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Chapter 1

Introduction and definitions

Let Gr(2, n) be the Grassmannian of 2-dimensional subspaces in n-dimensional space, and

M0,n denote the Deligne-Mumford compactification of the moduli space of n-pointed genus

0 curves. Kapranov proved that the Chow quotient of Gr(2, n) by the (n − 1)-dimensional

torus Tn−1 can be identified with M0,n [K]. Derksen, Weyman, and Zelevinsky study quiver

Grassmannians for their interplay with cluster algebras (page 3 of [DWZ]). It has been shown

that their Euler characteristics “define sets of generators of cluster algebras in the acyclic

type” (page 2369 of [CR]). We will introduce the concept of a quiver Grassmannian and

compute examples, then we will compute the quotient of a quiver Grassmannian by a torus

action.

1.1 Quivers

Definition 1.1.1. A quiver Q := (Q0, Q1) is the collection of data consisting of

1.) a finite set Q0 = {1, . . . , n} of vertices and

2.) a finite collection Q1 = {a1, . . . , am} of arrows.

Let a ∈ Q1, where a goes from i ∈ Q0 to j ∈ Q0. We call j and i the head h(a) and

tail t(a) of a, respectively. Note that the head and tail could be the same element of Q0 and

there may be more than one arrow from h(a) to t(a).

Definition 1.1.2. Let P be a finite sequence of arrows, an, . . . , a1 in Q1. P is a path in Q

if h(ai) = t(ai+1) for all i ∈ {1, . . . , n − 1}. The head h(P ) of P is h(an) and the tail t(P )

of P is t(a1).
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Note that when following the arrows of a path, we move from right to left. A special type

of path is a cycle:

Definition 1.1.3. A cycle C is a path in Q where h(C) = t(C).

We will assume that, for any quiver Q in this paper, there does not exist a cycle C in

Q (i.e., Q is acyclic). We now define a quiver representation. Let C be the field of complex

numbers. We will work over C during the course of this thesis.

Definition 1.1.4. A quiver representation (X, f) associated to the quiver Q is the data of

1.) a collection X of assignments of finite-dimensional complex vector spaces Xi to every

vertex i ∈ Q0, and

2.) a collection f of assignments of linear maps fa : Xt(a) → Xh(a) to every arrow a ∈ Q1.

A quiver representation is a generalization of a vector space. Consider the quiver Q with

one vertex (i.e., Q0 = {1}) and no arrows. A vector space W can be considered as a quiver

representation (X, f) associated to Q where X consists of one vector space X1 := W and f

is just the empty collection (since there are no arrows).

Another example shows that quiver representations also generalize linear maps. Consider

the quiver Q′ = (Q′0, Q
′
1) with two vertices (i.e., Q′0 = {1, 2}) and one arrow a ∈ Q′1 with head

1 and tail 2. Assign the complex vector spaces V1 and V2 to the vertices 1 and 2, respectively,

and assign the linear map fa : V1 → V2 to the arrow a. This quiver representation contains

the same data as the linear map fa.

Definition 1.1.5. A quiver subrepresentation (S, g) of the quiver representation (X, f) asso-

ciated to the quiver Q is the data of

1.) a collection S of linear subspaces Vi of the vector spaces Xi in X, each associated to a

vertex i ∈ Q0, and

2.) a collection g of linear maps such that for every arrow a ∈ Q0, there is a linear map

ga : Vt(a) → Vh(a) so that ga = fa|Vt(a)
.
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We remark that, for every arrow a ∈ Q1, the linear map ga is determined by the mapsfa,

so, to specify a subrepresentation, only a choice of subspaces of Xi is necessary; however,

one cannot choose arbitrary subspaces of every vector space Xi in order to create a subrep-

resentation. If (S, g) is a subrepresentation of (X, f), then for every arrow a in the quiver,

im ga = im fa|Vt(a)
⊂ Vh(a).

Note that for any arrow a, the diagram

Vt(a)

fa|Vt(a)−−−−→ Vh(a)yιVt(a)

yιVh(a)

Xt(a)
fa−−−→ Xh(a)

commutes, where ιVt(a)
and ιVh(a)

are the natural inclusions.

1.2 Grassmannians

Definition 1.2.1. The Grassmannian Gr(d, n) is defined to be the set of d-dimensional

vector subspaces of the n-dimensional vector space V = Cn.

We view d-dimensional subspaces as equivalence classes of decomposable elements in

Λd(V ). Let W be a d-dimensional subspace of V . We choose a basis w1, w2, . . . , wd for W

and define ω = w1∧w2∧ . . .∧wd ∈ Λd (V ). Any change of basis for W will only multiply ω by

the (nonzero) determinant of the change-of-basis matrix. Consider the equivalence relation

∼ where ω ∼ η, ω, η ∈ Λd(V ) if and only if there exists a c ∈ C∗ such that ω = cη.

By assigning to W the ∼-equivalence class [ω] we obtain a well-defined map

φ : G(d, n)→ P
(
Λd(V )

)
, W 7→ [w1 ∧ . . . ∧ wd],

where P
(
Λd(V )

)
is the projective space of one-dimensional subspaces of the vector space

Λd(V ) (page 64 of [H]). Looking at the image of W ∈ G(d, n) under φ, we can recover all of

the vectors in W since v ∧ (w1 ∧ . . . ∧ wd) = 0 if and only if v ∈ W . We call φ the Plücker

embedding (cf. page 64 [H]). Indeed, Gr(d, n) has more structure than that of a set. We first

build up some machinery.
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Definition 1.2.2. Let T ⊂ C[x1, . . . , xn] (in the projective case, T must be a set of homo-

geneous polynomials). Let An (Pn) be affine (projective) n-space. The zero set Z(T ) of T

is

Z(T ) = {P ∈ An : f(P ) = 0 for all f ∈ T}, (Z(T ) = {P ∈ Pn : f(P ) = 0 for all f ∈ T}).

We call Z(T ) a complex affine (projective) algebraic variety. An open subset of a complex

affine algebraic variety is a quasi-affine (quasi-projective) variety.

Note that we do not require Z(T ) to be irreducible.

Lemma 1.2.3 (Page 64 of [H]). Let 0 < d < n. The Grassmannian G(d, n) is a complex

projective algebraic variety.

Consider the standard basis ε1, . . . , εn of V . We take a multivector ω = w1 ∧ . . . ∧ wk ∈

Λd(V ). We can write wi = c1iε1 + . . .+ cniεn for some cji ∈ C, so

ω = (c11ε1 + . . .+ cn1εn) ∧ . . . ∧ (c1dε1 + . . .+ cndεn) =
∑

1≤i1<i2<...<id≤n

dIεi1 ∧ . . . ∧ εid ,

where dI =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ci11 ci12 . . . ci1d

ci21 ci22 . . . ci2d
...

...
. . .

...

cid1 cid2 . . . cidd

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

There areN+1 :=
(
n
d

)
such multivectors EI = εi1∧. . .∧εid . Suppose we order the multivectors

EI in lexicographical order (e.g., E0 := ε1 ∧ ε2 ∧ . . .∧ εd). We define a map φ̃ : G(d, n)→ PN

so that

W 7→ (d0, . . . , dN), where ω =
N∑
i=0

diEi.

This map is the same map as φ; however, we have used a particular basis for Λd(V ).

