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Abstract

With the emergence of the Big Data era, high performance analytics databases are

highly in need in areas such as business intelligence and predictive analytics. Column-oriented

databases are created as a type of NoSQL (Not only SQL) databases to fulfill those needs.

ScalaTion is an open-source Scala based tool for simulation, optimization and analytics,

and it includes an implementation of column-oriented in-memory database that can handle

high performance analytics. The database provides an easy way to transform a table into

a matrix which may be used as input for other advanced machine-learning models that are

also available in ScalaTion. Fifteen different experiments are conducted to evaluate the

performances of five databases: ScalaTion, MySQL, SQLite, SparkSQL and ClickHouse.

The performance of ScalaTion is for the most part on par with those of open-source

column-oriented databases and at times can be significantly better.
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Chapter 1

Introduction

The “relational database” term was invented by E. F. Codd in 1970. Later this term was

officially defined in his paper [1]. SystemR [2], Ingres Database [3], Oracle Database were

built upon this model during 1970 and 1980. Oracle released the first commercial RDBMS in

1979 [4]. Since then, relational database management systems (RDBMS) have been regarded

as a mainstream database system. There is a domain-specific language Sequel [5] which came

along with RDBMS. It helps users to manage data in RDBMS. Due to its convenience, SQL

(Sequel) is familiar to all professional and other users. It has been a predominant way to

manage data in database management system. RDMBS is known to be good for handling

transaction processing. When creating a big database system, data architects and data mod-

elers often need to have a clear and complete understanding of their data models. Every

table needs to have its own schema indicating the type and name of each column. RDMBS

typically supports ACID (Atomicity, Consistency, Isolation, Durability) transactions. With

the emergence of the Big Data era, data started growing exponentially in different forms.

This results in frequent table modifications and RDBMS, by its design, shows its weakness

in catering to these needs. RDBMS is unable to react agilely to table modification and table

creation.

New types of database systems which provide more flexibility and have better perfor-

mance in analysis have been discussed in the industry and open-source community. These

types of database systems are called as NoSQL databases. They are different from the tradi-

tional database systems in many ways. Papers [6, 7, 8] have discussed the features of NoSQL

databases in detail from different perspectives. There are no policies to govern data centrally
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in these databases [6]. These databases provide various different ways to store data of large

sizes, support nested data structure and data analysis with great performance, etc. When

designing a NoSQL database, application architects and developers will design the database

systems based on the queries the application will use. Theses systems to some extent shift

the tasks of being ACID to the users and application programmers. On the other hand,

these kinds of databases release users from making complicated schema and at the same

time provide high availability and low latency.

There are several categories of NoSQL database systems, including graph databases,

key-value databases, document databases, and column-oriented databases. Relational data

model represents data as n-ary relation R which has a set of distinct tuples and every

column has a name with a specific domain. Data model in graph databases uses a set of

vertex, a set of directed edges, a set of vertex labels to present data. Some have a set of

vertex properties or a set of edge properties which are used to distinguish subset of vertex or

edges. Document databases store all information for a given object in a single instance. They

store an additional metadata file to support other feature such as organizing documents and

execution engine optimization. Column-oriented databases completely vertically partition a

database into a collection of individual columns that are stored separately. Some data model

consists of different projections of table and some are represented as n segmentations that

each segmentation is stored separately in different mechanisms. These segmentations are

reconstructed back to a tuple using a virtual ID (usually the position of the tuple). Some of

these systems support ACID transactions and some support BASE (Basically Available, Soft

state, Eventual consistency) transactions. All of these types have gained a certain amount

of popularity in open source community and industry.

Companies are facing the problem that huge amount of data are created and introduced

into their system everyday. They need to have a better, easier and cheaper way to store the

data and to handle some real-time operations on them. And there is no existing RDBMS

that can solve their problems completely. Therefore, many software product companies have
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built their own NoSQL database system according to their specific own needs. Google has

Bigtable [9]. Facebook has Cassandra [10] and LinkedIn has Voldemort [11]. Column-oriented

databases as one type among these NoSQL database systems have attracted great attention.

The development of e-Commerce and business intelligence brings a huge request for fast

real-time analysis. How to retrieve a value from a huge amount of data in a short time or

doing analysis on these values as part of the report or application information has been the

original task of column-oriented database.

In terms of storage, column-oriented database has three ways to stores columns: on-

disk, in memory, and hybrid. They have different advantages, disadvantages and trade-offs.

To achieve persistence, the database system needs to store the data on the disk or on

NVDIMM (non-volatile dual in-line memory module). For column-oriented database, values

in a column are often repetitive. Compression algorithms can be applied to each column.

After compression, systems only need to store a representative value for each repeated value,

saving many space. Some of these systems designed their own data structure to store the

columns, which allow operations to be done without decompressing the data. This greatly

improves the performance of all kinds of operations. Another aspect, different from how row-

oriented databases retrieve data as a whole tuple, column-oriented databases only need to

retrieve related columns, reducing many seeking when reading from disk. In-memory types

of column-oriented databases will have similar benefits when bring data from memory to

cache. Large data which does not fit in the memory can be solved with a distributed mode

of these data systems. Most of the time, on-disk column-oriented database system have

their own way and related algorithms to encode and store the column on disk. They store

side information to reconstruct the data back into the table and have optimizers to orga-

nize the query executions which can reduce IO by filtering out useless values in columns.

A good mechanism for bringing the data from disk to memory and a decision of frequency

and timing to cache useful values makes on-disk column-oriented databases system compet-

itive in speed with in-memory column-oriented database. Column-oriented databases have
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been known to be good for read oriented applications but clumsy for writing and updating

[12]. Many NoSQL databases only support delete and insert instead of update operations

to reduce concurrency problems. Some of NoSQL databases do not support join. However,

study shows, in column-oriented databases, join operations can be leveraged using indexes

before getting the values from disk [13]. C-store[14] supports joins in a competitive way

with row-oriented relational database join operations. Column-oriented databases also have

advantage to do analytics processing. Despite the weakness in updating and adding values

to a column-oriented database, aggregation functions show a strength when compared to

row-oriented database [6].

