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CHAPTER 1 

INTRODUCTION 

Since Campbell and Fiske (1959) first proposed the multitrait-multimethod (MTMM) 

matrix, the use of MTMM data has become essential for establishing the construct validity of 

psychological measures by demonstrating evidence for or against discriminant and convergent 

validity (Kenny & Kashy, 1992). Campbell and Fiske’s article is one of the most highly cited and 

influential papers in the history of Psychological Bulletin (Sternberg, 1992).  As of May 1st, 

2015, it had been cited 3,149 times in the PsychInfo database and 13,735 times in Google 

Scholar. 

Campbell and Fiske (1959) introduced the MTMM matrix, which involves all of the 

intercorrelations between measures of a set of traits, and each trait is assessed by a set of various 

measurement procedures (i.e., methods). Using the MTMM matrix allows one to make 

inferences of the variances due to traits distinguishing from the variances due to method effect. 

As such, the primary use of this technique is establishing construct validity of psychology 

measurement, including convergent and discriminant validity. In addition to validating 

psychological tests, the MTMM framework is also applied with a wide variety of purposes, such 

as assessing consistency of multisource performance ratings, comparing differences across time 

or occasions, and evaluating performance across different exercises in assessment centers 

(Lance, Woehr, &Meade, 2007). Researchers have applied the MTMM matrices in wide and 

diverse disciplines besides psychology, such as social science (Watson & Clark, 1992), physical 

science (Marsh, Martin, & Jackson, 2010), education (Wong, Day, Maxwell, & Meara, 1995), 
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management (Arthur, Woehr, & Maldegen, 2000), and communication studies (Kotowski, 

Levine, Baker, & Bolt, 2009). 

Along with their proposal, Campbell and Fiske introduced an informative approach for 

analyzing MTMM data. This approach received criticism regarding its subjective nature, and 

several quantitative approaches for analyzing MTMM data have later been developed, including 

the analysis of variance(ANOVA, Guilford, 1954), confirmatory factor analysis (CFA, Joreskog, 

1969), the composite direct product model (CDP, Browne, 1983), and generalizability theory 

(Woehr, Putka & Bowler, 2012). Of these various approaches, CFA models for the analysis of 

MTMM data has received the most attention (Kenny & Kashy, 1992; Schmitt & Stults, 1986). 

The CTCM model and the CTCU model are the two most popular CFA parameterization 

approaches to MTMM data, but each has their empirical and/ or theoretical limitations. The 

CTCM model, though faithful to Campbell and Fiske’s (1959) primary MTMM proposal, suffers 

from nonconvergence and/or inadmissibility issues. Whereas, the CTCU model, as the most 

commonly used alternate, generates convergent and proper solutions more frequently than the 

complete CTCM model (Marsh & Bailey, 1991). However, criticisms have been raised by 

several researchers that challenge the conceptual soundness and estimation accuracy of the 

CTCU model (Lance, Nobel, & Scullen, 2002; Conway, Lievens, Scullen, & Lance, 2004). 

Another recommended alternative model derived from a reparameterized form of the 

general CTCM model. Rindskopf (1984) proposed a parameterization model of a general CFA 

model, which imposes non-negative restrictions on uniqueness estimates. This reparameterized 

form of a CFA-MTMM model, namely the CTCM-R model, is a mathematically equivalent 

specification of the CTCM.  The CTCM-R model overcomes several deficiencies with the 

CTCM model yet not changing the conceptualization of method variance. 
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Many studies compared the CTCM model and the CTCU model with simulated data 

(Conway et al., 2004., Marsh & Bailey, 1991; Zhang, Jin, Leite, & Algina, 2014), or previous 

published data (Lance et al., 2002). In contrast, much fewer studies have focused on the CTCM-

R model (Dillon, Kumar, & Mulani, 1987; Lance & Fan, 2014). Dillon and colleagues compared 

the CTCM-R model with another two alternative models to CTCM model in their simulation 

study, and suggested the CTCM-R model may not provide solutions to negative error variance 

estimates due to theoretical lack-of-fit or model misspecifications. In contrast, Lance & Fan 

(2014) found the CTCM-R model largely solves convergence and admissibility problems of the 

CTCM model in their re-analysis study on 318 MTMM matrices surveyed 258 studies. The 

current study is designed to test the CTCM-R model not only with simulated data, but also with 

published MTMM data. The purpose of the current study is to exhume the long proposed but 

ignored CTCM-R model, and to systematically compare its performance with the other well- 

known models (the CTCM and CTCU models).  Finally, this study provides suggestions for 

choosing CFA-MTMM models for the analysis of MTMM data. 

The following chapter reviews literatures on CFA-MTMM models. It first begins with 

Campbell and Fiske’s (1959) proposal and briefly introduces their original approach to the 

analysis of the MTMM data. Next, it offers an overview on CTCM model and the CTCU, and 

explains several theoretical and/or empirical problems associated with these two models. 

Rindskopf’s reparameterization of the CTCM model (i.e. CTCM-R model), as follows, is 

introduced as an alternative approach to MTMM data. In the end of the chapter, the purposes of 

the current study are presented. 

The present research effort consists of two studies, a simulation study and a study using 

previously published data. Chapters 3 and 4 describe these two studies, respectively.  Each 



4 

chapter describes the study design, method, results, and a brief discussion. Chapter 5 summarizes 

the present study’s results, limitations, and proposes recommendations for future MTMM 

studies. 
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CHAPTER 2 

LITERATURE REVIEW 

Campbell and Fiske’s (1959) Proposal 

MTMM data refers to measures of a set of traits, and each trait is assessed by as a set of 

various measurement procedures (i.e., methods). Each measure, that reflects a particular trait 

measured by a particular measurement procedure, is called a Trait-Method Unit (TMU; 

Campbell & Fiske, 1959). A typical MTMM matrix is a correlation matrix that contains all 

possible inter-correlations across the TMUs. Campbell and Fiske (1959) provided an informative 

approach to establish construct validity based on the MTMM matrix. As shown in Table 1, an 

MTMM matrix can be divided into three components: the heterotrait-monomethod correlations 

(HTMM), the monotrait-heteromethod correlations (MTHM), and the heterotrait-heteromethod 

correlations (HTHM). Campbell and Fiske’s proposal for establishing inferences of construct 

validity is based on the patterns among these trait-method correlations: (a) significantly non-zero 

and sufficiently large MTHM correlations indicate convergent validity and encourage further 

validity tests, (b) MTHM correlations are larger than HTHM and HTMM correlations, and (c) 

the pattern of trait interrelationship is consistent across all of the HTMM blocks. The last two 

criteria support the discriminant validity. 

Although Campbell and Fiske’s approach has served as an informative guideline for 

establishing construct validity of a psychological measure (Messick, 1995), their guidelines 

receive criticism for their qualitative nature (Widaman, 1985). Based on arbitrary judgments 

upon subjective comparisons, it does not provide a quantitative computation or a statistical 
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significance test for convergent validity, discriminant validity, or the presence of method effects 

(Widaman, 1985; Marsh & Grayson, 1995). Therefore, a number of more quantitative 

approaches have been further proposed for the analysis of MTMM data, including the analysis of 

variance (ANOVA, Guilford, 1954), confirmatory factor analysis (CFA, Joreskog, 1969), the 

composite direct product model (CDP, Browne, 1983), and generalizability theory (Woehr, 

Putka & Bowler, 2012). While controversies and debates over these MTMM analytical methods 

continue, the most popular approach for the analysis of MTMM matrices is some application of 

CFA modeling (Schmitt & Stults, 1986; Kenny & Kashy, 1992). 

