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CHAPTER 1 INTRODUCTION  

The dog serves as an important model organism in diverse fields including biomedical 

research, evolution, development, and behavior [1-5].  For example, spontaneous cancers 

in pet dogs represent one of the best cancer models [3, 4, 6-11].  As companion animals, 

dogs share the same environment as humans and are exposed to many of the same 

carcinogens.  Indeed, environmental toxins, advancing age and obesity are also risk 

factors for canine cancer [6]. Therefore, dogs develop many same or similar diseases as 

human. Many cancers are naturally occurring and heterogeneous, capturing the essence 

of human cancer, which genetically modified or xenograft rodent models cannot 

replicate.   Dogs also better resemble humans in biology, e.g., similar telomere and 

telomerase activities [12] and frequent spontaneous epithelial cancers [6], unlike mice 

[13].  Numerous anatomic and clinical similarities are noted for the same types/subtypes 

of cancer between the two species, and similar treatment schemes are used [4, 7, 8].  

Furthermore, the large population of pet dogs (~70 million estimated in the US) provides 

abundant resource facilitating basic and clinical research.  Because of these advantages, 

we have successfully developed a novel dog-human comparison strategy to address a 

central aim of cancer research – cancer driver-passenger discrimination [9, 10, 14-17].  

 

The sequencing of the genome of man’s best friend in 2005[18] has reinforced the 

position of the dog as an important animal model to study human physiology and disease.  

However, to fully utilize the great potential of the dog, an accurate version of canine gene 

annotation is essential.  This however remains yet to be achieved [19, 20], as illustrated 
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by protein-coding genes as follows.  Like other mammalian genomes, the canine genome 

is large, about 2.7Gb [18], and complex, with >50% of the genome made of transposable 

elements (>50%) and other repetitive sequences [18].  Only 1-2% encodes protein-coding 

genes, approximately 20,000 in total and scattering in the genome with the gene density 

varying greatly.  The genes contain nine exons per gene on average.  Exons, ranged from 

a few to several thousand base pairs, are separated by introns of 10bp to 800kb in size.  

Clearly, to precisely locate each exon for each of ~20,000 genes in the dog genome is a 

daunting task. 

 

Gene identification in a sequenced mammalian genome is traditionally achieved by 

evidenced-based approaches.  This is usually done by mapping already-existing gene-

related sequences (e.g., expressed sequence tags or ESTs, mRNA or cDNA sequences, 

protein sequences) to the genome, in combination with ab initio gene predication3-5 by 

software programs such as Gene Scan and others.  Human and mouse represents the best-

annotated mammalian genomes.  This is made possible by several large human or mouse 

EST or cDNA sequencing projects, including the mammalian gene collection 

(mgc.nci.nih.gov/), and the data generated by numerous scientists worldwide devoting to 

specific genes in past decades.  In fact, even before the publication of the human and 

mouse genomes in 2001[21] and 2002, databases have already been established to 

assemble and annotate human genes, including the gene indices, Unigene, FANTOM db 

(fantom.gsc.riken.jp).  These resources greatly facilitates the annotation of the human[21] 

and mouse genomes.   

 

http://mgc.nci.nih.gov/
file:///C:/Users/szhao/Documents/Manuscripts/Manuscripts/DogGeneAnnotation/fantom.gsc.riken.jp
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For the dog, this unfortunately is not the case, with only 382,638 ESTs and <2,500 

curated Refseq transcripts.  Hence, the initial canine gene annotation was primarily 

achieved by mapping RefSeq transcripts, EST, mRNA, and protein sequences from the 

human and other species to the dog genome[18, 19].  This is how the canine 

XenoRefGene database is built at the University of Santa Cruz (UCSC) genome site.  

While providing an unprecedentedly large number of canine genes, this annotation has a 

number of significant issues.   

 

Recently emerged next-generation sequencing (NGS) technologies have revolutionized 

genome sequencing and gene annotation.  RNA-seq[22], whole transcriptome shotgun 

sequencing, is especially valuable, as it can efficiently identify alternative splicing, 

discover new genes and missing/incomplete exons.  Various groups, including the Broad 

Institute [20] and us[15, 16], have performed RNA-seq on various canine tissues and 

cells.  As a result, two new canine gene annotations, entirely built based on canine RNA-

seq data, have been released by the Ensembl genome site and the Broad Institute[20].  

We refer these two annotations as Ensembl and Broad hereafter.  However, as software 

tools analyzing RNA-seq are imperfect and still needs improving, significant issues still 

exist with these annotations. 

 

To improve the canine gene annotation, we set out to compare the current three canine 

gene annotation databases, XenoRefGene, Ensembl and Broad.  We identified and 

effectively addressed several significant issues in these databases, as described by the 

study below.  
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CHAPTER 2 METHOD OF ASSEMBLY AND ANNOTATION 

Public canine annotation databases downloaded.   

The three public canine gene annotation databases used in our analysis are all based on 

the canFam3 genome assembly.  These include Canis_familiearis.CanFam3.1.81.gtf, 

downloaded from the Ensembl genome sites 

(http://useast.ensembl.org/info/data/ftp/index.html ), Broad improved V1 (Broad V1)[20], 

and UCSC XenoRefGene, all downloaded from the UCSC genome site 

(http://www.genome.ucsc.edu/).  The XenoRefGene data were further processed to 

remove all nonhuman transcripts. 

 

Canine transcript assembly building 

Our own RNA-seq data are from 9 normal canine skin and mammary tissues samples.  As 

previously described [15, 16], each sample was sequenced with the Illumina technology, 

yielding 54 to 64 million paired-end sequence reads of 50 bp. 

 

RNA-seq data quality was checked by FastQC version 0.11.2[23].  Then, RNA sequences 

were assembled with reference-dependent and independent approaches, as outlined in 

Figure S1.  For reference-dependent approach, we mapped RNA-seq reads to the 

reference genome CanFam 3.1.81 by Bowtie version 1.1.1[24], TopHat version 

2.0.13[25].  Lastly, transcripts were assembled with Cufflinks version 2.2.1[22] [26] with 

the Ensembl annotation database (3.1.81).  The reference-independent assembly was 

achieved by using Trinity version 2.0.6[27] to construct transcripts de novo for each 

http://useast.ensembl.org/info/data/ftp/index.html
http://www.genome.ucsc.edu/
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sample.  Then, each trinity transcript was aligned to the canine reference genome with 

Blat version 36[28].   