Vertical scaling is achieved by adding more cores (ect Intel now supports at most 22

cores) and horizontal scaling is achieved by adding more machines, which is a process of

sharding the data. Horizontal scaling is usually automatically done in NoSQL databases.

ClickHouse [15] can process queries in parallel. In terms of query language, ClickHouse [15]

and C-Store [14] support SQL query.

Druid is an open source shared-nothing, distributed system which has column-oriented

persistence storage [16]. Different nodes of different types are responsible for different tasks.

These nodes work cooperatively to solve complicated analytics problems. Druid uses bitmap

sets to leverage the filtering of rows. Bitmap is a method which uses a list of bits to represent

the filter result of each column. Bit 1 indicates the value in the column returns true for the

filter predicate, and vice versa. Later they perform and or or operations on the lists of bits

from different columns and map to related rows to get the filter result. They also apply

compression on column data to save space when storing on disk or in memory. C-Store [14]

is another open source tool, released in October, 2006. The system has two separate stores

architecture. One is Read-Optimized Store and the other is Writable Store. The two parts are

connected using Tupler Mover. The Read-Optimize store is comprised of different projections

of the original table. The cooperation of these two stores helps C-store to be fast in read and

relatively fast in update. Multiple copies of different projections stored in different sorting
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orders also make C-store possess high availability. SAP HANA [17] is hybrid storage, on-disk

data management system. SAP HANA has different strong query process engines which can

handle different types of data structures to support high performance analytics for different

types of data. It supports SQL-script and has a query optimizer. Another highlight of SAP

HANA is supporting ACID which some column-oriented database systems do not do.

Based on the experiences and knowledge with existing column-oriented databases, our

column-oriented database system in ScalaTion is now capable of performing a relatively

fast load and other common relational algebra operations. Users can load a CSV (Comma

Separated Values) file into the database or simply add the raw data as a Sequence of Vec-

tors into the database as Relation. ScalaTion has a group of fundamental linear algebra

classes such as VectorD, which have fast search, select, append, etc. operations. The database

columns are stored in these Vectors. Later functions are built on these Vector functions and

combined using index.

To solve the disjointing of data process and data modeling and to better combine Big

Data analysis and relational algebra processing, we built RelationFrame API. RelationFrame

shares the same data structure with Relation. It provides high order functions such as filter,

map, fold, and reduce. So users can manipulate data in condense codes, finishing complex

calculations.

The rest of this document is organized as follows: Background and goals of Relation

and RelationFrame are presented in Chapter 2. More detail about the programming interface

is shown in Chapter 3. In Chapter 4, we present performance evaluations between on-disk

RDBMS, in-memory RDBMS, on-disk column-oriented database, column-oriented database

and ScalaTion. We present related work in Chapter 5. Conclusions and future work are

discussed in Chapter 6.
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Chapter 2

Background and Goals

2.1 ScalaTion Overview

ScalaTion is an open-source Scala [18] based tool for simulation, optimization and ana-

lytics. It was first released in 2010, under the MIT License. ScalaTion is built upon a number

of high-performance stable linear algebra classes and has rich data science/machine learning

algorithm libraries. The linear algebra library consists of different types of Vector, Sparse

Vector, RleVector[19], Matrix, Sparse Matrix, BidMatrix, SymTriMatrix classes. These linear

algebra classes provide a solid foundation for ScalaTion to handle heterogeneous data and

support high performance operations. ScalaTion also provides parallel versions of most

of these operations. ScalaTion needs to handle many analytics and column-oriented sys-

tems have strength in analytics as mentioned in Chapter 1. Therefore, ScalaTion has

a in-memory column-oriented database system implemented. The database supports data

storage and relational algebra operations. The columns are stored separately and are in

terms of different types of Vector, which have fundamental optimized operations, such as

append, filter, and slice.

The modeling in ScalaTion uses Matrix and Vector as the type of inputs. After

loading the data from CSV into Relation, toMatriD or toVetorD functions can be called to

transform the Relation into linear algebra classes. Here is an example to show how to load a

CSV file into a Relation and transform it into either a matrix or a vector using ScalaTion.

// null indicates the domain is not given

// 0 indicates the primay key is the first column

val testRelation = Relation(path, "testRelation", null, 0)
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// from column 1 to column 1000 are the attributes

val x = testRelation.toMatriD(1 to 1000)

// column "label" is the label column

val y = testRelation.toVectorD("label")

These codes create a testRelation Relation by reading a CSV file from path and use

toMatriD() method to create a MatriD1 consisting of data from column1 to column1000 as

input x. These codes later use toVectorD() method to create a related VectorD using column

“label” as input y.

2.2 Addtions to Relation

Previously, ScalaTion provided basic relational query processing such as select, project,

intersect, union. From the perspective of data processing, many data processing operations

were not supported in Relation. So ScalaTion users need to use other language such as R

[20] or Python [21] to operate on their raw data before loading the data into ScalaTion

modeling. We enrich the library by adding more complicated operations such as aggregation,

groupby, where and join.

2.3 Goals for RelationFrame

With the rich and solid supports of the linear algebra library in ScalaTion, we wish to

enrich our Relation API with more advanced operations. We also want to build a new Rela-

tionFrame API inside ScalaTion which offers clear and user-friendly ways to manipulate

data at a higher level. And both of Relation and RelationFrame can be quickly and easily

transformed to Matrix and Vector as input to ScalaTion modeling and simulation.

We set the following goals for Relation API and RelationFrame API:

1. Support more advanced relational processing within ScalaTion.

2. Provide high performance using established DBMS techniques.

3. Easy interface for complex operations.

1A matrix of type Double
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4. Support user-defined operations on the RelationFrame.

5. Parallelism should be applied.
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Chapter 3

Programming Interface

Relation and RelationFrame runs as a library as a part of ScalaTion, as shown in Figure

3.1. We first introduce Relation API and later cover RelationFrame API, which allows users

to do functional processing and relational processing, alternately. User defined functions are

supported in RelationFrame. We will be discuss UDF (user-defined functions) in Section 3.6.

Figure 3.1: Relation and RelationFrame and their interaction with ScalaTion
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3.1 Relation API

Relation is a Vector of Vec 1 in abstract. It is analogous to a table in relational database.

