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Abstract

Time series with complex features, such as non-linearity, high-dimensionality and func-

tional structures, have inspired many interests in the statistics community recently. In

this dissertation, novel non/semi-parametric methods are investigated to model and/or

forecast such time series based on spline estimation. We first consider a class of semi-

parametric GARCH models with additive autoregressive components linked together by

a dynamic coefficient. We propose estimators which are computationally efficient and

theoretically reliable for the additive components and the dynamic coefficient. We also

propose a framework to model and forecast the functional time series via functional

principal component analysis. For comparing the functional derivatives of regression

functions from two groups, we develop a novel method to construct simultaneous confi-

dence bands for the difference of derivatives. The performance of the proposed methods

is evaluated by various simulated processes and real datasets in finance and climate.
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Chapter 1

Introduction and Literature Review

1.1 Time Series with Complex Features

Time series is a long-standing research area in traditional statistics, which is closely

related with many natural and man-made phenomena in real life, such as climate evo-

lution, economic dynamics and financial returns, etc. One problem facing the statistics

community today is modeling of time series data with complex structures collected by

financial companies, federal agencies, research institutes and other organizations. Such

series pose formidable challenges in both applications and theory because they exhibit

features such as non-linearity, high-dimensionality and complex functional structures.
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As an example, consider {XT
t , Yt}nt=1 = {Xt1, ..., Xtd, Yt}nt=1, a d + 1 dimensional time

series where d can be very large. Suppose we model Yt as:

Yt = m(Xt) + σ (Xt) εt,m(Xt) = E(Yt|Xt), t = 1, ..., n,

where E(εt|Xt) = 0, E(ε2t |Xt) = 1, and m, σ are unknown d-dimensional functions we

want to estimate nonoparametrically. In the above model, Xt may usually consist of

lagged values of Yt or other covariates. It is possible that such time series exhibit non-

linearity and high-dimensionality. There are many good examples of such time series:

for example, the weekly 3-month Treasury bill secondary market rate from 1970 to 1997

of 1460 observations shown in Fig 1.1 (refer to Example 4.6 in Tsay (2005)). This data

was obtained from Federal Reserve Bank of St. Louis. The series of rates follow a

nonlinear instead of a simple linear time series model. Local linear regression methods

have been applied to address the complexities of modeling this time series.

Another example is a functional time series. Suppose {Yt (uj)}nt=1 curves with temporal

dependence on some equally or unequally spaced grid {uj}mj=1 at time points t = 1, ..., n.

At the t-th time point, its sample path {uj, Ytj} is a noisy realization of a smooth

function Xt(uj) and the series is defined by:

Ytj = Xt (uj) + σtjεtj, j = 1, ...,m, t = 1, ..., n

with independent errors εtj satisfying E (εtj) = 0, E(ε2tj) = 1. The main interest is

to forecast the h-ahead curves {Yt (uj)}n+h
t=n+1 . Hyndman and Ullah (2007) showed a

2



motivational example of a functional time series. Fig 1.2 is the plot of age-specific log

mortality rate curves from 1816 to 2006. In this example, Ytj is the observed log death

rate at age uj in t-th year. Forecasting the future mortality curves is very important for

the insurance and pension industry, and even the government. But the literatures related

to dealing with functional time series is sparse due to certain inherent complexities.

Motivated by these challenging questions, researchers have developed various cutting-

edge nonparametric techniques to model and forecast time series with such unique fea-

tures; see Fan and Gijbels (1996), Bosq (1998), Fan and Yao (2003).

year
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Figure 1.1: Time plot of U.S. weekly 3-month Treasury bill rate in the secondary market

from 1970 to 1997.
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Figure 1.2: Total death rates in France from 1816-2006. The colors indicate the time

ordering of the curves in the same order as the colors in a rainbow (the oldest curves

are red and the most recent curves are purple).

1.2 Literature Review

1.2.1 Volatility Model and News Impact Curve

Since the introduction of ARCH model by Engle (1982), there has been an explosion

of papers analyzing conditional volatility; see GARCH model (Bollerslev 1986), expo-

nential GARCH model (Nelson 1991), integrated GARCH model (Bollerslev and Engle

1993), and threshold GARCH models (Glosten et al. 1993). These models have been

used in many financial applications of interest rate data, stock return data, foreign ex-

change data, etc. All of these new and existing models regress the conditional volatility

4



parametrically on lagged values of shocks and lagged values of volatility. These empirical

studies also reveal that there is a long term persistence in the effects of shocks in the

period t onto the conditional volatility in the future period t+ s.

In the economic world, it is well known that news drives the market: good news lifts the

market, while bad news depresses the market. Nelson (1991) emphasized the interesting

“leverage effect” which indicates that negative shocks to asset markets increase pre-

dictable volatility more than positive shocks. Engle and Ng (1993) proposed a standard

measure of how news (shocks) influences stock volatility - a news impact curve for these

conditional volatility models. The news impact curve describes the relationship between

surprises in conditional volatility and shocks. The asymmetric effects of good news and

bad news onto volatility suggests the asymmetric shape of the news impact curve; see

the discussion in Engle and Ng (1993). The variants of GARCH model, such as GJR

model (Glosten et al. 1993) and EGARCH model (Nelson 1991), allow such leverage

effects. In order to increase the flexibility of models, researchers have introduced the

non/semi-parametric (G)ARCH models; see for example, Pagan and Schwert (1990),

Engle and Ng (1993), Masry and Tjøstheim (1995), Härdle and Tsybakov (1997), Hafn-

er (1998), Härdle, et al. (1998), Bühlmann and McNeil (2002), Linton and Mammen

(2005) and Yang (2006). These models have achieved great success compared with the

parametric GARCH models when applied to real data with many lags. However their

applications have been hampered by the curse of dimensionality when smoothing the

high-dimensional and strongly correlated time series.

5



1.2.2 Functional Data and Functional Time Series

Functional data analysis (FDA) is an emerging and promising research field developed

in the last two decades. It provides a new perspective for the traditional statistical

analysis. Most statistical analyses consider one or more observations taken from a sample

of subjects. These observations can be a number or a vector of numbers. In FDA

context, the observations are curves or surfaces which are in nature examples of functions.

Therefore, curves and surfaces are called “functional data” and statistical methods to

analyze such data are called “functional data analysis”; see Ramsay and Silverman

(2005).

Functional data always arises from two scenarios: 1) functional observations are indepen-

dent, such as longitudinal trajectories collected from a sample of subjects in randomized

designs; 2) functional observations are dependent, such as temporally-dependent daily

financial transaction curves and spatially-dependent geophysical patterns. The former

scenario is the focus of functional data analysis nowadays. Functional principal compo-

nent analysis (FPCA) is the most popular dimension reduction tool in FDA. A central

issue in this case is estimation and inference of various components obtained by FP-

CA, such as mean functions, covariance functions and eigenfunctions; see Yao, et al.

(2005a,b), Ferraty and Vieu (2006), Li and Hsing (2010) and Cao, et al. (2012a). In

order to study the variability of mean functions, estimation and inference of functional

derivatives also attract attention from many statisticians recently; see Liu and Müller

(2009) and Hall, et al. (2009) and Cao, et al. (2012b). In the latter scenario, such

6



dependent functional data hasn’t received as much attention as has independent func-

tional data. Only a few papers can be found on this topic, including Hyndman and Ullah

(2007), Shen (2009), and Hörmann and Kokoszka (2010). We consider a functional time

series {Xt, t ∈ Z} as a dependent sequence of random functions {Xt(u), u ∈ [a, b]} in

terms of t. A key issue in analyses of such data is to take into account the temporal

dependence of functional data.

1.3 Summary

As discussed above, the development of nonparametric statistics and functional data

analysis in theory and methodology has provided us powerful tools to address the chal-

lenging problems arising in the time series with complex features. Many applications

have been seen in financial time series, fertility/mortality dynamics and climate time

series, etc. The contributions in this dissertation are to study the various non/semi-

parametric methods to model and/or forecast such complex time series based on spline

estimation.

In Chapter 2, we consider a class of semiparametric GARCH models with additive au-

toregressive components linked together by a dynamic coefficient. We proposed estima-

tors for the additive components and the dynamic coefficient based on spine smoothing.

The estimation procedure involves only a small number of least squares operations; thus

it is computationally efficient. Under regularity conditions, the proposed estimator of

the parameter is root-n consistent and asymptotically normal. A simultaneous confi-

7



dence band for the nonparametric component is proposed by an efficient one-step spline

backfitting. For the empirical financial return series, we find further statistical evidence

of the asymmetric news impact function.

In Chapter 3, a novel method is proposed for forecasting time series of smooth curves,

using functional principal component (FPC) analysis in combination with time series

modeling and FPC scores forecasting. We achieve the smoothing, dimension reduction

and prediction at the same time via expedient computation. The work is motivated by

the demand to forecast the time series of economic functions, such as Treasury bond yield

curves. Extensive simulation studies have been carried out to compare the prediction

accuracy of our method with other existing methods.

In Chapter 4, we develop a new procedure to construct simultaneous confidence band-

s for the difference of derivatives of regression functions from two groups. We show

that the proposed spline confidence bands are asymptotically efficient, as if there is no

measurement error. Simulation experiments have provided strong evidence that corrob-

orates with the asymptotic theory. The application of the proposed methodology to a

temperature data collected in Athens, GA in US has shown us how the temperature

transitions change in response to the major global atmospheric pressure oscillations.
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Abstract

We consider a class of semiparametric GARCH models with additive autoregressive

components linked together by a dynamic coefficient. We propose estimators for the

additive components and the dynamic coefficient based on spline smoothing. The es-

timation procedure involves only a small number of least squares operations, thus it is

computationally efficient. Under regularity conditions, the proposed estimator of the

parameter is root-n consistent and asymptotically normal. A simultaneous confidence

band for the nonparametric component is proposed by an efficient one-step spline back-

fitting. The performance of our method is evaluated by various simulated processes

and a financial return series. For the empirical financial return series, we find further

statistical evidence of the asymmetric news impact function.

Keywords: B-spline, confidence band, knots, news impact curve, volatility.

2.1 Introduction

Forecasting financial market volatility is important in many applications such as portfolio

selection, asset management, pricing of primary and derivative assets. Consider a time

series {Yt}∞t=1 of the form Yt = σtξt, where the {ξt}
∞
t=1’s are i.i.d with mean 0 and variance

1, and {σ2
t}

∞
t=1 denotes the conditional volatility series. Engle (1982) introduced the

autoregressive heteroskedastic (ARCH) models for conditional volatility as a quadratic

14



function of past observations. For example, an ARCH model of order q is defined as

σ2
t = γ + α1Y

2
t−1 + · · ·+ αqY

2
t−q, γ > 0, αi ≥ 0, i = 1, ..., q.

Research on financial volatility models has grown tremendously since then; for example,

the generalized autoregressive conditional heteroscedasticity (GARCH) models. The

most popular version of the GARCH models is the GARCH(1, 1) model of Bollerslev

(1986):

σ2
t = γ0 + α0Y

2
t−1 + β0σ

2
t−1, γ0 > 0, α0, β0 ≥ 0,

or equivalently σ2
t = β0σ

2
t−1 +m0(Yt−1), where m0(y) ≡ α0y

2 + γ is the “news impact

curve”.

The quadratic form of the function m0(·) had been questioned by many. For example,

Glosten et al. (1993) proposed the following GJR model

σ2
t = γ0 + α0Y

2
t−1 + δ0Y

2
t−1I(Yt−1 < 0) + β0σ

2
t−1

with m0(y) ≡ γ + αy2 + δy2I (y < 0), allowing different “leverages” of good and bad

news on m0. For this reason, recent studies have introduced the non/semi-parametric

(G)ARCH models to increase the flexibility of the class of models; see for example,

Pagan and Schwert (1990), Engle and Ng (1993), Masry and Tjøstheim (1995), Härdle

and Tsybakov (1997), Hafner (1998), Härdle, et al. (1998), Bühlmann and McNeil

(2002), Linton and Mammen (2005) and Yang (2006). These models generalize and

15



outperform the parametric GARCH models when applied to real data with many lagged

variables. However, smoothing high dimensional and strongly correlated time series data

still presents great challenges in both computation and theory.

As an alternative, additive models (Stone (1985)) overcome these difficulties while keep-

ing the flexibility of the models. Yang, et al. (1999) analyzed a multiplicative form of

volatility using nonparametric smoothing. Carroll et al. (2002) and Yang (2002) pro-

posed a truncated version of the nonparametric GARCH model with a finite number of

lags J

σ2
t =

J∑
j=1

βj−1
0 m0(Yt−j), β0 ∈ [β1, β2] . (2.1.1)

However, for small J , it may not capture the persistence of volatility for many time

series; see Linton and Mammen (2005) and Yang (2006).

In this paper, we re-examine model (2.1.1) based on a data-driven lag selection pro-

cedure. Most of the existing methods rely on marginal integration kernel smoothing

(Linton and Nielsen, 1995) or iterative approaches such as backfitting algorithm (Hastie

and Tibshirani, 1990). The marginal integration can be computationally expensive if

the selected number of lags J or sample size n is large, and it requires O(n3) operations

(Hengartner and Sperlich, 2005). Moreover, n is required to be larger than 10, 000 for

convergence when smoothing 10-dimensional data, so it is not routinely used in prac-

tice despite good theoretical properties. Widely used R/Splus packages gam and mgcv,

based on backfitting with splines, provide convenient implementation in practice but

lack theoretical justifications except some special cases in Opsomer and Ruppert (1997).

16



Our goal is to develop a simple but flexible semiparametric method with a well-justified

theory and a fast algorithm to implement the method in practice. This is done by

approximating the nonparametric components with polynomial splines. The use of spline

smoothing traces back to Stone (1985), who first obtained the rate of convergence of the

polynomial spline estimates for the generalized additive model. In volatility studies,

Engle and Ng (1993) employed linear spline smoothing to estimate the news impact

function, without pursuing asymptotic results.

Our approach allows for formal derivation of the asymptotic properties of the proposed

estimators. We establish the
√
n-consistency and the asymptotic normality for the pa-

rameter estimator and L2 convergence rate for the functional component. To examine the

validity of certain forms of the volatility models, we provide a simultaneous confidence

band for the news impact curve using the one-step spline-backfitted spline estimator in

Song and Yang (2009b).