 

To build the UGA raw assembly, Trinity transcripts and Cufflinks transcripts of each of 

the 9 samples were merged via Cuffcmp from Cuffinks package version 2.2.1 [Figure 1].  

Then, UGA raw assembly was merged with the Ensembl annotation 

Canis_familiearis.CanFam3.1.81.gtf and the BroadV1 annotation via Cuffcmp.  Finally, 

UGA transcripts that share identical intron regions [Figure 2] with either Ensembl or 

Broad transcripts were identified, classified as transcripts with higher confidence level, 

and subject to further annotation analyses. [Figure 1]. 
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Figure 1: We identified about 80,000 canine transcripts of a high confident level via 

novel assembly pipeline and UGA data  

 

 

Figure 2: Identical transcripts with complete match of intron region chain 
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Annotation of canine transcripts 

Our annotation pipeline is outlined in [Figure 3].  First, we identified the Open Reading 

Frame (ORF) of each transcript via TransDecoder version 2.0.1[29].  Second, we 

searched the ORF sequences against the manually curated protein database  

UniProtKB/Swiss-Prot Release 2015_08 [30] using NCBI Blast+ version 2.2.9[31].  To 

annotate each coding transcript, we selected the top hit among those with the blast 

expectation value (E) of < 1e-5.  Then, we linked the UniProtKB/Swiss-Prot protein ID 

assigned by the TrasnDecoder.Predict function to the official gene symbol by querying 

the UniProt database.  For those without official gene symbols found, the first gene name 

aliases or the UniProtKB/Swiss-Prot IDs were adapted.  Finally, for transcripts with no 

blast hits from UniProtKB/Swiss-Prot, we continued to use their XenoRefGene, Ensembl, 

or Broad names and IDs. With results from Blast and Hmmer, the ORFs are aligned to 

genome data by utility cdna_alignment_orf_to_genome_orf in TransDecoder to generate 

the genome with the identified coding region. The genome data with coding region was 

further annotated by TrasnDecoder.Predict to generate raw genome annotation [Figure 

3]. 
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Figure 3: We built pipeline to maximally annotate each high confident transcript 

with official gene symbol   

 

 

Over-merging discovery  

Our preliminary analysis indicate that over-merging Figure 4 is less prominent in the 

Ensembl and XenoRefGene databases.  We hence first identified over-merged Ensembl 

or XenRefGene transcripts by comparing transcripts within each database and between 

the two databases following steps outlined in Figure 5.  Then, we removed the over-

merged transcripts from Ensembl or XenoRefGene database.  For the Broad V1 and the 

UGA annotations, we compared transcripts within each database and also to transcripts of 

the Ensemsbl and XenoRefGene database after over-merging correction.  
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Our strategy for over-merging discovery is outlined in Figure 5  and is briefly described 

as follows.  First, a transcript, called “the parent transcript”, was compared to each child 

transcript”, defined as those transcripts that are on same chromosome, in the same strand 

and with at least one bp overlap with the parent transcript.  If a parent transcript is found 

to span two or more child transcripts with two distinct gene symbols/names, then the 

parent transcript will be classified as an over-merged candidate.  Then, a set of filter 

described below were applied to reduce false positives.   

The first filter is unannotated transcripts.  Specifically, if a child transcript gene name 

starts with “ENSCAF” (Ensembl IDs) or “CFRNASEQ_PROT” (Broad IDs) and without 

any official/common gene symbol/names assigned, these transcripts were removed from 

the over-merging candidates.  The 2nd filter is known read-through genes.  If the gene 

name of the parent transcript is composed of those of the first and second child transcripts 

linked by a “- “, e.g., SYS1-DBNDD2, it was then classified as read-through transcript.  

The 3rd filter is transcripts from complex gene families, including ZNF or OR genes.  The 

4th filter is delta, the distance between the CDS end of the head or first child and the CDS 

beginning of tail or 2nd child transcript [Figure 6].  If delta is negative, parent transcript 

could be a read-through transcript and will be removed from the over-merging transcript 

candidates. 
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Figure 4: Over-merging definition. In case A, delta is negative, where in case B, 

delta is positive. Both cases are over-merging. (refer to Figure 6 for delta definition)  

. 

 

 

Figure 5: We built a pipeline for over-merged transcript identification 
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Figure 6: Definition of delta, the gap between transcripts on same chromosome and 

save strand 

 

Retrogene identification 

We followed the pipeline outlined in Figure 8 for retrogene finding.  A retrogene formed 

when as a processed (introless) transcript was reverse transcribed and reinserted back to 

the genome [Figure 7].  Briefly, we searched each single coding exon transcript against 

all multi-exon transcripts (after removing over-merged candidates) in each annotation 

database with NCBI blast using cutoffs of E ≤ 1e-5 (-max_target_seqs 1 -outfmt 6 -

evalue 1e-5).  If a multi-exon transcript match was identified as the top hit, we would 

examine their genomic coordinates.  If no overlapping was identified, the single exon 

transcript would then be classified as retrogene.  



12 
 

 

Figure 7: A retrogene formed when as a processed (introless) transcript was reverse 

transcribed and reinserted back to the genome   

 

 

 

Figure 8: Retrogene identification pipeline,  

 



13 
 

Under-merging discovery 

Under-merging is to describe the transcripts that are not complete transcribe or byproduct 

of incomplete splicing, or due to other reasons. It was a subjective concept. In this study, 

Ensembl and XenoRefGene were selected reference.  

To rule out the overweight of over-merging, over-merging transcripts were excluded out 

in comparison. The transcripts from same gene were compared with each other by exon 

number and coding region length. To be identified as under-merging, transcripts had to 

meet following criteria [Figure 9]: 

• The over-merging transcripts were ruled out during comparison.  

• The exon number was under 30% of the median of exon number of transcripts 

with same gene name, on same chromosome and same strand.  

• The length of transcript was under 30% of the median of length of transcripts with 

same gene name, on same chromosome and same strand.  

• The exon number was under 30% of the median of exon number of transcripts on 

Ensembl with same gene name, on same chromosome and same strand.  