It has simple relational query processing functions such as select, project, union, intersect,

join. Extended functions are groupby, aggregate, where.

A simple example to illustrate a basic analytic pipeline using ScalaTion is as below.

The Scala code below defines a Relation from a CSV file and performs groupby and aggre-

gation on the Relation.

// null indicates the domain is not given

//0 indicates the primay key is the first column

val testRelation = Relation(path, "testRelation", null, 0)

val result = testRelation.groupBy("CITY")

.epi(Seq(max), Seq("ZIP"), "UNITID", "CITY")

In this code, Relation will be created using the CSV file in path. Groupby method will

group the relation by the CITY column, store the grouping information in a Seq structure

and sort the rows based on the groupby attributes. Later the epi function will calculate

the max of ZIP for each group and project on UNITID, CITY columns and the aggregate

column.

Compared with SparkSQL, SparkSQL performs the task in the following way:

val testRelation = spark.read

.format("com.databricks.spark.csv")

.option("header", "true") // Use first line of all files as header

.option("inferSchema", "true") // Automatically infer data types

.load(path)

val data_max = testRelation.groupBy("CITY")

.max("ZIP").alias("counts")

val result = testRelation.select("UNITID", "CITY")

.join(data_max, "CITY").orderBy(testRelation("CITY"))

1Vec is a trait, it establishes a common base type for all vectors
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3.2 RelationFrame API

RelationFrame is an extension of Relation. It provides functions to manipulate on data at

higher level. It can be constructed from Relation and later filled into ScalaTion modeling.

The following code show how to create a RelationFrame from a Relation.

val relationFrame = RelationF(testRelation)

3.3 Data Model

Relation is a Vector of Vec. Vec is a trait which establishes a common base type for all

different types of Vectors in ScalaTion linear algebra package. It supports various primitive

types Int, Double, Long and some specially defined types. There are 4 advanced types defined

in ScalaTion which can be used to describe a data. They are Complex, Real, StrNum,

Rational. These advanced types are specially defined to handle different kinds of data in a

more specific way. Table 3.1 will introduce usage and constructor of these types in detail.

3.4 Relation Operations

The library is enriched with more operations such as aggregate, groupby and join. Indexes

are added to the system. Index join, which uses indexes, is implemented. Adding indexes

speeds up some operations and allows for storing information as sequence of indexes instead

of rebuilding the relation. However, maintaining indexes burdens some other operations. So a

good balance of maintaining indexes and skipping the maintenance is critical to performance.

When the operation, such as project, is applied, the table will be changed vertically. The

indexes which are created when the table is created are no longer valid. If maintenance is

necessary, decisions of when to rebuild indexes avoiding unnecessary rebuilding also need to

be optimized.
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Type Name Usage Constructor

Int Represents integer number with 32-bits
val num =

100

Long Represents integer number with 64-bits
val num =

9223372036854775807L

Double
Represents decimal number with 64-bits

(supports 53 bits of precision)
val num = 0.25

Complex
Represents and operates on complex numbers

Example:
√
−1 = i

construct 2.0+3.0i
val num =

Complex(2.0, 3.0)

Real

Complex number is consisted of
a real number and an imaginary number

Provides higher precision floating point numbers
(supports 106 bits of precision)

val num =
Real(0.25)

Rational Represents and operate on rational numbers
construct 1

4

val num =
Rational(1l, 4l)

StrNum Represents and operate on string numbers
val num =

StrNum(“0.25”)

Table 3.1: Explanation of Different Types in ScalaTion

Vec is immutable in ScalaTion. Constructing Relation become costly because of this.

A temporary column which is a ReArray2 is used to help construct a Relation.

The groupby function is just an intermediate process of aggregation. Table creation and

updating in column-oriented databases is expensive. It is unnecessary to create a new relation

out of that. To save space and time, two variables are used to store the information created by

groupby. One is OrderedIndex and the other is Grouplist. OrderedIndex as the name indicates,

it is used to store the ordered indexes. After the groupby operation, aggregation projection

needs the rows to be sorted based on the groupby attributes. The order of indexes are stored

2The ‘ReArray’ is a class in ScaLation which provides an implementation of mutable, resiz-
able/dynamic arrays.

12



in the OrderedIndex. For each group, the index of the first row is stored in Grouplist. So

later, group list information can be retrieved from Grouplist.

The aggregation operation has two main tasks to do. One is to calculate the aggregation

and the other is to project on specific columns. Aggregation is calculated by calling the

aggregateFunction for each aggregate columns. When the projected columns have no one-

to-one relation with group by attributes, only the first tuple of each group will be shown in

the result.

Epi function in ScalaTion is an API which are used to do the aggregation and pro-

jection. A list of aggregate function, a list of aggregate columns and a list of project columns

are given as input of epi function. An example of epi API is shown as following.

\\ max on ZIP and project on UNITID, CITY and max columns

relation.epi(Seq(max2), Seq("ZIP"), "UNITID", "CITY")

The epi function combine project and aggregate in one API. When one of the project columns

does not have a one-to-one relationship with groupby columns, MySQL does not support

the query execution when “ONLY FULL GROUP BY SQL” mode is enabled(which is by

default). When the “ONLY FULL GROUP BY SQL” mode is disabled, a random tuple

from each group of projected columns will be selected as result (later referenced as easy

version query). A full result set can be created by using join in MySQL (later referenced as

complicated version query). Epi is used for the complicated version. Another API EpiEasy

is used for the simple version.

ScalaTion now supports index join. After comparison, implementation with HashMap

performs better than the one with TreeMap for our system. A HashMap is used to hash a

primary key to every tuple. The index join only works when the join predicate is on the

primary key of either or both of the two tables which is a common case in query processing.

Figure 3.2 shows performance of the nested loop join, the index join with HashMap, the

index join with TreeMap and the index join with BpTree. BpTree though performs the

worst for index join among these 3 indexes. Range select operation will be optimized using
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BpTree index. Execution time of larger testing datasets of nested loop joins is too large to

be recorded.