Previous researchers (Schmitt & Stults, 1986; Marsh & Hocevar, 1985) explained several 

advantages of the CFA-MTMM approach. First, the CFA approach allows estimation of the 

effect of individual factors, such as the size of trait and method factors. Researchers can test 

hypotheses on specific questions on these factors, such as the statistical significance of trait or 

method factor loadings, trait inter-correlations, and method inter-correlations. Given estimated 

individual factors, it also allows an omnibus model-fit test on the overall hypothesized model, as 

well as tests on a set of specified nested models. Widaman (1985) developed a general procedure 

of testing a CFA-MTMM model, which specified a comprehensive taxonomy of models with 

nested relationships and provided a procedure for comparing these models. This comparative 

process allows one to make quantitative inferences of the degree of convergent and discriminant 

validity, as well as the presence of method effect. Because of the estimation and theoretical 

advantages, the CFA-MTMM models became the top choices to MTMM data. 

The Complete CFA Model (CTCM Model) 

A CFA model specifies the relations of observed variables to underlying latent 

constructs. For MTMM data, a CFA approach specifies the relations between MTMM measures 
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with underlying Traits and Methods factors. For example, a Trait-Method Unit (TMU) (e.g., 

Depression score assessed the Beck Depression Inventory) can be decomposed and effected by 

three additive components: a Trait component (Depression), a Method component (BDI scale), 

and a Uniqueness component. The model specification equation can be expressed as: 

𝑇𝑀𝑈𝑖𝑗 = 𝜆𝑇𝑖𝑗
𝑇𝑖 + 𝜆𝑇𝑖𝑗

𝑀𝑗 + 𝛿𝑖𝑗 (1) 

where 𝑇𝑀𝑈𝑖𝑗 is the trait-method unit that corresponded to the ith Trait as measured by the jth 

Method, 𝜆𝑇𝑖𝑗
 and are the factor loadings of the 𝑇𝑀𝑈𝑖𝑗 on the corresponding ith Trait(Ti) and 

jth Method(Mj) respectively, and 𝛿𝑖𝑗 refers to the residual, or error in predicting the 𝑇𝑀𝑈𝑖𝑗. 

Given that the standard assumptions of the CFA model (Lance & Vandenberg, 2001), it 

can be assumed that the variance-covariance matrix (Σ) for the observed TMUij’s is of the form: 

∑ = [𝛬𝑇|𝛬𝑀]
[𝛷𝑇𝑇′|0]

[0|𝛷𝑀𝑀′]
[𝛬𝑇|𝛬𝑀]′ +  𝛩𝛿

(2) 

where Ʌ refers to the factor pattern matrix, which can be partitioned as[𝛬𝑇|𝛬𝑀], where 𝛬𝑇 and

𝛬𝑀 refer to the factor loadings linking each  𝑇𝑀𝑈𝑖𝑗 to the corresponding ith Trait(Ti) and jth 

Method(Mj);  𝛷𝑇𝑇′and 𝛷𝑀𝑀′ denote the covariance matrix of Traits and Methods factors, 

respectively; and finally, 𝛩𝛿 is a diagonal variance-covariance matrix of residuals 𝛿𝑖𝑗. Because 

this model parameterizes inter-correlated Traits factors and inter-correlated Methods factors 

(Figure 1), it is called the CTCM model and is most faithful to Campbell Fiske’s 

conceptualization of MTMM design (Lance et al., 2002; Kenny & Kashy, 1992). Notably, the 

CTCM model is the same as the Model 3C in Widaman’s (1985) taxonomy. Widaman developed 

the general taxonomy of CFA-MTMM models, which includes other sub-models of the CTCM 

ijM
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model for empirically testing the convergent and discriminant validity and the presence of 

method effects. 

Limitations to the CTCM Model 

Although the CTCM model has theoretical strength in explaining underlying factor 

structures of MTMM data, it suffers from statistical estimation problems of nonconvergence, 

underidentification, and inadmissibility (Brannick & Spector, 1990; Kenny & Kashy, 1991). 

Nonconvergence refers to the problems when estimation algorithms (e.g., maximum likelihood) 

cannot achieve minimal improvement in parameter estimates during the iterative process. Studies 

have shown that the CTCM model frequently encounters difficulties of convergence in statistics 

programs, especially when sample size is small (e.g., Brannick & Spector, 1990; Kenney & 

Kashy, 1992; Marsh & Bailey, 1991). Model identification problems refer to the situations in 

which the model has more parameters to estimate than pieces of information that the data 

provided. As summarized by Lance et al. (2002), the CTCM model has negative degrees of 

freedom for 2T2M, 2T3M, and 3T2M design. Furthermore, a number of studies have suggested 

that the CTCM model experiences empirical underidentification problems due to small sample 

sizes (Marsh & Bailey, 1991; Marsh & Grayson, 1995) and equal Method and Trait loadings 

(Brannick & Spector, 1990; Kenny & Kashy, 1991). As such, the CTCM model is known to 

return inadmissible solutions with ill-defined parameter estimates, such as negative unique 

variances, and standard factor loadings and correlations have absolute values are greater than 

one. One simulation study suggested the CTCM model often performs poorly and returns proper 

solutions for only 22%-24% of MTMM matrices (Marsh & Bailey, 1991). 
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The CTCU Model 

Due to the estimation problems inherent in the CTCM, more flexible alternative 

parameterizations have been sought. Perhaps the most frequently used substitute for the CTCM 

is the correlated trait-correlated uniqueness (CTCU) model. Developed by Marsh (1989), the 

CTCU model specifies the relations between TMUs with the underlying Traits and Uniqueness 

variances, and there are inter-correlations between the Uniqueness variances if they share a 

common Method (Figure 2). CTCU model does not explicitly specify Method factors, but 

instead it incorporates method effects with uniqueness covariance between indicators arising 

from common method sources. The model expression for the CTCU model can be written as: 

𝑇𝑀𝑈𝑖𝑗 = 𝜆𝑇𝑖𝑗
𝑇𝑖 + 𝛿𝑖𝑗 (3) 

where 𝜆𝑇𝑖𝑘
represents the factor loadings of 𝑇𝑀𝑈𝑖𝑘 on corresponding Trait factor (Ti); and 𝛿𝑖𝑗

refers to a composite effect of a systematic uniqueness (𝑠𝑖𝑗), a random error (𝑒𝑖𝑗), and a Method 

effect corresponding to this measure (𝑀𝑖𝑗) ( 𝛿𝑖𝑗 = 𝑠𝑖𝑗 + 𝑒𝑖𝑗 + 𝑀𝑖𝑗). In the CTCU model, all Trait 

variables 𝑇𝑖 are inter-correlated; and residuals of variables that measured by the same Method are 

allowed to intercorrelate. Accordingly, the CTCU model expresses a covariance MTMM matrix 

as: 

Ʃ = 𝛬𝑇𝜙𝑇𝑇′𝛬𝑇
′ + 𝛩𝛿 (4)

where Ʃ represents the MTMM covariance matrix; 𝛬𝑇 refers to the factor loadings pattern matrix 

linking each  𝑇𝑀𝑈𝑖𝑗 to the corresponding Trait(Ti);  𝜙𝑇𝑇′ denotes the covariance matrix of 

among Trait factors; and 𝛩𝛿 is a symmetric covariance matrix with m sub-covariance matrices 

along the diagonal (m = number of Methods in MTMM design). These sub-covariance matrices 

are composed of residual variances corresponded to TMUs on the diagonal and covariance 
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among residuals that share the same Method off the diagonal.  Residual covariances between 

methods and traits are set to zero. 