The rest of the paper is organized as follows. Section 2.2 gives details of the model

specification, proposed methods of estimation and presents the asymptotic results. In

addition, we discuss some alternative methods and the practical issue of lag selection.

In Section 2.3, we describe a spline confidence band for the news impact curve. In

Section 2.4, we report our findings in an extensive simulation study. An application to

a real financial return data set is given in Section 2.5. Most of the technical proofs are

contained in Section 2.7.
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2.2 Methodology

2.2.1 Semiparametric GARCH with additive autoregressive struc-

ture

Consider a stationary time series {Yt}Tt=1, with Yt = σtξt, t = 1, 2, ..., T . We rewrite

model (2.1.1) as the following additive autoregressive model,

Y 2
t = c+

J∑
j=1

mj(Yt−j) + ϵt, ϵt = σ2
t

(
ξ2t − 1

)
, (2.2.1)

where the component functions m1(·), ...,mJ(·) are linked by a scalar parameter β0 such

that mj(y) = βj−1
0 m1(y) for j ≥ 2. Define the least squares risk function R(β) over[

β1,β2

]
as,

R(β) = E

[
J∑

j=1

{
mj(Yt)− βj−1m1(Yt)

}2

]
. (2.2.2)

Since R(β) =
∑J

j=1

{(
βj−1
0 − βj−1

)2}
E {m1(Yt)

2} is a convex function with respect to

β, β0 is the unique minimizer of R(β) over
[
β1,β2

]
. For identifiability, the component

functions in (2.2.1) satisfy E {mj (Yt)} = 0, j = 1, ..., J .

Our interest is to estimate the news impact function m1 and dynamic coefficient param-

eter β0. To reach this goal, first we employ the polynomial spline smoothing to obtain

the estimates m̂j(·) of the additive components mj(·) without taking into account the

parametric link of the components; Then we estimate the dynamic coefficient β0 by using

the link restriction between the additive components m̂j(·) (j = 1, .., J). For simplicity
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of notation, let us call the above approach the spline additive GARCH (GARCH-ADD)

approach.

We now only consider the estimation of mj(·) based on all bounded measurable function

on compact interval [a, b] , where a, b are some fixed constants. When applying to real

data, one can use fixed truncation to satisfy this condition. Let Sn be the space of

polynomial splines on [a, b] of degree p ≥ 1. We introduce a knot sequence with N

interior knots

u−p = ... = u−1 = u0 = a < u1 < ... < uN < b = uN+1 = ... = uN+p+1,

where N ≡ Nn increases when sample size n increases, whose precise order is given in

Assumption (A5). The spline of degree p for the jth variable is denoted as {bj,k}Nk=−p

(de Boor (2001)). Then, Sn consists of functions g(·) satisfying (i) g(·) is a polynomial

of degree p on each of the subintervals Ik = [uk, uk+1), k = 0, ..., N − 1, IN = [uN , b];

and (ii) for p ≥ 2, g(·) is p− 1 time continuously differentiable on [a, b].

Equally-spaced knots are used here for simplicity of proof, while adaptively choosing

the locations of the knots could have been done for real data analysis. Let h = (b −

a)/ (N + 1) be the distance between neighboring knots. Define next the space G =

G[a, b] of additive splines as the linear space spanned by the following sequence defined

by: {1, bj,k (yj) , j = 1, ..., J, k = −p, ..., N}.
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Let
(
λ̂
′
0, λ̂

′
1,−p, ..., λ̂

′
J,N

)T

be the solutions of the least squares problem

(
λ̂
′
0, λ̂

′
1,−p, ..., λ̂

′
J,N

)T

= argmin
R1+J(N+p)

T∑
t=J+1

{
Y 2
t − λ0 −

J∑
j=1

N∑
k=−p

λj,kbj,k (Yt−j)

}2

.

Denote n = T − J . Let ĉ = n−1
∑T

t=J+1 Y
2
t , which is a

√
n-consistent estimator of c by

the Central Limit Theorem. The centered spline estimator of each component function

is

m̂j (y) =
N∑

k=−p

λ̂j,kbj,k (y)−
1

n

T∑
t=J+1

N∑
k=−p

λ̂j,kbj,k (Yt−j) , 1 ≤ j ≤ J. (2.2.3)

To estimate the parameter β0, we regress {m̂2(Yt)}Tt=J+1 on {m̂1(Yt)}Tt=J+1 and solve for

the least squares solution of
∑T

t=J+1 {m̂2(Yt)− βm̂1(Yt)}2. The performance is improved

by averaging over all the components, so we define the sample least squares criterion,

R̂ (β) =
1

n

T∑
t=J+1

J∑
j=1

{
m̂j(Yt)− βj−1m̂1(Yt)

}2
, (2.2.4)

and the minimizer of (2.2.4) β̂ is the GARCH-ADD estimator of the dynamic coefficient.

2.2.2 Asymptotic properties of the GARCH-ADD estimators

For our theoretical results, we enforce the following technical assumptions.

(A1) The data-generating process {Yt, t > 0} is strictly stationary and α-mixing with

exponentially decaying mixing coefficients α (k) ≤ K0e
−λ0k for some positive con-
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stants K0 and λ0. The α-mixing coefficients for {Yt}Tt=1 is defined as

α (k) = sup
B∈σ{Ys,s≤t},C∈σ{Ys,s≥t+k}

|P (B ∩ C)− P (B)P (C)| , k ≥ 1.

(A2) Function m1 is a pth degree continuously differentiable function on interval [a, b] .

(A3) For any t, t′ = 1, 2, ..., T, t ̸= t′, the joint density f (yt, yt′) of (Yt, Yt′) , is continu-

ous and 0 < cf ≤ inf(yt,yt′ )∈[a,b]2 f (yt, yt
′) ≤ sup(yt,yt′ )∈[a,b]

2 f (yt, yt′) ≤ Cf <∞.

(A4) The noise ξt satisfies E (ξt |Ft−1 ) = 0, E
(
ξ2t |Ft−1

)
= 1, and E

(
|ξt|

5+δ |Ft−1

)
<

Mδ for some δ > 0 and a finite positive Mδ.

(A5) The number of interior knots of the spline basis functions with degree p > 1 sat-

isfies : cNn
1/(2p) log n ≤ N ≤ CNn

1/2/ log3 n, for some positive constants cNand

CN .

Remark 1. Assumption (A1) is a standard assumption in time series literature; see

Linton and Mammen (2005), Wang and Yang (2007). Assumption (A2) is very relaxed

in our paper compared with marginal integration method; see Linton and Nielsen (1995).

Assumption (A3) only requires that the pairwise joint density is bounded away from 0

and ∞. So it is a much weaker assumption compared with Assumption (iv) in Carroll et

al. (2002) and Assumption (c) of Huang and Yang (2004) which require the boundedness

of the joint density of the J variables. Assumption (A4) is comparable with Assumption
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(vi) in Carroll et al. (2002). Assumption (A5) gives the order of the number of interior

knots.

We now describe our asymptotic results for the parameter in Theorems 2.1 and 2.2, and

the consistency result for the nonparametric news impact curve is given in the Appendix.

Theorem 2.1. Under Assumptions (A1)-(A5), as n→ ∞, β̂ −→ β0, a.s.

Theorem 2.2. Under Assumptions (A1)-(A5), as n→ ∞,
√
n
(
β̂ − β0

)
has an asymp-

totic normal distribution with mean 0 and variance D−2
∑

t Cov(V0, Vt), where Vt =

εtH(β0,m1(Yt)), and H(β0,m1(Yt)) is given in (2.7.9) in Appendix, and D =
∑J

j=2(j−

1)2β2j−4
0 E [m2

1(Yt)] .

As an added refinement, considering that the additive components are linked, we define

m̂∗
1 (y) =

J∑
j=1

β̂
(j−1)

m̂j (y)

/
J∑

j=1

β̂
2(j−1)

. (2.2.5)

As discussed in Carroll et al. (2002), the asymptotic variance of {m̂∗
1 (y)−m1 (y)} is

smaller than that of
{
β̂
−(j−1)

m̂j (y)−m1 (y)
}

for all j. We show, in the Section 2.7,

that m̂∗
1 (y) has the same convergence rate as m̂1 (y).

2.2.3 The alternatives

There is a host of possible alternative methods for estimating the GARCH models non-

parametrically, for example, a referee has suggested that we can improve the efficiency

of the estimators by taking the advantage of the structure of model (2.1.1). Define
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σ2
t (β,m) =

∑J
j=1 β

j−1m (Yt−j), and let β0 and m0 be defined as the minimizers of the

population least squares (LS) criterion function E {Y 2
t − σ2

t (β,m)}2, or be the mini-

mizers of the negative likelihood (NL) criterion function E
[
log (σ2

t (β,m)) +
Y 2
t

σ2
t (β,m)

]2
.

Similar to the method in Section 2.2.1, we approximate m(·) by polynomial splines.

Thus, the empirical version of the LS or NL problem is
∑T

t=J+1

{
Y 2
t − σ̂2

t (β,λ)
}2

or∑T
t=J+1

[
log

{
σ̂2
t (β,λ)

}
+

Y 2
t

σ̂2
t (β,λ)

]
, where λ = {λ1−p, ..., λN} and σ̂2

t (β,λ)

=
∑J

j=1

∑N
k=1−p β

j−1λkbk(Yt−j).

The minimizer of β based on the above LS or NL criterion is the estimator of β, de-

noted by GARCH-LS and GARCH-NL, respectively. We have not investigated their

asymptotic properties due to some technical challenges. But the numerical performance

of these two estimators have been studied in a comprehensive Monte Carlo study; see

Section 2.4.

2.2.4 Selection of knots and lags

An important aspect for regression splines is the choice of the knots. Splines with

few knots are generally smoother than splines with many knots; however, increasing the

knots usually can improve the fit of the spline function to the data. The number of knots

used in our simulation is N = [c1n
1/(2p) log(n)]+ c2, where [a] denotes the integer part of

a, and c1 and c2 are positive integers. As pointed out in Wang and Yang (2007), there

is no optimal method to select (c1, c2). In our simulation, the simple choice c1 = c2 = 1

works well, so these are set as default values.
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For all the above modeling approaches, we need to determine the number of lags J . For

the GARCH-ADD approach, we adopt the consistent BIC lag selection method for non-

linear additive autoregressive models (Huang and Yang, 2004) and the BIC is defined

as

BIC(J) = log

 1

n

T∑
t=J+1

{
Y 2
t − ĉ−

J∑
j=1

m̂j (Yt−j)

}2
+

log log(n)

n
{1 + J(N + p+ 1)} .

Numerical results of knots and lags selection in a simulation study are reported in Section

2.4.

2.3 Confidence Band for the News Impact Curve

In this section, we introduce a simultaneous confidence band for the news impact curve.

For nonlinear additive autoregressive model, Song and Yang (2009b) proposed a two-

step spline smoothing method to estimate each additive component: the first step spline

smoothing does a quick initial estimation of all additive components and removes all

except the ones of interest; the second smoothing is then applied to the cleaned univariate

data to refine the estimator of each component with the asymptotically oracle efficiency.

They also established an asymptotic 100(1− α)% conservative confidence band

m̂j (y)± 2σ̂j (y) {log (N + 1)}1/2QN (α) , (2.3.1)
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where m̂j is the spline-backfitted spline estimator, σ̂j is the estimator of the standard

deviation function of m̂j, and QN (α) is an inflation factor; see Song and Yang (2009b).

When constructing the confidence band in (2.3.1), one needs additional smoothing steps

to estimate the functions σ̂j in (2.3.1), which may cause the results less accurate; see

Song and Yang (2009a). In this article we propose a bootstrap version of (2.3.1) similar

to Song and Yang (2009a). The following are the detailed procedure of constructing the

simultaneous confidence band. Denote a predetermined large integer by nB. By default

nB is 500.

Step 1. Pre-estimate mj by its centered pilot estimator m̂j, j = 1, ..., J , through an

under-smoothed spline smoothing procedure with N1 knots.

Step 2. Construct the pseudo-response Ŵt = Y 2
t − ĉ−

∑J
j=2 m̂j (Yt−j) and approximate

m1 by linear spline smoothing with N2 knots based on
{
Ŵt, Yt−1

}T

t=J+1
. Define the

estimator m̆1 (·) = argming(·)∈Sn

∑T
t=J+1

{
Ŵt − g (Yt−1)

}2

, and denote residual ε̂t =

Ŵt − m̆1(Yt−1).

Step 3. Let {δt,b}1≤b≤nB

J+1≤t≤T be i.i.d. mean 0 and variance 1 samples of the following

discrete distribution δt,b =
1±

√
5

2
with probability 5±

√
5

10
.

Step 4. For any 1 ≤ b ≤ nB, define the b-th wild bootstrap sample Ŵ ∗
t,b = m̆1 (Yt−1) +

δt,bε̂t, J+1 ≤ t ≤ T . Then the bootstrap estimator ofm1 (y) is m̆1
(b) (y) =

∑N2

k=−1 φ̂
(b)
k Bk (y),

where
(
φ̂
(b)
−1, φ̂

(b)
2 , ..., φ̂

(b)
N2

)T

are the estimated spline coefficients.
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Step 5. Denote by Lα/2 (y) and Uα/2 (y) respectively the lower and upper 100(1−α/2)%

quantiles of the set
{
m̆

(b)
1 (y)

}nB

b=1
. The wild bootstrap 100(1−α)% pointwise confidence

interval for function value m1 (y) at one point y is
{
Lα/2 (y) , Uα/2 (y)

}
.

Step 6. According to Song and Yang (2009b), when localized at any point y, the uniform

confidence band in (2.3.1) is wider than the pointwise confidence interval in Huang (2003)

by a common factor Fα = 2z−1
1−α/2 {log (N2 + 1)}1/2QN (α). We define the (1 − α)%

bootstrap confidence band for m1 (y) as m̆1 (y) +
{
Lα/2 (y)− m̆1 (y)

}
Fα, m̆1 (y) +{

Uα/2 (y)− m̆1 (y)
}
Fα.