Figure 3.2: Join Performance with Different Implementation

3.5 RelationFrame Operation

Data frames refer to a data structure representing cases (rows) and each of which consists of

a number of observations or measurements (columns) 3. Tools with similar functions are R

DataFrame [20], Spark DataFrame [24] and Python DataFrame [21]. In ScalaTion, users

can perform relational operations and high order functions on RelationFrame. RelationFrame

supports all common relational operators, including projection (select), filter (where), join,

and aggregations (groupby, epi). And it also has high order functions such as filter, map,

reduce and fold. These operators take specific inputs and translate the information to com-

pute results.

3https://github.com/mobileink/data.frame/wiki/%What-is-a-Data-Frame%3F
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The following code shows how to filter on two different tables on the Date column which

has value of 20180101 and join the two tables together by using UNITID.

val newfuture = futuretable.filter( _ == "20180101", "Date")

val newcurrent = currenttable.filter( _ == "20180101", "Date")

val fulltable = newcurrent.joinindex("UNITID", newfuture)

Same results are created using SparkSQL as followed:

val newfuture = futuretable.filter(futuretable("Date") === (20180101))

val newcurrent = currenttable.filter(currenttable("Date") === (20180101))

val fulltable = newcurrent.join(newfuture, "UNITID")

Pid Name Years
01 Jack Johnson 5
02 Adam Oldman 1
03 Bill Peeler 6
04 Ken Smiths 2
05 James Lee 1

Table 3.2: Table Professor

Following sections will use a professor table to show some high order functions examples

using RelationFrame. The table of professor is shown in Table 3.2.

Here is an example shows how to add 1 to every value of Years column using Relation-

Frame:

val result = professor.map((x: Int) => x+1,"Years")

Years
06
02
07
03
02

Table 3.3: Result Table after Map on Professor
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The result of this code is shown in Table 3.3.

Same results can be created from this code using SparkSQL:

val result = df.map

{case Row (pid: Int, name: String, Years:Int) => (Years + 1)}

The following code shows how to get the sum of all the values of Years column:

professor.reduce((x:Int, y:Int) => x+y,"Years")

\\result: 15

Same results will be created from this code using SparkSQL:

professor.select("Years").reduce((x,y) => Row(x.getInt(0) + y.getInt(0)))

The following code show how to get the sum of all the values of Years column with a

default starting sum, 10:

def plus(x:Int, y:Int): Int = x+y

professor.fold(10, plus, "Years")

\\result: 25

Same results can be created from these codes using SparkSQL:

val result = professor.select("Years")

.reduce((x,y) => Row(x.getInt(0) + y.getInt(0))) + 10

3.6 RelationFrame versus Relational Query Languages

RelationFrame can be easily transformed into Matrix and Vector to fill into data science

machine learning modeling algorithm, without saving the intermediate results. It provides

clear and user friendly API and convenient way to finish some common data processing

operations.

The following example shows how to create a new statistic column which is max of a

column of a specific group and later fill in a regression model in ScalaTion:
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val student = Relation(path, "student", null, 0)

val result = student.groupBy("SCHOOL")

.epi(Seq(max), Seq("GRADE"), "ADDR", "CITY")

val rg = new Regression

(result.toMatriD(1 to 3), result.toVectorD("Label"), Cholesky)

// use Cholesky Factorization

Relational query produces same result using MySQL inside R:

install.packages("sqldf")

library(sqldf)

rs <- dbSendQuery(con, "select ADDR, CITY,

max(GRADE) as max FROM student group by SCHOOL")

student <- fetch(rs, n=-1)

fit <- lm(LABEL ∼ ADDR + CITY + max, data=student)

3.7 User-Defined Functions

To define user-defined functions in MySQL, you need to install object files in addition to

the server itself 4. RelationFrame supports inline definition of UDFs without complicated

packaging and registration process. In RelationFrame, UDFs can be passed by passing Scala

functions. This functionality provides users customized way to process their data inside

ScalaTion. For example, multi function defines a function multiplying two numbers. Given

this function as an argument to map function of RelationFrame, the Years column will be

applied to this multi function and return a new column:

def multi (x:Int): Int = x*10

professor.map (multi, "Years").show()

Here multi is a user defined function which takes an integer and multiply it by 10. The multi

function is given as an input for the map function. In the map function, every value of Years

column will be multiplied by 10. A new column will be returned.

The result shows in Table 3.4

4https://dev.MySQL.com/doc/refman/5.7/en/adding-functions.html
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Years
50
10
60
20
10

Table 3.4: Table Professor After Map Operation
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Chapter 4

Performance Evaluations

4.1 Ralational Operations Dataset and Join Dataset

Data of this study was released in October, 2015 by College ScoreCard under the United

States Department of Education (https://collegescorecard.ed.gov/data/). This dataset has

attributes representing a student’s information about his school, the city of the school and

some other unknown personal information. Each row in the data stands for a student cohort

admitted to a certain university.

We use the first 500 columns of the tables to form a relational operations dataset as do

our relational operations experiments and dataframe experiments. We make different sets of

dataset whose rows size differs from 1000 to 90000.

For the join operation testing, we take the first 10 attributes and split them into two

datasets. One consists of 4 attributes and the other consists of 6 attributes. We added Sid

as key to present the student id of whom this information belongs to. The two tables are

named student and address in the database.

4.2 Pipeline Dataset

The original raw data has total 1729 columns. Based on the researcher’s study result [22]

31 columns are chosen through feature selection processing and data from 2001, 2003, 2005,

2007, 2009, 2011 are chosen as training set. We replace the null and empty value with 0.

After filtering and join operation, total count of rows is 17813. These 17813 data are used

to do regression.
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These experiments were conducted on a system with an Intel Core i5 2.70 GHz processor

running the 64-bit OS X High Sierra 10.13.2 distribution of the Mac operating system with

8 GB of memory. The versions of SparkSQL, MySQL, SQLite, Python and R are 2.11.7,

6.3.4, 3.22.0, 2.7 and 3.4.3, respectively. Spark is set up to run in one thread. ClickHouse is

deployed on a micro t2 instance of EC2. The virtual machine has 1GB of memory, 1 cpu, 1

core and is running Ubuntu operating system.

