range from 2.02 to 2.84 kcal/mol. 
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 Dimer 1 Dimer 2 Dimer 3 
Ab-initio -4.61 -2.94 -2.15 
Polarizable Model -5.34 -4.29 -3.88 
Non-Polarizable Model -6.63 -5.54 -4.99 
Table 7.14 Minimum energies (kcal/mol) along trajectories in Figure 7.1 for water  
parameters (Table 7.6) optimized to ab-initio data. 

 

 Dimer 1 
r = O..H 

Dimer 2 
r = O..O 

Dimer 3 
r = O..O 

Ab-initio 2.01 3.11 3.27 
Polarizable Model 1.92 2.88 3.03 
Non-Polarizable Model 1.85 3.00 2.91 
Table 7.15 Distances of minimum dimer energy r (Å) along trajectories in Figure 7.1 for 
water parameters (Table 7.6) optimized to ab-initio data. 
 

 

Optimization to Dimer Energies 

 The vdW repulsion parameter for oxygen AO (σO) was optimized to the ab-initio 

energies for all three dimer trajectories in Figure 7.1, and the charge scale factor λch was 

set to 1.0.  The optimized parameters for AO (σO) are given in Table 7.16. 

 

 Polarizable Non-Polarizable
σO (Å)     1.800      1.742 
εO (kcal/mol)     0.143      0.175 
AOO (10-3 kcal/molÅ12)   679.2  557.8 
AHH (10-3 kcal/molÅ12)      1.0      1.0 
COO (kcal/molÅ6)  624.3   624.3 
CHH (kcal/molÅ6)      0.0       0.0 
λch      1.0       1.0 
qO     -0.6936      -0.6936 
qH      0.3468       0.3468 
Table 7.16 Ab-initio energy optimized parameters for water with and without 
polarizability present.   
 

The ab-initio, polarizable model, and non-polarizable model dimer energies for dimer 1, 

dimer 2, and dimer 3 are plotted in Figures 7.5, 7.6, and 7.6, respectively.  The minimum 
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dimer energies and distances at the minimum energy along the trajectory are given in 

Table 7.17 and Table 7.18, respectively.   
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Figure 7.5 Dimer energies along dimer 1 in Figure 7.1A for the models optimized to ab-
initio dimer energy. 
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Figure 7.6  Dimer energies along dimer 2 in Figure 7.1B for the models optimized to ab-
initio dimer energy. 
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Figure 7.7 Dimer energies along dimer 3 in Figure 7.1C for the models optimized to ab-
initio dimer energy. 
 

 Dimer 1 Dimer 2 Dimer 3 
Ab-initio -4.61 -2.94 -2.15 
Polarizable Model -4.26 -3.47 -3.15 
Non-Polarizable Model -3.88 -3.37 -3.06 
Table 7.17 Minimum energies (kcal/mol) along trajectories in Figure 7.1 for water 
parameters (Table 7.6) optimized to heats of vaporization and density. 

 

 Dimer 1 
r = O..H 

Dimer 2 
r = O..O 

Dimer 3 
r = O..O 

Ab-initio 2.01 3.11 3.27 
Polarizable Model 1.94 3.00 3.02 
Non-Polarizable Model 1.97 2.98 3.00 
Table 7.18 Distances of minimum dimer energy r (Å) along trajectories in Figure 7.1 for 
water parameters (Table 7.6) optimized to heats of vaporization and density. 
 

At long range, the dimer energy is largely determined by the interaction between 

permanent molecular dipoles.  Since the electrostatic potential (ESP) optimized point 

charges reproduce permanent molecular dipole moments, the ab-initio optimized 

parameters reproduces the long range dimer energy for all three dimers in Figures 7.5 – 

7.7 because the charge scale λch was set to 1.0.  Notice in dimer 1 (Table 7.17), the ab-

initio dimer energy (E = -4.61 kcal/mol) is lower than the non-polarizable model dimer 
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energy (E = -3.88 kcal/mol), while the ab-initio energy in dimer 2 (E = -2.94 kcal/mol) 

and dimer 3 (E = -2.15 kcal/mol), is greater than the non-polarizable model energy in 

dimer 2 (E = -3.37 kcal/mol) and dimer 3 (E = -3.06 kcal/mol).  A similar result holds for 

the polarizable model.  At short range, the repulsion parameter for oxygen AO (σO) was 

optimized so that the difference between the model and ab-initio dimer energy is a 

minimum for all three dimers.   

 The ab-initio optimized vdW parameters were tested in simulations by calculating 

heats of vaporization and density.  In Table 7.17, the heats of vaporization are given for 

the models optimized to ab-initio dimer energies.  Notice the non-polarizable vdW 

underestimate the heat of vaporization by 50% with an RMSD of 4.95 kcal/mol.  The 

polarizable vdW parameters perform significantly better with an RMSD of 2.58 kcal/mol.  

However, both sets of parameters optimized to ab-initio data perform poorly when 

compared to the water models optimized to the liquid data: heats of vaporization and 

density.  Recall the RMSD for heat of vaporization for the water models optimized to the 

liquid data is 0.175 kcal/mol and 0.185 kcal/mol for the non-polarizable and polarizable 

models, respectively.   

 

T (K°) Hvap (no polarizability) Hvap (polarizability) Hvap (experiment) 
273 5.83 8.25 10.76 
298 5.58 7.95 10.51 
323 5.31 7.66 10.25 
348 4.99 7.36  9.991 
RMSD 4.95 2.58  
Table 7.19 Heats of vaporization (kcal/mol) for optimized water models with and 
without polarizability.   
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 In Table 7.18, the densities are given for the water models optimized to ab-initio 

data.  The RMSD in density for the ab-initio optimized parameters are 0.251 and 0.0515 

g/ml for the non-polarizable and polarizable water models, respectively.  This can be 

compared to the RMSD in density for the water models optimized to liquid data, 0.0223 

and 0.0229 g/ml for the non-polarizable and polarizable water models, respectively.   

 

T (K°) d (no polarizability) d (polarizability) d (experiment) 
248 0.8943 1.0236 0.9896 
273 0.8497 0.9928 0.9998 
298 0.7989 0.9608 0.9970 
323 0.7391 0.9275 0.9880 
348 0.6616 0.8905 0.9748 
RMSD 0.215 0.0515  
Table 7.20 Density (g/ml) for optimized water models with and without polarizability.  
 

Water Dimer Potential Energy Surface 

 A set of 10 water dimers27 has been proposed as a test for water models49.  The 

dimers are illustrated in Figure 7.8.  Cisneros30 et. al. has calculated the pure electrostatic 

component of the ab-initio dimer energies at the BSSE corrected B3LYP/aug-cc-pVTZ 

and B3LYP/6-31G* levels through the Constrained Orbital Variation (CSOV) method51.  

The electrostatic energies due to a set of point charges optimized to the ESP calculated at 

the B3LYP/6-31G* level were tested on the geometries provided by Cisneros.   
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Figure 7.8 10 Water Dimers employed in water model tests. 

 

Dimer Number Point Charge CSOV Electostatic 
Energya 

Total Dimer Energya 

1 -5.31 -8.32 -5.62 
2 -4.90 -7.02 -4.94 
3 -5.08 -7.00 -4.91 
4 -4.66 -6.23 -4.20 
5 -4.33 -5.59 -3.80 
6 -4.51 -5.43 -3.73 
7 -3.57 -4.35 -3.07 
8 -0.99 -1.31 -1.20 
9 -4.07 -4.79 -3.07 
10 -3.22 -3.09 -2.33 
 
Table 7.21 Dimer energies for 10 water dimers in Figure 7.8.  The CSOV electrostatic 
energy and total dimer energy is calculated at the BSSE corrected B3LYP/6-31G* level.  
The point charges were fit to the ESP calculated at the B3LYP/6-31G* level. 
aValues taken from reference30. 
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For each of the 10 dimers, the total ab-initio dimer energies, the CSOV electrostatic 

dimer energies, and the point charge electrostatic dimer energies are given in Table 7.21.  

In dimer 1, the CSOV electrostatic energy is -8.32 kcal/mol, while the point charge 

electrostatic energy is -5.31 kcal/mol.  The large discrepancy between the correct 

electrostatic energy and the electrostatic energy the point charges predict is observed for 

most of the other dimer geometries.  However, it is interesting to note that the point 

charge electrostatic energy is very close to the total dimer energy.  For example, in dimer 

1, the point charge energy is -5.31 kcal/mol and the total dimer energy is -5.62 kcal/mol.  

A similar trends holds for the other 9 dimers, i.e. the point charge electrostatic energy is 

within 1 kcal/mol of the total dimer energy.  This remarkable coincidence has also been 

pointed out by Dunitz and Gavezzotti52 when calculating dimer energies between 

hydrogen bonded systems.   

 

7.4 Conclusions 

 A polarizable and non-polarizable model for water and ammonia has been 

proposed by fitting a single vdW repulsive parameter (AO for water and AN for ammonia) 

and a charge scale factor λch to experimental heats of vaporization and density.  The 

dispersion parameters were fit separately to experimental molecular dispersion 

coefficients.  The performance of the water models is similar to the performance of the 

TIP3P water model.  The non-polarizable charge scale factor λch (relative to charges 

optimized to the ESP calculated at the B3LYP/cc-pVTZ level) was found to be 1.255 for 

water and 1.214 for ammonia.  The polarizable charge scale factor λch was found to be 

1.130 for water and 1.104 for ammonia.  From chapter 6, the charge scale factor needed 
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to scale single alanine charges to best reproduce the electrostatic potential around a 10 

alanine peptide in the α helical conformation was 1.25 for non-polarizable charges and 

1.15 for polarizable charges.  More research is required, but this suggests that atomic 

point charges can be found by fitting to the ESP calculated at the B3LYP/cc-pVTZ level 

and then scaling up by 20-25% for a non-polarizable force field and scaling up by 10-

15% for a polarizable force field. 

 The polarizable and non-polarizable water models optimized to heats of 

vaporization and density were tested on dimer energies calculated at the BSSE corrected 

MP2/cc-pVTZ level along three water dimer trajectories.  The errors in the dimer 

energies for the polarizable model range from 0.73 kcal/mol to 1.73 kcal/mol, while in 

the non-polarizable model the errors in dimer energy range from 2.02 to 2.84 kcal/mol.   

 The reverse procedure was also tested.  The vdW repulsion parameter AO was fit 

to the ab-initio dimer data and the charge scale factor λch was set to 1.0 to reproduce ab-

initio dimer energies at long range.  The resulting ab-initio optimized parameters were 

tested by calculating heats of vaporization and density.  Though polarization made a 

significant improvement, large errors were found for these quantities.  The non-

polarizable ab-initio water model underestimated the heat of vaporization by 50%.  The 

RMSD for heat of vaporization was 4.95 kcal/mol for the non-polarizable model and 2.58 

for the polarizable model.  This can be compared to the model optimized to heat of 

vaporization and density.  The RMSD for this model was 0.175 kcal/mol and 0.185 

kcal/mol for the non-polarizable and polarizable models, respectively.  Similar trends 

were also found for the density. 
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 The point charge model was tested on a series of 10 water dimers.  Significant 

errors occurred in the point charge electrostatic dimer energies with respect to the CSOV 

electrostatic component of the ab-initio dimer energies.  For example in dimer 1 of Figure 

7.8, the point charge model predicted a dimer energy of -5.31 kcal/mol, while the CSOV 

electrostatic component of the dimer energy was found to be -8.32 kcal/mol.  Similar 

results were found for the other dimers.  This is interesting because it explains why the 

polarizable point charges need to be scaled by 10-15%.  If the point charge model 

underestimates the magnitude of the electrostatic energy at short range, then it can be 

expected that the electric fields due to the point charges are also underestimated.  

Therefore, in order to accurately account for the polarization effect, the point charges 

need to be scaled up.  Another interesting property of the point charge model was found 

for the water dimers.  The electrostatic dimer energy of the point charges is very similar 

to the total dimer energy.  Other reports have indicated that this strange coincidence holds 

for other hydrogen bonded systems.   
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8 Conclusions 
 
8.1 Concluding Remarks 
 
 A polarization model based on induced Gaussian dipoles has been developed for 

the AMBER1-5/GLYCAM6-8 force field.  The induced Gaussian dipole model is based on 

induced charge density and overcomes the polarization catastrophe problem of the 

original induced point dipole model if the Gaussian exponent is sufficiently diffuse.  For 

an induced Gaussian dipole with polarizability α and exponent β, it was shown that the 

maximum size of the Gaussian exponent is given by: 
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 Gaussian multipoles charge distributions were presented as a continuous 

generalization of point multipoles.  Interaction energies, forces, electrostatic potential, 

electric field, and electric field gradients were derived between interacting Gaussian 

multipole charge densities.  Gaussian multipole charge densities (Hermite Gaussian 

functions) are currently being employed to create more sophisticated force fields9-11 

based on electron charge density.  The results obtained for Gaussian multipoles were used 

in the development of the induced Gaussian dipole polarization model. 

 The implementation of the induced Gaussian dipole model into the molecular 

dynamics (MD) simulation program AMBER12 was discussed.  Polarization energy, 

work, and force were derived for a system of induced Gaussian dipoles interacting with a 

set of permanent charges.  It was shown that induced Gaussian dipoles can be 

implemented as a short range correction to the induced point dipole model with a non-

bond cutoff of 5Å.  MD simulations are often performed under periodic boundary 
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conditions, and the Ewald summation method was derived in appendix D for a periodic 

system of point charges and point dipoles.  During an MD simulation, the induced dipoles 

can be found either by solving for the induced dipoles iteratively until self consistency is 

achieved or by propagating the induced dipoles through the Car-Parinello13 14 (CP) 

method.  In the CP method, the induced dipoles and their velocities are treated as 

dynamical variables and propagated in time through equations of motion.  The CP 

method has been shown to be a good approximation with induced Gaussian dipoles for 

the case of water.  Average polarization energies from a box of 341 waters calculated by 

the CP method (Epol = -1313.12 kcal/mol) do not significantly differ from results obtained 

by solving for the induced dipoles exactly (Epol = -1314.72 kcal/mol). 

 In order to obtain parameters for the induced Gaussian dipole model, two methods 

of generating atomic polarizabilities were presented.  In the first method originally 

employed by Applequist15 and Thole16, a set of atom type polarizabilities was fit to a 

large collection of molecular polarizability tensors.  Atom type atomic polarizabilities 

were found for the Gaussian model, the Thole model, and the Applequist point dipole 

model.  It was shown that the Gaussian model performed slightly better than Thole in 

terms of fitting to molecular polarizability tensors.  However, both the Gaussian model 

and the Thole model performed significantly better than the point dipole model.  A 

second method of generating atomic polarizabilities was presented.  This method is based 

on probing a molecule with point charges and calculating the electrostatic potential 

around the molecule.  Atomic polarizabilities were fit to the response potential, which is 

the potential of the molecule in the presence of the charge probes minus the potential of 

the molecule in vacuum.  Probed polarizabilities were shown to be significantly more 
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accurate than the atom type polarizabilities.  For a set of organic molecules, the average 

RMSD error in molecular polarizability was found to be 1.37% for probed polarizabilities 

and 6.42% for atom type polarizabilities.  The average RMSD in response potential was 

found to be 2.01 (10-3 e/Å) for probed polarizabilities and 3.04 for atom type 

polarizabilities.  In addition, molecules with a high degree of anisotropy in the molecular 

polarizability tensor were investigated.  Limitations with assuming isotropic atomic 

polarizabilities were found for the special case of F2.  However, for the sp2 and sp3 

hybridized organic molecules investigated, the isotropic induced Gaussian dipole model 

performed well.  Probed polarizabilities were also found to be conformationally invariant, 

i.e. probed polarizabilities generated in one geometry reproduced the molecular 

polarizability tensor and response potential in other geometries found by rotating torsion 

angles. 

 Probed polarizabilities were generated for the amino acids.  When the 

polarizabilities on the backbone of all the amino acids were constrained to have the same 

value, the average RMSD in response potential increased from 1.66 (10-3 e/Å) to 1.69 (10-

3 e/Å), and the RMSD error in molecular polarizability tensor increased from 0.92% to 

1.01%.  These results suggest the probe method can be used to find accurate atomic 

polarizabilities which are transferable between molecules similar to one another. 

 Atomic point charges were optimized for the amino acids with and without 

polarizability present.  By fitting to multiple conformations of the amino acids, including 

polarization was shown to significantly improve the electrostatic properties of the amino 

acids.  The RMSD in total electrostatic potential averaged over the amino acids was 

found to be 6.70 (10-3 e/Å) without polarizability present and 5.81 (10-3 e/Å) with 
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polarizability present.  When the amino acid backbone charges were constrained to have 

the same value for all amino acids, the averaged RMSD in total electrostatic potential 

was 8.72 (10-3 e/Å) without polarizability present and 6.03 (10-3 e/Å) with polarizability 

present.  The effect of including polarizability was also tested on molecular dipole 

moments.  The RMSD of molecular dipole moment was averaged over conformations 

and found to be 0.421 D for charges without polarizability and 0.186 D for charges with 

polarizability.  When the backbone charges were averaged over amino acids, the RMSD 

of molecular dipole moment was found to be 0.987 D for charges without polarizability 

and 0.258 D for charges with polarizability.  The charges optimized to a single alanine 

were tested on a 10 alanine peptide in the extended and α helical conformation.  In order 

to best reproduce the electrostatic potential of the 10 alanine in the α helical 

conformation, the single alanine charges had to be scaled up by 25% without 

polarizability and 15% with polarizability.   

 A polarizable and non-polarizable model has been found for water and ammonia 

by fitting the repulsive vdW parameter and a charge scale factor to heats of vaporization 

and density.  The non-polarizable charge scale factor (relative to charges optimized to 

B3LYP/cc-pVTZ) was found to be 1.255 for water and 1.214 for ammonia.  The 

polarizable charge scale factor was found to be 1.130 for water and 1.104 for ammonia.  

These results and the results for 10 alanine in the α helical conformation suggest that 

charges fit to the electrostatic potential calculated at the B3LYP/cc-pVTZ level should be 

scaled by 20-25% if polarizability is not present and 10-15% when polarizability is 

present. 
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 The water models optimized to heats of vaporization and density were tested on 

dimer energies calculated at the BSSE corrected MP2/cc-pVTZ level.  The dimer 

energies (along the trajectory in Figure 7.1A) were found to be -4.61 kcal/mol for ab-

initio, -5.34 kcal/mol for the polarizable model, and -6.63 kcal/mol for the non-

polarizable model.  The dimer energy of the non-polarizable model agrees with the dimer 

energy of the non-polarizable TIP3P17 water model of -6.50 kcal/mol.  The lower dimer 

energy of both the non-polarizable and polarizable water models is due to the charges 

being scaled up.    

 A second question was asked during the fitting of vdW parameters: How well 

would water parameters optimized to ab-initio data reproduce the liquid phase heats of 

vaporization and density?  The charge scale factor was set to 1.0 in order to reproduce 

dimer energies at long range, and the vdW repulsion parameter was fit to ab-initio water 

dimer data along three trajectories with and without polarizability present.  The non-

polarizable model optimized to ab-initio data underestimated the heat of vaporization by 

50%, with an RMSD of 4.95 kcal/mol.  The polarizable model performed better with an 

RMSD in the heat of vaporization of 2.58 kcal/mol.  However, both models performed 

poorly when compared to the models optimized to heat of vaporization and density.  The 

RMSD in the heat of vaporization for the models optimized to liquid data was 0.175 

kcal/mol and 0.185 kcal/mol for the non-polarizable and polarizable models, respectively.  

Similar trends were also found for density.  The discrepancies can be attributed to the 

scale factor.  In order to accurately reproduce liquid properties, the point charges on the 

water model should be enhanced relative to the gas phase by 1.255 without polarizability 

and 1.130 with polarizability. 
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The limitations of the point charge model were tested by comparing to the ab-

initio electrostatic energy by CSOV18 decomposition for 10 water dimers19 20 calculated 

at the B3LYP/6-31G* level9.  For the water dimer in Figure 7.8 (1), the ab-initio 

electrostatic energy was found to be -8.32 kcal/mol, while the point charge interaction 

energy was found to be -5.31 kcal/mol.  However, the point charge energy is coincidently 

similar to the total dimer energy of -5.62 kcal/mol.  A similar result holds for the other 9 

water dimers.  Since the point charges underestimate the electrostatic interaction energy 

at short range, it can also be expected that the point charges also underestimate the 

electric field at short range.  This explains why a charge scaling factor of 10-15% was 

necessary in order to reproduce liquid properties for the water and ammonia point charge 

models with polarization included.  It would be expected that the charge scaling factor 

should be smaller for more sophisticated electrostatic models (e.g. point multipoles and 

Gaussian multipoles) which more accurately accounts for interactions at short range. 
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Appendix A. Cartesian Point Multipoles 
 
 
A.1 Introduction 
 

In this appendix, electrostatic interactions are expressed in terms of Cartesian 

point multipoles1-3.  Cartesian multipoles are defined as moments over charge density.  

Interaction energies, forces, potential, fields, and field gradients are derived between two 

arbitrary charge distributions and expressed in terms of Cartesian point multipoles by 

expanding 1/R in a Taylor series about the centers of both charge distributions.  The 

notation and formalism used here is similar to that given by Applequist4 5.  Many of the 

results can also be found in6-9.   

The main motivation for reviewing Cartesian point multipoles is to introduce 

Gaussian multipoles in chapter two.  A Gaussian multipole charge distribution can be 

viewed as a smooth continuous generalization of a point multipole charge distribution 

which is non-zero only at a single point.  In chapter two, it is shown that point multipoles 

are the large exponent of Gaussian multipoles.  The results for Gaussian multipoles 

derived in chapter two parallels the treatment given here for point multipoles.       

In the following section A.2, the notation, conventions, and definitions for 

Cartesian vectors and tensors are briefly discussed.  In section A.3, point multipoles are 

defined for charge distributions, and interaction energies between two charge 

distributions are derived in terms of Cartesian point multipoles.  The next section A.4 

contains a brief discussion of local and global coordinate systems.  A multipole moment 

for a particle is defined in terms of a local coordinate system for that particle.  The local 

coordinate system is commonly defined in terms of the particle and its attached 

neighbors.  Using the results for transforming between local and global coordinate 
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system, the force and torque terms are derived in terms of point multipoles in section A.5.   

In section A.6, matrix elements of Cartesian gradient tensors of 1/R are evaluated 

explicitly up to fourth order.  Electrostatic potential, fields, and field gradients are derived 

in section A.7.  It is shown that multipole interaction energies can be expressed in terms 

of electrostatic potential and fields.  Finally, a different method of treating multipoles 

based on spherical harmonics rather than Cartesian tensors is briefly discussed in section 

A.8. 

 
A.2 Cartesian Vectors and Tensors 

Cartesian point multipoles are formulated in the language of Cartesian tensors10.  

This section will briefly discuss some conventions and properties of Cartesian tensors.  

Let the Cartesian coordinate basis vectors zyx ˆ,ˆ,ˆ  be denoted by 321 ˆ,ˆ,ˆ xxx .  A vector A
r

 

can be expressed in terms of these basis functions: 

332211 ˆˆˆ xAxAxAA ++≡
r

    A.2.1 

This can be more compactly written as pp
p

pp xAxAA ˆˆ
3

1

≡=∑
=

r
, where the common practice 

of summing over repeated indices is used. 

 A vector A
r

 can also be defined as a Cartesian tensor of rank 1 )1(A .   

     pp xAA ˆ)1( ≡      A.2.2 

Similarly, a Cartesian tensor of rank 2 )2(A  (sometimes referred to as a dyadic11 12) has 

two components and is defined as: 

     qppq xxAA ˆˆ)2( ≡     A.2.3 

A Cartesian tensor of rank n )(nA  has n components and is defined as: 
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nn pppppp

n xxxAA ˆ..ˆˆ
2121 ...

)( ≡     A.2.4 

An inner or dot product between Cartesian basis vectors is defined as:  

    pqqp xx δ=⋅ ˆˆ      A.2.5 

where δpq is the kronecker-delta symbol defined as δpq = 1 for p = q and δpq = 0 for p ≠ q.  

The dot product between two vectors A
r

 and B
r

or tensors of rank 1 is given by: 

    pppqqpqpqp BABAxxBABA ==⋅≡⋅ δˆˆ
rr

 

Similarly, a tensor dot product or contraction between two tensors of rank n is defined as: 

1221

11212121

21212121

.....

......

......
)()(

...

ˆ..ˆˆˆ..ˆˆ

pppppp

qpqpqpqqqppp

qqqqqqpppppp
nn

nn

nnnnn

nnnn

BA

BA

xxxBxxxABA

=

=

⋅≡⋅

−
δδδ   A.2.6 

A Cartesian tensor is symmetric if for any pair of components 

     ............ ijji AA =      A.2.7 

The tensors that are used in this work are all symmetric, so that the contraction in A.2.6 

becomes  

nn pppppp
nn BABA ......

)()(
2121

=⋅     A.2.8 

The gradient operator is a vector derivative operator defined by: 

     
p

p x
x

∂
∂

≡∇ ˆ      A.2.9 

Similarly a gradient tensor of rank n is defined as: 

    

n

n
ppp

ppp

n

xxx
xxx

∂
∂

∂
∂

∂
∂

=

∇∇∇≡∇

..ˆ..ˆˆ

..

21

21

)(

   A.2.10 
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 In the above definitions for tensors and vectors, the components (p = 1,2,3) were 

denoted as subscripts. Superscripts will be used to denote particle number for 

vectors/tensors (when possible).  For example, the position of particle i is given by:  

p
i
p

iiii xRxRxRxRR ˆˆˆˆ 332211 =++≡
r

     A.2.11 

and the gradient for particle j is given by:  

j
ppj

p
pjjj

j x
R

x
R

x
R

x
R

x ∇=
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

≡∇ ˆˆˆˆˆ
3

3
2

2
1

1   A.2.12 

where the pth component of  j∇  is given by j
p

j
p R∂

∂
≡∇ .  Finally, the nth rank tensor 

generalizations of iR
r

 and j∇  are: 

    
nn ppp

i
p

i
p

i
p

iiiin

xxxRRR
RRRR

ˆ..ˆˆ..
..

2121

),(

=

≡
rrr

   A.2.13 

and 

    

n

n

nn

pppj
p

j
p

j
p

ppp
j
p

j
p

j
p

jjjjn

xxx
RRR

xxx

ˆ..ˆˆ...

ˆ..ˆˆ..
..

21

21

2121

),(

∂
∂

∂
∂

∂
∂

=

∇∇∇=

∇∇∇≡∇

  A.2.14 

 

A.3 Cartesian Point Multipoles 
Consider a two charge distribution; the first charge distribution );( 11 Rr

rrρ  is 

centered around particle 1 at 1R
r

, and the second distribution );( 22 Rr
rrρ  is centered 

around particle 2 at 2R
r

.  The electrostatic interaction energy between the two charge 

distributions is given by13: 
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'
);();(' 

2211
33

rr
RrRrrdrdU rr

rrrr

−
= ∫ ∫

ρρ     A.3.1 

where both integrals are over all space.  A simple change of variables can be made by 

translating the coordinate systems to the centers of 1R
r

 and 2R
r

:  1Rxr
rrr

+=  and 

2'' Rxr
rrr

+= , so that A.3.1 becomes: 

  
21

222111
33

'
);'();(' 

RxRx
RRxRRxxdxdU rrrr

rrrrrr

−−+

−−
= ∫ ∫

ρρ    A.3.2 

The denominator can be expanded in a Taylor series for xr  about 1R
r

 3 4: 

∑
∞

=
==

==

=

=

−−+
∇⋅=

−−+
+∇∇⋅+∇⋅+=

+
−−+

∇∇⋅+

−−+
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−−
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−−+
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21
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0
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11{
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'

1
!2

1

'
1

'
1

'
1

n
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xnn

xx
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x

xx

x

x
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x

n

RxRx
xxx

RxRx
xx

RxRx
x

xRRRxRx

rrrr
r

rrrr
rrr

rrrr
rr

rrrr
r

rrrrrrr

  A.3.3 

where x∇  is a gradient with respect to xr , xxxx n rrrr ...)( ≡  is an nth rank symmetric Cartesian 

tensor, xxxxn ∇∇∇≡∇ ..),(  is an nth rank symmetric Cartesian tensor gradient, 

and
n

n
ppp

ppp
xnn

xxx
xxxx

∂
∂

∂
∂

∂
∂

≡∇⋅ ....
21

21

),()(r .  If 1∇  is the gradients with respect to 1R
r

, 

then 

21321

21

21
1

'
1

'

)'(
'

1
RxRxRxRx

RxRx
RxRx

x
rrrrrrrr

rrrr

rrrr
−−+

∇=
−−+

−−+
−=

−−+
∇    

and A.3.3 becomes: 
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   ∑
∞

= −−
∇⋅=

−−+ 0
21

1),()(
21 '

1
!

1
'

1
n

nn

xRR
x

nRxRx rrr
r

rrrr   A.3.4 

Similarly, A.3.4 can then be expanded in a Taylor series about 'xr  

  ∑∑
∞

=

∞

= −
⋅∇∇⋅=

−−+ 0 0
21

2),()(1),()(
21

1'
!

1
!

1
'

1
n m

mmnn

RR
xx

mnRxRx
rr

rr
rrrr  A.3.5 

A.3.5 can be inserted into A.3.2: 

21
2),()(1),()(22211133

0 0

1');'();(' 
!

1
!

1
RR

xxRRxRRxxdxd
mn

U mmnn

n m
rr

rrrrrrrr

−
⋅∇∇⋅++= ∫ ∫∑∑

∞

=

∞

=

ρρ  

Now define multipole moment tensors 1),(nΘ  and 2),(mΘ  for charge distributions 1 and 2, 

respectively by: 

∫

∫

+≡Θ

+≡Θ

);'('  '
!

1

);(  
!

1

222)(32),(

111)(31),(

RRxxxd
m

RRxxxd
n

mm

nn

rrrr

rrrr

ρ

ρ
  A.3.6 

The first few moments are the total charge (monopole) q1, dipole 1μr , and quadrapole 

1),2(Θ : 

∫

∫
∫

+=Θ≡Θ

+=Θ≡

+=Θ≡

);(  
!2

1

);(  

);(  

11131),2(1

11131),1(1

11131),0(1

RRxxxxd

RRxxxd

RRxxdq

rrrrr

rrrrr

rrr

ρ

ρμ

ρ

  A.3.7 

The interaction energy now becomes: 

   ∑∑
∞

=

∞

=

∇⋅Θ∇⋅Θ=
0 0

12
2),(2),(1),(1),( 1

n m

mmnn

R
U    A.3.8 
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where 2112 RRR
rr

−≡ .  Therefore, the interaction energy 12
nmU  between an nth rank 

Cartesian point multipole of particle 1 and an mth rank Cartesian point multipole of 

particle 2 is given by: 

    12
2),(2),(1),(1),(12 1

R
U mmnn

nm ∇⋅Θ∇⋅Θ=    A.3.9 

The explicit interaction energies up to dipole-dipole are: 

monopole-monopole   12
2112

00
1

R
qqU =     A.3.10a 

monopole-dipole   12
22112

01
1

R
qU ∇⋅= μr     A.3.10b  

dipole-dipole    12
221112

11
1

R
U ∇⋅∇⋅= μμ rr    A.3.10c 

 

A.4 Local and Global Coordinate Systems 

The interaction energy between an nth and mth point multipole is given by A.3.9  

   
21

2),(2),(1),(1),( 1
RR

U mmnn
nm rr

−
∇⋅Θ∇⋅Θ=     

In general, 1),(nΘ  is not a constant with respect to 1R
r

, and 2),(mΘ  is not constant with 

respect to 2R
r

.  The reason is that orientation is not defined for a single point particle.  

However, in a molecule, each atom is bonded to other atoms.  The neighboring atoms can 

be used to define a local (body) reference frame 321 ˆ,ˆ,ˆ xxx ′′′  with respect to the global 

reference frame 321 ˆ,ˆ,ˆ xxx  14 15 16.    

For example, suppose atom a and atom b are neighbors of atom 1.  A local 1x̂′  

axis can be defined for atom 1, in the direction of  1RR a
rr

− , i.e. 
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1

1

1ˆ
RR
RRx

a

a

rr

rr

−

−
≡′      A.4.2 

A local 2x̂′  axis for atom 1 can be defined to be orthogonal to 1x̂′  using Gram-Schmidt 

orthogonalization, with the component orthogonal to 1x̂′  in the direction of 1RR c
rr

− : 

    
Y
Yx

xRRRRY cc

r

r

rrrrr

≡′

′⋅−−−≡

2

1
11

ˆ

ˆ)(

    A.4.3 

The final local axis 3x̂′  for atom 1 can be defined to be the cross product of 1x̂′  and 2x̂′ , in 

order for the local coordinate system to be right-handed:  

     321 ˆˆˆ xxx ′⊗′≡′      A.4.4 

To summarize, a local coordinate system 321 ˆ,ˆ,ˆ xxx ′′′  for atom 1 has been defined in terms 

of the position of atom 1 1R
r

 and the positions of its neighbors aR
r

 and cR
r

. 

An orthogonal rotation matrix qpD  is used to rotate the global coordinate system 

321 ˆ,ˆ,ˆ xxx  into the local coordinate system 321 ˆ,ˆ,ˆ xxx ′′′ .  The rotation matrix qpD  is defined 

as: 

∑
=

=≡′
3

1

ˆˆˆ
q

qqpqqpp xDxDx    A.4.5 

where )0,0,1(ˆ1 ≡x , )0,1,0(ˆ2 ≡x , )1,0,0(ˆ3 ≡x .  In matrix form, D is composed of the 

column vectors px′ˆ . 

    
⎟
⎟
⎟
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⎞

⎜
⎜
⎜

⎝

⎛
↓↓↓

′′′

≡
⎟
⎟
⎟
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⎞

⎜
⎜
⎜

⎝
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333231

232221

131211 ˆˆˆ xxx

DDD
DDD
DDD

   A.4.6 
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The rotation matrix qpD  is a function of the local unit vectors 321 ˆ,ˆ,ˆ xxx ′′′ , which are 

functions of ca RRR
rrr

,,1 , i.e. ),,( 1 ca
qpqp RRRDD

rrr
= . 

Multipole moments 1),(nΘ  are functions of orientation of atom 1 and its neighbors, 

i.e. ca RRR
rrr

,,1 .  1),(nΘ  can be expressed in the local (body) reference frame or in the 

global frame.   In the local frame, the components of the tensor 1),(
...

n
rpq

B Θ  are constants, 

while the local frame unit vectors 321 ˆ,ˆ,ˆ xxx ′′′  vary with position.  In the global frame, the 

components of the tensor 1),(
...

n
rpq

G Θ  vary with position, while the unit vectors 321 ˆ,ˆ,ˆ xxx  are 

constants.  1),(nΘ  is expressed in either reference frame as: 

    
rqp

n
rpq

B

rqp
n

rpq
Gn

xxx

xxx

'ˆ..'ˆ'ˆ

ˆ..ˆˆ
1),(

..

1),(
..

1),(

Θ=

Θ=Θ
   A.4.7 

If A.4.5 is inserted into A.4.7, the components of the global frame tensor 1),(
...

n
rpq

G Θ  

can be expressed in terms of the local frame tensor 1),(
...

n
rpq

B Θ  

   1),(
''...''''

1),(
... .. n

rqp
B

rrqqpp
n

rpq
G DDD Θ=Θ    A.4.8 

Inserting A.4.8 into A.4.7, 1),(nΘ  becomes: 
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n

rqp
B
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n xxxDDD ˆ..ˆˆ.. 1),(
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1),( Θ=Θ   A.4.9 

Since 1),(
...

n
rpq

B Θ   and 321 ˆ,ˆ,ˆ xxx  are constants, and since 1),(
...

n
rpq

B Θ  is symmetric, the derivative 

of 1),(nΘ  with respect to any variable x in ca RRR
rrr

,,1  can be expressed in terms of 

derivatives of qpD , 
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where x can be any position component that was used to form px′ˆ , i.e. ca RRR
rrr

,,1 , and 

use  

 D is an orthogonal matrix with the property; DDDDI TT ==  where I is the 

identity matrix and TD  is the transpose of D.  In tensor form, this condition is: 

'' sptpts DD δ= . Therefore, A.4.10 becomes: 
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 In the interaction energy, 12
2),(2),(1),(1),(12 1

R
U mmnn

nm ∇⋅Θ∇⋅Θ= , 1),(nΘ  is not a 

constant with respect to 1∇ .  However, 2),(mΘ  is a constant with respect to 1∇  (as long 

atom 2 is not the neighbor of atom1 defining the local coordinate system of atom 1).  

Therefore, the interaction energy becomes: 

    12
2),(1),(2),(1),(12 1

R
U mnmn

nm ∇∇⋅ΘΘ=    A.4.13 
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Now consider a function of R12
, f (R12).  The gradient of f with respect to 1R

r
 is the 

negative of the gradient with respect to 2R
r

. 
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  A.4.14 

The interaction energy now can be written as: 

12
1),(2),(1),(12 1)1(

R
U mnmnm

nm
+∇⋅ΘΘ−=     A.4.15 

 

A.5 Force and Torque for Point Multipoles 

The force on particle 1 1F
r

 due to the nth – mth rank point multipole interaction 

between particle 1 and 2 is defined as the negative gradient with respect to particle 1  

     1211
nmUF −∇=

r
     A.5.1 

However, since 1),(nΘ  is not a constant with respect to 1∇ ,  
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where  
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GT
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v
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v

n xxxD
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xn ˆ..ˆˆˆ 1),(
...1

1),(1 Θ
∂

∂
=Θ∇    A.5.3 

The first term in A.5.2 is a derivative with respect to orientation and can be termed a 

torque contribution.  The second term is a derivative of energy with respect to translation 

of the distance between the two multipoles and is the ordinary force term.  Finally, it 
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should be noted that the interaction 12
nmU  contributes force terms to atom 1 and atom 2, 

and also to the neighbors of atom1 and atom 2. 

 

A.6 Gradient Tensors 

 Tensor gradients of the form 
R

n 1)(∇  will now be evaluated for reference.  From 

the definition in A.2.14, the nth ranked tensor gradient of 
R
1 can be expressed in 

component form as: 
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The first four tensor gradients are evaluated as: 
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A.7 Electric Potential and Field 

Electrostatic potential can be defined as the variation in energy when an 

infinitesimal point charge is added to the system13. 

     
q
U

q δ
δϕ

δ 0
lim
→

≡      A.7.1 

From A.4.14, the interaction energy between a point monopole (n = 0) and an mth order 

point multipole is given by: 

    12
1),(2),(112

0
1)1(

R
qU mmm

m ∇⋅Θ−=    A.7.2 

Therefore, the electrostatic potential at the field point 1R
r

 due to an mth order point 

multipole located at 2R
r

 is found from A.7.1 and A.7.2. 
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The electric field E
r

 is defined as the negative field gradient of potential. 

    );();( 21121 RRRRE
rrrrr

ϕ−∇≡     A.7.4 

The gradient with respect to an mth rank point multipole can be found from A.7.3 as 
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This last step is valid, since the field point gradient 1∇  has no effect on 2),(mΘ , because 

2),(mΘ  is a function of atom 2 and its neighbors.  The nth ranked field gradient of a point 

multipole of rank m is defined as4: 
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 Point multipole interaction energies can be written in terms of potential or field 

gradients of potential.  From A.7.2, the interaction energy between a point monopole (n = 

0) and an mth order point multipole is given by: 
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   A.7.7 

i.e. the interaction energy is the product of point charge and potential.  The interaction 

energy of a point dipole with an mth order point multipole is given by A.4.14 (with n = 1): 
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where A.7.5 was used.  The interaction energy of point multipole of rank n with a point 

multipole of rank m is given by A.4.14:       

);(

1)1(

21)(1),(

12
1),(2),(1),(12

RRE
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U

n
m

n

mnmnm
nm

rr
⋅Θ−=

∇⋅ΘΘ−= +

   A.7.9 

i.e. 12
nmU  is an nth rank tensor contraction between 1),(nΘ  and the nth rank field gradient of 

the potential from 2),(mΘ . 

 

A.8 Spherical Multipoles 

The language of spherical harmonics can also be used to formulate multipole 

interactions in terms of spherical multipoles7 14 17 18.  Spherical multipoles have an 

advantage over Cartesian multipoles because there are fewer tensor components at the 
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quadrapole level and beyond.  A symmetric Cartesian multipole tensor of order l has 

(l+1)(l+2)/2 independent components, while a spherical multipole tensor has 2l+1 

independent components.  At the monopole (l = 0) and dipole (l = 1) level, the number of 

components between Cartesian and spherical multipoles are the same.  However, at the 

quadrapole level (l = 2), there are 6 independent Cartesian tensor components, while only 

5 independent components using spherical tensors.  In practice, this does not present a 

serious limitation to modeling or simulation applications, since most treatments use 

multipole tensors up to the dipole or quadrapole level15.  Throughout this work, only 

Cartesian point multipoles and Cartesian Gaussian multipoles are considered. 
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Appendix B. Perturbation Theory of a Molecule in an External Field 

 

B.1 Introduction 

 Molecular polarization can be discussed quantum mechanically by applying an 

external potential onto a molecule.  The external potential is treated as a perturbation 

while the initial non-interacting system is taken to be the molecule in vacuum.  The 

external potential perturbation is expanded in Cartesian point multipoles using the 

formalism from appendix A.  For further references on quantum and classical treatments 

of polarization, see1-5.   

In the following section, time independent perturbation theory is used to calculate 

energy corrections between the molecule and the external potential up to third order.  The 

first order correction is shown to be the interaction energy of the permanent molecular 

multipoles with the external potential.  The second order energy correction is the 

interaction energy of the external field with the permanent multipoles polarized to first 

order (linear polarization) by the external field.  The third order energy correction is 

shown to be the interaction energy of the external field with the permanent multipoles 

polarized to second order (first hyperpolarization) by the external field.  In addition to the 

familiar dipole-dipole polarization, higher order multipole moment polarization (e.g. 

dipole-quadrapole) will also be discussed. 

 In section B.3, a periodic time-dependent external potential is applied to the 

molecule.  Time-dependent perturbation theory is aplied to first order to calculate the 

induced multipole moments as periodic functions of time.  From the time-varying 

multipole moments, frequency dependent molecular polarizabilitiy tensors are calculated.  
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The frequency dependent polarizability tensors are needed in appendix C when 

perturbation theory is applied to the interaction between two molecules.   In particular, 

long range intermolecular electrostatic, polarization, and dispersion energies are 

calculated.  An interesting relationship is derived between dispersion energy and 

frequency dependent polarizability tensors calculated at imaginary frequencies. 

 

B.2 Time Independent Field 

 Consider a molecule in its ground state 0 , with non-interacting Hamiltonian 

0Ĥ , and energy E0, i.e. 

00ˆ
0

0 EH =     B.2.1 

Similarly, let the excited states of 0Ĥ  be given by α  with energies Eα.  

     αα αEH =0ˆ     B.2.2 

Now suppose the molecule is subjected to an external potential V(r).  The perturbed 

interacting Hamiltonian is given by: 

∑=
a

aa rVeH )(ˆ 1 r)     B.2.3 

where the sum index a is over both electrons and nuclei.  If the center of the molecule is 

located at R
r

, the external potential at each particle can be expanded in a Taylor series 

around R
r

. 
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where  

VV Rnn )) ),()( ∇≡      B.2.5 

is the nth rank field gradient of potential.   The perturbed Hamiltonian 1Ĥ  becomes 
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where  

∑ −≡
a

n
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n Rr
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eM )()( )(
!

1ˆ rr     B.2.7 

is the nth rank Cartesian multipole moment operator.   

From perturbation theory, the first order energy correction is given by: 
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where  

0ˆ0 )()(
0

nn M≡Θ       B.2.9 

is the permanent nth rank multipole moment tensor of the molecule.  The first order 

energy correction is the electrostatic energy of the permanent molecular multipole 
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moments interacting with the external potential, field, and field gradients.  If q0 is the 

total molecular charge, 0μ
r the vacuum molecular dipole, and )2(

0Θ  the vacuum molecular 

quadrapole, the first order energy correction becomes: 

..)( )2()2(
000
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0 +⋅Θ−⋅−= EERVqE

rrr)
μ    B.2.10 
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     B.2.11 

is the external electric field and  

)(),()()( RVVE Rnnn −∇=−≡
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    B.2.12 

 are the electric field gradients for n ≥1.   

 The second order energy correction is given by: 
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where  

αα

αα

)()(
0

00

ˆ0ˆ nn MM

EEE

≡

−≡
      B.2.14 

and.  Notice the n = 0 and m = 0 terms were omitted in B.2.13 because the excited states 

are assumed to be orthonormal to the ground state, i.e. 00ˆ0 )0( == αα qM .  )2(
0E can 

be rewritten as: 
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where the nth – mth pole polarizability tensor α(n)(m) is defined by 
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Notice α(n)(m)
 is symmetric with respect to n and m, i.e. α(n)(m) = α(m)(n).  The first term in 

B.2.15 is the familiar dipole-dipole polarizability contribution: 
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where the molecular dipole-dipole polarizability tensor is given by:  
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If the external field is a constant, then the field gradient )()( )2(),2()2( RVRVE R −≡−∇≡
r

 

and its higher derivatives are zero.  In this case, the dipole-dipole polarizability 

contribution is the only term in the second order energy correction.  If the external field 

varies over the size of the molecule, the field gradient is not zero and the next term in the 

second order energy series is the dipole-quadrapole polarization term given by: 
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where the dipole-quadrapole polarizability tensor is given by: 

∑
≠

Θ
+

Θ
=

0 0

)2(

0

)2(
)2)(1( 0ˆˆ00ˆˆ0

α αα

μααααμ
α

EE
   B.2.20 



 198

The total interaction energy up to second order is the sum of  
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The derivative of energy E with respect to potential gradient V(n) (n ≥ 1) is given by: 
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This quantity is the total molecular moment totn),(Θ  in the presence of external fields. 
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For example, the induced dipole is given by its permanent dipole moment, the dipole-

dipole polarizability contribution and the dipole-quadrapole polarizability contribution: 
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If the external field is constant over the size of the molecule, the gradient of field )2(E
r

 is 

zero and the total dipole moment is given by: 

Etot
rrr

⋅+= )1)(1(
0 αμμ      B.2.25 

The total molecular moment totn),(Θ  can also be found by first calculating the 

perturbative corrections to the wavefunction and then evaluating the expectation value of 

the moment operator )(ˆ nM .  For example, suppose the exact ground state 0Ψ  is written 

as a perturbation series as:  

...000 210
0 +++=Ψ     B.2.26 
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where 000 ≡  is the zeroth order solution and 10  is the first order correction.  From 

perturbation theory the first order correction is given by: 
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Therefore, the expectation value of the moment operator )(ˆ nM  up to first order is given 

by: 
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which is equivalent to B.2.23. 

Notice that the induced molecular moments are linear in external field in the 

above analysis.  At small electric fields strengths, the induced moments are 

approximately linear in external field.  For larger external fields, the induced moments 

behave as a non-linear function of external field.  This effect is termed hyperpolarization.  

Hyperpolarization terms can be found by deriving the perturbational energy corrections 

following second order, i.e. first order hyperpolarization arises from third order 

perturbational theory and second order hyperpolarization arises from fourth order 

perturbation theory.  In the analysis below, the first order hyperpolarization terms will be 

derived from the third order energy correction. 

The third order energy correction is given by 
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When the perturbational Hamiltonian (B.2.6) is inserted into B.2.29, the third order 

energy correction becomes: 
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The hyperpolarizability tensor is defined as a symmetric sum of the above bracketed term 

over permuted indices n, m, p: 
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where the symmetric permutation operator nmpP  is defined as:  
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The third order energy correction in B.2.30 becomes: 

∑∑∑
∞

=

∞

=

∞

=

⋅=
1 1 1

)()()())()(()3(
0 !3

1
n m p

pmnpmn VVVE β    B.2.33 

The total energy up to third order becomes: 
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The total molecular moment totn),(Θ  becomes a quadratic function of field. 
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For a large constant external field E
r

 (quadrapole and higher order multipole effects are 

zero), the total molecular moment is given by: 
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As an example, the total molecular dipole (up to first order hyperpolarizability) is given 

by: 

EEEtot
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B.3 Time-Dependent Field 

Now suppose the perturbing Hamiltonian )(ˆ)(~̂ 11 tfHtH ≡  has a periodic time 

dependence attached to it, i.e. 

   
∑=
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a
aa rVett

HtttH
)()exp()cos(

ˆ)exp()cos()(~̂ 11

r)
εω

εω
    B.3.1 

The term exp(εt) is a convergence factor included to make the time perturbation go to 

zero in the distant past.  Once this accomplished, the limit ε → 0 is taken.  As in section 

B.2, suppose a non-interacting molecule in vacuum has unperturbed Hamiltonian 0Ĥ , 

0  as its ground state with energy E0, and α  as its excited states with energies Eα.  The 

time independent part of )(~̂1 tH  can be expressed in terms of multipole moment operators 

as in B.2.6,  
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where ∑ −≡
a

n
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n Rr
n
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!

1ˆ rr (B.2.7) is the nth rank Cartesian multipole moment 

operator, and VV Rnn )) ),()( ∇≡  (B.2.5) is the nth rank field gradient of potential.   

If the molecule is initially in its ground eigenstate 0 , then the state Ψ  at a 

later time is given by: 
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≡ .  To first order, the coefficient aα(t) is given by: 
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where 011
0 HH αα ≡ .  After letting ε → 0, B.3.4 is evaluated to be  
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The state to first order becomes 
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The multipole moment totn),(Θ is given by: 

ΨΨ=Θ )(),( ˆ ntotn M      B.3.7 

If B.3.6 is inserted into B.3.7, the multipole moment becomes: 
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where αα
)()(

0
ˆ0 nn MM ≡ .  It has been argued1 that if the molecule is in a non-degenerate 

and therefore, real state, then )(
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nn MHHM αααα = , and the imaginary sin(ωt) term is 

zero. 
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Using the expression for H1 (B.2.5), 1
0αH  becomes 
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1
0αH  can then be inserted into B.3.9 to give: 
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is the frequency dependent molecular polarizability tensor.  This result will be needed in 

the following appendix when dispersion is discussed. 
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Appendix C Intermolecular Perturbation Theory 

 

C.1 Introduction 

 In this appendix, the interaction between two molecules is studied using 

Intermolecular Perturbation Theory (IMPT)1 2.  The non-interacting system is the two 

molecules isolated from one another.  The perturbation is taken to be the electrostatic 

interaction between the two molecules, and the perturbational Hamiltonian is expanded in 

terms of Cartesian point multipoles.  The molecules are assumed to be separated at long 

range in order to neglect antisymmetrization effects between the two molecules.  The first 

few orders of perturbation theory lead to a natural decomposition of the intermolecular 

energy into electrostatic, polarization, and dispersion contributions3-6   

In the following section, energy corrections up to second order will be calculated 

for the interaction between two molecules.  The first order energy correction is shown to 

be the purely electrostatic energy between the two molecules while their wavefunctions 

are frozen in their non-interacting states.  The first order energy is expressed as the 

interaction energy between the molecules of the permanent multipole moments.  The 

IMPT first order energy can be compared to the first order correction energy of a 

molecule interacting with an external potential in appendix B.2, which was found to be 

the interaction energy of the permanent electrostatic moments (calculated from the non-

interacting molecular state) with the external potential. 

The second order energy correction to the intermolecular interaction energy 

between two molecules (A and B) is found to be composed of three parts: the energy of A 

polarizing B, the energy of B polarizing A, and the dispersion energy when both A and B 
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are mutually polarized.  The second order intermolecular energy correction can be 

compared to the second order energy correction of a molecule interacting with an 

external field.  In the molecule-external field case, the second order energy is purely 

polarization energy.  Dispersion is absent because the field does not get polarized.   

The dispersion energy is an interesting purely quantum mechanical effect.  In 

classical models based on polarizable charge density, two mutually interacting 

polarizable charge densities do not interact if there is not an external permanent field 

which can polarize the system.  In other words, a source of external charges needs to be 

present in order for classical polarization to happen.  An example is two argon atoms.  

There is no permanent multipole moment on the argon atoms.  If two argon atoms are 

sufficiently separated so that their charge distributions do not overlap, the electrostatic 

interaction energy is zero.  Classically, the polarization energy between the two 

molecules should also be zero.  However quantum mechanically, there is a small 

attractive energy in which the charge densities on the two argons spontaneously polarize 

each other in the absence of a permanent field.  In section C.3, the dispersion is discussed 

as the energy in which the two molecules spontaneously polarize one another.  The 

dispersion energy can be expressed in terms of an integral of molecular polarizability 

tensor over imaginary frequencies.  This is used to derive the empirical Slater-Kirkwood 

model for dispersion interactions between atoms. 

As mentioned earlier, the discussion on IMPT in this appendix assumes the 

molecules are interacting at long range in order to neglect antisymmetrization effects.  At 

short range, enforcing antisymmetrization between the interacting molecules introduces 

exchange/repulsion terms to the energy.  Other energy decomposition schemes such as 
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Morokuma-Kitaura decomposition7, Constrained Orbital Variation (CSOV) method8, and 

Symmetry Adapted Perturbation Theory9 were designed to include antisymmetrization 

effects which make a significant contribution at short range.  These other energy 

decomposition schemes are derived for specific ab-initio methods of calculating or 

approximately calculating the wave-function for the interacting molecules.   

 

C.2 Perturbational Expansion 

 Consider two interacting molecules A and B interacting at long range.  The 

interacting perturbing Hamiltonian 1Ĥ  is the electrostatic interaction between molecules 

A and B. 
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∈ ∈ −

=
Aa Bb

ba
ba

rr
ee

H rr
1      C.2.1 

Suppose the center of mass of A and B are located at AR
r

 and BR
r

, respectively.  The 

denominator can be expanded in terms of Cartesian multipoles as in Appendix A: 
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C.2.2 can be inserted into C.2.1 and 1Ĥ  can be expressed in terms of moments: 
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where the moment operator for A is defined as in B.2.7: ∑
∈

−≡
Aa

nAa
a

An Rre
n

M )(),( )(
!

1ˆ rr . 

BmM ),(ˆ  is defined in a similar manner. 

Let 0Ĥ  be the non-interacting Hamiltonian given by: 



 208

BA HHH ,0,00 ˆˆˆ +=     C.2.4 

where AH ,0ˆ  is the Hamiltonian for molecule A in vacuum and BH ,0ˆ  is the Hamiltonian 

for molecule B in vacuum.   Let α be the eigenstates of AH ,0ˆ  with eigenvalue A
αE  and 

β  represent the eigenstates of BH ,0ˆ  with eigenvalue B
βE .  At long range, 

antisymmetrization effects are unimportant, and therefore, the product states αβ  

represent the states accessible to the interacting molecular dimer A-B.  The ground state 

energy of the isolated systems is given by 00  with energy B
0

A
0 EE + .  Using Raleigh-

Schrodinger perturbation theory, the total dimer energy E0 for the ground state can be 

expanded in a series. 

    ...2
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00 +++= EEEE     C.2.5 

The zerothth order contribution is the expectation value of the non-interacting 

Hamiltonian 0Ĥ  with the ground state 00 . 

    B
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A
0

00
0 00ˆ00 EEHE +==     C.2.6 

i.e. the sum of the non-interacting monomer energies.  The first-order correction is given 

by: 
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where  
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are the permanent vacuum multipoles of A and B, respectively.  The first-order energy 

correction is the pure electrostatic energy of the unperturbed molecules (see eqn A.3.9).   

The second order energy 2
0E  is given by: 
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where A
0

AA
0 EEE −≡ αα  and the * means omit the 00  term in the double sum.  The 

second order energy can be separated into three contributions: energy of B polarizing A 

A
polU , energy of A polarizing B B

polU , and the dispersion energy between A and B AB
dispU . 

∑
≠

−=
0

A
0

11
A
pol

000000

α α

αα
E

HH
U     C.2.10 

∑
≠

−=
0

B
0

11
B
pol

000000

β β

ββ
E

HH
U     C.2.11 

∑∑
≠ ≠ +

−=
0 0

B
0

A
0

11
AB
disp

0000

α β βα

αβαβ
EE

HH
U    C.2.12 

In the energy expression of B polarizing A A
polU , the excited states of A are being summed 

over while B is held in its ground state.  In other words, the permanent field of B is 

polarizing A.  A similar explanation holds for B
polU .  In the dispersion energy between A 

and B AB
dispU , both excited states of A and B are being summed over.  This term 

corresponds to the induced moments of A and B spontaneously polarizing each other. 
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The above expressions can be expressed in terms of moment operators AnM ),(ˆ  by 

substituting in 1Ĥ  (C.2.3).   In order to evaluate A
polU , it is first noted that  
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where Bm),(
0Θ  is the permanent multipole moment of B and )(RV AB→  is the potential from 

B onto A (A.7.3): 
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A
polU  (C.2.10) then becomes 
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where Amn ),)((α  is the nth - mth pole polarizability tensor for molecule A (B.2.16).  A 

similar result holds for B
polU .  The evaluation of the dispersion energy AB

dispU  in terms of 

moments is more involved and is discussed in the following section. 
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C.3 Dispersion 

 The dispersion energy given in C.2.12 will now be evaluated in terms of moment 

operators and polarizabilities.  Before proceeding, the following intermediate result will 

be useful: 
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where AB
BmAnmn

R
T 1),(),())(( ∇∇≡   for brevity.  C.3.1 can be inserted into C.2.12 to yield: 
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Since the denominator is a sum B
0

A
0 βα EE +  and not a product B

0
A

0 βα EE , the sum over α and 

β can not directly be expressed in terms of molecular polarizability tensors for molecules 

A and B.  However the following identity, which can be proved by contour integration, is 

used to express the sum as a product: 
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Using this identity, C.3.2 becomes10: 
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Recall the frequency depend molecular polarizability tensor given in B.3.12: 
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where 
h

E
≡ω .  This is applied to the sum over α and β to yield: 
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Now consider the simplest case of dipole-dipole dispersion (n = m = p = q = 1): 
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If the molecular polarizability tensor is isotropic as in the case for an atom, then 

ijij αδα = .  Using the result for the dipole-dipole interaction matrix for point multipoles 

(A.6.3) 35
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where  
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If Gaussian dipoles were used, 
Rpq
1)2(∇  is replaced by 
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and B2(x) are defined in 2.9.6.  In this case, C.3.7 becomes: 
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C.3.10 is continuous and finite for all x, while C.3.8 diverges as R-6 for small x.  However 

for large x, 31
1)(
x

xB ≅  and 52
3)(
x

xB ≅ .  In this case, the Gaussian dipoles behave as 

point dipoles and C.3.10 becomes: 
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Damping functions11-13 have been applied to dispersion models in order to make the 

interaction finite for small R.  The result for AB
dispU  with Gaussian dipoles in C.3.10 can be 

used in place of a damping function.   

If higher order multipole terms are included, the dispersion energy can be 

expressed as a series14-16 

..10
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8
8

6
6AB

disp R
C

R
C

R
C

U −−−=     C.3.12 

where C6 corresponds to dipole-dipole dispersion, C8 corresponds to dipole-quadrapole 

dispersion, and C10 corresponds to quadrapole-quadrapole and dipole-octapole dispersion. 

 A method is needed to calculate the dispersion coefficients17 18 CAB in C.3.9.  One 

strategy is to calculate αA(iν) and αB(iν) for several values of ν from C.3.5 using ab-initio 

methods and then perform the integral for CAB numerically.  Another way to calculate CAB 

is to first approximate αA(iν) as: 
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where ηA is an empirical parameter.  Using this function for αA(iν), the integral for CAA in 

C.3.9 becomes: 

    
2

0

)0(
4

3

)()(3

A
A

AA
AA iidC

αη

ναννα
π

h

h

=

= ∫
∞

    C.3.14 
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The integral for CAB where A and B are different is found to be: 
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This result is known as the Slater-Kirkwood19 combination rule. 
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Appendix D. Ewald Summation 

 

D.1 Introduction 

Long range electrostatic interactions decay slowly.  For example, the interaction 

energy between two point charges falls as R-1.  In molecular dynamics simulations, pair-

wise additive interactions are often truncated outside a specified non-bonded cut-off. 

Large cut-offs would be needed if electrostatic interactions were simply truncated at a 

certain distance.  Special techniques such as the Ewald summation method1-4 for periodic 

systems and the fast multipole method5 for non-periodic systems were developed to speed 

up the convergence of long range electrostatic interactions. 

In this appendix, the Ewald summation is method is derived for a periodic system 

of point charges and point dipoles.  Since the system is periodic, part of the energy can be 

calculated in Fourier space.  This part of the energy is called the reciprocal sum.  The 

other part of the energy has a small periodic component and decays quickly in coordinate 

space.  This part of the energy is called the direct sum.  In addition, there is a self-energy 

correction and a second energy correction called the adjusted sum for pairs of particles 

which were not intended to include (e.g. 1-2 or 1-3 particle interactions).  In the 

following section, the Ewald summation method is discussed in more detail.   

In addition to the reciprocal, direct, self, and adjusted energy contributions to the 

Ewald energy, there is a dipole surface term which depends on the dipole moment of the 

unit cell.  The energy of a unit cell interacting with other unit cells in a crystal is a 

conditionally convergent series.  The dipole surface term depends on the order of 

summation in the series.  For example, if the unit cell interactions were summed in the 
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order of an ever increasingly sized cube, the result would be different if the unit cell 

interactions were summed in a spherically.  The dipole surface term will not be 

considered here.  See references2-4 for more details. 

The Ewald method scales6 as N 3/2 for large N, where N is the number of particles.  

A method to speed up the reciprocal Fourier sum by interpolating the complex 

exponentials on a grid of points has been developed.  This method, called Particle Mesh 

Ewald7, scales as N log N for large N, and has been employed extensively in Molecular 

Dynamcs simulations8-12. 

 

D.2 Ewald Summation 

From the results in appendix A, the energy between particle i with charge qi and 

dipole iμr  and a particle j with charge qj and dipole jμr  is given by:   

( )( )
ij

ijjiii
ij r

qqU r
rr 1

∇⋅−∇⋅+= μμ    D.2.1 

Consider a collection of particles (i = 1, 2.. N) in a box which defines the system. The 

interaction energy Ubox for the N particles with charges qi and dipoles iμr  is a sum over all 

pairs. 

( )( )∑
≠

∇⋅−∇⋅+=
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box r
qqU r

rr 1
2
1 μμ    D.2.2 

In periodic boundary conditions, images of this box are replicated in a lattice 

arrangement surrounding the box in 3D space.  Suppose the sides of the box are given by 

the vectors rar (r = 1, 2, 3).  Each new box is generated using translation vectors 
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332211 ananann rrrr
++= , where ni are integers.  The interaction energy of all the particles 

in the central box with all of the particles in the other boxes is given by 
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The * indicates that if 0=nr , omit the i = j term and any other terms in the ‘masked list’, 

e.g. do not count 1-2 or 1-3 Coulomb interactions between particles that are bonded to or 

adjacent of each other.   

This series in D.2.3 converges slowly.  A method to speed the convergence of this 

series is to first note: 
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where β is defined as the Ewald parameter.  The second term on the right side of D.2.4 

can be written as: 
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where ∫
∞

−=−≡
x

uduxerfxerfc )exp(2)(1)( 2

π
 is the complementary error function 

which decays rapidly for large x > 1.  The sum over translation vectors in D.2.3 becomes: 
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The second term in D.2.6. converges quickly.  The first term converges slowly, but it can 

be written as a Fourier series. 
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Let nrr ij rrr
+= .  The sum over nr  can be transformed to an integral over all space, since 
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D.2.7 becomes  
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The 0=mr  term is omitted since 3
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c =  and 
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because of charge neutrality and 0c  is a constant.  Substituting D.2.10 into D.2.6 
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By subtracting off the terms that are self-interactions (i = j if 0=nr ) and the adjusted term 

from the direct sum, the sum over lattice vectors in D.2.4 becomes 
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The total lattice energy in D.2.3 can be written as a reciprocal sum, a direct sum, self 

interaction. 
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Reciprocal Sum 

The reciprocal sum for the Ewald energy in D.2.4 can be expressed as: 
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where the structure functions )(mS r  are defined by 
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The gradient of D.2.16 with respect to irr  is ( ) irmiii
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used to evaluate the reciprocal force contribution on particle i i
recF
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as the negative 

gradient of D.2.15 with respect to irr  which is given by: 
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The electrostatic potential13 at particle i can be found by taking the variation of energy 

D.2.15 when qi is a test charge i
rec

q

i
rec q

Ur
i δ

δ
ϕ

δ 0
lim)(
→

≡
r : 

irmi

m

m

cell

i
rec emS

m
e

V
r

rr

r

rr ⋅−

≠

−

∑= π
β
π

π
ϕ 2

0
2 )(

 
1)(

2

22*

  D.2.18 

Finally, the electric field can be found by taking the real part of the negative gradient of 
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Direct Sum 

The direct sum is given in D.2.14 as: 
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The direct sum force on particle on particle i is found by taking the negative gradient of 

Udir with respect to irr : 
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The direct sum electrostatic potential )( i
dir rrϕ is given by: 
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Finally, the direct sum electric field is the negative gradient of )( i
dir rrϕ  with respect to 

irr : 
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The gradient tensors ( )
r

rerfcn β)(∇  can be evaluated using the same method that was used 

to evaluate 
R

n 1)(∇  in appendix A.6 and 
R

Rerfn )()( β
∇  in section 2.9.  The result is given 

by: 
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where Rx β≡ , and the dimensionless )(xCn  functions are defined by: 
x
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Adjusted Sum 

 The adjusted sum energy is defined in D.2.14 as: 
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where erfc(x) = 1 - erf(x) was used.  The procedure to evaluate the force, electrostatic 

potential, and electric field is the same as the one used to evaluate the same properties in 

the direct sum.  The results will be listed below for completeness. 
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The gradient tensors 
R

Rerfn )()( β
∇  were evaluated in section 2.9. 

 

Self Energy Correction 

 The self energy correction is defined in D.2.14 and given by: 
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The force, electrostatic potential, and electric field are found in a way similar to that used 

in the direct sum and the adjusted sum: 
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The limits of the gradient tensors 
R

Rerfn )()( β
∇  as R → 0 can be found from 2.9.2 – 2.9.4 

and are given by: 
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B0(0) and B1(0) can be found from their Taylor series given in 2.9.7 as
π
2  and 

π3
4 , 

respectively.  Therefore, the self energy terms are: 
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 This concludes the derivation for the Ewald summation method for a periodic 

system of point charges and point dipoles.  A typical value of the Ewald parameter β is 
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0.3Å-1.  For this value, the direct sum converges at a cutoff 8.0 Å, and the reciprocal sum 

converges after 4-5 reciprocal vectors.   
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