Remark 3. Song and Yang (2009b) proposed to use N1 ∼ n2/5 log n knots for the

initial spline estimation in step 1 and N2 ∼ n1/5 knots for the backfitting spline in

estimation step 2. In our simulation, N1 and N2 for the spline estimation are calculated

as N1 = min
{
[c1n

2/5 log(n)] + c2, [n/4− 1] /J
}
and N2 =

[
c3n

1/5 log(n)
]
+c4 and tuning

constants c1 = 1, c2 = 1, c3 = 0.5, c4 = 1 by default.

2.4 Simulation

We carried out some simulations to illustrate the finite-sample behavior of the proposed

estimators defined in Section 2.2. We compared the performance of the GARCH-ADD,

GARCH-LS and GARCH-NL estimators with the GARCH(1,1) and GJR(1,1) estima-

tors.
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We generated time series Yt = σtξt with the noise sequence {ξt}
T
t=1 i.i.d standard normal

random variables. The volatility {σ2
t}

T
t=1 was from the following models:

A : σ2
t = 0.10 + 0.20Y 2

t−1 + 0.75σ2
t−1,

B : σ2
t = 0.05 + 0.20Y 2

t−1 + 0.05Y 2
t−1I (Yt−1 < 0) + 0.75σ2

t−1,

C : σ2
t = 1− 0.90 exp(−2Y 2

t−1) + 0.70σ2
t−1,

where the news impact curve in model A is symmetric, and a switching asymmetry has

been built into model B. Model C involves exponential curves and a similar model has

been studied by Carroll, et al. (2002) and Bühlmann and McNeil (2002).

We first considered time series from models A, B and C with Jmodel = 5. For T = 500,

1000, 2000 and 3000, we generated 200 replications for the above three processes of size

T + 1000. Then the first 1000 observations were discarded to make sure the time series

behave like strictly stationary. We truncated each time series according to its 2.5th

and 97.5th percentile. For these truncated time series, we estimated the parameter β0

and the news impact curve m1 by cubic splines. The number of lags, J , was selected

according to the BIC described in Section 2.2.4. The minimization of R̂ (β) was based

on a grid search of 100 points around the true value.

(Insert Table 2.1 about here)

The 3rd to the 5th columns in Table 2.1 provide the sample mean (MEAN), standard

deviation (STD) and mean squared errors (MSE) of β̂ based on the GARCH-ADD,

GARCH-LS and GARCH-NL methods. As we expected, when the sample size increases,
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the parameter β0 is more accurately estimated, with smaller MSE, confirmative of the

conclusions of Theorem 2.1. As one referee expected, the GARCH-LS and GARCH-NL

estimators provide more accurate estimation in some cases, especially for Model C. We

did not see obvious advantage using these model structures for Models A and B. The

mean and median of selected number of lags Jfit were reported in the last column of

Table 2.1, and one sees that Jfit is close to Jmodel = 5 for moderately large sample size.

For the news impact curve estimation, in our simulation we tried both m̂1 in (2.2.3) and

m̂∗
1 in (2.2.5), and the refined m̂∗

1 performed slightly better as we expected. The 6th

column in Table 2.1 shows the average MSEs (AMSE) in [−2.0, 2.0]Jfit for m̂∗
1.

Next, to illustrate the finite-sample behavior of our confidence bands, we calculated

the percentage of coverage of the true news impact function by the confidence bands

for three different models above. Two nominal confidence levels 0.99 and 0.95 were

considered. We carried out 500 replications, and for each replication, 500 bootstrap

samples were generated for the bootstrap band. Table 2.2 contains the Monte Carlo

coverage probabilities of the proposed bands. One can see the coverage rate gets close

to the nominal level for all three models as sample size increases.

(Insert Table 2.2 about here)

We also carried out simulation considering model misspecification, and we generated

time series from models A and B with Jmodel = ∞. Remember that for Jmodel = ∞,

process A is a GARCH(1,1) process, so clearly GARCH(1,1) is the preferred estimator

in this case. For process B, a GJR(1,1) is the desired model. It is thus interesting to see

how much efficiency, if any, is lost by using the proposed nonparametric methods with
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selected finite number of lags; see results in Table 2.3. For T = 1000, the nonparametric

methods lost a small amount of efficiency relative to the parametric ones. But that effect

decreases as the sample size increases for both processes A and B. Overall, we find that

the GARCH-ADD works quite robust though β0 is not the true parameter anymore.

One explanation is that the selected number of lags based on our method is usually also

large when J model = ∞.

(Insert Table 2.3 about here)

In all our simulation experiments, our proposed GARCH-ADD method worked very fast,

and we provide the time in seconds for all the methods in the last column in Table 2.3.

The proposed GARCH-ADD method only needs to solve a moderate number of linear

least squares and a simple univariate nonlinear optimization. So in most cases one can

see that the GARCH-ADD works much faster compared to its competitors which involve

high-dimensional nonlinear optimization.

2.5 Application

In this section, we investigate the news impact curve on BMW daily stock return series

to discover the relationship between past return shocks and conditional volatility. We

collected the samples of daily percentage returns on the BMW share price from June

1st 1986 to January 30th 1994. There were a total of 2000 observations. We truncated

Yt by its 0.01 and 0.99 quantiles.
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For comparison, we also fitted the classical GARCH(1,1) and GJR(1,1) models. We

compared the goodness-of-fit of our model with these two models in terms of volatility

prediction error 1
n

∑T
t=J+1

(
σ̂2
t − Y 2

t

)2
and the log-likelihood −

∑T
t=J+1 log

{
σ̂−1
t φ

(
Yt

σ̂t

)}
with Jfit = 50. Clearly, the semiparametric method had an edge over the two parametric

models in terms of prediction error and log-likelihood. One can see from Table 2.4 that

the leverage effects of the GJR model can be further enhanced by a nonlinear link to

yield a much better volatility fit.

(Insert Table 2.4 about here)

To examine the validity of the GARCH and GJR models, we constructed the spline

bootstrap confidence band. Figure 2.2 plots the GARCH, GJR, GARCH-ADD fits with

the 95% confidence band. From Figure 2.2, we find that the spline estimated news impact

curve stands obvious contrast to the GARCH(1,1) fit, which shows strong evidence of

the asymmetry of the news impact curve. But it seems that all three models can be

fully covered by the bootstrap band.

(Insert Figure 2.1 about here)

For diagnostic purpose, we show the estimated autocorrelation function (ACF) of the

daily standardized residuals ε̂2 with the 95% Bartlett intervals, and one sees that the

autocorrelation in the daily returns series is very small.
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2.6 Discussion

Non/semi-parametric methods enhance the flexibility of the volatility models that prac-

titioners use. However, due to the limitations in either interpretability, computational

complexity or theoretical reliability, most of the nonparametric stochastic volatility mod-

els have not been widely used as general tools in volatility analysis. In this chapter, we

have advanced semiparametric methods as flexible, computationally efficient and theo-

retically attractive tools for studying the financial volatility.

We propose approximating the functional component in an additive volatility model by

B-splines, which can be done by running OLS operations once the spline basis is chosen.

Thus our method is particularly computationally efficient compared to its competitors

which have to solve big system equations or optimize high-dimensional nonlinear func-

tions. In addition, we introduced two alternative methods taking into account the model

structure. These alternative methods are supposed to be more efficient in principle, but

obtaining the asymptotics is likely to be difficult. We leave it as future research work.

All the proposed estimators are easily implemented in commonly used software/package

such as lm() in R.

There is more future work ahead. For example, it is interesting to consider the issue of

model misspecification. In this paper, instead of estimating the true dynamic coefficient

for J = ∞, we estimate a parameter β0 that approximates the true parameter by using

some finite J . If J = ∞, β0 would not be the true dynamic coefficient anymore. The

asymptotic results for the misspecified case has to be more fully explored.
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2.7 Appendix

Throughout this section, we denote c, C any positive constants, without distinction.

Denote ∥ϕ∥2 the theoretical L2 norm of a function ϕ on [a, b], ∥ϕ∥22 =
∫ b

a
ϕ2 (y) f (y) dy,

and define the empirical L2 norm as ∥ϕ∥22,n = n−1
∑n

i=1 ϕ
2 (Yi). The corresponding inner

products are defined by ⟨ϕ, φ⟩2 =
∫ b

a
ϕ (y)φ (y) f (y) dy and ⟨ϕ, φ⟩2,n = n−1

∑n
i=1 ϕ (Yi)φ (Yi).

Define the centered version spline basis

b∗j,k (y) = bj,k (y)−
E(bj,k)

E(bj,k−1)
bj,k−1 (y) , j = 1, ..., J, k = 1− p, ..., N,

with the standardized version given for any j = 1, ..., J , k = 1− p, ..., N ,

Bj,k (y) = b∗j,k (y) /
∥∥b∗j,k∥∥2

. (2.7.1)

In practice, basis {bj,k, j = 1, ..., J, k = −p, ..., N}T is used for data analysis, and the

mathematically equivalent expression (2.7.1) is convenient for asymptotic analysis. Let

x = (x1, ..., xJ)
T. For a J-dimensional vector Xt = (Yt−1, ..., Yt−J)

T, define

B (x) = {1, B1−p,1 (x1) , ..., BJ,N (xJ)}T , B = {B (XJ+1) , ...,B (XT )}T .
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Let mt = c+
∑J

j=1 β
j−1
0 m1(Yt−j). Define the signal vector m = {mJ+1, ...,mT}T and the

noise vector ϵ = {ϵJ+1, ..., ϵT}T. Let

Λj = diag{0, ..., 0, 1, ..., 1︸ ︷︷ ︸,
from (N+p)(j−1)+2 to (N+p)j+1

0, ..., 0}

be a diagonal matrix. Based on the relation Y 2
t = mt + ϵt, one defines the signal spline

smoothers and the noise spline components

m̃j (y) = B (y)T Λj (B
TB)−1B Tm− 1

n
1T

nBΛj ( B
TB)−1BTm,

ϵ̃j (y) = B (y)T Λj (B
TB)−1BTϵ− 1

n
1 T

n BΛj (B
T B)−1 BTϵ, (2.7.2)

where 1n is a length n dimensional vector with all elements 1.

Defining Z =
{
Y 2
J+1, ..., Y

2
T

}
, we can rewrite m̂j (y) in (2.2.3) using matrix as

m̂j (y) = B (y)T Λj (B
TB)−1 B TZ− 1

n
1T

nBΛj ( B
TB)−1BTZ.

Then one has the following crucial decomposition for proving Theorem 2.1,

m̂j (y) = m̃j (y) + ϵ̃j (y) , j = 1, ..., J. (2.7.3)

To prove Theorems 2.1 and 2.2, we need the following lemma on the L2 convergence rate

of the one-step spline estimator m̂1 to m1.
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Lemma 2.1. Under Assumptions (A1)-(A5), as n→ ∞,

∥m̂1 −m1∥2,n + ∥m̂1 −m1∥2 = Oa.s.

(
hp + log n/

√
nh

)
. (2.7.4)

Proof. Using the approximation result of polynomial spline on page 149 of de Boor

(2001), we have ∥m̃1 −m1∥2 = O (hp), and ∥m̃1 −m1∥2,n = O (hp). According to Lemma

A.6 of Wang and Yang (2007), ∥ϵ̃∥2 = Oa.s.

(
log n/

√
nh

)
, and ∥ϵ̃∥2,n = Oa.s.

(
log n/

√
nh

)
.

The result in Lemma 2.1 follows from the decomposition in (2.7.3).

The following corollary states the asymptotic property of m̂∗
1 given in (2.2.5) to m1.

Corollary 2.1. Under Assumptions (A1)-(A5), as n→ ∞,

∥m̂∗
1 −m1∥2,n + ∥m̂∗

1 −m1∥2 = OP

(
hp + log n/

√
nh

)
.

Proof. The proof is quite straightforward from the above lemma and Theorem 2.2.

∥m̂∗
1 −m1∥2 =

∥∥∥∥∥∥ 1∑J
j=1 β̂

2(j−1)

[
J∑

j=1

β̂
(j−1)

(m̂j −mj) +
J∑

j=1

β̂
j−1

(
βj−1
0 − β̂

j−1
)
m1

]∥∥∥∥∥∥
2

.

For each j, ∥m̂j − mj∥2 has order OP

(
hp + log n/

√
nh

)
. Combining with the re-

sult that
∑J

j=1 β̂
j−1

(
βj−1
0 − β̂

j−1
)

= OP (1/
√
n) = oP

(
hp + log n/

√
nh

)
from Theo-

rem 2.2, we can easily obtain that ∥m̂∗
1 −m1∥2 is with the order OP

(
hp + logn√

nh

)
, so is

∥m̂∗
1 −m1∥2,n.
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2.7.1 Proof of Theorem 2.1

Note that the risk function R(β) given in (2.2.2) is locally convex on β and hence,

consistency for β can be implied by supβ∈[β1,β2]

∣∣∣R̂(β)−R(β)
∣∣∣ → 0 a.s., where R̂(β) is

given in (2.2.4). Note that

R̂(β) =
J∑

j=1

∥∥m̂j −mj + βj−1m1 − βj−1m̂1

∥∥2

2,n
+

J∑
j=1

∥∥mj − βj−1m1

∥∥2

2,n

+
J∑

j=1

2
⟨
mj − βj−1m1, m̂j −mj + βj−1m1 − βj−1m̂1

⟩
2,n

= P1(β) + P2(β) + P3(β).

By (2.7.4), we have supβ∈[β1,β2] P1(β) = Oa.s.(h
2p + log2 n/nh), and

sup
β∈[β1,β2]

P3(β) ≤ 2J max
1≤j≤J

{∥∥m̂j −mj + βj−1m1 − βj−1m̂1

∥∥
2,n

sup
x∈[a,b]

∣∣mj (x)− βj−1m1 (x)
∣∣} ,

which is of the order Oa.s.

(
hp + log n/

√
nh

)
. Thus,

sup
β∈[β1,β2]

∣∣∣R̂(β)− P2(β)
∣∣∣ = Oa.s.