Interpreted in a linear algebraic setting, W is spanned by d vectors v1, . . . , vd. We con-

struct an n × d matrix whose columns are the vectors vi and the Plücker embedding is

mapping this matrix to the line spanned by the vector of its d× d minors.
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1.3 Quiver Grassmannians

Consider a quiver Q, letting Q0 = {1, . . . , n} be the set of vertices and Q1 be the set of

arrows of Q.

Definition 1.3.1. Let (X, f) be a quiver representation associated to the quiver Q. The

dimension vector of (X, f) is the n-tuple d = (dimXi)i∈Q0.

Definition 1.3.2. Let Q be a quiver, and let (X, f) be a quiver representation associated

to the quiver Q. Let e = (ei)i∈Q0 be an n-tuple where ei ≤ dimXi for all i ∈ Q0. The

quiver Grassmannian Gre(X, f) associated to the quiver representation (X, f) is the set of

subrepresentations of (X, f) with dimension vector e.

Note that Gre(X, f) has more structure than that of a set as it can be endowed with the

structure of a complex algebraic variety. Since a subrepresentation is a choice of n vector

subspaces, we can view the quiver Grassmannian Gre(X, f) as a subset of the product

space Gr(e1, dimX1) × . . . × Gr(en, dimXn). Moreover, Gre(X, f) is a closed subvariety of

Gr(e1, dimX1)× . . .×Gr(en, dimXn); hence it is also projective (page 2370 of [CR]).

Consider the following example. Let Q be the quiver with one vertex and no arrows. As

reasoned above, an n-dimensional vector space W can be viewed as the quiver representation

(X, f) associated to Q, where X is the collection of one vector space X1 := W and f is the

empty collection. The dimension vector of (X, f) is d = (dimW ) = (n). Let e = (d). Consider

the quiver Grassmannian Gre(X, f). For any d-dimensional subspace W0 of W , there is one

subrepresentation (S, g) such that S1 = W0. Therefore Gre(X, f) = Gr(d, n). We conclude

that the quiver Grassmannian is a generalization of the Grassmannian.



Chapter 2

Quiver Grassmannians

We now discuss the quiver Grassmannian of a given quiver representation. We will first work

out an approach for the quiver Grassmannians in general and then compute some examples.

First, consider the case of a quiver with two points and n arrows. Let Q = (Q0, Q1) be a

quiver where Q0 = {t, h} are the vertices and Q1 = {a1, . . . , an} are the arrows. Assume that

Q is acyclic, so, without loss of generality, every arrow has tail t and head h. To construct a

representation (X, f) associated to Q, we assign vector spaces Xt and Xh to the vertices t

and h, respectively, and linear maps fai
: Xt → Xh to every arrow ai. The dimension vector

of (X, f) is (dimXt, dimXh). Given a dimension vector e = (e1, e2), where e1 ≤ dimXt and

e2 ≤ dimXh, we investigate the quiver Grassmannian Gre(X, f). Recall that such a quiver

Grassmannian is a subvariety of Gr(e1, dimXt)×Gr(e2, dimXh).

We now describe what is in the quiver Grassmannian Gre(X, f). Recall that if Vt× Vh ∈

Gr(e1, dimXt) × Gr(e2, dimXh) is an element of the quiver Grassmannian, then, for every

i, the diagram

Vt
fai |Vt−−−→ Vhyιt yιh

Xt

fai−−−→ Xh

commutes, where ιt and ιh are the natural inclusions Vt ↪→ Xt and Vh ↪→ Xh.

We will outline an approach to investigate the space Gre(X, f). For every Vt ∈

Gr(e1, dimXt), we ask what, if any, Vh ∈ Gr(e2, dimXh) fulfill the criteria that im (fai
|Vt) ⊆

Vh for all i. We will answer this question using multivectors and the Plücker embedding.

6
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Since Vt is a vector subspace of Xt, the image of Vt under the linear map fai
is a vector

subspace of Xh for all i. Considering Vt ∈ Gr(e1, dimXt), let βVt = {vt,1, . . . , vt,e1} be a

basis. Then span(∪ni=0fai
(βVt)) ⊆ Vh. The key here is that the quiver Grassmannian has

the fixed dimension vector e = dim(V ). Thus, if dim(span(∪ni=0fai
(βVt))) = e2, then Vh =

span(∪ni=0fai
(βVt)).

If dim(span(∪ni=0fi(βVt))) > e2, then there does not exist a Vh ∈ Gr(e2, dimXh) such

that span(∪ni=0fi(βVt)) ⊂ Vh; therefore, there does not exist a Vh ∈ Gr(e2, dimXh) such that

Vt × Vh ∈ Gre(X, f).

On the other hand, if dim(span(∪ni=0fi (βVt))) < e2 then we have different possibili-

ties for Vh. Let d := dim(span(∪ni=0fai
(βVt))) and say βW = {w1, . . . , wd} is a basis for

span(∪ni=0fai
(βVt)). Since Vh has dimension e2, we add e2− d more basis vectors. A nice way

to calculate the space of all possible d-dimensional subspaces Vh is to look at the space of

(e2 − d)-dimensional subspaces of Xh/ span(βW ). Such spaces are in one-to-one correspon-

dence with the e2-dimensional subspaces of Cn that contain span(βW ); therefore, the different

possibilities for Vh are parameterized by the space Gr (e2 − d, dimXh − d).

We can compute dim(span(∪ni=0fai
(βVt))) using the Plücker embedding. Consider bases

E = {ε1, . . . , εdimXt} of Xt and Γ = {γ1, . . . , γdimXh
} of Xh. For every j, 1 ≤ j ≤ dimXt,

there exist unique scalars alj ∈ C, 1 ≤ l ≤ m, such that

fai
(εj) =

dimXh∑
l=1

aljγl.

There exists a matrix representation of fai
with respect to the ordered bases E and Γ,

denoted [fai
]E,Γ where the lj entry of [fai

]E,Γ is alj.

Rewrite the vectors vt,j ∈ βVt as linear combinations of standard basis vectors, then

map every basis vector through every matrix [fai
]E,Γ, and make them column vectors of an

dimXh × n dimVt matrix:
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M =


| | | |

[fa1 ]E,Γ (vt,1) · · · [fa1 ]E,Γ (vt,k) [fa2 ]E,Γ (vt,1) · · · [fan ]E,Γ (vt,k)

| | | |

 .

The span of the column vectors of M is, in fact, a subspace of a possible Vh, so we check

the dimension of the span of the column vectors [fai
]E,Γ(νVh,j). The dimension of this span

is equal to the rank of M , so to find the dimension we look at the d×d minors of the matrix

M . If all of the d×d minors vanish, then the dimension of the span is less than d, and if there

exists a nonzero d × d minor, then the dimension of the span is greater than or equal to d.

We use this observation to compute the dimension of the span and then use this information

to see what freedom, if any, we have when choosing Vh given a fixed Vt.

Consider a quiver Q = (Q0, Q1), where Q0 = {1, . . . , n} with representation (X, f).

Suppose we want to describe the quiver Grassmannian Q = Gre(X, f). Consider a pair of

vertices i, j that are connected by an arrow with tail i and head j. Using the approach outlined

above, first compute the quiver Grassmannian, Qi,j ⊂ Gr(ei, dimXi)×Gr(ej, dimXj), i, j ∈

Q0, between these two vertices with n arrows. Note that if there are no arrows with neither

tail i and head j nor tail j and head i, then Qi,j = Gr(ei, dimXi) × Gr(ej, dimXj). We

have a description of the quiver Grassmannian between these two vertices. Then, one may

intersect this quiver Grassmannian with all other quiver Grassmannians obtained from such

pairings to obtain the subvariety that is the quiver Grassmannian. To do this, consider the

projection maps

πij :
n∏
k=1

Gr(ek, dimXk)→ Gr(ei, dimXi)×Gr(ej, dimXj); πij(V1× . . .× Vn) = Vi× Vj.