4.3 Relational Algebra Performance

The following eight sections are showing relational processing performance comparison results

of five different database management systems. We choose an on-disk relational database,

MySQL, an in-memory relational database SQLite, an on-disk column-oriented database

ClickHouse, and an in-memory row-oriented dataframe SparkSQL.

4.4 Project Performance

MySQL, SQLite and ClickHouse use the same SQL to create the result in following way:

select UNITID, OPEID, CITY, STABBR, ZIP from student

SparkSQL yield same result in following way:

left.select("UNITID", "OPEID", "CITY", "STABBR", "ZIP")

ScalaTion create same result in following way:

result = relation.π("UNITID", "OPEID", "CITY", "STABBR", "ZIP")

Comparison result is shown in Figure 4.1. ScalaTion and SparkSQL perform the best

among these 5. And the on-disk column-oriented database, ClickHouse ranks the second.

There is no doubt that column-oriented databases will perform better in project operation.

Because the table is stored in columns, there is no need to go through all the rows.
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Figure 4.1: Project Performance Comparison

An experiments shows how the different numbers of project columns will affect the

performance of project operation. The result is in Figure 4.2. As the number of project

column increases, the execution time of ScalaTion is barely affected and the execution

time of ClickHouse , SparkSQL and SQLite increase. ClickHouse always performs better

than SQLite.
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Figure 4.2: The affect of different number of project columns

4.5 Select Performance

MySQL, SQLite and ClickHouse use same SQL to create the result in following way:

select * from student where OPEID = 100200;

SparkSQL yield same result in following way:

student.where(student("OPEID")===100200)

ScalaTion create same result in following way:

relation.σ("OPEID", _ == 100200)

Comparison result is shown in Figure 4.3. ScalaTion and SparkSQL perform the

best among these 5. And the in-memory row-oriented database, SQLite ranks the second.

ClickHouse performs worse than the row-oriented database SQLite bacause there are 500

columns involved in the result. When there are many columns involved in the query result

and few operations are operated on columns, there is no performance gains for column-

oriented databases. Because reconstruction of a table is costly in column-oriented databases.
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Figure 4.3: Select Performance Comparison

Although column-oriented databases are good at select operation, reconstruction of a

table with many columns still make this type of SQL execution costly. ScalaTion are not

affected by this factor because ScalaTion has indexes to hash the rows.

An experiment with different number of project columns and different number of selec-

tivity is conducted to show the effect of the number of the project columns to select oper-

ation. The number of project columns are 1, 5, 10, 300, respectively. The number of select

predicates is 1 and 7, respectively. As Figure 4.4 and Figure 4.5 show, when the number

of select predicate is 1 and more and more columns are projected, ScalaTion and SQLite

execution time remains stable and execution time of ClickHouse increases. When number

of project columns is small and no matter how many predicates are required, ClickHouse
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will always performs better than SQLite. This comparison shows reconstructing of more and

more columns will slow down ClickHouse.

Figure 4.4: Projection with one selection Performance Comparison

Figure 4.5: Projection with seven selection Performance Comparison

4.6 Union Performance

Next we are going to compare the Union operation. In terms of testing data, we want to

union two tables with the same schema.

MySQL, SQLite and ClickHouse use same SQL to create the result in following way:

select * from studentA UNION ALL select * from studentB

ScalaTion and SparkSQL yield same result in following way:
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studentA.union(studentB)

Figure 4.6: Union Performance Comparison

Comparison result is shown in Figure 4.6. Result shows ScalaTion performs 2x faster

than SparkSQL. MySQL ranks the third and it uses 100X time as ScalaTion. ScalaTion

performs 1000x faster than ClickHouse and SQLite. ClickHouse performs worst among these

5. Again result shows that there is no performance gains in ClickHouse if the SQL involves

many columns without many operations on columns.

4.7 Intersect Performance

Next we are going to compare the Intersect operation. In terms of testing data, we want to

intersect two tables with same structures.

There is no INTERSECT operator in MySQL and ClickHouse. Similar query can be

finished using In clause or EXISTS clause. MySQL and ClickHouse use same SQL to create

the result in following way:
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select * from studentA as A

WHERE A.Unnamed IN (select Unnamed from studentA);

SQLite supports INTERSECT algebra. Same result will be created by following codes:

select * from studentA INTERSECT select * from studentB;

ScalaTion and SparkSQL yield same result in following way:

studentA.intersect(studentB);

Comparison result is shown in Figure 4.7.

ScalaTion and ClickHouse, as expected, do not perform as good as row-oriented

databases in intersect operation. Since intersect operation needs to go through every value

in every row to check if there are any differences. In row-oriented databases, row is stored as a

tuple so it is easy to compare. SparkSQL performs the best. The DataFrame in SparkSQL is a

Dataset of Row which might have its own compare method, making the intersect operation

fast. It is almost 100X faster than average performance of other databases. MySQL and

SQLite performs almost the same in this operation.

Figure 4.7: Intersect Performance Comparison

26



4.8 Join Performance

Join operation is not provided in some NoSQL database. Here we compare Join operations.

We use the following codes to get the full information of a student and his detail

information.

Same result will be created using MySQL and SQLite by following code:

select * from student join address on student.Sid = address.Sid

Same result will be created using ClickHouse by following code:

select * from student ANY INNER JOIN address USING Sid;

Same result will be created using SparkSQL by following code:

student.join(address, "Sid")

Same result will be created using ScalaTion by following code:

val fulltable = student.indexjoin(address, "Sid", "Sid")

Comparison result is shown in Figure 4.8. SQLite performs the slowest. SparkSQL

performs the best. It shows SparkSQL is good at performing either row-oriented operations

such as join or column-orient operations such as select, project. ScalaTion performs second.

ScalaTion uses 10X of execution time used by SparkSQL. SQLite surprisingly performs

worse than column-oriented databases. Looking into the query plans of SQLite and MySQL,

they both use only one index in each query. This to some extend explains the reason why they

are slower in index join operation. In ScalaTion, if the join attributes are both primary

keys in two tables, two indexes will be used in the index join which explains the reason why

ScalaTion is fast in the index join operation. SparkSQL implements the join with hash

join using OpenHashMap to leverage the operation. As the size of dataset increases, SQLite

performs worse than ClickHouse.
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Figure 4.8: Join Performance Comparison

4.9 Parallel Join Performance

Parallel version of index join is implemented in ScalaTion. Parallel index join separates

the table into a specific number of partitions and does the operations in parallel.

A similar way to call parallel index join in ScalaTion is shown as following code.

val fulltable = student.parjoin(address, "Sid", "Sid", 4)

Here, the 4 indicates the table will run in 4 threads. User can define specific thread

numbers based on their computer hardware.

For dataset whose size is over 90000 rows, the execution time of the parallel index join

operation can reduce to half of the time of index join.

Comparison result of index join and parallel index join is shown in Figure 4.9. As the

results shows, when the size of dataset reaches 90000, parallel index join takes only half time

of index join.
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Figure 4.9: Parallel Join Performance

4.10 Aggregation without Grouping Performance

First we test the aggregation function without any grouping. In regards of the testing data,

we want to know the total sum of salary of all the students. We compare five ways to get

the sum in ScalaTion, MySQL, SQLite, ClickHouse and SparkSQL.

Same result will be created using MySQL, SQLite and ClickHouse by following code:

Select sum(salary) from student

Same result will be created using SparkSQL by following code:

student.agg (sum (student ("salary") ) )

Same result will be created using ScalaTion by following code:

student.sum("salary")

Comparison result is shown in Figure 4.10. Result shows two column-oriented databases

are the fastest among the five. ScalaTion and ClickHouse performs the best as expected

for aggregation. They are 50X faster than in-memory RDBMS, SQLite and 100x faster than

on-disk RDBMS MySQL. SparkSQL ranks the third which uses twice time of ScalaTion.
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Figure 4.10: Aggregate without Grouping

4.11 Project on One Groupby Column, Aggregation with Grouping Per-

formance

Later, we simply want to group the table by one attribute, aggregate on one attribute and

project only on the aggregate column. In regards of the testing data, we want to look at the

max of ZIP for each city.

Same result will be created using MySQL by following code:

Select max(ZIP) from student group by CITY

Same result will be created using SQLite and ClickHouse by following code:

Select max(ZIP) from student group by CITY Order by CITY

Same result will be created using SparkSQL by following code:

val result = student.groupBy("CITY").max("ZIP")

.alias("counts").orderBy(student("CITY"))

Same result will be created using ScalaTion by following code:

student.groupby("CITY").epi(Seq(max), Seq("ZIP"))
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Comparison result is shown in Figure 4.11. As expected, the column-oriented database,

ClickHouse has a good performance on aggregation. SparkSQL performs the same as Click-

House. ClickHouse and SparkSQL is 10x better than ScalaTion. ScalaTion performs

better than SQLite. MySQL is the slowest among these 5.

Figure 4.11: Aggregate on One Attribute and Project on Aggregate Column

4.12 Project on Muiltiple Columns, Aggregation with Grouping Perfor-

mance

Later, we want to test to group the table by one attribute, aggregate on one attribute and

project on multiple columns. In regards of the testing data, we want to look at the Sid, CITY

and sum of ZIP of each city.

Because Sid is not listed in Group By clause and has no relation with the group by

column CITY. MySQL does not support this query when the “ONLY FULL GROUP BY

SQL” mode is enabled (which it is by default)1. ClickHouse does not support this query

either. So we make the query into two different queries and test the performances. The

result of Q1 will show a random representative of each group. The result of Q2 will show

every tuple in each group.

1https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html
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We use following codes to get Sid, CITY, and max of ZIP of student for every CITY

using ScalaTion:

Q1:

student.groupby("CITY")

.epiEasay(Seq(max), Seq("ZIP"), "Sid", "CITY")

Q2:

student.groupby("CITY")

.epi(Seq(max), Seq("ZIP"), "Sid", "CITY")

The execution of Q1 in Mysql needs to disable the related SQL mode. Same result will

be created using MySQL by following code:

Q1:

// After SET sql_mode = ‘’;

Select Sid, CITY, max(ZIP) from student group by CITY

Q2:

select Sid, CITY, max from student

join

(select CITY as c2, max(ZIP) as max from student group by CITY) as B

on CITY = B. c2

order by CITY;

Same result will be created using SQLite by following code:

Q1:

Select Sid, CITY, max(ZIP) from student group by CITY Order by CITY;

Q2:

select Sid, CITY, max from student

join

(select CITY as c2, max(ZIP) as max from student group by CITY) as B

on CITY = B. c2

order by CITY;

ClickHouse does not support types of query such Q1. The columns to project can only

be the group by columns or aggregate columns or they must have one-to-one connection to

the group by column. Same result can be created by executing Q2 in following code:

Q1:
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Not Available in ClickHouse

Q2:

select Sid, CITY, max

from

(select Sid, CITY from student)

ANY INNER join

(select CITY, max(ZIP) as max from student group by CITY) USING CITY

SparkSQL does not support types of queries such Q1 either. Similar result will be

created using SparkSQL by following code:

Q1:

Not Available in SparkSQL

Q2:

val intermediateTable = student.groupBy("CITY").max("ZIP").alias("counts")

val result = student.select("Sid","CITY")

.join(intermediateTable, "CITY").orderBy(student("CITY"))

The set of Q1 performance shows in Figure 4.12. Result shows ScalaTion is 10X faster

than MySQL and 3X faster than SQLite in processing types of query such as Q1.

The set of Q2 performance shows in Figure 4.13. ClickHouse shows almost same per-

formance as ScalaTion. ScalaTion is 5X faster than SQLite, 8X faster than SparkSQL

and 10X faster than MySQL.
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Figure 4.12: Sets of Q1 Performance

Figure 4.13: Sets of Q2 Performance
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4.13 RelationFrame High Order Functions Performance

In following 4 sections, we are showing the performance result of Map, Reduce, Filter of

RelationFrame in Relation, DataFrame in R, DataFrame in Scala and DataFrame in Spark.

We use a data file with size of 90000 rows.

4.14 Map Performance

Map function takes the dataframe and apply a user define function to the data structure

and return the value. In terms of test data, we want to add 5 to every value in the Unnamed

column.

Result will be created using following code in R DataFrame:

plus <- function(x){return(x+5)}

res <- sapply(student[,c("salary")], plus)

Result will be created using following code in Python DataFrame:

res = map(lambda x:x+5, student[‘salary’])

Result will be created using following code in Spark DataFrame:

student.map{ case Row(Unnamed:Int, case_statud:String, position:String,

city:String, job_title:String) => (salary + 5) }

Result will be created using following codes in ScalaTion RelationFrame:

def plus(v1:Int): Int = v1 + 5

val result = student.map(plus, "salary")

Result is in Figure 4.14. As the result shows, Python DataFrame performs the best among

these 4. RelationFrame is almost as good as Python DataFrame and only takes 1/10 of time

R does. The following is the Spark DataFrame. R DataFrame performes the worst.
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Figure 4.14: Map function performance of size of 90000

4.15 Reduce Performance

Reduce function apply a user define function to the data structure and return a higher level

perspective of the column. In terms of test data, we want to add up all the values in Sid

column of student.

Result will be created using following codes in R DataFrame:

plus <- function(x,y){return(x+y)}

res <- Reduce(plus, student[,c("salary")])

Result will be created using following codes in Python DataFrame:

res = reduce(lambda x, y: x+y, student[‘salary’])

Result will be created using following codes in Spark DataFrame:

student.select("salary").reduce((x,y) =>

Row(x.getInt(0) + y.getInt(0)))

Result will be created using following codes in ScalaTion RelationFrame:
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def plus(v1:Int, v2:Int): Int = v1+v2

val result = student.reduce(plus, "salary")

Result is in Figure 4.15. The result shows RelationFrame performs the best and the

following is Python DataFrame. R needs almost 10X of execution time as RelationFrame

and Python DataFrame does. Spark DataFrame needs almost 20X of execution time as

RelationFrame and Python DataFrame does.

Figure 4.15: Reduce function performance of size of 90000

4.16 Fold Performance

Fold function is similar to Reduce function with a default value. R, SparkSQL and Python do

not have separate API for fold method. SparkSQL handles fold method as Reduce function

with an initial value.

In terms of test data, we want to add up all the values in Sid column of student with

a default sum 10.

Result will be created using following codes in R DataFrame:

plus <- function(x,y){return(x+y)}

res <- Reduce(plus, student[, c("salary")]) + 10

Result will be created using following codes in Python DataFrame:
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re = reduce(lambda x,y: x+y, student, 10)

Result will be created using following codes in Spark DataFrame:

student.select("salary").reduce((x,y) =>

Row(x.getInt(0) + y.getInt(0))) + 10

Result will be created using following codes in ScalaTion RelationFrame:

def plus(v1:Int, v2:Int): Int = v1+v2

val result = student.fold(10, plus, "salary")

Result is shown in Figure 4.16.

Figure 4.16: Fold function performance of size of 90000

4.17 Filter Performance

Filter function goes through the whole data structure and return a new data structure based

on specific filtering predicate. In terms of test data, we want to get a new student table

whose OPEID attribute has all values equal to 100200.

Result will be created using following codes in R DataFrame:

res<-student[student$OPEID == 100200,]
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Result will be created using following codes in Python DataFrame:

res = student[‘OPEID’] == 100200

Result will be created using following codes in Spark DataFrame:

val res = student.filter(student("OPEID").=== 100200)

Result will be created using following codes in ScalaTion RelationFrame:

student.filter( _ == 100200, "OPEID" )

Result is in Figure 4.17. RelationFrame performs the best among these 4. Python

DataFrame ranks second. Spark DataFrame and R DataFrame takes 10X to 20X time as

RelationFrame does.

Figure 4.17: Filter function performance of size of 90000

4.18 Pipeline Performance

We have another set of comparison which are consisted of some common processes of a data

processing before data modeling. The process includes filtering on the raw data based on a

specific range and then join two different feature table by a common key. We compare this

pipeline process time of ScalaTion and MySQL using the dataset described in Section4.2.
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Result of the comparison is shown in Figure 4.18. ScalaTion uses half time of MySQL for

the total process.

Do regression using ScalaTion:

val x = fulltable.toMatriD(0 to 29)

val y = fulltable.toVectorD(30)

val rg = new Regression(x, y, Cholesky)

// use QR Factorization

Do regression using R:

student <- dbReadTable(conn = con, name = ‘student’)

fit <- lm(mn earn wne p6 ∼ CONTROL+PREDDEG +UGDS + INEXPFTE +

PPTUG EF +C150 4+ AVGFACSAL + ADM RATE ALL + SAT AVG + TUITIONFEE IN

+ TUITIONFEE OUT+ UGDS BLACKNH + UGDS API + UGDS AIANOld

+ UGDS HISPOld + INC PCT LO + INC PCT M1 + INC PCT M2 +INC PCT H1

+ INC PCT H2 + PAR ED PCT 1STGEN + PAR ED PCT MS + PAR ED PCT HS

+ PAR ED PCT PS + pct grad prof + female + first gen + age entry + DEBT MDN,

data=student)

Figure 4.18: Preprocessing Pipeline Compare
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Chapter 5

RelatedWork

Industry has been searching for relational processing and procedural processing engines for

Big Data for years. One of the engines which can perform these functions in a stable way is

Shark [23]. Shark runs on Spark and offers both relational query processing and advanced

analytics. Later SparkSQL [24] has developed on Shark with a more programmer-friendly

API and with a richer library. It also comes with an optimizer, Catalyst. Catalyst is one of the

first production quality query optimizer built on Scala. It uses many features of Scala such

as pattern-matching [25] and quasiquotes [26]. It also helps SparkSQL to optimize logical

plans, generate physical plans, generate code, and compare plans based on costs.

Other open-source libraries which have similar functions and extensions to handle UDFs

are Hive [27] and Pig [28]. Although these tools are designed to work on clusters, they share

the same tasks with ScalaTion which are to provide fast analytics on Big Data in a SQL-

like way. Analytics on big data focuses on the performance of three common operations:

groupby, aggreagte and join. The finely designed column-oriented storage, particular design

of query processing component, and optimization strategies of these systems share benefits

with ScalaTion. Hive’s strategy of partial aggregation on skewed data and hash-based

partial aggregation in Hive has helped improve its performance of aggregation. Pig has a

“safe” optimizer which will apply database style optimization in most cases. However, when

performance benefits are uncertain, operations will be executed as the order written by the

user.

The process of reconstructing the columns back into a tuple is called materialization

in column-oriented databases. Strategies for materialization are critical to column-oriented

41



databases. Different strategies about when to rebuild the columns back to tuple and their

tradeoff are discussed in detail in paper [13]. Vertica has implemented plenty of different

materialization strategies and paper [29] has a thorough discussion about them. These ideas

help column-oriented systems save a significant amount of time and space during queries

processing by reducing intermediate results.

“Database cracking” technique [30, 31] is a technique which is based on the idea that

maintaining indexes as query is being processed. Rather than revising or reconstructing the

original table, system can create a copy of a segment of table which the query touches and

manipulate on the copy. Later the system will combine results of all the copies and build a

new table from it. C-Store [14] adopted this technique in their implementation. It inspired

the optimization of groupby and aggregation operations in ScalaTion.
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Chapter 6

Conclusions and Future Work

Column-oriented databases store data as columns. This enables the database to apply com-

pression on columns and to retrieve all the values from a column at once without scanning

the entire table. The performance of project, union and select operations of ScalaTion are

several hundred times faster than open-source in-memory row-oriented databases. Especially

the select operation performs better than ClickHouse and SparkSQL. The aggregation opera-

tion is competitive with ClickHouse and is 4X faster than SQLite. After building indexes, the

index join operation which is not provided in some NoSQL databases performs 2X faster than

row-oriented databases and 1000X faster than the column-oriented database, ClickHouse.

The aggregation operation marks the table into different groups and then calculates

the result based on each group [32]. Before the groupby process, the columns are stored in

the order of the insertion (basically randomly). So in knowing how to efficiently find the

aggregated values based on the group which they belong to, becomes a main task. Some

column-oriented databases store different projections of tables in different sorting orders

[14], making this process easier. In ScalaTion, aggregation functions are optimized to be

4X faster than the in-memory row-oriented database SQLite.

The ScalaTion column-oriented database provides an easy and quick way to load

data into the database as a Relation. The Relation API provides a rich library of relational

operations to handle analytics. And it can be easily transformd into RelatonFrame which

has high order functions to support most of the common operations in a data pipeline. The

API supports user-defined functions to manipulate data at higher level in a customized way.

Based on the performance evaluation, the filter operation is tremendously fast compared with
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open-source RDBMS. Also Relation is also closely combined with modeling in ScalaTion,

providing a way for users to finish data processing within ScalaTion. According to the

comparison result of two pipelines, using a ScalaTion analytic pipeline and ScalaTion

modeling is faster than using traditional RDBMS combined with other machine learning

packages such as R [20] or Scikit [33].

When datasets reach a certain size, partitioning the table into different sections and

applying parallelism can help the system improve performance. Parallelism is currently

provided for join, select operation. As of the current version, ScalaTion does not sup-

port update and delete operations due to the clumsy nature of writing to column-oriented

database [6]. These can be implemented in the future. Select with multiple predicates can be

leveraged by using bitmap as Druid did. Intersect operation is now implemented in quadratic

algorithm and later can be optimized using hashing. The matrix is now arranged as row-

oriented in ScalaTion. Transforming the relation to matrix will be significantly faster if

the matrix is organized as column-oriented. A further study needs to be made upon the ben-

efits and tradeoff between using column-oriented or row-oriented matrix in various matrix

operations.

Query optimzer is a future development direction yet to be realized. A stable and

complex optimizer can help the system reduce unneccessary intermediate results based on

cost or rules. SparkSQL has extensible query optimizer Catalyst [24]. Now query optimiza-

tion in ScalaTion still needs to be done manually. Techniques for leveraging query pro-

cessing typically using column-oriented indexes and techniques which designed specifically for

column-oriented databases about speeding up relational operations are disscussed in paper

[34]. Another optimization direction is the usage of vertorization. ClickHouse has combined

vectorization [35] in their system to leverage their query processing. JAVA-based systems

are still out of reach of these skills since JVM has not supported vectorization yet. Project

Panama [36] under OpenJDK is trying to accommodate the support of vectorization into

JVM.
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The ScalaTion column-oriented database and RelationFrame is open source at http:

//www.cs.uga.edu/~jam/ScalaTion.html.
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Appendix

Relation API User Manual

1. Load CSV into Relation

val testRelation = Relation(path, "testRelation", domain, keyindex)

2. Project of Relation

result = relation.pi("AttributeA", "AttributeB",

"AttributeC", "AttributeD")

3. Select of Relation

relation.("AttributeA", _ == value)

4. Union of Relation

tableA.union(tableB)

5. Intersect of Relation

tableA.intersect(tableB)

6. Join of Relation

val result = tableA.indexjoin(tableB,

"AcolumnAttribute", "BcolumnAttribute")

7. Aggregate of Relation
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table.groupby("AttributeA")

student.epi(Seq(max), Seq("AggregateAttribute"),

Seq("AttributeA", "AttributeB"))

8. Make Relation into MatriD

val x = tableA.toMatriD(1 to 1000)

9. Make Relation into VectorD

val y = tableA.toVectorD("tableAAttribute")
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Appendix

RelationFrame API User Manual

1.Crearte a RelationFrame from a Relation

val relationFrame = RelationF(testRelation)

2. Map of RelationFrame

def udf(v1:Int, v2:Int): Int = v1+v2

val result = student.map( udf, "AttributeA", valuev2)

3. Reduce of RelationFrame

def udf(v1:Int, v2:Int): Int = v1+v2

val result = student.reduce( udf, "AttributeA" )

4. Fold of RelationFrame

def udf(v1:Int, v2:Int): Int = v1+v2

val result = student.fold( defaultvalue, udf, "AttributeA" )

5. Filter of RelationFrame

relation.filter( _ == value, "AttributeA")

6. User-defined function of RelationFrame

relation.map( (v1:Int, v2:Int) => v1+v2, "AttributeA")
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