(
hp + log n/

√
nh

)
.
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While

sup
β∈[β1,β2]

|P2(β)−R(β)|

≤

∣∣∣∣∣ 1n
T∑

t=J+1

{
J∑

j=1

m2
j(Yt)

}
− E

{
J∑

j=1

m2
j(Yt)

}∣∣∣∣∣+ 1− β2J
2

1− β2
2

∣∣∣∣∣ 1n
T∑

t=J+1

m2
1(Yt)− Em2

1(Yt)

∣∣∣∣∣
+
2(1− β2J

2 )

1− β2
2

∣∣∣∣∣ 1n
T∑

t=J+1

{
J∑

j=1

mj(Yt)m1(Yt)

}
− E

{
J∑

j=1

mj(Yt)m1(Yt)

}∣∣∣∣∣ .
By a strong law of large numbers for mixing processes, supβ∈[β1,β2] |P2(β)−R(β)| =

oa.s.(1). Thus

sup
β∈[β1,β2]

∣∣∣R̂(β)−R(β)
∣∣∣ ≤ sup

β∈[β1,β2]

∣∣∣R̂(β)− P2(β)
∣∣∣+ sup

β∈[β1,β2]
|P2(β)−R(β)| = oa.s.(1),

and β̂ converges to β0 a.s. is followed.

2.7.2 Proof of Theorem 2.2

We make a Taylor expansion about d
dβ
R̂ (β) at β0,

√
n
d

dβ
R̂
(
β̂
)
=

√
n
d

dβ
R̂ (β)

∣∣∣∣
β=β0

+
d2

dβ2 R̂ (β)

∣∣∣∣
β=β̃

√
n
(
β̂ − β0

)
,
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where β̃ is between β̂ and β0. Thus one has

√
n
(
β̂ − β0

)
=

√
n

{
d2

dβ2 R̂ (β)

∣∣∣∣
β=β̃

}−1 {
d

dβ
R̂
(
β̂
)
− d

dβ
R̂ (β)

∣∣∣∣
β=β0

}

= −
√
n

{
d2

dβ2 R̂ (β)

∣∣∣∣
β=β̃

}−1
d

dβ
R̂ (β)

∣∣∣∣
β=β0

. (2.7.5)

We need the following two lemmas to deal with −
√
n d

dβ
R̂ (β)

∣∣∣
β=β0

and d2

dβ2 R̂ (β) respec-

tively.

Lemma 2.2. Under Assumptions (A1)-(A5),

−
√
n

2

d

dβ
R̂ (β)

∣∣∣∣
β=β0

= n−1/2

T∑
t=J+1

ϵtH(β0,m1(Yt)), (2.7.6)

where H(β0,m1(Yt)) is given in (2.7.9).

Proof. Note that

−
√
n

2

d

dβ
R̂ (β)

∣∣∣∣
β=β0

= n−1/2

T∑
t=J+1

J∑
j=1

(j − 1) βj−2
0

{
m̂j(Yt)− βj−1

0 m̂1(Yt)
}
m̂1 (Yt)

= n−1/2

T∑
t=J+1

J∑
j=1

(j − 1) βj−2
0

{
m̂j(Yt)− βj−1

0 m̂1(Yt)
}
[m̂1 (Yt)−m1 (Yt)]

+n−1/2

T∑
t=J+1

J∑
j=1

(j − 1) βj−2
0

{
m̂j(Yt)− βj−1

0 m̂1(Yt)
}
m1 (Yt)

= I + II,
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and the first term I can be written as

I = n−1/2

T∑
t=J+1

J∑
j=1

(j − 1) βj−2
0 {m̂j(Yt)−mj(Yt)} {m̂1 (Yt)−m1 (Yt)}

−n−1/2

T∑
t=J+1

J∑
j=1

(j − 1) β2j−3
0 {m̂1 (Yt)−m1 (Yt)}2

= I1 + I2.

As in the proof of Theorem 2.1, we have both I1 and I2 with order Oa.s.(h
2p+ log2 n

nh
).With

the order of h in Assumption (A5), we have I = Oa.s.

{
n1/2

(
h2p + log2 n

nh

)}
= oa.s.(1).

For part II, noting that ∥m̃1 −m1∥2,n = O(hp), a.s., so by (2.7.3) and Assumption (A5)

we have

II = n−1/2

T∑
t′=J+1

J∑
j=1

(j − 1) βj−2
0

{
m̃j(Yt′) + ϵ̃j(Yt′)− βj−1

0 m̃1(Yt′)− βj−1
0 ϵ̃1(Yt′)

}
m1 (Yt′)

= n−1/2

T∑
t′=J+1

J∑
j=1

(j − 1) βj−2
0

{
ϵ̃j(Yt′)− βj−1

0 ϵ̃1(Yt′)
}
m1 (Yt′) + oa.s. (1) .

Let

V̂ =
1

n
BTB =

 1 0

0 ⟨Bj,k, Bj′,k′⟩2,n


1≤j,j′≤J,

1−p≤k,k′≤N

, V =

 1 0

0 ⟨Bj,k, Bj′,k′⟩2


1≤j,j′≤J,

1−p≤k,k′≤N

.
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With ϵ̃j defined in (2.7.2), the main term in II is

n−1/2

T∑
t′=J+1

J∑
j=1

[
(j − 1) βj−2

0 m1 (Yt′)

[{
B (Yt′)Λj −

1

n
1T

nBΛj

}

−βj−1
0

{
B (Yt′)Λ1 −

1

n
1T

nBΛ1

}]
V̂

−1

{
1

n

T∑
t=J+1

Bj,k(Yt)ϵt

}
j,k

 (2.7.7)

According to Lemma A.10 in Wang and Yang (2007), we can replace V̂ byV in equation

(2.7.7) with a negligible term Oa.s.

{
n−1/2N(log n)2

}
. Next we interchange the indices t

and t′ of (2.7.7), thus the main term in II can be approximated by

n−1/2

T∑
t=J+1

J∑
j=1

[
(j − 1) βj−2

0 ϵt

[{
B (Yt)Λj −

1

n
1T

nBΛj

}

−βj−1
0

{
B (Yt)Λ1 −

1

n
1T

nBΛ1

}]
V −1

{
1

n

T∑
t′=J+1

Bj,k(Yt′)m1 (Yt′)

}
j,k

 .(2.7.8)
Denote

H(β0,m1(Yt)) =
J∑

j=1

[
(j − 1) βj−2

0

[{
B (Yt)Λj −

1

n
1T

nBΛj

}

−βj−1
0

{
B (Yt)Λ1 −

1

n
1T

nBΛ1

}]
V −1

{
1

n

T∑
t′=J+1

Bj,k(Yt′)m1 (Yt′)

}
j,k

 .(2.7.9)
and equation (2.7.8) can be written as n−1/2

∑T
t=J+1 ϵtH(β0,m1(Yt)), which leads to

(2.7.6).
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Lemma 2.3. Under (A1)-(A5), d2

dβ2 R̂ (β) = Em2
1(Yt)

∑J
j=2

{
(j − 1) β(j−2)

}2

+ oa.s.(1).

Proof. Note that

d2

dβ2 R̂ (β) = n−1

T∑
t=J+1

J∑
j=2

m̂2
1(Yt)

{
(j − 1) β(j−2)

}2

+n−1

T∑
t=J+1

J∑
j=2

(j − 1) (j − 2) βj−3m̂1 (Yt)
{
m̂j(Yt)− βj−1m̂1(Yt)

}
= I1 + I2,

where I2 = oa.s.(1) similarly as for I in Lemma (2.2), and for I1,

n−1

T∑
t=J+1

m̂2
1(Yt)− n−1

T∑
t=J+1

m2
1(Yt) = n−1

T∑
t=J+1

{m̂1(Yt)−m1(Yt)} {m̂1(Yt) +m1(Yt)}

≤

{
n−1

T∑
t=J+1

(m̂1(Yt)−m1(Yt))
2

}1/2 {
n−1

T∑
t=J+1

(m̂1(Yt) +m1(Yt))
2

}1/2

≤ ∥m̂1(x)−m1(x)∥2,n sup
x

∣∣∣√6m1(x)
∣∣∣ = Oa.s.

(
hp +

log n√
nh

)
= oa.s.(1). (2.7.10)

By a law of large numbers, we have n−1
∑T

t=J+1m
2
1(Yt) → E [m2

1(Yt)], as n goes to

infinity. Combining with (2.7.10), we have limn→∞ n−1
∑T

t=J+1 m̂
2
1(Yt) = E [m2

1(Yt)].

Now, we continue the proof of Theorem 2.2. Combining (2.7.5), (2.7.6) and Lemma 2.3,

and noting that as n→ ∞,
∑J

j=2(j − 1)2β̃
2j−4 →

∑J
j=2(j − 1)2β2j−4

0 , a.s., we have,

n1/2
(
β̂ − β0

)
= n−1/2

∑
t

ϵtH(β0,m1(Yt))

{
J∑

j=2

(j − 1)2β2j−4
0 E

[
m2

1(Yt)
]}−1

+ oa.s.(1).
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Asymptotic normality of n1/2
(
β̂ − β0

)
follows from a Slutsky theorem and a central

limit theorem for strongly mixing sequences (see, e.g., Bosq (1996), Theorem 1.7). We

have to verify that for some ν > 2, E |ϵtH(β0,m1(Yt))|υ < ∞, which can be obtained

with our Assumptions (A2) and (A4).
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Table 2.1: Monto Carlo performance results based on 200 replications (Jmodel = 5). The
values outside and inside the parentheses are the results based on the fitted Jfit and the
oracle Joracle = 5.

Size Estimator
Parametric Nonparametric Jfit
component component mean(median)

MEAN STD MSE AMSE

A

500 GARCH-ADD 0.68(0.63) 0.17(0.14) 0.035(0.033) 0.026(0.025) 3.7(3)
GARCH-LS 0.81(0.78) 0.15(0.15) 0.027(0.024) 0.034(0.031) 5.8(5)
GARCH-NL 0.80(0.79) 0.16(0.15) 0.027(0.024) 0.033(0.032) 5.8(5)

1000 GARCH-ADD 0.74(0.70) 0.14(0.11) 0.019(0.017) 0.016(0.017) 3.9(4)
GARCH-LS 0.80(0.80) 0.11(0.10) 0.014(0.013) 0.025(0.024) 6.2(6)
GARCH-NL 0.80(0.82) 0.11(0.10) 0.015(0.016) 0.025(0.026) 6.1(5)

2000 GARCH-ADD 0.75(0.73) 0.10(0.08) 0.009(0.008) 0.011(0.012) 4.1(4)
GARCH-LS 0.78(0.80) 0.08(0.08) 0.008(0.008) 0.017(0.017) 6.2(5)
GARCH-NL 0.79(0.81) 0.08(0.08) 0.008(0.010) 0.018(0.019) 6.2(5)

3000 GARCH-ADD 0.77(0.75) 0.07(0.07) 0.005(0.004) 0.011(0.011) 4.6(5)
GARCH-LS 0.78(0.80) 0.08(0.07) 0.007(0.007) 0.015(0.015) 6.3(5)
GARCH-NL 0.79(0.81) 0.08(0.06) 0.008(0.008) 0.015(0.016) 6.2(5)

B

500 GARCH-ADD 0.73(0.71) 0.15(0.14) 0.022(0.022) 0.413(0.348) 5.1(5)
GARCH-LS 0.81(0.80) 0.13(0.13) 0.021(0.019) 0.173(0.170) 6.0(5)
GARCH-NL 0.81(0.82) 0.12(0.11) 0.019(0.016) 0.175(0.145) 5.9(5)

1000 GARCH-ADD 0.77(0.77) 0.10(0.10) 0.011(0.010) 0.177(0.163) 5.5(5)
GARCH-LS 0.81(0.81) 0.10(0.09) 0.013(0.012) 0.100(0.108) 6.1(5)
GARCH-NL 0.80(0.83) 0.09(0.07) 0.011(0.011) 0.095(0.089) 6.1(5)

2000 GARCH-ADD 0.77(0.78) 0.08(0.07) 0.006(0.006) 0.118(0.116) 5.4(5)
GARCH-LS 0.79(0.81) 0.08(0.07) 0.008(0.008) 0.079(0.088) 6.4(5)
GARCH-NL 0.79(0.82) 0.07(0.05) 0.007(0.008) 0.074(0.076) 6.3(5)

3000 GARCH-ADD 0.78(0.79) 0.06(0.06) 0.005(0.005) 0.093(0.098) 5.6(5)
GARCH-LS 0.79(0.81) 0.07(0.06) 0.007(0.007) 0.075(0.082) 6.2(5)
GARCH-NL 0.79(0.82) 0.06(0.04) 0.006(0.007) 0.069(0.072) 6.3(5)

C

500 GARCH-ADD 0.57(0.55) 0.16(0.12) 0.042(0.036) 0.179(0.079) 2.7(2)
GARCH-LS 0.79(0.72) 0.18(0.18) 0.040(0.031) 0.106(0.085) 5.3(5)
GARCH-NL 0.76(0.71) 0.19(0.19) 0.038(0.034) 0.102(0.083) 5.3(5)

1000 GARCH-ADD 0.60(0.58) 0.16(0.11) 0.036(0.029) 0.147(0.055) 2.6(2)
GARCH-LS 0.75(0.71) 0.15(0.13) 0.026(0.018) 0.075(0.057) 5.7(5)
GARCH-NL 0.73(0.71) 0.15(0.14) 0.024(0.020) 0.069(0.057) 5.6(5)

2000 GARCH-ADD 0.64(0.61) 0.13(0.09) 0.021(0.016) 0.107(0.033) 2.7(2)
GARCH-LS 0.73(0.71) 0.10(0.04) 0.011(0.010) 0.044(0.038) 5.8(5)
GARCH-NL 0.72(0.71) 0.11(0.05) 0.013(0.012) 0.046(0.040) 5.8(5)

3000 GARCH-ADD 0.67(0.64) 0.11(0.07) 0.013(0.009) 0.069(0.020) 2.9(3)
GARCH-LS 0.71(0.70) 0.09(0.08) 0.007(0.006) 0.030(0.027) 6.2(5)
GARCH-NL 0.71(0.71) 0.09(0.08) 0.008(0.007) 0.033(0.030) 6.2(5)
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Table 2.2: Coverage probabilities from 500 replications.

