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ABSTRACT 

Non-coding RNA (ncRNA) secondary structural homologs can be detected effectively in 

genomes based on a covariance model (CM) and associated dynamic programming algorithms. 

However, the computational difficulty in aligning an RNA sequence to a pseudoknot structure 

has prohibited high throughput search for RNA pseudoknot structures in sequences. Due to the 

lack of appropriate ncRNA structural evolution models, accurate search of distant RNA 

structural homologs also remains difficult. 

The core of both problems is the sequence structure alignment that requires intensive 

computation for complex structure. Based on a conformational graph model we built to 

incorporate all the interactions of stem and loop, including the crossing stem pattern of 

pseudoknots, the sequence-structure alignment problem can be modeled as a subgraph 

isomorphism problem. Based on the graph tree decomposition and naturally small tree width in 

ncRNA structures including pseudoknots, the problem of searching ncRNA with pseudoknot 

structures in genomes can be solved efficiently by the tree decomposition based dynamic 

programming algorithm. Further, the sequence-structure alignment problem for distant RNA 

structural homolog search can be modeled as a graph homomorphism problem. Tree 



 

decomposition based dynamic programming algorithm equipped with the new technique of 

NULL stem is applied to solving the RNA structural variation search problem more effectively. 

In this dissertation, we developed two search frameworks, RNATOPS and its extension 

RNAv, based on a general conformational graph model. Our genome search test results 

demonstrate RNATOPS has an advantage over Infernal and other methods in accuracy and 

computational efficiency when searching for the ncRNA pseudoknot structures in genomes, and 

RNAv, with the capability of detecting pseudoknot, also has an advantage over Infernal in 

detection of some distant homologs. 
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CHAPTER 1 

INTRODUCTION 

1.1 COMPUTATIONAL RNA GENE FINDING 

RNA genes are genes that do not encode proteins; they are also called non-coding RNA genes 

(ncRNAs) [1]. NcRNAs have been shown to be involved in many biological processes including 

gene regulation, chromosome replication and RNA modification [2, 3, 4]. Recent biological 

studies [1, 5, 37] have indicated that there may be thousands types of ncRNAs. 

There are two main kinds of computational methods to detect RNA genes: ab initio method 

and comparative analysis method.  

1.1.1 AB INITIO GENE FINDING 

In spite of many years of studies in RNA gene finding, progress has been limited. An ab initio 

method finds encoded RNA genes from genome sequences without annotations. It can be 

classified into the following two main frameworks: the compositional information method and 

the minimum free energy (MFE) based method. 

The Compositional information method assumes that ncRNAs have on average a GC 

content of 50%, which works when searching for GC-rich islands in some AT-rich organisms [6]. 

But this assumption may not always be true when it is applied to search for new RNA genes in 

other organisms. 

The MFE based method is a long established paradigm and it has been used to search for 

RNA genes [36]. This method is based on the following assumptions: (1) At equilibrium, the 

solution to the underlying molecular folding problem is unique, i.e., the molecule folds into the 
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lowest energy state; (2) the free energies of individual structural motifs are additive [7]. However, 

the structure corresponds to the MFE may not be the correct one: the MFE structure may not 

always be the one adopted by the RNA [8]. The correct structure may be among those with sub-

optimal free energies [9]. In particular, the comprehensive analysis by Gardner and Giegerich 

[10] shows that comparative methods tended to systematically outperform MFE methods in 

predicting the RNA genes. 

As pointed out by Rivas and Eddy [11], secondary structure prediction on a single sequence 

is insufficient to reliably predict ncRNA genes. We now introduce the more powerful method - 

comparative analysis method. 

1.1.2 COMPARATIVE ANALYSIS GENE FINDING 

Given two or more related species, alignments of their whole genomes can be performed to find 

the maximum regions of similarity between them. For multiple genomes alignment, these can be 

built by comparing two genomes at a time then building a multiple alignment by extracting 

aligned regions common to all genomes. QRNA[12], RNAZ[13] and EVOFOLD[14] are 

programs which provide a measure of probability that a given alignment of sequences adopts a 

conserved RNA fold [37]. 

1.1.3 STRUCTURAL PROFILE BASED METHOD 

The structural profile based method mainly works for ncRNA annotations [37] and it can be built 

based upon the comparative analysis method. From an alignment of multiple sequences with 

annotated structures, a structural profile can be built, which contains the statistical information of 

the consensus structure and sequence of the annotated ncRNA sequences. Searching in the 

genomes to compare sequence segments against this profile mainly relies on a procedure called 
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sequence-structure alignment. A high alignment score indicates the corresponding sequence 

segment has a high probability of containing the structure pattern of the given ncRNA. 

The number of possible alignments between a sequence and a structure profile grows 

exponentially in the sequence length. The alignment result is usually the one with the highest 

alignment score, thus the task is actually an optimization problem. The Covariance Model (CM) 

was introduced by Eddy and Durbin [15] to profile RNA secondary structure. The optimal 

sequence-structure alignment between a sequence and a pseudoknot-free structure profiled with 

CM can be accomplished with the CYK dynamic programming algorithm in time )( 3WNO , 

where W is the size of the model and N is the sequence length. Due to such time complexity 

needed for the sequence-structure alignment, CM-based search may not be efficient enough on 

complex or large RNA structures and long genomes, with resorting to sophisticated speed up 

techniques. 

A pseudoknot is a special RNA structure, which has a stem-loop where the loop pairs with 

another region of the RNA. Because of the crossing stem pattern in a pseudoknot structure, 

which CM can not profile, pseudoknot structure prediction problem is NP-hard [20, 21]. 

Proposed pseudoknot profiling models [22-26] are mostly extensions of CM. However, the time 

and space complexities for optimal sequence structure alignment based on these models are 

)( 4NO  or )( 5NO , which is not practical for efficient search of pseudoknot structures. 

1.2 STRUCTURAL VARIATION SEARCH 

The structural search tools have been most successful in identifying ncRNAs homologs with 

little or small structural variation between sequences. RNA secondary and tertiary structures are 

both constant and variable across evolution [23-25]; that is, some sub-structures, such as stem-

loops, will be found in all members of a given ncRNA family, but other sub-structures will be 
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found only in some of the sequences of the family. Such structural variations pose novel 

challenges in profiling distant homologs for effective searches [25]. In previous work [26-30] 

RNA base and base pair evolution information was incorporated into SCFG models. An 

improved model for RNA structural evolution has also been proposed [23, 31] which can deal 

with limited degree of structure rearrangement between homologs but has yet to be incorporated 

into a search program. To date, a general method that addresses both possible misalignments and 

structural variation is still missing [32]. Searches for structurally distant homologs still largely 

rely on customized methods or tools [24]. 

1.3 CONTRIBUTION OF THE DISSERTATION 

In this dissertation, we propose methods to address the two challenging problems that have been 

identified above: (1) efficient search for ncRNA with pseudoknot structures in genomes and (2) 

accurate search for ncRNA with structural variations in genomes. 

The core of both problems is the sequence-structure alignment. First, a conformational graph 

model [33, 34] was built to incorporate all interactions of stems and loops including the crossing 

stems in pseudoknot structures. Then the sequence structure alignment problem is modeled as a 

subgraph isomorphism problem. Due to the naturally small tree widths in ncRNA structures 

including pseudoknot, searching for ncRNA pseudoknot structure in genomes can be solved 

efficiently by a tree decomposition-based dynamic programming algorithm with graph 

isomorphism. Further, the sequence-structure alignment problem for distant RNA structural 

homology search is modeled as a graph homomorphism problem. The RNA structural variation 

search problem is solved by the tree decomposition based dynamic programming algorithm 

equipped with new techniques based on the notion of NULL stem. 
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In this dissertation, we developed two search frameworks, RNATOPS [34] and its extension 

RNAv [35], based on the general conformational graph model. Genome search test results show 

that RNATOPS’ performance is comparable with or better than the state-of-the-art algorithm, 

Infernal, in identifying large or complex RNA structures including pseudoknots, while taking a 

much smaller amount of time. Test results on 51 benchmark data set used by Infernal show that 

RNAv has the capability of detecting pseudoknots with a comparable performance to the latest 

version of Infernal and performs better in detecting some distant homologs. 

1.4 DISSERTATION OUTLINE 

This dissertation is organized as follows. Chapter 2 introduces some fundamental terms used 

in this dissertation. Chapter 3 presents a detailed survey of the computational techniques, graph 

tree decomposition, and related dynamic programming algorithms for optimization problems. In 

Chapter 4 and 5, we describe in detail about how to develop this type of algorithms to solve 

ncRNA pseudoknot search and ncRNA structural variation search. Test results of these 

algorithms in genome search will also be presented. Chapter 6 concludes the dissertation and 

provides discussions for possible future research. 
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CHAPTER 2 

FUNDAMENTALS 

This chapter introduces some fundamental terms that will be used often throughout this 

dissertation. 

2.1 RNA SECONDARY STRUCTURE 

RNA is a single-stranded molecule consisting of four nucleotides adenine(A), cytosine(C), 

guanine(G) and uracil(U) [1], and typically folds onto itself to form a secondary structure 

through Watson-Crick base-pairs (G-C, A-U) and wobble (G-U) base-pairs [24, 25]. Generally it 

is believed that RNA secondary structure is conserved across related species but the contiguous 

nucleotides in a sequence can change significantly [1]. Base pairs are approximately coplanar [26] 

and are almost always stacked each other forming so-called stems. (Fig. 2.1). Other than stems, 

elements of an RNA secondary structure include loops, which are non-paired subsequences 

enclosed by base pairs. Single stranded bases occurring within a stem are called a bulge if the 

single stranded bases are on only one side of the stem; A loop at the end of a stem is called a 

hairpin loop [1] if it is short. 

2.2 PSEUDOKNOT AND ITS SEARCH IN GENOMES 

A pseudoknot (Figure. 2.1) is an RNA structure that consists of at least two stems in which half 

of one stem is intercalated between the two halves of another stem. 

Pseudoknot structures constitute only a minority in current structural databases [2], however, 

this may be more a reflection of the difficulty to detect them than their true abundance in nature. 

As pseudoknots are known to play diverse and important functional roles in biology [3], it would 
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be good to invest efforts into developing novel algorithms that can model pseudoknot structures 

in a conceptually more elegant and computationally more efficient way [2]. 

bulge
pseudoknot

5'

3'

stem

hairpin loop

 

Figure. 2.1 A RNA secondary structure 

Different stochastic models [4-8] were proposed to model the RNA pseudoknot structures, 

and they are listed in Table 2.1. Because of the intensive computation of sequence structure 

alignment based on these models, they have not been implemented for efficient searching. 

Table 2.1 RNA pseudoknot structures modeling methods 
Stochastic model Time complexity 

( N  is the number of nucleotides) 
Tree adjoining grammars [4] )( 4NO  for simple pseudoknots; 

)( 5NO  or more for the other pseudoknots 
Pknots [5] )( 6NO  
Parallel communicating grammar 
systems (PCGS) [6] 

)( 6NO  

Pair Stochastic Tree Adjoining 
Grammars (PSTAG) [7] 

)( 5NO  

Stochastic Multiple Context-Free 
Grammar (SMCFG) [8] 

)( 5NO  

 

Intersecting CMs have also been proposed for modeling pseudoknots [9], and used to search 

small genomes [10], yet resulting in the same efficiency issue. Heuristic search methods [11, 27] 

have been developed that can work with RNAs containing pseudoknots, but with other 
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limitations. For example, ERPIN [11], considers the individual stem loops contained in a 

secondary structure. It scans a genome to find possible hit locations for each stem loop. A hit for 

the overall structure is reported when there exists a combination of hit locations for individual 

stem loops that conform to the overall structure. One disadvantage is that ERPIN does not allow 

gaps in the alignment and thus may have low sensitivity for targets that are remote homologs of 

the query structure model. 

Another strategy to search for a ncRNA pseudoknot structure in genome is by removing the 

crossing stems of this ncRNA pseudoknot structure, resulting in a structure without pseudoknot, 

that can be identified by search tools like Infernal. But the strategy may not produce correct 

results [12]. So far, there are no efficient ncRNA pseudoknot structure search tools readily to be 

used. How to efficiently search for ncRNA containing pseudoknot structures in genomes is one 

of the challenges in RNA bioinformatics. 

2.3 RNA STRUCTURAL HOMOLOG SEARCH 

Homologous RNAs have common ancestry and are expected to have similar structures and some 

similarity in sequence [13-14]. Structural-homology is about a conserved structure from a set of 

related RNA sequences, which can be described as a consensus structure across these molecules. 

Homology-based searching methods have become important for annotation of ncRNAs [15]. 

Algorithms to search for homologs based on RNA structures can be divided into two classes: a) 

specific to a particular RNA class, for example, tRNAscanSE [16] for tRNAs; b) general enough 

applicable to all structured RNAs, for example, INFERNAL [17] and ERPIN [11]. 

Currently the most successful general approach for detecting structural homologs of known 

ncRNAS is based on the covariance model (CM), a special type of stochastic context-free 

grammar (SCFG), introduced by Eddy and Durbin [18]. The CM can profile position-specific 
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compensatory mutations between base pairs as well as base conservations, yielding accurate 

ncRNA specific and reconfigurable structural homolog search tools. 

2.4 RNA STRUCTURAL VARIATION 

RNA structural variation can be classified into the following three types [23]. Type 1: single base 

insertion, deletion and substitution; Type 2: base-pair insertions, deletions and substitutions 

within a conserved stem, and Type 3: insertion and deletion of the entire secondary structure 

elements. 