The CTCU model more frequently produces empirically proper solutions and results with 

better model fit than the CTCM model (Marsh, 1989,1992). However, the CTCU model has 

received substantial criticism. Lance et al. (2002) argued that the CTCU model has severe model 

design and analytic problems. For example, since the CTCU model doesn’t estimate the method 

effect explicitly, it creates an “unmeasured variables problem” which leads to biased estimates of 

model parameters. In addition, the CTCU model was built on the assumption that Method factors 

are independent from each other, which is unrealistic in practice and in contradiction to the 

average method factor correlation of .31 that was found in a review study on published MTMM 

matrices (Conway, Lievens, Scullen & Lance, 2004). Moreover, due to the model 

misspecification inherent in the CTCU, estimates of trait variance tend to be biased upward 

(Conway et al.). 

In sum, the CTCU model outperforms the CTCM model in terms of empirical 

convergence and admissibility (e.g. Marsh and Bailey, 1991). However, the CTCU model has 

severe theoretical and statistical problems (Lance et al., 2002). Given the empirical problems 

associated with CTCM model, and the theoretical and empirical issues with CTCU model, the 

present study evaluated a reparameterization form of the CTCM model. This reparameterization 

form of CFA models was developed by Rindskopf thirty years ago, yet has not received nearly as 

much attention as the above two models. 

Rindskopf’s Reparameterization of the CTCM Model (CTCM-R) 

Rindskopf (1983, 1984) presented a case to reparameterize a CFA model in order to 

implement non-negative restrictions on uniqueness estimates. This modification was 
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subsequently applied to MTMM studies. Applying Rindskopf’s reparameterization to CFA-

MTMM model creates a mathematically equivalent transformation of the CTCM model (i.e., 

CTCM-R model). Specifically, for a model with m Method and t Trait factors in a fully-crossed 

MTMM matrix (i.e. a p*p MTMM matrix, where p= m*t), the CTCM-R model introduces m*t 

unique variables to represent the effect of uniqueness. Each Trait-Method Unit (TMU) is linked 

to one Method factor, one Trait factor, as well as one Unique factor. Variances of the unique 

variables are fixed to be 1.0, as same with the variances of the Trait and Method factors. 

Estimatied unique variance is calculated as the squares of the factor loadings linking the unique 

variables to TMUs. As such, no matter whether positive or negative the estimated factor loadings 

are, estimated uniqueness variances are constrained to be non-negative. 

Rindskopf’s reparameterization of the CTCM model  Σ can be written as: 

Σ = [Ʌ𝑇 Ʌ𝑀 √𝜃𝑈]  [ 

Φ
𝑇𝑇′

0 Φ
𝑀𝑀′

0 0 𝐼

 ]

[
 
 
 
 Ʌ𝑇

′

Ʌ𝑀
′

√𝜃𝑈
′
]
 
 
 
 

(5) 

where Ʌ𝑇 and Ʌ𝑀 refer to the Trait and Method factor pattern matrix, respectively, and  √𝜃𝑈  is a 

diagonal matrix linking unique variables to TMUs; Φ𝑇𝑇′ and Φ𝑀𝑀′ denote the covariance matrix 

of Traits and Methods factors, respectively; variance of unique variables are fixed to 1.0, as the 

identity matrix in the Phi matrix. 

In addition to ensuring non-negativity of unique variances, the CTCM-R model enjoys its 

implementation flexibility using computer programs, such as LISREL (Rindskopf, 1983) and 

Mplus (Lance & Fan, 2014). As a result, the CTCM-R model has been applied to several 

MTMM studies (e.g., Widaman 1985; La Du & Tanaka, 1989; Lance, Dawson, Birkelbach & 

Hoffman, 2010). However, very few studies have examined the performance of the CTCM-R 
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model and compare its effectiveness with other models. Dillon, Kumar, & Mulani (1987) 

compared the CTCM-R model, an alternative parameterization model developed by Bentler 

(1976), and a model with uniqueness variance set to zero when Heywood cases occur. Dillon et 

al. didn’t recommend the first two modified parameterizations of CFA model, and commented 

that those reparameterizations may produce zero error variance with large standard error 

estimates. However, the CTCM-R model guarantees to prevent Heywood Cases and shows its 

advantages over the CTCM model in re-analyzing reviewed MTMM matrices (Lance, Fan, 

Siminovsky, Morgan, & Shaikh, 2014). The CTCM-R model is the focus of the study, and its 

performance for analyzing MTMM data was evaluated in a simulation study for the first time. 

Study Purposes 

The goal of this study is to compare the Rindskopf reparameterization (CTCM-R) model 

to the other two frequently-used CFA models in the analysis of MTMM data. The performance 

of the CTCM and CTCU models has been systematically studied by a number of researchers 

(Conway et al., 2004; Lance et al., 2002; Marsh & Bailey, 1991). However, there is a lack of 

studies focus on the performance of the CTCM-R model, which ensures to solve the Heywood 

problem associated with the CTCM model. 

In the following chapters, three CFA-MTMM models are empirically evaluated based on 

three criteria: model convergence and admissibility rates, model fit, and accuracy of the 

parameter estimates. These model performance criteria are assessed in two separate studies. 

Study 1 is a simulation study that employs the Monte Carlo technique. In addition to model 

convergence, model admissibility, and model fit, since population parameters are pre-defined in 

the simulation study, Study 1 compares of the parameter estimates to known population 

parameter values for examining accuracy of parameter estimates. To increase the ecological 
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validity of the current study, a review study of published MTMM matrices is introduced. In 

essence, Study 2 re-analyzes published matrices using the CTCM, CTCM-R and CTCU models. 

By doing so, Study 2 provides an overview on the performance of the CTCM-R model with the 

real data comparing with the other two competing models. 
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CHAPTER 3 

STUDY 1: EVALUATION OF THE MTMM MODELS ON THE BASIS OF SIMULATED 

MTMM MATRICES 

METHOD 

Study 1 is a simulation study that aims to examine the CTCM-R model performance 

under different simulated conditions. CTCM and CTCU models serve as benchmarks for 

comparison purposes. This study has four major steps: (a) generating model-implied population 

covariance matrices based on pre-defined population values, (b) analyzing sample data with 

three CFA-MTMM models (i.e., CTCM, CTCM-R, and CTCU models), (c) obtaining model 

convergence and admissibility rates, goodness-of-fit indices, and parameter estimates, and 

finally, (d) examining and comparing the CTCM-R model performance with the other models, in 

these aspects: model convergence and admissibility, model-data fit, and accuracy of parameter 

estimates (i.e., estimation bias of model estimates from true population values). 