Sample Size Model A Model B Model C
95% 99% 95% 99% 95% 99%

500 0.982 0.998 0.924 0.982 0.904 0.982
1000 0.970 0.996 0.962 0.990 0.848 0.950
2000 0.982 0.996 0.956 0.984 0.868 0.934
3000 0.976 0.996 0.932 0.986 0.892 0.954

Table 2.3: Monto Carlo performance results based on 200 replications (Jmodel = ∞).

Size Estimator Parametric component Nonparametric component Time (secs)

MEAN STD MSE AMSE

A 1000 GARCH(1,1) 0.77 0.04 0.002 0.008 1.3
GJR(1,1) 0.77 0.04 0.002 0.008 7.4
GARCH-ADD 0.71 0.10 0.012 0.016 2.6
GARCH-LS 0.81 0.06 0.008 0.030 11.1
GARCH-NL 0.82 0.06 0.008 0.031 11.2

2000 GARCH(1,1) 0.77 0.03 0.001 0.006 6.2
GJR(1,1) 0.77 0.03 0.001 0.006 12.9
GARCH-ADD 0.75 0.06 0.004 0.009 5.6
GARCH-LS 0.80 0.04 0.004 0.023 23.2
GARCH-NL 0.81 0.04 0.005 0.025 22.6

3000 GARCH(1,1) 0.77 0.02 0.001 0.005 11.8
GJR 0.77 0.02 0.001 0.006 19.0
GARCH-ADD 0.76 0.04 0.002 0.008 8.0
GARCH-LS 0.80 0.03 0.004 0.017 32.0
GARCH-NL 0.81 0.03 0.005 0.019 32.8

B 1000 GARCH(1,1) 0.76 0.06 0.004 0.015 3.6
GJR(1,1) 0.76 0.03 0.001 0.009 6.2
GARCH-ADD 0.76 0.09 0.009 0.141 2.6
GARCH-LS 0.82 0.06 0.010 0.066 11.1
GARCH-NL 0.84 0.04 0.010 0.058 11.2

2000 GARCH(1,1) 0.76 0.02 0.001 0.013 6.1
GJR(1,1) 0.76 0.02 0.001 0.006 12.3
GARCH-ADD 0.78 0.06 0.005 0.060 5.2
GARCH-LS 0.82 0.04 0.007 0.035 21.0
GARCH-NL 0.83 0.04 0.008 0.039 20.7

3000 GARCH(1,1) 0.76 0.02 0.001 0.012 11.4
GJR(1,1) 0.76 0.02 0.001 0.005 15.9
GARCH-ADD 0.79 0.04 0.004 0.033 7.8
GARCH-LS 0.82 0.03 0.006 0.028 31.0
GARCH-NL 0.83 0.02 0.007 0.030 30.4
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Table 2.4: Fitting the BMW daily returns

Model −Log-likelihood Volatility prediction error
GARCH(1,1) 3394.667 22.589
GJR(1,1) 3387.449 22.065
GARCH-ADD 3387.310 21.759
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Figure 2.1: BMW daily returns: (a) original series; (b) the estimated volatility function.
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Figure 2.2: Spline ARCH(∞) modelling of BMW daily returns: (a)estimated news
impact curve; (b) the estimated ACF along with 95% Bartlett intervals for ϵ̂2.
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Chapter 3

Modeling and Forecasting the

Functional Time Series1

1Feng, C., Wang, L. and Seymour, L. (2012+). Modeling and forecasting the time series of treasury
bond yield curves. To be submitted.
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Abstract

A novel method is proposed for forecasting time series of smooth curves, using func-

tional principal component (FPC) analysis in combination with time series modeling

and FPC scores forecasting. We achieve smoothing, dimension reduction and predic-

tion simultaneously with expedient computation. The work is motivated by the demand

to forecast the time series of economic functions, such as Treasury bond yield curves.

Extensive simulation studies have been carried out to compare the prediction accuracy

of our method with other existing methods. The proposed methodology is applied to

forecasting the yield curves of US Treasury bond.

Keywords: functional time series, eigenfunctions, principal component analysis, spline

smoothing, trend

3.1 Introduction

In financial economics, a yield curve is a graphic representation of the relationship be-

tween market remuneration rates and the remaining time to maturity of debt securities,

also known as the term structure of interest rates. Economists often use the yield curve

to capture the overall movement of interest rates, to forecast the path of the economy,

and to estimate the likelihood of recessions and inflations. Yield curve prediction is also

valuable in many other applications such as, bond portfolio selection, risk management

and derivative pricing.
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In the past, many efforts have been made to develop theoretical models of term structure

interest rates. There are two main types of modeling approaches: one focuses on fitting

the term structure at a certain time point to avoid any arbitrage opportunities; see

Hull and Wright (1990) and Heath et al. (1992); the other focuses on the affine term

structure model to capture the dynamics of the interest rate; see Vasicek (1977) and Cox

et al. (1985). However, there are limitations to the above two approaches: the former

one performs well in terms of fitting the historical cross-sectional term structure, but it

can not provide references to the future time horizons; the performance of the second

approach is relatively poor, even compared with the simple random walk.

Recently more research efforts have been devoted to yield curve forecasting. For exam-

ple, Diebold and Li (2006) propose a dynamic three-factor Nelson-Siegel framework to

model the yield curve, in which the three factors are treated as unobserved stochastic

processes and fitted by traditional time series model. Koopman et al. (2010) improve the

above model by introducing the time-varying factor loading and time-varying volatility.

Without applying the Nelson-Siegel framework, Bowsher and Meeks (2008) developed

a functional signal plus noise (FSN) model to treat the yield curve as the cubic spline

functions. However, it lost economic intuition as it used the knots for splines as factors;

see Koopman et al. (2010). Despite these powerful methods, modeling the time series of

a cross-section of yields is still very challenging, especially when the cross-sectional di-

mension is large. Feasible methods for studying their dynamics are still in their infancy.

In this paper, we consider both modeling and forecasting of Treasury bond yield curves.
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The method introduced in this paper inspire the way to view the bond yield curves in

the functional space.

Functional data analysis (FDA) has become a popular area in statistics research in recent

years. As stated by Ramsey and Silverman (2005), statistical analysis has increasingly

depended on functional data. In this article, we treat the observed data as random curves

rather than finite-dimensional vectors. The dimensionality of the vector time series of

yield curves is usually high. To achieve dimension reduction, Bowsher and Meeks (2008)

propose modeling the continuous yield functions via natural cubic spline whose dynamic

evolution is driven by a cointegrated vector autoregression for the ordinates at the knots

of the spline. In an application of forecasting future call arrival rate profiles to telephone

customer service centers, Shen (2009) proposes a low-dimensional smooth factor model

(SFM) that constrains the factors to be smooth. Park et al. (2009) also propose a

very interesting approach to reduce the high-dimensional time series to low-dimensional

problem by using factor model while the factor and factor loading are estimated by the

semi-parametric methods.

In this article, we apply one of the most commonly-used dimension reduction approaches

in FDA, the functional principal component analysis (FPCA), to achieve the dimension

reduction. Hyndman and Ullah (2007) study the age-specific mortality rate or fertility

rate curves over past years, and use the FPCA to forecast the future mortality/fertility

rate curves. Our proposed method differs from the existing proposals. Hyndman and

Ullah (2007) first smooth each discrete curve before decomposing the smoothed curve

by a basis function expansion, and then do the prediction. In this article, instead of pre-
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smoothing the data curve-by-curve, we first decompose the original time series into a

polynomial trend surface and a stationary noise surface, then we combine the smoothing,

FPCA and time series forecasting in one model. When the FPCA is done, forecasting

future yield curves reduces to forecasting time series of scores. Univariate time series

models can be built for each factor score series to produce time series forecasts of the

yield curve.

Our method produces multi-step ahead forecasts that outperform many other models,

including the SFM in Shen (2009) and the random walk forecast. In addition, the

FPCA is a novel exploratory tool which provides unique insight into the economical

interpretation of the yield curve.

The rest of this paper is organized as follows. In Section 3.2, we state our model and

describe the proposed forecasting method and the corresponding algorithm for functional

time series. Section 3.3 reports findings from a simulation study. In Section 3.4, we

illustrate the proposed method using the yields data of US Treasury bonds and compare

the forecasting performance of our method with the rival models. Section 3.5 concludes.

3.2 Methodology

3.2.1 Models

Let {Yt (uj)}nt=1 be the observed historical data on some equally or unequally spaced

grid {uj}mj=1 at time points t = 1, ..., n. At the tth time point, its sample path {uj, Ytj}

54



is the noisy realization of a random curve Xt(uj) in the sense that

Ytj = Xt (uj) + σ (uj) εtj, j = 1, ...,m, t = 1, ..., n (3.2.1)

with independent errors εtj satisfying E (εtj) = 0, E(ε2tj) = 1. The stochastic process is

modeled by

Xt(u) = µ (u) + αt + ξt (u) , (3.2.2)

where µ (u) is some smooth but unknown function of u ∈ U , αt is the trend in the

functional time series ofXt(u), and the process ξt (u) is a mean zero stationary stochastic

process with E
[∫

U ξ
2(u)du

]
< +∞. The trend term in (3.2.2), αt, can be allowed to

depend on some unknown parameters, but at this stage it is assumed to be known and

set equal to zero without any loss of generality.

We are interested in predicting the future smooth curve Xn+h(u), for some h ≥ 1

based on the history curves. To achieve this, we model samples of random function-

s X1(u), ..., Xn(u) through functional principal components (FPC) analysis. For the

process {ξ(u), u ∈ U}, define the covariance function G (u, u′) = cov {ξ(u), ξ(u′)}. Let

sequences {λk}∞k=1 , {ϕk(u)}
∞
k=1 be the eigenvalues and eigenfunctions of G (u, u′), respec-

tively, in which λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk < ∞, and {ϕk}
∞
k=1 form an orthonormal

basis in the L2 sense, such that G (u, u′) =
∑∞

k=1 λkϕk(u)ϕk (u
′).

55



The process {ξt(u), u ∈ U} allows the Karhunen-Loève L2 representation (Rice and Sil-

verman, 1991)

ξt(u) =
∞∑
k=1

βt,kϕk(u),

where E(βt,k) = 0, var(βt,k) = λk, cov(βt,k, βt,k′) = 0 for any fixed t ≥ 1, k ̸= k′ ≥ 1.

In what follows, we assume that each series of the scores
{
βt,k, t ≥ 1

}
, k = 1, 2..., are

dependent and predictable. We further assume that λk = 0, for k > κ, where κ is a

positive integer or +∞. The data process can now be modeled though the following

Ytj = µ (uj) +
κ∑

k=1

βt,kϕk (uj) + σ (uj) εtj. (3.2.3)

3.2.2 Spline Estimators

To estimate the mean function µ (·) and the covariance function G (·, ·), we apply the

polynomial spline approximation. Let {Bl,p, l = 1− p, ..., N} be B-spline basis functions

of order p; see de Boor (2001) for more details of spline smoothing.

We propose to smooth the mean function µ (·) by aggregating the observed observations

from all sample trajectories. The estimator µ̂ (·) is obtained from

µ̂(u) = argmin
g(·)∈H(p−2)

∑n

t=1

∑m

j=1
{Ytj − g (uj)}2 =

Nµ∑
l=1−p

âlBl,p (u) ,
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where Nµ is the number of interior knots of the B-spline basis and the coefficients are:

{âl, l = 1− p, ..., Nµ} = argmin
RNµ+p

n∑
t=1

m∑
j=1

{
Ytj −

Nµ∑
l=1−p

alBl,p (uj)

}2

. (3.2.4)

Let R̂·jj′ = n−1
∑n

t=1 {Ytj − µ̂ (uj)} {Ytj′ − µ̂ (uj′)}, 1 ≤ j ̸= j′ ≤ m. We estimate the

covariance function G (u, u′) using the tensor product spline approach by Cao, et al

(2011). The spline estimator of G (u, u′) is defined as

Ĝ (u, u′) =
∑NG

l,l′=1−p
b̂ll′Bl,p (u)Bl′,p (u

′) ,

where NG is the number of interior knots used to build the tensor product B-spline basis

and the spline coefficients

{
b̂ll′

}NG

l,l′=1−p
= argmin

RNG+p⊗RNG+p

m∑
j ̸=j′

{
R̂·jj′ −

∑
1−p≤l,l′≤NG

bll′Bl,p (uj)Bl′,p (uj′)

}2

.

3.2.3 Estimation of the Eigenvalues and Eigenfunctions

The estimates of eigenfunctions and eigenvalues correspond to the solutions of ϕ̂k and

λ̂k of the eigenequations,

∫
U
Ĝ (u, u′) ϕ̂k (u) du = λ̂kϕ̂k (u

′) ,
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where the ϕ̂ks are subject to
∫
U ϕ̂k (u)

2 du = 1 and
∫
U ϕ̂k (u) ϕ̂k′ (u) du = 0 for k′ < k;

see Bathia et. al (2010). To solve this equation, we define a fine grid (v1, ..., vnv)

consisting of nv points equally spaced on [0,1], We estimate the FPC scores by β̂t,k =∑nv

j=1(Ytj − µ̂(vj))ϕ̂k(vj)(vj − vj−1), setting v0 = 0.

Finally, to choose the number of eigenfunctions that provide a reasonable approximation

to the infinite-dimensional process, we apply a simple criterion in Müller (2009), i.e.

κ = argmin1≤q≤K

{∑q
k=1 λ̂k/

∑K
k=1 λ̂k > 0.95

}
. Other methods like the cross-validation

in Yao, Müller and Wang (2005) might also work. We used the simple method and it

works well in simulations.

3.2.4 Curve Forecasting

Given the historical observations {Ytj, 1 ≤ t ≤ n, 1 ≤ j ≤ m}, we now forecast the h-step

ahead underlying smooth curve Xn+h (u) for some h ≥ 1.