Figure 2.2 gives a structure alignment of the nanos translational control element (TCE) from 

Drosophila; it illustrates these three types of RNA structural variations: Type 1 single base 

deletion can be found in the loop region between the right arm of stem 2 and the left arm of stem 

3, DVU24695 has sequence “UUA” while DRONANOS does not have any sequence; Type 2 

base-pair deletion and substitution can be found in stem 2 region. DVU24695 has stem 2 with 

length of 6 while DRONANOS has stem 2 with length 9; also in DVU24695, one base-pair A-U 

is substituted with G-U in DRONANOS; Type 3 stem insertion/deletion can be found in stem 0 

of DVU24695 and DRONANOS. 
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DVU24695 .......... GGAA...GAAGCUCUGGCAGCUUU...UUAAGCGUUUAUAUA

.......... <<<<...<<<<<<.....>>>>>>....... <<<<<<<<<<<

DRONANOS AAUCCAGCUC UGGAGCAGAGGCUCUGGCAGCUUUUGC...AGCGUUUAUAUA

<<<<<<<<<< <<<<<<<<<<<<< .....>>>>>>>>> ....<<<<<<<<<<<

Stem # 0000000000 1111222222222 .....222222222 ....33333333333

DVU24695 A.GAGUUAUAUAUAUGCGCG .UUCC..............

........ >>>>>>>>>>> ..>>>>..............

DRONANOS ACAUGAAAUAUAUAUACGCAUUCCGAUCA AAGCUGGGUU

........ >>>>>>>>>>> ..>>>>....>>>>>>>>>>

Stem # ........ 33333333333 ..1111....0000000000

Type 1Type 2Type 3

 

Figure 2.2 Alignment of nanos TCEs from Drosophila virilis (DVU24695) and Drosophila 

melanogaster (DRONANOS), copied from [19] and modified for the illustration purpose. 

2.5 CONFORMATIONAL GRAPH MODEL 

The conformational graph model was originally introduced by Song et al. [20-21] to profile the 

secondary structure of a family of RNAs including pseudoknots. In this model, the base pair 

topology of an RNA structure is specified with a mixed graph, with non-directed edges denoting 

stems and directed edges for loops. In particular, in this graph, each vertex defines either base-

pairing region of a stem; two vertices representing two complementary regions (forming a stem) 

are connected with a nondirected edge. Two vertices defining two regions that are physically 

next to each other (connected by a loop) are connected with a directed edge (from 5′  to 3′ ). The 

individual structural units are stochastically modeled; every stem is associated with a simplified 

CM and every loop with a profile HMM. The structure graph is capable of modeling RNA 

structures resulting from multi-body interactions of nucleotides, such as triple helices, as well as 

pseudoknots. Figure 2.3 shows the structure graph of a typical bacterial tmRNA. 
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Figure 2.3. The structure graph for the consensus structure of bacterial tmRNAs, which contain 

four pseudoknots. Each stem is defined by an arc linking the upper and lower cases of the same 

letter. The red arcs indicate those stems causing pseudoknots. 

In this dissertation, two tools, RNATOPS [12] and RNAv [22], were developed based on 

this conformational graph model. RNATOPS is built directly on this conformational graph 

model, while RNAv’s conformational graph extends this model. In particular, in the extended 

graph, each vertex represents a contiguous sequence segment, either a loop or one of the two 

half-stems, making this extended graph model more appropriate for the graph homomorphism 

alignment. Figure 2.4 shows one example of the conformation graph model used in RNAv. 

 

 
Figure 2.4  A pseudoknot structure and the corresponding conformational graph, H 
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2.6 SUMMARY OF THE CHAPTER 

This chapter introduces some terms for RNA secondary structure, pseudoknot, structural 

homolog search, RNA structural variation and conformational graph model, which will be used 

throughout the dissertation. 
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CHAPTER 3 

TREE DECOMPOSITION OF GRAPHS 

In the first two chapters, we introduced the conformational graph model and modeled the 

sequence structure alignment problem as a subgraph isomorphism problem. The solution to the 

subgraph isomorphism problem is graph tree decomposition and associated dynamic 

programming algorithms. In this chapter, we will introduce the technique of this solution. 

3.1 TREE DECOMPOSITION 

Let G=(V, E) be a graph, where V is the vertices set and E is the edges set. A tree decomposition 

of graph G is a pair { } TIiX i ,| ∈  where each iX  is a subset of V, called a tree bag; T is a tree 

topology with the elements of iX  as nodes and I  is the sets of vertices. It has the following 

three properties: 

1. VX iIi =∈U ; 

2. ( ) Evu ∈∀ , , Ii∈∃  such that iXu∈  and iXv∈ ; 

3. Ikji ∈∀ ,, , if j lies on the path between i and k in T, then jki XXX ⊆∩ ; 

The width of { } TIiX i ,| ∈  is defined as 1max −∈ iIi X . The treewidth of graph G is the 

minimum width over all possible tree decompositions of G. 
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Fig 3.1. An example of a graph, G, with a tree decomposition, T, of treewidth 2 taken from [4]. 

Tree decomposition was originally introduced by Robertson and Seymour when they studied 

the graph minor theory [1]. The notion of tree decomposition can be better understood from 

vertex separator point of view. That is, a valid tree decomposition of a graph is an overlap 

partition of its vertices into different vertex subsets. Each subset is called a tree bag. Neighboring 

tree bags may have common vertices and these common vertices can be treated as vertex 

separators. For example in Fig 3.1, the induced subgraph of {a, b, c} and the induced subgraph 

of {a, c, f} are separated by vertex separator set {a, c}. Also induced subgraph of {a, b, c} and 

the induced subgraph of {c, d, e} are separated by vertex separator set {c}. 

Tree decomposition provides a different view of graph topology, mapping a graph into a tree 

representation. This approach can be used to develop efficient algorithms to solve many NP-hard 

problems on graphs of small tree-width. 

In [11] it shows that for almost all RNA secondary structures (including pseudoknots), the 

yielded tree decompositions of the conformational graph have small tree width 4, ≤tt . So 

efficient algorithms can be developed to solve the optimization problem based on this 

conformational graph. 
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3.2 TREE DECOMPOSITION AND ITS APPLICATION 

Generally, a tree decomposition based algorithm has the following two procedures [4]: (1) Find a 

tree decomposition for the input graph (with tree-width bounded by a constant, not necessarily 

the optimal). (2) A dynamic programming algorithm is executed on this tree decomposition. 

The general idea of a tree decomposition based dynamic programming algorithm has been 

explained in [4, 5, 6]. Here we will use one example, the MAXIMUM INDEPENDENT SET 

problem, to explain how to apply the tree decomposition based dynamic programming algorithm 

to solve it. We redraw the tree decomposition T of the graph G (Fig. 3.2). Later we will discuss 

two issues related with the application of tree decomposition: how to get a good tree 

decomposition and how to solve a memory issue in the dynamic programming procedure. 

g h

a g f

a c f

a b c c d e
 

Fig. 3.2. Tree decomposition, T, of the graph, G, in Fig. 3.1. 

3.2.1 MAXIMUM INDEPENDENT SET 

An independent set in a graph is a set of vertices such that any two vertices in this set are not 

connected in the graph. The MAXIMUM INDEPENDENT SET problem is to find such 

independent set with the maximum size. This problem is NP-hard [12], however, it can be solved 

in linear time on graphs which has treewidth bounded by a constant. 

We assume a graph G=(V, E) has a tree decomposition, T, with tree width of t, and T is a 

binary rooted tree, without loss of generality (later we will explain why this assumption will not 

affect the time/space analysis result). For each tree bag, Xi, of T, we compute a dynamic 
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programming table. Values assigned to each vertex in this tree bag depend on the optimization 

problem to be solved. In the MAXIMUM INDEPENDENT SET problem, a value of the vertex 

indicates either this vertex will be chosen into the independent set (e.g. of the value 1) or not (e.g. 

of the value 0). The size of this table is a function of the number of vertices in this tree bag and 

the number of values a vertex can be assigned. If t is the treewidth of this graph, then the upper 

bound of the table size will be 2t+1. Each entry of the table corresponds to a subset of vertices and 

for each entry of the table, two properties will be determined. One is whether the current subset 

of vertices corresponds to a valid independent set. The other is about the size of the independent 

set, formed by a subset of vertices in the tree bag. 

We compute the dynamic programming table in the bottom-up fashion. This is a post-order 

traversal of tree decomposition T. The table for tree bag Xi is computed after the tables of all 

descendants of Xi have been computed. In particular, for a leaf tree bag, the dynamic 

programming algorithm enumerates all possible combinations of vertices in the bag as table 

entries and determines the values of valid and size for each entry. To determine the value for 

valid, the algorithm needs to check whether the vertices picked in the current entry form an 

independent set in the graph G. If it is valid, the algorithm determines the value of size for the 

number of the independent set. For example, to compute the dynamic programming table for the 

tree bag {a, b, c} in Fig. 3.3, there are 3 vertices in this tree bag and totally 8 (=23) entries in this 

table. For the 4th row (a=0, b=c=1), because in graph G, b and c are connected in the graph; 

hence, this combination is invalid. The value of valid is set to be X. For the 5th row (a=1, b=c=0) 

represents a valid independent set, therefore valid=√ and also the size of this independent set is 

1. 



 

23 

For a non-leaf tree bag Xi, the scenario becomes a little more complicated because the 

algorithm needs to query the valid entries from its child tree bags. Without loss of generality, we 

assume this non-leaf tree bag Xi, has two children, tree bag Xj, and tree bag Xk. Three 

computations need to be done to determine the value of valid and size for each entry in the table 

of tree bag Xi. First, the algorithm determines the value of valid (Vi) and size (Si) for each entry 

in the tree bag Xi following the same idea of the leaf tree bag. Second, the algorithm determines 

the value of valid (Vj) and size (Sj) by querying Xj based on the value for those common vertices 

in Xi∩Xj. In particular, the value of Sj will be the max value of size by querying the dynamic 

programming table of Xj using the values from Xi for those common vertices in Xi∩Xj. We need 

to avoid double counting those separator vertices into the size of the overall independent set. If 

such Sj can be found, the algorithm sets the value of valid (Vi) to be √, otherwise it is × . Third, 

similarly the algorithm determines the value of valid (Vk) querying Xk based on the value for 

those common vertices in Xi∩Xk. Then the value of size, Si’ will be Si+Sj+Sk and the value of 

valid, Vi’ will be Vi AND Vj AND Vk. 

We take the computation of valid and size for tree bag {a, c, f} as an example to illustrate it. 

For the entry of picking f and not picking a and c (a=0, c=0 and f=1), the algorithm checks the 

graph and determines this combination is a valid independent set. Because Xi∩Xj={a, c}, the 

algorithm picks the entry of Ej (a=0, b=1, c=0) from Xj; also because Xi∩Xk={c}, the algorithm 

picks the entry of Ek (c=0, d=1, e=0) from Xk. Finally the algorithm computes the value of valid 

of the current entry Ei to be √ and sets size to be 3.  
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Fig. 3.3. Bottom-up tree decomposition based dynamic programming 

The optimal result will be accessed from the root tree bag. The algorithm will query the table 

and pick the valid combination with the maximum size value. Later, a top-down trace back 

procedure can be executed to find all the vertices in this maximum independent set. In this 

example (Fig 3.3), the optimal result can be accessed from the 2nd row (g=0, h=1) and the MIS 
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optimal result can be (a=0,b=1,c=0,d=0,e=1,f=1,g=0,h=1), which means the vertex set is 

{b,e,f,h}. Based on the previous analysis, it is not difficult to see that the time complexity of this 

dynamic programming algorithm in a graph G will be bounded by O(2t+1*n) where n is the 

number of tree bags in T, and the memory assumption is also bounded by O(2t+1*n). Because any 

non-redundant tree decomposition of a graph with n vertices has at most n tree nodes [7], and 

also a binary tree decomposition can be constructed in polynomial time, the running time for a 

binary tree decomposition will be bounded by O(2t+1*|V|) and memory will be bounded by 

O(2t+1*|V|) for a graph G=(V, E). 

3.3 DISCUSSION 

From the above analyses, it is not hard to see that the running time of this dynamic programming 

is exponential in the tree-width of the graph. Moreover, the memory space consumption (the 

dynamic programming tables) is also exponential in the tree-width. These are the two factors that 

need to be considered to make the tree decomposition based dynamic programming algorithm 

efficient.  

Indeed, the main bottleneck for the efficiency often is memory consumption but not running 

time [16]. So here we will focus on the discussion about how to save memory in the dynamic 

programming algorithm. For those who are interested in getting the small tree-width, please refer 

to Bodlaender and Koster’s paper [2, 3]. 

3.3.1 HOW TO SOLVE THE MEMORY LIMITATION PROBLEM 

Aspvall et al. [8] dealt with this space problem by an optimal traversal of the decomposition tree 

in order to minimize the number of dynamic programming tables stored simultaneously, but this 

technique seems to work in the decision problem only [9]. Nadja Betzler [9] proposed the anchor 

technique to save the memory in dynamic programming; they tested on the nice tree 
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decompositions and reported the 60% memory savings. We believe that nice tree decomposition 

is good for theoretical analysis, but not ideal to be applied in the dynamic programming phase. 

This is because one nice tree decomposition has many tree nodes redundancy. In the following 

we provides some mapping functions to save the memory on the general tree decomposition [10]. 

Our solution to save the memory when doing tree decomposition based dynamic 

programming was the main idea as follows. Vertices in each tree bag will be classified into two 

categories. One is the set of vertices that occur in both this and its parent tree bags (overlap part). 