Population Values 

In simulation studies, population covariance matrices are simulated to represent 

variations in data characteristics that might occur in real data. Accordingly, in the current study, 

population parameters and their values were defined to represent a wide range of realistic 

MTMM studies toward maximizing the ecological validity of the simulation and the applicability 

of its findings. As such, population values for the current simulation study came from the latest 

large-scale review of MTMM studies (Lance et al., 2014), with references from several previous 

MTMM reviews and simulation studies (Conway et al. 2004, Lance et al, 2007, Marsh & Bailey, 
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1991). Below I describe the generation of population matrices to reflect various conditions likely 

to be faced by data analysts in application. 

Number of Traits/ Number of Methods. The 20th, 50th, and 80th percentiles for number 

of traits and methods from Lance et al.’s literature review are presented in Table 2. To make the 

simulation study feasible and manageable, two levels were chosen for number of Traits/Methods: 

three and five. As such, the population matrix had four matrix sizes: (1) three traits and three 

methods (3T3M), (2) three traits and five methods (3T5M), (3) five traits and three methods 

(5T3M), and (4) five traits and five methods (5T5M). These matrix sizes cover a wide range of 

matrix sizes based on the literature review, and can be found in other simulation studies (Conway 

et al., 2004; Lance, Woehr, & Mead, 2007). 

Sample size. Performance of model estimation was evaluated at four sample sizes:  (1) 

100; (2) 250; (3) 500; and (4) 1000. These values were chosen with reference to the 20th, 50th, 

and 80th percentiles of sample sizes (N=71, 183, and 421) associated with MTMM matrices 

reviewed by Lance et al. (2014) and the sample size values from other simulation studies 

(Conway et al., 2004; Marsh & Bailey, 1991; Tomas et al., 2000). The lowest chosen population 

value for the current study was between the 20th percentile from Lance et al.’s review (N=71) 

and the lowest values chosen in other two other simulation studies (N=125; Conway et al., 2004; 

Marsh & Bailey, 1991). The largest sample size value was seen in one simulation study by 

Marsh & Bailey (1991). The other two values were chosen because they were not only frequently 

replicated by previous simulation studies (Conway, et al., 2004; Marsh & Bailey, 1991; Tomas et 

al., 2000), but also better represented the wide range of sample sizes in reviewed MTMM studies 

(Lance et al., 2014; Conway et al., 2004). 
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Trait and Method Factor Loadings. Population values for factor loadings were chosen 

based on the general rule of setting population values, that is, the 20th 50th, and 80th percentiles of 

the summary statistics from the literature review by Lance et al. (2014). As such, the population 

values for Trait loadings were .31, .50, and .69. The population values for Method loadings were 

.17, .28, and .48. Factor loadings within factors were varied by ±.10 so that the averages of factor 

loadings equal the mean population values. An example of factor loading matrix for a 5T3M 

design is presented as the Lambda Matrix in Table 3. 

Trait and Method Factor Correlations. Population Traits and Method correlations also 

comply with the 20th 50th, and 80th percentiles from Lance et al.’s (2014) literature review. As 

such, the population Trait correlations were .07, .36, and .61; and the population Method 

correlations were .02, .29 and .58. Similar to factor loadings, factor correlations were varied by 

±.10 so that the average factor correlations equal to the population values. An example of Trait 

correlations matrix (Phi Matrix) for a 5T3M design is presented in Table 3. 

To summarize, the current study can be expressed in terms of the factorial design: 4 

(Sample Size: 100, 250, 500, 1000) × 3 (Trait Factor Loading Size: .31, .50, .69) × 3 (Trait 

Correlation Size: .07, .36, .61) × 3 (Method Factor Loading Size: .17, .28, .48) × 3 (Method 

Correlation Size: .02, .29,.58) × 2 (Number of Traits Factors: 3, 5) × 2 (Number of Method 

Factors: 3, 5).  There were a total of 4×3×3×3×3×2×2=1296 unique conditions considering all 

above combinations. With reference to a number of previous simulation and review studies on 

MTMM data, the current study have the most comprehensive simulation design that includes 

population parameters covering the greatest range of values. 

Procedures 

The population covariance matrices were constructed through the general formula: 
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∑ = [𝛬𝑇|𝛬𝑀]
[𝛷𝑇𝑇′|0]

[0|𝛷𝑀𝑀′]

𝛬𝑇
′

𝛬𝑀
′ + 𝛩𝛿 

(6) 

A number of statistics programs can be used to generate covariance matrices (e.g., R, 

SAS, Mplus) for Monte Carlo study. In the current study, I wrote syntax in R programs to 

generate population covariance matrix and sample data. Specifically, population MTMM 

matrices were created with pre-defined population values. Once all model-implied population 

matrices were generated, the synthetic data of 100 replications for each population condition 

were generated from the multivariate norm random function (rmvnorm()) in R. In the end, a total 

of 129,600 sample covariance matrices were created (1296 population conditions times 100 

replications). 

Next, LISREL 8 (Jöreskog & Sörbom, 2004) was used to analyze sample data with the 

three CFA models (i.e., CTCM, CTCM-R, and CTCU). LISREL provided outputs containing 

model convergence and admissibility indicators, a set of model-fit indices (e.g. CFI, TLI, χ2, 

RMSEA), and parameter estimates. Finally, these outputs were saved externally, gathered, and 

further summarized for model performance comparisons. 

Result 

Convergence and Admissibility 

Model performance was summarized and analyzed using SAS. There was a total of 

388,791 solutions, of which 331,937 of the solutions (85.4%) were convergent and 213,131 of 

the solutions (54.8%) were convergent and admissible. A solution was considered convergent if 

it met default convergence criteria within 500 iterations. The convergent solution is also 

admissible if this solution does not have out-of-boundary values for the parameter estimates, 
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such as negative unique variances, or standard factor loadings and correlations with absolute 

values greater than one. 

Figure 3 presents the convergence and admissibility rates under different models (i.e., 

CTCM, CTCM-R, and CTCU). All three models had fair convergence rates between 70% and 

95%. The CTCM model, which was known for its tendency to suffer nonconvergence problems 

(Marsh & Bailey, 1990), showed a lower rate (70%) than the other two models (95% for the 

CTCM-R model and 91% for the CTCU model). Although all the three models resulted in 

convergent solutions fairly frequently, the solutions were less likely to be admissible. Only 

around 28% of the outputs from the CTCM model were both convergent and admissible, which 

means parameter estimates from the CTCM model were prone to have ill-defined values. This 

result was consistent with previous simulation studies that the CTCM model often resulted in 

poor admissibility rates (i.e., 36% in Conway et al., 2004; 22% ~24% in Marsh & Bailey, 1991; 

39% in Lance et al., 2007), while the CTCM-R model and the CTCU model, as expected, 

showed superiority over the CTCM model in terms of admissibility with success rates at 63% 

and 69%, respectively. 