Then

Q =
⋂

i,j∈Q0

π−1
ij (Qi,j).



Chapter 3

Examples of Quiver Grassmannians

3.1 Two points, one arrow with a map of rank two

Consider the quiver Q = (Q0, Q1) with Q0 = {1, 2} and Q1 = {a}, where a has tail 1 and

head 2. We construct a representation (X, f). Let X1 be the vector space C4, with a basis of

vectors x1, x2, x3, and x4, associated to the vertex 1, and X2 be the vector space C4, with a

basis of vectors y1, y2, y3, and y4, associated to the vertex 2. Let fa : X1 → X2 be the linear

map corresponding to the arrow a, and suppose that fa(x1) = y1, fa(x2) = y2, and fa(x3) =

fa(x4) = 0. We will compute the quiver Grassmannian Gr(2,2)(X, f) ⊂ Gr(2, 4) × Gr(2, 4).

Let π1 : Gr(2,2)(X, f)→ Gr(2, 4) be the projection onto the first factor.

Proposition 3.1.1. π1(Gr(2,2)(X, f)) = Gr(2, 4). There exists a closed subvariety W in

Gr(2, 4) that is a P2 bundle over P1 such that for all but one point p0 ∈ W , the fiber of

a point p ∈ W \ {p0} over π1 is π−1
1 (p) ∼= P2. At p0, π−1

1 (p0) = p0 × Gr(2, 4). For all

p ∈ Gr(2, 4) \W , π−1
1 (p) is a point.

Proof. We look at an arbitrary element of the Grassmannian, V1 ∈ Gr(2, 4). V1 is the span

of two linearly independent vectors in C4, say v and w. Rewrite, without loss of generality,

v = λ1x1 + λ2x2 + λ3x3 + λ4x4 and w = µ1x1 + µ2x2 + µ3x3 + µ4x4, where λi, µi ∈ C, and

assume that v and w form a basis. We have the following commutative diagram:

V1

fa|V1−−−→ V2yι yι
X1 := C4 fa−−−→ X2 := C4.

9
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The image of the map f can be computed:

V1 = span





λ1

λ2

λ3

λ4


,



µ1

µ2

µ3

µ4




7→ fa (V1) = span





λ1

λ2

0

0


,



µ1

µ2

0

0




⊆ V2.

Thus following the approach described in Chapter 2, we consider the matrix

M =



λ1 µ1

λ2 µ2

0 0

0 0


.

We have three cases based on the dimension of im fa. We use these three cases to describe

what V2 ⊂ X2 can be combined with a fixed V1 so that V1 × V2 ∈ Gr(2,2)(X, f).

Case 0: Consider the case where dim(T (V1)) = 0. Here, we have no restriction on V2, so

V2 can be any element of Gr(2, 4). This case only occurs when V1 is spanned by x3 and x4.

This vector space is the point p0 ∈ Gr(2, 4) outlined in the proposition.

Case 1: Suppose dim(fa(V1)) = 1. Without loss of generality, assume that (λ1, λ2) 6=

(0, 0), i.e., that fa(V1) is spanned by the vector fa(v) = λ1y1 +λ2y2 and that w ∈ ker fa. Now

fa(V1) ⊂ V2, so the basis of V2 has an extra vector, say η. Choosing such an η is equivalent

to choosing a nonzero element (up to scalars) of the quotient X2/fa(V1). Choosing η up to

scalars is equivalent to choosing an element of Gr(1, X2/ span(fa(v))). Since dimX2/fa(V1) =

dimX2 − dim fa(V1) = 4 − 1 = 3, we can see that the space of the V2 that can be paired

with V1 to make an element of Gr(2,2)(X, f) is isomorphic to Gr(1, 3) ∼= P2. Therefore, if

V ∈ Gr(2, 4) and dim(fa(V )) = 1 then π−1
1 (V ) ∼= P2.

The other question we ask is what is the space of V1 ∈ Gr(2, 4) such that dim(fa(V1)) = 1.

Without loss of generality, we assume that for the basis vectors v and w of V1, fa(v) 6= 0 and

fa(w) = 0. Then v = λ1x1 + λ2x2 + λ3x3 + λ4x4 and w = µ3x3 + µ4x4. The space of lines

spanned by such vectors w is Gr(1, 2) ∼= P1. Given a vector w, we choose v so that it is a
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nonzero element of X1/ span(w). The space of such vectors v up to scalars is equivalent to

Gr(1, X1/ span(w)) ∼= P2. This shows that the variety of linear subspaces V1 that have 0- or

1-dimensional images under fa is a P2 bundle over P1.

Case 2: Otherwise, it is a matrix of full rank; therefore fa(v), fa(w) span a plane, fully

defining V2.

Now that we know all of these spaces, we take the union and that is the quiver Grass-

mannian.

3.2 Three dimensional ambient space

Consider the quiver Q = (Q0, Q1), where Q0 = {t, h} and Q1 = {a1, a2, a3} where t(ai) = t

and h(ai) = h for all i. Construct a quiver representation (X, f) associated to Q as follows.

At t and h, we have vector spaces Xt = C3 and Xh = C3, respectively. We now define the

linear maps fai
: Xt → Xh. Let these maps be the permutation maps that have the following

matrix representations for the standard basis β = {ε1, ε2, ε3}:

[fa1 ]β =


1 0 0

0 1 0

0 0 1

 ; [fa2 ]β =


0 1 0

0 0 1

1 0 0

 ;

[fa3 ]β =


0 0 1

1 0 0

0 1 0

 .

3.2.1 The case e = (1, 1)

Consider the quiver Grassmannian Gr(1,1)(X, f). Let ζ be a primitive third root of unity.

Proposition 3.2.1. Gre(X, f) ⊂ Gr(1, 3) × Gr(1, 3) ∼= P2 × P2 is the set of three points

{(1 : ζn : ζ2n)× (1 : ζn : ζ2n) : n ∈ {0, 1, 2}}.
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Proof. Let Vt ∈ Gr(1, 3). We ask for what vector spaces Vt there exists a vector space Vh

such that the pair Vt × Vh gives rise to a subrepresentation, hence a point in the quiver

Grassmannian Vt × Vh ∈ Gre(X, f). Vt is defined by a basis of one nonzero vector; call it

vt = λ1ε1+λ2ε2+λ3ε3. Due to the reasoning described in Chapter 2, we know that fai
(vt) ∈ Vh

if Vt × Vh ∈ Gre(X, f).

Therefore, if Vt × Vh ∈ Gre(X, f), then

span




λ1

λ2

λ3

 ,


λ3

λ1

λ2

 ,


λ2

λ3

λ1


 ⊂ Vh.

Using the approach described in Chapter 2, we will consider the matrix

M =


λ1 λ3 λ2

λ2 λ1 λ3

λ3 λ2 λ1

 .

We know that there exists a 1 × 1 minor that is nonzero, since the λi cannot all be zero.