The other is the rest of the vertices (non-overlap part). During the dynamic programming, the 

computation information in each dynamic programming table is stored for the following trace-

back phase. Memory for the non-overlap vertex set can be represented by one column in the 

table to store the index for the optimal combination of the non-overlap vertices because the 

optimal combination will only be computed once during the bottom-up process. While in the 

trace-back process, the index for the non-overlap vertices will be used to compute the optimal 

combination for those non-overlap vertices. This memory saving strategy has been applied in the 

program of RNATOPS [11] we developed in chapter 4. The other memory saving strategy is: for 

those overlap vertices in the tree bag, space is only allocated for three properties: valid, size and 

the pointer to the max value of non-overlap combination, space for the combination of the 

overlap vertices can be saved because this combination can be computed by the index of the 

overlap vertices in the table. This allows the space consumption for each internal tree bag to be 

reduced from the original 2t+1*2 to the current 2s*3 where t is the tree-width and s is the number 

of vertex shared with its parent tree bag, ts ≤ . In total, the space consumption will be reduced 

from 2t+1*2* |V| to 2s*3*|V|Internal_Tree_Bag + 2t+1*2*|V|Leaf_Tree_Bag. 



 

27 

3.4 SUMMARY OF THE CHAPTER 

This chapter reviews the theoretical techniques that will be used in the following chapters to 

solve the RNA pseudoknot and RNA secondary structure variation search problem. They are the 

graph treewidth and its dynamic programming algorithm. The example of the MAXIMUM 

INDEPENDENT SET problem is presented to illustrate the tree decomposition based dynamic 

programming algorithm. The issue arising from the application, space limitation, is discussed. 
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4.1 ABSTRACT 

Motivation: Searching genomes for non-coding RNAs (ncRNAs) by their secondary structure 

has become an important goal for bioinformatics. For pseudoknot-free structures, ncRNA search 

can be effective based on the covariance model and CYK-type dynamic programming. However, 

the computational difficulty in aligning an RNA sequence to a pseudoknot has prohibited fast 

and accurate search of arbitrary RNA structures. Our previous work introduced a graph model 

for RNA pseudoknots and proposed to solve the structure–sequence alignment by graph 

optimization. Given k  candidate regions in the target sequence for each of the n  stems in the 

structure, we could compute a best alignment in time )( 1nkO t+  based upon a tree width t  

decomposition of the structure graph. However, to implement this method to programs that can 

routinely perform fast yet accurate RNA pseudoknot searches, we need novel heuristics to ensure 

that, without degrading the accuracy, only a small number of stem candidates need to be 

examined and a tree decomposition of a small tree width can always be found for the structure 

graph. 

Results: The current work builds on the previous one with newly developed preprocessing 

algorithms to reduce the values for parameters k  and t  and to implement the search method into 

a practical program, called RNATOPS, for RNA pseudoknot search. In particular, we introduce 

techniques, based on probabilistic profiling and distance penalty functions, which can identify 

for every stem just a small number k  (e.g. 10≤k ) of plausible regions in the target sequence to 

which the stem needs to align. We also devised a specialized tree decomposition algorithm that 

can yield tree decomposition of small tree width t (e.g. 4≤t ) for almost all RNA structure 

graphs. Our experiments show that with RNATOPS it is possible to routinely search prokaryotic 
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and eukaryotic genomes for specific RNA structures of medium to large sizes, including 

pseudoknots, with high sensitivity and high specificity, and in a reasonable amount of time. 

Availability: The source code in C++ for RNATOPS is available at www.uga.edu/RNA-

Informatics/software/rnatops/. 

4.2 INTRODUCTION 

Non-coding RNAs (ncRNAs) have been shown to be involved in many biological processes 

including gene regulation, chromosome replication and RNA modification (Frank and Pace, 

1998; Nguyen et al., 2001; Yang et al., 2001). Searching genomes using computational methods 

has become important for annotation of ncRNAs (Griffiths-Jones, 2007; Hofacker, 2006; Lowe 

and Eddy, 1997; Rivas and Eddy, 2001; Rivas et al., 2001; Washietl et al., 2005). In general, to 

annotate an individual genome for a specific family of ncRNAs, a computational tool needs to 

scan through the genome and align its sequence segments to some structure model for the 

ncRNA family. Those segments with significant alignment scores are then reported as the results. 

An algorithm that can perform an accurate sequence–structure alignment is thus the core of such 

a searching tool. 

A few programs (Brown and Wilson, 1996; Klein and Eddy, 2003; Liu et al., 2006; Lowe 

and Eddy,1997) have been developed for genome annotation using the covariance model (CM) 

introduced by Eddy and Durbin (1994). Based on a CM, the optimal alignment between a 

sequence and a pseudoknot-free structure can be performed with a dynamic programming 

algorithm in )( 3WNO , where W  is the size of the model and N  is the length of the sequence. In 

particular, RSEARCH (Klein and Eddy, 2003) and Infernal (http://infernal.janelia.org/) are two 

programs that can perform such searches. CM-based methods can achieve high searching 

accuracy; however, due to the time complexity needed for sequence–structure alignment, a CM-
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based search may be inefficient on complex or large RNAstructures. Further, pseudoknot 

structures, which contain at least two interweaving stems, cannot be modeled with CMs. 

Searches on genomes can be speeded up with filtering methods (Bafna and Zhang, 2004; Lowe 

and Eddy, 1997; Weinberg and Ruzzo, 2004, 2006; Zhang et al., 2005). Sometimes it is possible 

to efficiently remove genome segments unlikely to contain the desired pattern. For example, in 

tRNAscan-SE (Lowe and Eddy, 1997), two efficient filters are used to preprocess a genome and 

remove the part that is unlikely to contain the searched tRNA structure; the remaining part of the 

genome is then scanned with a CM to identify the tRNA. FastR (Bafna and Zhang, 2004) 

considers the structural units of an RNA structure; it evaluates the specificity of each structural 

unit and construct filters based on the specificity of these structural units. In Weinberg and 

Ruzzo (2004), an algorithm is developed to safely break the base pairs in an RNA structure and 

automatically select filters from the resulting Hidden Markov Model (HMM). These approaches 

have significantly improved the computational efficiency of genome searches. 

RNA structures that contain pseudoknots pose special problems. A number of creative 

approaches (Cai et al., 2003; Rivas and Eddy, 1999, 2000; Uemura et al., 1999) have been tried 

to model the crossing stems of pseudoknots; however, the time and space complexities for 

optimal sequence–structure alignment based on these models are )( 4NO  or )( 5NO . These 

models are not practical for efficient searching. Intersecting CMs have been proposed for 

pseudoknots (Brown and Wilson, 1996), and used to search small genomes (Liu et al., 2006), but 

these have the same efficiency problem. Several heuristic search methods have been developed 

that can work with RNAs containing pseudoknots; as heuristics, each has some limitations. For 

example, ERPIN (Gautheret and Lambert, 2001), considers the stem loops contained in a 

secondary structure. The genome is then scanned to find the possible hit locations for each stem 
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loop.Ahit for the overall structure is reported when there exists a combination of hit locations for 

different stem loops that conform with the overall structure. However, ERPIN does not allow 

gaps in the alignment and thus may have low sensitivity when the target is a remote homolog of 

the query structure model. 

Our previous work introduced a graph modeling method that can profile the secondary 

structure of a family of RNAs including pseudoknots (Song et al., 2005, 2006). In this method, 

the topology of an RNA structure is specified with a mixed graph, with non-directed edges 

denoting stems and directed edges for loops. With this model, we proposed to efficiently solve 

the structure–sequence alignment problem, including pseudoknots, by exploiting the small tree 

width (Robertson and Seymour, 1986) demonstrated by the structure graphs of almost all 

existing RNA pseudoknots. Theoretically, given k  (pairs of) regions as candidates for each of 

the n  stems in the structure and given a tree decomposition of tree width t  for the structure 

graph, the alignment can be computed in time )( 1nkO t+ . However, to implement the algorithm 

into computer programs that can routinely perform fast, accurate RNApseudoknot search, 

heuristics for the preprocessing steps need to be able to associate results with small values of 

parameters k  and t  while maximizing search accuracy. 

In this article, we present our current work, built upon the previous one, to develop a 

practical program, called RNATOPS, for RNA pseudoknot search. In this work, we have 

introduced new, effective heuristic techniques for generating stem candidates and for tree 

decomposition of RNA structure graphs. In particular, parameter k  can be chosen relatively 

small (e.g. 10≤k ) to ensure both accuracy and efficiency of the search. The alignment algorithm 

(and thus the search algorithm) runs in time )( 1nkO t+ , linear in the number n  of stems in the 

profiled RNA structure. It is scalable with the complexity of the profiled structure because the 
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yielded tree decompositions have small tree width t , 4≤t , for almost all RNA secondary 

structures (including pseudoknots). In this article, we evaluate RNATOPS with search tests 

conducted on several medium to large size RNAs (including pseudoknots) and make 

comparisons with existing RNA structure search programs such as Infernal. 

4.3 APPROACH 

We refer the reader to the publications (Song et al., 2005, 2006) for detailed discussions of our 

graph modeling method for RNA structures and on the solution to structure–sequence alignment 

based on tree decomposition of the structure graph. In this section, we give a brief recap of the 

necessary notions and techniques relevant to the current article.We then present the new heuristic 

techniques for stem candidate identification and for tree decomposition designated for 

RNAstructure graphs. These heuristic techniques aim at achieving a fast structure–sequence 

alignment without degrading the accuracy. 

4.3.1 A GRAPH MODEL FOR STRUCTURE SEARCH 

Our structure model based on a mixed graph specifies the consensus structure of an RNA family 

as a relation among all involved structural units: stems and loops. In this graph, each vertex 

defines either base pairing regions of a stem; two vertices representing two complementary 

regions (forming a stem) are connected with a nondirected edge. Two vertices defining two 

regions that are physically next to each other (forming a loop) are connected with a directed edge 

(from 5′  to 3′ ). The individual structural units are stochastically modeled; every stem is 

associated with a simplified CM and every loop with a profile HMM. The structure graph is 

capable of modeling RNA structures resulting from multi-body interactions of nucleotides, such 

as triple helices, as well as pseudoknots. Figure 4.1 in Supplementary Material shows the 

structure graph of a typical bacterial tmRNA. 
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 Searching in a target genome consists of sliding a window of appropriate size along the 

target genome, then testing for a possible alignment of the structural model with the sequence 

segment within the current window. With the graph model, the structure–sequence alignment is 

identical to the task of finding the optimal subgraph of a graph G  isomorphic to another graph 

H , where H  is the RNA structure graph and G  is constructed from the target sequence in a 

preprocessing step. We proposed two methods to cope with the computational intractability of 

the subgraph isomorphic problem. One method was to pre-identify in the target sequence top k  

candidates for every stem in the structure. The other method was to tree decompose the structure 

graph. Based upon a tree decomposition, a dynamic programming algorithm could solve the 

subgraph isomorphic (thus the structure–sequence) problem in theoretical time )( 1nkO t+ , where 

n  is the number of stems in the structure and t  is the tree width of the graph tree decomposition 

(Song et al., 2005, 2006). This article presents new heuristic techniques to support these two 

methods. 

4.3.2 MODEL TRAINING 

Model training involves defining the structure graph, individual CMs and profile HMMs from a 

set of training RNA sequences given in a pasta file. The pasta format (pairing plus fasta) is a 

representation we developed for multiple structural alignment and consensus structure of RNA 

sequences (Fig. 4.2 in Supplementary Material). It labels stem positions with an upper case letter 

for one side, the corresponding lower case letter for the other side. The first line of the file 

denotes the consensus structure using matching (upper and lower case) letters for conserved base 

pairs and ‘.’s for unpaired nucleotides or possibly consensus insertions. Representation with 

pairing letters has the advantage of being able to denote arbitrary RNA structures, including 

pseudoknots and triple helices.A structure graph is produced from the consensus structure, where 
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one vertex is for one letter, one non-directed edge connects the two vertices of matched letters 

and one directed edge connects two neighboring letters (from 5′  to 3′ , Fig. 4.1 in Supplementary 

Material). 

 The rest of the lines in the pasta file are RNA sequences structurally aligned to the 

consensus structure, possibly containing ‘-’s for deletions. Individual CMs and profiles HMMs 

are constructed from the multiple structure alignment as follows. Every stem of base-paired 

regions (with matching letters) produces one simplified CM that does not contain bifurcation 

rules or rules for the sequence connecting the two base-paired regions. One profileHMM is 

generated from every two neighboring base regions. The profile HMM allows possible match, 

insertion and deletion states in every column of the multiple alignment. The parameters of these 

stochastic models are computed from the multiple structural alignment using the maximum 

likelihood method. To avoid over-fitting the models, we incorporate background statistics. In 

particular, we allow pseudocounts for nucleotides in the match, insertion and deletion states of 

the profile HMM. For the simplified CM, a 4×4 prior probability matrix pP  for base pairs and a 

weighting parameter w are introduced so that the probability of a base pair ),( yxP  is defined as 

the weighted sum ),()1(),( yxPwyxwP pt −+ , where tP  is the base pair probability matrix 

obtained from the training data. 

4.3.3 IDENTIFYING STEM CANDIDATES 

The sequence segment within the sliding window is preprocessed to identify top k  candidates 

for the CM of every stem. Given a CM modeling some consensus stem, the score of every 

possible structural motif within the window aligned to the model is computed (Fig. 4.3 in 

Supplementary Material). Candidates can be found by a simple dynamic programming algorithm; 

we describe here four heuristic techniques developed to ensure that the correct motif structure for 
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the CM, if it does exist in the sequence, is highly likely to be among the selected top k  

candidates for some small value of k . 

(1) Regions from which candidates can be selected are constrained according to the statistical 

distribution of the consensus stem in the sample (training sequences). In particular, we 

assume a Gaussian distribution for the position of the consensus stem in the RNA structure. 