We first forecast the FPC scores. For each k = 1, ..., κ, one can use the classical

time series models, such as AR models or ARMA models, to forecast the future scores{
βt,k, t ≥ n+ 1

}
based on the estimated values

{
β̂t,k, t = 1, ..., n

}
. For any k = 1, ..., κ,

the h-step ahead forecasts of βt,k is denoted by β̂t+h,k. Then for any fixed u, the h-step

ahead forecast of Xt (u) is

X̂t+h (u) = µ̂ (u) +
κ∑

k=1

β̂t+h,kϕ̂k (u) . (3.2.5)
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Finally, we summarize our algorithm to forecast X̂t+h (u) as the following:

1. Estimate and remove the trend in the functional time series;

2. For the detrended time series, estimate the mean function µ(u) and covariance

function G(u, u′);

3. Estimate the eigenfunctions ϕk(u)’s and eigenvalues λk’s;

4. Estimate the FPC scores by β̂t,k and forecast the future scores β̂t+h,k, k=1, ..., κ;

5. Forecast the future curve X̂t+h (u).

3.3 Simulation

To illustrate the forecasting performance of the proposed approach, we generate data

from model

Ytj = µ (uj) +
2∑

k=1

βt,kϕk (uj) + σεtj, 1 ≤ j ≤ 30, 1 ≤ t ≤ n, (3.3.1)

where u = (3, 6, ..., 60, 63, 69, ..., 87, 93, 105, 117, 129, 141)T/141 is a 30-dimensional grids

unequally spaced on interval [0, 1], and functions µ(u) = sin {2π (u− 1/2)}+ 10u+ 10,

ϕ1(u) = −
√
2 cos {π (u− 1/2)}, ϕ2(u) =

√
2 sin {π (u− 1/2)}. The noise sequence εtj’s

are i.i.d. r.v.’s ∼ N(0, 1) and the error standard deviation σ = 0.5, 1.0 and 1.5. The

scores βt,1 and βt,2 are simulated from an AR(2) process and an ARMA(1,1) process,
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respectively,

βt,1 = 0.75βt−1,1 + 0.20βt−2,1 + ϵt, βt,2 = 0.80βt−1,2 + 0.30ϵt−1 + ϵt,

where ϵt’s and ϵt−1’s are i.i.d. r.v.’s ∼ N(0, 1). We rescaled βt,1 and βt,2 such that

var(βt,2) = λ1 = 0.4 and var(βt,2) = λ2 = 0.1.

For each n = 30, 50, 100, n + 1000 + 30 time series of curves are generated according

to model (3.3.1). For each realization, the last n + 30 observations are kept as our

data for inference. Truncating the first 1000 observations off the series ensures that the

remaining series behaves like a stationary series. Figure 3.1 illustrates one realization

of simulated time series of 100 curves based on model (3.3.1). We split each replication

into two datasets: the training set of size n and the test set of size 30.

We compare our approach with the simple random walk forecasts (RW) and the smooth-

factor-model (SFM) approach of Shen (2009). For the number of eigenfunctions in our

modeling, we try both κfit = 2 and the estimated κfit based on the simple criterion

(Section 4.2.3), and we call the former the FPCAR approach and the latter the FPCAR∗

approach.

We always use the first n simulated curves in the training set to estimate the model

and the successive 30 curves as the out-of-sample testing period. For the FPCAR and

FPCAR∗ approaches, we estimate the mean function µ (·) and the covariance function

G (·, ·) using cubic B-splines. In the mean estimation, the number of knots Nµ was

selected by the generalized cross-validation (GCV). To smooth the covariance functions
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NG = n1/(2p) log(log(n)) was set as suggested in Cao et al. (2010). The knots of the

spline basis functions are set at equally spaced sample quantiles of ujs.

After the model fitting, we roll the data series 1-curve forward and perform a 1-curve

ahead forecast of the FPC scores via AR models and obtain the curve forecasts X̂t+1 (u)

in (3.2.5). For quantifying the goodness of fit, we compute the forecasting root mean

square error (RMSE) and average percent error (APE) for the (t+ 1)th curve in the

data set:

RMSEt+1 =

√
1

m

∑m

j=1

(
Xt+1(uj)− X̂t+1(uj)

)2

,

APEt+1 =
100

m

∑m

j=1

∣∣∣Xt+1(uj)− X̂t+1(uj)
∣∣∣

Xt+1(uj)
,

for t = n, ..., n+ 29.

We repeat the above simulation procedure 100 times. For each simulated dataset, we

calculate the mean APE and mean RMSE of 30 forecasted curves. The simulation results

are represented in boxplot format (see Fig 3.2 and Fig 3.3) with respect to different

sample sizes and errors, which display the median, upper quartile, lower quartile, outliers

of all approaches (FPCAR, FPCAR∗, SFM and RW from left to right). The proposed

FPCAR and FPCAR∗ approaches consistently outperform other competitor approaches

without regard to the training sample size or the error rate (refer to Table 3.1 and

Table 3.2). In addition, there seems to be no noticeable difference between the FPCAR

approach and the FPCAR∗ approach, which indicates the suggested κ selection works
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fairly well. We also observe that accuracy performance of the FPCAR and FPCAR∗ are

very robust even when the data become very noisy.

3.4 Application to the Yield Curves of US Treasury

Bonds

In this section, we provide a study of a time series of yield curves. We investigate a

sample of monthly price quotes of U.S. Treasury bonds from July 1986 through October

1999, a total of 160 curves. A similar dataset was analyzed by Diebold and Li (2006).

To avoid missing values, the data set comprises monthly real yield forward curves for

maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months,

where a month is defined as 30.4375 days. The upper graph in Figure 3.4 shows a

three-dimensional plot of the yield curve data.

The purpose here is to forecast the future yield curves based on the historical curves.

We use the first 150 curves (i.e. from July 1986 to December 1998) as the training set

and the successive remaining 10 curves as out-of-sample test data.

Before applying the proposed FPCAR method to the training set, we first use the poly-

nomial regression to estimate the trend of the time series. Then we remove the temporal

structure of the time series, and work with the detrended series. Figure 3.4 shows the

estimated trend (middle graph) in terms of time and the detrended time series (lower

graph).
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We then estimated mean function and the covariance function using cubic B-splines.

Seven knots are selected to smooth the mean function according to the GCV, and three

knots are used to smooth the covariance function. The estimates of the mean function

and the covariance surface are presented in Figures 3.5 and 3.6. From Figure 3.5, one

sees that the mean yield curve exhibits the typical upward sloping shape, which indicates

long-term yields are higher than the short-term yields. One also notices that there is

sharp increase in the peak at short maturities from month 3 to month 18, then it grows

gradually till the end of maturity 120 months. This suggests that the gap between

short-term and medium-term rates is greater than that between the medium-rate and

long-term rates. The estimated covariance surface we obtained using tensor-product

spline smoothing is shown to have very low volatility at the origin followed by a rapid

growth.

The criterion introduced in Section 2.3 suggests that first two principal components are

sufficient enough to explain the modes of variability. These two principal component

functions account for 99.11% of total variation. The estimated eigenvalues are λ̂1 =

0.3162 and λ̂2 = 0.1037. The estimated eigenfunctions are shown in Figure 3.7. The

first eigenfunction indicates that a large proportion of the variability along the time axis

is in the same direction of the amplitude of mean curve, as it seems to have similar

shape to the mean curve. We note that 74.63% of total variability is explained by the

first eigenfucntion, which is dominant. The second FPC contributes 24.48% to the total

variation, which can be interpreted as a slope factor, which may cause the very long-term

yield to fall due to its negative values.
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We next make the 1 to 10-step ahead forecasts of the yield curves. Figure 3.8 shows the

forecasted FPC scores. Figure 3.9 shows the forecasts of yield curves from January to

October of year 1999.

The dynamic Nelson-Siegel model (DNS) method of Diebold and Li (2006) is widely

used for forecasting yield curves. We compare the forecast performance of our method

with the DNS method of Diebold and Li (2006), SFM method of Shen (2008) and the

random walk model. Table 3.3 shows the mean APE and mean RMSE of the above

four forecasting methods. Our method consistently outperforms the widely used DNS

method of Diebold and Li (2006), Shen (2009) and random-walk forecasts described by

Fama (1965) on the basis of both mean APE and mean RMSE.

3.5 Conclusion

Motivated by the demand to forecast the time series of economic functions, we pro-

pose a feasible and effective method to modeling and forecasting time series of various

functions/curves such as the yield curves. We propose efficient functional principal

component-based methods for modeling and forecasting time series of Treasury yield

curves. Without applying the traditional econometric model, our methodology combines

the functional data analysis and time series model, to achieve more accurate prediction

performance and more expedient computing speed than competing methods. Our new

approach is based on the analysis of time series of stochastic and continuous functions,

which is significantly different from the standard approaches of multivariate time series
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or panel data analysis. The latter can work poorly when the cross-sectional dimension

of the data is large. Our approach does not require pre-smoothing of the data and

naturally combines nonparametric smoothing with functional principal component anal-

ysis. In addition, the method proposed consistently outperforms both the widely used

DNS method of Diebold and Li (2006), SFM method of Shen (2008) and random-walk

forecasts.

Our methods are motivated by and applied to yield curve data. However, our method

can be generally applied to many data which are temporally dependent functional data

or time series of smooth functions.
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Table 3.3: Mean APE(%) and RMSE for US yield curve forecasting.

FPCAR SFM DNS RW
APE 3.7412 9.9379 3.6876 12.9360
RMSE 0.2247 0.5924 0.2261 0.7626
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Figure 3.1: One realization of the simulated dataset.
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Figure 3.2: Boxplot of the mean APEs using FPCAR, FPCAR∗, SFM, RW.
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Figure 3.3: Boxplot of the mean RMSEs using FPCAR, FPCAR∗, SFM, RW.
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Figure 3.4: Original (upper), trend (middle) and detrended (lower) US Treasury bonds.
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0
20

40
60

80
100

120

0

20

40

60

80

100

120

−0.2

0

0.2

0.4

0.6

u1u2

G
ha

t

Figure 3.6: Cubic spline estimate of the covariance surface.
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Figure 3.7: Estimated eigenfunctions ϕ̂1(u) and ϕ̂2(u).
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Figure 3.8: Estimated FPC scores and their 1 to 10-step ahead forecasts.

77



0 20 40 60 80 100 120

3
4

5
6

7
8

January 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

February 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

March 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

April 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

May 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

June 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

July 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

August 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

September 1999

0 20 40 60 80 100 120

3
4

5
6

7
8

October 1999

Figure 3.9: 1 to 10 step-ahead forecasts: real (black), FPCAR* (red), SFM (green),
DNS (purple) and RW (blue).
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Chapter 4

Two-Sample Comparison for

Functional Derivatives1

1Feng, C., Wang, L., Seymour, L., Stooksbury, D. (2012+). Two Sample Comparison for Functional
Derivatives with an Application to Temperature Data. To be submitted.
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Abstract

We develop a novel method to construct simultaneous confidence bands for the difference

of derivatives of regression functions from two groups. This method was derived to

answer a question arising from climate: Are the temperature transitions in Athens,

Georgia different under the substantial global atmospheric pressure oscillations? We

show that our proposed procedure has desirable theoretical properties. In particular, we

show that the proposed spline confidence bands are asymptotically efficient as if there is

no measurement error. In the end, the performance of the confidence bands is illustrated

through numerical simulation studies and a temperature data collected in Athens, GA,

in US.

Keywords: B-spline, ENSO, functional data analysis, Karhunen-Loève representation,

simultaneous confidence band

4.1 Introduction

Anecdotally, one may hear the question “How did temperature change in response to El

Niño?” as a general observation about the weather. However, statistically, how can we

establish whether the temperature transition is significantly different under these major

atmospheric pressure oscillations? We propose to answer this question by examining the

curves defined by the average daily temperature between October and September in the

next year, indexed by year. Then, the climate question reduces to: Is the derivative of the
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temperature curve between October and next September changing under different global

atmospheric situations? To study the temperature dynamics, we target the two-group

comparison of functional derivatives of mean curves by constructing the simultaneous

confidence band for the difference of derivatives.

Functional data analysis (FDA) is a very useful tool to address the challenges posed

by increasing complex data subjects, which are typically curves or surfaces. Functional

derivatives of mean functions are of great importance in many real-life applications, such

as studies of climate change, growth potential and acceleration.

Estimation and inference of derivatives of the mean functions has already attracted at-

tention from statisticians; see Liu and Müller (2009) and Hall, Müller and Yao (2009).

These methodologies do not require densely observed data for estimation and provided

the pointwise confidence band for derivatives. Research for studying the simultaneous

confidence band of mean curves can be seen from Degras (2011), and Ma, Yang and Car-

roll (2012). Cao et al (2012) developed a procedure to construct simultaneous confidence

bands for the derivatives of one sample mean function in functional data analysis. In

this paper, we extend Cao et al (2012) to the difference of derivatives of regression func-

tions from two groups. To our knowledge, there is not any methodology that provides

simultaneous confidence bands for the difference of functional derivatives in FDA.

The rest of the paper is organized as follows. Section 4.2 introduces the model and

proposed spline estimator for the mean functions and their derivatives based on two

samples. Section 4.3 presents the simultaneous confidence bands for the difference of
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derivatives of mean curves from two groups. In Section 4.4, we report the coverage rate

of proposed confidence bands in an extensive simulation study. An application to a

temperature data set is given in Section 4.5.

4.2 Methodology

4.2.1 Models and Data

Let XA1(u), XA2(u), . . ., XAnA
(u) and XB1(u), XB2(u), . . ., XBnB

(u) be iid realizations

of XA(u) and XB(u) defined on the continuous interval U for groups A and B. We

assume that XH(u), u ∈ U is a L2(U) process, i.e. E[
∫
U X

2
H(u)]du < +∞, for H = A

and B. For each group, the square integrable stochastic process XHt(u) is modeled by

XHt (u) = µH (u) + ηHt (u) , t = 1, ..., nH , H = A,B, (4.2.1)

where µH (u) is some smooth but unknown function of u ∈ U , and the process ηHt (u)

is a mean zero stationary stochastic process with E
[∫

U η
2
H(u)du

]
< +∞. We define

the covariance function GH (u, u′) = cov {ηH(u), ηH(u′)} for the process {ηH(u), u ∈ U},

H = A,B.

The problem considered in this paper is of testing the hypothesis that the two groups of

random curves have the same ν-th order derivative functions for their mean functions

against the alternative that the ν-th order derivative functions are different for two
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groups; In symbols: H0 : µ
(ν)
A = µ

(ν)
B v.s. Ha : µ

(ν)
A ̸= µ

(ν)
B . For this objective, we

construct the confidence bands for µ
(ν)
A − µ

(ν)
B .