Since e2 = 1, any Vh would be defined by the corresponding Vt. Now we see what values of

λi have only vanishing 2× 2 minors. Let the graded polynomial ring C[λ1, λ2, λ3, λ4] be the

projective coordinate ring of P2. The set of values of λi that give vanishing 2× 2 minors is a

variety in P2. The zero set of each 2× 2 minor is a curve in P2. We look at the intersection

H of all such curves, where by just looking at the first two columns we obtain

Z(λ2
1 − λ2λ3, λ

2
2 − λ1λ3, λ

2
3 − λ1λ2) ⊇ H.

We first note that if (λ1 : λ2 : λ3) ∈ H, then λ3
1 = λ3

2 = λ3
3 = λ1λ2λ3 (by multiplying a λi

to every equation). Therefore |λ1| = |λ2| = |λ3| thus every λi is nonzero. Without loss of

generality, let λ1 = 1. Then λ3
2 = 1 and λ3 = λ2

2. Only the points {(1 : ζn : ζ2n) : n ∈ {0, 1, 2}}

fulfill these criteria. Furthermore, if (λ1 : λ2 : λ3) ∈ {(1 : ζn : ζ2n) : n ∈ {0, 1, 2}} then the

rank of M is 1. So H = {(1 : ζn : ζ2n) : n ∈ {0, 1, 2}}.
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Recalling the original question we asked, we wanted to know what vector spaces Vh make a

subrepresentation when coupled with Vt. We conclude that the only Vt ∈ Gr(1, 3) that can be

paired with a one-dimensional subspace of Xh, Vh ∈ Gr(1, 3) such that Vt × Vh ∈ Gre(X, f)

are the one-dimensional subspaces spanned by the basis vectors vn = ε1 + ζnε2 + ζ2nε3.

Moreover, we know that Vh is the same line since fa1 is the identity.

3.2.2 The case e = (1, 2)

Consider the quiver Grassmannian Gre(X, f) =: Q2. In the previous case, we found the set

of one-dimensional vector spaces Vt whose images under fai
span a one-dimensional subspace

of Xh. Let π1 : Q2 → Gr(1, 3) where Vt × Vh 7→ Vt be the projection onto the first factor.

Proposition 3.2.2. π1(Q2) ⊂ Gr(1, 3) = P2 is the union of the three lines that form the

edges of the triangle with vertices (λ1 : λ2 : λ3) ∈ {(1 : ζn : ζ2n) : n ∈ {0, 1, 2}}. Moreover, if

p ∈ π1(Q2) is not in H, its fiber π−1
1 (p) is a point; if p ∈ π1(Q2) ∩H, then π−1

1 (p) ∼= P1.

Proof. Look at the 3× 3 “minor” or the determinant of M in order to find the restrictions

as to what Vt has a Vh so that Vh × Vt ∈ Q2. This zero set of this determinant is the variety

π1(Q2) = Z(λ3
1 + λ3

2 + λ3
3 − 3λ1λ2λ3),

which is a reducible curve in P2 since λ3
1 + λ3

2 + λ3
3 − 3λ1λ2λ3 = (λ1 + λ2 + λ3)(λ1 + ζλ2 +

ζ2λ3)(λ1 + ζ2λ2 + ζλ3) with three irreducible components:

π1(Q2) = Z(λ1 + λ2 + λ3) ∪ Z(λ1 + ζλ2 + ζ2λ3) ∪ Z(λ1 + ζ2λ2 + ζλ3).

Every irreducible component is a line in P2. They intersect at the points in H, so they

create the triangle with the set of vertices H. Consider the fibers of all the elements of

π1(Q2). Recalling results from the previous subsection, for all but the three points in H,

there is a nonzero 2×2 minor, so Vh is fixed (since the span of ∪ifai
(Vt) is two-dimensional).

However, for the three points in H, the image of Vt by the maps fai
is just a line, so we have

some freedom. The set of two-dimensional subspaces that contain fai
(Vt) for all i is equal
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to the set of lines in Xh/ span(∪3
i=1fai

(Vt)). Since dimXh/ span(∪3
i=1fai

(Vt)) = dimXh −

dim span(∪3
i=1fai

(Vt)) = 3− 1 = 2, this is the same as choosing a point in Gr(1, 2) ∼= P1.

3.3 Quartic hypersurface as subvariety of a quiver Grassmannian

During a colloquium at UGA, Zelevinsky commented that one can find a quartic hypersurface

that is a subvariety of a quiver Grassmannian. In this section, we will build up to an example

of such a quiver Grassmannian and relate it to the geometry of a tetrahedron. Consider the

quiver Q = (Q0, Q1), where Q0 = {t, h} and Q1 = {a1, a2, a3, a4} where t(ai) = t and

h(ai) = h for all i.

We construct a quiver representation (X, f) associated to Q. At t and h, we have vector

spaces Xh = C4 and Xt = C4, respectively. We now define the linear maps fai
: Xt → Xh.

Let these maps be the permutation maps that have the following matrix representations for

the standard basis β = {ε1, ε2, ε3, ε4}:

[fa1 ]β =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


; [fa2 ]β =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


;

[fa3 ]β =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


; [fa4 ]β =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


.

3.3.1 The case e = (1, 1)

Consider the quiver Grassmannian Q1 := Gr(1,1)(X, f). Let ζ be a primitive fourth root of

unity.

Proposition 3.3.1. Gre(X, f) ⊂ Gr(1, 4) × Gr(1, 4) ∼= P3 × P3 is the set of four points

{(1 : ζn : ζ2n : ζ3n)× (1 : ζn : ζ2n : ζ3n) : n ∈ {0, 1, 2, 3}}.
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Proof. Let Vt ∈ Gr(1, 4). We ask what, if any, vector spaces Vh give us a subrepresentation

when coupled with Vt, hence a point in the quiver Grassmannian Vt × Vh ∈ Q1. So, Vt is

defined by a basis of one nonzero vector; call it vt = λ1ε1 + λ2ε2 + λ3ε3 + λ4ε4. Due to the

reasoning described in Chapter 2, we know that fai
(vt) ∈ Vh if Vt × Vh ∈ Q1.

Therefore, if Vt × Vh ∈ Q1, then

span





λ1

λ2

λ3

λ4


,



λ4

λ1

λ2

λ3


,



λ3

λ4

λ1

λ2


,



λ2

λ3

λ4

λ1




⊂ Vh

Using the approach described in Chapter 2, we will consider the matrix

M =



λ1 λ4 λ3 λ2

λ2 λ1 λ4 λ3

λ3 λ2 λ1 λ4

λ4 λ3 λ2 λ1


.

We know that there exists a 1 × 1 minor that is nonzero, since the λi cannot all be zero.

Since e2 = 1, any Vh would be defined by the corresponding Vt. Now we see what values of λi

give us only vanishing 2× 2 minors. Let the graded polynomial ring C [λ1, λ2, λ3, λ4] be the

projective coordinate ring for P3. The set of values of λi that give vanishing 2×2 minors is a

variety in P3: The zero set of each 2× 2 minor is a surface in P3. We look at the intersection

H of all such surfaces, where by just looking at the first two columns we obtain

Z
(
λ2

1 − λ2λ4, λ
2
2 − λ3λ1, λ

2
3 − λ4λ2, λ

2
4 − λ1λ3, λ1λ2 − λ3λ4, λ2λ3 − λ4λ1

)
⊇ H.

We first note that if (λ1 : λ2 : λ3 : λ4) ∈ H, then λ2
1 = λ2λ4 = λ2

3 and λ2
2 = λ1λ3 = λ2

4.