The constrained region for the correct motif of the consensus stem is within a certain 

number (e.g. 3) of the SD of the average position. 

(2) For training sequences that demonstrate a large SD for the position of some consensus stem, 

training sequences are partitioned into clusters, each with a small SD for the stem position. 

Therefore, more than one (constrained) region may be derived for the correct motif of the 

consensus stem. 

(3) The candidates so identified are then ranked again according to statistical distributions of 

various length parameters associated with a consensus stem, including the length of the 

stem, the distance between the two stem arms and the head and tail offsets. The scores of 

every possible motif candidate c  of the CM M  are recalculated according to the formula: 

),()1(),(),( McPuMcuAMcS −+= , where ),( McA  is the logodds score from the 

alignment, ),( McP  is the penalty function for the deviations of all lengths list above from 

their means and u , 10 ≤≤ u , is a weighting parameter. In particular, ),( McP  is computed 

based on the log score )/1log( 2cK , where 1/ ≥−= σμlK  for the length l  deviating from 

mean μ  (with a SD σ ) and c  is a selected constant. 

(4) Finally, since it is possible that several structural motifs, heavily overlapping in their 

positions, may all have decent alignment scores with respect to a stem model, it suffices to 
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record only one representative for them. Strategies have been used to select representatives 

and to ensure a low value for k , the number of top candidates. 

4.3.4 TREE DECOMPOSITION FOR STRUCTURE GRAPHS 

With our model, almost all ncRNAs have structure graphs of small tree width. However, finding 

the optimal tree decomposition (one with the smallest tree width) is NP-hard. Available efficient 

tree decomposition algorithms are for general graphs and usually do not guarantee the optimal 

tree width. For RNA structure graphs, we develop a linear-time greedy algorithm that can yield 

tree decomposition of tree width almost always bounded by 4. An earlier version of this 

algorithm was given in (Song et al., 2005), but it used the idea of minimum fill-in and may 

produce decompositions of unnecessarily larger tree widths. We present a self-contained version 

of the algorithm here. 

First, the algorithm removes arcs (i.e. non-directed edges) in the structure graph that cross 

with other arcs. It does this by greedily removing the arc crossing the most other arcs and 

repeating the step on the remaining graph until there is no crossing arc in the graph (Fig. 4.4a and 

b in Supplementary Material). This step actually removes stems involved in pseudoknots in the 

corresponding RNA structure; a crossing arc-free structure graph corresponds to a pseudoknot-

free RNA structure. Such a graph is an outer-planar graph that has tree width 2, whose optimal 

tree decomposition can be found as follows. 

Note that in a structure graph, the vertices are arranged in the direction of from 5′  to 3′  (left 

to right in the figures) based on the directed edge relation. We also add the source s and sink t as 

the left most and the right most vertices, respectively. We use notation a
bH  to represent the 

subgraph induced by the set of vertices ‘from’ vertex a ‘to’ vertex b (inclusive, from 5′  to 3′ ). 
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Then to decompose the subgraph s
tH , the algorithm handles the following three major scenarios 

recursively (and the recursive process terminates when the considered subgraph is empty). 

(1) If (s,X) is a directed edge but (x,t) is not, where (X,x) is an arc (Fig. 4.5a in Supplementary 

Material), then the root node {s,t} has child node {s,x,t}, which in turn has child node {s,X,x} 

(Fig. 4.5b in Supplementary Material). Node {s,X,x} will be the root for the subtree 

generated from subgraph X
xH  and node {s,x,t} will be the root for the subtree generated from 

subgraph x
tH . 

(2) If (s,X) and (x,t) both are directed edge, where (X,x) is an arc (Fig. 4.5c in Supplementary 

Material), then the root {s,t} has child node {s,X,t}, which in turn has child node {X,x,t}. 

Node {X,x,t} will be the root for the subtree generated from subgraph X
xH  (Fig. 4.5d in 

Supplementary Material). 

(3) If (s,X) is a directed edge but (X,x) is not an arc (Fig. 4.5e in Supplementary Material), then 

the root {s,t} has a child node {s,X,t}, which in turn will be the root for the subtree generated 

from subgraph X
tH (Fig. 4.5f in Supplementary Material). 

The algorithm modifies the resulting tree decomposition as follows. For every removed arc 

(v, v′ ), the algorithm identifies two nodes, one containing vertex v and another containing its 

counterpart v′ . For every tree node on the path from the former node to the latter, the algorithm 

adds v to it (Fig. 4.6 in Supplementary Material). This gives a tree decomposition for the original 

structure graph. 

4.4 IMPLEMENTATION 

RNATOPS, implemented in language C++, has been compiled and tested on several systems, 

including Desktop Linux computers, a Linux cluster and a SUN workstation running SunOS 5.1. 
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4.5 EVALUATION 

To evaluate the search program and the effective of the heuristics, we tested RNATOPS using 

four types of RNAs of medium to large sizes: bacterial tmRNA, bacterial RNaseP type B RNA, 

yeast telomerase RNA and bacterial 16S rRNA. We compare both search accuracy and efficiency 

of RNATOPS with those of Infernal and FastR, two of the best known general-purpose programs 

for RNAstructure search. 

4.5.1 DATA PREPARATION AND TESTS CONDUCTED 

Bacterial tmRNAs (Moore and Sauer, 2007; Nameki et al., 1999) have a complex structure 

containing four pseudoknots; there are 178 molecules in the Rfam (Griffiths-Jones et al., 2005) 

seed alignment with an average length of 364 bases (Fig. 4.1 in Supplementary Material). The 

tmRNA sequences have variations in structure with certain stem loops present in some sequences 

and absent in others. We extracted a subset of 43 tmRNA sequences from the 178 molecules in 

the alignment, which did not differ from each other in the presence or absence of any stem loops, 

and for which the entire bacterial genome sequence was available; columns consisting entirely of 

gaps were then removed from the alignment. 

RNaseP, bacterial type B, RNAs have multiple stem loops and one sophisticated pseudoknot 

(Brown, 1999; Harris et al., 2001; Fig. 4.7 in Supplementary Material). There are 31 sequences 

of average length 367 in the Rfam seed alignment.We extracted a subset of 10 sequences which 

did not differ from each other in the presence or absence of any stem loops; the full genome 

sequence was available for 7 of the 10. 

Yeast telomerase RNAs contain a conserved, essential, pseudoknot within a large stem loop 

(Chen and Greider, 2004). We used an alignment, of length 834, for this region (Dandjinou et al., 

2004) of six Saccharomyces species telomerase RNAs. While the genome of S.cerevisiae has 
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been completely sequenced, those of the other Saccharomyces species are available in varying 

degrees of completeness and assembly.We were able to collect four Saccharomyces genomes 

total, three in addition to S. cerevisiae, to search. 

The bacterial 16S rRNA is a conserved molecule which has been extensively used for 

phylogenetic studies of bacteria. We obtained an alignment (of 1570 bp) of the 16S rRNA for 

gammaproteobacteria from the ribosomal database (Cole et al., 2007); from this we selected 

those sequences which contained an identical match in a fully sequenced bacterial genome. 

Although many gammaproteobacteria genomes have been sequenced, for only 12 was there an 

exact match between the database sequence and a genomic sequence, which we required to take 

advantage of the expert alignment from the database. These sequences were used as the training 

set. 

For all the genomic searches, we followed a cross-validation approach in which the RNA 

found in a genomic sequence was removed from the alignment, and the remaining sequences 

were used as a training set for a search on that genome. 

To search genomes of a considerable length, we identified highly conserved motifs of the 

RNAmolecules, then searched the genomes with these, after which we examined the region 

around a potential hit for a structural match to the whole molecule. We note that a program that 

can automatically identify a conserved motif as the optimal filter is currently being developed for 

RNATOPS. 

4.5.2 COMPARISON TO OTHER SEARCH PROGRAMS 

To compare with Infernal (infernal.janelia.org), we downloaded Infernal from its website, 

compiled it and installed it, and compared its performance on one of the same Linux computers 
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we used for testing of RNATOPS. Both Infernal and RNATOPS use multiple structural 

alignments for model training and use filters to speed up the search. 

We used FastR (Bafna and Zhang, 2004; Zhang et al., 2005) through job submission at a 

website. As such, it is difficult for us to compare the performance of FastR on a server of 

unknown configuration and numbers of cpus with the performance of RNATOPS. During the 

times we tested it, our analyses were the only ones listed in the job queue. We estimated the time 

of the run from the time of submission and the time at which the job finished e-mail was sent. 

The user can pick from pre-defined profiles for searching. It is unknown to us if these profiles 

included the tmRNAs for the genomes we tested. Hence these FastR tests may or may not 

correspond to the training sets we used, in which we left out the RNAs for the genome targeted 

for searching. 

4.5.3 SEARCH ACCURACY 

4.5.3.1 BACTERIAL TMRNAS  

We searched 43 bacterial genomes with RNATOPS for tmRNAs using a leave-one-out cross-

validation approach. Table 4.1 in Supplementary Material gives a comparison of the results 

achieved with RNATOPS with those of Infernal. RNATOPS was evaluated with varying 

parameter k, the number of candidate regions examined for each stem in the structure. Increasing 

k  from 10 to 15 to 25 increased the sensitivity of the whole structure search, but also increased 

the time taken. For example, at 10=k , the bacterial genome searches gained 88% sensitivity and 

100% specificity; at 25=k , the sensitivity increased to 98%. Infernal had 100% sensitivity and 

specificity for these searches with comparable times spent. 

We observed that the tmRNAs missed by RNATOPS at the low k  values generally had 

one or more portions in the structure, which significantly deviated from the consensus structure. 
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In particular, several stems in these sequences consisted of mainly rare, non-canonical base pairs, 

which may have been placed in pairing positions during the multiple alignment process. 

 We also compared the alignments of the tmRNA structures found by Infernal and 

RNATOPS. Four structures identified by RNATOPS have stem alignments off their correct 

positions for more than a few nucleotides in their alignments; Infernal identified seven such 

structures. There are in total nine such stem misalignments in the structures identified by 

RNATOPS; there were total 17 in those structures identified by Infernal. In addition, because 

Infernal is based on the pseudonot-free CM, in a structure alignment, regions ‘belonging to’ a 

pseudoknot may be mistakenly aligned to pseudoknot-free substructures. In particular, in this set 

of search tests, there were totally five such incorrect assignments found in the search results of 

Infernal while the issue was not raised on RNATOPS (Table 4.6 in Supplementary Material). 

 We also tried the search with FastR web server, which includes tmRNAs as a profile. We 

selected one bacterial genome on which RNATOPS successfully found the tmRNA, and one 

genome on which RNATOPS failed to find the tmRNA, then submitted these to the FastR server. 

FastR gave the same results as RNATOPS with these two sequences, finding the structure in one 

sequence and missing it in the other (Table 4.2 in Supplementary Material), again suggesting 

there is something unusual about the tmRNA that both programs missed. Several additional 

bacterial genomes were submitted to the FastR server, but no results were returned. 

4.5.3.2 BACTERIAL RNASEP (BACT. B) RNAS 

The bacterial RnaseP (Bact. B) RNA is similar in size to the tmRNAs, but has a more complex 

pseudoknot structure. Both the RNATOPS and Infernal programs had 100% sensitivity and 

100% specificity in finding the RNaseP RNAs in the seven genomes tested (Table 4.3 in 

Supplementary Material); RNATOPS identified two structures whose alignments put in total four 
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stems off their correct positions by more than a few nucleotides (Table 4.6 in Supplementary 

Material).A comparison with the tmRNA results suggests that the more complex pseudoknot 

structure in RNaseP (Bact. B) was handled well by RNATOPS, with less than a doubling in time 

taken for similar sized genomes, while Infernal took about nine times as long. 

4.5.3.3 SACCHAROMYCES TELOMERASE RNAS  

The conserved core region of Saccharomyces telomerase RNAs is more than twice as long as the 

bacterial tmRNAs or RNaseP RNAs, and the Saccharomyces genomes are 2 to 10 times larger 

than the bacterial genomes tested. The pseudoknot structure itself is not complex, but it is 

contained within a stem-loop and some additional stem-loops are present. Both programs found 

the four Saccharomyces fungal telomerase RNAs perfectly in their genomes; RNATOPS took 

from 5.5 to 6.4 min, while Infernal took from 295 to 654 min for the same searches (Table 4.4 in 

Supplementary Material). 

4.5.3.4 BACTERIAL 16S RRNAS  

The bacterial 16S rRNAs are the longest molecule we tested with lengths around 1500 bp. The 

results were similar to the telomerase and RNAseP RNAs, with both RNATOPS and Infernal 

finding the target with perfect specificity and sensitivity, but with RNATOPS performing the 

search in an average of 14.1 min as opposed to 88 min for Infernal (Table 4.5 in Supplementary 

Material). 

4.5.4 EFFICIENCY 

The theoretical time of the search method can be expressed as )( NTO a , where aT  is the time 

needed for the structure alignment between the structure model and the sequence segment within 

the window sliding through the genome of N  nucleotides. aT  actually consists of two parts: the 

time for the preprocessing step and the time for the dynamic programming step for the subgraph 
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isomorphism based upon a tree decomposition. The latter takes )( 1nkO t+  time, where t , usually 

not >4, is the tree width of the tree decomposition and n  is the number of stems in the structure. 

Recall that k  is the number of candidates selected for the simplified CM model of a stem during 

the preprocessing; it is a relatively small parameter that can be used to tune the accuracy of the 

alignment. The time for the preprocessing step is )( 2MnRO , where M  is the maximum size of a 

CM and R  is the maximum length of the sequence regions from which candidates are selected. 

These regions are fairly restricted by the preprocessing techniques we introduced here (Section 

2.3). Our experiments showed that the preprocessing time )( 2MnRO  is roughly the same as the 

time )( 1nkO t+  needed for the dynamic programming step when k  is around 10 and that it is 

dominated by the latter for larger values of k  or t . So the time for searching a whole genome is 

very much scalable with the size and complexity of the RNA structure searched. 

 Overall, our results indicate that the RNA graph model plus tree decomposition method 

incorporated into RNATOPS performed very well in efficiency while maintaining high search 

accuracy. The advantage of RNATOPS in speed, compared to other programs, increased as the 

length of the modeled molecule increased. This is because its search time depends on the number 

of stems, not the number of nucleotides, in the structure. Thus, the efficiency advantage becomes 

even more significant for RNATOPS to search for the larger yeast telomerase RNAand bacterial 

16S rRNA (Tables 4.4 and 4.5 in Supplementary Material). Note that RNATOPS search 

accuracy can be tuned by the user through parameter k , to balance search sensitivity versus 

running time. The problems that RNATOPS had, where target RNAs were not found, were in 

stem-loop regions of tmRNAs where individual molecules deviated from the consensus structure; 

increasing the k value allowed RNATOPS to resolve most of these, at the cost of a slight 

decrease in speed. 
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4.6 DISCUSSION 

Heuristic techniques have been presented in this article with the aim to develop a fast and 

accurate RNApseudoknot search program based on our previous work in an RNA graph 

modeling method. Through search tests on the implemented program RNATOPS, we have 

shown its performance comparable with or better than that of Infernal and FastR in identifying 

large or complex RNA structures including pseudoknots. We discuss in the following the 

strengths and weaknesses of RNATOPS. 

One apparent advantage of RNATOPS is its ability to detect pseudoknots accurately without 

compromising computation time. Theoretically, RNATOPS can feasibly consider all 

combinations of stems for pseudoknot alignment through a non-conventional, tree 

decomposition-based dynamic programming. Detecting a pseudoknot as a whole structure avoids 

the difficulty with pseudoknot-free models that the predicted alignment sometimes incorrectly 

forms pseudoknot-free substructures in a ‘pseudoknot territory’. 

Another advantage of RNATOPS is its search speed. The theoretical time )( 1nkO t+  for 

structure–sequence alignment with RNATOPS has been effectively speeded up by the introduced 

heuristic techniques that can yield small values for k  and t . Another important factor 

contributing to the efficient time is parameter n , the number of stems, not the number of 

nucleotides in the structure which would otherwise be at least one magnitude larger. As shown in 

the test results, RNATOPS has essentially broken the inefficiency barrier that might have 

heldback other pseudoknot detection models, reducing the computation time from hours to 

minutes. 

Nevertheless, since the introduced heuristics produce only k  pairs of candidate regions for 

each individual stem in the structure to align to, for a small k , they may not include the real 
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candidate of the stem and may bring inaccuracy to the search result. In particular, when a stem in 

the RNA contains non-canonical base pairings, for which candidates may not be accurately 

identified, it is possible that all pairs of candidates between this stem and another are 

‘incompatible’, resulting in an invalid alignment and lower sensitivity. This issue does not exist 

in the CM–CYK-based programs like Infernal as its stem candidates are found globally instead 

of locally. 

Another issue with the current version of RNATOPS is the computation of the structure–

sequence alignment without reusing the data from the previous scanning window frame. In fact, 

the CM–CYK-based search method can save a factor of )(MO  computation time by reusing data 

between two consecutive window frames (Durbin et al., 1998), where M  is the CM model 

length. This issue might have cost RNATOPS some speed in the search tests; however, we 

believe that it is possible to make technical improvements for RNATOPS in reusing the data 

between scanning window frames to further speed up the search. 

We consider two future developments for RNATOPS. First, the graph model can also easily 

profile structures caused by nucleotide interactions beyond the binary base pairing. For example, 

the graph model makes it easy to profile tertiary interactions or triple helices recently found in 

the telomerase RNA genes of human and yeast genomes (Chen and Greider, 2004; Lin et al., 

2004; Shefer et al., 2007; Theimer et al., 2005). Although one of the two stems involved in such 

a triple helix is actually formed by two base pairing regions that are arranged in the same 

direction (5′  to 3′ ), our approach will allow the stem to be modeled with an individual CM the 

same way as modeling a regular stem, without the need of additional, new techniques. 

Second, the current implementation of program does not allow the search for an instance of 

ncRNA in the target genome that differs in structure significantly from those in the training set; 
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nor can the current program consider alternative or optional substructures in RNAs. One solution 

to this will be to develop probabilistic profiling of variable substructures that may occur in the 

structure model. In particular, our modeling method makes it possible to characterize and 

implement the structure of an RNA family with a graph model that contains probabilistic edges 

to specify variable substructures. This will bear similarity to earlier methods by Holmes (2004) 

and Rivas (2005) but with the ability to include pseudoknots. 
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4.9 SUPPLEMENTARY MATERIAL 

This supplementary material contains the figures and tables referenced in the paper. 

 

Figure 4.1 The structure graph for the consensus structure of bacterial tmRNAs, which contain 

four pseudoknots. Each stem is defined by an arc linking the upper and lower cases of the same 

letter. The red arcs indicate those stems causing pseudoknots. 

 

>} 

MMMMMMMLLLLLJJJ.BBBBBBjjjlllll..mmmmmmm.......bbbbbb 

>BX248356 
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UGUCAGCCUAGA-UUCGUCUCUGG-UUUAGUGUCUGGCAUCGAUUAAGAGAC 

>BX927150 

UGUCAGCCUAGGGAA-GUCCCUGA-CCUAGAUCCUGGCAUCGACUAAGGGAC 

>BA000035 

UGUCAGCCCGGGGAU-GUCCCUGC-CCCGGAUGCUGGCAUCGACUAAGGGAC 

>AY911523 

UGUCAGUCCGGGUUC-GCCCUCGG-CCCGGGUACUGGCAUCAGCUAGAGGG- 

Figure 4.2 The pasta representation for the second pseudoknot in the consensus structure of 

bacterial tmRNAs with some example sequences structurally aligned. The >} in the first line 

indicates that the line following it is a structure label (pairing) line; the sequences follow in fasta 

format. 
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Figure 4.3 Schematic illustration for the preprocessing step to identify the top k candidates for 

each of the four stems of the tRNA consensus structure.  Two candidates have been found for 

every stem in the target sequence, represented by two pairs of (possibly overlapping) rectangles 

(one pair hollow and the other solid) with the same color used in the tRNA structure. 

 

(a) Structure graph for the second pseudoknot of the consensus structure of bacterial tmRNAs, 

where vertices s and t are added for technical purposes. 
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(b) The structure graph in (a) after removing arc (B, b) that crosses with the most other arcs. 

 

Figure 4.4 

 

(a) Recursive case 1 for Ht
s : when (x, t) is not a directed edge. 

 

(b) Tree decomposition for (a). 

 

(c) Recursive case 2 for Hts: when (x, t) is a directed edge. 

 

(d) Tree decomposition for (c). 
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(e) Recursive case 3 for Hts: when (X, x) is not an arc. 

 

(f) Tree decomposition for (e). 

 

Figure 4.5 Recursive cases for the specialized tree decomposition algorithm. T(Ht
s) denotes the 

tree decomposition for subgraph Ht
s . Node {s, t} is the root. 

 

 

Figure 4.6 Tree decomposition for the structure graph shown in Figure 4.4 (a). It is obtained by 

first applying the specialized tree decomposition algorithm on the graph in Figure 4.4 (b) and 

then adding the vertex b (denoted with red, bold letter b) to every tree node on the path from the 

node containing b to the node containing B. The tree width is 3. Node {s, t} is the root. 
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Figure 4.7 RNaseP (bacterial B) RNA structure graph 

 

Table 4.1 tmRNA search results and comparison between RNATOPS and Infernal. 

RNATOPS 
 k=10 k=15 k=25 Infernal 
Number of Training Sequences 42 42 
Filter Used HMM HMM 
Length of Filter 28 Not available 
Number of Genomes Searched 43 43 
Max/Min/Avg Genome Length 
(Mbps) 6.9/0.6/3.4 6.9/0.6/3.4 
Max/Min of Time Used (Minutes) 9.3/0.04 13.1/0.12 39.2/0.3 18.8/2.2 
Avg/Std of Time Used  
per Genome (Minutes) 7.9/1.2 11.8/1.6 35.6/4.1 10.7/4.5 
Sensitivity 38/43 40/43 42/43 100% 
Specificity 100% 100% 100% 100% 
 

Table 4.2 tmRNA search results and comparison between RNATOPS and FastR. 
 RNAToPS FASTR 
Number of Training 
Sequences 

42 (364 bp) online profile* 

Filter Used HMM built-in 
Filter Size 28 bp not available 
Number of Genomes 
Searched 

43 
(Length avg. 3.4M bp) 

2* 
(4.5M bp & 0.6M bp) 

Sensitivity 42/43 (k=25) 1/2* 
Specificity 100% 100% 
Time Per Genome 35 mins 58.3 hrs, 9.6 hrs 

(remote server) 
Time Per M bp 11 mins 13.3 hrs 

(remote server) 
 
*The FastR server includes tmRNAs as a pre-computed profile which may contain the RNA for 
the genome being searched. We selected one bacterial genome on which RNAToPS successfully 
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found the tmRNA, and another genome on which RNATOPS failed to find the tmRNA, then 
submitted these to the FastR server.  FastR gave the same results as RNATOPS with these 2 
sequences, finding the structure in one sequence in 58.3 hours and missing it in the other in 9.6 
hours. 
 
Table 4.3  RNaseP (Bact B) RNA search results and comparison between RNATOPS and 
Infernal. 
 RNATOPS (K=10)  Infernal 
Number of Training Seqs 9 9 
Filter Used HMM HMM 
Length of Filter 36 Not available 
Number of Genomes Searched 7 7 
Max/Min/Avg Genome Length  
(M bp) 5.1/1.8/3.1 5.1/1.8/3.1 
Max/Min of Time Used (Minutes) 18.7/9.5 150.4/58.5 
Avg/Std of Time Used  
per Genome (Minutes) 14.7/3.7 98/27.4 
Sensitivity 100% 100% 
Specificity 100% 100% 
 
Table 4.4  Telomerase RNA search results and comparison between RNATOPS and Infernal. 
 S. bayanus S. cerevisae S. kudriavzevii S. mikatae 
 RNATOPS Infernal RNATOPS Infernal RNATOPS Infernal RNATOPS Infernal
# of Training 
Sequences 5 5 5 5 5 5 5 5 
Filter Used HMM HMM HMM HMM HMM HMM HMM HMM 
Length of Filter 47 N/A 47 N/A 47 N/A 47 N/A 
         
Genomes length 
(M bp) 9.96 9.96 11.9 11.9 10.4 10.4 10.5 10.5 
Time Used 
(Minutes) 5.7 295.2 5.5 654.9 6.4 372.1 6.4 446.4 
Sensitivity 100% 100% 100% 100% 100% 100% 100% 100% 
Specificity 100% 100% 100% 100% 100% 100% 100% 100% 
 
Table 4.5 16s rRNA search results and comparison between RNATOPS and Infernal. 
 RNATOPS Infernal 
Number of Training Sequences 12 12 
Filter Used HMM HMM 
Length of Filter 111 Not Available 
Number of Genomes Searched 11 11 
Max/Min/Avg Genome Length  
(M bp) 5.1/2.6/4.0 
Avg/Std Time Used per Genome 
(Minutes) 14.1/2.4 88/18.42 
Sensitivity 100% 100% 
Specificity 100% 100% 
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Table 4.6 Structure alignment accuracy and comparison between RNATOPS and Infernal. 
 tmRNA RNaseP B RNA Telomerase RNA 
 RNATOPS Infernal RNATOPS Infernal RNATOPS Infernal
Number of Structures 
Correctly Found 

40/43 
(k=15) 

43/43 7/7 7/7 4/4 44 

Number of Found Structures 
with Stems off Position * 

4/40 7/43 2/7 0/7 0/4 0/4 

Total # of Stems off 
Position 

9 17 4 0 0 0 

Pseudoknot Regions  
Mistakenly Aligned ** 

0 5 0 0 0 0 

       
 
* A stem was aligned to a position more than a few nucleotides away from its correct position. 

**A supposedly pseudoknot region in the sequence was aligned to a pseudoknot-free 

substructure by mistake. This was caused by the CM-based method unable to deal with 

pseudoknots in a full scale. 
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CHAPTER 5 

RNAV: NON-CODING RNA SECONDARY STRUCTURE VARIATION SEARCH VIA 

GRAPH HOMOMORPHISM1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1Huang,Z., Malmberg,R., Mohebbi, M and Cai,L. 2010. In Proceedings of Computational 
Systems Bioinformatics Conference (CSB 2010), August, 2010. Vol. 9, p. 56-69. 
Reprinted here with permission of publisher. 
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5.1 ABSTRACT 

Non-coding RNA (ncRNA) secondary structural homologs can be detected effectively in 

genomes with profile-based search methods. However, due to the lack of appropriate ncRNA 

structural evolution models, it is difficult to accurately detect distant structural homologs, i.e., 

ncRNA structures with variations caused by evolutionary changes such as the insertion or 

deletion of a substantial portion in the structure. This paper presents results of an investigation 

toward developing a new framework for distant ncRNA structural homolog search. In this work, 

secondary structure conformations are modeled as graphs with small tree width and sequence-

structure alignment for homolog detection is formulated as graph homomorphism. The technique 

of NULL stem is used to resolve the issue of optional stems that may be deleted from the 

structure profile or may be a misalignment. Test results on 51 benchmark data sets of Infernal (9 

of them containing pseudoknots) show that a program based on these methods, RNAv, with the 

capability of detecting pseudoknots, has a comparable performance to the latest version of 

Infernal, and is better in detection of some distant homologs. 

5.2 INTRODUCTION 

Non-coding RNAs (ncRNA) are biologically important with functions in gene regulation, 

chromosome replication and RNA modification as well as other roles10,24,36. Homology-based 

searching methods4,22,11,17,37,21,9 have become important for annotation of ncRNAs12,14,22,28,29,33. 

Genome search programs for ncRNA annotation have been developed22,17,21,9 based on the 

covariance model (CM), a type of stochastic context-free grammar (SCFG), introduced by Eddy 

and Durbin7. The CM can profile position-specific compensatory mutations between base pairs 

as well as base conservations, yielding accurate ncRNA-specific and reconfigurable structural 

homolog search tools. Typically, the latest version of Infernal9 can achieve more than 95% 
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accuracy in recognizing 51 benchmark ncRNA data sets with a high efficiency (Appendix, Table 

5.1). 

However, the structural search tools have been most successful in identifying ncRNAs 

homologs with little or small structural variation. RNA secondary and tertiary structures are both 

constant and variable across evolution15,2,23; that is, some sub-structures, such as stem-loops, will 

be found in all members of a given ncRNA family, but other sub-structures will be found only in 

some of the sequences of the family. Such structural variation poses novel challenges in profiling 

distant homologs for effective searches23. In previous work18,19,25-27 RNA base and base pair 

evolution information was incorporated into SCFG models. To profile more substantial structural 

variations, usually these systems model variation with ribosomal RNA basepair evolution 

information due to the lack of more general, adequate structural evolution models. An improved 

model for RNA structural evolution has also been proposed15,3 which can deal with limited 

degree of structure rearrangement between homologs but has yet to be incorporated into a search 

program. The program, trCYK20, a local alignment algorithm for Infernal, contains a technical 

solution that addresses the issue of aligning the structural model with incomplete sequences. The 

scoring is based on conserved primary sequence and structure information instead of a structural 

evolution model. To date, a general method that addresses both possible misalignments and 

structural variation is still missing1. Searches for structurally distant homologs still largely rely 

on customized methods or tools2. 

 The current paper reports preliminary results from our on-going effort in developing a 

profiling framework for effective search of ncRNA homologs that contain substantial structural 

variation. We profile the RNA secondary structure with the conformational graph model 

developed from a notion used in our previous work RNATOPS16. It is a coarse-grain model that 
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profiles the relationships (i.e., stems and loops) with graph vertices and edges.  The current work 

is different from the previous research, however, in both search targets and supporting 

techniques. In particular, to detect structurally distant homologs, we describe the structural 

variation with novel graph homomorphism rules that can define the deletion/insertion of stems 

and loops with homomorphic mapping between an ancestor and a descendent structure graphs. 

The homomorphism rules allow deletion of edges and vertices from the conformational graph, 

which was not permitted in our previous work with RNATOPS. The detection of the structural 

variation is accomplished with a new technique of NULL stem that identifies any stem with a 

high probability of being deleted in the evolution. Although the threshold for such (evolutionary) 

probabilities is still being determined in a related study32, the investigation of the graph 

homomorphic rules and implementation techniques is necessary because they are the mechanism 

to describe alternative and optional substructures, much the same role as context-free rules for 

CM7. 

 We have tested on this new method to evaluate its capability to detect substructures 

(individual stems or combinations) possibly removed in the evolution. Typically, each used data 

set is a collection of multiple RNA sequences with a structural alignment and consensus, in 

which some stems may present in some but not all involved sequences. We have chosen to use 

the 51 benchmark data sets used by Infernal9 in our tests. Although certain regions in these data 

sets are highly conserved, overall it exemplifies substantial structural variation. For example, we 

obtained (through calculations) 19.57 as the averaged standard deviation of the sequence lengths 

in these data sets. Totally there are 5686 training sequences in these 51 benchmark datasets, and 

540 of them have at least one stem absent, accounting for 9.5% of the total number of sequences. 

Since Infernal performs well on these benchmarks, the evaluation on our method with 
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comparison to Infernal is appropriate. We conducted tests based on filtering method and non-

filtering method, and compared the search results based on different ratio threshold for the 

percentage of the hit region overlapping with the real RNA region. 

5.3 METHOD 

We introduce a new method to profile RNA secondary structure variation for distant homolog 

search. It consists of three parts: the model to profile the consensus structure, rules for structural 

variation, and an algorithm to implement structure-sequence alignment and search. The model is 

based on the notion of conformational graph developed in our previous work to profile the 

consensus structure of multiple RNA sequences16,30,31, with additional elements convenient for 

the description of structural variation. 

5.3.1 CONFORMATIONAL GRAPH 

The consensus secondary structure of RNA can be viewed as a topological relation among basic 

structural units, each of which is a stem or a loop. The structure model consists of two 

components: a weighted conformational graph that represents the relationship among all these 

basic structural units, and a set of simplified CMs and profile HMMs, each modeling a stem or a 

loop. 

 In such a conformational graph H, each vertex represents a contiguous sequence segment, 

either a loop or one of the two half-stems. It is a mixed graph containing both directed and 

undirected edges. Each directed edge connects two neighboring sequence segments, i.e. one of 

base-pairing stem regions and one loop region, and each undirected edge connects two base-

paired sequence segments that form a stem. Fig.5.1 shows one example of a pseudoknot structure 

and the corresponding conformational graph, H (Fig.5.1(a)). 
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 Searching in a target genome for a profiled structure consists of sliding a window of 

appropriate size along the target genome and aligning the structure model to a target sequence. 

Technically, the sequence segment within each window is preprocessed to identify the top k 

candidates for all CM models. Given the set of candidates of all profiled stems in the structure, a 

candidate graph can be constructed similarly to the construction of a conformational graph. 

Based on this construction, each vertex u in the conformation graph can only be mapped to a 

specific set of the same number of vertices in the candidate graph G, each of which is called a 

candidate of the vertex u. 

5.3.2 HOMOMORPHISM FOR STRUCTURAL VARIATION 

The optimal structure-sequence alignment between the structure model and the target sequence 

thus corresponds to finding, in the candidate graph, a maximum weighted subgraph that is 

homomorphic to the conformational graph. The weight is defined by the alignment score 

between vertices (stems and loops), in the conformational graph, and their counterparts, in the 

candidate graph. This graph homomorphism problem is an NP-hard problem13, but tree 

decomposition based dynamic programming allows achieving efficiency for the computation16. 

 To handle structure variations, the deletions allowed on the profile graph H can be 

classified into the following two categories. 

 (a) Deletion of a stem, which removes the base pairing between the two involved 

sequence segments. As shown in Fig.5.1(b), stem (3, 7) will be deleted from profile graph H. The 

homomorphic mapping merges vertex 3 (i.e., one arm of the stem), and its neighboring vertices, 

2 and 4 (i.e., both loops), into one vertex, 3’(i.e. a loop). Similarly, it merges vertex 7, and its 

neighboring vertices, 6 and 8, into one vertex, 7’, in query sequence, Q. 
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 (b) Deletion of a substructure,consisting of more than one stem, e.g., a pesudoknot 

structure, by applying (a) repeatedly. As shown in Fig.5.1(c), the pseudoknot structure contains 

stem (3, 7) and stem (5, 9) and loop 4, 6 and 8. To delete this pseudoknot structure, the first step 

is to delete stem (3, 7), which is to merge vertices 2, 3, 4 into vertex 3’ and to merge vertices 6, 7, 

8 into vertex 7’. The second step is to delete stem (5, 9), which is to merge 3’, 5, 7’ into vertex 5’ 

and merge vertices 9, 10 into vertex 9’ since 7’ has been used. 

 The homomorphism used in this work is somewhat non-standard, as all operations need 

to meet the standard definition of graph homomorphism on vertices representing base-pairing 

regions only and not for vertices representing loops. In particular, edge preserving properties 

through homomorphism only apply to edges formed between vertices that represent base pairing 

regions and contribute to stems. 

5.3.3 STRUCTURE-SEQUENCE ALIGNMENT 

An alignment between a structure profile and a target sequence is essentially a homomorphism 

between the conformational graph H for the structure profile and some subgraph of the candidate 

graph G constructed from the target sequence. Generally, RNAv follows the basic idea of tree 

decomposition-based dynamic programming to compute the optimal alignment between graph H 

and the subgraph of G16. To consider structural variation, one special stem candidate, NULL 

stem, will be added to the candidates of every stem model in the profile. For each tree node, the 

algorithm examines all possible combinations of the candidates including the NULL stem 

candidate, from the number 0 to the number max_NULL_stem, in the tree node (where 

max_NULL_stem is the maximum number of NULL stems). Thus, the optimal alignment will 

consider all k+1 candidates for every stem in the tree decomposition based dynamic 

programming. For each tree node, the optimal alignment score and the number of NULL stems 
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(which can be technically constrainted) will be saved. The final optimal alignment score will be 

obtained in the tree root and a recursive process can be applied to trace back the optimal 

alignment. In this way, RNAv places a limit to the maximum number of NULL stems, 

max_NULL_stem, making it possible to identify from the target genome to RNAs conforming to 

the profiled structure but with possible structural variation from the consensus. 

5.4 EVALUATION 

The newly introduced methods have been implemented into the search program, RNAv, which 

has been tested in different gcc version 3.4.6, 4.2.1 and 4.4.1. We collected Infernal’s benchmark 

dataset (51 ncRNA families) from RFAM seed alignment database (release 9.1) and tested them 

on the following four programs: Infernal (1.0.2), trCYK (Infernal can be accessed from 

http://infernal.janelia.org/ and trCYK is one of Infernal’s functions), RNAv and RNATOPS, 

where trCYK is a new function of Infernal for local alignment to search for structure on 

incomplete query sequence, and RNATOPS is an earlier version of our program that allows little 

and small structural variation. This section will evaluate the performance of RNAv using 

Infernal’s performance as a reference. Due to page limitation, we have to move some of tables 

and figures to the appendix. We also created a webpage 

(http://www.cs.uga.edu/~zhibin/csb2010_RNAv_data.html) containing all the tested data results 

for this paper. 

5.4.1 DATA PREPARATION AND EVALUATION CRITERIA 

Infernal’s benchmark datasets do not contain any sequence pair that is more than 60% identical8,9. 

Each data set is a multiple structure alignment including the annotation of the consensus 

structure. We used each data set as training data to construct a structure profile for search. For 

the purpose of testing the recognition capability, we designed the following leave-one-out, 
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pseudo-genomic searches: we followed a cross-validation approach and embedded each RNA 

sequence, which was removed from the training alignment, in the middle of a 2000-nucleotide-

long random sequence, which shares the same nucleotide frequency as that RNA sequence. The 

remaining alignment sequences were used as the training set for a search on that pseudo-genome. 

We applied both an HMM filtering method34, 35 (Infernal also uses QDB-filtering method8 and 

the non-filtering method to the pseudo-genome test. 

 There are two levels of search performance. The first level is to compare the predicted 

position of the tested RNA with its real position on the searched genome. The second level is to 

compare the predicted structure with its real structure. For position comparison, we used the 

percentage ratio of overlap, between the real RNA sequence and the predicted one, with different 

thresholds (0.75, 0.8, 0.85, 0.9 and 0.95). Position performances of these search programs with 

these different thresholds are shown in Appendix-Fig. 5.2. In this section, we analyzed the results 

with the threshold of 0.85. 

 In these 51 datasets, 9 of them contain pseudoknots. Since Infernal does not explicitly 

predict pseudoknot structures, we remove the crossing stems from those pseudoknot structures 

when testing them on Infernal and trCYK. On all programs, the top one hit candidate reported 

was taken as the prediction. 

5.4.2 POSITION SEARCH ACCURACY 

The search position accuracy comparisons between Infernal, trCYK and RNAv are shown in Fig. 

5.3 and Appendix-Table 5.1. Infernal has the highest average position prediction performance, 

97.51% using the filtering method and 97.67% in the non-filtering method. RNAv gets 93.70% 

in the filtering method and 93.73% in the non-filtering method, followed by trCYK, which gets 

the accuracy, 89.28%. However, in 10 datasets, RNAv’s filtering-search appears to perform 
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better than Infernal and in 7 datasets its non-filtering-search performance is better than Infernal. 

We focus on analysis between the results of Infernal and of RNAv as trCYK, local motif search 

function, may not be entirely appropriate for detecting global structure with missing 

substructures. 

5.4.3 CAPABILITY TO DETECT STRUCTURAL VARIATION 

We analyze the capability of RNAv in detecting structural variation by examining those cases 

that missed by Infernal. There are 10 such datasets, for which RNAv’s filtering search 

performance was better than Infernal and 7 datasets, for which RNAv’s non-filtering search 

performance is better than Infernal (we labeled these 17 dataset in bold font in Appendix-Table 

5.1). Due to the page limitation, we picked 4 structure prediction typical cases to analyze: 

RF00023(Bacterial tmRNA) from the filtering-search test, and RF00024(Telomerase-vert), 

RF00029(Intron_gpII) and RF00230(T-box), from the non-filtering-search test. 

5.4.3.1 RF00023 BACTERIAL TMRNA 

RF00023, Bacterial tmRNA, has 228 training sequences, and the length of sequences in this 

alignment file ranges from 235 to 436, and its standard deviation is 26.35. We also calculated the 

pseudo-energy score for all the stems, and used the threshold of -4.0 to estimate, in the original 

alignment file, the number of good/NULL/weak stems (Appendix-Table 5.3). 

Test result (Appendix-Table 5.2) shows that, in this dataset, RNAv found all of stems, and 

Infernal missed 4 cases (with the index of sequence 98/212/219/225 in the alignment file). 

Checking the 4 cases Infernal missed revealed that most of interior stems in these 4 alignments 

are weak stems while the outer stems are good stems. 

We also calculated the number of NULL stem in the original alignment and candidate hit 

alignment (Appendix-Table 5.4, Table 5.5). There are 77 NULL stems in this RF00023 
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alignment file, and RNAv finds 30 of them. Actually RNAv detects 216 NULL stems, 30 of 

them are real NULL stem in the original alignment, and 186 of them were used to predict weak 

stems that are 100 in number (Here we used -4.0 as the threshold of pseudo-energy score to 

determine weak stems). For the other 47 real NULL stems, RNAv detected real stems for them 

and 25 of them are good stems. We show the test result of the 98th query sequence as an example 

to explain RNAv’s performance discussed here. 

In this case, RNAv detected stem N/L/E/M and NULL stem H correctly (Fig. 5.5); for stem 

A/B/C/I/D, actually in the original alignment these stems are very weak (Fig. 5.4), containing 

many non-canonical base-pairings, and RNAv predicted the candidates with lower pseudo-

energy score; for stem K/J/F/G, RNAv could not find the candidates for them and used NULL 

stems to represent these two stems (see Appendix-Tables 5.4 and 5.5). 

5.4.3.2 RF00024 TELOMERASE-VERT 

RF00024, Telomerase-vert, has 37 training sequences. The length of sequences in this alignment 

file ranges from 382 to 559, and its standard deviation is 38.21. We also estimate, in the original 

alignment file, the number of good/NULL/weak stems (see Appendix-Table 5.6). 

 Test result (Appendix-Table 5.2) shows that, in this dataset, RNAv missed 1 case, and 

Infernal missed 2 cases. We checked those missed cases of RNAv and Infernal. For the one 

missed case, RNAv only detected part of the whole structure correctly, resulting in the overlap 

region not large than 85%. For those two missed cases, Infernal detected local hit, 12.23% and 

27.7% of the whole structure hit respectively. 

 We compute the number of NULL stems in the original RF00024 alignment and 

candidate hit alignment (Appendix-Table 5.7, Table 5.8). Totally there are 26 NULL stems in 

this RF00024 alignment file, and RNAv finds 9 of them. The total number of NULL stems in the 
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candidate hits are 66, and RNAv uses 57 NULL stems to replace weak stems and 9 of them are 

real weak stems. 

 For example, in this test of the 22nd query sequence, there are total 17 stems and15 of 

them are real stems. RNAv found (Fig.5.7) those two NULL stems, Stem F/E correctly. For 

those 15 real stems, RNAv detected 12 of them correctly, and 3 of them mostly correct but with 

some nucleotides shifted. Infernal (Fig.5.8) found a candidate for Stem F/E, which was actually 

no sequence in the original alignment, and some nucleotides shifted in the candidate stem of K. 

5.4.3.3 RF00029 INTRON_GPII 

RF00029, Intron_gpII, has 113 training sequences. The length of sequences in this alignment file 

ranges from 61 to 154, and its standard deviation is 22.03. We also estimate, in the original 

alignment file, the number of good/NULL/weak stems (Appendix-Table 5.9). 

Test result (Appendix-Table 5.2) shows that, in this dataset, RNAv missed 1 case, and 

Infernal missed 7 cases. 

We now use the test of the 98th query sequence as an example to explain the performance 

difference between RNAv and Infernal. We checked the original alignment file and found there 

was a special stem C that had a big sequence variation within its loop region. RNAv and Infernal 

both predicted the first two stems, Stem A/B, correctly. For the last stem, Stem C, RNAv found 

one candidate stem with a lower pseudo-energy score than the real one, while Infernal found one 

candidate stem with a higher pseudo-energy score (Fig.5.9, Fig.5.10, Fig.5.11). However, RNAv 

failed in the one with the largest sequence variation. Infernal only outputted local structure 

search results for those 7 missed cases. 
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5.4.3.4 RF00230 T-BOX 

RF00230, T-box, has 65 training sequences. The length of sequences in this alignment file 

ranges from 167 to 370, and its standard deviation is 32.86. We also estimate, in the original 

alignment file, the number of good/NULL/weak stems (Appendix-Table 5.12). 

 We checked the original alignment file and found there was a loop region, between Stem 

G and Stem H, which has a big sequence variation. RNAv missed 2 cases, outputting only local 

structure hits, so did Infernal in those missed 6 cases (Appendix-Table 5.2). 

 Here we analyzed the test result with the 26th query sequence. In this test, RNAv found 

most of the real stems correctly, and found Stem E with both sides having a position shift, and 

used a NULL stem to replace Stem C, which actually had high pseudo-energy score in the 

original alignment file. Interestingly, RNAv and Infernal both found the same candidate for Stem 

H, which was different the one in the original alignment, but Infernal could not find Stem I. 

5.4.4 RNAV VS. RNATOPS 

One of problems in RNATOPS is if heuristic preprocessing step does not include the real 

candidate of the stem in those k pairs of candidate regions for each individual stem, then it may 

fail16. Actually this was the original motivation of proposing NULL stem technique. We used 

RNATOPS to repeat RNAv’s filtering search test, and see how much improvement RNAv can 

make using NULL stem technique. Test result shows that RNAv can improve about 16% of 

accuracy in filtering method and 13% in non-filtering method. 

5.4.5 ANALYSIS OF RNAV’S PARAMETERS 

There are two parameters in RNAv. One is k, the number of stem candidates; the other is 

max_NULL_stem, the maximum number of NULL stems. In general, the values of these 

parameters are determined by the training data. When sequences in the alignment are conserved, 
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a small value for k can yield decent search accuracy and larger values for k may further 

improve/fine-tune search results. On the other hand, if the data manifest some significant 

structural variation, the search accuracy may not be substantially improved by simply increasing 

values for k; while parameter, max_NULL_stem, affects the search result. 

5.5 DISCUSSION 

In this paper, we presented preliminary results from our on-going research in developing a new 

profiling framework for RNA secondary structure search for distant homologs. The new method 

profiles substantial structural variation with the conformational graph we previously developed; 

the newly introduced graph homomorphic mapping rules and the NULL stem technique make it 

possible to effectively detect substantial structure variation, typically stems missing in the 

structure because of evolution. Evident by the test results, the implemented program, RNAv, had 

comparable overall performance as Infernal on the 51 benchmark data sets selected and used for 

testing Infernal. RNAv was able to detect some structural variations that were missed by Infernal. 

Overall impression from the tests is that RNAv works for ncRNA search with diversed 

sequences while Infernal works with conserved ncRNA sequences. The comparison between 

RNAv with the earlier version RNATOPS shows an overall enhancement in performance, with 

more than 13% of accuracy improvement (Appendix, Fig. 5.2). The same table also shows the 

performance of trCYK, a new local alignment algorithm for Infernal that can locally aligns the 

structural model with incomplete sequences. Our result shows that local motif search techniques 

may not be entirely appropriate for detecting global structure with missing substructures. 

 In addition to the capability of handling pseudoknots and the search efficiency inherited 

from RNATOPS16, there are a couple of more advantages demonstrated by RNAv. One is 

RNAv's capability to suppress some impact of noisy training data. Profile-based search 
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algorithms can be inherently alignment-sensitive. If more than 50% of a stem alignment contains 

canonical base pairs and others are non-canonical base pairs, then the stem modeling based on 

this alignment will be correct. When this correct model is used to predict those non-canonical 

base pairs, the score of searched stem candidates will be insignificant. In this scenario, RNAv 

may use NULL stem as the predicted local structure when all possible stem candidates are “too 

weak” to be meanful. This explains the reason why Infernal missed those 4 cases with interior 

weak stems and outer good stems in Bacterial tmRNA data set while RNAv found them. 

 Another interesting advantage of RNAv is its potential for detection of evolutionary 

structural changes. In testing the 51 data sets, RNAv was able to detect at least 34% or more 

regions with missing stems in each data set. These regions are presumably to have evolved to 

unpaired loop regions instead to base pairing stem regions or drastic mutations have caused 

stems in these regions to disappear. Therefore, RNAv may present as a technical solution to the 

issue of modeling stem evolution including insertion or deletion. One can apply RNAv to search 

for an ncRNA of interest across species, which may not be conserved in the structure, leading to 

the discovery of new members of the RNA, possibly in evolutionarily distant species. 

 Graph homomorphic mapping appears to be powerful to account for ncRNAs structure 

evolution. Together with the structure evolution study35 on specific ncRNAs and the notion of 

graph homomorphic mapping to define stem insertion and deletion, RNAv and the underlying 

method will be further developed into an accurate solution to detecting distant structural 

homologs. 
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5.8 APPENDIX 

 
(a) A pseudoknot structure and the corresponding conformational graph, H 

 
(b) Graph homomorphism from H to query sequence, Q, which deletes stem(3, 7) from H. 

 
(c) Graph homomorphism from H to query sequence, Q, which deletes one pseudoknot structure 

stem(3, 7)&stem(5, 9) from H. 

Fig. 5.1. Graph homomorphism from H to query sequence Q. 
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Fig. 5.2. Comparison of search accuracy of Infernal, trCYK, RNAv and RNATOPS in 

nonfiltering method 

 

Fig. 5.3. Comparison of position prediction among Infernal, trCYK and RNAv. 

 

Fig. 5.4. Alignment of case-98 in the RF00023 dataset (x-axis is the position of nucleotide in the 

pseudogenome, arc with dash-line means NULL stem. Same for all other figures). 
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Fig. 5.5. Alignment of RNAv’s result of case-98 in the RF00023 dataset, arc in red color means 

some difference from the original one. Same for all other figures. 

 

Fig. 5.6. Alignment of case-22 in the RF00024 dataset (x-axis is the position of nucleotide in the 

pseudogenome). 

 

Fig. 5.7. Alignment of RNAv’s result of case-22 in the RF00024 dataset. 

 

Fig. 5.8. Alignment of Infernal’s result of case-22 in the RF00024 dataset. 
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Fig. 5.9. Alignment of case-98 in the RF00029 dataset (x-axis is the position of nucleotide in the 

pseudogenome) 

 

Fig. 5.10. Alignment of RNAv’s result of case-98 in the RF00029 dataset 

 

Fig. 5.11. Alignment of Infernal’s result of case-98 in the RF00029 dataset 

 

Fig. 5.12. Alignment of case-26 in the RF00230 dataset (x-axis is the position of nucleotide in 

the pseudogenome) 
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Fig. 5.13. Alignment of RNAv’s result of case-26 in the RF00230 dataset 

 

Fig. 5.14. Alignment of Infernal’s result of case-26 in the RF00230 dataset 

 

Table 5.1. Comparison of filtering/nonfiltering search accuracy among Infernal, trCYK and 

RNAv(ratio_threshold=0.85) 

Infernal RNAv RFAM_id RNA_name No. of total training 
sequences Filtering NonFiltering with trCYK Filtering NonFiltering

RF00002 5_8S_rRNA 62 100.00% 100.00% 90.32% 95.16% 95.16% 
RF00003 U1 100 99.00% 100.00% 97.00% 97.00% 100.00% 
RF00004 U2 212 96.70% 96.70% 90.09% 95.75% 96.23% 
RF00005 tRNA 1052 95.91% 99.62% 91.16% 94.77% 98.48% 
RF00008 Hammerhead_3 84 98.81% 98.81% 94.05% 86.90% 91.67% 
RF00009 RNaseP_nuc 122 98.36% 98.36% 85.25% 95.08% 95.90% 
RF00010 RNaseP_bact_a 306 100.00% 100.00% 99.67% 99.67% 89.87% 
RF00011 RNaseP_bact_b 115 99.13% 99.13% 100.00% 100.00% 100.00% 
RF00012 U3 27 100.00% 100.00% 100.00% 88.89% 92.59% 
RF00015 U4 184 92.39% 92.39% 80.98% 89.67% 91.30% 
RF00017 SRP_euk_arch 104 97.12% 100.00% 98.08% 100.00% 100.00% 
RF00018 CsrB 14 100.00% 100.00% 100.00% 100.00% 100.00% 
RF00019 Y 127 100.00% 100.00% 97.64% 100.00% 100.00% 
RF00020 U5 184 94.57% 95.11% 71.74% 95.11% 95.11% 
RF00023 tmRNA 228 98.25% 99.12% 99.56% 100.00% 98.25% 
RF00024 Telomerase-

t
37 91.89% 94.59% 100.00% 97.30% 97.30% 

RF00025 Telomerase-cil 24 91.67% 91.67% 91.67% 100.00% 95.83% 
RF00028 Intron_gpI 30 80.00% 80.00% 56.67% 60.00% 53.33% 
RF00029 Intron_gpII 113 93.81% 93.81% 88.50% 98.23% 99.12% 
RF00030 RNase_MRP 89 93.26% 98.88% 97.75% 84.27% 94.38% 
RF00031 SECIS 61 100.00% 100.00% 86.89% 100.00% 100.00% 
RF00033 MicF 4 100.00% 100.00% 100.00% 75.00% 75.00% 
RF00037 IRE 39 100.00% 100.00% 87.18% 92.31% 100.00% 
RF00040 rne5 6 83.33% 83.33% 83.33% 83.33% 83.33% 
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RF00054 U25 8 100.00% 100.00% 87.50% 87.50% 100.00% 
RF00055 snoZ37 9 100.00% 100.00% 88.89% 100.00% 88.89% 
RF00059 THI 118 98.31% 98.31% 77.97% 93.22% 95.76% 
RF00066 U7 47 100.00% 100.00% 80.85% 95.74% 85.11% 
RF00067 U15 18 100.00% 100.00% 88.89% 94.44% 88.89% 
RF00080 yybP-ykoY 25 100.00% 100.00% 92.00% 88.00% 88.00% 
RF00096 U8 49 100.00% 100.00% 93.88% 100.00% 100.00% 
RF00101 SraC_RyeA 13 100.00% 100.00% 100.00% 100.00% 100.00% 
RF00104 mir-10 11 100.00% 100.00% 72.73% 81.82% 100.00% 
RF00114 S15 80 98.75% 98.75% 86.25% 95.00% 96.25% 
RF00163 Hammerhead_1 75 98.67% 98.67% 82.67% 98.67% 98.67% 
RF00165 Corona_pk3 14 100.00% 100.00% 100.00% 92.86% 100.00% 
RF00167 Purine 133 99.25% 99.25% 76.69% 100.00% 100.00% 
RF00168 Lysine 47 100.00% 100.00% 97.87% 97.87% 97.87% 
RF00169 SRP_bact 468 99.15% 98.93% 85.47% 98.29% 98.07% 
RF00170 msr 10 90.00% 80.00% 60.00% 70.00% 80.00% 
RF00174 Cobalamin 439 97.72% 97.72% 80.41% 98.86% 99.09% 
RF00177 SSU_rRNA_5 341 96.19% 97.07% 98.24% 95.89% 42.82% 
RF00206 U54 22 100.00% 100.00% 95.45% 100.00% 100.00% 
RF00213 snoR38 19 100.00% 100.00% 78.95% 94.74% 100.00% 
RF00230 T-box 65 90.77% 90.77% 100.00% 96.92% 96.92% 
RF00234 glmS 18 100.00% 100.00% 100.00% 94.44% 94.44% 
RF00373 RNaseP_arch 72 100.00% 100.00% 100.00% 95.83% 93.06% 
RF00379 ydaO-yuaA 106 100.00% 100.00% 90.57% 87.74% 97.17% 
RF00380 ykoK 96 100.00% 100.00% 98.96% 100.00% 100.00% 
RF00448 IRES_EBNA 6 100.00% 100.00% 66.67% 100.00% 100.00% 
RF00504 gcvT 53 100.00% 100.00% 84.91% 92.45% 96.23% 
Avg   97.51% 97.67% 89.28% 93.70% 93.73% 

 

Table 5.2. Search results of RNAv and Infernal on RF00023/ RF00024/RF00029/RF00230 

dataset. 

 RF00023 RF00024 RF00029 RF00230 
 RNAv Infernal RNAv Infernal RNAv Infernal RNAv Infernal
Number of Training Sequences 227 227 36 36 112 112 64 64 
Filter Used HMM HMM/QDB N/A N/A N/A N/A N/A N/A 
Number of NULL stem 5 N/A 5 N/A 5 N/A 5 N/A 
Number of Genomes Searched 228 228 37 37 113 113 65 65 
Accuracy 100% 98.25% 97.3% 94.59% 99.12% 93.81% 96.92% 90.77%

 

Table 5.3. Statistics of stems in RF00023 alignment 
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Stem Id N L K J A E F B G C I H D M 
Good Stem 214 217 63 224 195 191 153 189 115 178 117 131 179 212
Null Stem 14 0 0 2 9 4 0 1 2 10 7 7 5 16
Weak Stem 0 11 165 2 24 33 75 38 111 40 104 90 44 0 

 

Table 5.4. Statistics of NULL stem in the RF00023 alignment and candidate hit alignment 

Stem Id N L K J A E F B G C I H D M ∑
The original alignment file 14 0 0 2 9 4 0 1 2 10 7 7 5 16 77
Candidate 13 2 19 6 34 15 18 16 24 6 10 45 5 3 216
Real NULL stem in candidate 12 1 10 0 16 8 9 6 16 6 6 34 3 3 130

 

Table 5.5. Summary of stem and NULL stem in RF00023 alignment and candidate hit alignment 

 Stem NULL stem
The original alignment file 2976 77 
Candidate 2345 30 
Sensitivity 78.8% 42.86% 

 

Table 5.6. Statistics of the stems in RF00024 alignment 

Stem Id F E D C B A M L K J H G I Q P O N
Good 
S

32 27 22 33 37 37 37 34 37 36 37 29 37 34 35 37 35
Null Stem 4 4 13 0 0 0 0 2 0 0 0 3 0 0 0 0 0
Weak 
S

1 6 2 4 0 0 0 1 0 1 0 5 0 3 2 0 2
 

Table 5.7. Statistics of the NULL stem in RF00024 alignment and candidate hit alignment 

Stem Id F E D C B A M L K J H G I Q P O N ∑
Original sequence 4 4 13 0 0 0 0 2 0 0 0 3 0 0 0 0 0 26
Candidate hit 8 8 3 5 1 2 0 1 11 0 1 6 0 1 11 6 2 66
Real NULL stem in candidate 5 3 3 0 0 0 0 1 0 0 0 4 0 1 1 0 0 18

 

Table 5.8. Summary of stem and NULL stem in RF00024 alignment and candidate hit alignment 

 Stem NULL stem 
The original alignment file 563 26 
Candidate 271 9 
Sensitivity 48.13% 34.6% 
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Table 5.9. Statistics of the stems in RF00029 alignment 

Stem Id B A C 
Good Stem 112 97 74 
Null Stem 0 0 0 
Weak Stem 1 16 39 

 

Table 5.10. Statistics of the NULL stem in RF00029 alignment and candidate hit alignment 

Stem Id B A C 

Original sequence 0 0 0 

Candidate hit 0 0 0 

Real NULL stem in candidate 0 0 0 
 

Table 5.11. Summary of stem and NULL stem in RF00029 alignment and candidate hit 

alignment 

 Stem NULL stem 
Alignment 339 0 
Candidate 292 0 
Sensitivity 86.14% N/A 

 

Table 5.12. Statistics of the stems in RF00230 alignment 

Stem Id E D C B A F G H I
Good Stem 51 0 17 8 65 48 47 64 65
Null Stem 0 0 0 0 0 6 9 1 0
Weak Stem 14 65 48 57 0 11 9 0 0

 

Table 5.13. Statistics of the NULL stem in RF00230 alignment and candidate hit alignment 

Stem Id E D C B A F G H I ∑
Original sequence 0 0 0 0 0 6 9 1 0 16 
Candidate hit 4 2 7 0 0 5 6 7 1 32 
Real NULL stem in candidate 2 2 6 0 0 4 6 1 0 21 
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Table 5.14. Summary of stem and NULL stem in RF00230 alignment and candidate hit 

alignment 

 Stem NULL stem 
Alignment 553 16 
Candidate 369 10 
Sensitivity 66.73% 62.5% 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

This dissertation studies the problem of fast and accurate searching for non-coding RNA 

pseudoknot structures in genomes. Based on the conformational graph model for RNA 

pseudoknots, given k  candidate regions in the target sequence for each of the n  stems in the 

structure, we could compute a best alignment in time )( 1nkO t+  based upon a tree width t  

decomposition of the structure graph. Through search tests on the implemented program 

RNATOPS [1], we have shown its performance comparable with or better than that of Infernal [2] 

and FastR [3] in identifying large or complex RNA structures including pseudoknots; Also, this 

dissertations presents results of an investigation toward developing a new framework for distant 

ncRNA structural homolog search. In this work, secondary structure conformations are modeled 

as graphs with small tree width and sequence-structure alignment for homolog detection is 

formulated as graph homomorphism. The technique based on the notion of NULL stem is used to 

resolve the issue of optional stems that may be deleted from the structure profile or may be due 

to a misalignment. Test results on 51 benchmark data sets of Infernal (9 of them containing 

pseudoknots) show that a program based on these methods, RNAv, with the capability of 

detecting pseudoknots, has a comparable performance to the latest version of Infernal, and is 

better in detection of some distant homologs. 
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6.2 FUTURE WORK 

Following the footstep from RNATOPS, a ncRNA secondary structure prediction tool, and 

RNAv, a ncRNA structure variation search tool, we consider the following two future 

developments. 

6.2.1 PROBABILISTIC GRAPH MODEL FOR RNA STRUCTURE EVOLUTION 

Investigations on evolution of RNA secondary structure have just begun recently, mainly for this 

interest of profiling structure for search. In previous work [4-8] RNA base and base pair 

evolution information was incorporated into SCFG models. An improved model for RNA 

structural evolution based on a transducer composition algorithm has also been proposed [9, 10] 

which can deal with limited degree of structural variations but has yet to be incorporated into a 

search program. The program, trCYK[11], a local alignment algorithm for Infernal, contains a 

technical solution that addresses the issue of aligning the structural model with incomplete 

sequences. The scoring is based on conserved primary sequence and structure information, 

instead of a structural evolution model. To date, a general method that addresses both possible 

misalignments and structural variation is still missing [12]. Searches for structurally distant 

homologs still largely rely on customized methods or tools [13].  

To incorporate substantial structural variations, we propose to extend the conformational 

graph to be the probabilistic conformation graph model. Formally, this is to assign a probability 

to every edge (i.e., every non-directed edge). Recall that each non-directed edge models a stem 

and each directed edge models a loop. Each directed edge automatically gets the probability 1 

while each non-directed edge, e, will be assigned a probability 10,)1( ≤<== rreP . This 

probability is for the corresponding stem to be present in the structure profile, observed from the 
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available sequences in the family. On the other hand, rep −== 1)0(  is the probability for the 

stem to be absent. 

A probabilistic non-directed edge, e, defined in the conformational graph specifies the 

chance for the corresponding stem to be present and absent. One can think of this in terms of 

stem insertion/deletion when a target sequence is aligned to the structure profile modeled with 

the conformational graph. To see this, assume 2/1)1( ≤=ep . If the optimal alignment manifests 

the presence of the stem, it is a stem insertion. Conversely, it can be thought of a stem deletion 

for the case when 2/1)0( ≥=ep  and the stem is absent from the target sequence. The other two 

cases are just normal matches. 

Though dependent on outcomes from the ncRNA structural evolution study, we believe it 

will also be necessary to introduce joint and conditional probabilities for edges in the 

conformational graph in order to account structural variations more accurately. For instance, to 

allow insertions and deletions of a substructure, e.g., consisting of two side-by-side stems e1 and 

e2, in the profile, the joint probability ),( 21 eep  and conditional probabilities )( 21 eep  and 

)( 12 eep  will become handy. For example, Figure 6.1 shows the joint probability 

),(),(),( 221121 yxpyxpeep ×= . By default, stems are independent unless otherwise defined.  

More complex substructures will be likewise included.  

e1

e2

y1y2x1 x2  

Figure 6.1. The joint probability ),(),(),( 221121 yxpyxpeep ×=  
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Therefore, the extended conformational graph defines well an ncRNA secondary structure 

profile, a probabilistic space of secondary structures with a set of random variables that are edges 

(of discrete values 0/1), each of which corresponds to a unique stem in the profile. The 

probability function P, for various random variables will be determined from the structural 

evolution study. 

6.2.2 NUCLEOTIDE-LEVEL TOPOLOGY GRAPH MODELING 

The graph model can easily profile structures caused by nucleotide interactions beyond the base 

pairing. For example, the graph model makes it easy to profile tertiary interactions or triple 

helices recently found in the telomerase RNA genes of human and yeast genomes [14-17]. 

Although one of the two stems involved in such a triple helix is actually formed by two base 

pairing regions that are arranged in the same direction ( 5′  to 3′ ), our approach will allow the 

stem to be modeled with an individual CM the same way as modeling a regular stem, without the 

need of additional, new techniques. 

But there may be one problem here. In our current framework, either RNATOPS [1] or 

RNAv [18], stem and loop models are introduced from the profile training data, to some degree 

forces the program to look for the stem in its corresponding sequence region even though there 

are no actual stem there, or those region actually contains one arm of stem which has interaction 

with the other arm in other distant sequence region. The latter case actually is what researcher is 

working on to search the protein 3D or RNA 3D structure. Because this limitation exists in 

RNAv, it would be difficult to apply RNAv directly to solve the protein 3D or RNA 3D structure 

prediction problem. Here we are thinking about removing the stem and loop models from the 

profile training data and, in the conformational graph, changing arc to be the interaction of 

canonical base pairing. Then this graph model, on the nucleotide level, will become more 
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flexible to incorporate any interaction with more distant sequence regions while the tree-width 

remains small (Figure 6.2) for graphs at nucleotide level (the average tree-width is 3.16) [19]. 

 

Figure 6.2 Treewidth distribution on the nucleotide level [19] 

6.3 SUMMARY OF THE CHAPTER 

This chapter summarized the previous chapters of this dissertation. Searching genomes for 

ncRNAs by their secondary structure is an important goal for bioinformatics. This dissertation 

provides fast and accurate search method for RNA pseudoknot structures, also structure variation 

search for ncRNA secondary structures. This dissertation provides an original perspective on this 

structure variation problem and shows that it can be modeled to be the GRAPH 

HOMOMORPHISM problem. 

For the future work, we extend the graph model to be the probabilistic graph model for the 

RNA structure evolution problem and nucleotide-level topology graph model for the Protein 3D 

or RNA 3D structure prediction problem. We are glad to see our work actually provides a 

general framework for structure search in bioinformatics. To solve different problems, we need 
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more specific graph model to fit into the problem domain, and finding answers to them would be 

an interesting extension of the work presented in this dissertation. 
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