We apply functional principal components analysis to random functions {XAt(u)}nA
t=1 and

{XBt(u)}nB
t=1 for groups A and B. For H = A,B, let sequences {λHk}∞k=1 , {ψHk(u)}

∞
k=1

be the eigenvalues and eigenfunctions of GH (u, u′), in which λH1 ≥ λH2 ≥ · · · ≥ 0,∑∞
k=1 λHk < ∞, and {ψHk}

∞
k=1 form an orthonormal basis, such that GH (u, u′) =∑∞

k=1 λHkψHk(u)ψHk (u
′).

The process {ηHt(u), u ∈ U} , H = A,B has the following Karhunen-Loève L2 represen-

tation (Rice and Silverman, 1991)

ηHt(u) =
∞∑
k=1

ξHtkψHk(u),

where E(ξHtk) = 0, var(ξHtk) = λHk, cov(ξHtk, ξHtk′) = 0 for any fixed t ≥ 1, k ̸= k′ ≥ 1.

We further assume that λHk = 0, for k > κ, where κ is a positive integer or +∞. The

eigenfunction ψHk are referred to as functional principal components (FPCs) with FPC

scores ξHtk.

Let YAtj and YBtj be the jth observation of the random functions XAt(·) and XBt(·)

made at random point uj for groups A and B.

YHtj (uj) = XHt (uj) + σH (uj) εHtj, j = 1, ...,m, t = 1, ..., nH

= µH (uj) +
κ∑

k=1

ξHt,kψHk (uj) + σH (uj) εHtj, (4.2.2)
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where εHtj are the additional iid measurement errors satisfying E[εHtj] = 0, E[ε
(H)
tj ]2 = 1,

for H = A,B.

4.2.2 Spline Estimators

The estimation of the mean functions µH and the covariance functions GH , where H =

A,B, for each group of random curves can be achieved by the B-spline approximation.

Let {Bl,p, l = 1−p, ..., N} be B-spline basis functions of order p. Let S(p−2) be polynomial

spline space of order p on U . Following Cao, Yang and Todem (2010), the estimator

µ̂H (·) for the first sample is obtained by

µ̂H(u) = argmin
g(·)∈S(p−2)

n∑
t=1

m∑
j=1

{YHtj − g (uj)}2 =
Nµ∑

l=1−p

âlBl,p (u) ,

where Nµ is the number of interior knots of the B-spline basis. Due to the nature of the

least square, we can write it into matrix form:

µ̂H (u) = Bp(B
TB)−1BTYH ,

in which Bp =
(
B1−p,p (u) , ..., BNµ,p (u)

)
and B =

(
BT

p (u1) , ...,B
T
p (um)

)T
.

By differentiation, µ
(ν)
H (u) is the ν-th order derivative of µH (u) with respect to u. For

any ν = 1, ..., p− 2,

µ̂
(ν)
H (u) = B(ν)

p (BTB)−1BTYH ,
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in which B
(ν)
p =

(
B

(ν)
1−p,p (u) , ..., B

(ν)
Nµ,p

(u)
)
. By de Boor (2001), for p > 2 and p − 2 ≤

l ≤ Nµ − 1,

d

du
Bl,p (u) = (p− 1)

(
Bl,p−1 (u)

θl+p−1 − θl
− Bl+1,p−1 (u)

θl+p − θl+1

)
.

Note that B
(ν)
p (u) = Bp−ν (u)D(ν), where D(ν) = DT

νD
T
ν−1 · · ·DT

1 . We denote

Ds = (p− s)



−1
θ1−θ1−p+s

0 0 . . . 0 0

−1
θ1−θ1−p+s

−1
θ2−θ2−p+s

0 . . . 0 0

0 −1
θ2−θ2−p+s

−1
θ3−θ3−p+s

. . . 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 . . . 0 −1
θNµ+p−s−θNµ


as given by Cao et al. (2012).

Let R̂·jj′ = n−1
∑n

t=1 {YHtj − µ̂H (uj)} {YHtj′ − µ̂H (uj′)}, 1 ≤ j ̸= j′ ≤ m. We estimate

the covariance function GH (u, u′) using the tensor product spline approach by Cao,

Wang, Wang and Yang (2012). The spline estimator of G (u, u′) is defined as

ĜH (u, u′) =

NG∑
l,l′=1−p

b̂ll′Bl,p (u)Bl′,p (u
′) , (4.2.3)
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where NG is the number of interior knots used to build the tensor product B-spline basis

and the spline coefficients can be computed by the following minimization:

{
b̂ll′

}NG

l,l′=1−p
= argmin

RNG+p⊗RNG+p

m∑
j ̸=j′

{
R̂·jj′ −

∑
1−p≤l,l′≤NG

bll′Bl,p (uj)Bl′,p (uj′)

}2

.

For these estimators, the theoretical properties are shown in Cao, Todem and Yang

(2012) and Cao et al. (2012).

4.2.3 Estimation of the Eigenvalues and Eigenfunctions

The estimates of eigenfunctions and eigenvalues for curves from group H correspond to

the solutions of ψ̂Hk and λ̂Hk of the eigen equations,

∫
U
ĜH (u, u′) ψ̂Hk (u) du = λ̂Hkψ̂Hk (u

′) ,

where the ψ̂Hks are subject to
∫
U ψ̂Hk (u)

2 du = 1 and
∫
U ψ̂Hk (u) ψ̂Hk′ (u) du = 0 for

k′ < k. We define a fine grid (f0, f1, ..., fnf
) consisting of nf + 1 points equally spaced

on U , We estimate the FPC scores by ξ̂Htk =
∑nf+1

j=1 {YHtj − µ̂H(fj)}ψ̂Hk(fj)(fj − fj−1).

For constructing the confidence band, we also need to estimate the function ΣH (u, u′)

through the ν-th derivative of eigenfunctions ψ
(ν)
Hk which can be obtained from derivatives

of GH (u, u′). And ĜH and GH are also asymptotically equivalent at the derivatives by

the proof shown in Cao et al. (2012). We also refered to the derivative definition in
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Cao et al. (2012): G
(0,ν)
H (u, u′) = ∂ν

∂(u′)ν
GH (u, u′) and Ĝ

(0,ν)
H (u, u′) = ∂ν

∂(u′)ν
ĜH (u, u′) =∑NG

l,l′=1−p b̂ll′Bl,p (u)B
(ν)
l′,p (u

′).

We estimate the ν-th derivative of the k-th eigenfunction ψ
(ν)
1k by Liu and Müller (2009)

based on the following equation:

ψ̂
(ν)

Hk =
1

λ̂Hk

∂ν

∂ (u′)ν

∫ 1

0

GH (u, u′) ψ̂Hk (u) du =
1

λ̂Hk

∫ 1

0

∂ν

∂ (u′)ν
GH (u, u′) ψ̂Hk (u) du

(4.2.4)

The derivative of the integral in (4.2.4) can be approximated by the discrete sum:

1

m

m∑
j=1

GH
(0,ν)

(
uj, u

′
j

)
ψ̂Hk (uj) .

Therefore, ΣH (u, u′) is estimated by

Σ̂H (u, u′) =
κ∑

k=1

λ̂Hkψ̂
(ν)

Hk (u) ψ̂
(ν)

Hk (u
′) . (4.2.5)

We also need to choose the number of eigenfunctions that provide a reasonable approx-

imation to the infinite-dimensional process. We can apply a simple criterion in Müller

(2009), i.e. κH = argmin1≤q≤K

{∑q
k=1 λ̂Hk/

∑K
k=1 λ̂Hk > 0.95

}
. This method works well

in the practice.
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4.3 Confidence Band

4.3.1 Asymptotic Confidence Band

For H = A,B, let ΣH (u, u′) =
∑κ

k=1 λHkψ
(ν)
Hk (u)ψ

(ν)
Hk (u

′) be positive definite function

and µ̂
(ν)
H be the spline estimates for the ν-th derivative of group mean function µ

(ν)
H .

For any r ∈ (0, 1], we denote Cq,r [0, 1] as the space of Hölder continuous functions

on [0, 1], Cq,r [0, 1] =
{
η : ∥η∥q,r = supt ̸=s,t,s∈[0,1]

∣∣η(q)(t)− η(q) (s)
∣∣/|t− s|r < +∞

}
. The

technical assumptions are in the following:

(A1) The regression functions µA, µB ∈ Cp−1,1(U);

(A2) The standard deviation functions σA, σB ∈ C0,δ(U) for some δ ∈ (0, 1];

(A3) The number of observations for each trajectory m ≫ nθ for some θ > 1+2ν
2(p−ν)

; the

number of interior knots satisfies n
1

2(p−ν) ≪ Nµ ≪ (m/ log(n))
1

1+2ν , n
1
2p ≪ NG ≪

n
1

2+2ν ;

(A4) There exists a constant C > 0 such that ΣA (u, u) > C, ΣB (u, u) > C, for any

u ∈ U ;

(A5) For k ∈ {1, . . . , κ}, ν = 0, 1, . . . , p − 2, ψ
(ν)
Hk (u) ∈ C0,δ(U), for some δ ∈ (0, 1],∑κ

k=1

√
λHk∥ψ(ν)

Hk∥∞ < ∞; and for a sequence {κn}∞n=1 of increasing integers with

limn→∞ κn = κ, N−δ
µ

∑κn

k=1

√
λHk∥ψ(ν)

Hk∥0,δ = o (1);
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(A6) For H = A,B, k ≥ 1, {ξHtk, t ≥ 1} is a strictly stationary double-side ϕ-mixing

random variables, that is

ϕ(n) = sup
k
ϕ(Fk

−∞,F∞
k+n) → 0, n→ ∞,

where Fm
n = σ(ξt, n ≤ t ≤ m) and ϕ(A,B) = supA∈A,B∈B,P (A)>0 |P (B|A)− P (B)|.

The decay rate ϕ(n) = O(n−b) for some b > 2 and E |ξHtk|
2+δ1 for some positive

constant δ1.

(A7) For H = A,B, 1 ≤ j ≤ m, {εHtj, t ≥ 1} is a white noise sequence and E |εHtj|2+δ2

for some positive constant δ2.

Let r̂ = nA/nB and V (u, u′) = ΣA (u, u′)+rΣB (u, u′), where r = limnA → ∞r̂. Denote

W (u), u ∈ U a standardized Gaussian process such that EW (u) = 0, EW 2 (u) = 1

with covariance

E[W (u)W (u′)] = V −1/2 (u, u)V (u, u′)V −1/2 (u′, u′) .

Denoted by Qα the (1 − α)-th quantitle of the absolute maxiam deviation of W (u),

u ∈ U .

Theorem 4.1. Under Assumptions (A1)-(A6), for any α ∈ (0, 1) , as nA → ∞, r̂ →

r > 0,

P

sup
u∈U

n
1/2
A

∣∣∣(µ̂(ν)
A − µ̂

(ν)
B

)
(u)−

(
µ
(ν)
A − µ

(ν)
B

)
(u)

∣∣∣
{ΣA (u, u) + rΣB (u, u)}1/2

≤ Qα

 → 1− α.
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4.3.2 Implementation

To construct the confidence bands, we need to estimate Qα. We simulate:

Ŵt = V̂ −1/2(u, u)
κ∑

k=1

{
√
λAkZAk,tψ

(ν)
Ak (u) +

√
rλBkZBk,tψ

(ν)
Bk (u)}, u ∈ U .

Qα can be estimated by 100 (1− α)-th percentile of
{
supu∈U |Ŵt (u) |

}5000

t=1
. Therefore,

in application we can propose the band as

(
µ̂
(ν)
A − µ̂

(ν)
B

)
(u)± n

−1/2
A V̂ (u, u)1/2 Q̂α, (4.3.1)

as confidence band for µ
(ν)
A − µ

(ν)
B .

4.4 Simulation

In order to illustrate the performance of the confidence band in (4.3.1), we conduct the

simulation study with the data generated from the following model:

Ytj = µ (j/N) +
κ∑

k=1

ξtkψk (j/N) + εtj,

where noise sequence εtj’s are i.i.d. r.v.’s ∼ N(0, 0.52). We do the pairwise comparison

of groups of curves with different mean functions and different first order derivatives of

mean functions. We generate three groups of curves from the following specification:
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Group A: µ(u) = 2 sin(π(u− .5)) + 2u, ψ1(u) = −
√
2 cos (2π(u− .5)) ,

ψ2(u) =
√
2 sin (4π(u− .5)) , λ1 = 2, λ2 = 1, κ = 2;

Group B: µ(u) = 2 cos(π(u− .5)) + 2, ψ1(u) = −
√
2 cos (2π(u− .5)) ,

ψ2(u) =
√
2 sin (4π(u− .5)) , λ1 = 2, λ2 = 1, κ = 2;

Group C: µ(u) = 2 cos(π(u− .5)) + 2, ψ1(u) = − cos (πu/10) /
√
5,

ψ2(u) = sin (πu/10) /
√
5, λ1 = 4, λ2 = 1, κ = 2.

The scores ξt1 and ξt2 are simulated from an AR(2) process and an ARMA(1,1) process,

respectively,

ξt1 = 0.75ξt−1,1 + 0.20ξt−2,1 + ϵt, ξt2 = 0.80ξt−1,2 + 0.30ϵt−1 + ϵt,

where ϵt’s and ϵt−1’s are i.i.d. r.v.’s ∼ N(0, 1). We rescaled ξt1 and ξt2 such that

var(ξt1) = λ1 and var(ξt2) = λ2. Note that the curves in groups A and B have different

mean functions but share the same covariance functions; the curves in groups A and C

have different mean functions and different covariance functions; the curves in groups

B and C have the same mean function but different covariance functions. We construct

the confidence bands for the difference of derivative functions of mean functions in three

scenarios: 1) Group A vs. Group B; 2) Group A vs. Group C; 3) Group B vs. Group C.

Here, we consider two confidence levels: 0.99 and 0.95. The number of the trajectories

n is set to be 30, 50, 100, 200, 400 and 1000. For each n, we try different numbers

of observations on the curve. We run 500 replications for each simulation. We apply

generalized cross-validation to select the number of knotsNµ (from 2 to 20) for estimating
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the mean function. According to Cao et al. (2012b), the number of knots for smoothing

the covariance function can be determined by the formula: NG =
[
cn1/2p log(log(n))

]
,

where c is a constant (here we use c = 1).

For each replication, the true function is the difference of the first derivative functions for

mean curves of two groups: µ
(1)
A −µ

(1)
B , µ

(1)
A −µ

(1)
C and µ

(1)
B −µ

(1)
C . We repeat the test for

500 times to check if true functions are covered by the confidence bands at 200 equally

spaced point on U . For the first scenario (refer to Table 4.1), we see that coverage rate

of estimated 95% bands exceed the nominal levels in some cases. This occurs mostly

because that the curves in two groups share the same covariance structure. This rarely

happens in the real life. For the second and third scenarios, as n and N increase, the

coverage rates approach to the nominal levels. It is noted that when n is large (n = 1000),

the coverage rates appear to be very stable.

(Insert Table 4.1 about here.)

4.5 Application

We apply the proposed methodology to the temperature data collected from the weather

station in Athens, Georgia. The data set contains 55 temperature curves from October

to September of the next year during 1948/10-2003/9, where on each curve we have 365

daily average temperature observations. Our proposed approach helps the climatologists

to examine if temperature transition throughout the year in Athens,GA differs signifi-
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cantly in terms of some of the major atmospheric pressure oscillations that take place

over the globe. The most notable and most powerful of these is the “El Niño”. El Niño

refers to a phase during which a region in the central Pacific ocean exhibits unusually

warm waters. If the waters in this region are unusually cold, that is called “La Niña”.

If the waters are in neither phase, this is referred to as Neutral. Associated with the

temperature fluctuations are oscillations in the atmospheric pressure above this region

of the Pacific. The atmospheric pressure phenomenon is known as the Southern Oscil-

lation. Thus, ENSO is short for the El Niño - Southern Oscillation, and is the technical

name of the phenomenon. The ENSO is observed every October, and is classified as

La Niña (Cold Phase), Neutral or El Niño (Warm Phase). The ENSO phases back to

1868 can be checked at: http://www.coaps.fsu.edu/jma.shtml. Therefore, we define the

year in our data set as “ENSO year”. For example, the ENSO year 1948 starts October

1948 and ends September 1949. We can divide 55 yearly temperature curves into three

groups according to three ENSO Phases. There are 14 curves in Cold Phase, 28 curves

in Neutral Phase and 13 curves in Warm Phase. Figure 4.1 shows a three-dimensional

plot of the temperature data.

Before applying the proposed method to the temperature data set, we first use the B-

Spline method in Shao and Yang (2011) to estimate the trend of the temperature curves.

Then, we remove this temporal dynamic, and work with the residual data. Figure 4.1

shows the estimated trend (middle graph) in terms of time and the detrended climate

data (lower graph).
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In our application, we denote XH by the random temperature curve in H ENSO Phase

where H = A,B,C (A - Cold, B - Neutral, C - Warm). Let uj = j/365 be the daily

index, where j = 1, ..., 365, and let µH be the mean temperature function of XH for H

ENSO Phase ENSO Phase.

XHt (uj) = µH (uj) +
κ∑

k=1

ξHt,kψHk (uj) , t = 1, ..., nH

Denote by YHtj the noisy observation on the j-th day of the t-th year in the H ENSO

Phase, which contains the additional noise εHtj; Then we can model

YHtj (uj) = µH (uj) +
κ∑

k=1

ξHt,kψHk (uj) + σH (uj) εHtj,

We first construct the 99% confidence band for the mean curve and its first order deriva-

tive function of 55 temperature curves in Fig 4.2 . For the mean curve, we see that

temperature looks like a sine curve which is consistent with our common sense. For

derivative curve, the temperature changes sharply from December to March, exhibits a

flat shape until May, and drops sharply after June. Fig 4.3 shows the mean functions

for the three ENSO Phase. We can see that mean curves for warm phase and neu-

tral phase are very similar. There are obvious difference between Dec and Mar for the

three mean functions. Fig 4.4 shows the functional derivatives for mean curves of the

three groups. We can see the similar pattern in Fig 4.3 that derivatives for warm phase

and neutral phase are very close, but apart from the one for cold phase. In order to

see if the temperature transition differs significantly across ENSO phases, we develop
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three pairwise hypothesis tests based on two samples, for example: H0 : µ
(1)
A = µ

(1)
B

v.s. Ha : µ
(1)
A ̸= µ

(1)
B , where µ

(1)
A and µ

(1)
B are the first order derivatives of the mean

temperature curves observed in cold phase and neutral phase. By repeating this pro-

cedure, we can conduct the comparison between group A and C: H0 : µ
(1)
A = µ

(1)
C vs.

Ha : µ
(1)
A ̸= µ

(1)
C and the comparison between group B and C: H0 : µ

(1)
B = µ

(1)
C vs.

Ha : µ
(1)
B ̸= µ

(1)
C . Fig 4.5 shows the confidence interval at confidence levels 0.99 and 0.95

for the difference of the first order derivative functions for two groups. For example,

the upper graph displays the 0.99 and 0.95 confidence intervals for µ
(1)
A − µ

(1)
B , with the

center dashed-dotted line representing the spline estimator µ̂
(1)
A − µ̂

(1)
B and a solid line

representing zero line. Since the zero lines cut across the confidence bounds in all three

cases, this indicates that temperature transition throughout the year in Athens differs

significantly under the influence of ENSO.

4.6 Appendix

We cite a strong approximation result for a sequence of stationary φ-mixing random

variables from Lin and Li (2008), which plays an important role through our proof

shown below.

Lemma 4.1. [Lin and Li (2008), Lemma 2.1] Let {ξt, t ≥ 1} be a sequence of strictly

φ-mixing random variables with E(ξt) = 0 and V ar(ξt) = 1 for each t ≥ 1. Suppose

condition (A5) holds, then we can redefine ξt, t ≥ 1 on a richer probability space together
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with a sequence of independent N(0,1) random variables {Zt, t ≥ 1} such that

max
1≤k≤n

∣∣∣∣∣
k∑

t=1

ξt −
k∑

t=1

Zt

∣∣∣∣∣ = o
(
n

1
2+δ1 (log n)

1+ε+ 1+λ
2+δ1

)
a.s. (4.6.1)

for any ε > 0, where λ = 2 log 3
log θ−1

and θ = 1− 2(b−1)
b(2+δ1)

.

4.6.1 Proof of Theorem 4.1

Proof. Following Cao et al. (2012), denote the signal, noise and eigenfunction vectors

by µH = (µH(u1), · · · , µH(um))
T , eH = (σH(u1)ε̄H·1, · · · , σH(um)ε̄H·m)

T , and ψHk =

(ψHk(u1), · · · , ψHk(um))
T , where ε̄H·j = n−1

H

∑nH

i=1 εHij, H = A,B. We can decompose

the spline estimator µ̂H (·) into three terms:

µ̂
(ν)
H (u) = µ̃

(ν)
H (u) + ẽ

(ν)
H (u) + ξ̃

(ν)

H (u) , (4.6.2)

where µ̃
(ν)
H (u) = Ω(ν)(u)µH, ẽ

(ν)
H (u) = Ω(ν)(u)e and ξ̃

(ν)

H (u) =
∑κ

k=1 ξ̄H·kΩ
(ν)(u)ψHk with

Ω(ν)(u) = B
(ν)
p (BTB)−1BT , and ξ̄H·k = n−1

H

∑nH

t=1 ξHik, 1 ≤ k ≤ κ, H = A,B.

Therefore, asymptotic error
(
µ̂
(ν)
A − µ̂

(ν)
B

)
−
(
µ
(ν)
A − µ

(ν)
B

)
can be decomposed into three

components:

(
µ̃
(ν)
A − µ̃

(ν)
B − µ

(ν)
A + µ

(ν)
B

)
+
(
ẽ
(ν)
A − ẽ

(ν)
B

)
+
(
ξ̃
(ν)

A − ξ̃
(ν)

B

)
.
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The proof for
√
n asymptotic efficiency of first two components are trivial by using

Proposition 1 in Cao et al (2012). Here, we focus on the third component.

According to Lemma 4.1, one can find iid ZHik,ξ ∼ N (0, 1), i = 1, ..., nH such that

max1≤k≤κ

∣∣ξ̄H·k −
√
λHkZ̄H·k,ξ

∣∣ = Oa.s.

(
nτ−1
H

)
, where τ ∈ (1/(2 + δ1), 1/2), and Z̄H·k,ξ =

n−1
H

∑nH

i=1 ZHik,ξ. Likewise, for the white noise sequence {εHij, i ≥ 1}, one can also find iid

ZHik,ε ∼ N (0, 1), i = 1, ..., nH such that max1≤k≤κ

∣∣ε̄H·j −
√
λHjZ̄H·j,ε

∣∣ = Oa.s.

(
nβ−1
H

)
,

where β ∈ (1/(2 + δ2), 1/2).

Next, we define a stochastic process

W̃ (u) = n
1/2
A

[∑κ

k=1

{
λAk

(
ψ

(ν)
Ak (u)

)2

+ rλBk

(
ψ

(ν)
Bk (u)

)2
}]−1/2 κ∑

k=1

W̃k (u)

= n
1/2
A V (u, u)−1/2

κ∑
k=1

W̃k (u) ,

where W̃k (u) =
√
λAkZ̄A·kψ

(ν)
Ak (u) −

√
λBkZ̄B·kψ

(ν)
Bk (u), k = 1, ..., κ. It is clear that, for

any u ∈ U , W̃ (u) is Gaussian with mean 0 and variance 1, and the covariance

E[W̃ (u) W̃ (u′)] = V (u, u)−1/2 V (u, u′)V (u′, u′)
−1/2

.

That is, the distribution of W̃ (u), u ∈ U and the distribution of W (u) , u ∈ U are

identical. We denote ψ̃
(ν)

Hk = Ω(ν)(u)ψHk, and according to (A.5) in Cao, et al. (2012),
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supu∈U |ψ̃
(ν)

Hk − ψ
(ν)
Hk| ≤ CN

−(p−v)
µ for some positive constant C. Note that

sup
u∈U

∣∣∣W̃ (u)− n
1/2
A V (u, u)−1/2

{
ξ̃
(ν)

A (u)− ξ̃
(ν)

B (u)
}∣∣∣

= n
1/2
A sup

u∈U
V (u, u)−1/2

∣∣∣∣∣
κ∑

k=1

W̃k (u)−
{
ξ̃
(ν)

A (u)− ξ̃
(ν)

B (u)
}∣∣∣∣∣

≤ n
1/2
A sup

u∈U
V (u, u)−1/2

×
κ∑

k=1

{∣∣∣√λAkZ̄A·k − ξ̄A·k

∣∣∣ ∣∣∣ψ(ν)
Ak (u)

∣∣∣+ ∣∣ξ̄A·k
∣∣ ∣∣∣ψ(ν)

Ak (u)− ψ̃
(ν)

Ak (u)
∣∣∣

+
∣∣∣√λBkZ̄B·k − ξ̄B·k

∣∣∣ ∣∣∣ψ(ν)
Bk (u)

∣∣∣+ ∣∣ξ̄B·k
∣∣ ∣∣∣ψ(ν)

Bk (u)− ψ̃
(ν)

Bk (u)
∣∣∣}

= OP

(
n
τ−1/2
A + n

τ−1/2
B r1/2 + 2N−(p−ν)

µ

)
= oP (1) .

Theorem 4.1 follows directly.
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Table 4.1: Coverage rates of spline confidence bands for the difference of first derivatives
of mean functions

n N Group A-B Group A-C Group B-C
95% 99% 95% 99% 95% 99%

30 30 0.892 0.932 0.862 0.898 0.860 0.896
60 0.972 0.984 0.936 0.960 0.940 0.958

50 50 0.896 0.924 0.866 0.888 0.858 0.888
100 0.960 0.978 0.936 0.952 0.940 0.954

100 100 0.962 0.980 0.924 0.952 0.922 0.952
200 0.962 0.976 0.928 0.954 0.934 0.954

200 200 0.952 0.974 0.938 0.944 0.934 0.944
400 0.994 0.994 0.980 0.990 0.984 0.990

400 200 0.972 0.978 0.938 0.962 0.940 0.964
400 0.982 0.992 0.976 0.982 0.968 0.980

1000 200 0.978 0.986 0.936 0.962 0.938 0.956
400 0.978 0.988 0.956 0.972 0.956 0.970
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Figure 4.1: 3-D display of Temperature Data for 1948.10-2003.9. The data set contains
55 temperature curves from October to September in next year during 1948/10-2003/9,
where on each curve we have 365 daily average temperature observation
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Figure 4.2: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of the mean function and its first order derivatives.
The labels on x-axis denote the first day of the month.
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Figure 4.3: Plots of the mean functions for Group A (dotted-dashed line), B (dashed
line) and C (solid line). The labels on x-axis denote the first day of the month.
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Figure 4.4: Plots of the functional derivative of mean functions for Group A (dotted-
dashed line), B (dashed line) and C (solid line). The labels on x-axis denote the first
day of the month.
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Figure 4.5: Plots of the cubic spline estimators (dotted-dashed line), 99% confidence
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Chapter 5

Conclusion

In this dissertation, novel non/semi-parametric models have been developed respectively

for financial volatility, term structure of Treasury Bond yield curves, and temperature

data. The proposed spline estimators for semiparametric GARCH models have good

theoretical properties with fast computation. We also constructed the simultaneous

confidence bands for the derived news impact curve. We developed the methodology for

modeling and forecasting the weakly dependent functional data, which has superior per-

formance in the real data application. The simultaneous confidence bands for two-group

comparison of functional derivatives in functional time series were derived to study the

temperature transition problem. There are still many open questions in time series with

complex features; for example, I would like to investigate the spatio-temporal correlation

structure for multiple locations of climate time series data. This will provide the clima-

tologists an effective tool to evaluate climate change over a region. Other closely related
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topics in which I am interested for my future research are model selection for functional

regression and inference for covariance function in weakly dependent functional data. I

am also interested in extending the traditional time series models, such as AR, MA and

ARMA models to the functional framework.
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