Since we are working over C, we now know that λ1 = ±λ3 and λ2 = ±λ4. Moreover, since

λ2
1 = λ2λ4, λ4

1 = λ2
2λ

2
4 = λ4

2, we know that λ1 = ζnλ2 for some n ∈ {0, 1, 2, 3}. Hence

|λ1| = |λ2| = |λ3| = |λ4|, so they are all nonzero. Without loss of generality, set λ1 = 1. Then

λ2 = ζn. Since λ2
2 = λ3λ1, λ3 = ζ2n, and since λ2λ3 = λ4λ1, λ4 = ζnλ3 = ζ3n. So there are
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four possible points on H by looking at the minors of only the first two columns. We can

check that indeed these points have vanishing 2 × 2 minors. So, H = {(1 : ζn : ζ2n : ζ3n) :

n ∈ {0, 1, 2, 3}}.

Recalling the original question we asked, we wanted to know for what vector spaces Vt

there exists a Vh such that Vt×Vh gives a subrepresentation of (X, f). We conclude that the

only Vt ∈ Gr(1, 4) that can be paired with a one-dimensional subspace of Xh, Vh ∈ Gr(1, 4),

such that Vt × Vh ∈ Q1 are the one-dimensional subspaces spanned by the basis vectors

vn = ε1 + ζnε2 + ζ2nε3 + ζ3nε4. Moreover, we know that Vh is the same line.

3.3.2 The case e = (1, 2)

Consider the quiver Grassmannian Gr(1,2)(X, f) =: Q2. In the previous case, we found the

set of vector spaces Vt whose images under the maps fai
span a one-dimensional subspace of

Xh. Let π1 : Q2 → Gr(1, 4) where Vt × Vh 7→ Vt be the projection onto the first factor.

Proposition 3.3.2. π1(Q2) ⊂ Gr(1, 4) = P3 is the variety of six lines that form the edges

of the tetrahedron with vertices H = {(1 : ζn : ζ2n : ζ3n) : n ∈ {0, 1, 2, 3}}. Moreover, if p ∈

π1(Q2) is not in H, its fiber π−1
1 (p) is a point; if p ∈ π1(Q2) ∩H, then π−1

1 (p) ∼= P2.

Proof. If Vh ∈ π1(Q2), then the dimension of the image of its span under the Ti maps is

less than three, so all 3× 3 minors of the matrix M vanish. There are 16 such minors of M

(choice of deleting one row and one column); however, there are only 4 equations for minors

due to the symmetry of the matrix, so we cut out the variety

Z(λ3
1 + λ2

4λ3 + λ2
2λ3 − λ2

3λ1 − 2λ1λ2λ4, λ
3
2 + λ2

1λ4 + λ2
3λ4 − λ2

4λ2 − 2λ1λ2λ3, λ
3
3

+λ2
2λ1 + λ2

1λ4 − λ2
1λ3 − 2λ2λ3λ4, λ

3
4 + λ2

3λ2 + λ2
1λ2 − λ2

1λ3 − 2λ1λ3λ4).

This subvariety of P3 is the space π1(Q2). If Vt ∈ π1(Q2), we can look at the fiber π−1
1 (Vt).

By the previous section, for all but the four points in H, there is a nonzero 2× 2 minor, so

Vh is fixed (since the span of the image of Vt by the maps fi is two-dimensional). However,
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for these four points, the image of Vt by the maps fai
is just a line, so we have a degree of

freedom.

The set of two dimensional subspaces that contain fai
(Vt) for all i is equal to the set of lines

inXh/ span(∪4
i=1fai

)(Vt). Since dimXh/ span(∪4
i=1fai

(Vt)) = dimXh−dim span(∪4
i=1fai

(Vt)) =

4− 1 = 3, this is the same as choosing a point in Gr(1, 3) ∼= P2.

We now use MacCaulay 2 and Magma to investigate what this variety looks like. The

code used here is shown in Appendix A, and was written with the aid of David Swinarski.

Through the code, we find that π1(Q2) is a reducible curve and is the set of six lines that

are the edges of a tetrahedron. Moreover, the vertices of the tetrahedron are the four points

of π1(Q1), H. The singular locus of π1(Q2) is H.

3.3.3 The case e = (1, 3)

We will denote this quiver Grassmannian by Q3. We redefine π1 : Q3 → Gr(1, 4), where π1

projects Vt × Vh to Vt.

Proposition 3.3.3. π1(Q3) ⊂ Gr(1, 4) = P3 is the variety of four planes that are the

faces of the tetrahedron with vertices H = {(1 : ζn : ζ2n : ζ3n) : n ∈ {0, 1, 2, 3}}. Moreover, if

p ∈ π1(Q3) is not in π1(Q2), its fiber π−1
1 (p) is a point; if p ∈ π1(Q3) ∩ π1(Q3) but not in

H, then π−1
1 (p) ∼= P1. Lastly, if p ∈ H, then π−1

1 (p) ∼= (P2)∗.

Proof. We are now looking at the 4 × 4 “minor” or the determinant of M in order to get

some restriction on what Vt will give us a Vh so that Vt × Vh ∈ Q3. The determinant gives

us a variety

π1(Q3) = Z(λ4
1 − λ4

2 + 4λ1λ
2
2λ3 − 2λ2

1λ
2
3 + λ4

3 − 4λ2
1λ2λ4 − 4λ2λ

2
3 + 2λ2

2λ
2
4 + 4λ1λ3λ

2
4 − λ4

4)

which is a reducible hypersurface in P3. Through computation, we see that this is a reducible

surface of degree 4. The Hilbert polynomial of π1(Q3) is h(x) = 2x2 + 2, so its arithmetic

genus is (−1)dimπ1(Q3)(h(0)−1) = (−1)2(2−1) = 1. By looking at the irreducible components,
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we see that it is the union of four planes:

π1(Q3) = Z(λ1 + λ2 + λ3 + λ4) ∪ Z(λ1 + ζ2λ2 + λ3 + ζ2λ4)∪

Z(λ1 + ζ3λ2 + ζ2λ3 + ζλ4) ∪ Z(λ1 + ζλ2 + ζ2λ3 + ζ3λ4).

Through computation we can see that the singular locus of π1(Q3) is π1(Q2). An irre-

ducible component of π1(Q2) corresponds to the intersection of two irreducible components

of π1(Q3). Moreover, any point is in three irreducible components of π1(Q3) if and only if

it is in π1(Q1). We can also state that the choice we have for Vh varies depending on what

Vt we start with. Let i be the minimal number such that Vt ∈ π1(Qi). If i = 1 then we

have a choice of Gr(3 − 1, 4 − 1) = Gr(2, 3) ∼= (P2)∗, if i = 2 then we have a choice of

Gr(3− 2, 4− 2) = Gr(1, 2) = P1 and if i = 3 then Vh is completely fixed.



Chapter 4

Example of a quiver Grassmannian and its quotient by a torus action

In this chapter, we will construct another example of a quiver Grassmannian, give an example

of a complex algebraic torus acting on it, then take the geometric quotient on an open set

of the quiver Grassmannian. Let Q := (Q0, Q1) be a quiver with vertices Q0 = {1, 2} and

one arrow a ∈ Q1 with tail 1 and head 2. Consider the representation (X, f) of the quiver

Q where X1 = C4, with basis {x1, x2, x3, x4}, and X2 = C4, with basis {y1, y2, y3, y4}, while

fa : X1 → X2 is the linear map associated to the arrow a where fa(c1x1+c2x2+c4x3+c4x4) =

c1y1, ci ∈ C.