• The length of transcript was under 30% of the median of length of transcripts on 

Ensembl with same gene name, on same chromosome and same strand.  

• The exon number was under 30% of the median of exon number of transcripts on 

XenoRefGene with same gene name, on same chromosome and same strand.  

• The length of transcript was under 30% of the median of length of transcripts on 

XenoRefGene with same gene name, on same chromosome and same strand.  
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Figure 9: Under-merging identification pipeline 

 

Human and dog alternative splicing comparison 

To compare the abundance of alternative splicing forms between dog and human, synteny 

data of human GRCh38/hg38[32] to the dog genome were obtained from UCSC table 

canFam3.chainHg38[33].  The counts of transcripts and genes in the human genomic 

regions syntenic to each canine chromosome were obtained from UCSC hg38. 

wgEncodeGencodeCompV2[34]  
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CHAPTER 3 RESULTS 

We identified several significant issues in current canine gene annotations.  

We have identified a number of errors/issues in each of three canine annotation databases 

publically available, which include XenoRefGene, Ensembl and Broad as previously 

described.  The first error is called “over-merging”, resulting in a two distinct 

transcripts/genes fused into one transcript/gene.  This is exemplified by as follows.  Our 

analyses indicate that the chr1:112,621,382-112,645,509bp region encodes two distinct 

genes B9D2 and TGFB1, for which XenoRefGene has correctly annotated [Figure 10]. 

We have identified a number of errors/issues in each of the three canine annotation 

databases publically available, including XenoRefGene, Ensembl and Broad as 

previously described.  The first error is called “over-merging”, resulting in a two distinct 

transcripts/genes fused into one transcript/gene.  This is exemplified by Figure 10 as 

follows.  Our analyses indicate that the chr1:112,621,382-112,645,509bp region encodes 

two distinct genes B9D2 and TGFB1, for which XenoRefGene has correctly annotated 

[Figure 10 A].  However, the two genes are mistakenly merged in both Ensembl and 

Broad annotations, yielding over-merged transcripts [Figure 10 B and Figure 10 C].    

As a result, all transcripts in this region are incorrectly named as B2D9 in Ensembl 

[Figure 10 B].  or Q95N80_CANFA, the Uniprot protein ID for the canine TGFB1 

[Figure 10 C].  Over-merging is not a rare event.  We have identified a total of over-

merged transcripts of 323 (1.1%) for Ensembl, 2563 (3.0%) for Broad, and 401 (0.8%) 

for XenoRefGene  [Table 1]. 
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Figure 10: Examples of errors and issues identified in current canine annotation 

databases publically available.    

 



 
 

Table 1:  Summary of the issues identified in current canine gene annotations 

   Count of transcripts Count of 

UTR per 

transcript   Transcript Gene Transcript/gene Un-annotated  Gene name error CDS region error Over-merging 

UGA  70,511 17,361 4.14 - - - 3,950 0.38 

Ensembl 29,881 24,580 1.27 6,557 547 5,657 323 0.41 

Broad 85,168 16,265 5.24 2,897 15,244 46,308 2,563 0.92 

XenoRefGene  53,824 21,619 2.49 - 45 1,073 401 9.78 

Human  215,170 63,677 4.48 - - - - 1.68 

Mouse  104,129 43,629 2.38 - - - - 0.78 

 

* Human is GRCh38 [32] 

** Mouse is GRCm38 [35] 

 

 



 
 

The second error is genes being misnamed, some originated from over-merging as shown 

by Figure 1.  In total, we identified how 547 (2%) Ensembl transcripts, 15,244 (18%) 

Broad transcripts, and 45 (0.1%) XenoRefGene transcripts having wrong gene names 

[Table 1]. 

 

The third error is mis-annotation of coding regions and untranslated regions (UTRs) of a 

transcript.  This is especially evident in the Broad annotation, where many UTRs are 

labeled as coding regions, as exemplified by Figure 1.  In total, we found 46,308 (55%) 

Broad transcripts, 5657 (19%) Ensembl transcripts, and 1073 (2%) XenoRefGene 

transcripts with incorrectly assigned coding regions [Table 1]. 

 

The forth error is fragmented UTRs, which is observed only in XenoRefGene transcripts 

[Figure 10 A]. This is caused by mapping human transcript sequences to the dog genome 

and UTRs are less conserved between the human and the dog, compared to coding 

regions.  Because of the fragmentation, there are 9 UTR exons per transcript for 

XenoRefGene transcripts, compared to 0.4 UTR in Ensembl,0.9 in Broad, 1.67 for the 

human gene annotation and 0.78 for the mouse gene annotation.  

 

The fifth issue is alternative splicing.  While the Ensembl annotation has fewer transcripts 

with issues/errors described above, it has only1.02 transcripts per gene on average.  This 

is significantly lower when compared to the human, with 4.48 transcripts per gene, and 

the mouse, with a 2.38 transcripts per gene [Table 1].  The Broad annotation has 
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increased the average transcript/gene ratio to 5.24 [Table 1]. Its total gene number is 

however only 16,265 [Table 1], with about 4000 genes missing in the Broad annotation.   

 

The sixth issue is that a total of 6,557 (22%) Ensembl transcripts and 2,897 (3.4%) Broad 

transcripts are not annotated [Table 1].  These genes/transcripts are presented in the 

database with only Ensembl or Broad gene ID (e.g., transcript ENSCAFT00000043967 in 

Ensembl, which later is annotated as ENPP1 gene and CFRNASEQ_PROT_00011771, 

chr10:13,136,791-13,137,836), without official gene symbols identified.    

We tried to build a more accurate canine gene annotation by addressing the issues/errors 

discussed above [Figure 10 and Table 1]. To do this, we attempted first to build our own 

canine transcript assemblies, which then were compared with Ensembl and Broad 

transcripts to identify a set of transcripts with higher confidence [Figure 1].  Afterwards, 

we established an annotation pipeline that aimed to assign UTR/coding regions and gene 

symbol to each transcript accurately [Figure 3]. Finally, we attempted to identify and 

correct over-merged transcripts [Figure 5] and to discover retrogene [Figure 8] in each 

database.  These steps are described below. 

 

We established a set of transcripts of higher confidence through data integration. 

We established a pipeline as outlined in Figure 1 to build a set of canine transcripts with 

higher accuracy.  To achieve this, we first assemble our own transcripts with our RNA-

seq data from nine samples of normal canine skin and mammary gland [15, 36].  Each 

sample was sequenced by the Illumina platform to yield on average 56 million paired-end 

reads of 50bp [15, 36].  The sequences are all high quality based on the assessment by 
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FastQC [Figure 1].  With these sequences, we performed two transcript assemblies, 

reference-based and reference-independent [Figure 1]. 

 

For reference-based assembly, we first placed the sequence reads of each sample to the 

canine reference genome[18] with TopHat[25], achieving a mapping rate of 95% and 

alignment rate on concordant pairs of 84% on average [Table 2].  Then, we assembled 

the transcripts by Cufflinks[22] with the EnsEmbl 3.1.81 annotation [37] as the transcript 

reference.  This yielded an average of 55,081 transcripts per sample [Table 3 and Figure 

1].  Then, we merged transcripts from the 9 samples with Cuffcmp, yielding a total of 

382,409 distinct transcripts [Table 3, Table 4, Table 6 and Figure 1]  

For reference-independent assembly, we performed de novo assembly for each of the 9 

samples using Trinity[38].  This analysis yielded on average 60,648 transcripts per 

sample [Table 3].  The transcripts were mapped to the dog reference genome with 

Blat[28] to identify their intron/exon regions [Figure 1].  We then merged the 9 

assemblies via Cuffcmp, generating 89,831 distinct transcripts[Table 3 and Figure 1]. 

 

We then combined the transcripts from reference-dependent and -independent assemblies 

via Cuffcmp.  This leads to total of 381,181 distinct transcripts for our final assembly 

[Table 3, Table 4 and Figure 1].  Analogous to Ensembl and Broad, we refer our own 

data as “UGA” hereafter.   

 

We further merged our UGA transcripts with those of Ensembl and Broad via Cuffcmp, 

yielding 412,152 distinct transcripts in total [Table 5 and Figure 1]. To increase 

accuracy, we identified those UGA transcripts with each share identical intron regions 
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with either an Ensembl or Broad transcript.  A total of 79,887 such transcripts were 

found, with 15,441 with Ensembl/Broad, 56,455 with Broad and the rest, 7,991 with 

Ensembl [Figure 11].  These transcripts a higher confidence level and were subjected our 

annotation analysis described below.   

 

  



 
 

Table 2: Tophat results summary 

Tissue Sample ID Input reads 
Aligned_p
airs multiple_alignments discordant_alignments concordant 

Mammary M-115N 27,597,117 23383202 2,387,341 1,132,799 80.60% 

 M-31005N 21,738,806 19613143 2,286,047 1,012,215 85.60% 

 M-32510N 28,106,024 25699198 3,674,402 1,421,487 86.40% 

 M-401188N 32,599,348 28219439 4,484,354 1,825,093 81.00% 

 M-406434N 23,925,378 21823117 2,184,139 852,634 87.60% 

 M-76N 27,693,870 25083912 2,960,038 1,198,325 86.20% 

Skin S-240N 28,905,563 25895175 3,338,923 1,169,722 85.50% 

 S-251N 31,045,511 28986137 4,263,531 1,473,895 88.60% 

  S-465N 31,064,431 29078764 3,668,167 1,212,695 89.70% 



 
 

Table 3: Results of Cufflink, trinity assemblies 

Assembly  Tissue Sample ID 
# of 

Transcript # of Exon 

Reference Mammary 115N 55,776 443,791 

31005N 55,140 444,126 

32510N 56,537 453,680 

401188N 57,670 430,548 

406434N 54,569 451,366 

76N 56,223 444,858 

Skin 240N 50,560 415,515 

251N 54,726 434,680 

465N 54,525 445,646 

Average 55,081 440,468 

All Combined 382,409 2,889,887 

De novo Mammary 115N 66,299 518,495 

31005N 63,344 450,594 

32510N 62,270 509,143 

401188N 61,662 485,378 

406434N 62,454 483,186 

76N 64,197 490,317 

Skin 240N 50,772 379,288 

251N 55,606 447,171 

465N 59,229 487,747 

Average 60,648 472,369 

All Combined 89,831 890,794 
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Table 4: Assembly results in categories from Cufflinks and Trinity 

Class # of Transcript # of Exon 

= 26,334 236,362 

J 62,091 756,327 

C 4,558 23,001 

. 21,534 36,129 

E 1,689 1,689 

I 14,813 20,654 

O 167,786 1,457,804 

P 1,563 1,563 

S 28,387 203,622 

U 23,057 47,174 

X 29,369 100,593 

= and j 88,425 992,689 

All Combined 381,181 2,884,918 

* # Merged transcripts is less than total of cufflink and trinity result, due to that one  

result transcript could contain multiple original ones.   

** In the assembly stage, gene ID is generated computationally. There are no tight 

biology senses on these gene ID numbers. 
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Table 5: Assembly result of combining UGA, Ensembl and Broad in category 

Category # of Transcript 

Class 

UGA & 

Ensembl  

UGA & Broad 

V1  

UGA, Ensembl and Broad 

V1  

= 24,396 76,651 79,887 

J 106,820 5,259  
C 3,589 3,422  
. 673   

E 3,373 18,169  
I 13,028 49,158  
O 168,553 162,553  
P 1,439 781  
S 23,039 23,407  
U 38,337 30,084  
X 28,905 36,832  
= and j 131,216 81,910  

All Combined 412,152 406,316   

 

Table 6: Category explanation 

Category details 

Priority Class Code Description 

1 = Complete match of intron chain 

2 C Contained 

3 J 
Potentially novel isoform (fragment): at least one splice 

junction is shared with a reference transcript 

4 E 

Single exon transfrag overlapping a reference exon and at 

least 10 bp of a reference intron, indicating a possible pre-

mRNA fragment. 

5 I A transfrag falling entirely within a reference intron 

6 O Generic exonic overlap with a reference transcript 

7 P 
Possible polymerase run-on fragment (within 2Kbases of a 

reference transcript) 

8 R 

Repeat. Currently determined by looking at the soft-masked 

reference sequence and applied to transcripts where at least 

50% of the bases are lower case 

9 U Unknown, intergenic transcript 

10 X Exonic overlap with reference on the opposite strand 

11 S 
An intron of the transfrag overlaps a reference intron on the 

opposite strand (likely due to read mapping errors) 
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12 . (.tracking file only, indicates multiple classifications) 

*  Categories definition is copied from Cufflink manual [22] 

 

 

Figure 11: High confident transcripts consist of those UGA transcripts with each 

sharing identical intron regions with an Ensembl and/or Broad transcript. 

 

Our annotation more accurately assigns coding regions and UTRs. 

Following our annotation pipeline outlined in Figure 3,  we first identified open read 

frames (ORFs) in each of the transcripts of high confidence with Transdecoder [29], a 

widely used tool.  As a result, 66,447 transcripts were classified as the coding transcripts, 

with both coding DNA sequence (CDS) region and UTRs assigned [Table 7 and Figure 

3].  This analysis corrected many CDS miss-assignment in Broad transcripts [Table 1].  

Among 62,605 coding transcripts that share identical intron regions with Broad 

transcripts, only 16,328 (26%) share identical CDS regions[Table 7], leading to a 

discrepancy rate of >74%.  We investigated the 46,308 Broad transcripts with different 

CDS regions from ours.  We found that 43,998 (95%) of them have their entire exonic 
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regions simply labeled as CDS, apparently without considering coding frame [Table 7]. 

This is significantly higher when compared to our UGA or Ensembl annotation, with 

23,607 (51%)  4,409 (78%) such transcripts respectively [Table 7]. In Broad overall, 

there is total 63,113 (74%) transcripts with no UTR, which is also much higher than other 

parties.  

 

Our CDS identification agrees better with the Ensembl and XenoRefGene annotation, 

with a discrepancy rate of 34% and 43% respectively [Table 7].  Finally, the same as 

both Ensembl and Broad annotations that are RNA-seq based[20], our analysis has 

effectively addressed the UTR fragmentation issue of XenoRefGene transcripts [Figure 

10], with the UTR-exon/CDS-exon ratio decreasing from 10 to about 0.4 [Table 8].  

 

  



 
 

Table 7: CDS region comparison 

  

Count of all 

transcript  Count of coding transcript   

  Total Total 

Identical 

intron 

regions  

Identical CDS 

intron regions  

Different CDS 

intron regions  

Different CDS intron regions 

with no UTR 

Broad V1 85,168 85,168 62,630 16,332 46,308 43,998 

UGA 70,511 66,447 62,605 16,328 46,291 23,607 

Ensembl 29,881 25,157 16,626 10,969 5,657 4,409 

UGA 70,511 66,447 16,626 10,969 5,657 3,155 

XenoRefGene  53,824 46,212 2,494 1,424 1,073 234 

UGA 70,511 66,447 2,610 1,526 1,103 217 

 

Table 8: Count of UTRs in transcripts 

  Count of UTRs in all transcripts 

  Total 

transcript with no 

UTR Average Count of UTR 

Broad  V1 85,168 63,113 0.38 

Ensembl 29,881 11,771 0.41 

XenoRefGene 53,824 4,695 0.92 

UGA  70,511 4,356 9.78 

Human 100,778 4,927 1.68 

Mouse 53,819 4,765 0.78 

 



 
 

Our gene name and transcript annotation are standardized and more accurate. 

We annotate the gene name of each coding transcript by blasting its CDS against the 

UniProtKB/Swiss-Prot database[30], which contains 552,000 manually annotated non-

redundant proteins from various species [Figure 3] .  For each transcript, we selected the 

best match that met our cutoff (E< 1-E5).  Then, we assign the gene name from the match 

to each transcript.  To maximally standardize the gene names, we first prioritize the use 

of official gene symbols approved by Human Genome Organization (HUGO) Gene 

Nomenclature Committee [39] [Figure 3] . Then, for those transcripts without official 

symbol assignment, we adopt the names available in the order other gene name alias, 

UniProt IDs, the Enseml gene IDs, and Broad gene IDs [Figure 3]. 

We were able to assign 22,465 gene names to 66,447 transcripts [Figure 12].  Among 

these gene names, 13,066 (~64%) are official gene symbol[39].   

 

Our annotation contains 3,443 gene names missing in the Ensembl database, and 6,022 

gene names missing in the Broad database [Table 10].  The difference may arise from 

annotation errors or different naming scheme.  This illustrated by Figure 1, which 

indicates that the gene name “TGFB1” is missing in Ensembl because of over-merge and 

in Broad because of the use of the UniPort identifier (i.e., Q95N80_CANFA), instead of 

official gene symbol (i.e., TFGB1) [Table 1] . 

 

Conversely, we found that 5,769 gene names in Ensembl are missing in our annotation 

[Table 10].  Among these gene names, 4,372 are simply Ensembl gene IDs, all beginning 

with ENSCAFG (e.g., ENSCAFG00000000002).  As described a later section, a 
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substantial fraction (at least 4097) of these genes are retrogenes.  The remaining gene 

names missing our database include those like c1orf27 (330 in total), which are under 

more constant updating with more meaningful gene names.  Members from complex 

gene families, e.g., olfactory receptor (OR) and zinc finger genes also explain the 

difference [Table 11]  These genes also explains a large portion of gene names missing 

in our annotation, when compared to Broad and XenoRefGene databases. 

 

Our transcripts are named in the pattern of gene-name_chromosome_strand_duplication, 

such as transcripts of SCUBE2 at chromosome 21, forward strand would be named as 

SCUBE2_21_+_dup_0 and SCUBE2_21_+_dup_1 etc.. This naming convention 

provides more information by the name of transcript.  

 

Figure 12: Gene name annotation resource 



 
 

Table 9: Categories of gene name errors/flaws in Broad and Ensembl 

Resource Category # of Transcript # of Gene Name 

Broad Wrong name 11,739 3,001 

 (human) 299 290 

 _CANFS 3206 652 

 CFRNASEQ_PROT 903 903 

Ensembl Wrong name 547 477 

  ENSCAF 6,557 5,980 

 

Table 10: Coding gene name comparison 

Count of Coding Gene Name 

  Total Not in UGA Not in Ensembl Not in Broad Not In XenoRefGene Not in Human 

UGA  17,526 - 3,443 6,022 2,047 1,971 

Ensembl 19,852 5,769 - 6,239 4,583 4,475 

Broad  V1 18,562 4,692 2,583 - 3,955 3,799 

XenoRefGene 16,266 3,083 3,293 6,321 - 221 

Human 20,326 5,769 4,949 7,929 1,985 - 

 

  



32 
 

Table 11: Missed gene name compared in naming pattern  

Pattern ***** 

Counts of gene names 

in Ensembl not 

UGA **** 

in UGA not 

Ensembl 

in XenoRefGene 

not UGA 

in UGA not 

XenoRefGene 

in Broad not 

UGA 

in UGA not 

Broad 

* ENSCAF  4372 - - - 1994 - 

** C.orf  330 220 419 220 410 220 

ZNF - - 184 - - 109 

OR 20 - 141 - - 239 

KRTAP 83 - 83 - - 38 

HIST 12 - 55 - - - 

FAM - - 44 - - - 

LOC - - 38 - - - 

USP - - 31 - - - 

PCD - - 36 - - - 

SLC - - - - - 83 

OLFR - 14 - 14 - 14 

*** 

CFRNASEQ_P

ROT  - - - - 903 - 

* ENSCAF Ensembl in-house named 

** C.orf C[digit]orf 

*** 

CFRNASEQ_PR

OT Broad V1 in-house named 

**** in column title, E stand for Ensembl, U stand for UGA, B stand for Broad, e.g. in E not U, in Ensembl, but not in UGA 

***** Pattern: Gene Name prefix or gene name pattern 

 



 
 

We developed a pipeline to identify over-merged transcripts. 

As previously defined and illustrated in Figure 4, an over-merged transcript is a fusion 

product of two transcripts from two neighboring but distinct genes.  Based on this, we 

developed a pipeline as outlined in Figure 5 for over-merged transcript identification.  

Briefly, we first identified those transcripts that span two neighboring genes by 

comparing transcript among those that are on the same chromosome, in the same strand, 

and overlapped by at least 1bp [Figure 5].  As a result, a total of 5913 transcripts in our 

annotation, 597 transcripts in Ensembl, 4,533 transcripts in Broad, and 5626 transcripts in 

XenoRefGene were classified as over-merged candidates [Table 12]. We performed 

several analyses to reduce false positives as described below.   

 

We first identified those over-merged candidates whose child transcript(s) is (are) 

functionally not annotated [Figure 5].  “Functionally unannotated” here refers to those 

transcripts whose gene names are merely Ensembl or Broad IDs starting with ENSCAFG 

or CFRNASEQ_PROT, with no official gene symbols or other biological more 

meaningful names associated.  These transcripts have a higher probability to be pseudo-

genes (e.g., retrogenes described later), we hence excluded over-merged candidates 

involving these transcripts from out list [Figure 5 and Table 12]. 

 

We then determined how many are already known “read-through transcripts”.  Read-

through transcripts are produced during transcription by combining exonic regions of two 

distinct neighboring genes encoded in the same strand[40].  Some read-through 

transcripts have already been experimentally validated[40].  Among our putative over-
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merged transcripts, a total of 74 in our annotation, 54 in XenoRefGene, one in Broad, and 

zero in Ensembl were found to be known read-through transcripts [Table 12].   Because 

read-through transcripts are considered truly transcribed products, we excluded them 

from our over-merged transcript candidates [Figure 5].  The list of read-through genes 

are presented at Table 13. 

 

We studied the remaining over-merged transcript candidates, and found many involve 

large gene families such as ZNF and OR [Table 12]. Because these gene families are still 

evolving, many members share high sequence identities [Figure 5]. As a result, it is 

difficult to accurately assign gene names to those members as our method is sequence 

identity based.  To avoid ambiguity and reduce false results, we excluded over-merged 

candidates involving these gene families [Table 14]. As a consequence, a total transcripts 

of 1651 for our annotation, 172 for Ensembl, 762 for Broad, and 2967 for XenoRefGene 

were removed [Table 12]. XenoRefGene has the largest number (2967) because it 

contains the most ZNF genes.  

 

To better understand transcript over-merging, we examined the genomic distance or gap, 

represented by delta [Figure 6], between the genes of the two child transcripts.  A 

negative delta indicates the two genes overlapping in their exons, while a positive delta 

value indicates otherwise.  We found that after complex gene family removal as 

described above [Figure 5], the over-merged candidates with delta < 0 in total are 238 for 

our annotation, 16 for Ensembl, 62 for Broad, and 38 for XenoRefGene [Table 12]. 
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Thus, a majority of over-merged candidates are from two neighboring but non-

overlapping genes [Figure 13]. For over-merged candidates involving complex gene 

families, however, the delta values are mostly negative [Figure 6]. Compared to other 

annotation databases, XenoRefGene has more positive data values, possibly because the 

UTR exons of XenoRefGene are significantly shorter [Figure 10]. Because of these 

observations, we removed those with delta < 0 from our over-merged transcript candidate 

lists to reduce false positives.    

 

In summary, excluding known read-through transcripts and those involving complex 

gene families or with delta < 0, we discovered 3950 potential over-merged transcripts in 

our annotation.  Similarly, we identified such transcripts of 323 for Ensembl, 2563 for 

Broad, and 401 for XenoRefGene [Table 12]. As a result, we corrected the mis-annotated 

gene names of 50 Ensembl transcripts, 1851 Broad transcripts, and 1 XenoRefGene 

[Table 12]. These mis-annotations originated from transcript over-merging, as 

exemplified in Figure 10. 

 

 



 
 

Table 12: Over-merging filters with number of transcripts at each step 

        Complex       

Annotation Cross 

 Un-

annotated    

 Read-

through CEACAM OR 

 

Zinc_

Finger 

 

other_c

omplex   

Complex 

Subtotal  

Negative 

delta  

Over-

merging         

UGA 5,913 - 74 29 30 464 1,128 1,651 238 3,950 

Ensembl 597 86 NA 8 3 43 118 172 16 323 

Broad  V1 4,533 1,145 1 16 18 293 435 762 62 2,563 

XenoRefSeq 5,626 2,166 54 54 174 1,894 845 2,967 38 401 

 

 



 
 

Table 13: List of read through genes 

Read-through gene name 

ANKHD1-EIF4EBP3 

ARPC4-TTLL3 

ATP5J2-PTCD1 

BCL2L2-PABPN1 

BIVM-ERCC5 

C7orf55-LUC7L2 

CCDC169-SOHLH2 

CHURC1-FNTB 

CKLF-CMTM1 

COMMD3-BMI1 

CORO7-PAM16 

FPGT-TNNI3K 

FXYD6-FXYD2 

HSPE1-MOB4 

IQCJ-SCHIP1 

ISY1-RAB43 

JMJD7-PLA2G4B 

LY75-CD302 

MSANTD3-TMEFF1 

NEDD8-MDP1 

NME1-NME2 

NT5C1B-RDH14 

PALM2-AKAP2 

PMF1-BGLAP 

PPAN-P2RY11 

PRR5-ARHGAP8 

PTGES3L-AARSD1 

RBM14-RBM4 

RNF103-CHMP3 

RPS10-NUDT3 

SAA2-SAA4 

STON1-GTF2A1L 

SYNJ2BP-COX16 

SYS1-DBNDD2 

TGIF2-C20orf24 

TMED7-TICAM2 

TMEM189-UBE2V1 

TNFSF12-TNFSF13 

TRIM39-RPP21 
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TRIM6-TRIM34 

 

Table 14: List of complex gene name prefix or patterns 

Gene name pattern 

ADGRE2 

ALPK3 

ATP6V0E2 

C1*orf* 

CEACAM1 

DRD4 

DUT 

ECSIT 

ENSCAFG* 

FBXL19 

FIZ1 

GCKR 

GIMAP8 

HKR1 

KRBOX* 

MAN2B1 

MZF1 

OR10A4 

PSG* 

Q004B0_CANFA 

SAMD1 

SQLE 

SRCAP 

TRIM* 

VN1R* 

ZFP* 

ZIK1 

ZIM3 

ZKSCAN3 

ZNF* 

ZSCAN12 

*is the wild card for the number or letters 
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Table 15: gene name errors affected by over-merging 

  
# of Transcript # of Gene 

Ensembl 50 44 

Broad   1851 471 

XenoRefGene 1 1 

 

 

Figure 13: Transcript density over delta, value of delta 0 includes the count of 

transcripts with negative delta, max value of delta includes counts of transcripts 

more than max value 

 

We established a pipeline to identify retrogenes.  

After removing over-merged transcripts described above, our annotation contains 77645 

transcripts from 22703 genes.  Among these transcripts, about 10% (7663 in total) are 

from single exon genes, which is significantly higher when compared to the human 

genome gene annotation (4%).  To determine if some of the single exon transcripts are 
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from retrogenes, defined as processed (intronless) transcripts being reverse transcribed to 

DNA and reinserted back to the genome [Figure 7], we developed a pipeline as outlined 

in Figure 8.  Briefly, we searched each single exon transcript against each multi-exon 

transcript in the database.  If a match was found (see Methods) and the single exon 

transcript and the multi-exon transcript differ in genomic location, the single exon 

transcript will be classified as representing a retrogene [Figure 7].   

 

Through this analysis, we classified 2984 transcripts as retrogene candidates in our 

annotation.  Similarly, we classified 4290 Ensembl as retrogenes, 1650 Broad as 

retrogenes for Broad, and 1965 XenoRefGene transcripts retrogenes [Table 16].  The 

retrogene exon size is 5-6 times larger than the overall gene exon size on average [Figure 

15 and Table 17]. Furthermore, among the 4299 Ensembl retrogene candidates identified, 

4097 (95.5%) have no official gene symbols and are only assigned an Ensembl ID 

starting with ENSCAF, as previously described [Figure 14].   These observations support 

that our pipeline [Figure 8] is valid. 

After removing the identified retrogene candidates, the single exon gene fraction 

decreased from 21% to 9% for Ensembl.  The modified numbers better match that of the 

human annotation (GRCh38), which contain about 4% single exon transcripts [Table 18]. 
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Figure 14: Ensembl retrogene composition, annotated and un-annotated 

 

 

Figure 15: exon size distribution of retrogene and non-retro gene 

 



 
 

Table 16: Count of retrogene  

  Count of retrogene  

UGA  2,984 

Ensembl 4,290 

Broad  V1 1,650 

XenoRefSeq 1,965 

 

Table 17: Comparison of exon size and retrogene size 

  Ensembl Broad Xeno UGA 

   Overall       Retrogene  Overall       Retrogene  Overall       Retrogene  Overall       Retrogene 

Average exon size(bp) 166.56 806.88 385.40 2,447.60 149.34 660.37 165.16 1,028.33 

 



 
 

Table 18: Single exons and retrogenes 

  Total  # Single Exon # Single Exon / Total % Total  # Single Exon # Single Exon / Total % 

UGA   74,024 3,513 4.75% 70,511 529 0.75% 

Ensembl 29,881 6,419 21.48% 23,324 2,129 9.13% 

Broad  V1 85,168 1,950 2.29% 81,071 300 0.37% 

XenoRefSeq 53,824 2,632 4.89% 51,364 667 1.30% 

Human 215,170 7,892 3.67% 215,170 7,892 3.67% 

 



 
 

We tried to identify potential under-merging transcripts 

Similar to over-merging described previously, under-merging transcripts (i.e., missing 

certain exons) are also possible for reasons such as inadequate sequencing of lowly 

transcribed genes in RNA-seq analysis.  However, under-merging discovery is not as 

straight forward as over-merging, because it is difficult to distinguish short but real 

alternative splicing forms from under-merged transcripts.  We attempted to reply on exon 

number and length cutoffs, as outlined in Figure 9, for this task.  With this pipeline, we 

discovered 2,442 transcripts that are possibly under-merged in our database.  We also 

identified such transcripts of 20 for Ensembl, of 1506 for Broad, and of 113 for 

XenoRefGene [Table 19 and Figure 9]. 

 

Table 19: Count of under-merging transcript and gene  

  count of under-merging 

  # of Transcript # of Gene 

UGA 2,442 1,580 

Ensembl 20 20 

Broad  V1 1,506 1,208 

XenoRefGene_hg  113 93 

 

We provided an improved canine gene annotation to the public. 

After addressing issues described above, our annotation contains 70,511 transcripts from 

17,361 genes, among which 66,447 transcripts from 16062 gene are protein coding 

[Table 20]. As previously described, each transcript shares identical intron/exon junction 

an Ensembl or Broad transcript [Figure 11]. Our annotation contains 12 exons per 

transcript and 4 transcripts per gene on average, with more alterative splicing forms 

compared to the Ensembl database.  We studied the transcript/gene ratio distribution in 



45 
 

the canine genome and found that the distribution resembles that of the human 

transcript/gene ratio in the syntenic human genomic regions [Figure 16]. This support the 

overall accuracy of our alternative splicing form identification.   

 

 

Figure 16: Transcript and gene distribution over chromosome 

 

Data access 

Our annotation, along with the identified over-merging genes and retrogenes in each 

database are publically available at the UCSC genome website. 

http://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=yatchin&hgS_otherUser

SessionName=N9_v2_omf_ready%2D0   

http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=yatchin&hgS_otherUserSessionName=N9_v2_omf_ready%2D0
http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=yatchin&hgS_otherUserSessionName=N9_v2_omf_ready%2D0
http://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=yatchin&hgS_otherUserSessionName=N9_v2_omf_ready%2D0


 
 

Table 20: Transcript over gene ratio 

  
All CDS 

  

Transcript 

# 

Gene 

# Transcript/gene 

CDS  

transcript CDS gene Transcript/gene 

UGA  70,511 17,361 4.06 66,447 16,062 4.14 

Ensembl 29,881 24,580 1.22 25,157 19,856 1.27 

Broad 85,168 16,265 5.24 85,168 16,265 5.24 

XenoRefSeq  53,824 21,619 2.49 46,212 18,561 2.49 

Human  * 215,170 63,677 3.38 104,763 23,393 4.48 

Mouse ** 104,129 43,629 2.39 53,819 22,621 2.38 

* Human is GRCh38  

** Mouse is GRCm38 

 



 
 

 

CHAPTER 4 DISCUSSION  

We have improved canine gene annotation by addressing issues in current 

databases.  

We have diligently tried to address the issues, which we identified in current publically 

available canine gene annotation databases.  As a result, we have built an annotation, 

which we believe is significantly improved in several aspects.  First, to increase the 

accuracy of canine transcript assemblies, we performed reference-dependent and 

independent transcript assembly with our high quality RNA-seq data[15, 16] and only 

selected those that share identical intron/exon junctions with existing Ensembl or Broad 

transcripts.  Second, we developed a pipeline that aims to accurately assign coding 

regions and an official gene symbol to each transcript.  In this process, we corrected 

hundreds to thousands of misnamed transcripts or transcripts named not using official 

gene symbols.  Third, we developed a strategy that aims to identify over-merged 

transcripts.  For RNA-seq based annotation, over-merging happens because all transcript 

assembly programs are sequence match-based and RNA-seq reads are still relatively 

short (<150bp).  Thus, if the end of the last exon of one gene share high sequence identify 

with the beginning of the first exon of a neighboring gene, an over-merged transcript 

could arise.  For XenoRefGene, the identification of gene in the canine genome is also 

sequence-match based, and the same issue could arise.  Our study corrected hundreds to 

thousands of over-merged transcripts in each annotation database, and as well as the 

misnamed genes originated from over-merging. Lastly, we developed a strategy that 

discovered thousands of retrogenes in each database.   
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Our annotation is improved.  Compared to the Broad annotation[20], we have corrected 

transcripts with incorrectly labeled CDS regions, over-merged, and/or misnamed.  

Compared to the Ensembl annotation, we have classified thousands of transcripts as 

retrogenes and increased the transcript/gene ratios from 1 to 4.  Compared the 

XenoRefGene annotation, we corrected the UTR regions of nearly every coding 

transcripts and increase the accuracy of CDS regions of many transcripts.  We have 

released this improved database to the public.   

 

Our pipelines need to be improved.  

First, for over-merging discovery, our current pipeline only considers those neighboring 

but non-overlapping transcripts to avoid read-through transcripts.  However, over-

merging could happen with overlapping genes.  We hope that with further understanding 

of over-merging; we could use more accurate criteria to distinguish between read-through 

and over-merging transcripts.  

 

Second, we currently only focus on the transcripts with identical intron region with 

existing Ensembl or Broad transcripts.  There are >342,000 transcripts not included in our 

analysis.  Granted, many of them are artifacts, e.g., transcript fragments or under-merged 

transcripts (for discussion below).  Some, however, could be novel alternative splicing 

forms or novel genes.  Further efforts are required to develop strategy to classify these 

transcripts.    
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Several critical issues are not considered by our pipelines. 

Although being improved, our canine annotation still lags behind in accuracy and 

comprehensiveness, when compared to the human genome annotation.  Several critical 

issues are not addressed in our current pipelines.   

 

First, like over-merging, under-merging transcripts are possible and hence the 

transcript/gene ratio of four in our databases may be inflated.  On contrary to over-

merging, under-merging transcripts miss certain exons).  They occur for reasons such as 

inadequate sequencing of lowly transcribed genes in RNA-seq analysis.  However, under-

merging discovery is not as straight forward as over-merging, because it is difficult to 

distinguish short but real alternative splicing forms from under-merged transcripts.  

Future studies are need to establish efficient strategy for under-merged transcript 

discovery. 

 

Second, tissue specific alternative splicing is nearly unknown for the dog.  As more dog 

tissues and cells being sequenced in the future, this situation will be improved. 

 

Third, the dog genome is in a draft state, contain assembly, and sequence errors.  This in 

turn could result in gene mis-annotation, e.g., missing exons, CDS region mis-

assignment.  However, this however requires manual curations in many cases.  An 

automatic pipeline can only be established once we have a better understanding of the 

errors and RNA-seq data and software. 
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Fourth, regulatory regions (e.g., enhancers) are less conserved between human and dogs.  

Hence, these regions need more species-specific efforts, e.g., ChIP-seq with makers 

specific to enhancers.  Once published, we will incorporate these studies for regularity 

regions findings.  For noncoding RNA genes fortunately, other groups have taken efforts 

for their discovery[41]. 

 

Our pipelines should be useful to other mammalian species. 

Except for the human, the mouse and perhaps the rat, the other mammalian species share 

many of the same gene annotation issues as the dog.  Also similar to the dog, RNA-seq 

data are being generated for these species.  Hence, our pipelines developed are species 

independent and should be useful to these species. 
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