Table 4 presents the influences of MTMM study designs on three models’ convergence 

and admissibility. A small sample size adversely affected the convergence and admissibility of 

all three models, yet the influences were not equal. The CTCM model, in particular, was greatly 

impacted by the small sample size and showed an extremely low admissibility rate at 7% when 

the sample size was 100, while the CTCM-R model and CTCU model maintained  intermediate 

admissibility rates at 47% and 53%, respectively. In addition to the small sample size, fewer 

Methods reduced the successful admissibility rates of the three models. Admissibility rates for 

CTCM, CTCM-R and CTCU models were higher for MTMM matrices with five Methods than 
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those matrices with three Methods. Surprisingly, the effect of the number of Traits was not 

significant. 

Model Fit 

When evaluating model fit, I analyzed only the datasets for which convergent and 

admissible solutions were found. As noted by Brannick and Spector (1990), researchers should 

not directly report parameter estimates or model-fit indices from ill-defined solutions. Thus, this 

study tested the model fit indices from the convergent and admissible solutions only 

(N=213,131). 

Five model-fit indices were reported: χ2, SRMR, RMSEA, TLI, and CFI. These indices 

were chosen based on their performance in detecting model-fitting discrepancies, sensitivity to 

sample size, and model misspecifications (Hu & Bentler, 1999), and their general popularity in 

the literature. Table 5 shows the averaged indices scores across different analytic models, matrix 

sizes, and sample sizes. These mean scores fell into the suggested ranges for good model-data fit 

(Hu & Bentler, 1999; TLI>.95, CFI>.95, SRMR<.08, and RMSEA<0.06), which implied the 

convergent and admissible solutions from all three models fit simulated data quite well. When 

looking at each model closely, the CTCM model complied with the population matrix generating 

formula (6), so it is not surprising to find that the CTCM model has lower SRMR and RMSEA 

means and higher TLI and CFI means than the other two models. Same for the CTCM-R model, 

which offers a mathematically equivalent form of the CTCM model, resulted with good model fit 

to synthetic data. However, the CTCU model, which did not comply with simulated model 

structure, still appeared to fit the synthetic MTMM data quit well. Lance, Woehr, & Mead (2007) 

also found in their simulation study that, the CTCU model could achieve good model-data fit, 

even though it was the wrong model. Moreover, for smaller matrix sizes (<5T5M), the mean χ2 
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for the CTCM and CTCM-R models were less than the degrees of freedom. In contrast, the mean 

χ2 from the admissible and convergent solutions for the CTCU models were usually slightly 

greater than degrees of freedom. One possible explanation is that convergence and admissibility 

criteria had filtering out the poor fitting solutions from the CTCM and CTCM-R models so that 

fit indices from these two models suggested well model fit. However, the CTCU model 

displayed a good convergence, admissibility, and even model-data fit, even though it was not the 

correct model. 

Based on suggested cutoffs from Hu and Bentler (1999), the good model-fit rates of three 

models are presented in Table 6. Data for Table 6 were obtained from convergent and admissible 

solutions (N=213131). (a) CTCM model appeared to have highest good-fit rate because the best 

fitting models were not censored out as being improper – so there are far fewer number of 

convergent and admissible solutions for CTCM model than the other models. (b) CTCM-R 

model also fit data well with high good-fit rate, but there are a good amount of convergent and 

admissible solutions generated. And again (c) CTCU model has a decent good-fit rate, even 

though it is the wrong model. Therefore, CTCM-R model appears best for generating convergent 

and admissible solutions that are good-fit to synthetic data. Additionally, it should be noted that 

the CTCM-R kept a decent model-fit rate at 65% when the sample size was 100, compared to the 

54% and 36% success rates for the CTCM and CTCU models. Finally, the number of 

Traits/Methods did not have significant effect on models fit. 

Accuracy of Parameter Estimation 

One primary advantage of simulation design is that simulation studies allow researchers 

to examine the accuracy of parameter estimates. Therefore, in the current simulation study, 

comparing the trait parameter estimates (i.e., trait loadings and trait correlations) with pre-
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defined trait parameter values could cause inferences about the accuracy of trait parameter 

estimates. Estimation biases were the dependent variables, which were obtained by subtracting 

the averaged trait parameter estimates from the corresponded pre-defined population values. An 

estimation bias score can be positive or negative, which indicates upward or downward 

estimation bias. The variances and standard deviations of estimation biases lead inferences about 

the reliability of estimation. As such, for trait loadings and trait correlation estimates, there were 

two dependent variables for accuracy of parameter estimation, including the bias of trait loadings 

and the bias of trait correlation estimates. 

Figure 3 and Figure 4 presented the distributions of estimation biases for trait loadings 

and trait correlations, respectively. A distribution with the mean at zero and small standard 

deviation indicates unbiased and accurate parameter estimation. As shown in Figure 3, trait 

loadings biases distributions for three models closely centered at zero (µCTCM=.00, µCTCM-R=.03, 

µCTCU=.00). The standard deviation for the estimation bias of trait loadings for the CTCU model 

was 0.14, smaller than those for the CTCM and CTCM-R models, with both standard deviations 

at 0.23. It was noted that there were a considerable proportion of solutions from the CTCM and 

CTCM-R models that had a positive estimation biases of trait loadings between .15 and .25.  

This indicated the factor loading estimates from these two models tended to be greater than the 

corresponded population values. In other words, the CTCM and CTCM-R models tended to 

overestimate trait loadings. 

Figure 4 presented the distributions of the estimation biases of trait correlations. The bias 

scores from the CTCM and CTCM-R models both formed bell-shaped normal distributions with 

centers at zeros (µCTCM= -.02, µCTCM-R= -.00) and standard deviations at .27. However, the 

distribution of the trait correlations biases from the CTCU was skewed with the mean of .17. For 
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three models, the standard deviations of the estimation biases of Trait Correlation were similar to 

one another (σCTCM=.27, σCTCM-R=.27, σCTCU=.23). 

Since the population factor loadings and trait loadings greatly determine the 

corresponding estimates (Conway et al., 2004), Table 7 presents the means of trait loading 

deviation by population Trait and Method values. 

Estimation biases in Trait loadings were influenced by population Trait and Method 

Loading values, but the biases were not significantly different among the three models. A 

homogenizing effect for Trait Loading estimate biases was found. That is, all three models 

appeared to overestimate the Trait loadings at a low population of Trait Loading values/ at a high 

population of Method loading values; they appeared to underestimate Trait loadings at high 

population Trait Loading values / at low population Method Loading values. For example, the 

CTCM-R model presented the greatest underestimation of Trait Loadings for the highest 

population Trait Loading value of .69 (bias = -.16), and its greatest overestimation for its lowest 

population Trait Loading value of .31 (bias = .13). The estimation biases also varied by 

population Method Loading values, where a substantial underestimation was seen for the lowest 

population Method Loading at .17 (bias= -.15). The other two models suffered from the same 

homogenizing tendency with different levels, but the differences were not significant across 

models (F (2, 15) = 0.133, p = 0.876). 