Before we further investigate Q, let us consider Gr(2, 4) more carefully. Here the Plücker

embedding is given by φ̃ : Gr(2, 4)→ P(4
2)−1 = P5, where

V = span





λ1

λ2

λ3

λ4


,



µ1

µ2

µ3

µ4




7→

(λ1µ2 − λ2µ1 : λ1µ3 − λ3µ1 : λ1µ4 − λ4µ1 : λ2µ3 − λ3µ2 : λ2µ4 − λ4µ2 : λ3µ4 − λ4µ3)

Note that these are all the 2 × 2 minors of the matrix with the vectors λ and µ as column

vectors. We can then see thatGr(2, 4) can be expressed as the zero set Z(x0x5+x1x4−x2x3) ⊂

P5 (cf. page 211 of [GH]).

4.1 The Quiver Grassmannian

Recall that Gr(2,2)(X, f) ⊂ Gr(2, 4) × Gr(2, 4). Define the embedding Φ : Gr(2, 4) ×

Gr(2, 4) → P5 × P5 by Φ(V1 × V2) = φ̃(V1) × φ̃(V2). Given coordinate rings C[x0, . . . , x5]

19
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and C[y0, . . . , y5] of two copies of P5, we may say that Gr(2,2)(X, f) ⊂ Gr(2, 4)×Gr(2, 4) =

Z(x0x5 + x1x4 − x2x3)× Z(y0y5 + y1y4 − y2y3)
Φ
↪→ P5 × P5.

Proposition 4.1.1. The map Φ maps Gr(2,2)(X, f) isomorphically onto Z(x0x5 + x1x4 −

x2x3)× Z(y3, y4, y5) ∪ Z(x0, x1, x2)× Z(y0y5 + y1y4 − y2y3) ⊂ P5 × P5.

Proof. For any V1 × V2 ∈ Q, we have the following commutative diagram:

V1

fa|V1−−−→ V2yι yι
X1 := C4 fa−−−→ X2 := C4

We look at an arbitrary element of the Grassmannian, V1 ∈ Gr(2, 4). V1 is the span of

two linearly independent vectors in C4, v, w. Write, without loss of generality, v = λ1x1 +

λ2x2 + λ3x3 + λ4x4 and w = µ1x1 + µ2x2 + µ3x3 + µ4x4, where λi, µi ∈ C.

Since the diagram commutes, we know that, for all u ∈ V1, fa ◦ ι(u) ∈ ι(V2), hence

fa(V1) ⊆ V2 ⇔ fa|V1(v), fa|V1(w) ∈ V2. In this case, this means that {λ1y1, µ1y1} ⊂ V2. We

now have two cases for V2, based on the values of λ1 and µ1.

Case 1: If λ1 = µ1 = 0, then fa ◦ ι(v) = fa ◦ ι(w) = 0, so we have no criteria for V2, so

V2 is an arbitrary element of Gr(2, 4).

We now look for when we have this case. We have that λ1 = µ1 = 0, so we will look at

the image of such a V1 by the Plücker embedding φ̃:

V1 = span





0

λ2

λ3

λ4


,



0

µ2

µ3

µ4




7→ (0 : 0 : 0 : λ2µ3 − λ3µ2 : λ2µ4 − λ4µ2 : λ3µ4 − λ4µ3) ,
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so φ (V1) is in the hyperplane Z (x0, x1, x2) of P5. So

U1 = {V1 × V2 : V1 = span(λ2x2 + λ3x3 + λ4x4, µ2x2 + µ3x3 + µ4x4) ∈ Gr(2, 4),

V2 ∈ Gr(2, 4);λi, µi ∈ C} ⊂ Gr(2,2)(X, f).

Then Φ(U1) = Z (x0, x1, x2)×Gr (2, 4) = Z(x0, x1, x2)× Z(y0y5 + y1y4 − y2y3).

Case 2: We now consider the case where V1 ∈ Gr(2, 4) \ φ̃−1(Z(x0, x1, x2)). Without

loss of generality, we change coordinates so that λ1 = 1 and µ1 = 0. Then we know that

v′ = y1 ∈ V2, but we need a vector linearly independent of y1, say w′. We can assume

w′ = µ2y2 + µ3y3 + µ4y4, µi ∈ C, since span{y1, w
′} = span{y1, w

′ + cy1} for all c ∈ C. We

can conclude that this case is the set

U2 =
{
V1 × V2 : V1 ∈ Gr(2, 4), V2 = span(y1, µ2y2 + µ3y3 + µ4y4) ∈ Gr(2, 4)

for some µi ∈ C
}
⊂ Gr(2,2)(X, f)

The choice of such a w′ is the same as choosing an element of Gr(1, 3) ∼= P2; however, we

can give a description of this space as a subvariety of Gr(2, 4). V2 has the following image

by the Plücker embedding:

V2 = span





1

0

0

0


,



0

µ2

µ3

µ4




7→ (µ2 : µ3 : µ4 : 0 : 0 : 0) ,

so Φ(U2) = (Z(x0x5 + x1x4 − x2x3) \ Z(x0, x1, x2))× Z(y3, y4, y5) ⊂ P5 × P5.

Consider the maps ιi : Ui ↪→ P5 × P5 where ιi is Φ composed with the inclusion Ui ↪→

Gr(2, 4) × Gr(2, 4). We can glue their images together to get the variety induced by the

quiver. Q = im ι1 ∪ im ι2 ⊂ Gr(2, 4) × Gr(2, 4) is the quiver Grassmannian associated

to the quiver Q. Note that Z(x0, x1, x2) × Z(y3, y4, y5) ⊂ φ̃(U1), so then φ̃(U1 ∪ U2) =

Z(x0x5 + x1x4 − x2x3)× Z(y3, y4, y5) ∪ Z(x0, x1, x2)× Z(y0y5 + y1y4 − y2y3).

Note that the intersection of the two irreducible components is Z(x0, x1, x2)×Z(y3, y4, y5).
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4.2 The Torus and the Torus Action

We define a one-dimensional complex algebraic torus to be the spectrum T = Spec (C[x, x−1]).

Since C is algebraically closed, prime ideals of T can be written as 〈x − c〉, so the set of

closed points of the spectrum is C∗. Generalizing, the m-dimensional algebraic torus is the

spectrum Tm := Spec
(
C[x1, x

−1
1 , . . . , xm, x

−1
m ]
)

= (C∗)m.

Lemma 4.2.1. (C∗)m is an affine variety.

Proof. It is sufficient to prove that C∗ is an affine variety. By definition, C∗ = {(x) : x 6= 0} ⊂

A1. We see that C∗ is the variety {(x, y) : xy = 1} ⊂ A2. This is the trick of Rabinowitsch, an

approach typically taken to prove Strong Nullstellensatz using Weak Nullstellensatz. (page

59 of [H])

Alternatively, we may view (C∗)m as an affine subvariety of GLm. GLm can be inter-

preted as an affine subvariety of Am2+1. Using the trick of Rabinowitsch, GLm = {M × x ∈

Mm×m(C)×C : x detM = 1} ⊂ Am2+1. In this sense, (C∗)m is the affine subvariety of GLm

only consisting of all of the diagonal matrices.

Definition 4.2.2 ([S]). A linear algebraic group G satisfies one of the following (equivalent)

conditions:

1.) the radical of the connected component G0 of the unit element of G is an algebraic torus;

2.) the unipotent radical of the group G0 is trivial; or

3.) the group G0 is a product of closed normal subgroups S and T that are a semisimple

algebraic group and an algebraic torus, respectively.

Clearly, any algebraic torus is a linear algebraic group.

Definition 4.2.3 ([S]). A linear algebraic group G is linearly reductive if one of the following

(equivalent) statements are true:

1.) each rational linear representation of G is completely reducible; or

2.) for each rational linear representation ρ : G → GL(W ) and any ρ(G)-invariant vector

w ∈ W \ {0} there is a ρ(G)-invariant function f on W such that f(w) 6= 0.
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Since we work over characteristic 0, a group G is linearly reductive if and only if it is

reductive [S]. In the case of the algebraic torus, the first statement holds, so an algebraic

torus is a linearly reductive algebraic torus (cf. Proposition 8.4 on page 113 of [B]). Note

that an algebraic torus is a linearly reductive algebraic group in any characteristic (cf. page

464 of [E]).

We have a nice symmetry between the two cases. im ι1 cuts out a hyperplane in the

Gr(2, 4) associated to V1 and, similarly, im ι2 cuts out a hyperplane isomorphic to the first

one in the Gr(2, 4) associated to V2.

Definition 4.2.4 (cf. page 51 of [F] and pages 2-3 of [MFK]). An action ψ of an algebraic

group G on a variety V is a morphism G×V → V that satisfies the criteria 1.) ψ(xy× v) =

ψ(x× ψ(y × v)), and 2.) ψ(1× v) = v.

We will describe a map of the 2-torus (C∗)2 on Q̂ = Φ(Q) by first defining a torus action

on P5 × P5. Define Ψ : (C∗)2 × (P5 × P5)→ P5 × P5:

(g1, g2)× ((x0 : x1 : x2 : x3 : x4 : x5)× (y0 : y1 : y2 : y3 : y4 : y5)) 7→

(g1x0 : g1x1 : g1x2 : x3 : x4 : x5)× (y0 : y1 : y2 : g2y3 : g2y4 : g2y5)

The goal is to prove that Ψ|Q̂ is an action of (C∗)2 on Q̂.

Lemma 4.2.5. Ψ is an action of (C∗)2 on P5 × P5.

Proof. We first prove that Ψ is a morphism and then prove that the other two criteria are

fulfilled. We can cover P5×P5 by an affine cover of open sets Ui×Vj, where Ui = P5\Z(xi) ∼=

A5 and Vj = P5 \ Z(yj) ∼= A5.

Suppose i = 5 and j = 5. We construct a map Ψ̃55 : (C2)2 × (A5 × A5) → A5 × A5 that

maps

(r × s)× (x× y) = ((r1, r2)× (s1, s2))× ((x0, . . . , x4)× (y0, . . . , y4)) 7→

(r1x0, r1x1, r1x2, x3, x4)× (s2y0, s2y1, s2y2, y3, y4).
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Every component is a polynomial equation, so Ψ̃55 is a morphism. We note that, on the

subvariety Z(r1r2 − 1) × Z(s1s2 − 1), r2 = 1
r1

and s2 = 1
s1
. Consider the natural inclusion

ι : A5 × A5 ↪→ P5 × P5. So if (r × s) × (x × y) ∈ (Z(r1r2 − 1) × Z(s1s2 − 1)) × (A5 × A5),

then when we map through ι ◦ Ψ̃55 : (C2)2 × (A5 × A5)→ A5 × A5 ↪→ P5 × P5, then

ι ◦ Ψ̃55((r × s)× (x× y)) = ι((r1x0, r1x1, r1x2, x3, x4)× (s2y0, s2y1, s2y2, y3, y4)) =

(r1x0 : r1x1 : r1x2 : x3 : x4 : 1)× (s2y0 : s2y1 : s2y2 : y3 : y4 : 1) =

(r1x0 : r1x1 : r1x2 : x3 : x4 : 1)× (y0 : y1 : y2 : s1y3 : s1y4 : s1y5),

which agrees with the action Ψ. Using the same techniques shown here, we can make the

morphisms Ψ̃ij for any i, j ∈ {0, . . . , 5}. We then have proven that Ψ is locally a morphism,

which is sufficient.

We prove the rest by brute force.

Ψ((g1h1, g2h2)× ((x0 : x1 : x2 : x3 : x4 : x5)× (y0 : y1 : y2 : y3 : y4 : y5)) =

(g1h1x0 : g1h1x1 : g1h1x2 : x3 : x4 : x5)× (y0 : y1 : y2 : g2h2y3 : g2h2y4 : g2h2y5).

And

Ψ((g1, g2)×Ψ((h1, h2)× ((x0 : x1 : x2 : x3 : x4 : x5)× (y0 : y1 : y2 : y3 : y4 : y5))) =

Ψ((g1, g2)× ((h1x0 : h1x1 : h1x2 : x3 : x4 : x5)× (y0 : y1 : y2 : h2y3 : h2y4 : h2y5))) =

(g1h1x0 : g1h1x1 : g1h1x2 : x3 : x4 : x5)× (y0 : y1 : y2 : g2h2y3 : g2h2y4 : g2h2y5).

The second criterion is trivial.

Proposition 4.2.6. Ψ|(C∗)2×Q̂ is an action on Q̂.

Proof. Let x × y ∈ Q̂. First, let us assume that Φ−1(x × y) ∈ U1. This means that x =

(0 : 0 : 0 : x3 : x4 : x5) ∈ Z(x0, x1, x2), thus φ̃(V1) is fixed. Since x stayed in Z(x0, x1, x2)
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we need to check that (y0 : y1 : y2 : g2y3 : g2y4 : g2y5) ∈ Z(y0y5 + y1y4 − y2y3). Now

y ∈ Z(y0y5 + y1y4 − y2y3), so we just need to plug in to see that

y0(g2y5) + y1(g2y4)− y2(g2y3) = g2(y0y5 + y1y4 − y2y3) = 0

so Ψ((g1, g2)× (x× y)) ∈ Q̂.

If we now assume that Φ−1(x × y) ∈ U2, y ∈ Z(y3, y4, y5), so y is fixed by our action of

C∗. Also, x ∈ Z(x0x5 + x1x4 − x2x3) hence, as above,

(g1x0)x5 + (g1x1)x4 − (g1y2)x5 = g1(x0x5 + x1x4 − x2x3) = 0

so then we know that Ψ((g1, g2)× (x× y)) ∈ Q̂.

Since Q̂ ⊂ P5 × P5 is a subvariety, Ψ|(C∗)2×Q̂ is a morphism.

Definition 4.2.7. The orbit of v ∈ V by an action ψ : G × V → V is the set oψ(v) =

ψ(G× v) = {ψ(x× v) ∈ V : x ∈ G}.

Using the action of ψ, we may define an equivalence relation ∼ on V so that v ∼ v′ if and

only if oψ(v) = oψ(v′) (cf. page 55 of [F]). We investigate the orbit of an element x× y ∈ Q̂.

Lemma 4.2.8. If x× y ∈ Z(x0, x1, x2)× Z(y3, y4, y5), then x× y is fixed by Ψ. If x× y =

((a0 : a1 : a2 : a3 : a4 : a5) × (b0 : b1 : b2 : 0 : 0 : 0)) ∈ (Z(x0x5 + x1x4 − x2x3) ×

Z(y3, y4, y5)) \ (Z(x0, x1, x2)× Z(y3, y4, y5)), then the orbit of x× y is one-dimensional and

closed in (Z(x0x5 + x1x4 − x2x3)× Z(y3, y4, y5)) \ (Z(x0, x1, x2)× Z(y3, y4, y5)).

Proof. If x× y ∈ Z(x0, x1, x2)× Z(y3, y4, y5), (i.e., x× y = (0 : 0 : 0 : a3 : a4 : a5)× (b0 : b1 :

b2 : 0 : 0 : 0) ∈ P5 × P5 ) then

Ψ((g1, g2)× (x× y) = Ψ((g1, g2)× ((0 : 0 : 0 : a3 : a4 : a5)× (b0 : b1 : b2 : 0 : 0 : 0))

= (0 : 0 : 0 : a3 : a4 : a5)× (b0 : b1 : b2 : 0 : 0 : 0)

So, x× y is Ψ-invariant.
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If x× y = ((a0 : a1 : a2 : a3 : a4 : a5)× (b0 : b1 : b2 : 0 : 0 : 0)) ∈ Z(x0x5 + x1x4 − x2x3)×

Z(y3, y4, y5) \ (Z(x0, x1, x2)× Z(y3, y4, y5)), then

Ψ((g1, g2)× (x× y)) = (g1a0 : g1a1 : g1a2 : a3 : a4 : a5)× (b0 : b1 : b2 : 0 : 0 : 0).

We know that there exists i ∈ {0, 1, 2} such that ai 6= 0. Suppose (a0 : a1 : a2 : a3 : a4 : a5)×

(b0 : b1 : b2 : 0 : 0 : 0) is in the same orbit as (a′0 : a′1 : a′2 : a′3 : a′4 : a′5)× (b′0 : b′1 : b′2 : 0 : 0 : 0)

then we know that b′i = bi for i ∈ {0, 1, 2}.

Moreover, if all ai are nonzero, then we have the equations

a′0
a0

=
a′1
a1

=
a′2
a2

,
a′3
a3

=
a′4
a4

=
a′5
a5

.

The values (a′0 : a′1 : a′2 : a′3 : a′4 : a′5) that fulfill all of these equations cuts out a one-

dimensional closed variety in P5. The orbit of x× y is contained in this variety. If one of the

ai is zero, say i = 0, and the others are nonzero, then we have the equations

a′0 = 0,
a′1
a1

=
a′2
a2

,
a′3
a3

=
a′4
a4

=
a′5
a5

,

that cuts out a one-dimensional variety in P5. Note for every ai that is equal to zero, we

lose one equation and gain another, so the dimension of the variety is fixed. However, we cut

out from this variety the element that is in Z(x3, x4, x5). We then have the orbit of x × y

by the action Ψ. Note that inside the open set (Z(x0x5 + x1x4 − x2x3) × Z(y0, y1, y2)) \

(Z(x3, x4, x5))× Z(y3, y4, y5)), the orbit of x× y is closed.

We now introduce some definitions and a theorem of Mumford that will allow us to take

the quotient.

Definition 4.2.9 (Pages 55-6 of [F]). Let G be an affine group and V an affine variety.

A quotient of V by G is a pair (V0, α) where G acts trivially on V0 and α : V → V0 is

a G-morphism (i.e., α(gv) = gα(v) for all g ∈ G, v ∈ V ) such that if δ : V → V ′0 is a

G-morphism and V ′0 is G-trivial, there exists a G-morphism ξ such that δ = ξ ◦ α.
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Definition 4.2.10 (Page 56 of [F]). Let G act on an affine variety V . We say that the

quotient (V0, α) is an orbit space if the following conditions hold:

1.) for every w ∈ V0, α−1(w) is an orbit,

2.) U ⊂ V0 is open if and only if α−1(U) is open in V , and

3.) α∗ is a C-isomorphism of C[V0] onto C[V ]G.

Theorem 4.2.11 (Page 159 of [F]). (Mumford’s Theorem) Let G be a linearly reductive

affine group and let V be an affine algebraic set. Let ψ be an action of G on V over C. Then

a quotient of V by G exists. If the orbits of ψ in V are closed, then this quotient is an orbit

space.

Note that we have not defined a quotient for a projective variety. For the purposes of this

thesis, we will define the quotient of a projective variety as the set of all positive-dimensional

orbits of an action. To investigate such a quotient, we will take the variety, cover it with

globally invariant affine open sets (cutting out all points with zero-dimensional orbits) and

then find the orbit space of the variety with respect to the action. We then will glue it back

together on the intersections of the open sets to form the set of positive-dimensional orbits.

As we will see, this quotient is a projective variety.

We first look at the irreducible component Z(x0x5 +x1x4−x2x3)×Z(y0, y1, y2). We look

at the action Ψ:

Ψ((g1, g2)× (x× y)) = (g1x0 : g1x1 : g1x2 : x3 : x4 : x5)× y.

In this component, y is fixed, so we look at the map Ψ1 : C∗ × Z(x0x5 + x1x4 − x2x3) →

Z(x0x5 + x1x4 − x2x3) where Ψ1(g × (x0, x1, x2, x3, x4, x5)) = (g1x0 : g1x1 : g1x2 : x3 : x4 :

x5). Note that the Ψ1-invariant elements of Z(x0x5 + x1x4 − x2x3) make up the subvariety

Z(x0, x1, x2) ∪ Z(x3, x4, x5).

Proposition 4.2.12. The quotient Z(x0x5 +x1x4−x2x3)\ (Z(x0, x1, x2)∪Z(x3, x4, x5))/C∗

is a P1 bundle over P2.



28

Proof. We cover Z(x0x5 + x1x4 − x2x3) \ (Z(x0, x1, x2) ∪ Z(x3, x4, x5)) with affine varieties

that do not touch the zero-dimensional orbits. We then take their quotients with respect to

the action Ψ1. Let i ∈ {0, 1, 2}. Then Vi := P5\Z(xi) ∼= A5 is an affine variety. Using the trick

of Rabinowitsch, if j ∈ {3, 4, 5}, then Vij = P5\(Z(xi)∪Z(xj)) is an affine variety. Moreover,

(Z(x0, x1, x2) ∪ Z(x3, x4, x5)) ∩ (P5 \ (Z(xi) ∪ Z(xj))) = ∅, so the Ψ1-invariant elements are

already not in the affine variety. We now intersect Vij with Z(x0x5 + x1x4 − x2x3) to get an

affine subvariety of Vij. Call this intersection Uij.

If we look at the affine variety V0, we can express the action Ψ1 as a mapping C∗×P5 → P5:

g × (1 : x1 : x2 : x3 : x4 : x5) 7→ (g : gx1 : gx2 : x3 : x4 : x5) = (1 : x1 : x2 : hx3 : hx4 : hx5),

or, alternatively, as the map C∗ × A5 → A5:

g × (x1, x2, x3, x4, x5) 7→ (x1, x2, hx3, hx4, hx5),

where h = 1
g
∈ H := C∗.

Cut V0 into two proper open subsets, which are affine varieties in their own right, V03

and V04. Intersecting with the hypersurface, we obtain U03 = V03 ∩ Z(x0x5 + x1x4 − x2x3)

and U04 = V04 ∩ Z(x0x5 + x1x4 − x2x3), as above. