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ABSTRACT

Force fields have recently begun to model electrostatic interactions with
explicit charge densities composed of Gaussian functions. A Gaussian multipole
formalism is presented which is based on previous work done on Hermite Gaussian
functions. The treatment for Gaussian multipoles parallels standard derivations of
Cartesian point multipoles. The results obtained for Gaussian multipoles are used to
develop anew polarization model based on induced Gaussian dipoles. In contrast to
the original induced point dipole model, the induced Gaussian dipole model is capable
of finite interactions at short distances. Aspects of convergence related to the induced
Gaussian dipole model will be explored. Results for polarization work, energy, and
force have been derived for the induced Gaussian dipole model, and a discussion of
how the model has been implemented into the AMBER molecular dynamics
simulation program is provided.

In addition, a method of parameterizing polarizabilitiesis presented. This
method is based on probing a molecule with point charges and fitting polarizabilities
to electrostatic potential. In contrast to the generic atom type polarizabilitiesfit to
molecular polarizability tensors, probed polarizabilities are significantly more accurate
in terms of reproducing molecular polarizability tensors and el ectrostatic potential,
while retaining conformational transferability. Polarizabilities and atomic partial
charges are parameterized for the amino acids, and it is shown that including
polarization significantly improves the electrostatic description of point charges over
multiple conformations. In addition, a polarizable and non-polarizble model for water
and ammonia composed of point charges and induced Gaussian dipolesis presented
by fitting to liquid phase heats of vaporization and density. Results are also presented
for fitting a polarizable and non-polarizable water model only to ab-initio data, and
limitations of the point charge model are discussed.

INDEX WORDS: induced Gaussian dipole, polarization, Gaussian multipole,
molecular dynamics, AMBER, GLYCAM
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1 Introduction
1.1 Force Fields

In recent years, molecular dynamics simulations have increasingly become a
useful tool for studying large molecular systems. Originally, simulations were used to
study liquids. As computing power increased, simulations were gradually applied to
biomolecular systems such as proteins, carbohydrates, DNA, and lipids. Today,
simulations are routinely done on protein crystal structures to gain understanding of how
these complicated structures operate.

Typical simulations usually involve 10°> — 10° atoms. For systems of this
magnitude, the CPU requirements render electronic structure based methods impractical.
For this reason, force fields have been developed as a set of simplified empirical energy
equations capable of handling large molecular systems.

Early force fields were designed using intuitive notions of how atoms and
molecules interact. Atoms in a molecule vibrate about their equilibrium positions.
Therefore, energy can be expanded in a Taylor series about equilibrium bond lengths 7y
and bond angles 6. A truncated Fourier series is employed to describe torsion rotations
about bond axes. The force field intramolecular energy, also called the valence energy, is
given by eqn 1.1

Evalence :Z%k(r_ro) +;k9 0 Z V cosnw 11

Traditional force fields such as MM3'?, AMBER®'"/GLYCAM''""*, and CHARMM'*"
have this functional form. The valence energy is important in determining molecular

20-22

geometries and vibrational frequencies. Hagler™ ~ et. al. has shown how to include

higher order terms in the Taylor series by fitting to ab-initio conformational energies and



its derivatives. The resulting force field, CVFF, accurately predicts ab-initio geometries
and vibrational frequencies for a wide range of molecular systems.

In addition to the valence part, there is a second part of the force field, which
models intermolecular interactions. This non-bonded portion includes a long range
electrostatic term, a short range exchange/repulsion, and a long range weakly attractive
dispersion term. In traditional force fields, electrostatic interactions are commonly
modeled by point charges on each atom. The short range repulsion and long range

dispersion are often modeled by a 12-6 Lennard Jones potential. The resulting non-bond

12 6
Enonbond = : : + gij - 2
Ty Ty Ty

The non-bonded portion of the force field is particularly important because it largely

energy is given by:

determines condensed phase quantities such as thermodynamic properties of liquids and
biomolecular-ligand interactions.

Recently, force fields, such as AMOEBAZ% , SIBFA26'28, and GEM29'31, have
been proposed to more accurately model electrostatic interactions. AMOEBA and
SIBFA employ point multipoles, while the GEM force field is composed of an explicit
charge density fitted using Gaussian basis sets. The multipole and density based force
fields are able to more accurately reproduce high-level ab-initio data such as dimer
energies and geometries. However, a drawback to these more elaborate force fields is the
increase in CPU overhead. As a first estimate, multipole-based force fields such as
AMOEBA and SIBFA require 10" — 10* more CPU time over point charge force fields,

while the density based GEM force field requires 10' — 10’ more CPU time.



The electrostatic and vdW interactions described above are constant with respect
to molecular environment. However, it is known that molecular dipole moments change
significantly when transferred from gas to liquid phase. Non-polarizable classical force
fields based solely on additive models are not able to capture this effect. Rather,
permanent molecular dipole interactions are often enhanced to compensate.

Including an explicit polarization term in the force field is a method to model
these multi-body effects in condensed phases, while still being able to correctly calculate
gas phase properties, such as dimer geometries and interaction energies. Polarization is
likely to be particularly important in accurate descriptions of biomolecular interactions.

One goal of this study is to develop a polarization model suitable for use in the
AMBER and GLYCAM force fields. Several polarization models such as the Drude
oscillator’?**, fluctuating charges®*, and induced dipoles®* ***® have been suggested for
use in water models. This work will focus on the induced dipole polarization model,

which places induced dipoles on each atom. In this case, the induced dipole z on an

atom is the product of the total electric field £ and a scalar atomic polarizability .

H=cakE 1.1
The original induced dipole model of Applequist’’ places induced point dipoles
on each atom. However, this model suffers from the so called ‘polarization catastrophe’:
when two mutually interacting inducible dipoles with atomic polarizabilities ¢ and
diverge at a finite distance, given by:
R=(4a,a,)" 1.2
Thole™ has proposed a solution by applying a damping function to induced dipole —

induced dipole interactions. However, a drawback to this model is that it does not



prescribe how induced dipoles and permanent charges interact. Ad-hoc assumptions are
needed to define interactions between induced dipoles and other charges for the Thole
model.

An interesting question arises: since force fields based on charge density have

recently been proposed®"!

to model electrostatic interactions, is it possible to develop a
polarization model based on charge density which does not contain the polarization
catastrophe condition? In this work, an induced dipole model based on density will be
developed. Before presenting a density based polarization model, it would be useful to
first discuss electrostatic models based on charge density.

There is an interesting mathematical relationship between Gaussian functions and

point multipoles. Consider a charge density composed of a simple normalized Gaussian

function with total charge g:

() %%J exp(—fr? 13

For large exponents, the charge distribution becomes singular about the origin and
behaves as a point charge or point monopole. For this reason, the charge distribution in
1.3 has been defined as a Gaussian monopole. In chapter two, higher order Gaussian
multipoles and their relationship with Cartesian point multipoles are explored. A
discussion of Cartesian tensors and Cartesian point multipoles is provided in appendix A.
The results for Gaussian multipoles are used in chapter three to develop a polarization
model based on induced Gaussian dipoles.

There is an interesting property of the induced Gaussian dipole model which
relates to the polarization catastrophe. Since the interaction of two permanent Gaussian

charge densities is finite at all distances, it might be expected that the interaction between



two induced Gaussian dipoles is finite at all distances. However, for large Gaussian
exponents, the induced Gaussian dipoles behave as induced point dipoles. If the
exponent is too large, the interaction is too strong and a polarization catastrophe can
occur. A relationship for the maximum size of the Gaussian exponent is derived which
will prevent a polarization catastrophe at all distances.

In chapter four, the implementation of induced Gaussian dipoles into the
molecular dynamics (MD) simulation program AMBER™ is presented. Results for
polarization energy, work, and force are derived for the induced Gaussian dipole model.

40-43

The Ewald summation™ "~ method for a system of charges in periodic boundary

conditions is described. A brief discussion of the Car-Parinello**’

method to propagate
induced dipoles during an MD simulation through an extended Lagrangian formalism is
provided. Finally, results from simulation output are presented.

Once a polarization model has been established, a procedure for obtaining
parameters for the model is needed. In chapter five, procedures to optimize atomic
polarizabilities for the induced Gaussian dipole polarization model is discussed.
Following Applequist and Thole, a set of atom type atomic polarizabilities are found by
fitting to a collection of molecular polarizability tensors for the induced Gaussian dipole
model, the Thole model, and the induced point dipole model. The performance of all
three induced dipole models is compared. In addition to the conventional method of
fitting atomic polarizabilities to molecular polarizability tensors, a second procedure is

proposed to generate atomic polarizabilites. This procedure is based on probing a

molecule with point charges and calculating the electrostatic potential around the



molecule. The ‘probed’ atomic polarizabilities are fit to the response potential, which is
the potential in the presence of the charge probes minus the potential in vacuum.

In chapter six, probed polarizabilities and atomic point charges are generated for
the amino acids. Probed polarizabilities are fit to the response potential through the
procedure presented in the previous chapter and atomic point charges are found by the
conventional method of fitting to total electrostatic potential of a molecule in vacuum. In
order to make equal comparisons, a set of point charges is found with and without
polarizability present. By exploring multiple conformations of single amino acids,
polarization is shown to make a significant improvement in the electrostatic description
of point charges. The charges and polarizabilities are tested on a 10 alanine peptide in
the extended and a helical conformations.

In chapter seven, a polarizable and non-polarizable model for water and ammonia
is presented. The models are developed by fitting a Lennard Jones repulsion parameter
and a charge scale factor to heats of vaporization and density. Effective condensed phase
charges for polarizable and non-polarizable force fields are discussed. The models are
tested by calculating dimer energies and comparing with ab-initio results. An interesting
question arises: can force field parameters be fit only to ab-initio data? In a second
procedure, the vdW repulsion parameter, the atomic charges, and the polarizabilities for
water are optimized only to ab-initio data. The model is tested by calculating the heats of
vaporization and density. Finally, limitations with the point charge model are discussed.

In addition to the work presented in the chapters, background material has been
included in appendices. As mentioned earlier, in appendix A, Cartesian tensors*® are

discussed and a derivation of electrostatic interactions in terms of Cartesian point



multipoles

4748 i provided. In appendix B, a derivation of how a molecule interacts with

an external field® is presented quantum mechanically through Rayleigh Schrodinger

perturbation theory. In appendix C, long range intermolecular perturbation theory® is

discussed. The intermolecular energy or dimer energy up to second order can be

separated into electrostatic, polarization, and dispersion contributions. Finally, in

appendix D, a derivation of the Ewald summation*** for point charges and point dipoles

is provided.
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2 Gaussian Multipoles

2.1 Introduction

Cartesian point multipoles (see appendix A) provide an excellent description of
electrostatic interactions between charge distributions which are sufficiently far away
from one another. However, at smaller separations when the charge distributions
overlap, the assumptions used in the point multipole description are no longer valid. An
example of when two charge distributions overlap and multipole interactions do not
accurately account for the electrostatic interaction is the water dimer. Cisneros'” et. al.
fit electron density through auxiliary basis sets to ab-initio electron density calculated at
B3LYP/aug-cc-pVTZ by minimizing the Coulomb self energy of the molecule. It was
shown that a multipole description up to quadrapoles' on each atom predicts an
electrostatic interaction energy of -5.9 kcal/mol, while the ab-initio electrostatic energy of
the water dimer was calculated to be -8.2 kcal/mol using constrained space orbital
variation® (CSOV) energy decomposition. It is interesting to note that atomic point
charges generated from the conventional method of optimizing to electrostatic potential
predict an electrostatic interaction energy of -4.5 kcal/mol.

A more important reason to study density based electrostatic models is simulation
stability. Electrostatic models based on point multipoles diverge for small R as R™ for n
> 1. A point multipole model for electrostatic interactions may be justified in empirical
force fields by using a strong repulsive vdw potential to counteract the attractive
electrostatic potential interactions for small R. However, this argument does not apply to

polarization models based on induced point multipoles. In the following chapter, the

12



induced dipole polarization model is discussed. For small separations, induced point
dipole — induced point dipole interactions diverge’ as (R — Ro)"'. Simulations that use the
induced point dipole polarization model occasionally encounter ‘polarization
catastrophes’ and fail when two atoms get too close. On the other hand, electrostatic
models based on explicit charge density are finite at all distances. It will be shown in the
following chapter that polarization interactions based on an induced charge density model
is finite at all distances if the charge distribution is sufficiently diffuse.

A model based on charge density is needed to accurately model electrostatic and
polarization interactions at short range and provide stability to simulations which use
explicit polarization. Recently, force fields and simulations®® have begun to use simple
‘s’ orbital and ‘p’ orbital Gaussian charge densities to model electrostatic interactions. In
this chapter, Gaussian multipole’ charge distributions will be discussed as a smooth
continuous generalization of Cartesian point multipole distributions. At long range,
Gaussian multipoles behave as point multipoles'®. At short range, Gaussian multipoles
provide a more realistic description when charge distributions overlap which can be
signifcant'’.

Before making a precise definition of a Gaussian multipole charge distribution, a

simple example will serve as motivation for what follows. Consider a simple radially

symmetric Gaussian charge distribution with exponent S, total charge ¢, and center R

given by:

PO (7 R) = q(%) exp(~f]F - Er) 2.1.1
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For small Gaussian exponents, the charge distribution is diffuse and for large exponents,
the charge distribution is sharply localized around the center R . In section 2.4 and 2.7,
the electrostatic potential will be derived for this charge distribution, and the result is
given by:

erf (BJF - R))

. 2.12
F-R

9" (F;R)=q

2z

N

where erf{x)* is the error function'? defined by erf(x) = I duexp(-u*) . Notice for
0

large x, erfix) — 1. Hence for a large Gaussian exponent £, the potential from the simple

Gaussian charge distribution becomes:

9°(F;R) = g——
A

1.e. the potential due to a point charge or point monopole. For this reason, the charge
distribution in 2.1.1 is defined as a Gaussian monopole.

In the following section, higher order Gaussian multipole charge distributions are
defined, e.g. dipole, quadrapole, etc. In sections 2.3 and 2.4, electrostatic interaction
energies are derived between different Gaussian multipole charge distributions. In
section 2.5, it will be shown that in the limit of large Gaussian exponents, Gaussian
multipoles behave like point multipoles. In section 2.6, the force terms are derived for
Gaussian multipoles. This treatment parallels the force derivation for point multipoles
given in appendix A.5. In section 2.7, electrostatic potential and fields are derived for
Gaussian multipole charge distributions. In appendix A.7, it was shown that interaction

energies between point multipoles can be conveniently expressed in terms of electrostatic

14



potential, field, or field gradient. In order to formally treat Gaussian multipoles in a way
that parallels point multipoles, ‘effective’ electrostatic potential and fields are introduced
in section 2.8. As in the case of point multipoles with ordinary potential and fields,
interaction energies between Gaussian multipoles can be expressed in terms of ‘effective’
potentials and fields. Finally, in section 2.9, Hermite Gaussian charge distributions are
briefly discussed in the context of electronic structure calculations. The results for
electron repulsion integrals using Gaussian basis sets can be compared to electrostatic

interaction energies between Gaussian multipoles.

2.2 Gaussian Multipole Charge Distributions

A spherically symmetric charge distribution of a simple Gaussian monopole

function with exponent £ and charge ¢ centered at R was given in 2.1.1 as:
PO R) = q(if exp(-/F - R ) 22.1
9 \/;

One subtle point should be addressed before proceeding. In appendix A.2, Cartesian
tensors are discussed in order to express results in condensed form. A common

convention that will be used in this treatment is to implicitly sum over repeated indices
unless otherwise stated. For example, the center vector R can be expressed in
component form as R = R %, + R,%, + R,%, =R ,X,. For vectors/tensors involving

components (p =1,2,3 for x,y,z) or particles (i = 1,.. N), the particle index will usually be

denoted (when possible) as a superscript and the component index as a subscript. For
example, the position of particle 2 is given by: R* =R f}fc ,- See appendix A.2 for a

further discussion of Cartesian vector/tensors.

15



A Gaussian dipole charge distribution with exponent £ and dipole moment u

centered at R is defined as:

3
- -2
PO (R =1- VR(£] exp(-7[F - &) 222
Jr
The gradient is respect to the center coordinate, i.e. V* =% PR Similarly, a Gaussian

P
quadrapole charge distribution with exponent £ and Cartesian quadrapole tensor

®=0 x x isdefined as

pqapP 4
3
)= B | B 2= B2
P R)=0-VOE| | exp(—f ‘r—R‘ ) 223
Jr
62
where V' =VV is a second rank gradient tensor, and ®-V** =0 " 3R 2R isa
p q

tensor contraction of rank 2. More generally, an n™ order Gaussian multipole can be

h - th -
defined as an n" rank tensor contraction between an n" rank multipole moment

®@" =0 %, %, .&, andann"rank gradient V" =VV..V of a simple normalized

Gaussian function:

p(n)(l-,:;l_é) =@M .ymr [%J exp(—,b’2

-2
7 R‘ ) 2.2.4
T

(n)

The n™ rank moment tensor ® is symmetric with respect to interchanging component

(n)

indices, i.e. 7

—em
. ®4.p/..pi4.
A motivation for defining these charge densities as Gaussian multipoles is that the

n"™ ranked multipole moment integral® (A.3.6) of the charge density p" (F;R) is @,

1.€.
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1 L =
;jd%(r—R)(")p(")(r;R) =" 225

For example, the total charge of p'” (¥;R) is g, since

jd% pO(FR)=¢q 2.2.6

This can be seen by using the following integral: J.exp(— L>x)dx = % . Before

—0

proving 2.2.5 by induction, it is noted that 2.2.4 can be expressed in terms of gradients

with respect to 7.

3
P (7 R)=(-1)" 0" -V (ij exp(-f7F ~ R

Jz

2
) 2.2.7

since VRF(‘F - l_é‘) =-V ”F(‘? - ﬁ‘). For brevity, suppose R=0. Let A” be the n"™

rank moment tensor of 2.2.7. It will be shown that if A" =@  then A =™

The (p1 p> ...pn) component A is given by:

1 " (3
A :TIdSrrp]rpz..Fpnp( )(7;0)

P1P2--Pn n

Jz

r r r 0) /=,
VI VIV pO(70)

3
(—1)}’! 3 (n) (n),r ﬂ s 2
I J d’rr,r,, .r, @ -V —— 1 exp(=f"r") 228

901929

D" ¢ 3
= TJ.d FILF, Ly ®

The integrand can be integrated by parts with respect to V,
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1 .
PP ( ) J-d rv { q‘h 4, 92" q p(O)(r’O)}+
_1 n—1
Ljaﬂ Vi . ©, V.V p®F0)+
2.2.9
(G jd rr (Vir ), O, V!V p©(F0) +..

-1 n—1
—( n)' [d*rrr, V7,00, Vi .V pF0)

9192-9n

The first term is a surface term and is zero when evaluated at the boundary of 3D space.

This can be seen by using the following identity'*: '[d xVE(x) = g £ (x)dS , where fix) is
Vv S

a continuous function, V' is an arbitrary volume and S is a closed surface surrounding V.

Since V; r, = fo) 2.2.9 becomes:

qp; 2

P1P2-Pn

n—1
DT 1) jd3 (8,01 T +1 8 + 2.2.10

1P, P @ip2° Pn

5,10, VI V! pO(F0)]

9Py 91929
Each of the individual terms is moment integral of rank » — 1, for which the theorem

holds. 2.2.10 then becomes

+0 +.0

poere = 3 O nnen, ¥ O, T ) 22.11

P\P2--Pn

where the last step made use that ® is symmetric. Therefore, the theorem holds

PrP2--Pn

for all n.
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2.3 Interaction Energies

The electrostatic interaction energy between an n™ order Gaussian multipole
©®"! with exponent f8; centered at R' and a m™ order Gaussian multipole ©"? with

exponent /3 centered at R is given by:

n/=. pl me=. p2
U12 :J.J-d3rd3 vp (T’,R )/0 (T’,R )

nm r — =
7 =71

3 (n),1 . (n),1 oy (m),2 . (m),2 _n2?
— ﬂlIBZ J-J-d3rd3r|® \4 @ \ eXp( ﬂl
T

F-R| - pr-R)

7 =71
The gradients are with respect to center coordinates and can be pulled out of the integral.

U =" .vmiem.ymiy 2.3.1

where Uy is the electrostatic energy between two Gaussian monopole charge
distributions of unit charge:

exp(- 42 - R'| - p2fr-R?[)

=

Up(R' - R’ I)E[%Ijjd%d%' 232

2.4 Evaluation of Uy

The following derivation of Uy, can be found in'’. Uoo can be expressed as an

integral of electrostatic potential ¢°(#;R*) from a Gaussian monopole with unit charge
centered at R* and a second charge Gaussian monopole charge density p°(7; ﬁl) with
unit charge centered at R':

Uy = jd3rp°(f;1§‘)¢°(f;1§2) 2.4.1

where:
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3
0,/=. pl ﬂl 2= )2
p (F;R )E[—j exp(=p;|Fr —R'| ) 2.4.2
7)o AR
Y el
o' (7R =| = | [dr———— 243
Jr |7 =7
The denominator in 2.4.3 can be expressed in terms of a Gaussian integral:
1 2 % 2
T - duexp(—uz?—f' ) 244
|r—r'| \/;! | |
and then inserted back into 2.4.3,
g\ 2% :
0/=. 2 2 30 2| p2 2] 2
o (73R ):(—j — | du|d r'exp(—p,|F'-R"| Yexp(—u“|r —7")
=) = R e -
3 2 02| D2 2
B, 2 ¢ 3 2 NP u psfr - R
=| = | —=|dul|d’r'exp(—(f, +u°)r'-X| )exp(-————
(ﬁ ﬁgj p(~(B3 +u)F'=X| ) exp( cig )
N 2—'+ ZR
where X E%. Performing the integration over r' gives:
u +p,
B P 3/2 uzﬂz‘F—éz‘z
"(F;R*) =| 2| ——|du — | expe—a L 24.5
0 (7 R*) \/;\/;! iyl B S
gl - Rl
2
Transform variables, x> = > >
u +p,
i S
0/=. p2 2
o (F,R°)=——— | dxexp(—x") 2.4.6
PN
This result can be written in terms of the error function'?.
S eaf(BfF-R)
@ (F;R")= 2.4.7

R
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Before evaluating the electrostatic energy, 2.4.6 can be transformed into another useful

X
R

form by letting ¢ =

2
) 2.4.8

= D2
¥ —R

. 2 ﬂz
0/ 2 2
@ (r;R")=—= | dtexp(—t
N7 l

The electrostatic energy can be found by inserting 2.4.8 into 2.4.1

IBI ’ 2 t 3 2|= _'12 2|= _'22
Uy, =(ﬁj ﬁldtj'd rexp(—p3; ‘r—R‘ )exp(~t ‘r—R \ )

3 P 3/2 _p22|p 32l 249
B, zfdz” (ltRR)
= ex
o) e ) T e
lztz‘R1 _R’z‘z
Now let v* = T U,, becomes
.+
1 2 ﬂlle2
Up =—5— Idvexp(—vz)
RE Nz 2.4.10
_erf(BuR")
R12
B.p,

where £, = and R" E‘ﬁl —ﬁz‘.

B+ B

2.5 Gaussian Multipoles and Point Multipoles

The expression 2.4.10 for Uy can now be substituted into 2.3.1 to arrive at the the

electrostatic interaction energy U2 between an n"™ and m™ order Gaussian multipole:

12
erf (B,R™)

12 _ )l ()1 (m),2 (m),2 12

Uy =@ V@M 2 8

Ly () erf(ﬁlzRu)
R12

2.5.1
— (_ 1) m @ (n),1 ® (m),2
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In the last step, V' does not act on ®"* . In particular, the Gaussian multipole energies

up to dipole- dipole are given by:

R 12
monopole-monopole Uw=9'q % 2.52a
R 12
monopole-dipole Uy =—q'ii’-V' % 2.52b
Rlz
dipole-dipole Ul =-p'p v ef(b.R7) 2.52.¢

R12

If the large exponent limit is applied to the interaction energies in 2.4.1,
B1, Ba, B1a — o, and erf(x) — 1 as x — oo, and the n™ m™ Gaussian multipole interaction
energy becomes:

Urlqu — (=1)" M@ M2, vy (rtm L 253

R 12
i.e. the interaction energy of point multipoles in A.4.14.
In the expression for Gaussian charge density, the exponent determines how
localized or diffuse the density is about the center.

3 2
0o (7 R) = q(%) ¢ PR 2.5.4
T

For small exponents, the charge density is diffuse and spread out in space. For large
exponents, the charge density becomes sharply localized near the center. In the large
exponent limit, the charge density for the Gaussian monopole becomes that of a point

charge.

3
. ﬁ 7/32‘775‘2 3) /= =
lim q(—_ e =q0"(r —R) 2.5.5

Lo T

Use has been made by one of the representations of the 3D Dirac-Delta function'
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3
5O (F - B)= lim(ﬁ] e 256

B\ N7
2.6 Force and Torque
The following treatment for forces between Gaussian multipoles is almost
identical to the derivation given for point multipoles in appendix A.5 and is summarized
here for completeness. The force on particle 1 F' due to the n™ — m™ rank Gaussian
multipole interaction between particle 1 and 2 is defined as the negative gradient with
respect to particle 1
F'=-v'u? 2.6.1
The multipole moment ®”' on each atom can be defined with respect to the constant

global reference frame X,,x,, X, or a local (body) coordinate frame x;, x,,x;. The local

coordinate frame of atom 1 can be defined in terms of atom 1’s position R'and also the

positions of atom 1’s neighbors R“ and R’. The local frame is related to the global

frame by a rotation matrix D,

3
> D,%, =D,%, 2.6.2

q=1

xP
The components of ®"" in the global frame © @;’;)fr are related to the components in

the local (body) frame @' by

pq..r

G ()l B ~(n),1
"' =p D,.D,"® 2,63

pq..r p'q..r'
The derivative of ®""' with respect to V' was derived in appendix A.5 and is given by:
oD
Ve = nfch’fD; “OI% % & 2,64

v
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Therefore, the force on atom 1 is given by:

12
F’l :(_1)m+l (V1®(n),1)®(m),2 RvAGEON e”f(ﬂnR )+

12
R 2.6.5

(_1)m+1®(n),l®(m),2 Ly (e e’”f(ﬂllzlez)
R
The first term on the right side of 2.6.5 is a torque term since it is a derivative with
respect to orientation. The second term is a derivative of energy with respect to
translation of the distance between the two multipoles and is the ordinary translational

force term. Finally, it should be noted that the interaction U, contributes force terms to

atom 1 and atom 2, and also to the neighbors of atom1 and atom 2.

2.7 Electrostatic Potential and Field
The electrostatic potential can be defined in two equivalent ways. In appendix

A.6, the electrostatic potential was defined as the variation in energy of a system when an

infinitesimal point charge was added to the system, ¢ = ;qlmo g !4 Potential can also be
-

defined as a Coulomb integral over charge density p(7), given by:

o(F) = j d*r' p(r') 2.7.1

_.'|

|17 -7
This definition was used in 2.4.3 for the calculation of ¢, the electrostatic potential of a

Gaussian monopole with unit charge. Using the definition for potential in 2.7.1, the

electrostatic potential for a Gaussian multipole with charge density by 2.2.4 is:

3
= B2y _ @2 7 (m).2 & 30 _ 23 p2 2 L
¢, (F;R°) =0 -V (\/;j [drexn( ﬂz‘r R ‘ )|;_;v| 2.7.2

— @(m),z A V(m),2¢0 (’—;’R'Z)
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Using the result for ¢ in 2.4.7

= p2
P (,-;;kz) =@M2  yim?2 erf(ﬂz"’ R ‘)

\?—1%2
273
_yrom g TEF-FD
PR

It will prove useful in the next section to apply the other definition of electrostatic

potential (¢ = ;qm}) ﬂ) to Gaussian multipoles. From 2.5.1, the interaction energy

between a Gaussian monopole (# = 0) and an m™ order Gaussian multipole is given by:

1 e”f(ﬁllez)

Uéfn = (_l)mql®(m)’2 A R2

2.7.4

If the large exponent limit is take for the monopole, f; — oo, then 1, — S, and the

Gaussian monopole becomes a point charge, and 2.7.4 becomes

Ry e”f(ﬂlez)

U =(-D"¢'0"™? 2 575
The electrostatic potential is then
R 12
v " 2.7.6
_(cpyrem? .y ELART)

RL
which is equivalent to 2.7.3 (if R' =7 is the field point).

In appendix A.6.4, the electric field E is defined as the negative field gradient of
potential: E(R';R*)= —VI(D(RI :R?). Hence, the electric field for an m™ rank Gaussian

multipole can be found from 2.7.6 to be:
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E,(R';R*)=-V'p, (R';R*)

— (_l)m @)(m),z X V(mﬂ),l %1221{12) 2.7.7

The n™ ranked field gradient'* of an m"™ ranked point multipole is defined in A.6.6. For
am m™ ranked Gaussian multipole, the n'™ ranked field gradient is given by:

E; (él;éz) — —V(”)’l(om (R’l;R’z)

= (_1)m+1 M2,y (nrml %IZZRH) 2.7.8

In the point multipole limit, 8, — o and erf(3,R'">) —> 1, so that the potential,

field, and field gradients become:

@ (R';R*)=(-)"@m?.ym! % 2.7.9a
E,(R;R)=(-)"'@m? .y % 2.7.9a
E,:lz (él : EZ) — (_1)m+l @(m),Z . V(11+n1),1 L 279C

12

which is equivalent to A.6.3, A.6.5, and A.6.6.

2.8 ‘Effective’ Electrostatic Potential and Field

In section A.6, it was shown that interaction energies for point multipoles could
be conveniently expressed in terms of potential and its gradients. In this section,
‘effective’ electrostatic potential and field are defined. The motivation for this is to be
able to express interaction energy between Gaussian multipoles in terms of ‘effective’
potentials and fields.

The interaction energy of a point monopole (n = 0) with a point multipole of rank

m is given by A.6.7:
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where D, (El,ﬁz) — (_l)m @(m),Z . V(m),l L

e is the potential due to the point multipole of

rank m. On the other hand, the interaction energy of a Gaussian monopole with a

Gaussian multipole of rank m is given by:

R
U(;fn —(-)"q @Mz y(mi e’”f(:gllzz )

However, in the Gaussian multipole case,U,>, # ¢'p, (R'; R*), since

RIZ)

o, (R';R*)=(-)"e@m?.ym! L2 7 erf(,B = contains the wrong exponent (82 # f12).

It would be useful to be able to express energy in terms of field and potential for
Gaussian multipoles. However, the Gaussian multipole energy is an integral over two
charge densities, and the potential/fields are integrals over a single charge density.
Therefore, the Gaussian multipole energy can not be expressed in terms of ordinary

potential/fields.

In the definition for electrostatic potential in (¢ = gqlrr%) E ), the potential is
—

defined as the variation in energy when an infinitesimal point charge is added to the

system. If the point charge ¢ is replaced with an infinitesimal Gaussian charge ¢ with

exponent f31, the ‘effective’ potential ¢ can be defined as:

- 2.8.1
V(m)l erf(ﬂlZR )

_ m (m),2
- (_1) @ R12
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The difference between the true potential in 2.7.6 and the ‘effective’ potential in 2.8.1, is
the exponent 8, — f1». In a similar manner, the n™ rank field gradient of the ‘effective’

potential from an m™ order Gaussian multipole is defined as:

EV(RGR) =-V'"g, (R RY)

— (_1)’”*1 @(m),Z . v(n+m),1 er:f(ﬂlZRlz) 282
R12
Now the interaction energy between Gaussian multipoles can be expressed in

terms of ‘effective’ potential and fields. The energy between a Gaussian monopole and

an m"™ order Gaussian multipole is given by:

1 e”f(:BuRlz)

U — _1 m 1®(m),2 'V(m),
o = (D74 R" 2.83

=4', (R';R)
The energy for a Gaussian dipole with an m™ order Gaussian multipole is given by:

(m+1),1 e’”f(ﬂuRu )

Ulm :(_1)’7’/71@(’")’2 -V R" 284

=" EY(R';R?)

In general, the interaction energy for an n™ order Gaussian multipole with an m™ order

Gaussian multipole is given by:

Ly ()] e’”f(ﬁllez)

U — _1 m®(n),1®(m),2
m =D R" 2.8.5

—_@!. E(ﬂ) (R'l . R’Z)

The main reason for introducing ‘effective’ potentials is to simplify energy
interactions between Gaussian multipoles and to develop a formalism for Gaussian
multipoles which parallels that of point multipoles. As mentioned earlier, the general
method of evaluating interaction energy between two charge densities involves an

integral over two coordinate systems. However, the field involves only a single integral.
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The second charge density is implicitly integrated into the ‘effective’ potential. In the
following two chapters, a polarization model based on induced Gaussian dipoles is
developed. It is first postulated that ‘effective’ fields rather than ordinary fields are used
to polarize the charge density by inducing a dipole moment on the atom. Later, it is
shown that the results for polarization energy, work, and force are greatly simplified

when ‘effective’ fields rather than ordinary fields are used to induce polarization.

2.9 Gradient Tensors

) . 1 . .
In section A.6, tensor gradients of n were evaluated for point multipoles. For

. . . R
Gaussian multipoles, tensor gradients of the form V"’ % are needed. From the

definition in A.2.14, the n™ ranked tensor gradient of —erf;ﬂ R) can be expressed in
component form as:
yo @TPR _ ¢ ¢ a" et (PR) 2.9.1
R nTrmoR OR, .OR, R
The first four tensor gradients are evaluated as:
yo & ;ﬂR) —_RBB,(x) 292
erf (BR) _ . .
ve P g, (R,R,B°B,(x)-5, BB (x)) 293
erf (BR) _ - - .
ve R = Xp XX, ((5qur + 517"Rq + 5quP )ﬂSBZ (x) - 294

R R R 55,5

P q
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prqr pqrs prgs rq~ sp

V(‘”@:fc % 545,0,+5, 5 +3.6.)B B,(x)
-0, RR +6,RR +6,R,R +6,RR, + 295

5qupRr + 5rstRq )ﬂ7B3 (X)
+R,R,R.R B°B,(x)}

where x = SR, and the dimensionless B, (x) '’ '® functions are defined by:

dB
B,(x)= erf () , B, (x)= _14B, . The first four functions are given by:
RS x dx
erf(x
By(x) = (x)
X

dBy 1 _erf(x) 2 o1
dx x X Jr x°

Bwy=—Bl 30 2 o150 2.9.6

dx x X N X

B (x)=-

dB :
B=-2B 1 _Def@) 2 15,1024 40%)

dx x X N X

dB :
B(r=-251_10eaf(x) 2 .1 (105 +70x* + 28x* +8x°)

dx x x’ N X
In practice, the numerical evaluation of B, (x) using 2.9.6 is unstable for small x.

However, B, (x) is finite and continuously differentiable when x is small. Starting with

2 ) (_l)nx2n+1
Jr S nl@2n+1)

the Taylor series'? for erf(x) = , a Taylor series can be derived for

B, (x) and used to approximate B, (x) when x is small:

2 Z.o:(_l)kxﬂ( 211

B”(x):\/ZM K 2(n+k)+1

2.9.7

For large x, the asymptotic limit of erf(x) — 1 holds, and the following relationship can

be used to approximate B, (x) when x is large:
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(2n -1

2n+l1
X

B, (x)= 2.9.8

The Gaussian multipole interaction energies up to dipole-dipole are given by
2.2.5a,2.2.5b, 2.2.5c. When the results for the tensor gradients are inserted into the

energies, the result is:

monopole-monopole Uy =q'q> B, B, (x) 2.9.9
monopole-dipole Ul =q'i* R B, (x) 2.9.10
dipole-dipole U2 =p" g*BB(x)- ' -R*i* - R BB, (x) 2.9.11

The potential at R' for a Gaussian monopole with charge ¢* or dipole z* and
exponent S, located at R*is given by:
oy(R':R*) =4 B,B,(B,R") 29.12
o, (R';R*)=fi* - R B} B,(B,R") 2.9.13

The ‘effective’ potentials onto a Gaussian particle with exponent f; are found by simply

by replacing f, with £, in 2.9.12 and 2.9.13.
Po(R';R*) =4’ B,By (S, R") 2.9.14
@ (R';R*)=1" - R" B B,(B,R") 29.15

The ‘effective’ fields are found by taken the n=1and m =0, 1 in 2.8.2

i
[

(R';R*)=q’RB’B,(,R"™) 2.9.16

i

(R';R*)=j*-%,%,(R,R, B°B,(BuR®) =8, B B,(B,R")) 2.9.17
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2.10 Relation to Hermite Gaussian Functions
In gas phase electronic structure calculations, Gaussian functions'” are often used
as a basis because all necessary one and two electron integrals have analytic solutions.

Two electron Coulomb integrals of the form in 2.10.1 are needed.

X 20 20 ()2, ()

— 3 3.0
<;(ﬂ;(u Zglp>=_”d rd’r |F—F'| 2.10.1
X, 1s a Cartesian Gaussian basis function of the form:
— g r - =12
2uF B R =N L ()" (70)" () exp(—aff — R|') 2.10.2

where N , = is a normalization constant, x, =x—- X, y, =y-Y, z, =z-Z, and

”

R = X%+ Yp+Z2 is a nuclear center. The set of Cartesian Gaussian functions can be

linearly transformed into the set of Hermite Gaussian functions of the form:

3
A, (7B, R)= (ﬁjz (ij (i}u (i)v exp(-alf ~ ] ) 2.10.3
z) \oX)\oY ) \oZ
The Gaussian multipoles ®" defined in this work are tensor contractions between
multipole moments and the set of Hermite Gaussian functions with #+u+v =n. One
method of evaluating the electron repulsion integrals of 2.10.1 is to first transform the
Cartesian Gaussian basis into a Hermite Gaussian basis. The nuclear center derivatives in
2.10.3 can be pulled out of the integral. The integral can then be evaluated in terms of
simple s-orbital Gaussian functions or Gaussian monopoles as in the calculation of Uyy.
Recursion relationships, such as the McMurchie-Davidson™ scheme, are used to evaluate
the integrals for higher angular momentum (higher order Gaussian multipoles) in terms of

a Boys’ function of order »n defined by:
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1
F.(x)= jﬁ" exp(—xt>)dt 2.10.4
0

The following relationship for derivatives holds:

dF
F, b =— 2.10.5
dx

The zero™ order Boys’ function can be transformed'” in the erf{x) function as:
7w erf(Vx) Ve
Fy(x)=,|=———F=>=,~B,\W 2.10.6
0( ) 4 \/; 4 0( X)

Using these two relationships, it can be shown that

F,(x)= 2%\/%3,1 (Vx) 2.10.7

Though the final results are identical, the formalism in this work differs from that
used in electronic structure theory. The approach for evaluating the interaction between
Gaussian multipoles in this work parallels that of point multipoles, in order for
comparisons to be made at each stage. Instead of using McMurchie-Davidson recursion,
the treatment here used explicit Cartesian gradients (2.9.2 - 2.9.5). The function B,(x) in
2.9.6 was used instead of the Boy’s functions F,(x). For more details on electron integral
evaluation in electronic structure calculations, see Molecular Electronic Structure

Theory".
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3 Gaussian Polarization Model

3.1 Introduction

In recent years, including polarization in molecular dynamics simulations has
been the center of a considerable amount of effort'”. It is known that molecular dipole
moments change significantly when transferred from gas to liquid phase; non-polarizable
classical force fields based solely on additive models are not able to capture this effect.
Rather, permanent molecular dipole interactions are often enhanced to compensate’.

Including an explicit polarization term in the force field is a method to model
these multi-body effects in condensed phases, while still being able to correctly calculate
gas phase properties, such as dimer geometries and interaction energies. Polarization is
likely to be particularly important in accurate descriptions of biomolecular interactions.
A further important advantage of using a polarizable force field relates to parameter
development. Polarizable force fields fit to ab-initio data would be expected to do well
both in gas and condensed phase.

Several polarization models such as the Drude oscillator’ *, fluctuating charges’,
and induced dipoles'® ' ' have been suggested for use in water models. However, the
induced dipole model' 2*° and the fluctuating charge model”* > seems to have received
the most attention in terms of force field development. The simplest induced dipole
model places isotropic inducible point dipoles on each atom. If hyperpolarization effects,
as might arise from strong electric fields, are absent, then the induced dipole responds

linearly with respect to electric field. In this case, the induced dipole z on an atom is the

product of the total electric field £ and a scalar atomic polarizability .
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H=cakE 3.1.1
The total electric field is composed of the external electric field from permanent charge
sources £ and the contribution from other induced dipoles. In order to reproduce
molecular polarizability tensors using isotropic atomic polarizabilities, induced dipoles
within the same molecule should interact with one another'*. Applequist et. al. found
parameters for this model by fitting atomic polarizabilities to experimental molecular
polarizability tensors'*.

The development of the interacting induced point dipole model was an important
step in modeling polarization because it led to accurate calculations of molecular
polarizability tensors. The most serious drawback to using the original point dipole
model is known as the polarization catastrophe. This phenomenon happens when two
mutually interacting inducible dipoles with atomic polarizabilities ¢; and o, diverge at a
finite distance, given by:

R=(4a,a,)"° 3.1.2
During a molecular dynamics simulation, this situation leads to non-physical forces and

velocities causing the simulation to fail. Thole" '

remedied this problem by applying a
damping function to dipole-dipole interactions. As an added feature, the damped model
resulted in an improved fit to the molecular polarizability tensor data relative to the
Applequist point dipole model.

An alternative to the damped interaction model by Thole, which was explored in
the previous chapter, is to employ interacting Gaussian densities rather than point

dipoles'’ ¥ An advantage of using a charge distribution model over the Thole model is

that it may be readily generalized to other multipole moments. For example, a point
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charge could be replaced by a Gaussian s’ orbital, and a dipole could be replaced by a
‘p> orbital”®. It was shown in chapter two that point multipoles are the large exponent
limit of Gaussian multipoles. Indeed, multipoles in current force fields' could be
replaced by Gaussian multipole (Hermite Gaussian) charge densities®’, which effectively
damp short range electrostatic interactions and provide a more realistic description of
penetration effects, which can be significant in dimer geometries®' **.

A peculiar aspect of the Gaussian model that relates to the polarization
catastrophe should be pointed out. If the inducible point dipoles are replaced by
inducible Gaussian dipoles, it might be expected that the interaction remains finite, since
the interaction of two permanent Gaussian dipoles is finite at all distances. However for
large exponents, the Gaussian dipoles start to behave like point dipoles, which interact
strongly. If the exponents are too large, the interaction is too strong and a polarization
catastrophe can occur. A relationship between the minimum diffuseness of the Gaussian

exponent £ and atomic polarizability ¢, namely:

P — 3.13

&)

is derived that will prevent a polarization catastrophe.

A similar analysis was performed on the Thole model'”, {p(u) = 3a/4 7 exp(—au’)}, and
the maximum value of the damping parameter a was found to be 1.0.

One focus of this study is to develop an induced Gaussian dipole polarization
model. In the following section, results from chapter two pertaining to Gaussian

monopoles and dipoles are summarized. In section 3.3, the induced Gaussian dipole
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polarization model is introduced as a generalization of the induced point dipole model.
The procedure to calculate molecular polarizability tensors from atomic polarizabilities is
discussed in this section. In section 3.4, the molecular polarizability tensor is derived
explicitly for the important case of a diatomic molecule. In section 3.5, the polarization
catastrophe for the Gaussian and Thole model is discussed, and a proof of 3.1.3 is
provided. Finally, in section 3.6, an equivalent definition of molecular polarizability as a
derivative of molecular dipole with respect to external field is given. As an example, the
molecular polarizability tensor is calculated for water using the procedure outlined in 3.4
and also as a numerical derivative of induced molecular dipole with respect to external

field.

3.2 Gaussian Model

In chapter two, Gaussian multipoles were discussed. In this section, the results
for Gaussian monopoles and dipoles are summarized. In particular, the dipole-dipole
interaction matrix is defined and relationships for electric potential and fields needed for
the Gaussian polarization model are stated.

It was shown in appendix A.7 that interaction energies between point multipoles
can be expressed in terms of potential, field, or field gradient. In order to generalize
Gaussian multipoles from point multipoles, ‘effective’ potentials and fields were defined
between Gaussian multipoles in section 2.8. Interaction energies between Gaussian
multipoles can be expressed in terms of ‘effective’ potential and fields. The ordinary
electrostatic potential is defined as the variation in energy when an infinitesimal point

charge (or point monopole) is added to the system. The ‘effective’ potential is defined as
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the variation in energy when an infinitesimal Gaussian monopole is added to the system.
‘Effective’ potential between Gaussian multipole charge distributions are convenient
because it implicitly takes into account both charge distributions as continuous charge
densities. In the following section, it is postulated that ‘effective’ fields rather than
ordinary electric fields are used to induce polarization. In chapter four, it is shown that

the use of ‘effective’ fields greatly simplifies the polarization energy, work, and force.

A Gaussian monopole density with nuclear center at R, charge g, and exponent f8

is given by (2.2.1):

3
_ 2\, B 2}7_.2
pO(F;R)=q[ﬂ ] e 321

T
Similarly, a Gaussian dipole density with dipole moment # is given by (2.2.2):
3
. 2 2 a2 f—‘ 2
pl(F;R)=ﬁ-VR[ﬂ—j IR 322
T

The interaction energies between Gaussian monopole and dipole densities at R' and R

with exponents f; and S, are derived in chapter two and given by 2.9.9, 2.9.10, and

2.9.11:
Uég :qlqzﬂuBo(x) 323
Ul =q'i* R B, (x) 3.2.4
Uip = ('~ @) a8 (x) - (&' - R*)(f* -R®)BLB,(x) 325
where S, = _Sb R%=R'-R*, R" E‘I?1 ~R?,and x= B,R"”. B,(x),

B+ B

B,(x), and B,(x) are defined by 2.9.6 as:
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erf (x)

B,(x)=———=

B dB I erf(x) 2 _-1
BI(X)=—dx°;= P 3.2.6
Bz(x)z—dB‘ 1 _Berf(x) 2 "‘2%(3+2x )

dx x X’ Jr X
The Gaussian dipole — dipole energy in 3.2.5 can be expressed in terms of a dipole —

dipole interaction matrix T'

ui=-g"-T" - i*, 3.2.7
R12
in which T? =V'V! % is found from 2.9.3:

T"? = (Rzlszcizlglssz (X) - 5pqﬂ13231 (x))}p)e"

. 3.2.8
= B BLR RV B, (x) - B, ()1

R" = Rnx and =6, % X, (identity matrix) are expressed in vector/tensor notation

(see appendix A.2).

The ordinary potential ¢y at R' of a Gaussian monopole at B> with charge ¢*and

exponent f, is given by 2.9.12:

oo(R") =4 B, B, (B,R") 3.2.10
Similarly, the ordinary potential ¢; at R' of a Gaussian dipole at R* with dipole /i and
exponent S, can be evaluated from 2.9.13:

o, (R")=p* - R*BB,(S,R™) 3.2.11

In section 2.8, it was shown that interaction energies could be expressed in terms

of ‘effective’ potentials and fields. The ‘effective’ field of a Gaussian monopole with
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charge ¢ and exponent /3 at R> onto another Gaussian particle with exponent f; at R' is

given by 2.9.16:
E,(R';R*)=q’R"B}B,(5,R"?) 3.2.12
The ™ symbol has been dropped on ‘effective’ field for clarity. The ‘effective’ field of a

Gaussian dipole with dipole z* and exponent 8, at R* onto another Gaussian particle

with exponent A at R' is given by 2.9.17:

E,(R;R*)=i"-(R"R"B°B,(B,R") ~18°B,(B,,R"))
— [lZ . T12

3.2.13

The ‘effective’ fields are used to induce dipoles in the Gaussian dipole polarization

model.

3.3 Gaussian Polarization Model

The section follows the treatment of Applequist'* and Thole'® by deriving the
molecular polarizability tensor for linear isotropic polarizabilities using induced Gaussian
dipoles. The main difference between this treatment and that of Applequist or Thole is
that the dipole-dipole interaction matrix T'* is given by 3.2.8 and the electric fields used

are ‘effective’ electric fields (3.2.12 and 3.2.13) between Gaussian particles.

The symmetric molecular polarizability tensor a;’q"‘ is defined by:

mol mol mol mol 0

/ux axx axy axz Ex
mol | __ mol mol mol 0

w, =, a, o | E 3.3.1
mol mol mol mol 0

/le azx zy zz Ez

where 1™ is the induced molecular induced dipole and E° is a constant external

electric field applied to the molecule. In order to calculate the molecular polarizability
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tensor from induced Gaussian dipoles, consider a molecule composed of N atoms each
with an isotropic polarizability o; assigned to it. The induced dipole on particle i zi' is
the product of the atomic polarizability o; and the total ‘effective’ field due to permanent

charges E" and the ‘effective’ field due to other induced dipoles, Z TV -4’ .

J#i

J#i

ﬁi=a{EW+§?WUﬁj 332

This is a linear equation for z', which can be rewritten as
Au=E’ 333

where zz and E° are 3N column vectors, and A is a 3N x 3N matrix given by:

)" o 0 0 T® T
Al 0 L) T 334
0 0 @;f_ ™ TV 0
or in tensor particle-component notation,
Al :LZ(Syﬁpq -7 3.35

"
where J;; is the kronecker delta function, defined by J; = 1 (i =) and J; = 0 for (i #)).
As in chapter two, for tensors involving components (p =1,2,3 for x,y,z) and particles (i =
1,.. N), the particle index will usually be denoted (when possible) as a superscript and the

component index as a subscript. Solving for &z in 3.3.3,

H=A"E 3.3.6
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Since the total induced molecular dipole is found by summing the induced atomic

mol

el is the direct sum of A" over

dipoles, the calculated molecular polarizability tensor o

particle number.

mol __ ShN A—l,ij 337
Xy _zz rq e

i=1 j=1
A small technical note should be made regarding ‘effective’ fields for the external
constant field acting upon the molecule in 3.3.1. Since the field is constant, ‘effective’
field is the same as ordinary field because a constant field can be created by a large point
charge a far distance away, i.e. a point charge outside the range of the Gaussian
exponents. ‘Effective’ fields differ from ordinary fields when atoms are close enough
that their Gaussian charge distributions overlap.

If the assumption of linear isotropic atomic polarizabilities were generalized to

linear anisotropic polarizabilities, ' becomes a symmetric polarizability matrix a; ,and

the equation for induced dipoles (3.3.2) becomes (in component form):

;4==a;[EgP+§:T;-ij 3.3.8
J#i
where repeated component indices ¢ and » have been summed over. This can be

expressed as Azz = E° where the A matrix takes the form:

i -l if
A =a s, ~T! 3.3.9

Pq q

i

where a;;’ is the inverse of anisotropic atomic polarizability tensor a;q for particle i.

The molecular polarizability can be found by inverting A as in 3.3.6 and then taking the

direct sum as in 3.3.7.
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3.4 Diatomic Molecule

In the case of a diatomic molecule, the molecular polarizability tensor has 2

independent components: one parallel to the bond axis ¢, and another perpendicular to

the bond axis «, . By considering 2 particles interacting in 1 dimension, these
components can be explicitly derived for the Gaussian model by solving for ' and 7’

in 3.3.2 using the result for the dipole — dipole interaction matrix T'* (3.2.8).
A @
Eo EO

Figure 3.1 Two induced dipoles interacting parallel (A) and perpendicular (B) to a
constant external electric field.

Consider the case of two particles whose bond axis is parallel to the external field

in Figure 3.1A. Suppose the external field and the separation is along the y axis. In this
case, ﬁl :ylﬁ, [12 =,UZJA/, RY ~Rp, EO — FO2 :on;’

T? =T = j) {ﬂszRBz (x)79 - B, (x)I}. The equation for induced dipoles (3.3.2)

becomes:
Wi=a'(E + BLF(0)M)p 341
Wy =a’(E + BLFM )y B
where
F(x)=x"B,(x)- B,(x) 3.4.2

3.4.1 can be solved for ' and 4%, yielding the following result:
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1 o +a1a2ﬂ132F(x) 0
a 1-a'a’BSF(x)F(x)

2 _ a’ +a1a2ﬂ132F(x) 0
1-a'a’ B F(x)F(x)

343

The total induced dipole along the bond axis is z' = #' + 1*, and the molecular
polarizability along the bond axis is given by:

I 1 2 1 _2p3
aH:,u_O:(x +0(1 tZ(étaﬂle(x) 344
E l-a a p,F(x)F(x)

Now consider the case of two particles whose bond axis is perpendicular to the

external field as in Figure 3.1B. Suppose the external field is along the p axis, and the
separation is along the % axis. In this case, ii' = u'p, i* = u’p, R = R%,

E™ =E"=E"5, T? =T =8 {ﬂszRB2 (x)xx — B, (x)I}. The equation for dipoles
(3.3.2) becomes:

u'p=a'(E - BB (x) )y

). (o s N 3.4.5
HYy=«a (E = BLB (x)u )y
which can be solved for ' and /%, yielding the following result:
u' = a' 1_0251022ﬂ13231 (x) E°
l1-a'a”f,B,(x)B,(x) 346

2 _ az_ala2ﬂ13zB1(x) B
l_alazﬂszl(x)Bl(x)

Y7,

The total induced dipole perpendicular to the bond axis is g~ = ' + x*, and the
molecular polarizability perpendicular the bond axis is given by:

ut  a'+a’-2a'a’ BB, (x)
a, =—5= . 2 6 347
E 1-a o f,B,(x)B,(x)
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3

In the point dipole limit, B, (x) = 1 and B, (x) = is (2.9.8). Therefore,
X X

F(x)= % and the molecular polarizability tensor parallel and perpendicular to the bond
X
axis reduce to:

2
a' +a’ +2a'a’ =
R

o, = 348
H 1—05105zi
R6
a' +a’ 205'0¢2i3
a, = R 3.4.9
l-a'a? !
R6

3.5 Polarization Catastrophe
In the introduction, it was stated that the exponent parameter in the Gaussian
model should be sufficiently diffuse in order for a polarization catastrophe not to occur.

This condition, given by 3.1.3,

f<——— 3.5.1

will now be proved.

Consider two interacting inducible dipoles with polarizabilities a; and a;
separated by a distance R along the x-axis. Since induced dipoles parallel to the
separation axis interact more strongly than dipoles that are perpendicular to their

separation axis, it suffices to consider dipoles interacting parallel to their separation axis.
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In order for the interaction between two dipoles to be finite, the denominator in 3.4.4

should be positive.

a'a’BLF(x)F(x)<1 3.5.2
where F(x) is defined in 3.4.2 by:

F(x)=x"B,(x)—B,(x) 3.5.3
and S, = & and x= f,,R. Bi(x) and By(x) are defined in 3.2.6 and 2.9.6 by:

B+ B,

B, (x)= @ _ 2 e iz and B, (x) = %f’c) ~ 2 o L 312x?). Fwis plotted

Jrooox x rooox

in Figure 3.2.

0.4
061 /

08

Figure 3.2 Plot of F(x)=x"By(x) — B1(x)

Let

F, = max{[F(x)]} = —— ~ 0.752252778 3.5.4

3

be the maximum value of F(x) which occurs at x = 0. If £, and $, are chosen such that

pa—3I0 i1 355

i)
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then 3.5.2 is valid for all x.

Proof:
11 1 (1 1Y) 2 _ 2
ﬂlZ IB] ﬂ2 ﬂl ﬂz ﬂlﬂz ﬂlﬂz
or
g <Pl 357
2
Using 3.5.4 and 3.5.7, 3.5.2 becomes
BB\
a0, BEF (xX)F(x) < oo, B F) < a%{%} F} 3.5.8

Substituting f; (3.5.5) and F (3.5.4) into 3.5.8 gives:

a,a,BEF(X)F(x)<a'a’

s[a134 j{“ 4 ]u;j:l 359

i.e. 3.5.2 is satisfied.
A similar analysis can be applied to the Thole model. The dipole-dipole

. . .23
Interaction 1s™:

o Thole :% {31@1@(1 —(+au’)e™ —R*(1-e™ ™ )?)} 3.5.10

where

R 3.5.11

u

1
(@'a’)’
In 1 dimension, the molecular polarizability tensor for Thole can be solved for explicitly

as in section 3.4:
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_a'vat +2Ma'a’ F(u)

Q ~— 3.5.12
1-F(u)
_a'+a’ -20a'a’Gu) 3513
. 1-G(u)> o
where F(u) and 5(u) are defined by:
- _ 1 3 —au3
Fu)=—Q2-2+3au’)e™)
”1 3.5.14
G(u) = 7(1—67“”3)
A catastrophe doesn’t occur as long as the denominator of 3.5.12 is positive.
1-Fu)* >0 3.5.15
Let
]70 Emaxﬂﬁ(u)‘}=a 3.5.16
which occurs at u = 0. The catastrophe condition then becomes:
Fu)* <F?<1 3.5.17

r.e.a<1.0.

Finally, in the point dipole case, a polarization catastrophe occurs when the

1
denominator 3.4.8 is zero, i.e. R = (4a1a2 )g . This was stated in the introduction (3.1.2).
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3.6 Results
For small external fields, the induced molecular dipole is linearly related to the

external electric field, i.e.

mol mol mol mol 0

/JX axx Xy pv4 E)C
mol | __ mol mol mol 0

W l=lay ay al | E) 3.6.2
mol mol mol mol 0

ILIZ aZX aZy aZZ EZ

mol

,»1s the induced molecular dipole, and

where E ; a constant external electric field , i

m()l . . . . g . .
a,, 1s the dipole-dipole molecular polarizability tensor. This equation can be expressed

in tensor form:

w =anE] 3.6.1
For larger external fields, the induced molecular dipole is a power series in external field
(B.2.37):

'u;nol — a;;)lE;) +ﬂm01E;]Er0 + .. 362

pqr
where ,B;;‘;l is defined as the dipole-dipole-dipole first hyperpolarizability tensor

(B.2.31). Therefore, a second definition of molecular polarizability tensor is given by

(B.2.23):

mol

mol __ ’uP
apq ZW 3.6.3
q9 |g°

=0
The procedure for calculating the molecular polarizability tensor outlined in
section 3.3 can be tested numerically by calculating a finite difference derivative of

induced dipole with external field using 3.5.3.

mol

1 mo mo
am = E(,up \(AE,) — 1™ (0)) 3.6.4

q
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A small constant electric field perturbation AE, is applied to each atom for all three

directions (¢ = 1, 2, 3). The induced dipoles u ; (AE,) are then calculated iteratively

using 3.3.1 for each atom (i = 1, .. N) in all three directions (p = 1,2,3). y; (0) need not

be calculated because the induced dipoles are zero for zero external field. The total

induced molecular dipole is given by the sum of induced atomic dipoles

mol

N .
u,” (AE)) = Z 4, (AE,) . Finally, the finite difference molecular polarizability tensor in
i=1

3.6.4 may be calculated by dividing by AE,,.

As an example, atomic polarizabilities (a) and exponents () for water were found
(by a procedure to be discussed later) to be ap = 0.6830 A°, fo = 1.5484 A for oxygen
and ay = 0.2515 A®, By =3.1603 A™ for hydrogen. In Table 3.1, the molecular
polarizability tensor for water is calculated exactly using the procedure from section 3.3,
and also numerically using 3.6.4 with AE, = 10* eA. Notice the errors in the finite

difference numerical derivative are on the same order as the finite difference 10 - 107,

XX ayx ayy azx azy 0zz

Exact 1.10715 | -0.11682 | 1.18976 | 0.00000 | 0.00000 | 0.84381
Numerical | 1.10711 | -0.11679 | 1.18970 | 0.00000 | 0.00000 | 0.84379

Table 3.1 Exact and numerical finite difference molecular polarizability tensor (A) for
water calculated using the induced Gaussian dipole polarizability model.
3.7 Conclusions

An induced Gaussian dipole polarization model was developed as a generalization
of the induced point dipole model. The main drawback to the original induced point

dipole model of Applequist is the polarization catastrophe condition which occurs when
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1
the distance between two induced point dipoles approaches R = (4051052 )3 and the

polarization interaction diverges. It was shown the interaction between two induced
Gaussian dipoles is finite for all distances if the Gaussian exponent f is sufficiently
diffuse:

ﬂ<;1

4 \3

[#5)
As in Applequist and Thole, the procedure to calculate molecular polarizability tensors
from induced Gaussian dipoles was outlined in section 2.3. The molecular polarizability
tensor was calculated explicitly for the case of a diatomic molecule with induced
Gaussian dipoles, induced Thole dipoles, and induced point dipoles. The procedure to
calculate the molecular polarizability tensor was also tested numerically by calculating a
finite difference derivative of induced dipole with respect to external field.

A drawback to the Thole model is that the model is essentially a damping function
between induced dipole — induced dipole interactions. Though it solves the polarization
catastrophe problem, it does not prescribe a method to calculate interactions between
induced dipoles and permanent charges. Ad hoc assumptions are needed to define
interactions between induced dipoles and permanent charges. Moreover, if future studies
indicate induced quadrapoles are important, there is no clear path to generalize Thole to
include higher order multipoles.

On the other hand, all interactions are well defined in the induced Gaussian dipole
model because the Gaussian dipole is based on a charge density. It is straightforward to
evaluate the interaction of an induced Gaussian dipole with another induced Gaussian

dipole or any other source of permanent charge (e.g. point charges, point multipoles, or
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Gaussian multipole charge densities). The main assumption in the induced Gaussian

dipole model was the use of ‘effective’ electric fields rather than ordinary electric fields

to induce polarization.

One reason that ‘effective’ fields rather than ordinary electric fields are used to

polarize the induced Gaussian dipole is because the induced Gaussian dipole is a charge

density defined over a finite volume. If ordinary electric field is used, it is only defined

at a single point; i.e. that of the Gaussian dipole atomic center. ‘Effective’ fields

implicitly integrates out the effect that the induced Gaussian dipole is a charge density

delocalized over a finite volume.
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4 Implementation of Induced Gaussian Dipoles into

Molecular Dynamics Simulations: AMBER

4.1 Introduction

In the previous chapter, the induced Gaussian dipole polarization model was
introduced as a generalization of the induced point dipole model. The calculation of
molecular polarizability tensors and the polarization catastrophe condition was discussed.
This chapter will focus on implementing induced Gaussian dipoles into a molecular
dynamics simulation program.

Polarization energy' %, work, and force® have been derived previously for an
induced point dipole interacting with an external field. In this chapter, polarization
energy, work, and force are derived for a system of induced Gaussian dipoles interacting
with a source of permanent charges. In section 4.2, polarization energy is derived for a
collection of induced Gaussian dipoles interacting with one another and an external field
source. When a charge distribution becomes polarized due to the presence of an external
field, work is done because there is movement of charge. The total polarization energy is
composed of the electrostatic interaction energy of the Gaussian dipoles and the work
needed to polarize the dipoles. In section 4.3, polarization force is derived as the
negative gradient of polarization energy with respect to particle position. It was shown in
appendix A.4 and A.5 that permanent dipoles experience a translational force term and an
orientation force term due to torque. Since the polarization energy is the sum of the
electrostatic energy of the induced dipoles U and the work to polarize the dipoles V, the

polarization force can be calculated as the sum of two contributions, Fy and Fy. Fy is the
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negative gradient of U with respect to particle position and Fy is the negative gradient of
V. It is shown that the torque term from both Fy and F'y exactly cancel so that there is no
torque term for induced dipoles. It is interesting to note that the final form of the force on
induced Gaussian dipoles is identical to the force on a permanent Gaussian dipole
without the orientation torque term.

It was mentioned in the previous chapter that in order to generalize the induced
point dipole polarization into the induced Gaussian dipole model, ‘effective’ electric
fields rather than ordinary electric fields are used to induce polarization. One reason to
use ‘effective’ fields is that electrostatic energy can be conveniently expressed in terms of
‘effective’ potentials and fields (see section 2.8). Another reason to use ‘effective’ fields
to induce polarization is that the dipole-dipole interaction matrix is symmetric with
respect to particle interchange. In the following derivation of polarization force, a key
assumption is that the dipole-dipole interaction matrix be symmetric with respect to
particle interchange. This assumption would not hold if ordinary electric fields between
Gaussian particles were used to induce polarization. Finally, ordinary fields act upon a
single point, and the induced Gaussian dipole is a charge density delocalized over a finite
volume. The ‘effective’ field implicitly integrates out the effect that the field point is
over the induced Gaussian dipole density.

Molecular simulations are frequently performed under periodic boundary
conditions. A system with periodic boundary conditions interacts with images of itself
replicated over again in all three dimensions. A solid crystal would be an example, of a
periodic system. In order to simulate the effects of solvent at long range, simulations of

biological systems often use periodic boundary conditions. Long range electrostatic
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. . . . . 4.
interactions converge slowly and special techniques such as Ewald summation® 7 or

Particle Mesh Ewald® " '? (PME) are used to speed convergence of the electrostatic
interactions. A brief derivation of the Ewald summation method for point charges and
point dipoles is provided in appendix D. In section 4.4, the results from appendix D are
summarized. This is followed by a brief discussion of how a periodic system of point
charges and Gaussian dipoles can be calculated as a short range correction to the results
for a periodic system of point charges and point dipoles.

In section 3.3, it was noted that the induced dipoles can be calculated by solving a
system of linear equations. Typically, this is done by making an initial guess for the
induced dipoles and then calculating the induced dipoles (3.3.2) iteratively until self-
consistency is achieved. For large systems, this method can be expensive during a
molecular dynamics simulation. An alternative method of calculating the induced dipoles
is to use a Car-Parinello" (CP) extended Lagrangian scheme. Initially, the induced
dipoles are calculated exactly by solving the set of linear equations for induced dipoles
iteratively. The induced dipoles along with their velocities are then treated as dynamical
variables. Equations of motion are derived from a Lagrangian for the induced dipoles so
that the induced dipoles propagate in such a way that their values fluctuate around their
true values. This method has previously been implemented in molecular dynamics
simulations'® "', A brief discussion of the Lagrangian dipole propagation scheme is
described in section 3.5.

Finally in section 3.6, simulation results are provided in the form of AMBER
output. The force for induced Gaussian dipoles is compared with a finite difference

derivative of energy. During a molecular dynamics simulation, the polarization energy as
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calculated exactly by the iterative method is compared to the polarization energy from
propagating the induced dipoles using the CP Lagrangian scheme for a box of 341 waters

simulated in the NPT ensemble

4.2 Polarization Energy

In this section, polarization energy is derived for a system of induced Gaussian
dipoles interacting with one another and a permanent external field composed of point
charges. The electrostatic energy of the system is derived in terms of a permanent —
permanent charge interaction, a permanent — polarizable, and a polarizable — polarizable
interaction. Following the discussion on electrostatic energy, the polarization work and

total polarization energy is derived for the system of induced Gaussian dipoles.

Electrostatic Energy

Consider a system composed of N atoms with permanent charges and induced
Gaussian dipoles ' (i =1, 2.. N). The permanent charges could be point charges, point
multipoles, or Gaussian multipoles. The total electrostatic energy U™ of the system can
be expressed as a sum of contributions:

U =u”+urt 4yt 4.2.1
where U™ is the electrostatic energy of permanent charges with permanent charges,
U7 is the electrostatic energy of permanent charges with induced Gaussian dipoles,

and U”"" is the electrostatic energy of induced Gaussian dipoles with induced

Gaussian dipoles.
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The calculation of the permanent charge — permanent charge energy U* follows

straightforwardly from the electrostatic model, e.g.

U® = li 94’ for point charges
24 RY
i#j]
o_l< (i @i g (Mg (m L - -
U _EZZG) e VIV ra for point multipoles
i#j n,m
1 & . 4 4 cerf(B,R" ‘ _
U = EZZ®(”)”®(’")” AR VAL % for Gaussian multipoles
i#j n,m

The electrostatic energy of an induced Gaussian dipole £’ with a permanent charge can
be expressed in terms of ‘effective’ field £*/7'(R’;R’) from the permanent charge at R’
onto the induced dipole atR',ie. (2.8.4)is given by:

Uy =—p' - E*7'(R';R’) 423
where the ~ symbol on the ‘effective’ field in 2.8.4 has been dropped for clarity. For

example, the ‘effective’ field from a point charge is given by:

50, (B BN T erf(ﬂiRij)
E (R';R")=-V'g —

RY
= qjl_éijﬂ;Bl (ﬂlRl])

4.2.4

The total electrostatic energy between a system of induced Gaussian dipoles interacting

with permanent charges is given by:

N
Ut == i E%(RY) 425

where E" (ﬁi) is the total ‘effective’ field on induced dipole i due to the permanent

charges.
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E*(R)=> E“?(R";R’) 4.2.6
Jj=1

The interaction energy between two Gaussian dipoles is given by (3.2.7):
Ul =—p"-T? . i*, where T" = g, \82R"R"B, (x) - B, (x)I { is the dipole — dipole

interaction matrix in 3.2.8. Therefore, the total interaction of a system of Gaussian

dipoles is given by:

N
Upol—pul Z_%Zﬁlﬁj T’/ 4.2.7

i
The permanent — permanent charge interaction energy U* does not affect
polarization energy or work, and it need not be considered now. Therefore, the
electrostatic energy of polarization U”” is defined as:
yrel = ool 4 gy rel-rel

N 1& . .
=_Zﬁl 'EOJZ(RZ)_EZ/&I,Z’J LTV
i=1

i#]

4.2.8

Polarization Work and Energy

A charge distribution o(7) becomes polarized or perturbed in the presence of an

external electric field E . There is work involved in polarizing a charge distribution
because charge is being moved due to the external field. In the case of Gaussian dipoles,

the polarizable charge distribution is given by 2.2.2:

p(F)=fi- vR[ﬁJ exp(—ﬂz‘? - 1%\2) 4.2.9

Jr
The total polarization energy W is the sum of the polarizable electrostatic interaction

energy U and the work needed to polarize the charge distribution V.
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w=U"+V 4.2.10
From 4.2.8, U”" can formally be expressed as a function of the induced dipoles ' and
the permanent ‘effective’ fields at the positions of induced dipoles E® = E* (R").
Ultimately, E* is a linear function of the permanent charges ¢’ (multipole moments,

7! may be considered a function of /i’

charge densities, etc). However for brevity, U
and E* . Hence, W and V are also functions of i’ and E*, i.e.
W=w(',E™) 42.11

The polarizable charge distribution p(7) or dipoles z' organizes itself so that ¥ is a

minimum with respect to variations in p(7) at constant permanent field' E%.

_awl{ _0 42.12
aﬂp EO,I

where 4, is any component of i’ = 4, % . If the polarizable charge distribution p(F)

or dipoles zi' are held fixed, the charges do not move and the work is zero'.

[az,,} =0 42.13
ok, )

Therefore, the derivative in W with respect to E° at constant 7' is given by:

ow oU oV oU
[aEO’f} :[8E°”} {aEO"} {aEO’f) 4214
P p i P e

For small variations in zi' and E®, the variation in W is given by:

dW:[aEOJ] d(E, H(a_"} du, 4.2.15
ﬁi =0

p P JE
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Inserting 4.2.14 and 4.2.12 into 4.2.15, yields:

aw = aU, d(E>") 42.16
aEO,l p
p i
From 4.2.8,
o =—U, 4.2.17
(GEP L[

The total polarization energy may be found by integrating 4.2.16 from zero

external permanent field to the full permanent field specified by the permanent charges

q’. Suppose g’ — Ag’ where 0< A <1, then E," — AE )" because the ‘effective’ field

is linearly related to the permanent charges. Therefore, d(E E’i) =FE E’i dA , and the total

work is given by:

i 0,i
E" 42.18

P

W = —j. dAu
0

However, ,u; is determined from solving the linear equations (2.4.3):
Au=E° 4.2.19

where Z and E° are vectors of size 3N and 4/ = —&,6, —T.' is a 3N x 3N matrix

a’
defined in 3.3.5 (or 3.3.9 for anisotropic atomic polarizabilities). Solving for z in 4.2.19
Z=A"E’ 4.2.20

or in component form, x, = A" E)’ . This can be inserted into 4.2.18 with

0,i 0,i .
Ep —M,Ep :
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—j&ML4WE°UEm

1 —L,ij 70,7 70,0 1 i 0,i
:—Eququ jEp ZE'uPEP 4221

14
== ; Il

The work needed to polarize the system can be found by:
V=w-U"

:——z EOI+Z/J EOI+ Z LTV

ljl

N ~ 4.2.22
lz ,Zl . E0 z ) T
2 i=1 lj =1
1.
“y2 Ak
where E' is the total ‘effective’ electric field on induced dipole i given by:
=E Z N 4.2.23

4.3 Polarization Force

. . .. 1 .. =,
In the previous section, the polarization energy W = Y z i’ - E% (4.2.21) was
j=1

derived for a system of induced Gaussian dipoles z' interacting with one another and an

‘effective’ field £° due to permanent charges (4.2.6). In tensor component notation, ¥
is given by (where repeated indices are summed over):

1
W=——ulE)’

S 4] 43.1

The polarization force on particle 7 is defined as the negative gradient of polarization

energy W (4.3.1) with respect to the coordinates of particle i.
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_ ou) .  OE)
F;:_G_W=l{_“? EY 4 ) St } 432

J
q

In order to calculate the first term in 4.3.2, must be evaluated. The induced

P

dipoles , are linearly related to external field £, by (4.2.20) :

u, = A;;’”E;)’-/ 433
where A(jf is defined in 3.3.5 (and in 3.3.9 for anisotropic atomic polarizabilities):

A = %51,655” -T) 434

Before proceeding, it should first be noted that the dipole dipole interaction

o o ef(B,R")
ox;) ox! R*

matrix T q{;" = is symmetric with respect to particle interchange

T/¢ =T and component interchange 7,) =T/* . Therefore, A in4.3.4 s also

symmetric. It is straightforward to show that if a matrix A is symmetric and has an

-1,k

inverse, then the inverse A~ is also symmetric. Therefore, A4, in4.3.3isalso

P R N N ]
symmetric, i.e. 4, =A,"7 =A4,7" =47 .

The derivative of 4.3.3 is given by:

J -1,jk 0,k
aﬂ? :GAL'.E}?”‘ + A, %, 43.5
ox), ox), ox),
04"
qui can be found by first noting that for any matrix A which has an inverse, A~
X
p
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AAT =1

oA oA

— AT +A =0 4.3.6
ox ox
0A” =—A"! a_AA—l
ox ox
-1, jk 6Alm
Therefore, AN =56, = a"’i =—A4 a—i’ A" . This result can be inserted into
Xp Xp

4.3.5 and then into 4.3.2 with the result:

-1, jk 0,k 0,/
Fi :l aAqr. EOk L gLk aEr‘ E™ 4 aEq'
) Gx; ' ” ax; 1 1 Gx;
m O’A
:l (_A—l,jl 6A&{t A—l,mkEO,k + A—l,jk aE:)’k JEO,J. +/J/ 6Eq !
2 qs axi r r qr a i q q axi
b r r 43.7
1 oAl . OEM L OE}’
=—| —u, =] ] —
2 6xp axp axp
1 o4* OE
=gy o
P xP

In 4.3.7, it was noted that 4" is symmetric and therefore, ul =4 "E. From4.3.4,

qr

04 oT)f
—r —_ , so that 4.3.7 becomes:

i i
ox » ox »

1 . or)f . OE)

) —— 438
ey

i J
r 2ﬂq ﬁx;

Note that i must be equal toj or k. 4.3.8 becomes:

FioL| oy v 00 , 98, ( )
=— ] |+ — (nosumover i

ox B
ij ji 0,/
Ly ,-(qu Lo, JW, OF,” 439
qir i i q i
2 ox, Ox, ox,,
, . oT"  OE) _ , .

= o p —+ ) — (since T is symmetric)

ox,, ox,
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or!
It is straightforward to evaluate a—q' from V® @ in 2.9.4:
x

ij
8xqr _(§qu;7 +5 RU +5quZ)ﬂ B ()C) RquR’ﬂ B (x) 4.3.10
p

OE "
3 ql is the gradient of the ‘effective’ field from permanent charges. As an example, for
X
p
0.j
point charges e can be found from 4.2.4 and 4.2.6 to be:
X
p
oE, i erf (B,R")
ox'! - RF
’ - 43.11
o i i f(ﬂ ) ivvi i f(ﬂ RU)
==5,>. 4"V V! R— +(1=6)q'V,V, ——
k=1

4.3.11 can be evaluated further by expressing the gradient tensors in terms of B,(x) as in
2.9.2-2.9.6. Equations 4.3.10 and 4.3.11 can be used to evaluate the force in 4.3.7 for a
system of induced Gaussian dipoles and point charges.

It is interesting to note that if ordinary electric fields and not ‘effective’ electric

o o ef(BJR-RY)
6x; Ox ‘ﬁ’ —R"‘

fields were used to induced the Gaussian dipoles, T qik =

would not be symmetric with respect to particle interchange, 7' q{k =T q'ff . Therefore, 4 q’f

and Aq’rl’jk would also not be symmetric for particle interchange, and the assumptions

used in 4.3.7 to derive the force would not be valid. If anisotropic atomic polarizabilities

were used, A;f would still be symmetric for particle number and component number, and

the results for polarization energy, work, and force would still hold.
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It is also interesting to note that the final equation for polarization force (4.3.8) is

the same result for a permanent Gaussian dipole interacting with a permanent field if the

j
torque term a—'ul" was neglected. The reason is that if the force were derived in terms of
X
p

electrostatic energy U and work components V, the torque terms exactly cancel. To

illustrate this, matrix notation is used in the following derivation for clarity and brevity.
Let 2z,E’,and E be 3N column vectors for induced dipoles, external permanent

‘effective’ field, and total ‘effective’ field. Furthermore, let T and A be 3N x 3N
symmetric matrices defined in 3.3.4. In this notation, the electrostatic interaction energy

UP°! (4.2.8) and work V (4.2.22) becomes:

Ur'=—u-E'——u-T-u 43.12

V=—u-E 43.13

N | —

The total field £ can be expressed in terms of E°, 1z, and T from 4.2.23 as:
E=E"+T-u 4.3.14
The induced dipole is related to total electric field through the atomic
polarizabilities, i.e. ' =a'E’ (and zi' =a' - E' for anisotropic atomic polarizabilities).
This can be expressed in matrix notation by:
H=a-E 43.15
where a is a 3N x 3N diagonal matrix containing the atomic polarizabilities (block

diagonal symmetric matrix containing atomic polarizability tensors for the anistropic

model). The work in 4.3.13 can then be expressed in terms of 77 and o™":
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-1

Ve—lia' & 43.16

| =

The force contributions from UP” and ¥ are given by the negative gradients of 4.3.12 and

4.3.16, respectively:

FU—_aUpul
ox
—0 _
_8_/1 E°+—.6E +6_,u.T —+lﬁ.a_T.;, 4317
ox ox  Ox 2 X
on — _ OE" 1_ 0T _
= . F+ . _ .
ox H ox 2'u ox "
FV E_@_V
ox
__l@_,u afl./j_lﬁ.afl.a_'“: Of 1. = 43.18
2 Ox 2 ox ox
__OH &
ox
Therefore, the total force is given as the sum of 4.3.17 and 4.3.18
F"=F" +F"
ou — _ OE" 1_ 0T _ ou —
=— E+u- +—p-— - uU———-"F 4.3.19
ox a ox 2” ox # ox
L .
# ox 2” ox a

which agrees with 4.3.8. Notice the torque term (Z_,u . E exactly cancels when FY is
X

added to F’.
The above analysis suggests that a possible method of implementing polarization
energy, work, and force is given as follows: First calculate the purely electrostatic energy

of the permanent charges and induced dipoles. Calculate the total (‘effective’) electric

field (4.3.14) and the force on the dipoles (4.3.8 or 4.3.19). Then add the polarization
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work V' =—11-E to the total electrostatic energy. This is essentially the algorithm that

N | —

was previously implemented in AMBER for point charges and induced point dipoles.

4.4 Extension to Periodic Systems: Ewald Summation

As mentioned in the introduction, molecular dynamics simulations are often run
under periodic boundary conditions in order to remove the artificial boundary from the
sides of a simulation box or unit cell. The electrostatic interaction energy of the unit cell

with itself and all periodic images of itself is given by:

U poi = ZZ(CI v i Vg - i V’)Z* ! 4.4.1

7+
where the sides of the box are a, and n = n,a, + n,a, + n,a, is a unit cell translation

vector (n; are integers). The * indicates that if 7 =0, omit the i = j term and any other

terms in the ‘masked list’, e.g. do not count 1-2 or 1-3 Coulomb interactions between
atoms that are bonded to or near each other.

Coulomb interactions decay slowly as 1/r. Consequently, the sum in 4.4.1 is a
conditionally convergent series. In practice, the series converges very slowly. The
Ewald summation method was devised in order to significantly speed the convergence of
4.4.1 for periodic systems. In the Ewald method, the Coulomb energy is separated into
parts. A Fourier series called the reciprocal sum is used to calculate the slowly varying
periodic part of the Coulomb energy. The other part of the energy, called the direct sum
energy, converges rapidly with distance. The direct sum energy is mainly due to particle
interactions which are near one another and can be truncated at a specified non-bonded

cutoff, typically ~8A. In addition, there is also a self-interaction correction to the energy
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and an energy correction to account for the ‘masked pairs’, which are interaction pairs
purposely not included in 4.4.1 (e.g. 1-2 or 1-3 Coulomb interactions). A brief derivation
of the Ewald summation method of point charges and point dipoles is provided in
appendix D. The result for energy is given by D.13 and D.14:

U = Urec + Udir + Uad/' + Use_lf 442

S TRV MRS S M e
255

20 Vegy 70 M
A . fc\B
U, = ZZ( Vg -5 V)Y %ﬂq‘m‘)
g 443

U AEl Z (qi+ﬁi qu "j V,)el"fC(ﬂl")

adj )
2 ihem r

self ZZ(Q +,u VXq _,Uj V’)' M

=
l*)j

where erfc(x)=1-erf(x)= J‘du exp(—u°) is the complementary error function

V7,

which decays rapidly for x > 1. U,.. is the reciprocal sum energy, which is calculated in
Fourier space. Uy is the direct sum energy which converges quickly in coordinate space
and is truncated outside a non-bond cutofT, typically 8A. U, is the correction for the
‘masked pairs’, e.g. 1-2 or 1-3 Coulomb interactions. Uy is the self-interaction
correction, i.e. it is a correction for the i =j term for n =0. There are also reciprocal,
direct, self, and adjusted terms to the potential, field, and force (see appendix D).

The Ewald summation method was devised to speed convergence of the sum
(4.4.1), and the method is essentially exact. The energy for a periodic system of point
charges and point dipoles is given in 4.4.2. In a periodic system of point charges and

Gaussian dipoles, the exact electrostatic interaction energy is given by:
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1 P | i=j i * erf(ﬂf’”ij’n)
UGauss :Ezzq qJZ ’,ijvl’l _qu ,LIJ v Z T
i J n i J n

r
1 e (BT
_EZ;’U i’ -v'v ; —r[j{"

4.4.4

where 77" =7" + 7. The difference between Uggyss in 4.4.4 and U, in 4.4.1 is a
correction

v, =U U

corr Gauss point

ij,n
‘ZZq i/ V’Z*—erfciﬁ’f ) 445

1 i o werfe(BrT)
+EZZ,U w-v'v Z rij;]n
T i

Since erfc(x) decays rapidly for x > 1, the correction for Gaussian dipoles also decays

rapidly in distance. The force correction F'

corr

can be found by taking the negative

gradient of 4.4.5, (without the 2—” torque term).
X

ﬁciorr =Z(qj[ﬂ _qfﬁj),viviz *%{M)

j 7 re
o aerfe(Bar™”
. — r >
J

n

4.4.6

The electrostatic potential for a periodic system of point charges and point dipoles

is given by:

. S |
<0po[n,(r’)=2(q"—ﬂf-v’)z wr 4.4.7
- =

The ‘effective’ electrostatic potential on a Gaussian dipole i for a periodic system of point

charges and Gaussian dipoles is given by:

72



erf (Byr”™")

ij,n

4438

Py (F1) = Zq Z*”f(’f,f ) —2 AV

j i r

Therefore, the correction to the ‘effective’ potential for Gaussian dipole i is given by the

difference between ¢causs and @poins:

gocorr (Fl ) = goGauss (Fl ) - (me'nt (Fl )

. erfc(,&’ rY ™)
z Z T 449
— i ; * ( ij l/’")
_l_zlu.l VZZ e’/fcrf’jnr
J i

The correction to the total ‘effective’ field on Gaussian dipole i is given by the negative

gradient of 4.4.9:

Ecorr (’_;I ) = _viwcorr (l_;l )
erfc( l.jr"j’”) 4.4.10

o - erfe(Bir™) ~j iviN *
:quv Z rij,n _Z’uj V'V Z rij,n
j 7

J i

The gradient tensors V" M are evaluated in D.2.24 — D.2.26.
r

The algorithm implemented into AMBER is given by the following:

1) Calculate point charge and point dipole Ewald terms for electrostatic energy, force,
and field. There is no dipole torque term to the force (see discussion at the end of
section 4.3).

2) Calculate the Gaussian dipole correction for energy, force, and total ‘effective’ field.

3) The induced dipoles are calculated using the total corrected field.

4) The polarization work is calculated from the induced dipoles and the total field. This
work is then added to the electrostatic interaction energy of the Gaussian dipoles to

yield the total polarization energy.
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4.5 Induced Dipole Iterative Methods

The induced dipoles (3.3.2) can be calculated exactly by solving a system of
linear equations. Typically, this is accomplished by making an initial guess of the
induced dipole and calculating a new set of induced dipoles from the field of the old set
of induced dipoles. This procedure is done iteratively until self-consistency is achieved.
In matrix notation, the predicted set of induced dipoles at the (k+1)" iteration is given by:

o, =aE'+T -7, 45.1

It was found that in some cases, the dipoles did not converge, but fluctuated about mean
values. In order to dampen the fluctuations in solving systems of linear equations
through iterative algorithms, Successive Over-Relaxation (SOR) methods'’ take a

weighted average over the predicted and previous induced dipole:
I, =QalE+T -z )+ (1-Q)z, 452

Ponder and Ren'® have recommended a value for Q of 0.7.

4.6 Lagrangian Dipole Propagation

As noted in the introduction, the iterative method of solving for the induced
dipoles can be expensive during a molecular dynamics simulation. An alternative to the
iterative procedure is to use a Car-Parrinello’® (CP) extended Lagragian method'® '+,
Originally, the CP method was developed for density functional molecular dynamics.
The electronic ground state of the system is initially calculated. The electronic ground

state follows the nuclear motion adiabatically through equations of motion that are

derived from a Lagrangian. A similar scheme has been developed for propagating
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induced dipoles. This CP dipole propagation scheme has previously been implemented

into AMBER ' for induced point dipoles.

In this scheme, the induced dipoles ' and atomic positions 7' along with their

velocities ﬁi and 7' are treated as dynamical variables. The Lagrangian of the system is

given by:

Nl»—

f“ el ZM,}’ i -U 4.6.1
i=1

i=1
where m; is the mass of the particle and M is the fictitious mass of the induced dipole. U
is the sum of the permanent — permanent charge energies, the electrostatic energy of the

dipoles, and the work to polarize the dipoles expressed by:

0w i I ik i RN /7 '
=U z L E® —ZZy’ T —Z 4.6.2
j=1 2 Jj=1 k=1 2 a
The Lagrangian equations of motion for the atomic positions are given by:
d [ oL j oL
dt\or' ) oF'
2 aU°° N aEf
mr' =
’ Z:;,u 4.6.3
QE N N Jk
et LSS
~ X

where F®' is the force due to permanent charges and F " is the polarization force

given by 4.3.8. The Lagrangian equations of motion for the induced dipoles are given

by:
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... - . N P . 1"
Mii' =E% +Y 15 - 4.6.4
= o
g E
al

The dipoles ji' fluctuate about the mean value &' E’ which is the true value of the
dipoles.

The dipole velocities ,fli are maintained at a constant temperature which is small

. 2 1 ul S Sio.
using a Berendsen'® thermostat. If 7 = ——ZM,u’ - ' 1s the current temperature of

i=1
the dipoles (k is Boltzmann’s constant) and the 7y is the reference temperature, then the

dipole velocities ﬁi are scaled at each time step by

1
T 2
{1 +£(7°— 1}} 465
T

where At is the time step and 7 is a time constant. The reference temperature is kept
small 7 = 1K so that the dipole velocities ,ff and accelerations ,Zt’ are small, and

therefore, the dipoles are kept close to their true values. The dipole mass M is also kept
small so that the dipoles can quickly adjust to the nuclear motion. However, if M is too
small, the dynamics quickly become unstable. For a 1fs time step, it has been empirically
determined'® that M = 0.3 leads to a stable simulation for induced point dipoles. When
the CP algorithm was tested with the induced Gaussian dipoles, it was found that for
many liquids that 7 = 1.0 ps leads to stable simulations with averaged polarization

energies near their true values. For strongly polar systems, 7 had to be smaller at 0.1 ps.
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For larger values of 7, gradual heating occurred in the simulations, which was indicated

by an increase in average polarization energy over time.

4.7 Results

This section will present some results of the induced Gaussian dipole
implementation into AMBER. From a CPU cost perspective, the cost of the induced
Gaussian dipole correction is only slightly more expensive than the previously existing
induced point dipole scheme. The main reason for this is that the energy correction in
4.4.5 decays rapidly with distance. A typical value of the Gaussian exponent for the
induced dipoles is 1.0 A™'. At this value, the non-bond cutoff for the energy correction is
around 4.89 A for a tolerance of 1072, This leads to an overall CPU overhead of the
induced Gaussian dipole polarization model over the previous induced point dipole
polarization model of approximately 30%.

During the implementation of induced Gaussian dipoles, numerous tests were
done on gas phase dimers. In Table 4.1, analytic forces are compared to numerical forces

obtained by a finite difference approximation.

F (analytic) =-1.09908219 0.42747651 0.00000000
F (numerical) = -1.09908099 0.42747700 -0.00000100

F (analytic) =-0.20124978 0.01732015 0.00000000
F (numerical) = -0.20125099 0.01732000 -0.00000000

F (analytic) =-0.33547487 0.18759862 -0.14361461

F (numerical) = -0.33547499 0.18759799 -0.14361500

Table 4.1 Exact and Numerical finite difference forces for the induced Gaussian dipole
polarization model in AMBER.

77



The CP Lagrangian dipole propagation scheme, which was previously
implemented into AMBER, was test on the new induced Gaussian polarization model.
A box of 341 polarizable waters (the Force Field parameters of the water will be
discussed in chapter seven) was simulated for 500 ps in the NPT ensemble. The
temperature and pressure were monitored using a Berendsen'® thermostat with
temperature and pressure coupling constants, zr = 1.0 ps, and 7p = 1.0 ps, respectively.
The atomic positions and velocities were integrated through the Velocity Verlet

2021 algorithm.

algorithm, with constraints placed on bond lengths through the SHAKE
The induced dipoles were propagated with the CP Lagrangian method with temperature
coupling constants for the induced dipoles, 7= 1.0 ps and 0.1 ps. The induced dipoles
were also calculated iteratively with a tolerance of 10” D for RMSD of the dipoles

between successive iterations. The average number of iterations per time step at this

tolerance is 4.35.
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Figure 4.1 Plot of polarization energy versus time for a simulation using iterative (exact)
calculation for induced dipoles and Lagrangian propagation with 7= 1.0 ps and 7= 0.1 ps.
In Figure 4.1, the exact polarization energy as calculated by the iterative method
is compared to the polarization energy as calculated using the CP induced Gaussian
dipoles for 7= 1.0 ps and 7= 0.1 ps on the box of 341 polarizable waters. The average
polarization energies and fluctuations (in kcal/mol) are -1312.12 + 13.61, -1313.12 +
13.76, -1314.72 £+ 13.56 for the simulations with CP induced dipoles (z = 1.0), CP
induced dipoles (z = 0.1 ps), and the iterative (exact) method, respectively. Notice the
average polarization energy (-1312.12) for the CP dipoles with the long coupling constant
to temperature 7 = 1.0 ps is slightly higher energy than the polarization energy (-1313.12)
for CP dipoles with the short coupling constant to temperature 7 = 0.1 ps. Both average
polarization energies with CP induced dipoles are higher in energy than the average

polarization with exact induced dipoles (-1314.72). This should be expected because the
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CP induced dipoles were designed to fluctuate around the exact induced dipoles, and the
polarization energy is a minimum at the exact induced dipoles (4.2.12). Therefore, any
deviation from the exact induced dipoles will yield a higher polarization energy.
Therefore, the CP induced dipoles with the larger coupling constant with temperature (z =
1.0) fluctuated more and had a higher polarization energy than the CP induced dipoles
with the smaller coupling constant (z = 0.1). However, the difference in polarization
energies between the CP induced dipoles and the exact induced dipoles is small, and it

appears that using CP induced dipoles is a good approximation.

4.8 Conclusions

The induced Gaussian dipole polarization model has been implemented into the
AMBER molecular dynamics program. The polarization work, energy, and force has
been derived for a system of induced Gaussian dipoles interacting with one another and
an external field from permanent charges. Previous derivations of polarization work,
energy, and force were given for an induced point dipole interacting with an external
field due to permanent charges only.

Simulations are frequently performed under periodic boundary conditions. A
brief discussion of the Ewald summation method for point charges and point dipoles was
provided and a derivation of the method can be found in appendix D. It was shown that a
periodic system of point charges and induced Gaussian dipoles can be treated as a short
range correction to a periodic system of point charges and induced point dipoles. The

nonbond cutoff for the short range correction was found to be ~5 A.
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During a molecular dynamics simulation, the induced dipoles can be calculated
exactly by solving a system of linear equations iteratively. For strongly interacting
systems, Successive Over-Relaxation (SOR) methods can be applied to converge the
system of linear equations. This method can be expensive during a molecular dynamics
simulation. Alternatively, it was shown that the CP Lagrangian method can be used to
propagate induced dipoles. The polarization energies from CP induced dipoles were
found to be only slightly higher (-1312.12, -1313.12 kcal/mol) than the polarization
energies calculated from exact induced dipoles (-1314.72). This is explained by the fact

that the polarization energy is a minimum when the exact induced dipoles are used.
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5 Gaussian Dipole Polarizabilities

5.1 Introduction

In this chapter, the Gaussian induced dipole model is compared with the damped
Thole' model and the Applequist® point dipole model. In the same spirit as Thole and
Applequist, transferable atom type polarizabilities will be found for all three models by
fitting to molecular polarizability tensors calculated at the B3LYP/cc-pVTZ level.

Polarizabilities generated by fitting to molecular polarizability tensor data are
convenient in that they are transferable among related molecular classes, however they
are limited in accuracy because they rely on the assumption of atom types. For example,
all oxygen atoms are grouped into one class and assigned the same polarizability,
regardless of the neighboring environment. In this work, an independent procedure for
generating atomic polarizabilities will be presented. It is based on probing a molecule
with point charges’ * or external electric fields® and calculating the response electrostatic
potential. The response electrostatic potential is the potential generated by the molecule
in the external field of the point charge probes minus the potential of the molecule in
vacuum. Atomic polarizabilities are then fit to this response potential on a grid of points
encompassing the molecule. Just as atomic charges fit to the electrostatic potential are

found to reproduce molecular dipole moments® "

, probed polarizabilities fit to the
electrostatic response potential are found to reproduce molecular polarizability tensors.
In contrast to atom type polarizabilities, probed polarizabilities are optimized for specific
molecules improving accuracy.

While non-transferable, Gaussian probed polarizabilities are readily computed.

Like fitted atomic partial charges, probed polarizabilities are not transferable between
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molecules. However, probed polarizabilities are conformationally invariant which is
important for electrostatics of flexible molecules.

In the next section 5.2, methods used to optimize atomic polarizabilities are
discussed. The procedure to fit a set of atom type polarizabilities to a large number of
molecular polarizability tensors is described. The alternative method of fitting
polarizabilities to response potential generated by probing a molecule with point charges
and then sampling the electrostatic potential is then discussed. In section 5.3, results
from both fitting methods are presented. The atom type polarizabilities fit to the tensor
are given for the Gaussian model, the Thole model, and the Applequist point dipole
model. The performance of all three models is examined by comparing the results for
atom type polarizabilities. Following the discussion on atom type polarizabilities fit to
the tensor, results of probed polarizabilities fit to the response potential are presented.
Gaussian probed polarizabilites were found for a variety of organic molecules and
compared with Gaussian atom type polarizabilities by examining the quality of fit for
molecular polarizability tensor and response potential. Results of molecules with highly
anisotropic molecular polarizability tensors are given, and limitations in assuming
isotropic atomic polarizabilities are discussed. Finally, probed polarizabilities are
generated for a flexible molecule at one conformation. This set of polarizabilities is
tested on many other conformations to investigate how transferable the polarizabilities

are with respect to different geometries of a molecule.
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5.2 Methods
Atom Type Polarizability Parameterization

In order to compare the Gaussian model with other induced dipole models, a set
of atom type (AT) specific atomic polarizabilities has been optimized by fitting to
molecular polarizability tensors as in Thole' and Applequist”. The geometries were
optimized, and molecular polarizability tensors were calculated at the B3LYP/cc-pVTZ
level for a training set of 127 organic molecules. In this work all ab initio calculations
were performed at the B3LYP/cc-pVTZ level using Gaussian 98°. Atomic
polarizabilities were fit to this data using the Gaussian Model, the damped Thole model,
and the Applequist point dipole model. For the Gaussian Model, the exponents S were fit
with a single adjustable parameter a.

p=—"r 5.2.1

a e —
3V8r
The Thole model studied in this work is the same as that implemented in the AMOEBA

force field'.
3a N
pu)= 4—exp(—au ) 5.2.2
V4

As in the Gaussian model, the parameter a in the Thole model was also allowed to vary.
For both the Gaussian and Thole model, the polarization condition (see section 3.5)
requires

a<l 523

The atomic polarizabilities were fit to the six independent components of the molecular

mol mol mol mol mol

polarizability tensor (o, a a.,

xx 2 yx 2y 2 zx 0

a™") over the molecular training set.
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The root mean squared deviation (RMSD) in the tensor elements for a given molecule,

Ormsd, 18 defined by:

o = J %i(a;‘;‘" —apf 5.24

0,mol

o0 is the ab initio reference

where a;‘;‘)l is the tensor calculated by the model and «

tensor. The fitting function y* is defined as the sum of the squares of individual

molecular tensor RMSDs:

2

1’ = a’ 5.2.5

rmsd,i

M=

1
N

1l
—_

where N is the number of molecules. The total RMSD over the data training set is then

Ny )(2 was optimized using the non-linear least squares Levenberg-Marquardt

algorithm''. Tensor errors Aa are defined for each molecule as the tensor RMSD divided
by the average eigenvalue of the molecular polarizability tensor aeigen.

Ag = Zmsa. 52.6

a

eigen

Probed Polarizability Parameterization Algorithm

Molecules were probed with point charges positioned around the molecule. For
each probe charge, the electrostatic potential is computed on a grid of points
encompassing the molecule. The atomic polarizabilities along with the exponent
parameter a were fit to the response electrostatic potential comprised of the probed
electrostatic potentials minus the vacuum electrostatic potential.

The ChelpG® electrostatic grid was used with a grid spacing of 0.3 A and an outer

grid radius of 2.8 A for each atom. The inner grid radii used were 1.45 A for H, 1.5 A for
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C,1.7A forN, O, F,and 2.3 A for second and third row elements. Point charges were
placed along bond axes outside the vdW surface of the molecule defined by probe radii
on each atom. The probe radii were chosen to be large enough to be outside the vdW
radii of each atom, but close enough to adequately sample the polarization response. The
probe radii were set to 2.0 A for H, 2.5 A for first row atoms (C, N, O, F), 3.0 A for
second row atoms (P, S, Cl) and 3.5 A for third row atoms (Br). For each bond, both
atoms comprising the bond were probed separately. A single probe charge was set along
the bond axis as in Figure 5.1A. Initially the probe was placed on the bond axis at the
probe radii distance. However, if the probe charge happened to be inside any other
atom’s probe radius, the distance along the axis was increased in increments of 0.3 A up
to a maximum of 5.0 A. If at 5.0 A the probe charge was still inside another atom’s
probe radii, the probe charge was discarded. For sp® hybridized atoms or atoms
containing lone pairs, an additional point charge was placed above and below the plane at

the same distances from the nuclei as the bond axis probes as in Figure 5.1B.

Figure 5.1 Probe Charge on Acetamide: Bond axis probe on C-H (A) and out of plane
amide probe on amido N (B).

While the molecular polarizability tensor error depends weakly on the magnitude

of the probe charge, it depends strongly on the sign of the charge. Thus, it was found that
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both positive and negative charges at each probe position are necessary. The probe
charge magnitudes needed to be large enough to cause a measurable response in the
electric potential, but not so large that hyperpolarization effects occur. In Figure 5.2, the
error in molecular polarizability tensor A« is plotted against probe charge magnitude for
some sp° and sp” first row molecules. Optimal probe charges of + 0.8¢ for first row sp
atoms (C, H, O, N, F), = 0.5¢ for sp2 first row atoms (C, O, N), and + 1.1e for second and

third row atoms (P, S, Cl, Br) were inferred from the tensor errors.

== acelone
= ¢ther -+ henzene

! = ¢thene
'/ /= methanol formaldehyde

-~ methane _ \
~ methyl amine s \ ~= propene
Aa (%) -\ - pyridine
I'I]
3

Probe Charge (¢) Probe Charge (e)

Figure 5.2 Tensor Error Dependence Ao on Probe Charge Magnitudes for: sp’ C,N,0.H
(Left) and sp® C,N,O (Right).

As an example, consider the probe positioning procedure for water in Figure 5.3.
For each OH bond, a separate positive probe is placed next to both atoms making up the
bond. This gives 4 bond axis probes. Since water has an atom with lone pairs, positive
probes are also placed above and below the plane containing the lone pair atom, giving 2
out of plane probes and 6 positive probes altogether. Negative charge probes are also
placed at the same positions as the positive probes, giving 12 probe charges total.
Another example is methane with 4 bonds and no lone pair or sp> atoms. The number of

probe charges for methane is therefore 16.

88



Figure 5.3 Positions of Probe Charges for Water

Probed polarizabilities for the Gaussian model were simultaneously fit to each
grid of response electrostatic potentials generated by the point charge probes. The
response electrostatic potential is the probed potential minus the vacuum potential. This
response potential is directly compared with the potential arising from the Gaussian

dipoles (3.2.11):

o (R') =i - R" BB, (B,R"™) 52.7
The induced dipoles were allowed to interact through ‘effective’ electric fields with one

another (3.2.13):

El(ﬁl;kz)zﬂz _(R’lzﬁlzﬂsBz(ﬂuRlz)_Iﬂ3Bl(IBlzR12))

528
2[12 .T"
and the external probe charges (3.2.12):
Ey(R';R*)=q*R" 3} B,(B,R") 5.2.9

. The induced dipoles were determined iteratively using 3.3.2.:

i :a"[é(’”‘ +> T -,&f} 5.2.10

J#i
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For each molecule, the optimizable parameters were the atomic polarizabilities
and a single Gaussian exponent parameter a (5.2.1). If M is the number of grid of points
from the ChelpG scheme and P is the number of charge probes, the fitting function Xz is
defined by:

1
2 _
x 7

M=
M~

A (™ — Apd™)? 5.2.11

J

Il
Il
—_

Gauss

. . . . . QM o e
where ¢, (5.2.7) is the induced Gaussian dipole potential and Ag;™ is the ab initio

ij
response potential at the i"™ grid point of the /™ probe charge, respectively. The response

. QM . . .
potential Ag;™ is given by:
QM _ QM _ QM
Api™ =@ — ¢ (vacuum) 5.2.12
QoM - e e . .th . . . .th QM
where ¢ is the ab initio potential at the i grid point with the j~ probe charge and ¢,

(vacuum) is the ab initio vacuum potential at the /™ grid point. »* was optimized using
the non-linear least squares Levenberg-Marquardt algorithm''. The RMSD in response

potential g is given by the square root of y*.

AI/rmsd = VZ2 5213

Since the induced dipoles are linearly related to external electric field z=A™"'E

(3.3.6), the contribution from intra-molecular polarization is constant and only the
response potential need be considered. By subtracting the vacuum potential from the
total potential, the only contribution to the response potential is from induced dipoles
arising from the external point charge source. The Gaussian inducible dipoles are
allowed to interact with one another and the probe charge. In this way, the computed

polarizabilities are unaffected by either the intramolecular polarization or the choice of
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the permanent electrostatic model (e.g. point charges®’ ®, point multipoles' '?, Hermite
Gaussian functions'® (Gaussian multipoles)). Thus, the permanent electrostatic model

may be selected and optimized subsequent to the derivation of the polarizabilities'.

5.3 Results
Tensor Fit Atom Type Polarizabilities

The Gaussian, Thole, and Point Dipole models were fit to ab initio molecular
polarizability tensors for selected atom types as described in section 5.2.1. For both the
Gaussian and Thole models, the optimized parameters included the atomic
polarizabilities and a single adjustable variable a, which represents the diffuseness or
strength of the interactions. Generally, the larger the value of a, the stronger the induced
dipole — induced dipole interactions. The optimized value of a for the Gaussian model
(0.957), and for the Thole model (0.662) were both below 1.0, satisfying the catastrophe
condition (See Appendix). The point dipole model has no damping correction, which is
equivalent to allowing a — o in either the Thole or Gaussian models.

As in the original Thole' paper, the atom types were generally the elements. An
extra atom type was also set aside for an aromatic/alkene carbon atom. In order to study
ionic parameters relevant to amino acids, ammonium N and H and carboxylate O atom
types were also added. The optimized parameters, the RMSD values for the fits, and the
errors for all three models are given in Table 5.1. For the 127 molecules studied, the
Gaussian model (3.67 % avg. error) performed slightly better than the Thole model (3.81

% error) and much better than the point dipole model (7.78% error).
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Atom Type Gaussian Thole Applequist
a =0.957 a=0.662 (0.572)" | a > ©

H 0.381 0.416 (0.427)" 0.181 (0.135)°
HP (ammonium H") 0.141 0.119 0.051
C 1.090 1.010 (1.334)" 0.727 (0.878)"
C (aromatic, alkene) 1.362 1.407 0.620
N 0.801 0.709 (1.073)* 0.456 (0.530)"
NP (ammonium N") 0.408 0.387 0.470
O 0.612 0.605 (0.837)" 0.303 (0.465)"
02 (acid O) 1.025 1.207 0.413
F 0.315 0.283 0.311 (0.320)"
Cl 1.921 1.844 1.778 (1.91)°
Br 2.934 2.791 2.734 (2.88)"
S 2.742 2.461 2.152
P 1.545 1.282 1.787
Omsa (A) 0.260 0.280 0.615
Aa (%) 3.67 3.81 7.78

Table 5.1 Atom type (AT) polarizabilities (A”) for Gaussian, Thole, and Applequist Point
dipole models

*Values in parenthesis taken from Ref’

®Values in parenthesis taken from Ref®.

The original polarizabilities found by Thole' and Applquist’ in Table 5.1 were
optimized by fitting to experimental gas phase molecular polarizability tensors. In
general, these polarizabilities should be larger in magnitude than those fit from the
B3LYP/cc-pVTZ data. Diffuse functions were not included in the cc-pVTZ basis set, in
order to underestimate the gas phase polarizability to better approximate what is believed
to be the liquid state polarizability'> ' !,

The point dipole polarizabilities are smaller than the damped Thole or Gaussian
polarizabilities. Point dipoles interact more strongly, because there is no damping and
the parameters are smaller to compensate. A similar trend also exists between the Thole

and Gaussian model; for most atom types, the polarizabilities in Thole are slightly

smaller than in the Gaussian model. The reason for this is probably due to the fact that

the Thole model density p ~exp(-£r>) decays faster than the Gaussian density
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p ~exp(—fr’). This would imply that the damping in the Thole model decays quicker

than in the Gaussian model. Therefore, the Thole model is slightly more similar to the
point dipole model than is the Gaussian model. To compensate for this behavior, the
Thole polarizabilities and the damping parameter a are smaller than in the Gaussian
model (a was defined in both models so that the polarization catastrophe occurs at a =
1.0).

The molecular polarizability tensor calculated from ab initio (QM) and the three
models (Gauss, Thole, Point Dipole) are given, along with percent errors, for the
illustrative case of benzene in Table 5.2. The results for the Gaussian model are almost
identical to the Thole model, both with a tensor error Aa of 2.7%. For the point dipole
model, Aa is significantly larger at 11.0%. Benzene was chosen as an example because
aromatic compounds are a well-known case in which the point dipole model does not
adequately reproduce the molecular polarizability tensor. Specifically, the component of
the tensor perpendicular (z) to the molecular plane (xy) is underestimated. This is due to
weak point dipole parameters interacting strongly with each other in the plane but not

perpendicular to the plane.

XX YX YY X 7Y 77 Aa (%)
Gauss 11.86 0.00 11.86 0.00 0.00 4.78 2.7
Thole 11.85 0.00 11.85 0.00 0.00 4.74 2.7
Applquist | 10.67 0.00 10.67 0.00 0.00 2.75 11.0
QM 11.45 0.00 11.45 0.00 0.00 5.01

Table 5.2 Molecular polarizability tensor (A”) using atom type (AT) polarizabilities for
benzene

Though the Gaussian model gave a better fit than did the Thole model, the
performance difference between the two models is small. This is in agreement with

Thole’s original work, in which seven different damping functions all gave similar
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RMSD fits to the data. As stated earlier, the main advantage of the Gaussian model over
the Thole model is that point multipoles can be readily generalized to Gaussian multipole

charge densities.

Comparison of Probed Polarizabilities with Atom Type Polarizabilities

The probed method was applied to several test organic molecules. For each
molecule, the error in the molecular polarizability tensor Aa (5.2.6) and the RMSD in the
response field AVimsa (5.2.9) are calculated using the probed polarizabilities and presented
in Table 5.3. In order to compare with the generic atom type (AT) parameters, Aa and
AVimsq are also calculated using the set of AT polarizabilities. In virtually all cases, Aa
and AVimsa are significantly smaller for the molecule specific probed polarizabilities than
the transferable AT polarizabilities.

Since the probed polarizabilities are fit to the response field, it is not surprising
that these parameters perform significantly better than the AT parameters. For example,
the AVpmsa (in 107¢/A) for water is 1.02 using the probe polarizabilities and 3.02 using the
AT polarizabilities. Another example is ammonia, in which AV is 1.67 using the
probe polarizabilities and 2.72 using the AT parameters. The average of AVmsq over all
28 molecules was found to be 2.01 for the probed polarizabilities and 3.04 for the AT
polarizabilities. In other words, the RMSD in the response potential was on average 50%
larger using the AT polarizabilities over the probed polarizabilities.

As can be seen from Table 5.3, the probed polarizabilities also resulted in much
better tensor fits Aa than did the AT polarizabilities. The probed parameters had an

average tensor error of 1.37% with a maximum error of 2.65%. This can be compared
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with the transferable AT parameters, which had an average error of 6.42% and a
maximum error of 21.76%. This is remarkable since the AT parameters were fit to the
tensor, while the probed polarizabilities used no tensor information in the fit.

The AT parameters do reasonably well if the molecule of interest was included in the
atom type training set. As an example from Table 5.3, the probed polarizabilities gave a
tensor error Ao of 1.44% for dimethyl ether and 1.79% for dimethyl sulfide. The AT
parameters gave acceptable results for both molecules (2.32% and 2.99% errors
respectively). However, both of these molecules were used in the atom type (AT)
training sets. On the other hand, sulfate and sulfuric acid were not included in the AT
training set. For sulfate, Ao =20.77% and for sulfuric acid, Aa = 21.76% using the AT
parameters. This can be compared with the results using the probe polarizabilities: Aa =
0.88% for sulfate and Aa = 1.15% for sulfuric acid. The large errors in the AT
parameters can be understood by examining the sulfur (S) polarizability. The probed
parameters predicted a = 1.2 A’ for S in sulfate, while the AT parameters used a generic
sulfur value of = 2.7 A>. The AT polarizability for S of 2.7 A’ might be appropriate for
thiols, however sulfate S is oxidized which should shift much of the electron density to
the oxygens thereby lowering the polarizability of S. Of course, a new atom type could
be added for sulfate S, and the parameters refit. An advantage of the probed molecule

approach is that it eliminates the need to arbitrarily assign atom types or refit parameters.
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a Aa (%) Aa (%) AVimsd AVimsd
Probed Atom | (107 e/A) (107 e/A)
Type Probed Atom Type
Acetamide | 0.906 1.30 2.33 1.61 2.06
Acetate Anion | 0.942 1.99 4.72 3.30 4.18
Acetic Acid | 0.920 1.55 7.04 1.61 2.30
Acetone | 0.919 1.70 2.62 1.84 1.95
Ammonia | 0.851 222 8.47 1.67 2.72
Ammonium Cation | 0.901 0.10 16.83 0.63 2.50
Benzene | 0.966 0.85 2.33 2.24 2.58
Butadiene | 0.984 245 7.13 245 2.85
Dimethyl Ether | 0.955 1.44 232 2.19 2.25
Dimethyl Sulfide | 0.948 1.79 2.99 2.50 291
Ethane | 0.939 1.10 1.28 1.89 1.94
Ethene | 0.961 2.65 6.39 2.19 2.65
Formaldehyde | 0.974 2.13 2.83 222 2.33
Formamide | 0.937 1.45 2.89 1.54 2.03
Hydrogen Sulfide | 0.893 1.78 13.20 3.68 5.55
Methane | 0.901 0.05 221 1.89 2.03
Methanethiol | 0.943 2.14 5.61 242 3.19
Methanol | 0.948 1.10 5.30 1.79 2.36
Methyl Amine | 0.931 1.68 3.20 2.13 2.46
N-methyl formamide 0.935 1.33 2.72 1.90 2.21
Phosphate | 0.799 1.02 0.72 2.79 3.51
Phosphoric Acid | 0.891 0.12 8.63 1.65 3.43
Propene | 0.952 0.88 4.31 2.11 2.37
Pyridine | 0.955 0.95 1.90 2.14 2.55
Pyrole | 0.868 1.60 6.26 2.08 2.96
Sulfate | 0.955 0.88 20.77 1.58 7.43
Sulfuric Acid | 0.958 1.15 21.76 1.38 6.84
Water | 0.877 2.09 15.04 1.02 3.02
Average | 0.926 1.37 6.42 2.01 3.04

Table 5.3 Comparison of probed and atom type polarizabilities

The AT parameters were fit over a large collection of data to get the overall

optimal molecular polarizability tensors. It is possible that the fitting procedure for the

AT parameterization incorrectly assigned the atomic polarizabilities, but is still able to

reproduce the tensor. As an example, the probed and AT atomic polarizabilities are given

for acetamide in Figure 5.4. In Table 5.4, the molecular polarizability tensor is given for

both models and compared with the reference ab initio (QM) value. Since Aa = 1.30%

96




for the probed and Aa = 2.33% for the AT parameters, both sets are able to reproduce the
tensor. However, the AT polarizabilities are 20% smaller than probed polarizabilities for
the amido C, N, and O atoms while the AT polarizabilities on the polar H atoms are 30%
larger to compensate. The probed polarizabilities suggest that the amido C (ac = 1.20 A%)
is more polarizable than the methyl C (ac = 1.08 A*). In general, the probe
polarizabilities find that sp” C is more polarizable than sp® C (e.g. ac = 1.05 A? for ethane
and ac = 1.40 A® for ethene).

a=0.905
(0.958)

0.4088
(0.3809)
(1.0894)

J
J J

Figure 5.4 Probed and (Atom Type) polarizabilities in A> for acetamide

1.0793
| (1.0894

—

o

XX YX YY ZX ZY 77 Ao (%)
Probe 6.07 -0.03 5.80 0.00 0.00 3.88 1.3
AT 6.12 -0.15 5.87 0.00 0.00 3.68 2.3
QM 6.08 0.11 5.77 0.00 0.00 3.79

Table 5.4 Molecular polarizability tensor (A”) for acetamide calculated by B3LYP/cc-
pVTZ (QM) and probed polarizabilities (Probe) and atom type Polarizabilities (AT) for

the Gaussian model
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0.6830
(0.6116)

0.2515

(0.3809)
H
a=0.877

(0.957)

Figure 5.5 Probed and (Atom Type) Polarizabilities in A® for water

XX YX YY ZX ZY 77 Ao (%)

Probe 1.11 -0.12 1.19 0.00 0.00 0.84 2.1
AT 1.32 -0.25 1.50 0.00 0.00 0.88 15.0
QM 1.14 -0.09 1.20 0.00 0.00 0.82

Table 5.4 Molecular polarizability tensor (A’) for water calculated by B3LYP/cc-pVTZ
(QM) and probed polarizabilities (Probe) and atom type Polarizabilities (AT) for the
Gaussian model

A final example of the performance of the probed polarizabilities is given by the
important case of water. The atomic polarizabilities are given in Figure 5.5 and the
molecular polarizability tensors are given in Table 5.5. The tensor error Aa is 2.09 %
using the probed polarizabilities and 15.04% for AT parameters. As noted earlier, the
RMSD in response potential AVumsq (10~¢/A ) is three times smaller using the probed
polarizabilities (1.02) than the AT parameters (3.02). The poor results for water using the
AT parameters are somewhat surprising since water was included in the AT training set.
Furthermore, when two new AT polarizabilities were added specifically for water, ao and
oy, and these polarizabilities were fit only to the tensor for water, then Ao was found to
be 2.02% (the exponent parameter a was constrained to 0.879 to avoid overfitting). This
would imply that the probed polarizabilities with Ao = 2.09% is near the limit which
would best reproduce the molecular polarizability tensor in the context of the isotropic

induced Gaussian dipole model.
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Limitations with the Isotropic Model
The probed polarizability scheme works well for ordinary organic molecules

containing C, O, N, H, S and P. The optimized exponent parameter a had an average
value of 0.926, which is below the polarization catastrophe upper bound of 1.0. In
general, sp> hybridized molecules performed slightly better than sp> molecules, (e.g. Aa =
1.10 % for ethane, Aa = 2.65 % for ethene). A possible reason for this is that the
isotropic atomic polarizability model studied in this paper assumes spherically symmetric
induced dipoles on each atom. The electron density around an sp’ hybridized molecule
should be more spherically isotropic than a molecule which is sp> hybridized. Further
evidence suggest that highly symmetric molecules give better results than molecules of

lower symmetry, (e.g. Aa = 0.10% for ammonium cation, Aa = 2.22% for ammonia).

Diatomic a a, Aa (%)
QM Probe QM Probe

F, 1.567 1.197 0.431 0.722 27.9

Cl, 5.519 5.140 2.370 2.663 6.7

Br, 8.350 7.938 3.777 4.050 4.3

Table 5.6 o, and @, in A® for diatomic halides using probed polarizabilities. In all

cases, a — oo, indicating point dipole behavior.

To further test the limits of the isotropic atomic polarizability Gaussian model,
polarizabilities were computed for diatomic halides (Table VI.). During the optimization,
the exponent parameter a diverged to infinity implying point dipole behavior, and large
errors occurred in the molecular polarizability tensors. These discrepancies can be

rationalized by looking at the two independent tensor components: «; (3.4.4) which is

the tensor component parallel to the bond axis and «;, (3.4.7) which is perpendicular to
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the bond axis. In the diatomic halides, ¢, is too small and «, is too large. For example
in Fy, the ab initio values are ¢ =1.567 and «, =0.431, and the optimized model
values are ¢ = 1.197 and ¢, =0.722. In a purely additive polarization model, in which

the isotropic induced dipoles do not interact with each other, the molecular polarizability

tensor is isotropic, e.g. @ = ¢, in the diatomic case. It is the interaction between the
isotropic induced dipoles that causes anisotropy in the tensor, and &, > &, in the

diatomic molecule case. The larger the interaction, the greater the difference between

o anda, . The largest possible interaction is that of no field damping or induced point

dipoles. For the diatomic halides, even point dipoles did not provide a sufficiently strong

interaction to accurately reproduce « anda, . The worst case is F,, with Aa = 27.9%.
These large differences between ab initio and derived values for ¢ and @, implies that

isotropic atomic polarizabilities on atoms alone are not a good approximation for
diatomic halides or any other highly anisotropic molecule. If anisotropic atomic
polarizabilities were used'”, then the atomic polarizability tensor could have different
components parallel and perpendicular to the bond axis. This would allow for the
possibility of correctly calculating ¢, and e, for the molecule even in the absence of
induced dipole - induced dipole interactions. Anisotropic induced dipoles would be
necessary to reproduce the tensor correctly for highly anisotropic molecules such as F».

Anisotropic induced dipoles can be represented by generalizing the scalar atomic

polarizability a to an atomic polarizability tensor a.
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The poor performance of the isotropic Gaussian model for the diatomic halides is
due to a limitation in assuming isotropic atomic polarizabilities and not to the Gaussian
model or the probed polarizabilities. To illustrate this, polarizabilities were fit solely to
the tensor of F; for the point dipole, Gaussian and Thole models in Table 5.7. For the
Gaussian and Thole models, the exponent parameter a was constrained to the maximum
value of 1.0. The tensor errors Aa were 26.8 % for the point dipole model, 27.2 % for the
Thole model, and 30.3 % for the Gaussian model. The Thole model agreed more with
the point dipole model than did the Gaussian model. This is further evidence that the

Thole model behaves slightly more like point dipoles than the Gaussian model.

2 a, Ao (%)
Point Dipole (a — o0) 1.340 0.771 26.8 %
Thole (a = 1.0) 1.325 0.772 272 %
Gauss (a = 1.0) 1.232 0.784 30.3 %
QM 1.566 0.430

Table 5.7 «, and @, in A for F, using polarizabilities fit to the tensor for the Point

Dipole, Thole, and Gaussian models.

However, the results for the diatomic halides mentioned above do not pose a
serious limitation to the isotropic induced Gaussian model. Reasonable results were
obtained when the probed method was applied to acid halides and halogenated organic
molecules in Table 5.8. The exponent parameter a for the non-halide atoms was allowed
to optimize (except for HF) while the halide exponent parameter was constrained to the
maximum value of 1.0. The tensor errors Aa are much smaller for these halogen
containing compounds cases (0.6% — 4.4%). Other anisotropic molecules not presented
in Table 5.8 were also studied, many of which gave reasonable results for Aa: 2.0% for

N2, 5.1% for CN', 3.2% for CO, 2.4% for ethyne, 2.3% for CO,, and 2.0% for CS,.
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ay,c Aa (%)
CH;5F 0.954 0.6
CH;(Cl 0.933 3.3
CH3Br 0.922 3.6
HF 1.000 4.4
HCI 0.834 1.5
HBr 0.779 1.0

Table 5.8 Tensor error Aa and exponent parameter a for halogenated molecules. a =1.0
for F, Cl, Br and a was allowed to optimize for C and H (except for HF)

Effects of Molecular Conformation
It would be highly desirable if the probed atomic polarizabilities could be fit to a

single molecular conformation. To examine the extent to which polarizabilities were
sensitive to conformation, probed polarizabilities optimized for a single geometry were
tested on other conformations generated by rotating internal torsion angles. It was found
that probed polarizabilities generated from a single geometry could reproduce both the
molecular polarizability tensor and also the response potential.

The effects of multiple torsion conformations on molecular polarizability tensor
using a single set of atomic polarizabilities were tested on glycine dipeptide in Figure 5.6.
The torsion angles ¢ = C1-N1-C2-C3 and y = N1-C2-C3-N2 along the main axis were
considered. The geometry was fully optimized at the B3LYP/cc-pVTZ level (g, = 180°,
180°), and atomic polarizabilities were generated for this single geometry using the
probed method. The torsion angles ¢ and y were then rotated from 45° to 315° in
increments of 30°. The two angles were constrained to the rotated values, while the rest
of the geometry was allowed to relax. The molecular polarizability tensors for these
constrained geometries were then calculated using the probed atomic polarizabilities
generated from the single optimized geometry (¢, = 180°, 180°) and then compared

with the reference ab initio values at those rotated geometries. The error in the tensor Aa
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is presented for ¢ and y in Figure 5.7. Over the conformational space, the variation in the
tensor between the optimized and the rotated geometries reached as high as 17.2% and
averaged to 12.8%. Despite the large variation in the tensor, the error in the tensor Aa
never increased above 1.5%, and the average of Aa over all conformations was found to
be 0.87%. Similar results were found by rotating a single torsion angle along the X-C-

C-Y axis for ethylene glycol, fluoropropane, and NH,CH,CH,CO,™.

Figure 5.6 Glycine Dipeptide. ¢ = C1-N1-C2-C3 and y = N1-C2-C3-N2

Figure 5.7 Tensor error Aa (%), dependence on ¢ and y for glycine dipeptide
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The RMSD in the response potential AVi,sg Was also found to be essentially
invariant across multiple torsion conformations. The geometry of NH,CH,CH,CO,™ was
optimized and a set of probed polarizabilities were generated for this geometry, a’. At
the fully optimized geometry, the torsion angle along the main axis of NH,CH,CH,CO,",
wn~cee, was found to be 65.9°. wncece was then rotated and constrained to 0°, 60°, 120°,
and 180° while the rest of the geometry was allowed to relax. Four new sets of probed

polarizabilities were generated at each new torsion configurations, o' (i = 1..4).

0.003
e/A f‘\\/
0.002

0 60 120 180

O neoe

Figure 5.8 AV:msq dependence on torsion angle for NH,CH,CH,CO,™ angles using
probed polarizabilities generated at the fully optimized geometry (blue, m) and
polarizabilities generated specifically for each torsion geometry (red, A).

In Figure 5.8, the response field RMSD AV} Was plotted for each of the rotated
geometries using the optimized geometry set of polarizabilities, a”, and also the set of
polarizabilities generated specifically for that geometry, o. It was found the relative
error for AVmsa between the two sets of polarizabilities was less than 1.0 % for all 4

torsion geometries (Figure 5.8). This can be compared with an average relative error for
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AVimsa between the probed and the AT polarizabilities of ~50% (Table 5.3). Similar

results were also found for ethylene glycol and fluoropropane.

5.4 Conclusions

The Gaussian polarization model has been examined as an alternative to the Thole
model. Originally, the Thole model was designed to fix the polarization catastrophe
problem associated with the point dipole model. In the Thole model, a damping function
is applied to keep short-range induced dipole - induced dipole interactions finite. It was
proved in section 3.5 that the induced Gaussian dipole model also avoids the polarization
catastrophe if the Gaussian exponent is sufficiently ‘diffuse’. A relationship on the
maximum size of the Gaussian exponent and the polarizability was derived. A similar
condition was also derived for the Thole model. In both the Gaussian and Thole models,
the catastrophe condition is satisfied if the exponent parameter a is less than 1.0 (5.2.1
and 5.2.2).

The performance of the point dipole, Thole, and Gaussian isotropic induced
dipole models have been compared by optimizing atom type atomic polarizabilities to
molecular polarizability tensors calculated at the B3LYP/cc-pVTZ level on a data set of
127 organic molecules. The Gaussian model (3.67% avg. tensor error) performed
slightly better the Thole model (3.81%) and much better than point dipole model
(7.78%). The limits of using isotropic atomic polarizabilities can be seen by analyzing
highly anisotropic molecules such as diatomic halides. For these examples, the
parameters tended towards strongly interacting point dipoles. To better represent these

less common cases, anisotropic atomic polarizabilities are needed.
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When atom type polarizabilities are derived by fitting to a data set of molecular
polarizability tensors, a question arises: how transferable are these atom type parameters.
Here, it was found that atom type polarizabilities are transferable only to the extent that
the atom types are appropriately identified. An alternative method of optimizing
polarizabilities, which is molecule specific, was also presented. It is based on probing a
molecule with point charges and fitting the polarizabilities to the response field. The
approach is similar to the derivation of atomic partial charges by electrostatic potential
fitting, and many of the ideas were borrowed from the well-known ChelpG method. The
probed polarizabilities were tested against atom type polarizabilities over 28 molecules.
In all cases, the probed polarizabilities showed a significant improvement over the
transferable atom type parameters. The probed method gave an average tensor error Aa
of 1.41% and a maximum tensor error of 2.7%. This can be compared with the
transferable atom type polarizabilities which yielded an average tensor error of 6.5% and
a maximum error of 21.8%. The probed polarizabilities also predicted the response
potential significantly better than the transferable atom type parameters. The average of
response potential RMSD AVipsq (in 107%¢/A ) over the 28 molecules was 2.01 for the
probed polarizabilities and 3.04 for the AT polarizabilities.

The probe charge method is capable of generating polarizabilities that are specific
to the molecule and are therefore sensitive to each atoms chemical environment. For
example, it was found that the polarizability on the carbon atom for methane, methanol,
and fluoromethane was found to be 1.05, 0.85, and 0.75 Al , respectively. These values
agree with chemical intuition in that electron withdrawing groups should lower the

electron density and therefore the polarizability on the carbon atom. In general, it would
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be difficult to arrive at this level of sensitivity by fitting to tensor data alone because the
molecular polarizability tensor has at most six independent components. In most cases,
polarizabilities for a single molecule containing many atom types cannot be fit to the
tensor alone because there is simply not enough data. Notably, it may be possible to use
the probe method to derive transferable atom type polarizabilities. The probed charge
method could be carried out separately on a large collection of molecules. The resulting
parameters could be compared and generalizations relating atom types could then be
made. However, if atom specific partial charges are used, it would seem natural to also
assume atom specific polarizabilities.

It was also found that atomic polarizabilities are not sensitive to geometric
rotations about torsion angles, as shown in the glycine dipeptide and NH,CH,CH,CO;".
Both the molecular polarizability tensor and the response potential could be accurately
reproduced over multiple conformations using a single set of probed polarizabilities.
This very fortunate result is important in the construction or application of force fields for
molecular simulation.

The atomic polarizabilities presented in this work are independent of the
permanent electrostatic model used. The atom type polarizabilities were fit to molecular
polarizability tensors and the probed polarizabilities were fit to the response electrostatic
potential. Intramolecular polarization effects can be accounted for later when the
permanent electrostatic model is fit. In this way, the atomic polarizabilities generated
could be used in any electrostatic model; for example, point charges, point multipoles or

Gaussian multipole charge densities.
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Both the Thole and Gaussian isotropic polarizability models perform well for
most organic molecules. Although the Gaussian model did slightly better than the Thole
model over the 127 molecule atom type training set, the difference between the two in
terms of performance is small. Although it was not tested, the probed procedure could be
applied to the Thole model and still be expected to generate accurate results. The Thole
model is somewhat arbitrary, since in the original Thole paper, seven different damping
functions performed equally well in terms of fitting to tensor data. The main advantage
of the Gaussian model over the Thole model is the possible generalization of other point

multipoles to Gaussian charge densities.
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6 Amino Acid Atomic Polarizabilities/Partial Charges

6.1 Introduction

Including polarization in protein force fields has received a considerable amount
of attention. Kollman'™ et. al. has introduced induced point dipoles of Applequist into
the AMBER force field. Brooks*® et. al. and Freisner’® et. al. has developed fluctuating
charge protein polarizable force fields for use in the CHARMM force field. Ponder’'! et.
al. has developed the AMOEBA polarizable protein force field employing induced Thole
dipoles for the polarization model and point multipoles to represent permanent
electrostatic interactions. This chapter will focus on developing probe polarizabilities for
the induced Gaussian dipole model and atomic point charges for the amino acids.

In the preceding chapter, a method to parameterize atomic polarizabilities was
presented. The method is based on probing a molecule with point charges and
calculating the electrostatic potential through electronic structure calculations. The probe
polarizabilities are then fit to the response electrostatic potential. Probed polarizabilities
were tested on a variety of organic molecules and shown to consistently yield
significantly lower RMSD fits for both molecular polarizability tensor and response field
as compared to the conventional method of fitting atom type polarizabilities to molecular
polarizability tensors. In this chapter, results will be presented for probed polarizabilities
generated for the amino acids.

The polarization model determines the electrostatic properties of a molecule in the
presence of external electric fields, while the permanent electrostatic model determines

the electrostatic properties of a molecule in vacuum, i.e. in the absence of an external
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field. For large molecules, such as amino acids or nucleic acids, it should be expected
that a molecule can polarize itself as its conformation changes. Rules for intramolecular
polarization can be developed to account for how the permanent charge distribution
affects the polarizable charge distribution in a flexible molecule. It was remarked in
chapter 5, that polarizabilities can be fit by removing the effect of intramolecular
polarization. By fitting to response electrostatic potential (the probed potential minus the
vacuum potential), the contribution from the permanent electrostatic model is exactly
canceled for linear polarizable models. Hence, the probed polarizabilities are
independent of electrostatic model. Once polarizabilities have been determined, the
electrostatic model can then be fit in the presence of polarization using rules for
intramolecular polarization.

Though results have been derived for the more general cases of point multipoles
and Gaussian multipole charge densities, atom centered point charges will be the
permanent electrostatic model in this study. Point charges have been optimized for the
amino acids using the conventional method of fitting to electrostatic potential (ESP)

12-14

surrounding the molecule ~ . The point charges are simultaneously fit to multiple

geometric conformations in order to investigate the effects of intramolecular polarization.
A commonly used rule to treat intramolecular polarization is to neglect® ° '' ' or
screen’™ short range interactions between atoms that are bonded to one another. In
AMBER?® °, 1-5 and greater charge — induced dipole interactions at calculated at full
strength, the 1-4 charge — induced dipole interactions are scaled, and the 1-2 and 1-3

interactions are neglected. A 1-2 interaction is defined as a pair of atoms that are bonded

to each other. A 1-3 interaction is defined as a pair of atoms that share a bond with a
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middle atom. Similarly, a 1-4 interaction is a pair of atoms that is separated by two
middle atoms, and a 1-5 interaction is a pair of atoms separated by three atoms. In earlier
studies, the optimal 1-4 scaling factor has not been precisely defined. Suggested values
have ranged from 0.5 to 0.8. By treating the 1-4 scaling factor as an optimizable
parameter during the calculations, a value is reported here which improves the ESP fits
for single amino acids over multiple conformations.

In addition to generating amino acid charges/polarizabilities for use in future
simulations, another goal of this study is to investigate how inclusion of polarizability
improves the electrostatic description of force fields. It will be shown that inclusion of
polarization significantly improves dipole moments and electrostatic potential of single
amino acids over multiple conformations. The effect of polarizability becomes greater
for larger molecules and systems. As a final test of polarization, the ESP was calculated
for a 10-alanine peptide in the idealized fully extended and a-helical conformations. The
charges fit to a single alanine amino acid were tested on the 10 alanine peptide
conformation with and without polarization included. It will be shown that polarizability
significantly improves the ESP potential, particularly when the peptide is in the a-helix

conformation when amide groups in close proximity to one another become polarized.

6.2 Methods

Probed Polarizabilities

The method to fit probed polarizabilities is described extensively in section 5.2.

In this section, a discussion of how probed polarizabilities were generated for amino
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acids will be provided. Single amino acid structures were constructed with an acetate
(ACE) cap on the N-terminus end and an N-methyl (NME) group cap on the C-terminus
end as in figure 6.1. The geometry of each amino acid structure was initially optimized at
the B3LYP/cc-pVTZ level. Since probed polarizabilities were found to be
conformationally invariant (see 5.3.4), probed polarizabilities were generated at
B3LYP/cc-pVTZ level of theory at the B3LYP/cc-pVTZ optimized geometry. All ab-

initio calculations were performed with Gaussian 98'°.

SIDECHAIN

NME BACKBONE ACE

Figure 6.1 Amino Acid (alanine) with the N-methyl (NME) and acetate (ACE) caps. ¢ =
C2-C3-N4-C5 and yw = N1-C2-C3-N4

Once probed polarizabilities have been determined for each of the individual
amino acid structures, the polarizabilities for the amino acid backbone, the ACE cap, and
the NME cap were averaged over all amino acids. Probed polarizabilities for the side-
chains were re-optimized with the averaged polarizabilities for the backbone, the ACE
cap, and the NME cap constrained to their averaged values. The measured results are the
RMSD in the response field AViysa (5.2.13), the error in molecular polarizability tensor

Aa (5.2.6), and the average of the eigenvalues of the molecular polarizability tensor aeigen.
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Point Charges

After the polarizabilities have been established, optimization of the point charges
can proceed. In order to account for intramolecular polarization, a 1-4 charge — induced
dipole scaling factor was also allowed to be a freely optimizable parameter. The point
charges along with the 1-4 scaling factor were optimized to electrostatic potential (ESP)
on a ChelpG grid. As discussed in section 5.2, a ChelpG' grid consists of a rectangular
grid of points with a 0.3 A spacing. Points in between an outer and inner radius for each
atom were kept, while points outside the radii were discarded. The outer radii were set to
2.8 A for each atom. The inner radii were set to 1.45 A for H, 1.5 A for C, 1.7 A for N
and O, and 2.3 A for S.

Several geometric conformations were used during the fit. The different
geometries were found by rotating the (¢ ,) torsion angles of the amino acid backbone
(see Figure 6.1). The range of (¢ ,y) torsion angles were selected to be representative of
populated regions from a Ramachandran plot. Two sets of (¢ ,i) coupled torsion angles
were used. In the first set, p =-120°, -105°, -90°, -75° and w = 90°, 105°, 120°, 135°,
150°, 165° (in increments of 15°). The second set of (¢ ,i) was ¢ =-120°, -105°, -90°, -
75° and y =-60°, -45°. Additionally, uncoupled single torsion rotations were added for
amino acids with long polar sidechains in order to better sample the conformation space.
The rotated torsion angles were constrained to their respective values while the rest of the
molecule was free to relax at the B3LYP/cc-pVTZ level.

For each amino acid, the point charges and the 1-4 scaling factor were optimized
to electrostatic potential calculated at B3LYP/cc-pVTZ for all the conformations. The

fitting function is given by:
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N
D, -V 6.2.1

J=1

M:

M-N*

Il
—_

where Vj; is the electrostatic potential due to the point charges and induced Gaussian

dipoles and VUQM is the B3LYP/cc-pVTZ electrostatic potential at the i™ grid point of the

/™ geometry. The RMSD in electrostatic potential AV , 1s the square root of P

rms

AN 6.2.2
The electrostatic potential is a linear function of charges. However, the potential is a
quadratic function when considering both the charges and the 1-4 scaling factor.
Therefore, the non-linear least squares Levenberg-Marquardt algorithm has been used to
optimize the parameters. In addition, constraints for total charge were used in the
optimization. The total charge on each of the ACE, NME, and protein backbone units
was constrained to have a net charge of zero, while the total charge of the sidechains was
constrained to have a net charge of that particular amino acid: -1, 0, or +1.

A well known artifact of fitting point charges to electrostatic potential (ESP) is
the large artificial charges that develop on methyl or CH, groups. For example, a simple
ChelpG calculation (at the B3LYP/cc-pVTZ level) predicts the charges on carbon and
hydrogen to be -0.320 and +0.080, respectively for methane and 0.0132¢ and -0.0044e for
ethane. Notice the sign change on the carbon in going from methane to ethane. At long
range, electrostatic interactions between alkanes are small due to their apolar nature. For
example, the permanent molecular dipole of isopropane is 0.132 D (Debye) (calculated at
B3LYP/cc-pVTZ) while the molecular dipole of isopropanol is 1.54 D.

The combined charge of the alkyl group is more stable that the actual charges on

the alkyl group. For example, a ChelpG calculation of methyl amine predicts the alkyl
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carbon and hydrogen charge to be 0.312e and -0.035e, respectively. The RMSD in ESP
is 7.06 (107 ¢/A). Notice the combined charge on the entire CH; group is 0.207e. If the
alkyl hydrogen charge is constrained to be zero, the charge on the carbon now optimizes
to 0.182¢, and the RMSD in ESP is 7.14 (10 ¢/A). Since the new carbon charge of
0.182¢ is close to the CH3 group charge of 0.207e, and since the RMSD in ESP did not
increase significantly, it can be concluded that the charges on alkyl hydrogens are not
significant. For this reason, all alky hydrogen point charges were constrained to be zero.

The performance of the charges was judged on the basis of the RMSD in total

electrostatic potential AV = and the molecular dipole d for each conformation given

rms

by:
d=>q'F" + i’ 6.2.3
i=1

where K is the number of atoms and ¢’ is the charge, 7' is the position of atom i, and i’

is the induced Gaussian dipole of atom i. The induced Gaussian dipoles were allowed to
interact with one another and the permanent charges through scaled 1-4 interactions and

full strength 1-5 and greater interactions. For each conformation, the molecular dipole
d canbe directly compared with the molecular dipole calculated at B3LYP/cc-pVTZ. If
d“ is the molecular dipole for conformation a predicted by the model and ¢ d“ is the

B3LYP/cc-pVTZ molecular dipole, then the RMSD for the permanent dipole at

conformation a is given by:

Ade,, =~(d=2"d")? 6.2.4

For each amino acid, the dipole RMSD’s were averaged over each conformation and

givenby Ad_ . :

rmsd
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rmsd

_ N
Ad, , = %ZM“ 6.2.5
a=1

In order to compare the magnitude of the molecular dipoles with the RMSD fits for the

dipole, an averaged dipole magnitude for each amino acid was also calculated as:

6.2.6

In addition to the amino acid charges fit in the presence of polarizability, a second
set of amino acid charges were optimized using an identical procedure without
polarizabilitiy present (i.e. the polarizabilities were set to zero). The second set of
charges optimized without polarizability was generated in order to investigate how much

polarization improves the force field.

10-Alanine Test Case

In order to test the effect of polarization in a protein, a 10-alanine peptide was
constructed in two conformations. The first conformation is in an idealized a-helix with
each (¢ ,y) angle set to (-60°, -60°) as in Figure 6.2A. The second geometry is an
idealized fully extended conformation with each (¢ ,y) angle set to (180°, 180°) as in

Figure 6.2B.
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Figure 6.2 10-alanine peptides in a-helix form (A) with (¢ ,y) = (-60°, -60°) and
extended conformation (B) with (¢ ,i) = (180°, 180°)

For both conformations, the (¢ ,) angles were constrained to their respective values
while the rest of the geometry was allowed to relax at the B3LYP/6-31G* level. The
electrostatic potential was calculated at the B3LYP/cc-pVTZ level on the B3LYP/6-31G*
optimized geometries. The charges that were fit to a single alanine with and without
polarizability present were tested on the 10-alanine peptide to see how well it reproduces

electrostatic potential.

6.3 Results

Probed Polarizabilities

Probed polarizabilities were calculated for the amino acids with ACE and NME
caps. Once the initial probed polarizabilities were found, the polarizabilities on the
amino acid backbone, the ACE cap, and the NME cap were averaged over all the amino
acids. The actual values of the averaged polarizabilities are given in Figure 6.3. The
polarizabilities (A) on the sp” hybridized amide groups are larger than their sp’

hybridized counterparts. For example, the polarizabilities on the sp> backbone carbonyl
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oxygen and the ACE cap carbonyl oxygen are 0.829 and 0.826, respectively. From
previous calculations on small organic molecules not listed, the probe polarizabilities on
the sp” hybridized oxygen atom in methanol, dimethyl ether, and water are 0.710, 0.749,
and 0.684, respectively. The polarizabilities on the sp* backbone amide nitrogen and
NME cap amide nitrogen are 1.365 and 1.349, respectively. This can be compared to the
polarizabilities on sp® nitrogen of 1.107 and 1.080 for methyl amine and ammonia,
respectively. As a final observation, the polarizabilities on the alkyl carbons directly
attached to amide nitrogen are smaller in magnitude than the polarizabilities on alkyl
carbons not attached to electronegative atoms. The polarizabilities on the alkyl carbons
directly attached to the amide nitrogen are 0.694 (on the NME cap) and 0.728 (sp’
backbone a-carbon), while the polarizabilities on the ACE cap methyl carbon is 1.042.
The amide group is an electronegative electron withdrawing group and has the effect of
reducing the polarizability on alkyl carbon. In general, this level of sensitivity in
polarizability parameters would not be possible if conventional atom type polarizabilities

fit to molecular polarizability tensors were used.

Figure 6.3 Averaged polarizabilities for the amino acid backbone, ACE cap, and NME
cap.
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The RMSD and errors in the fits are presented in Table 6.1 for each amino acid.
In order to see the relative magnitudes of the molecular polarizability tensor, the average
eigenvalues acigen Of the molecular polarizability tensor are calculated at the B3LYP/cc-
pVTZ level and listed in column 2 of Table 6.1. In general, the magnitude of the
molecular polarizability tensor is proportional to the size of the amino acid. In column 3
of Table 6.1, the error in the molecular polarizability tensor is listed for the probed

polarizabilities. The maximum error is 2.9% for GLU and the average error is 0.92%.

Amino Acid | teigen (AY) Aa (%) Aa (%) AVimsd AVimsd

All Free | Averaged | (107¢/A) (107 e/A)

Backbone All Free Averaged

Backbone
ALA 13.68 0.85 1.14 1.52 1.53
ARG (+) 21.93 0.78 1.80 1.46 1.48
ASN 16.82 1.04 1.04 1.40 1.42
ASP (—-) 17.02 1.15 0.96 1.80 1.85
CYS 16.53 0.82 1.07 1.79 1.83
GLN 18.64 0.62 0.88 1.42 1.43
GLU (—) 18.97 2.90 0.87 2.99 3.10
GLY 11.86 0.45 1.74 1.52 1.62
HIS 20.27 1.20 1.02 1.64 1.68
ILE 19.04 0.58 0.67 1.61 1.62
LEU 19.11 0.56 0.71 1.61 1.62
LYS" (+) 20.02 1.26 1.49 1.58 1.58
MET 20.35 0.99 1.19 1.66 1.67
PHE 23.22 0.91 0.93 1.63 1.63
SER 14.26 0.77 1.06 1.45 1.46
THR 16.07 0.60 0.86 1.45 1.45
TRP 27.80 0.97 1.45 1.80 1.89
TYR 24.12 0.85 0.89 1.57 1.58
VAL 17.26 0.68 0.78 1.56 1.56
Average 0.92 1.01 1.66 1.69

Table 6.1 Probed Polarizabilities for the Amino Acids. Probed Polarizabilities for the
Amino Acids. In column 2, acigen 1s the average eigenvalues of the molecular
polarizability tensor. Columns 3 and 4 contains the error in the polarizability tensor for
the freely optimizable polarizabilities and constrained backbone polarizabilities,
respectively. Column 5 and 6 contains the RMSD in response potential for the freely
optimizable polarizabilities and constrained backbone polarizabilities, respectively.
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After the initial probed polarizabilities of the amino acids have been established,
the polarizabilities for the backbone, the ACE cap, and the NME cap were averaged over
all the amino acids. The polarizabilities for the side-chains were then refit while the
backbone, the ACE cap, and the NME cap polarizabilities were constrained to their
averaged values. In column 4, the errors in molecular polarizability tensor for the
averaged backbone polarizabilities are given. It is interesting to note that the errors do
not increase significantly when using averaged backbone polarizabilities. The average
error in the tensor was 0.92% when the polarizabilities on all the atoms were free to
optimize and 1.01% when the polarizabilities were constrained to the averaged backbone
values. The RMSD in response potential AVysg follows a similar trend. The average
value AVpmsq over the amino acids was 1.66 (10 ¢/A) using the initial set of polarizabilities
which were all free to optimize, while the average of AVynsq using the averaged backbone
polarizabilities is 1.69. Since the polarizabilities were fit to the response field, AViysg 1S
always larger for the averaged backbone polarizabilities because there are fewer
parameters to fit. However, the effect is small. The average of AVysq for the amino
acids (1.66 or 1.69 10~ ¢/A) can be compared to the average of AVimsq (2.01 107 ¢/A) for
the test set of organic molecules in Chapter 5. The results indicate that the polarizabilities
on the backbone, ACE, and NME groups on all the amino acids are quite similar to one

another.
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Point Charges

Point charges were fit to the total electrostatic potential over several

conformations of single amino acids with ACE and NME caps with and without

polarizability present. The set of probed polarizabilities used was the set whose amino

acid backbone, ACE cap, and NME cap were averaged over the amino acids while the

sidechains were refit. In addition, a 1-4 charge — induced dipole scaling factor was

treated as an optimizable parameter for the charge optimization with polarization present.

In Table 6.2, the optimized 1-4 charge-induced dipole scale is given for each amino acid.

The values ranged from 0.07 to 0.21. The average value over the amino acids was found

to be 0.13. Similar results were obtained for other organic molecules not listed, such as

fluoropropane, ethylene glycol, and H,NCH,CH,COO'. For this reason, the 1-4 charge —

induced dipole scaling factor was set to 0.1 and kept at that value for the rest of the

calculations.

Amino Acid 1-4 Charge-Induced | Amino Acid 1-4 Charge-Induced
Dipole Scale Dipole Scale

ALA 0.071 LEU 0.099

ARG (+) 0.210 LYS" (+) 0.138

ASN 0.182 MET 0.108

ASP (—) 0.134 PHE 0.136

CYS 0.213 SER 0.068

GLN 0.108 THR 0.108

GLU (—-) 0.102 TRP 0.169

GLY 0.084 TYR 0.168

HIS 0.093 VAL 0.115

ILE 0.171

Average 0.13

Table 6.2 Optimal 1-4 Charge-Induced Dipole Scale Factors for each amino acid.
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Point charges were refit with polarizability present using the 1-4 scaling factor of
0.1. In addition, a set of point charges was optimized without polarizability present, i.e.
the polarizabilities were set to 0.0. Once the charges have been initially determined for
each amino acid individually, the charges on the amino acid backbone, the ACE cap, and
the NME cap were averaged over all the amino acids. The averaged charges with and

without polarizability present are given in Figure 6.4.

(0.2123)

-0.5349
(-0.4930)

Figure 6.4 Averaged charges with and (without) polarizability for the amino acid
backbone, ACE cap, and NME cap.

The RMSD for total electrostatic potential AV, (6.2.2) over all of the

conformations is listed in column 3 of Table 6.3 for the charges fit without polarizability

and in column 5 for the charges fit with polarizability. In all cases, AV, is lower for

rm.

charges optimized with polarizability than without. The average of AV, over all amino

acids is 6.70 (10~ ¢/A) without polarizability and 5.81 (10~ ¢/A) with polarizability.

In order to see the relative magnitudes of the potential, the absolute value of the

potential |V | was averaged over all the conformations and given in column 1 of Table
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6.3. For the charged amino acids ARG, ASP, GLU, and LYS", |V | is larger by an order

of magnitude than the uncharged amino acids.

Non polarizable Polarizable
Amino ||| AV AV AV AV
Acid (All Free) | (Average | (AllFree) | (Average
Backbone) Backbone)

ALA 25.45 5.67 7.02 5.11 5.14
ARG (+) 185.13 7.07 9.69 4.96 4.98
ASN 29.69 6.27 7.27 5.52 6.33
ASP (—) 207.07 9.76 18.31 6.48 6.64
CYS 26.93 7.61 9.22 7.15 7.82
GLN 29.86 5.49 6.26 4.81 4.85
GLU (—) 200.43 8.57 17.43 5.94 7.02
GLY 27.89 6.12 7.57 5.25 5.38
HIS 29.67 6.94 8.05 6.36 6.54
ILE 21.41 5.39 6.55 5.23 5.36
LEU 21.43 5.50 6.62 5.13 5.21
LYS" (+) 187.48 7.05 9.07 4.87 4.94
MET 24.66 6.80 7.60 6.41 6.46
PHE 23.29 6.99 7.94 6.60 6.63
SER 28.20 6.29 7.62 5.73 5.94
THR 27.69 6.21 7.55 5.97 6.15
TRP 26.35 7.32 8.40 6.97 7.13
TYR 25.95 7.20 8.22 6.59 6.67
VAL 22.60 5.57 7.09 543 5.62
Average 6.70 8.72 5.81 6.03

Table 6.3 Results for total electrostatic potential. Column 2 contains the average of the
absolute value of total electrostatic potential. Column 3 and column 5 contain the RMSD

in total electrostatic potential AV'” for the optimized charges for amino acids with and

rmsd

without polarizability present. Column 4 and column 6 contain AV

rmsd

for the optimized
charges with and without polarizability present for averaged backbone charges.
As in the case for the polarizabilities, the backbone charges were averaged over

the amino acids and then the sidechains refit. Columns 4 and 6 contain AV, for the

rmsd
backbone averaged charges without and with polarizability, respectively. The effect of

using averaged backbone charges without polarizability is more severe for the charged
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amino acids ASP and GLU. AV, nearly doubles in both cases: 9.76 — 18.31 for ASP

rms:

and 8.57 — 17.43 for GLU. For charges optimized with polarizability, the effect of

averaging backbone charges is less drastic. AV

rms

, Increases modestly for the charged
amino acids: 6.48 — 6.64 for ASP and 5.94 — 7.02 for GLU. In going from all

optimizable charges to averaged backbone charges, the average of AV

. over all the
amino acids changes from 6.70 — 8.72 for charges without polarizability and 5.81 —
6.03 for charges with polarizability.

Another electrostatic property that can be used to make comparisons is molecular
dipole moment. In order to see the relative sizes of the molecular dipole, the average
magnitude of the molecular dipole (6.2.6) calculated at the B3LYP/cc-pVTZ level is
given in column 2 of Table 6.4. For the charged amino acids, the total molecular dipole
depends on the origin of the reference coordinate system and is omitted. The dipole

moments are calculated at each conformation using the optimized point charge and

induced Gaussian dipole model (6.2.3). The conformation averaged RMSD in dipole
moment Ad,,, (6.2.5)is given in column 3 and column 5 of Table 6.4 for the optimized

point charges without and with polarizability, respectively. Polarizability decreases the

RMSD for dipoles by a factor of two or more in most cases. The average of Ad

rms

. over

amino acids was 0.421 D for charges without polarizability and 0.186 D for charges with

polarizability. Similar results were obtained for the backbone averaged charges. In this

case, the average of Ad,_, was 0.987 D for backbone averaged charges without

polarizability and 0.258 D for charges with polarizability.
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Non polarizable Polarizable
An_lino | C_i | Agrmsd Agrmsd Aa‘msd Aa‘msd
Acid (All Free) (Average (All Free) (Average
Backbone) Backbone)

ALA 2.89 0.216 0.714 0.124 0.139
ARG (+) * 0.712 1.468 0.225 0.250
ASN 4.28 0.478 0.831 0.168 0.462
ASP (-) * 0.909 2.933 0.299 0.303
CYS 3.35 0.337 0.763 0.286 0.531
GLN 3.44 0.365 0.591 0.140 0.140
GLU (=) * 0.804 2.830 0.276 0.755
GLY 2.93 0.251 0.760 0.109 0.172
HIS 5.50 0.385 0.804 0.142 0.171
ILE 2.81 0.222 0.625 0.116 0.142
LEU 2.82 0.269 0.620 0.120 0.175
LYS' (+) * 0.562 1.231 0.202 0.264
MET 3.07 0.302 0.610 0.149 0.216
PHE 3.11 0.464 0.718 0.235 0.184
SER 3.68 0.309 0.742 0.171 0.248
THR 4.12 0.285 0.676 0.177 0.211
TRP 4.00 0.523 0.788 0.221 0.147
TYR 3.48 0.476 0.696 0.185 0.136
VAL 2.83 0.214 0.773 0.178 0.325
Average 0.421 0.987 0.186 0.258

Table 6.4 Dipole moment (D) of the amino acids. Column 2 contains the magnitude of
the B3LYP/cc-pVTZ molecular dipole averaged over conformations. Column 3 and 5
contain the RMSD of the dipole averaged over conformations for the charges fit with and
without polarizability. Contain 4 and 6 contain the same quantity with averaged
backbone charges.

Alanine Decapeptide

In order to test the effect of polarization in a large peptide, a 10 alanine peptide
was constructed in the a-helix and fully extended conformation as in Figure 6.1. The
charges optimized to a single alanine (with and without polarizability present) were tested
on the 10 alanine peptide. As mentioned in section 6.2, the (¢ ,y) angles were
constrained to (-60°, -60°) for the idealized a-helix and (180°, 180°) for the idealized
fully extended conformation, while the rest of the geometry was optimized at the

B3LYP/6-31G* level. The electrostatic potential (ESP) around the 10 alanine peptide
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was calculated as the same level of theory used to optimize the charges, B3LYP/cc-
pVTZ.

In the center of the a-helix, polarization is expected to be particularly important
because of hydrogen bonds between amide groups in adjacent turns of the helix. A non-
polarizable force field would not be expected to perform well in environments where
polarization is important unless effective charges that compensate for the lack of
polarization are used. A method to find effective charges is to simply scale the gas phase
charges. The charges fit for a single alanine were scaled by 4 = 1.00, 1.05, 1.10, .. 1.30
and then tested on the 10 alanine peptide in both conformations. In Figure 6.5, the
RMSD in potential Vimsq for the a-helix is plotted at different charge scaling factors using
the set of charges optimized to a single alanine with and without polarizability present.

In order to compare these fits to what would be the best possible fit, a third set of ‘best’
charges was optimized specifically for the 10 alanine in the a-helix conformation. The
RMSD in potential Vimgq for the ‘best’ charges was found to be 6.12 (10'3 e/A). When the
charge scale factor 4 was 1.0, i.e. charges optimized to a single alanine, Viysg = 18.38
(10'3 e/A) for the charges without polarizability, and Viysa = 14.40 for the charges with
polarizability. As the charge scaling factor was increased, Vimsq for both sets of charges
decreased. The optimal charge scale factor for charges without polarizability was found
to be 1.25. In other words, the gas phase non-polarizable charges had to be scaled up by
25% to best reproduce the electrostatic potential for an a-helix. This number can be
compared to the ratio between the gas phase dipole of water 1.8 D and what is believed to
be the liquid phase dipole of 2.2-2.7 D, i.e. the dipole is scaled by 1.2 to 1.5. Itis

interesting to note that the charges with polarizability also should be scaled to best
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reproduce the condensed phase ESP for the a-helix . Though as expected, the optimal
scale factor for charges with polarizability (1.15) is less than the optimal scale factor for
charges without polarizability (1.25). For charges with polarizability, Vimsa = 8.15 (107
e/A) at the optimal charge scale factor 1.15, and Vimsa = 9.67 (10 ¢/A) at the optimal

charge scale factor 1.25 for charges without polarizability.

0.020 - ,
o) 1 —+— Charges without
E 0.016 - Polarizability
2 I —=— Charges with
= 0.012 7 Polarizability
& —— Best Charges
& 0.008 -
H b —h—h—h———A

0.004

1 1.1 1.2 1.3
Charge Scale (1)

Figure 6.5 V4 for 10 alanine a-helix using scaled charges optimized to a single alanine.

In a perfect electrostatic/polarization model, it would be expected that the charges
would not need to be scaled. Therefore, either the polarization model or the polarizing
field of the electrostatic model is underestimating the polarization effect. It was recently
shown that the ab-initio electrostatic energy of a water dimer calculated at B3LYP/6-
31G* is -8.32 kcal/mol'”. If point charges were optimized to the electrostatic potential
calculated at the B3LYP/6-31G* level, the point charges predict a dimer electrostatic
energy of -5.31 kcal/mol. Point charges significantly underestimate the electrostatic
energy at short range dimer distances. It would be expected that the point charges also
underestimate the electric fields at short range dimer distances. At long range, the
dominant electrostatic interaction is between the permanent molecular dipoles of the

molecule (if the molecular dipoles are not zero). Since point charges optimized to
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electrostatic potential reproduce molecular dipole moments, point charges accurately
reproduce electrostatic interactions at long range. In the a-helix, amide groups in close
proximity to one another are the main source of polarization. At short range, the
polarizing electric field due to the point charges is underestimated and this is the reason

why the charges need to be scaled by 15%.
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Figure 6.6 V;m for 10 alanine in the fully extended conformation using scaled charges
optimized to a single alanine.

The other conformation that was studied is the fully extended conformation when
all of the (¢, v) angles are (180°, 180°), (see Figure 6.1). Vimsq Was plotted at different
charge scales in Figure 6.6 for charges with and without polarizability. For charges with
polarizability, a charge scaling factor 4 of 1.0 (no charge scaling) excellently reproduces
the ESP. For A = 1.0, the RMSD in ESP is 5.75 (10~ e/A) for the charges with
polarizability and 7.52 for charges without polarizability. These numbers can be
compared with Vinsg = 5.18 for the ‘best’ possible set of charges optimized specifically to
the extended 10 alanine. In this conformation, the polarization response is adequately

reproduced because the strongly polarizing amide groups are separated by a much farther
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distance. At the longer distances, the polarizing fields due to the point charges can be

expected to be more accurate than at short distances.

6.4 Conclusions

Probed polarizabilities were determined for the amino acids, the NME cap, and
the ACE cap. The average error in the molecular polarizability tensor over the amino
acids is 0.92% and the average error in the response potential is 1.66 10~ ¢/A. The effect
of averaging the polarizability on the amino acid backbone, the NME cap, and the ACE
cap is not significant. When the polarizabilities on the sidechains were refit with the
averaged backbone, NME cap, and ACE cap polarizabilities kept constant, the averaged
error in the molecular polarizability tensor increased to 1.01% and the error in the
response field increased to 1.69 10~ e/A. This can be compared to an average error in the
molecular polarizability tensor of 1.37% and an error in the response potential of 2.01
10~ e/A for the test set of organic molecules in Table 5.3. The results indicate that
averaging atomic polarizabilities over amino acid backbones is a good approximation.
This suggests that atomic polarizabilities for other biomolecules, such as saccharides, can
be found by generating probed polarizabilities for a set of structures and then averaging
the polarizabilities over related atom types.

Atomic point charges were fit to the total ESP for the amino acids over multiple
conformations with and without polarizability present. In each case, polarizability
improved the error in the total ESP and also the error in the total molecular dipole. The
error in the total electrostatic potential averaged over the amino acids was found to be

6.70 10~ e/A without polarizability present and 5.81 10~ ¢/A with polarizability present.
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When the charges were averaged over the amino acid backbones and the sidechain
charges reoptimized, the error in the total ESP increased to 8.72 10~ e/A without
polarizability present and 6.03 10” e/A with polarizability present. A similar
improvement was found with the molecular dipole moment. The error in the molecular
dipole averaged over amino acids was found to be 0.421 D without polarizability present
and 0.186 D with polarizability present. When the backbone charges were averaged and
the sidechain charges refit, the error in the dipole moment increase to 0.987 D without
polarizability present and 0.258 D with polarizability present.

The results discussed above indicate that polarization improves the electrostatic
description of single amino acids over multiple conformations. The polarizabilities and
atomic charges fit to the single amino acids were tested on a 10-alanine peptide in an
idealized fully extended and a-helical conformation. The ESP was calculated using the
charges optimized to a single alanine with and without polarizability present. In the o-
helical conformation, the results indicate that point charges without polarizability should
be scaled larger by 25% and that point charges with polarizability should be scaled larger
by 15%. A possible reason why the charges with polarizability need to be scaled by 15%
is that point charges underestimate electric fields at short distances. The field applied to
the induced dipoles is too weak. In the fully extended conformation, the point charges
with polarizability adequately reproduce the ESP and do not need to be scaled. These
results indicate that further improvements can be made if more sophisticated electrostatic
models, e.g. point multipoles or Gaussian multipole charge densities are used in place of

point charges.
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7 Optimization of van der Waals Parameters: Water and Ammonia

7.1 Introduction

In biomolecular force fields such as AMBER'/GLYCAM’® and CHARMM'*"°
the non-bond energy is composed of an electrostatic term, a recently added polarization
term, and a van der Waals (vdW) term. The vdW term is modeled by a 12-6 Lennard-
Jones potential of the form:

Cu

A
V(r)="—% _ 7.1.1
( ) rlz 1’6

The r "% term models the short range exchange/repulsion part of the non-bond energy and
the »"® term models the attractive long range dispersion contribution.

Many groups have devoted a significant amount of time in developing parameters
for the vdW potential. Jorgensen'®" et. al. has created the OPLS force field by fitting
atom type point charges and vdW parameters to liquid phase heats of vaporization and
density for pure solvents calculated through Monte Carlo simulations. MacKerell**** et.
al. has developed a two step hybrid approach of fitting vdW parameters to ab-initio data
and then adjusting the resulting parameters to match heats of vaporization and density for
pure solvents.

In terms of force field parameter development, fitting to ab-initio data is ideal
because of the wealth of information available. When optimizing to experimental data,
typically there are a few measured experimental quantities in which to fit to. For
example, when fitting to heats of vaporization and density, there are two experimentally
measured data points per solvent. On the other hand, MacKerell has fit Lennard-Jones

parameters to ab-initio dimer data by probing molecules with He and Ne atoms. Many

135



data points can be obtained for interaction energy by probing different atoms and
extending the probe trajectory.

However, there are two major obstacles in fitting vdW parameters to ab-initio
data. The first problem is accuracy of the ab-initio method. It has been shown that
extremely high ab-initio methods™ *, e.g. CCSD(T)/aug-cc-pV5Z, are needed to
accurately calculate dispersion energies between the noble gases. This level of theory is
perhaps too expensive to fit an entire force field. York and Giese® ** have proposed an
empirical method of obtaining high quality ab-initio data for weakly attractive dimer
systems. The method takes a linear combination of ab-initio energies calculated at lower
levels of theory and, by using basis set extrapolation techniques, predicts dimer energies
at the CCSD(T) level. The small dimer energies for noble gases are the result of weak
dispersion interactions. For example, the Ar-Ar dimer energy™ is 0.270 kcal/mol. On
the otherhand, interactions between hydrogen bonded dimers are dominated by
electrostatic interactions. For example, an accurate estimate’’ of the water dimer energy
is 5.02 kcal/mol. Lower levels of ab-initio theory™®, e.g. MP2/6-311++G(3d,p) and
B3LYP/6-311++G(3d,p), can be used to reasonably estimate dimer energies and
geometries of hydrogen bonded systems. MacKerell*® has fit Lennard-Jones parameters
to MP3/6-311++G(3d,3p), which appears to be a reasonable compromise between
accuracy and CPU expense.

However, a more important question arises: is the functional form of the force
field with point charges and a Lennard-Jones potential accurate enough that ab-initio data
can be used? This work will attempt to answer this question by finding vdW parameters

for water by two different approaches. In the first approach, vdW parameters are found
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for water with and without polarizability present by optimizing to heats of vaporization
and density through molecular dynamics (MD) simulations. The resulting vdW
parameters are tested on dimer energies calculated at the MP2/cc-pVTZ level with the
counterpoise correction”” utilized to account for basis set superposition error (BSSE). It
is shown that polarizability makes a significant improvement in reproducing ab-initio
dimer energies. However, it would be interesting to check how well vdW parameters
optimized to ab-initio dimer data reproduce liquid phase properties. In the second
procedure, vdW parameters for water are found by fitting to dimer energies calculated at
the BSSE corrected MP2/cc-pVTZ level. The heats of vaporization and density are
calculated from the ab-initio optimized parameters. Though polarization makes a
significant improvement, it is shown the ab-initio optimized parameters poorly reproduce
the liquid phase properties. In the last section, dimer energies on the water dimer
potential energy surface are explored. Pure electrostatic contributions™ to the ab-initio
dimer energy are compared to the electrostatic interactions predicted by point charges.
The results indicate that the errors in fitting vdW parameters to ab-initio data for water is
not due to a limitation in the level of ab-initio theory (BSSE corrected MP2/cc-pVTZ),
but a fundamental limitation in assuming atom centered point charges and a 12-6
Lennard-Jones vdW potential.

1-23

In earlier studies *°, the vdW parameters 4,5, and C,;, are usually expressed in

terms of ¢ and ¢.
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In this case, 4, =¢,0., and C, =2¢,0", . For a given atom type a, vdW parameters
o, and g, are assigned. The combining rule for vdW parameters between two different

atom types a and b in AMBER or CHARMM is ¢, =0, + o, and ¢, =,/¢,&, . The

minimum of V(r) in 7.1.2 occurs at 6,5, and V(o) = €45 1s the well-depth at the minimum.
This functional form is particularly convenient for determining vdW parameters of noble
gases. For example, the dimer distances o,, and well-depths ¢,, for He-He, Ne-Ne, and
Ar-Ar dimers calculated® at the CCSD(T)/t-aug-cc-pV5Z level are 3.00, 3.16, and 3.80
A, respectively for the minimum energy separation distance and 0.020, 0.080, and 0.262
kcal/mol for the well-depth, respectively.

In our studies, it was found that the parameter surface of fitting ¢ and ¢ for carbon
and hydrogen to heats of vaporization and density of alkanes, alkenes, and aromatic
compounds has a flat surface or shallow minimum. In other words, multiple sets of
significantly different parameters yielded similar quality of fits to heats of vaporization
and density for carbon and hydrogen containing compounds. In order to reduce the

number of parameters, a different combining rule for 4,;, and C,; is employed in this

study. Molecular dipole-dipole dispersion coefficients C’’ have been determined

31-36

experimentally” . The molecular dispersion coefficient between a pair of molecules 4

and B C"?' can be modeled as a pairwise sum of atom-atom contributions, i.e.

cml = Z Z C,, . Parameters for C, H, N, O have been fit to the experimental molecular

acA beB

3738

dispersion coefficients’’ *® through the Slater-Kirkwood®® combination rule (see appendix

C.3 for a derivation)
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In 7.1.3, C, is the dispersion coefficient between atom a and atom b, and a“ and ol are
the atomic polarizabilities for atom a and atom b, respectively. In this study, the
dispersion parameters C,, and o determined by Yang and Wu™® for the Slater-Kirkwood
combination rule are employed in the Lennard-Jones potential. The repulsion parameter
Agp 1s expressed in terms of atom type repulsion parameters 4, and A, by the following
combination rule:

A, =A4,4, 7.1.4
The atom type repulsion parameters 4, are optimized to heats of vaporization and
density.

The choice of atomic point charges is particularly important to condensed phase
properties. In non-polarizable force fields, charges optimized to the electrostatic
potential (ESP) calculated at the HF/6-31G* level* have been employed because they
overestimate the gas phase dipole by ~20-30%. For example, the experimental gas phase
molecular dipole of water is 1.85 D, while HF/6-31G* predicts the molecular dipole to be
2.19 D. Another example is ammonia. The experimental and HF/6-31G* molecular
dipoles of ammonia are 1.5 D and 1.95 D, respectively. It is interesting to note that the
B3LYP/cc-pVTZ level, which has been employed throughout this work, predicts the
molecular dipole of water and ammonia to be 1.91 D and 1.58 D, respectively. In this
study, atomic point charges are found for water and ammonia by optimizing to the ESP
calculated at the B3LYP/cc-pVTZ level. In order to account for condensed phase effects

in the atomic charges, a charge scale factor 4., is an optimizable parameter in the vdW
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optimizations. Hence, the atom type repulsion parameter 4, and the charge scale factor

Acn are optimized to heats of vaporization density.

7.2 Methods
Dispersion Parameters Cy,

As mentioned in the introduction, the Slater Kirkwood combination rule along
with the parameters optimized by Yang and Wu were employed for the calculation of the
C.p dispersion term in the Lennard-Jones potential 7.1.1. In the published values, the

atomic polarizabilities o have been transformed into ‘effective’ number of electrons N,:

N, = 16Caa2 /90(“2 (7.1.3) with a similar expression for Np. In terms of N, and N,, the

Slater-Kirkwood equation is given by:

1

2(Caa2Cbb2NaNb )3

Cp = 7.2.1

1

(caa N,’ )é + (c,,,, N’ )5
These parameters have been used, with a caveat. The vdW parameters on polar
hydrogens (i.e. hydrogens attached to O or N) are either zero or set to small values in
OPLS. Simulations of liquid water have indicated that small vdW parameters on the
polar hydrogens are preferred when considering heats of vaporization and density. Ab-
initio calculations of water dimers also have indicated that vdW parameters on polar
hydrogen should be small. For this reason, the dispersion coefficients for polar
hydrogens Cyy were set to zero. All of the dispersion contribution is placed on the
oxygen Cpp and nitrogen Cyy atom types. Therefore, two new atom types were
introduced: OH2 for oxygen with 2 attached hydrogens, and NH3 for nitrogen with 3

attached hydrogens. C,, and N, parameters were found for the two new atom types by
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fitting to molecular dispersion coefficients calculated by the model of Yang and Wu. The
standard non-linear least squares Levenberg-Marquardt algorithm*' has been employed to

optimize the parameters.

Force Field Parameters

Point charges were optimized to the ESP and probed polarizabilities were
optimized to the response ESP calculated at the B3LYP/cc-pVTZ level for water and
ammonia. All ab-initio calculations were performed with Gaussian 98**. The charges,
polarizabilities, and polarizability exponents are given in Table 7.1 for water and Table
7.2 for ammonia. The rigid TIP3P* water geometry, with a fixed bond length of 0.9572
A and a fixed bond angle of 104.52°, was employed in the water model. The ammonia
bond lengths were constrained to 1.01 A with the SHAKE™* algorithm, while the
AMBER® force field was employed to model the flexible bond angles. The H-N-H

equilibrium bond angle and force constant are 109.50° and 35.0 kcal/mol/°, respectively.

Element Charge ¢g (e) Polarizability a (A% Exponent f (A
O -0.6936 0.6822 1.548
H 0.3468 0.2522 2.156

Table 7.1 Initial charges, polarizabilities, and polarizability exponents for water

optimized at the B3LYP/cc-pVTZ level.

Element Charge ¢ (e) Polarizability o (A°) | Exponent 8 (A™)
N -0.8871 1.0865 1.2866
H 0.2957 0.29731 1.9817

Table 7.2 Initial charges, polarizabilities, and polarizability exponents for ammonia

optimized at the B3LYP/cc-pVTZ level.
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Calculation of Heats of Vaporization and Density

Molecular dynamics (MD) simulations were performed through the sander
module of AMBER®. Simulations were run with a 1 fs time steps in both the NVT and
NPT ensembles, which were maintained in those conditions with a Berendsen®
thermostat. A non-bond cutoff of 8A with Particle Mesh Ewald (PME)* and a
continuum correction for the Lennard-Jones potential were employed to calculate long
range interactions. In the simulations with polarization, induced dipoles were propagated
by the Car-Parinello Lagrangian scheme®® (see section 4.6), with coupling constant 7, =
0.1 ps. The protocol to calculate the heat of vaporization and density from molecular
dynamics simulation is given by:

1) Equilibrate the solvent with 50ps of simulation in the NV'T ensemble, with
Berendsen temperature coupling constant, 77 = 0.1 ps.

2) Equilibrate the solvent with 150ps in the NPT ensemble with Berendsen
temperature and pressure coupling constants, 77= 0.1 ps and zp = 0.1 ps.

3) Simulate the solvent for 300ps in the NPT ensemble with Berendsen temperature
and pressure coupling constants, 7= 1.0 ps and 7p = 1.0 ps. Average the density
and non-bond energy Ej;, over the simulation and write the coordinates of the
solvent box to an output file every 2 ps. The coordinates of the solvent molecules
are used to calculate the intra-molecular non-bond energy E;u,. The intra-
molecular non-bond energy is averaged over solvent molecules and time.

The heat of vaporization is calculated by:

Hvap = <Eliquid>_<Eintm>+RT 123
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Optimization to Heats of Vaporization and Density

The repulsion parameters 4,, and the charge scale 4., parameter were optimized
to heats of vaporization H,,, and density d using the non-linear least squares Levenberg-
Marquardt algorithm*'. Since the simulation averaged properties H,,, and d are accurate
to the second or third decimal place, numerical derivatives of heat of vaporization H,,
and density d were estimated by a fit to the data. The parameters were perturbed forward
and backward, and a derivative was fit to a straight line passing through the three points.
The derivative step size is 0.01*X, where X is the current value of the parameter. Fully
automated code was written to optimize the parameters and keep track of the simulations

on multiple processor computer clusters.

Ab-initio Dimer Test

Three configurations of the water dimer illustrated in Figure 7.1 were optimized
at the MP2/cc-pVTZ level. After the initial optimization, the relative geometries of the
waters were translated along the directions of the arrows in Figure 7.1. Ab-initio energies
of the dimer geometries were calculated along the trajectory at the MP2/cc-pVTZ level
with BSSE accounted for through the counterpoise correction®’. The dimer energy
between two molecules 4 and B is the energy of the 4-B complex minus the energy of 4

and B, i.e. Eqmer = E(AB) — E(4) — E(B).
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Figure 7.1 Water dimer geometries.

Optimization to Ab-initio Energy

The vdW repulsion parameter 4, for water was optimized to the ab-initio water
dimer energies calculated along the trajectories in Figure 7.1 at the BSSE corrected
MP2/cc-pVTZ level. As mentioned earlier, the charges and probed polarizabilities were
calculated at the B3LYP/cc-pVTZ level. However, the difference between charges and
polarizabilities fit to data calculated at the MP2/cc-pVTZ level and the B3LYP/cc-pVTZ
level are neglible. In order to illustrate this, the charges and polarizabilites optimized at
the MP2/cc-pVTZ level and the B3LYP/cc-pVTZ level are given in Table 7.3. Notice
the charge on oxygen is -0.6992 at the MP2/cc-pVTZ level and -0.6936 at the B3LYP/cc-

pVTZ level. This difference does not significantly affect the results.
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Element Charge g (e) Polarizability a (A% Exponent f (A™)
O -0.6992 (-0.6936) | 0.6847 (0.6822) 1.5326 (1.548)
H 0.3496 (0.3468) 0.2385 (0.2522) 2.1783 (2.156)

Table 7.3 Charges, polarizabilities, and polarizability exponents for water calculated at
the MP2/cc-pVTZ and (B3LYP/cc-pVTZ) level.

The charge scale factor was set to 1.0 in order to reproduce dimer energies at long range.
The parameters were optimized through the standard non-linear least squares Levenberg-
Marquardt algorithm. Only energies within Skcal/mol of the dimer energy minimum
were used in the fit, in order to discard points at short range when large exchange
repulsion energies dominate the ab-initio dimer energy and the 12-6 potential function is

not expected to accurately account for this.

7.3 Results

Cab Dispersion Optimization

The parameters C,, and N, for the atom types: H, C(sp°), C(sp?), C(sp), N, O(sp”),
and O(sp?) are taken from the model of Yang and Wu®®, and are listed in Table 7.4. The
new atom type parameters for OH2 and NH3 were fit to 504 pairs of molecular
dispersion coefficients calculated using the parameters of Yang and Wu as reference data.
The OH2 and NH3 parameters are also listed in Table 7.4. Notice the parameters for
OH2 and NH3 are larger than the parameters for N, O(sp?), and O(sp?) because the OH2

and NH3 parameters implicitly take into account hydrogen.
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Atom Type Cu N,

H* 39.00 0.80
C(sp’)* 303.7 2.49
C(sp?)® 377.0 2.49
C(sp)° 409.8 2.49
N? 265.5 2.82
O(sp’)* 160.0 3.15
O(sp)* 175.3 3.15
OH2 624.3 4.46
NH3 1224.0 5.16

Table 7.4 Dispersion parameters for Slater-Kirkwood combination rule.

“Values taken from reference™.
Some examples of molecular dispersion coefficients calculated from the new OH2 and
NH3 parameters are compared to the molecular dispersion coefficients using the
parameters of Yang and Wu in Table 7.5. Notice the molecular dispersion coefficients
calculated from the new optimized parameters match the model of Yang and Wu to the 4-
5 significant figures. The RMSD fit to the Yang and Wu model for the 504 molecular
pairs is 0.0209 kcal/mol/A°®. The experimental values (if available) are also given for
comparison. The main reason for not fitting directly to experimental data was to avoid

the possibility of over-fitting parameters to insufficient experimental data.

Pair New Model Yang Model” Experiment”
H,O - H,O 624.262 624.293 624.1
H,0 — methane 1054.501 1054.493 1051.9
H,O — NH,CHj; 1616.691 1616.657 -

H,O0 — CO, 1140.734 1140.829 1168.0
H,0O — benzene 3823.546 3823.601 3822.4
H,O — NH3; 872.332 872.312 872.6
NH; — NH; 1223.980 1223.969 1226.8
NH; — methane 1482.584 1482.583 1479.9
NH; — benzene 5380.787 5380.803 5390.5
NH; - CO, 1593.235 1593.270 1630.1
NH; — phenol 5816.642 5816.648 -

H,0 — dimethyl ether 2112.946 2112.983 -

Table 7.5 Molecular Dispersion Coefficients in (kcal/mol/A®). * Calculated values using
parameters from reference®®. "Experimental values taken from references®'=® .
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Optimization of Water to Heats of Vaporization and Density

The dispersion parameter for water was placed on the oxygen (Cop = 624.3) as
described in the previous section, while the hydrogen dispersion parameter was set to
zero (Cyy = 0.0). The repulsion parameter on hydrogen Ay was set to 1.0, while the
repulsion parameter on oxygen Ao and the charge scale factor 4., factor were optimized
to heats of vaporization and density for a range of temperatures: 273°, 298¢, 323°, and
348°. The optimized parameters are given for the models with and without polarizability
in Table 7.6. The original non-polarizable TIP3P* ** water model is also given for
comparison. In order to illustrate the actual size of the repulsion parameter in terms of an

atomic radius, the repulsion and dispersion term were converted in terms of ¢ and ¢, i.e.

24,4, ) B’
o, = l[#j and ¢, =—2%— . As expected, the charge scale factor is smaller

2 BOO 0“70

for parameters optimized with polarizability (4., = 1.130) than without (4., = 1.255). The
charge scale factors agree with the results from the 10 alanine peptide in chapter 6. The
non-polarizable charges optimized to a single alanine had to be scaled up by 25% to best
reproduce the electrostatic potential for 10 alanine in the a helical conformation, while
the charges with polarizability need only be scaled up by 15%. In the model with
polarizability, the repulsion parameter is larger with 6o = 1.86 A than in the model
without polarizability 6o = 1.76 A. The non-polarizable model can be compared with the
TIP3P water model, which was also fit to heats of vaporization and density. The non-
polarizable model charges are slightly larger than TIP3P and the repulsion parameter is
slightly smaller than TIP3P. It should be noted that TIP3P was optimized with a 9A non-

bond cutoff and no long range corrections for electrostatic or Lennard-Jones potential,
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while the new optimized models employed both PME and continuum corrections to the

Lennard-Jones.

Polarizable Non-Polarizable | TIP3P?
oo (A) 1.860 1.756 1.768
o (kcal/mol) 0.118 0.167 0.152
Aoo (107 kcal/molA'?) 822.0 581.4 582.
Anp (107 keal/molA'?) 1.0 1.0 0.0
Coo (kcal/molA®) 624.3 624.3 595.
Crp (kcal/molA®) 0.0 0.0 0.0
Ao 1.130 1.255 1.203
qo0 -0.7836 -0.8704 -0.834
qu 0.3918 0.4352 0.417

Table 7.6 Optimized parameters for water with and without polarizability present.
“Values taken from reference”’.

The actual values of the heats of vaporization are given in Table 5.4 and the densities are
given Table 7.7. Notice the density d is a monotonically decreasing function of
temperature. This is indicative of the simple atom centered point charge water model that
is studied here. The values of the parameters are fit in such a way that the error in density
is balanced for the different temperatures. For example, at a temperature of 248° K, the
density in the non-polarizable model (d = 1.0252 g/ml) is overestimated compared to
experiment (d = 0.9896 g/ml). However, at a temperature of 348° K, the density (d =
0.9466 g/ml) is underestimated compared to experiment (d = 0.9748 g/ml). Similar

trends follow in the polarizable water model and in the TIP3P water model.
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T (K°) H,,, (no H,p H,p
polarizability) (polarizability) (experiment)
273 10.93 11.054 10.76
298 10.68 10.701 10.51
323 10.42 10.360 10.25
348 10.18 10.032 9.991
RMSD 0.175 0.185
Table 7.7 Heats of vaporization (kcal/mol) for optimized water models with and without
polarizability.
T (K°) d (no polarizability) | d (polarizability) | d (TIP3P®) d (experiment)
248 1.0252 1.0263 1.049 0.9896
273 1.0108 1.0179 1.023 0.9998
298 0.9921 0.9956 1.002 0.9970
323 0.9710 0.9729 0.977 0.9880
348 0.9466 0.9479 0.953 0.9748
RMSD 0.0223 0.0229 0.0306

Table 7.8 Density (g/ml) for optimized water models with and without polarizability.
*Values taken from reference™".

The performance of the non-polarizable water model is similar to that of TIP3P.
The heat of vaporization at T =298° K is 10.68 (kcal/mol) for the non-polarizable model,
10.45 for TIP3P*, and 10.51 for the experimental result. The RMSD in density over the
temperatures from 248-348° K is 0.0223 g/ml for the non-polarizable model, 0.0229 g/ml
for the polarizable model, and 0.0306 g/ml for TIP3P. This is interesting because the two
proposed models had 2 optimizable parameters (4o and A.,), while the TIP3P model had
3 optimizable parameters, (gp, €0, and 4.;). This can be partially explained by the
dispersion parameter Cpp between the proposed model (624.3) and TIP3P (595) are
similar (see Table 7.6). However, it also indicates the possibility of over-fitting too many
vdW parameters to the data. Both the charge scale 4., and well-depth parameter ¢ model

the attractive interaction between the molecules. When considering heat of vaporization
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and density only, there is perhaps not enough information to uniquely assign both 4., and
€.

The effect of placing a repulsion parameter on the water hydrogen was also
investigated. In table 7.9, the repulsion parameter on hydrogen Ay was varied from 0.01
to 20, while the charge scale 4., and the oxygen repulsion parameter ao (4p) were
optimized. As the hydrogen repulsion parameter increased, the repulsion on oxygen
decreased and the charge scale /., increased to compensate. It appears that the lowest
error in both heat of vaporization and density occurred for the smallest value of hydrogen
repulsion parameter. This is perhaps the reason why TIP3P** ¥, TIP4P***" and TIP5P*
models do not have vdW parameters on the polar hydrogen. A small, but non-zero

repulsion parameter was placed on hydrogen Ay = 1.0 for purposes of simulational

stability.

A= Um)"” |oo Aeh d (RMSD) H,., (RMSD)
0.01 1.770 1.227 0.0218 0.2782

0.1 1.767 1.229 0.0218 0.2855

0.5 1.761 1.241 0.0215 0.3029

1.0 1.756 1.255 0.0224 0.3158

5.0 1.724 1.320 0.0292 0.3531

10.0 1.693 1.360 0.0345 0.3617

20.0 1.628 1.397 0.0399 0.3497

Table 7.9 Optimization results for water without polarizability are given for different

repulsion parameters on hydrogen.

vdW Optimization of Ammonia

A model for ammonia was optimized with and without polarizability to heats of

vaporization and density through a procedure similar to that employed for water

described earlier. The optimized parameters for ammonia are given in Table 7.10. In this




case, the charge scale 4., is 1.214 without polarizability and 1.104 with polarizability.
This can be compared with the scale factors for water, 1.255 without polarizability and

1.130 with polarizability.

Non-Polarizable | Polarizable
oy (A) 1.858 1.8785
en (kcal/mol A®) 0.225 0.211
Ay (107 keal/molA'?) | 1661.1 1773.7
App (107 keal/molA'?) 25.0 25.0
Cyy (kcal/molA®) 1224.0 1224.0
Cyn (kcal/molA®) 0.0 0.0
e 1.214 1.104
g -1.3191 -1.1991
qu 0.4397 0.3997

Table 7.10 Optimized parameters for ammonia with and without polarizability present.

As in the case for water, the repulsion parameter for polar hydrogen Ay was
varied, while the charge scale 4., and the nitrogen repulsion parameter Ay (o) were
optimized for the non-polarizable ammonia model. The hydrogen repulsion parameter
Ap was varied from 0.1 to 50, and the results are given in Table 7.11. In contrast to water
model, the RMSD errors in both heat of vaporization and density decreased when
repulsion is placed on the polar hydrogen of the non-polarizable ammonia model. A
value of A5 = 5.0 was selected as a value to study ammonia. The heats of vaporization
and density are given in Tables 7.12 and 7.13, respectively. It is interesting to note that
RMSD errors for heat of vaporization and density are higher in the polarizable model

than in the non-polarizable model with the repulsion parameter 45 = 5.0.
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An=Uun)” | ov(A) Aeh d (RMSD) H,,, (RMSD)
(g/ml) (kcal/mol)
0.1 1915 1.205 0.01344 0.0934
1.0 1.901 1.203 0.01124 0.0686
5.0 1.858 1.214 0.00798 0.0401
10 1.809 1.222 0.00810 0.0300
20 1.711 1.226 0.00743 0.0164
50 1.435 1.202 0.00737 0.0087

Table 7.11 Effect of placing a repulsion parameter 4 on the polar hydrogen of
ammonia. Average RMSD errors in heats of vaporization and density for simulations
without polarizability.

T | Hyap (no polarizability) | H,,, (polarizability) H, ., (experiment)

(K°)

233 5.713 5.803 5.648

243 5.537 5.611 5.531

253 5.431 5.406 5.408

263 5.240 5.221 5.277

273 5.096 5.036 5.140

RMSD 0.040 0.094

Table 7.12 Heats of vaporization (kcal/mol) for optimized parameters for ammonia with
and without polarizability.

T (K°) d (no polarizability) | d (polarizability) | d (experiment)
233 0.6997 0.7043 0.6896

243 0.6810 0.6847 0.6775

253 0.6676 0.6625 0.6649

263 0.6446 0.6414 0.6519

273 0.6266 0.6193 0.6385

RMSD 0.00799 0.0123

Table 7.13 Density (g/ml) for optimized parameters for ammonia models with and
without polarizability.
Ab-initio Dimer Test

The polarizable and non-polarizable water models obtained by optimizing the
charge scale 4., and oxygen repulsion parameter 4o (o) to heats of vaporization and
density were tested on ab-initio dimer energies. The dimer energies were calculated at

the BSSE corrected MP2/cc-pVTZ level along the three trajectories illustrated in Figure
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7.1. In Figure 7.2, the dimer energy calculated by ab-initio, the polarizable model, and
the non-polarizable model are plotted as the O..H distance is varied for dimer 1 in Figure
7.1A. Similarly the dimer energies along the trajectories for dimer 2 in Figure 7.1B and

dimer 3 in Figure 7.1C are given in Figure 7.3 and Figure 7.4, respectively.

Energy for Dimer 1

—e— Ab-initio
4
E —a— Non-polar

—»— Polar

Figure 7.2 Polarization Energy (kcal/mol) for Dimer 1 in Figure 1A. » (A) is the O..H
distance.

Energy for Dimer 2

—e— Ab-initio
E 4 —a— No-polar

—=— Polar

Figure 7.3 Polarization Energy (kcal/mol) for Dimer 2 in Figure 1B. ris the O..0
distance.
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Energy for Dimer 3

—a— Ab-initio
—a— No-Polar

—=— Polar

S a A b N B O kB N oW A
[ N

Figure 7.4 Polarization Energy (kcal/mol) for Dimer 3 in Figure 1C. ris the O..O0
distance.

The minimum dimer energies and distances at the minimum energy along the
trajectory are given in Table 7.14 and Table 7.15, respectively. Both the polarizable and
non-polarizable water models have dimer energies which are lower than the ab-initio
dimer energy for all three trajectories. For dimer 1, the minimum along the trajectory for
the ab-initio dimer energy is £ = -4.61 kcal/mol which occurs at the O..H distance » =
1.94 A. This can be compared to the dimer energy along the trajectory for the non-
polarizable water model £ = -6.63 kcal/mol at » = 1.85 and for the polarizable water
model £ = -5.34 kcal/mol at » = 1.92. The non-polarizable water model agrees with the
dimer energy for TIP3P* of -6.50 kcal/mol. The larger dimer energy for the non-
polarizable model as compared to the polarizable model can be attributed to a larger
charge scale and a smaller repulsion parameter. Similar results occur for the other two
water dimers. The errors in the dimer energies for the polarizable model range from 0.73
kcal/mol to 1.73 kcal/mol, while in the non-polarizable model the errors in dimer energy

range from 2.02 to 2.84 kcal/mol.
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Dimer 1 Dimer 2 Dimer 3
Ab-initio -4.61 -2.94 -2.15
Polarizable Model -5.34 -4.29 -3.88
Non-Polarizable Model -6.63 -5.54 -4.99

Table 7.14 Minimum energies (kcal/mol) along trajectories in Figure 7.1 for water

parameters (Table 7.6) optimized to ab-initio data.

Dimer 1 Dimer 2 Dimer 3

r=0.H r=0..0 r=0..0
Ab-initio 2.01 3.11 3.27
Polarizable Model 1.92 2.88 3.03
Non-Polarizable Model 1.85 3.00 291

Table 7.15 Distances of minimum dimer energy » (A) along trajectories in Figure 7.1 for
water parameters (Table 7.6) optimized to ab-initio data.

Optimization to Dimer Energies
The vdW repulsion parameter for oxygen Ao (60) was optimized to the ab-initio
energies for all three dimer trajectories in Figure 7.1, and the charge scale factor 4., was

set to 1.0. The optimized parameters for Ao (o) are given in Table 7.16.

Polarizable Non-Polarizable

oo (A) 1.800 1.742

eo (kcal/mol) 0.143 0.175

Aoo (107 keal/molA'?) 679.2 557.8

Anp (107 keal/molA'?) 1.0 1.0

Coo (kcal/molA®) 624.3 624.3

Cyn (kcal/molA®) 0.0 0.0

e 1.0 1.0

qgo -0.6936 -0.6936

qu 0.3468 0.3468

Table 7.16 Ab-initio energy optimized parameters for water with and without
polarizability present.

The ab-initio, polarizable model, and non-polarizable model dimer energies for dimer 1,

dimer 2, and dimer 3 are plotted in Figures 7.5, 7.6, and 7.6, respectively. The minimum
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dimer energies and distances at the minimum energy along the trajectory are given in

Table 7.17 and Table 7.18, respectively.

Energy for Dimer 1

—e— Ab-initio
—a— Non-polar
—»— Polar

h A b N B o RPN w s oo
[ N

Figure 7.5 Dimer energies along dimer 1 in Figure 7.1A for the models optimized to ab-
initio dimer energy.

Energy for Dimer 2

—e— Ab-initio
—4— No-polar
—=— Polar

A b N K o B M w &~ O

Figure 7.6 Dimer energies along dimer 2 in Figure 7.1B for the models optimized to ab-
initio dimer energy.
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Energy for Dimer 3

E 47 —e— Ab-initio
3 4 —— No-Polar
—=— Polar

Figure 7.7 Dimer energies along dimer 3 in Figure 7.1C for the models optimized to ab-
initio dimer energy.

Dimer 1 Dimer 2 Dimer 3
Ab-initio -4.61 -2.94 -2.15
Polarizable Model -4.26 -3.47 -3.15
Non-Polarizable Model -3.88 -3.37 -3.06

Table 7.17 Minimum energies (kcal/mol) along trajectories in Figure 7.1 for water

parameters (Table 7.6) optimized to heats of vaporization and density.

Dimer 1 Dimer 2 Dimer 3

r=0.H r=0..0 r=0..0
Ab-initio 2.01 3.11 3.27
Polarizable Model 1.94 3.00 3.02
Non-Polarizable Model 1.97 2.98 3.00

Table 7.18 Distances of minimum dimer energy » (A) along trajectories in Figure 7.1 for
water parameters (Table 7.6) optimized to heats of vaporization and density.

At long range, the dimer energy is largely determined by the interaction between
permanent molecular dipoles. Since the electrostatic potential (ESP) optimized point
charges reproduce permanent molecular dipole moments, the ab-initio optimized
parameters reproduces the long range dimer energy for all three dimers in Figures 7.5 —
7.7 because the charge scale 4., was set to 1.0. Notice in dimer 1 (Table 7.17), the ab-

initio dimer energy (£ = -4.61 kcal/mol) is lower than the non-polarizable model dimer
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energy (£ = -3.88 kcal/mol), while the ab-initio energy in dimer 2 (£ = -2.94 kcal/mol)
and dimer 3 (£ =-2.15 kcal/mol), is greater than the non-polarizable model energy in
dimer 2 (£ = -3.37 kcal/mol) and dimer 3 (£ = -3.06 kcal/mol). A similar result holds for
the polarizable model. At short range, the repulsion parameter for oxygen Ao (60) was
optimized so that the difference between the model and ab-initio dimer energy is a
minimum for all three dimers.

The ab-initio optimized vdW parameters were tested in simulations by calculating
heats of vaporization and density. In Table 7.17, the heats of vaporization are given for
the models optimized to ab-initio dimer energies. Notice the non-polarizable vdW
underestimate the heat of vaporization by 50% with an RMSD of 4.95 kcal/mol. The
polarizable vdW parameters perform significantly better with an RMSD of 2.58 kcal/mol.
However, both sets of parameters optimized to ab-initio data perform poorly when
compared to the water models optimized to the liquid data: heats of vaporization and
density. Recall the RMSD for heat of vaporization for the water models optimized to the
liquid data is 0.175 kcal/mol and 0.185 kcal/mol for the non-polarizable and polarizable

models, respectively.

T (K°) H,,, (no polarizability) | H,,, (polarizability) H,,, (experiment)
273 5.83 8.25 10.76

298 5.58 7.95 10.51

323 5.31 7.66 10.25

348 4.99 7.36 9.991

RMSD 4.95 2.58

Table 7.19 Heats of vaporization (kcal/mol) for optimized water models with and
without polarizability.
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In Table 7.18, the densities are given for the water models optimized to ab-initio
data. The RMSD in density for the ab-initio optimized parameters are 0.251 and 0.0515
g/ml for the non-polarizable and polarizable water models, respectively. This can be
compared to the RMSD in density for the water models optimized to liquid data, 0.0223

and 0.0229 g/ml for the non-polarizable and polarizable water models, respectively.

T (K°) d (no polarizability) | d (polarizability) | d (experiment)
248 0.8943 1.0236 0.9896

273 0.8497 0.9928 0.9998

298 0.7989 0.9608 0.9970

323 0.7391 0.9275 0.9880

348 0.6616 0.8905 0.9748
RMSD 0.215 0.0515

Table 7.20 Density (g/ml) for optimized water models with and without polarizability.

Water Dimer Potential Energy Surface

A set of 10 water dimers”’ has been proposed as a test for water models*. The
dimers are illustrated in Figure 7.8. Cisneros™ et. al. has calculated the pure electrostatic
component of the ab-initio dimer energies at the BSSE corrected B3LYP/aug-cc-pVTZ
and B3LYP/6-31G* levels through the Constrained Orbital Variation (CSOV) method”".
The electrostatic energies due to a set of point charges optimized to the ESP calculated at

the B3LYP/6-31G* level were tested on the geometries provided by Cisneros.
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Figure 7.8 10 Water Dimers employed in water model tests.

Dimer Number Point Charge CSOV Electostatic Total Dimer Energy*
Energy®
1 -5.31 -8.32 -5.62
2 -4.90 -7.02 -4.94
3 -5.08 -7.00 -4.91
4 -4.66 -6.23 -4.20
5 -4.33 -5.59 -3.80
6 -4.51 -5.43 -3.73
7 -3.57 -4.35 -3.07
8 -0.99 -1.31 -1.20
9 -4.07 -4.79 -3.07
10 -3.22 -3.09 -2.33

Table 7.21 Dimer energies for 10 water dimers in Figure 7.8. The CSOV electrostatic
energy and total dimer energy is calculated at the BSSE corrected B3LYP/6-31G* level.
The point charges were fit to the ESP calculated at the B3LYP/6-31G* level.

“Values taken from reference™.
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For each of the 10 dimers, the total ab-initio dimer energies, the CSOV electrostatic
dimer energies, and the point charge electrostatic dimer energies are given in Table 7.21.
In dimer 1, the CSOV electrostatic energy is -8.32 kcal/mol, while the point charge
electrostatic energy is -5.31 kcal/mol. The large discrepancy between the correct
electrostatic energy and the electrostatic energy the point charges predict is observed for
most of the other dimer geometries. However, it is interesting to note that the point
charge electrostatic energy is very close to the total dimer energy. For example, in dimer
1, the point charge energy is -5.31 kcal/mol and the total dimer energy is -5.62 kcal/mol.
A similar trends holds for the other 9 dimers, i.e. the point charge electrostatic energy is
within 1 kcal/mol of the total dimer energy. This remarkable coincidence has also been
pointed out by Dunitz and Gavezzotti’> when calculating dimer energies between

hydrogen bonded systems.

7.4 Conclusions

A polarizable and non-polarizable model for water and ammonia has been
proposed by fitting a single vdW repulsive parameter (4o for water and 4y for ammonia)
and a charge scale factor 4., to experimental heats of vaporization and density. The
dispersion parameters were fit separately to experimental molecular dispersion
coefficients. The performance of the water models is similar to the performance of the
TIP3P water model. The non-polarizable charge scale factor 4. (relative to charges
optimized to the ESP calculated at the B3LYP/cc-pVTZ level) was found to be 1.255 for
water and 1.214 for ammonia. The polarizable charge scale factor 4., was found to be

1.130 for water and 1.104 for ammonia. From chapter 6, the charge scale factor needed
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to scale single alanine charges to best reproduce the electrostatic potential around a 10
alanine peptide in the a helical conformation was 1.25 for non-polarizable charges and
1.15 for polarizable charges. More research is required, but this suggests that atomic
point charges can be found by fitting to the ESP calculated at the B3LYP/cc-pVTZ level
and then scaling up by 20-25% for a non-polarizable force field and scaling up by 10-
15% for a polarizable force field.

The polarizable and non-polarizable water models optimized to heats of
vaporization and density were tested on dimer energies calculated at the BSSE corrected
MP2/cc-pVTZ level along three water dimer trajectories. The errors in the dimer
energies for the polarizable model range from 0.73 kcal/mol to 1.73 kcal/mol, while in
the non-polarizable model the errors in dimer energy range from 2.02 to 2.84 kcal/mol.

The reverse procedure was also tested. The vdW repulsion parameter Ao was fit
to the ab-initio dimer data and the charge scale factor 4., was set to 1.0 to reproduce ab-
initio dimer energies at long range. The resulting ab-initio optimized parameters were
tested by calculating heats of vaporization and density. Though polarization made a
significant improvement, large errors were found for these quantities. The non-
polarizable ab-initio water model underestimated the heat of vaporization by 50%. The
RMSD for heat of vaporization was 4.95 kcal/mol for the non-polarizable model and 2.58
for the polarizable model. This can be compared to the model optimized to heat of
vaporization and density. The RMSD for this model was 0.175 kcal/mol and 0.185
kcal/mol for the non-polarizable and polarizable models, respectively. Similar trends

were also found for the density.
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The point charge model was tested on a series of 10 water dimers. Significant
errors occurred in the point charge electrostatic dimer energies with respect to the CSOV
electrostatic component of the ab-initio dimer energies. For example in dimer 1 of Figure
7.8, the point charge model predicted a dimer energy of -5.31 kcal/mol, while the CSOV
electrostatic component of the dimer energy was found to be -8.32 kcal/mol. Similar
results were found for the other dimers. This is interesting because it explains why the
polarizable point charges need to be scaled by 10-15%. If the point charge model
underestimates the magnitude of the electrostatic energy at short range, then it can be
expected that the electric fields due to the point charges are also underestimated.
Therefore, in order to accurately account for the polarization effect, the point charges
need to be scaled up. Another interesting property of the point charge model was found
for the water dimers. The electrostatic dimer energy of the point charges is very similar
to the total dimer energy. Other reports have indicated that this strange coincidence holds

for other hydrogen bonded systems.
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8 Conclusions

8.1 Concluding Remarks
A polarization model based on induced Gaussian dipoles has been developed for

the AMBER'®/GLYCAM?®® force field. The induced Gaussian dipole model is based on
induced charge density and overcomes the polarization catastrophe problem of the
original induced point dipole model if the Gaussian exponent is sufficiently diffuse. For
an induced Gaussian dipole with polarizability a and exponent S, it was shown that the
maximum size of the Gaussian exponent is given by:

pe——rs

4 )3
[#5e)

Gaussian multipoles charge distributions were presented as a continuous
generalization of point multipoles. Interaction energies, forces, electrostatic potential,
electric field, and electric field gradients were derived between interacting Gaussian
multipole charge densities. Gaussian multipole charge densities (Hermite Gaussian
functions) are currently being employed to create more sophisticated force fields”"'
based on electron charge density. The results obtained for Gaussian multipoles were used
in the development of the induced Gaussian dipole polarization model.

The implementation of the induced Gaussian dipole model into the molecular
dynamics (MD) simulation program AMBER'? was discussed. Polarization energy,
work, and force were derived for a system of induced Gaussian dipoles interacting with a
set of permanent charges. It was shown that induced Gaussian dipoles can be

implemented as a short range correction to the induced point dipole model with a non-

bond cutoff of 5A. MD simulations are often performed under periodic boundary
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conditions, and the Ewald summation method was derived in appendix D for a periodic
system of point charges and point dipoles. During an MD simulation, the induced dipoles
can be found either by solving for the induced dipoles iteratively until self consistency is
achieved or by propagating the induced dipoles through the Car-Parinello'* '* (CP)
method. In the CP method, the induced dipoles and their velocities are treated as
dynamical variables and propagated in time through equations of motion. The CP
method has been shown to be a good approximation with induced Gaussian dipoles for
the case of water. Average polarization energies from a box of 341 waters calculated by
the CP method (£,,; = -1313.12 kcal/mol) do not significantly differ from results obtained
by solving for the induced dipoles exactly (£,,; = -1314.72 kcal/mol).

In order to obtain parameters for the induced Gaussian dipole model, two methods
of generating atomic polarizabilities were presented. In the first method originally
employed by Applequist'® and Thole'®, a set of atom type polarizabilities was fit to a
large collection of molecular polarizability tensors. Atom type atomic polarizabilities
were found for the Gaussian model, the Thole model, and the Applequist point dipole
model. It was shown that the Gaussian model performed slightly better than Thole in
terms of fitting to molecular polarizability tensors. However, both the Gaussian model
and the Thole model performed significantly better than the point dipole model. A
second method of generating atomic polarizabilities was presented. This method is based
on probing a molecule with point charges and calculating the electrostatic potential
around the molecule. Atomic polarizabilities were fit to the response potential, which is
the potential of the molecule in the presence of the charge probes minus the potential of

the molecule in vacuum. Probed polarizabilities were shown to be significantly more
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accurate than the atom type polarizabilities. For a set of organic molecules, the average
RMSD error in molecular polarizability was found to be 1.37% for probed polarizabilities
and 6.42% for atom type polarizabilities. The average RMSD in response potential was
found to be 2.01 (10 e/A) for probed polarizabilities and 3.04 for atom type
polarizabilities. In addition, molecules with a high degree of anisotropy in the molecular
polarizability tensor were investigated. Limitations with assuming isotropic atomic
polarizabilities were found for the special case of F,. However, for the sp” and sp’
hybridized organic molecules investigated, the isotropic induced Gaussian dipole model
performed well. Probed polarizabilities were also found to be conformationally invariant,
i.e. probed polarizabilities generated in one geometry reproduced the molecular
polarizability tensor and response potential in other geometries found by rotating torsion
angles.

Probed polarizabilities were generated for the amino acids. When the
polarizabilities on the backbone of all the amino acids were constrained to have the same
value, the average RMSD in response potential increased from 1.66 (10~ ¢/A) to 1.69 (10°
3¢/A), and the RMSD error in molecular polarizability tensor increased from 0.92% to
1.01%. These results suggest the probe method can be used to find accurate atomic
polarizabilities which are transferable between molecules similar to one another.

Atomic point charges were optimized for the amino acids with and without
polarizability present. By fitting to multiple conformations of the amino acids, including
polarization was shown to significantly improve the electrostatic properties of the amino
acids. The RMSD in total electrostatic potential averaged over the amino acids was

found to be 6.70 (107 e/A) without polarizability present and 5.81 (107 ¢/A) with
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polarizability present. When the amino acid backbone charges were constrained to have
the same value for all amino acids, the averaged RMSD in total electrostatic potential
was 8.72 (10~ ¢/A) without polarizability present and 6.03 (10~ ¢/A) with polarizability
present. The effect of including polarizability was also tested on molecular dipole
moments. The RMSD of molecular dipole moment was averaged over conformations
and found to be 0.421 D for charges without polarizability and 0.186 D for charges with
polarizability. When the backbone charges were averaged over amino acids, the RMSD
of molecular dipole moment was found to be 0.987 D for charges without polarizability
and 0.258 D for charges with polarizability. The charges optimized to a single alanine
were tested on a 10 alanine peptide in the extended and « helical conformation. In order
to best reproduce the electrostatic potential of the 10 alanine in the o helical
conformation, the single alanine charges had to be scaled up by 25% without
polarizability and 15% with polarizability.

A polarizable and non-polarizable model has been found for water and ammonia
by fitting the repulsive vdW parameter and a charge scale factor to heats of vaporization
and density. The non-polarizable charge scale factor (relative to charges optimized to
B3LYP/cc-pVTZ) was found to be 1.255 for water and 1.214 for ammonia. The
polarizable charge scale factor was found to be 1.130 for water and 1.104 for ammonia.
These results and the results for 10 alanine in the o helical conformation suggest that
charges fit to the electrostatic potential calculated at the B3LYP/cc-pVTZ level should be
scaled by 20-25% if polarizability is not present and 10-15% when polarizability is

present.
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The water models optimized to heats of vaporization and density were tested on
dimer energies calculated at the BSSE corrected MP2/cc-pVTZ level. The dimer
energies (along the trajectory in Figure 7.1A) were found to be -4.61 kcal/mol for ab-
initio, -5.34 kcal/mol for the polarizable model, and -6.63 kcal/mol for the non-
polarizable model. The dimer energy of the non-polarizable model agrees with the dimer
energy of the non-polarizable TIP3P'” water model of -6.50 kcal/mol. The lower dimer
energy of both the non-polarizable and polarizable water models is due to the charges
being scaled up.

A second question was asked during the fitting of vdW parameters: How well
would water parameters optimized to ab-initio data reproduce the liquid phase heats of
vaporization and density? The charge scale factor was set to 1.0 in order to reproduce
dimer energies at long range, and the vdW repulsion parameter was fit to ab-initio water
dimer data along three trajectories with and without polarizability present. The non-
polarizable model optimized to ab-initio data underestimated the heat of vaporization by
50%, with an RMSD of 4.95 kcal/mol. The polarizable model performed better with an
RMSD in the heat of vaporization of 2.58 kcal/mol. However, both models performed
poorly when compared to the models optimized to heat of vaporization and density. The
RMSD in the heat of vaporization for the models optimized to liquid data was 0.175
kcal/mol and 0.185 kcal/mol for the non-polarizable and polarizable models, respectively.
Similar trends were also found for density. The discrepancies can be attributed to the
scale factor. In order to accurately reproduce liquid properties, the point charges on the
water model should be enhanced relative to the gas phase by 1.255 without polarizability

and 1.130 with polarizability.
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The limitations of the point charge model were tested by comparing to the ab-

1920 calculated

initio electrostatic energy by CSOV'® decomposition for 10 water dimers
at the B3LYP/6-31G* level’. For the water dimer in Figure 7.8 (1), the ab-initio
electrostatic energy was found to be -8.32 kcal/mol, while the point charge interaction
energy was found to be -5.31 kcal/mol. However, the point charge energy is coincidently
similar to the total dimer energy of -5.62 kcal/mol. A similar result holds for the other 9
water dimers. Since the point charges underestimate the electrostatic interaction energy
at short range, it can also be expected that the point charges also underestimate the
electric field at short range. This explains why a charge scaling factor of 10-15% was
necessary in order to reproduce liquid properties for the water and ammonia point charge
models with polarization included. It would be expected that the charge scaling factor

should be smaller for more sophisticated electrostatic models (e.g. point multipoles and

Gaussian multipoles) which more accurately accounts for interactions at short range.
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Appendix A. Cartesian Point Multipoles

A.1 Introduction

In this appendix, electrostatic interactions are expressed in terms of Cartesian
point multipoles'~. Cartesian multipoles are defined as moments over charge density.
Interaction energies, forces, potential, fields, and field gradients are derived between two
arbitrary charge distributions and expressed in terms of Cartesian point multipoles by
expanding 1/R in a Taylor series about the centers of both charge distributions. The
notation and formalism used here is similar to that given by Applequist’>. Many of the
results can also be found in®”.

The main motivation for reviewing Cartesian point multipoles is to introduce
Gaussian multipoles in chapter two. A Gaussian multipole charge distribution can be
viewed as a smooth continuous generalization of a point multipole charge distribution
which is non-zero only at a single point. In chapter two, it is shown that point multipoles
are the large exponent of Gaussian multipoles. The results for Gaussian multipoles
derived in chapter two parallels the treatment given here for point multipoles.

In the following section A.2, the notation, conventions, and definitions for
Cartesian vectors and tensors are briefly discussed. In section A.3, point multipoles are
defined for charge distributions, and interaction energies between two charge
distributions are derived in terms of Cartesian point multipoles. The next section A.4
contains a brief discussion of local and global coordinate systems. A multipole moment
for a particle is defined in terms of a local coordinate system for that particle. The local
coordinate system is commonly defined in terms of the particle and its attached

neighbors. Using the results for transforming between local and global coordinate
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system, the force and torque terms are derived in terms of point multipoles in section A.5.
In section A.6, matrix elements of Cartesian gradient tensors of 1/R are evaluated
explicitly up to fourth order. Electrostatic potential, fields, and field gradients are derived
in section A.7. It is shown that multipole interaction energies can be expressed in terms
of electrostatic potential and fields. Finally, a different method of treating multipoles
based on spherical harmonics rather than Cartesian tensors is briefly discussed in section

A8.

A.2 Cartesian Vectors and Tensors

Cartesian point multipoles are formulated in the language of Cartesian tensors'".
This section will briefly discuss some conventions and properties of Cartesian tensors.
Let the Cartesian coordinate basis vectors %, 7,2 be denoted by %,, £,,%;. A vector 4

can be expressed in terms of these basis functions:

A= A% + A%, + A%, A2.1

3
This can be more compactly written as 4 = Z 4,x,=4,x,, where the common practice
p=1

of summing over repeated indices is used.

A vector A can also be defined as a Cartesian tensor of rank 1 A4 .

AV =4 3 A22

pp
Similarly, a Cartesian tensor of rank 2 4 (sometimes referred to as a dyadic'' ') has
two components and is defined as:

AP =4 % % A23

T paTpTq

A Cartesian tensor of rank n 4 has n components and is defined as:
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A™ =4 XX % A2.4

B V2T a0 [ e M
An inner or dot product between Cartesian basis vectors is defined as:
X, -X,=0 A25

p q Pq

where 0, 1s the kronecker-delta symbol defined as ,, = 1 for p = g and J,, = 0 for p # q.

The dot product between two vectors A and B or tensors of rank 1 is given by:

Similarly, a tensor dot product or contraction between two tensors of rank # is defined as:

) pm _ A A A . A A A
4 B = Ap1p2-~pn X Xpy - Xp, qumqn Xy Xg, Xy,
= AP1P2-~P,1 B‘h‘lz»--qn 5171‘],1 5172‘1”71 T A2.6
= APIPZ“'pn BPn~~P2P1
A Cartesian tensor is symmetric if for any pair of components
A. . =4 .. A2.7

Ry ..
The tensors that are used in this work are all symmetric, so that the contraction in A.2.6

becomes

A" . B™ =4 B A28

P1P2-Pn P1P2++Pn

The gradient operator is a vector derivative operator defined by:

V=3, o A29
ox,
Similarly a gradient tensor of rank # is defined as:
V"W =vVV.V
s » . O 0 0 A.2.10
=X, X

X .
P17 P2 DPn
prl axp2 prn
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In the above definitions for tensors and vectors, the components (p = 1,2,3) were
denoted as subscripts. Superscripts will be used to denote particle number for

vectors/tensors (when possible). For example, the position of particle i is given by:

R'=R/% +Ri%, +Rix, =R’ % A2.11

pp
and the gradient for particle j is given by:

o . o0 . 0 0

Vi=g —+% —+3%
R/ OR]

A2.12

where the pth component of V/ is given by V; = i . Finally, the n"™ rank tensor
OR;

generalizations of R’ and V/ are:

R =R R
s A2.13
= R;I R.;z R;n xl’l xﬁz "xpn
and
V(”)’j EV'/Vj..V'/
=VIVI V)& % &, A2.14

o 0 0 . .
= 73R X, X, .Xx
OR, OR;

A.3 Cartesian Point Multipoles
Consider a two charge distribution; the first charge distribution p' (7; R') is

centered around particle 1 at R', and the second distribution p(#; R*) is centered

around particle 2 at R?. The electrostatic interaction energy between the two charge

distributions is given by'*:
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o' (7R p* (7 R)

7 =7

A3l

U:”d3rd3r

where both integrals are over all space. A simple change of variables can be made by
translating the coordinate systems to the centers of R' and R*: 7 =%+ R' and

#'=¥+R?, so that A.3.1 becomes:

L= pl.ply 2,21 p2.p2
U:J-J.d3xd3x|p (X R aR ),0 (X_’R ,R ) A32
X+ l—fc'—Rz‘

=~

The denominator can be expanded in a Taylor series for ¥ about R' **:

=0 A33

={l+x-V" +%)?56-VXV"+..}

o L
:z_x(n) RvAQE: — —
o 1! ¥+R' —X-R

x=x'=0

) =

where V™ is a gradient with respect to X, x Xx..% is an n"™ rank symmetric Cartesian

tensor, V™ =V*V*..V* is an n™ rank symmetric Cartesian tensor gradient,

o 0 0
X, X

= (n) (n),x

andx"" -V X .

PP Pn ax 8)( ax
P P2

. If V' is the gradients with respect to R',

Pn

then

and A.3.3 becomes:
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L zl)z(") (G — A34
e =1 R -R*-%¥
Similarly, A.3.4 can then be expanded in a Taylor series about x'
1 vy Llzo gmgmym: L x5
‘E+R1 —XV—RZ‘ nzOszn! m' ‘Rl —RZ‘
A.3.5 can be inserted into A.3.2:
S 11 ~ = =y = 1
U= - d3xd3x| 1 x_i_Rl;Rl 2 .;C'+R2;R2 ‘;C’(n) .v(n),li_v(m)‘v(m),Z _ _
nz_(;,;)n!m!-” P )P ) ‘Rl_Rz

Now define multipole moment tensors @' and ®* for charge distributions 1 and 2,

respectively by:

@(n),l El'jd3x X’(l’l)pl(i:_i_R'l’R'l)
n.

A.3.6

®(m),2 E%J'dS.xv )—C*v(m) p2(5c>|+}_é2;1_é2)

The first few moments are the total charge (monopole) ¢', dipole ji', and quadrapole
e

q'=0"! :jd3x p (X +R";R")

=00 =jd3x ip'(i+R%;RY A3.7

e =0?! =%Id3x 3p'(i+R;RY

The interaction energy now becomes:

U= i i e .ymigm2 .ym2 L A38

12
1n=0 m=0 R
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where R = ‘ﬁl ~R? ‘ Therefore, the interaction energy U'? between an n™ rank

Cartesian point multipole of particle 1 and an m™ rank Cartesian point multipole of

particle 2 is given by:

U, =0 .vmigm?.yim? % A39
The explicit interaction energies up to dipole-dipole are:
12 1.2 1
monopole-monopole Up=949 I'E A.3.10a
: 12 1 -2 2 1
monopole-dipole Ujy=q u -V I'E A.3.10b
dipole-dipole ui=p"-v'p v’ % A.3.10c

A.4 Local and Global Coordinate Systems

The interaction energy between an n™ and m™ point multipole is given by A.3.9

U — @(n),l . v(n),l@(m),Z . v(m),Z -
nm ‘Rl _ RZ‘

(m),1 (m),2

In general, @™ is not a constant with respect to R', and © is not constant with

respect to R*. The reason is that orientation is not defined for a single point particle.
However, in a molecule, each atom is bonded to other atoms. The neighboring atoms can

be used to define a local (body) reference frame X/, X, x; with respect to the global
reference frame %,,%,,%, '+ '.

For example, suppose atom a and atom b are neighbors of atom 1. A local x|

axis can be defined for atom 1, in the direction of R*—R' ,1.e.
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A= A42

A local x; axis for atom 1 can be defined to be orthogonal to x| using Gram-Schmidt

orthogonalization, with the component orthogonal to X, in the direction of R -R":

Y=R°-R'—(R° -R")-%
Y _ Y AA43
S

The final local axis x; for atom 1 can be defined to be the cross product of %, and X}, in
order for the local coordinate system to be right-handed:

X =X, ® X, A44
To summarize, a local coordinate system X, X, ,x; for atom 1 has been defined in terms

of the position of atom 1 R' and the positions of its neighbors R and R°.

An orthogonal rotation matrix D, is used to rotate the global coordinate system
X,,X,,X, into the local coordinate system X, X}, X;. The rotation matrix D,_, is defined
as:

3
X =>D,% =D,% A4S

where X, =(1,0,0), x, =(0,1,0), x, =(0,0,1). In matrix form, D is composed of the

column vectors fc;,

Dll D12 D13 ),ell ),(\fé 5&;
D, D, D,l|l=l{ 1 | A4.6
D3l D32 D33
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The rotation matrix D, is a function of the local unit vectors X/, X}, X;, which are

functions of R',R,R°, i.e. D, =D (R",R“,R°).

qar

Multipole moments ®"' are functions of orientation of atom 1 and its neighbors,

e. R',R*,R°. ®™' can be expressed in the local (body) reference frame or in the

global frame. In the local frame, the components of the tensor ° @;fq) ! are constants,

while the local frame unit vectors X, X5, X; vary with position. In the global frame, the

components of the tensor G @;’2"1

T

vary with position, while the unit vectors x,, X,,x, are

constants. @' is expressed in either reference frame as:

@(n)l G@(n)lf\ I )’(\f

pq.r-—p q
B g A4
n ’\l ’\l ‘"
e, x,x X,

If A.4.5 is inserted into A.4.7, the components of the global frame tensor “ @'

pq...r

can be expressed in terms of the local frame tensor * @'

pgr
5@ =D D,.D," 0% A4S
Inserting A.4.8 into A.4.7, ®' becomes:
" =p, .D,.D, 0% % % %, A49

Since “@®'"' and %, %,, %, are constants, and since “®';" is symmetric, the derivative

7

of @' with respect to any variable x in R', R, R* can be expressed in terms of

derivatives of D »
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p'q.r'

86@0«),1 :{ala)pp' qule B@)(”)l

D . 8qu. B®(n)1

pp p'q.r
O . A4.10
' B (n),1 A on A
D,.D, .—— . Q.. r}xpxq..xr

=n—aD””'D D 2O % i %
qq' "

ax P‘I”Pq

where x can be any position component that was used to form fc; ,i.e. R', R® , R¢ , and
use

D is an orthogonal matrix with the property; I = DD" = D" D where I is the
identity matrix and D" is the transpose of D. In tensor form, this condition is:

DD, =06, . Therefore, A.4.10 becomes:

aG@(n),l aDpp‘ B (i I
o =n . D,.D," 0O, XX, X,
oD
_ ps Bl & & &
_HF&SP'DW'"D ®pq S p q X,
) a‘DpsDD b D PRI A4.l11
=n ox sTwTaa g XpXg-Xy
6D
B prémlis ¢+ &
U B —. Da ®tq rXpXg Xy

: . 1 :
In the interaction energy, U2 =@ .v"'@™? . v — = 0" isnota

constant with respect to V'. However, ® is a constant with respect to V' (as long
atom 2 is not the neighbor of atom1 defining the local coordinate system of atom 1).

Therefore, the interaction energy becomes:

U2 =e"'e™?.y»iym? L A4.13

R12
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Now consider a function of R'? f(R'?). The gradient of f with respect to R' is the

negative of the gradient with respect to R*.

pl _ p2
Vlf(R”):iIEI—IEZ‘:—VZf(R”) A4.14
~R

d R 12 ‘ R
The interaction energy now can be written as:

U,l,i — (_1)”1 ®(n),1®(m),2 . V(”er)’l L A415

R12

A.5 Force and Torque for Point Multipoles

The force on particle 1 F' due to the n™ — m™ rank point multipole interaction

between particle 1 and 2 is defined as the negative gradient with respect to particle 1

F'=_v'U®2 A5.1

nm

However, since ®“"' is not a constant with respect to V',

1

ﬁvl — (_1)m+1 (V1®(n),1 )@(m),Z . V(n+m),l F +
AS5.2
1
m+1 ~ (n),l oy (m),2 (n+m+1),1
- @Mie™m? .y o
where
oD
Ve =nk, aT‘ijt Ok %, X, A53

v

The first term in A.5.2 is a derivative with respect to orientation and can be termed a
torque contribution. The second term is a derivative of energy with respect to translation

of the distance between the two multipoles and is the ordinary force term. Finally, it
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should be noted that the interaction U, contributes force terms to atom 1 and atom 2,

and also to the neighbors of atom1 and atom 2.

A.6 Gradient Tensors

. I .
Tensor gradients of the form V" 2 will now be evaluated for reference. From

o . 1 .
the definition in A.2.14, the n™ ranked tensor gradient of — can be expressed in

component form as:

1 . . . an
v Z =3 %

1
P P2 "xpn s A61
R OR,0R, .OR, R
The first four tensor gradients are evaluated as:
R
viT =-%, R—;’ A6.2
vor—z s [RR S—5 A.6.3
=Xp X q? pq? -
VOT-% 2 ((5. R +6, R +8.R)———R RR L A.6.4
=Xp XX, ( pgltr T Op L T 0, p)F_ ptq r? -0
VAOT=%% 345,06 4+ 6 +56.0 3
_xrxpqus{( pq - rs + pr—gs + rq sp)F

-0, RR, +6,RR +0 R R +0 RR,+5RR+5RR)1—5 A.6.5

pq - rs pr-q s rq= p-s ps—q 7 qgs— p-r rsTopq R7
105
+ RquRrRS F}
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A.7 Electric Potential and Field
Electrostatic potential can be defined as the variation in energy when an

infinitesimal point charge is added to the system”.

@=lim— ATl

From A.4.14, the interaction energy between a point monopole (n = 0) and an m™ order

point multipole is given by:

Ul = (1 glem? ymi L AT2

R12

Therefore, the electrostatic potential at the field point R' due to an m"™ order point

multipole located at R* is found from A.7.1 and A.7.2.

Ll SU
o, (R R?) = lim 220
'50
a0 o AT3

— (_l)m ®(m),2 X v(m),l L

R12

The electric field E is defined as the negative field gradient of potential.
E(R';R*)=-V'p(R";R?) A7.4
The gradient with respect to an m™ rank point multipole can be found from A.7.3 as

E,(R;R)=-V'p,(R;R)

L

=-V'(=)"em?.ym A5

R"”
1
_ m+1 (m),2 (m+1),1

This last step is valid, since the field point gradient V' has no effect on ® ", because

©® is a function of atom 2 and its neighbors. The n™ ranked field gradient of a point

multipole of rank m is defined as™:
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E(R'R*)=-V™p, (R';R?)
1 A.7.6

_ m+l N (m),2 (n+m),1
=DMy

Point multipole interaction energies can be written in terms of potential or field
gradients of potential. From A.7.2, the interaction energy between a point monopole (n =

0) and an m™ order point multipole is given by:

U(l)i — (_l)m ql®(m),2 5 v(m),l # A 7 7

=4'p, (R';R)
i.e. the interaction energy is the product of point charge and potential. The interaction

energy of a point dipole with an m™ order point multipole is given by A.4.14 (with n = 1):

1
U12 — _1 m —1 3 @(m),Z . V(m+1),1 -
e R" A78

Il
|
}
4
~~
=
=
(38
p—a

where A.7.5 was used. The interaction energy of point multipole of rank » with a point
multipole of rank m is given by A.4.14:

1
12 _ m (n),l o (m),2 (n+m),1
U = (D7 OTROH VIR o A79
— _@(n),l . Eiln) (Rl : RZ)

(n),1

i.e. U is an n™ rank tensor contraction between @' and the n™ rank field gradient of

the potential from ©"7.

A.8 Spherical Multipoles
The language of spherical harmonics can also be used to formulate multipole
interactions in terms of spherical multipoles’ '* ' '*. Spherical multipoles have an

advantage over Cartesian multipoles because there are fewer tensor components at the
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quadrapole level and beyond. A symmetric Cartesian multipole tensor of order / has
(I+1)(1+2)/2 independent components, while a spherical multipole tensor has 2/+1
independent components. At the monopole (/ = 0) and dipole (/ = 1) level, the number of
components between Cartesian and spherical multipoles are the same. However, at the
quadrapole level (/ = 2), there are 6 independent Cartesian tensor components, while only
5 independent components using spherical tensors. In practice, this does not present a
serious limitation to modeling or simulation applications, since most treatments use
multipole tensors up to the dipole or quadrapole level”. Throughout this work, only

Cartesian point multipoles and Cartesian Gaussian multipoles are considered.
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Appendix B. Perturbation Theory of a Molecule in an External Field

B.1 Introduction

Molecular polarization can be discussed quantum mechanically by applying an
external potential onto a molecule. The external potential is treated as a perturbation
while the initial non-interacting system is taken to be the molecule in vacuum. The
external potential perturbation is expanded in Cartesian point multipoles using the
formalism from appendix A. For further references on quantum and classical treatments
of polarization, see'”.

In the following section, time independent perturbation theory is used to calculate
energy corrections between the molecule and the external potential up to third order. The
first order correction is shown to be the interaction energy of the permanent molecular
multipoles with the external potential. The second order energy correction is the
interaction energy of the external field with the permanent multipoles polarized to first
order (linear polarization) by the external field. The third order energy correction is
shown to be the interaction energy of the external field with the permanent multipoles
polarized to second order (first hyperpolarization) by the external field. In addition to the
familiar dipole-dipole polarization, higher order multipole moment polarization (e.g.
dipole-quadrapole) will also be discussed.

In section B.3, a periodic time-dependent external potential is applied to the
molecule. Time-dependent perturbation theory is aplied to first order to calculate the
induced multipole moments as periodic functions of time. From the time-varying

multipole moments, frequency dependent molecular polarizabilitiy tensors are calculated.
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The frequency dependent polarizability tensors are needed in appendix C when
perturbation theory is applied to the interaction between two molecules. In particular,
long range intermolecular electrostatic, polarization, and dispersion energies are
calculated. An interesting relationship is derived between dispersion energy and

frequency dependent polarizability tensors calculated at imaginary frequencies.

B.2 Time Independent Field
Consider a molecule in its ground state | 0> , with non-interacting Hamiltonian
H°, and energy Ey, i.c.
H°|0)=E,|0) B.2.1
Similarly, let the excited states of H° be given by| a> with energies E,.
H'|a)=E,|a) B.2.2
Now suppose the molecule is subjected to an external potential V(r). The perturbed

interacting Hamiltonian is given by:

H' =Y e V() B.2.3

where the sum index a is over both electrons and nuclei. If the center of the molecule is
located at R, the external potential at each particle can be expanded in a Taylor series

around R .
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V)=V R+, ~B)-V T (R) % (7, ~ B -V 7 (R)
n.

= zl'(fa ~R)" -V (R)
n=0 N
v L R\ 17 (m)

=2 G =R V" (R)

n=0
where

V(n) = v(n),R V\

B.2.4

B.2.5

is the n"™ rank field gradient of potential. The perturbed Hamiltonian H' becomes

' =Zil,<fa —R)" e,V (R)

a n=0 n.

— ZM(H) _V(n)(R)

n=0

where
i =S, L iy
- a n! a

is the n™ rank Cartesian multipole moment operator.

From perturbation theory, the first order energy correction is given by:

E” =(0]#'[0)

M 1D

(i

0)- 7" (R)

ey -V (R)

I
(=]

where

@ =(0[m ™

0)

B.2.6

B.2.7

B.2.8

B.2.9

is the permanent n"™ rank multipole moment tensor of the molecule. The first order

energy correction is the electrostatic energy of the permanent molecular multipole
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moments interacting with the external potential, field, and field gradients. If g is the

total molecular charge, i, the vacuum molecular dipole, and ®” the vacuum molecular

quadrapole, the first order energy correction becomes:
EP =qV(R) - iy - E-OF -E® +..
where
E=EV =7 =-V*V(R)
is the external electric field and
EM =y — _ymRy(R)
are the electric field gradients for n >1.

The second order energy correction is given by:

(0]A"|r)(e|1"]0)

EP =%

a#0 E _E
© (n) o (m)
e
S
a#0 n=1 m=1 a0
where
E,=E,-E,

M = (0[3T®

a)

B.2.10

B.2.11

B.2.12

B.2.13

B.2.14

and. Notice the n = 0 and m = 0 terms were omitted in B.2.13 because the excited states

are assumed to be orthonormal to the ground state, i.e. <0|M © | a> = q<0| a> =

be rewritten as:
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w o Afm Ay (m) or (m) A (n)
E(z) __l ZZMOaMaO +M0a MaO _V(n)V(m)
’ 2 a#0 n=1 m=1 Ea()
B.2.15

1 o0 o0

- (n)(m) 17 (n)17 (m)

== d>a vy

n=1 m=1

where the n™ — m™ pole polarizability tensor o™ is defined by

)y om0y () oy ()
o M :ZMOaMaO + MM,
a#0 E

B.2.16

a0

(m)(m) -

Notice a™ is symmetric with respect to n and m, i.e. a"™ = a™®_ The first term in

B.2.15 is the familiar dipole-dipole polarizability contribution:
Eg =—%a<”“> EE + ... B.2.17

where the molecular dipole-dipole polarizability tensor is given by:

a0 =% (0] a)a|i|0) + (0l er){ex|10)

0 Eao Ea B.2.18
zzszﬂaxaww>
E
a#0 a0

If the external field is a constant, then the field gradient £® =-V?*p(R)=-V @ (R)

and its higher derivatives are zero. In this case, the dipole-dipole polarizability
contribution is the only term in the second order energy correction. If the external field
varies over the size of the molecule, the field gradient is not zero and the next term in the
second order energy series is the dipole-quadrapole polarization term given by:

_%(a(l)ﬂ) . EE(Z) —qg®® _E(Z)E): —aW? . EE(Z) B.2.19

where the dipole-quadrapole polarizability tensor is given by:

B.2.20

¢M=Z®W®@@W®+®@ﬂ®wW®
a#0 an EaO
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The total interaction energy up to second order is the sum of

E=E{" +E}?
E B.2.21
=gV (R)+ Y00 V"

n=1

i i a(")(m) . V(")V(m)
n=1 m=1

N | —

The derivative of energy E with respect to potential gradient ' (n > 1) is given by:

OFE =
= O - Za(n)(m) Ly m
aV m=1

—e" 4 Za(n)(m) CEm
0

m=1

B.2.22

This quantity is the total molecular moment @' in the presence of external fields.

@(n),tot —

E 2 .
o =00+ am g™ B.2.23
aV m=1

For example, the induced dipole is given by its permanent dipole moment, the dipole-

dipole polarizability contribution and the dipole-quadrapole polarizability contribution:

A =g, +a" E+aq® E® 4 B.2.24

If the external field is constant over the size of the molecule, the gradient of field £ is

zero and the total dipole moment is given by:

i =p,+a" - E B.2.25

(n),tot

The total molecular moment ® can also be found by first calculating the

perturbative corrections to the wavefunction and then evaluating the expectation value of

the moment operator M™. For example, suppose the exact ground state |‘I’0> 1s written

as a perturbation series as:

[W,)=[0%)+]0") +[0%) +... B.2.26
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where ‘O°> = | 0> is the zero™ order solution and ‘01> is the first order correction. From

perturbation theory the first order correction is given by:

o H'|0
01)= Z' N | '0)
@ Ea . B.2.27
Moy
DR

Therefore, the expectation value of the moment operator M®™ up to first order is given
by:

M(ﬂ)M(’n) + M('")M(ﬂ)

+01> (n) ZZ - _V(m)

a#0 m=1 a0

<o° +0' \MW 0°

O - Za(n)(m) Ly m B.2.28

m=1

— @(ﬂ) + Za(n)(m) 'E(m)
0

el
which is equivalent to B.2.23.

Notice that the induced molecular moments are linear in external field in the
above analysis. At small electric fields strengths, the induced moments are
approximately linear in external field. For larger external fields, the induced moments
behave as a non-linear function of external field. This effect is termed hyperpolarization.
Hyperpolarization terms can be found by deriving the perturbational energy corrections
following second order, i.e. first order hyperpolarization arises from third order
perturbational theory and second order hyperpolarization arises from fourth order
perturbation theory. In the analysis below, the first order hyperpolarization terms will be
derived from the third order energy correction.

The third order energy correction is given by
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EO - Y (0]A"|a)a|A"| BYAIH'|0)

“he Eaobpo B.2.29
B (0] '|a)(a|H"]0)
ol oz

When the perturbational Hamiltonian (B.2.6) is inserted into B.2.29, the third order

energy correction becomes:

n=l m=1 p=1 | a,f#0 a#0 a0

o 2 & MPMOM MM
3) _ Oa ap p0 (n) O a0 () (m)17(p)
E| _222{2 —— — My e e Ly oy my B.2.30

The hyperpolarizability tensor is defined as a symmetric sum of the above bracketed term

over permuted indices n, m, p:

B Ep"mp{ Z MéZ;MQEﬁ)M%) —M&'}) —M%M%)} B.2.31
a,p#0 a0 po a a0
where the symmetric permutation operator P™” is defined as:
PP (A )= A" + A"+ A+ A+ AT+ AP B.2.32
The third order energy correction in B.2.30 becomes:
EY :3l2ggﬂ(nxmxp) YO @) B.2.33
The total energy up to third order becomes:
E=E" +E{® +E
=g,V (R) + i@)g’” e —%ii oMy Iy B.2.34

1 o0 o0

Z Z ZIB(H)(M)(M Ly Dy ()

nlmlpl

The total molecular moment ®"*” becomes a quadratic function of field.
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(n),tot _ — W _ (n)(m) pr(m) , * (n)(m)(p) | 17 (m)17(P)
O = =5 Y a v +2|22ﬂ vy
m=1 * m=1 p=1
. B.2.35
— @(") + za(")(m) . E(m) +_22ﬂ(’l)(”l)(p) . E(M)E(p)
0
m=1 2' m=1 p=I

For a large constant external field E (quadrapole and higher order multipole effects are

zero), the total molecular moment is given by:
@M =@ + "W . E® +lﬂ(n)(1)(1) EOE® B.2.36
2!
As an example, the total molecular dipole (up to first order hyperpolarizability) is given
by:

A0 = iy + a0 _EJF%IB(D(U(U .EE B.2.37

B.3 Time-Dependent Field

Now suppose the perturbing Hamiltonian H'(r)=H' f(¢) has a periodic time

dependence attached to it, i.e.

i (t) = cos(awr) exp(&)H '

= cos(awt) exp(gt)z e V(7)) B.3.1

The term exp(ef) is a convergence factor included to make the time perturbation go to

zero in the distant past. Once this accomplished, the limit & — 0 is taken. As in section
B.2, suppose a non-interacting molecule in vacuum has unperturbed Hamiltonian H°,

|0> as its ground state with energy Ey, and |a> as its excited states with energies £,. The

time independent part of H' (¢) can be expressed in terms of multipole moment operators

asin B.2.6,
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i (1) = cos(at) exp(et)H'

o H B.3.2
= cos(wrt) exp(et)y M ™ -V (R)

n=0

~ 1 . = ) . .
where M =>"e, — @, - R)™ (B.2.7) is the n"™ rank Cartesian multipole moment
n!

a

operator, and V' = V™) (B.2.5) is the n™ rank field gradient of potential.
If the molecule is initially in its ground eigenstate |O> , then the state |‘I’> ata
later time is given by:

| W) =exp(=iw,)| 0) + Y a, (t)exp(-iw, )| a) B.3.3

E

a

h

where o, = . To first order, the coefficient a,(?) is given by:

t

a,(t)= % H!, jcos(a)t') exp(et')exp(im, t")dt' B.3.4

—00

where H ), =(a|H'|0). After letting ¢ — 0, B.3.4 is evaluated to be

a,(t)=— ;”1‘0 {GXP(ZZ“‘; ;w)t) + eXp(;EZ”O_ ;a’)t)} B.3.5
The state to first order becomes
)= exp(-io,0]0) - 2 o h [e"pg‘)’ o ", eXP(;"::’j;’O L }| a) BA.6
The multipole moment ®"* is given by:
@ =(¥|M " |\¥) B.3.7

If B.3.6 is inserted into B.3.7, the multipole moment becomes:
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0" =" - cos(a)t)Z— [M(")H +H) M
G =2 B3.8
+ isin(a)t)z h+—a)2)[MéZ)H‘1’0 Hy M"

a0

where M (" =(0|M "|c). It has been argued' that if the molecule is in a non-degenerate

and therefore, real state, then M\ H' =H] M) and the imaginary sin(w?) term is
zero.

" =0 - cos(a)t)z . [MéZ)szo +Hy M) B.3.9

2 2
(a)aO - )

Using the expression for H' (B.2.5), H', becomes

0

HYy = (S 0 7o
n=0

} B.3.10
_ ZM(? ™
H |, can then be inserted into B.3.9 to give:
e =0 - cos(wz)ZZ—h [MgQM "+ MM ;'Q] o
e a h@g = 07) B.3.11
=0 + cos(a)t)z a ™" (@) E™
m=1
where E™ =—V'™ and
a ™™ (@) = z [MéZ’M%) +M(§Z)M§Q] B.3.12

h( a0
is the frequency dependent molecular polarizability tensor. This result will be needed in

the following appendix when dispersion is discussed.
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Appendix C Intermolecular Perturbation Theory

C.1 Introduction

In this appendix, the interaction between two molecules is studied using
Intermolecular Perturbation Theory (IMPT)' 2. The non-interacting system is the two
molecules isolated from one another. The perturbation is taken to be the electrostatic
interaction between the two molecules, and the perturbational Hamiltonian is expanded in
terms of Cartesian point multipoles. The molecules are assumed to be separated at long
range in order to neglect antisymmetrization effects between the two molecules. The first
few orders of perturbation theory lead to a natural decomposition of the intermolecular
energy into electrostatic, polarization, and dispersion contributions”®

In the following section, energy corrections up to second order will be calculated
for the interaction between two molecules. The first order energy correction is shown to
be the purely electrostatic energy between the two molecules while their wavefunctions
are frozen in their non-interacting states. The first order energy is expressed as the
interaction energy between the molecules of the permanent multipole moments. The
IMPT first order energy can be compared to the first order correction energy of a
molecule interacting with an external potential in appendix B.2, which was found to be
the interaction energy of the permanent electrostatic moments (calculated from the non-
interacting molecular state) with the external potential.

The second order energy correction to the intermolecular interaction energy
between two molecules (4 and B) is found to be composed of three parts: the energy of 4

polarizing B, the energy of B polarizing 4, and the dispersion energy when both 4 and B
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are mutually polarized. The second order intermolecular energy correction can be
compared to the second order energy correction of a molecule interacting with an
external field. In the molecule-external field case, the second order energy is purely
polarization energy. Dispersion is absent because the field does not get polarized.

The dispersion energy is an interesting purely quantum mechanical effect. In
classical models based on polarizable charge density, two mutually interacting
polarizable charge densities do not interact if there is not an external permanent field
which can polarize the system. In other words, a source of external charges needs to be
present in order for classical polarization to happen. An example is two argon atoms.
There is no permanent multipole moment on the argon atoms. If two argon atoms are
sufficiently separated so that their charge distributions do not overlap, the electrostatic
interaction energy is zero. Classically, the polarization energy between the two
molecules should also be zero. However quantum mechanically, there is a small
attractive energy in which the charge densities on the two argons spontaneously polarize
each other in the absence of a permanent field. In section C.3, the dispersion is discussed
as the energy in which the two molecules spontaneously polarize one another. The
dispersion energy can be expressed in terms of an integral of molecular polarizability
tensor over imaginary frequencies. This is used to derive the empirical Slater-Kirkwood
model for dispersion interactions between atoms.

As mentioned earlier, the discussion on IMPT in this appendix assumes the
molecules are interacting at long range in order to neglect antisymmetrization effects. At
short range, enforcing antisymmetrization between the interacting molecules introduces

exchange/repulsion terms to the energy. Other energy decomposition schemes such as
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Morokuma-Kitaura decomposition’, Constrained Orbital Variation (CSOV) method®, and
Symmetry Adapted Perturbation Theory’ were designed to include antisymmetrization
effects which make a significant contribution at short range. These other energy
decomposition schemes are derived for specific ab-initio methods of calculating or

approximately calculating the wave-function for the interacting molecules.

C.2 Perturbational Expansion

Consider two interacting molecules 4 and B interacting at long range. The

interacting perturbing Hamiltonian H' is the electrostatic interaction between molecules

A and B.

BN Nere, S = c2.1

acA beB

Suppose the center of mass of 4 and B are located at R and R”, respectively. The
denominator can be expanded in terms of Cartesian multipoles as in Appendix A:

S 1] 5 1
— :ZZ—'—' —RHM(F - RP) VOV ——— C22
ro —-r ‘ n=0 m=0 1 ‘R _R

C.2.2 can be inserted into C.2.1 and H' can be expressed in terms of moments:

ii M AN B V(")AV(’")B—‘EA T C23

where the moment operator for 4 is defined as in B.2.7: M "4 = — z e, (F* —R")™ .

aeA
M8 is defined in a similar manner.

Let H° be the non-interacting Hamiltonian given by:
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H'=H""+ H* C2.4
where H % is the Hamiltonian for molecule A in vacuum and A %? is the Hamiltonian
for molecule B in vacuum. Let |a)be the eigenstates of //** with eigenvalue £/ and

| ,B> represent the eigenstates of H? with eigenvalue E /?. . At long range,

antisymmetrization effects are unimportant, and therefore, the product states |a/3>

represent the states accessible to the interacting molecular dimer A-B. The ground state

energy of the isolated systems is given by |00) with energy E, + Eg . Using Raleigh-

Schrodinger perturbation theory, the total dimer energy £ for the ground state can be

expanded in a series.

E,=E] +E, +E; +... C.2.5
The zeroth™ order contribution is the expectation value of the non-interacting
Hamiltonian H° with the ground state |00>.

EJ =(00|H°|00)=E; + E} C.2.6

i.e. the sum of the non-interacting monomer energies. The first-order correction is given

by:
E, =(00|H"|00)
: gg;)(oo N7 4 87 2| 00) - v A (-8 m C27
. 22 QUIAQUIE .y i m
where
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(n),4
®o

(m),B
®0

(o} ]o)
(0]}

C.2.8

are the permanent vacuum multipoles of 4 and B, respectively. The first-order energy

correction is the pure electrostatic energy of the unperturbed molecules (see eqn A.3.9).

The second order energy E; is given by:

(00|H"|aB)ap|H'[00)

A B
E,, + Eﬂo

C.29

R
« P
where E =E. — E;* and the " means omit the |00) term in the double sum. The

second order energy can be separated into three contributions: energy of B polarizing A

U ;tn , energy of 4 polarizing B U ;1301 , and the dispersion energy between 4 and B U, (ﬁ; .
1 1
s -y (00|H"| a0><AaO|H 00) ca 10
a#0 Ea()
H' H'
Ufol :_z <00| |0ﬂ>§0ﬂ| |OO> C2.11
p#0 Eﬁo
H' H'

A B
a#0 f#0 an + Eﬁo

A

In the energy expression of B polarizing 4 U, ,

the excited states of 4 are being summed

over while B is held in its ground state. In other words, the permanent field of B is

polarizing A. A similar explanation holds for U p'iﬂ . In the dispersion energy between 4

and B U2

aisp » DOth excited states of 4 and B are being summed over. This term

corresponds to the induced moments of 4 and B spontaneously polarizing each other.
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The above expressions can be expressed in terms of moment operators M “* by

substituting in H' (C.2.3). In order to evaluate U ]fol , it is first noted that

(0] =2 30040919 ey
n=0 m=0 R —-R ‘
= i i MPAO? v Ay e —\RA 1 = C.2.13
n=0 m=0 -

— M(n),A . v(n),A V B—>A4 (R)
Oa

n=0
where ®"” is the permanent multipole moment of B and ¥ *7#(R) is the potential from

B onto A (A.7.3):

- 1
y B4 (R) = @B .y (mB _ _ Co.14
Z‘) ' L
pol (C.2.10) then becomes
) M(H)AM(m)A
pol = _Z Z Z v(l’l),AVB—>A (R)V(m),AVB—)A (R)

A
a#0 n=0 m=0 Ea()

Co My MG MM

PN

A
a¢0n 0 m=0 an

VDAY ERA RV A ERA(RY C.2.15

o0

= __z Za(n)(m),A X V(n),AVBaA (R)V(m),AVB%A (R)

2 n=0 m=0
where o™ is the n"™ - m™ pole polarizability tensor for molecule A (B.2.16). A
similar result holds for U}, . The evaluation of the dispersion energy Ug in terms of

moments is more involved and is discussed in the following section.
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C.3 Dispersion

The dispersion energy given in C.2.12 will now be evaluated in terms of moment
operators and polarizabilities. Before proceeding, the following intermediate result will
be useful:

n n 1
(n),A g r (m),B x7(n),Ax7 (m),B
M MG -V v

: C3.1
" (n),4 3y (m),B (n)(m)
MPAMGE T

NgE
s

(00[ | ap) =

3

L_
3
Il

-
NgE

=
I
3
I

1 . . . .
where 70" =y Ay m-? i for brevity. C.3.1 can be inserted into C.2.12 to yield:

. T(Vl)(’n)T(p)(q) C32

© " (0,4 37 (m),B 3°r (p),4 375 (9),B
UAB__ MOa MO/? MaO M,BO
i =222

A B
n,m, a#0 f#0 EaO + EﬂO
p.q

Since the denominator is a sum E., + E;O and not a product £ !?OEEO , the sum over a and

p can not directly be expressed in terms of molecular polarizability tensors for molecules
A and B. However the following identity, which can be proved by contour integration, is

used to express the sum as a product:

1 2% AB
=— 54V C33
A+B 7wy (A" +v )B +Vv’)
Using this identity, C.3.2 becomes':
o © A A (n),4 357 (p).A B a7y (m).B x’r(q).B
UAB — _zzjdvz EaOMOa Mal(’) EﬂoMoﬁ MﬂO . T(n)(m)T(p)(q) C3.4
disp T ord (EA )2 +V2 ‘ (EB )2 +V2 U
AL @0 B B0
Recall the frequency depend molecular polarizability tensor given in B.3.12:
& ™™ (@) = Dy [M(”)M(”” Yy a0 C35
- O a0 Oa a0 e

o W,y — @)
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E

where o = e This is applied to the sum over a and f to yield:
ho &7
AB __ M (MPLA (1) M@-B (20N (m)(m) 0 (p)@)
Uis = Zm: ! dva (iv)a (iv)-T""T C.3.6
p.q

Now consider the simplest case of dipole-dipole dispersion (n=m=p =g =1):

Ut == [dva (Ve — v 37
0

ij ik R AB Jl R AB

If the molecular polarizability tensor is isotropic as in the case for an atom, then

a; = ad; . Using the result for the dipole-dipole interaction matrix for point multipoles

1 3 1
(A.6.3) VEJZ) R =RR,; o o, ek C.3.7 becomes:
h . . 1 1
U =2 fava (via” oV v
0

h . . 3 1 3 1
= —EIdVOCA(l V)aB(l V)[RiRk F — 5ik FJ[RIRI{ F - 5ik Fj
0 C.3.8

3h ¢
dva’(iv)a®(iv)
7Z'R6‘([

CAB
R 6

where
C sﬁjdva/*(iv)a'?(iv) C.3.9
7 0
If Gaussian dipoles were used, V(pzq)% is replaced by

;zq) @ = RquﬂsBz (x) - 5pqﬂ3Bl (x), where x= R, EM’ and B;(x)

VBL+ Bs

and B;(x) are defined in 2.9.6. In this case, C.3.7 becomes:
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C
U:is?a = _%(RiRkﬂsBz (x) - 5ikﬂ3Bl (x)XR[RkﬂSBZ (x) - 5ikﬂ3Bl (x))
C.3.10

—- S (B (07 - 2678, (0B, () + 38, ()

C.3.10 is continuous and finite for all x, while C.3.8 diverges as R for small x. However

for large x, B,(x) = % and B, (x)= is In this case, the Gaussian dipoles behave as
X X

point dipoles and C.3.10 becomes:

C
Uy == g -G
rox X C3.11
CAB
-

Damping functions'' ™ have been applied to dispersion models in order to make the

interaction finite for small R. The result for U

with Gaussian dipoles in C.3.10 can be
used in place of a damping function.
If higher order multipole terms are included, the dispersion energy can be

: G141
GXpI‘GSSGd as a Series 6

U =-—_-8__"10 C3.12

where Cg corresponds to dipole-dipole dispersion, Cg corresponds to dipole-quadrapole
dispersion, and C, corresponds to quadrapole-quadrapole and dipole-octapole dispersion.
A method is needed to calculate the dispersion coefficients!” '8 C 431n C.3.9. One
strategy is to calculate o' (iv) and o”(iv) for several values of v from C.3.5 using ab-initio
methods and then perform the integral for C4p numerically. Another way to calculate C4p

is to first approximate a(iv) as:
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ativy=—2 ) C.3.13

where #? is an empirical parameter. Using this function for a”(iv), the integral for C,, in

C.3.9 becomes:

C., :%Idva“(iv)a”‘(iv)
0

) C3.14
3nn A 7o 2
= a’ (0
2 0)
or
4
n’ :% C.3.15
3ha” (0)
The integral for C45 where 4 and B are different is found to be:
C a’(0)a® (O).[dv .
v
3n 4 V4 77
=—a’(0)a’(0)= C.3.16
. 0)a”( )2 R
20" (0)a” (0)C ,,Cp

T d"(0)C,, +at (0)C,y

This result is known as the Slater-Kirkwood'® combination rule.
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Appendix D. Ewald Summation

D.1 Introduction

Long range electrostatic interactions decay slowly. For example, the interaction
energy between two point charges falls as R'. In molecular dynamics simulations, pair-
wise additive interactions are often truncated outside a specified non-bonded cut-off.
Large cut-offs would be needed if electrostatic interactions were simply truncated at a
certain distance. Special techniques such as the Ewald summation method'™ for periodic
systems and the fast multipole method’ for non-periodic systems were developed to speed
up the convergence of long range electrostatic interactions.

In this appendix, the Ewald summation is method is derived for a periodic system
of point charges and point dipoles. Since the system is periodic, part of the energy can be
calculated in Fourier space. This part of the energy is called the reciprocal sum. The
other part of the energy has a small periodic component and decays quickly in coordinate
space. This part of the energy is called the direct sum. In addition, there is a self-energy
correction and a second energy correction called the adjusted sum for pairs of particles
which were not intended to include (e.g. 1-2 or 1-3 particle interactions). In the
following section, the Ewald summation method is discussed in more detail.

In addition to the reciprocal, direct, self, and adjusted energy contributions to the
Ewald energy, there is a dipole surface term which depends on the dipole moment of the
unit cell. The energy of a unit cell interacting with other unit cells in a crystal is a
conditionally convergent series. The dipole surface term depends on the order of

summation in the series. For example, if the unit cell interactions were summed in the

217



order of an ever increasingly sized cube, the result would be different if the unit cell
interactions were summed in a spherically. The dipole surface term will not be
considered here. See references”* for more details.

The Ewald method scales® as N ¥ for large N, where N is the number of particles.
A method to speed up the reciprocal Fourier sum by interpolating the complex
exponentials on a grid of points has been developed. This method, called Particle Mesh
Ewald’, scales as N log N for large N, and has been employed extensively in Molecular

Dynamcs simulations® .

D.2 Ewald Summation

From the results in appendix A, the energy between particle i with charge ¢’ and

dipole zi' and a particle j with charge ¢’ and dipole i’ is given by:

U, =lg'+ i V')’ - i’ v) L D.2.1

|
Consider a collection of particles (i = 1, 2.. N) in a box which defines the system. The

interaction energy Upoy for the N particles with charges ¢' and dipoles /i is a sum over all

pairs.

i#j

Upe =y Xl + 79 N’ = -V")‘L D.22

?"f\

In periodic boundary conditions, images of this box are replicated in a lattice
arrangement surrounding the box in 3D space. Suppose the sides of the box are given by

the vectors a, (r=1, 2, 3). Each new box is generated using translation vectors
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n =n,a, +n,a, +n,a,, where n; are integers. The interaction energy of all the particles

in the central box with all of the particles in the other boxes is given by

U=l iV g - ~V")Z"‘;.1
i ii

D.2.3
'+ ﬁ‘

The * indicates that if 7 =0, omit the i = term and any other terms in the ‘masked list’,
e.g. do not count 1-2 or 1-3 Coulomb interactions between particles that are bonded to or
adjacent of each other.

This series in D.2.3 converges slowly. A method to speed the convergence of this

series is to first note:

o0

J~ r+n Idpe r+n

B +n\ 0 e

r+n

D.24

where f is defined as the Ewald parameter. The second term on the right side of D.2.4
can be written as:

et )

D.2.5
7+ n‘

5'—;8

where erfc(x)=1—-erf(x)= %J.du exp(—u’) is the complementary error function
Ve

which decays rapidly for large x > 1. The sum over translation vectors in D.2.3 becomes:

erfelplF + i)

- D.2.6
o+ 7

Z‘ﬂ, ‘ZJ—Id +Zﬁl

i (" +n

The second term in D.2.6. converges quickly. The first term converges slowly, but it can

be written as a Fourier series.
2 4 il i

2 fdpe T = e e D27
T 0 m
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i =md, +m,d, +m,d, and @, are the reciprocal vectors: g, a =0,.

cﬁ*zVLj d*r'e _MWZ\/—V D.2.8

cell Voot
Let 7 =7 +7. The sum over 7 can be transformed to an integral over all space, since

> —1. For m # 0

1 27 _ (I
C.=——F J. Id3re P g 2T =——e¢ "/ D.2.9
" Ve 0 all Vo™ m
space
D.2.7 becomes
> poewwz > g D.2.10
— =) ——e e 2.
e 0 Vo m’
3
_ . . . 7’
The m =0 term is omitted since ¢, =——— and
Vcellﬂ

_zz q;+ H; - l(qj—ﬁ‘,-Vi) 7[2320

Vcell p

because of charge neutrality and ¢, is a constant. Substituting D.2.10 into D.2.6

2 A L e U )

D.2.11
' +n‘ w20V cen 0 M ii ‘7” +n‘

By subtracting off the terms that are self-interactions (i = if 7 =0) and the adjusted term

from the direct sum, the sum over lattice vectors in D.2.4 becomes

m2ﬂ2 —»U —
1 T *erfc(ﬂ‘r +n ‘)
Z = e B ezmm Y +Z f-l-
‘r +n‘ =V rm g ‘r” +n" D212
S erfc(ﬂrij )— 1 y erfc(ﬂr” )
+ (i,j)er - i
r 77/ rY
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The total lattice energy in D.2.3 can be written as a reciprocal sum, a direct sum, self

interaction.
u=U,+U, +U, +U,, D.2.13
=l i mioxdiN, i 1 7m,;72[2 2zt 7
Um—zlz;(q i Vg -V ),,;]V”ﬂm e Ve

Uar =2 ZZ( 'Vi)(q"—ﬁf-vf)z*M

- S5
T e D.2.14
1 i - i i - 7 i erjc I’U _1
U= S ey v
2 (iljrem r
Yo =i wi) g erfelpr?
self ZZ(q +,Ll V qu - V );i_ﬁ/¥
i—j
Reciprocal Sum
The reciprocal sum for the Ewald energy in D.2.4 can be expressed as:
1 e_ a _ _
= > ———S(m)S(~rmn) D.2.15
27V o 570
where the structure functions S(m) are defined by
Sy = (g’ +2mm- @’ - D.2.16
j

=2m m(q + 27mim- [ )ez’"ﬁ“ﬂ. This is

The gradient of D.2.16 with respect to 7' is &Z( )
¥

used to evaluate the reciprocal force contribution on particle i £, as the negative

gradient of D.2.15 with respect to 7' which is given by:

-2y ﬁ: alS(g’ - 2mim- 7 e ) D.2.17

I/cg]] m#0
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The electrostatic potential > at particle i can be found by taking the variation of energy

D.2.15 when ¢' is a test charge ¢, (F'
bq~>0 5q
i 1 e_ r ~\ Dz
0. (F)= > ———S(m)e D.2.18

ﬂVcell m#0 m

Finally, the electric field can be found by taking the real part of the negative gradient of

®,..(F") with respect to 7'

B ()=—Ly¢ —mnS(i)e " D.2.19

Ve” w0 M

C

Direct Sum

The direct sum is given in D.2.14 as:

e
Uy = ZZZ (¢'q" +l¢"a" —q’7")-v7 - ﬁ’ﬁ"-V’V’)erfc(ﬂ‘ﬂ i D.2.20

[+
The direct sum force on particle on particle i is found by taking the negative gradient of

Uyir with respect to 7' :

Fi=3S"q'¢Vi+(¢g i —q'i’ ) V'V - ﬁ'ﬁf-vafv)w D221
;o U+
The direct sum electrostatic potential ¢, (7')is given by:
04 (F) = ZZ (¢ - v/ erfc(ﬂ‘r i D222

”+n‘
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Finally, the direct sum electric field is the negative gradient of ¢, (') with respect to

F
o el g )
E,@)=-33"gV+z -vv )—T D.2.23

75 77 +ii
The gradient tensors V" M can be evaluated using the same method that was used
r

to evaluate V" % in appendix A.6 and V" @ in section 2.9. The result is given

by:

v @ =—RB’C,(x) D.2.24

erfc(pR) . .
VoS S48, (R,R,B°C,(x)-5,,8C,(x)) D.2.25

erfc( SR A A A
V@)% xpqur((5 R4+5erq+54 Rp)ﬂscz(x)_

pq T rq

D.2.26
RquRrﬁ7C3 (x))
. . . erf(x)
where x = AR, and the dimensionless C,(x) functions are defined by: C,(x) =———,
x
1dC . :
C,. (x)=———="_ The first four functions are given by:
x dx
erfclx
¢, =)
x
erfclx 2 o1
Cl( ): f3( )+_e T
i i ’ D.2.27
3erfelx 2 (3 2 o
=2, 2 (20 2]
x P XX
15erfe(x) 2 _+(15 10 4
C = + e | —+—F+—
=t B (e e )
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Adjusted Sum

The adjusted sum energy is defined in D.2.14 as:

Uy=-"s S (f+5 V) -7 V’)M D.2.28

adj
2 iljyem
where erfc(x) =1 - erf(x) was used. The procedure to evaluate the force, electrostatic
potential, and electric field is the same as the one used to evaluate the same properties in

the direct sum. The results will be listed below for completeness.

ViV -G VY V’)—erf(ﬂru)

Fio= Y gV +lg' s —q'&
@i,j)eM
%dj'(’_;i)z_ z ( - Vj)er ( ) D.2.99
(i,j)eM 7Y
B, S (v v ) )
I"

(i,/)eM

. R . .
The gradient tensors V' erf (BR) were evaluated in section 2.9.

Self Energy Correction

The self energy correction is defined in D.2.14 and given by:

Uy = EfE?,Z;(qfq’ +(ilq’ -iq' )V - EE -V V’)dfrﬁr—y) D.2.30

The force, electrostatic potential, and electric field are found in a way similar to that used

in the direct sum and the adjusted sum:
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Fs’;zf:lmZ(q q’'V'+ (q g -q'i )VV’—/T,&/ VVVI)M
J

Flor/ r
i—>j
isj

Ey ()= lim 3 q'V' + i V"V")M
,(F) = lim > r

i-»j

The limits of the gradient tensors V"

erf_;,b’R) as R — 0 can be found from 2.9.2 —2.9.4

and are given by:

limv© &7 4P e’”f(ﬂR)

R—0

= f3B,(0) D.2.32

imv® e”f(,BR) -0

limv D.2.33
erf(ﬂR) s s
Lov”) =-%,%,6,,8°B,(0)=15"B,(0) D.2.34
lim v < erf ([’)R) =0 D.2.35
4

By(0) and B,(0) can be found from their Taylor series given in 2.9.7 asi and

Jr © Wn

respectively. Therefore, the self energy terms are:

i_i 2 =i =i
Uy =—%qu FH B

Fl

self — 0

_ 2 . D.2.36
gose_lf'(r ):_\/_ﬂq
T

g

NS

This concludes the derivation for the Ewald summation method for a periodic

Ese,f (F) =

system of point charges and point dipoles. A typical value of the Ewald parameter f is
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0.3A™". For this value, the direct sum converges at a cutoff 8.0 A, and the reciprocal sum

converges after 4-5 reciprocal vectors.
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