However, CTCM-R and CTCM models showed significantly smaller estimation biases in 

Trait correlations than the CTCU model (F2,33=20.1, p<.01). The CTCM-R model showed 

homogeneity estimation effect, which is an overestimation of Trait correlations for the low 

population trait value (bias=.15), an underestimation of Trait correlations for the high average 

population (median bias= -.15), and a relatively accurate estimation of Trait correlations for the 



23 

 

median average population trait value (bias= -.04). Trait estimates returned from the CTCM-R 

model were also determined by population method correlation values, but in the other direction. 

It showed the CTCM-R model overestimated the Trait correlations for the high population 

method correlation (bias= .12), underestimated the Trait correlations for the low population 

method correlation (bias= -.12), and accurately estimated the Trait correlations for the median 

population method correlation (bias= .01). Though the CTCM-R model has the above mentioned 

estimation biases, from a t-test, the model showed as good of an estimation ability as the 

optimum CTCM model (t=2.1, p=.06) and outperformed the CTCU model significantly (t=16.7, 

p<.01). The CTCU model tended to overestimate trait correlations with mean estimation biases 

ranging from .05 to .30 across different population values.  

Discussion 

Study 1 presented a comprehensive e of the CTCM-R model and compared it with two 

other widely applied CFA-MTMM models. The three models were thoroughly evaluated across 

different simulation conditions, in three areas: (a) convergence and admissibility, (b) model fit, 

and (c) accuracy of parameter estimates. 

First, as expected, the CTCM-R model largely overcame the convergence and 

admissibility difficulties associated with the CTCM model and kept an aggregate admissible rate 

at 63%. It is noted that the CTCM-R retained an impressive admissible rate when the sample size 

was small (p=55%). 

Second, solutions from the CTCM-R model presented a good model fit. In particular, the 

CTCM-R kept a model fit rate at 65% when the sample size was 100, higher than the rates of 

54% and 36% for the CTCM and CTCU models, respectively.  
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Third, the CTCM-R model returned accurate estimates of Trait factors. When estimating 

Trait correlations, the CTCM-R model’s showing was as good as the optimal CTCM model and 

significantly outperformed the CTCU model. Consistent with previous studies, population 

parameter values affected estimations of the CTCM-R model. Median values of method 

correlations and/or trait correlations resulted in more precise estimates for the CTCM-R. Similar 

to Trait correlation estimates, Trait loading estimates from the CTCM-R model were influenced 

by large and small population Trait and Method loading values. Except for high or low 

population values, generally, analyzing the sample data generated from median levels of 

population Trait and/or Factor loading values often resulted in accurate estimates from the 

CTCM-R model. Lastly, when estimating Trait loadings, the CTCM-R model perform as well as 

the other two models. 

In summary, the CTCM-R model showed a satisfactory performance in the three 

examined criteria: (a) owning to reparameterization, it generated convergent and admissible 

solutions more frequently than the mathematically equivalent CTCM model; (b) The model fit 

rate of the CTCM-R model was as high as the theoretically optimal CTCM model and was 

higher than the success rate of the CTCU model; and (c) The CTCM-R returned acceptable trait 

estimates. Trait estimates from the CTCM-R model were accurate for the population values at 

median levels, but were affected by extreme population values. There was a tendency of 

estimation bias, but more research is needed, to study how extreme values affect trait estimates. 

All of these advantages of the CTCM-R model make it a great candidate for MTMM 

studies. Generally, the CTCM-R model outperformed the other two widely applied competitive 

models. To display the strengths of the CTCM-R model, to validate its usefulness with real 

examples, and to improve the ecological validity of the current study, Study 2 compared 
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convergence, admissibility, and model fit of the CTCM, CTCM-R and CTCU models using the 

largest sample of previously published MTMM datasets ever assembled. 
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CHAPTER 4 

STUDY 2: EVALUATION OF THE MTMM MODELS ON THE BASIS OF REVIEWED 

MTMM MATRICES 

Method 

The reviewed MTMM matrices in Study 2 come from the latest literature review of 

MTMM studies. Study 2 first updated the large-scale database of MTMM studies that had 

previously constructed by Lance et al. (2014). A total of 570 MTMM matrices from 489 studies 

were identified. Next, in order to perform model comparisons, matrices included in Study 2 had 

to satisfy the following requirements: (a) reported matrices should have sizes at least 3T3M, 

2T4M or 4T2M; (b) matrices have trait and method factors that can be classified into the trait 

and method codes that Lance et al. (2014) developed; (c) the matrices should return at least one 

convergent and admissible solution from the three targeted CFA models (i.e. CTCM model, 

CTCU model, CTCM-R model). Finally, a total of 266 matrices were identified, and LISREL8.8 

(Jöreskog & Sörbom, 1993) was used to fit CTCM model, the CTCU model, and the CTCM-R 

model to these identified matrices. 

Through LISREL analyses, the model performance indicators were collected, including 

(a) model convergence, which suggested whether a model converged within limited iterations 

(within 500 iterations in the study), (b) admissibility, indicating whether estimates of a solution 

has proper values, such as no negative unique variances, no standardized factor loadings or factor 

correlations greater than 1.00 in absolute value, and (c) model goodness-of-fit, which was 

evaluated based on the selected goodness of fit indices, including the χ2 statistic, the standardized 
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root mean squared residual(SRMSR), the root mean squared error of approximation(RMSEA), 

the comparative fit index (CFI; Bentler, 1990), and the Tucker-Lewis Index (TLI). Hu and 

Bentler (1998) have suggested a set of model-fit cut-offs for these indices (a statistically 

nonsignificant χ2, SRMSR≤.08, RMSEA≤.06, and CFI/TLI ≥.95).  In addition to these model 

performance indicators, sample size and numbers of traits and methods were also collected as 

descriptive information about the matrices.  

Results 

Convergence and Admissibility 

 The CTCM-R model generated convergent and admissible solutions more frequently (84%) than 

the CTCM model and the CTCU model, whose convergence and admissibility rates were 23% and 79%, 

respectively (Table 6). When the proper solution rates were evaluated by sample sizes, the CTCM-R 

model showed results consistent with those of Study 1: All three models were more likely to converge 

and return an admissible solution as the sample size increased (Table 7). But the sample size had a 

particularly great effect on the CTCM model. Only 9% of the CTCM model solutions were convergent 

and admissible at sample sizes less than 100. In contrast, 86% of the CTCM-R solutions and 79% of the 

CTCU solutions were convergent and admissible at sample sizes less than 100. 

Model Fit. 

 Table 8 presented the overall model fit. Since CTCM rarely returned admissible solutions when 

the sample size was small, the median df and χ2 from the CTCM models were significantly higher than 

those of the other two models. It should also be noted that χ2s are sample size dependent and easily 

become significant when the sample size is large. Thus, solutions from the CTCM models tend to have 

more solutions with significant χ2 (57%) than the other two models (43% for CTCM-R model and 38% 

for CTCU model). Because of this deficiency of using χ2, a number of goodness-of-fit indices were 
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examined to justify model-fit performance. As shown in Table 8, all mean model-fit indicator scores fell 

into the suggested good ranges (Hu & Bentler, 1998). In addition, based on suggested cut-offs of indices 

for good model fit, the percentages of good-fit solutions among proper solutions were calculated and 

appeared in the last column of Table 7. The results suggested that 96% of the CTCM-R solutions 

showed a good-fit to the data; 97% of the CTCM solutions showed a good fit. And last, the CTCU 

showed a slightly suboptimal model-fit at a rate of 94%. 

Discussion 

Study 2 examined model performance with real MTMM data and served as complementary 

research to the previous study. The results of Study 2 showed findings consistent with those of Study 1.  

The CTCM-R model demonstrated a superior performance over the other two models: (a) It generated 

convergent and admissible solutions more frequently than the other two models; and (b) The model fit 

rates of the CTCM-R model were as high as those of the theoretical optimal CTCM model and showed 

model fit superior to that of the CTCU model. 
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CHAPTER 6 

DISCUSSION 

The primary goal of the current study is to evaluate the neglected CTCM-R model for MTMM 

data. This reparameterization approach imposes nonnegative constraints on uniqueness estimates, and 

therefore theoretically reduces improper solutions. What makes it even more effective is that this model 

structure complied with the Traits and Methods relationships in the optimal CTCM model. Additionally, 

it is able to estimate trait and method factor effects as well as the inter-correlations among the Trait 

factors and the Method factors. 

To demonstrate the theoretical strength of the CTCM-R, in the current study the CTCM-R model 

has been applied with both synthetic and real MTMM data. Two widely applied models, the CTCM and 

the CTCU models, served as benchmarks in this study. Model performance was examined with a focus 

on three aspects: convergence and admissibility, model fit, and accuracy of parameter estimates. All 

these performance criteria were investigated and the results were compared to those of the other two 

models in order to answer the question, “Is the CTCM-R model a good option for MTMM data 

analysis?” And the answer is “Yes.” 

The results from both simulation and reviewed studies have suggested that the CTCM-R model 

achieved the desired convergence and admissibility rates. Compared with the CTCM model, the CTCM-

R model was able to return a satisfactory number of proper solutions, even when the sample size was 

small. Moreover, these solutions showed good model-data fit. Both simulation and reviewed studies 

showed the CTCM-R model has favorable model-fit indices, which suggests it complies with data 

structures. 
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In terms of parameter estimates, the simulation study suggested that the CTCM-R model gives 

acceptable parameter estimates. Even though it tended to overestimate Trait Factor loadings, the model 

provided accurate unbiased trait correlations. Additionally, compared to the competitive CTCU model, 

the CTCM-R model is significantly more accurate in estimating Trait correlations. 

The findings of these studies imply that, the CTCM-R model successfully overcomes the 

empirical difficulties associated with the CTCM model, and the estimation problems with the CTCU 

model. It achieves high convergence and admissible rates, shows good model-data fit, and estimates 

Trait factors accurately. However, some limitations to the CTCM-R model have also been found in the 

current study. As mentioned earlier, the CTCM-R model tends to overestimate the trait loadings, though 

the mechanism is unknown. 

It is interesting to find that the convergence and admissibility rates in Study 2 were higher than 

those from Study 1. For example, the aggregate admissible rate for the CTCM-R model for reviewed 

MTMM data was 84%, higher than its 63% rate for simulation data. The CTCM-R model’s admissibility 

rate for real MTMM data (84%) was almost double that for simulation data (p=44%). These 

discrepancies revealed that the MTMM data has more complex structure than that of a CFA model. 

George Box said, "Essentially, all models are wrong, but some are useful" (p. 424). Similarly, the 

proposed model CTCM-R may be wrong still, but it approaches to the unknown correct model. For the 

CFA-MTMM model, connections between Traits and Methods factors might exist. 

Limited by available statistical techniques, these connections are not able to be programed or 

estimated. More work is always needed. However, one promising approach to increasing chance of 

getting convergent and admissible MTMM-CFA solutions is to increase the indicator–factor ratio 

(Monahan, Hoffman, Lance, Jackson, & Foster, 2013). Increasing the number of manifest indicators for 

each Assessment Centers dimension factor resulted in convergent and admissible solutions for the 
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CTCM model. Monahan et al. (2013) suggested to use multiple items per factor more broadly in other 

area of organizational research. Therefore, future research is needed   applying multiple –indicator 

approach to the CTCM-R model. 
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Table 1 

Hypothetical MTMM Matrix of 3T3M 

Method 1 Method 2 Method 3 

T1 T2 T3 T1 T2 T3 T1 T2 T3 

Method1 

T1 1.0 

T2 HTMM 1.0 

T3 HTMM HTMM 1.0 

Method2 

T1 MTHM HTHM HTHM 1.0 

T2 HTHM MTHM HTHM HTMM 1.0 

T3 HTHM HTHM MTHM HTMM HTMM 1.0 

Method3 

T1 MTHM HTHM HTHM MTHM HTHM HTHM 1.0 

T2 HTHM MTHM HTHM HTHM MTHM HTHM HTMM 1.0 

T3 HTHM HTHM MTHM HTHM HTHM MTHM HTMM HTMM 1.0 
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Table 2  

Population Values of Simulation Study 

Reviewed MTMM Studies Current Study 

Median 20th percentile 80th percentile Population Values 

Number of Method 3 2 3 3,5 

Number of Trait 4 3 6 3,5 

Sample Size 183 90 421 100, 250, 500, 1000 

Method Loading .28 .17 .48 .17, .28, .48 

Trait Loading .50 .31 .69 .31, .50, .69 

Method Correlation .29 .02 .58 .02, .29, .58 

Trait Correlation .36 .07 .61 .07, .36, .61 

Note. N=258. Reviewed studies come from “Convergence, Admissibility and Fit of Alternative Confirmatory Factor Analysis Models for Multitrait-Multimethod 

(MTMM) Data,” by C. Lance & Y. Fan (2015)  
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Table 3 

Example of Lambda and Phi Matrices for Generating a 5T3M Population Matrix 

Population Design Matrix 

Population Matrix M1 M2 M3 T1 T2 T3 T4 T5 

Lambda Matrix T1M1 0.18 0.4 

T1M2 0.28 0.5 

T1M3 0.38 0.6 

T1M4 0.18 0.4 

T1M5 0.28 0.6 

T2M1 0.28 0.5 

T2M2 0.38 0.4 

T2M3 0.18 0.6 

T2M4 0.28 0.5 

T2M5 0.38 0.4 

T3M1 0.38 0.6 

T3M2 0.18 0.5 

T3M3 0.28 0.4 

T3M4 0.38 0.6 

T3M5 0.18 0.5 

Phi Matrix 

T1 1 

T2 0.29 1 

T3 0.19 0.39 1 

M1 1 

M2 0.36 1 

M3 0.26 0.46 1 

M4 0.46 0.26 0.36 1 

M5 0.36 0.36 0.46 0.26 1 

Note. The pattern matrix for 5T3M population MTMM matrix with averaged Method Loading at .28, Trait loading at .5, Method 

Correlation at .29, Trait correlation at .36. 



40 

Table 4 

Convergence and Admissible Rates for Three Models 

Population Values CTCM CTCM-R CTCU 

Sample size 100 Convergence 57% 90% 84% 

Admissibility 7% 44% 53% 

1000 Convergence 81% 97% 96% 

Admissibility 49% 79% 88% 

Number of Traits 3 Convergence 80% 96% 93% 

Admissibility 20% 65% 74% 

5 Convergence 60% 93% 90% 

Admissibility 35% 61% 74% 

Number of Methods 3 Convergence 57% 93% 84% 

Admissibility 16% 58% 61% 

5 Convergence 83% 96% 99% 

Admissibility 39% 67% 87% 
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Table 5 

Mean Model Goodness-of-Fit Indices Scores across Analytic Models, Matrix Sizes and Sample Sizes 

CTCM CTCM-R CTCU 

Matrix 

size 

Sample 

size 
DF CHIQ 

C&A 

Rates 
SRMR TLI CFI DF CHIQ 

C&A 

Rates 
SRMR TLI CFI DF CHIQ 

C&A 

Rates 
SRMR TLI CFI 

3T3M 

100 

12 

6.8 2% .03 1.11 1 

12 

9.1 49% .04 1.11 .99 

15 

15.0 43% .05 1.04 .99 

250 7.7 5% .02 1.07 1 9.0 59% .02 1.07 1 15.6 63% .03 1.01 .99 

500 8.5 9% .02 1.02 1 9.1 64% .02 1.03 1 16.4 74% .02 1 1 

1000 9.2 14% .01 1.01 1 9.4 69% .01 1.01 1 17.8 83% .02 1 1 

3T5M 

100 

62 

56.1 6% .05 1.03 1 

62 

58.7 48% .06 1.05 .99 

72 

80.4 64% .07 .98 .98 

250 56.6 22% .03 1.01 1 56.9 65% .03 1.03 1 80.8 81% .04 1 .99 

500 58.0 41% .02 1.01 1 57.5 76% .02 1.02 1 87.0 91% .03 .99 .99 

1000 58.8 61% .02 1 1 58.5 87% .02 1.01 1 100.2 96% .03 .99 .99 

5T3M 

100 

62 

56.0 4% .05 1.03 1 

62 

57.9 37% .06 1.04 .99 

50 

53.1 31% .06 1 .99 

250 56.0 17% .03 1.01 1 56.7 51% .03 1.02 1 54.7 52% .04 1 .99 

500 57.6 32% .02 1.01 1 57.1 64% .02 1.01 1 57.8 65% .03 1 1 

1000 58.9 47% .02 1 1 58.2 73% .02 1 1 64.9 75% .02 .99 1 

5T5M 

100 

230 

244.8 14% .07 .99 .99 

230 

245.4 42% .07 .99 .98 

215 

243.8 75% .07 .96 .97 

250 232.8 37% .04 1 1 231.1 61% .04 1 1 230.5 93% .05 .99 .99 

500 229.3 57% .03 1 1 228.4 74% .03 1 1 231.5 99% .03 .99 .99 

1000 228.7 73% .02 1 1 227.8 85% .02 1 1 243.8 99% .02 1 1 
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Table 6 

Percentages of Model Good Fit 

Model 

CTCM CTCM-R CTCU 

C&A 

Percentagea 

Good-fit 

Percentageb 

C&A 

Percentage 

Good-fit 

Percentage 

C&A 

Percentage 

Good-fit 

Percentage 

Sample Size 100 7% 95% 44% 92% 53% 74% 

250 20% 99% 59% 98% 73% 92% 

500 35% 100% 70% 99% 82% 96% 

1000 49% 100% 79% 100% 88% 98% 

nT 3 20% 100% 65% 98% 74% 91% 

5 35% 99% 61% 98% 74% 93% 

nM 3 16% 100% 58% 98% 61% 94% 

5 39% 99% 67% 98% 87% 90% 

 Note. aC&A Percentage: the proportion of convergent and admissible solutions bGood-fit Percentage: the proportion of the good-fit solutions among convergent 

and admissible solutions. Good-fit solutions are determined by model-fit indicators based on Hu and Benter suggested cut-offs (1989).   
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Table 7 

Mean Estimation Biases of Trait Loading and Trait Correlations 

Estimation Bias of Trait Loadings Estimation Bias of Trait Correlations 

Population Trait Factors CTCM CTCM-R CTCU CTCM CTCM-R CTCU 

TL Low(0.31) 0.14 0.13 0.10 -0.03 -0.04 0.10 

Median(0.5) 0.03 -0.01 0.00 -0.03 -0.01 0.17 

High(0.69) -0.11 -0.16 -0.08 0.00 0.03 0.23 

ML Low(0.17) -0.15 -0.15 -0.08 0.06 0.05 0.20 

Median(0.28) -0.06 -0.07 -0.05 -0.01 0.00 0.19 

High(0.48) 0.06 0.05 0.08 -0.04 -0.04 0.13 

TR Low(0.07) 0.00 -0.04 -0.05 0.11 0.15 0.24 

Median(0.36) 0.00 -0.03 -0.01 -0.03 -0.01 0.20 

High(0.61) -0.01 -0.03 0.04 -0.14 -0.15 0.08 

MR Low(0.02) 0.00 -0.03 -0.02 -0.14 -0.12 0.05 

Median(0.29) 0.00 -0.03 0.00 -0.01 0.00 0.17 

High(0.58) -0.02 -0.05 0.01 0.12 0.12 0.30 
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Table 8 

Convergence and Admissibility for Three Models for Analyzing Published Data 

CTCM CTCM-R CTCU 

Number Percentage Number Percentage Number Percentage 

Convergence and Admissibility 62 23% 224 84% 210 79% 

Non-Convergence 114 43% 11 4% 12 5% 

Inadmissibility 90 34% 31 12% 44 17% 

Note. N=266 
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Table 9 

Model Convergence and Admissibility across Different Sample Sizes for Published Data 

Sample Size 
Number of 

Studies 

CTCM CTCM-R CTCU 

Number Percentage Number Percentage Number Percentage 

Less than 100 66 6 9% 57 86% 47 71% 

100-200 78 12 15% 62 79% 56 72% 

200-500 74 27 36% 63 85% 64 86% 

More than 500 48 17 35% 42 88% 43 90% 
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Table 10 

Model Goodness Fit Indices for Convergent and Admissible Solutions. 

k df χ2 %p<.01 RMSEA NFI CFI RMR TLI % of good-fit solutions 

CTCM 62 33 87.9 56.5% 0.04 0.98 0.99 0.03 0.99 97% 

CTCM-R 224 14 39.1 42.9% 0.04 0.98 0.99 0.04 0.98 96% 

CTCU 210 15 31.8 37.6% 0.05 0.98 0.99 0.04 0.98 94% 
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Figure 1. Model Specification of the CTCM model for MTMM Data 
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Figure 2. Model Specification of the CTCM model for MTMM Data 
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Figure 3. Convergence and admissibility rates of three models. 

70%

95%
91%

28%

63%

74%

0%

20%

40%

60%

80%

100%

CTCM CTCM-R CTCU

Model

Convergence Admissibility



50 

Figure 4. Distribution of Estimation Bias in Trait Loadings 
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Figure 5. Distribution of estimation bias in Trait Correlations 


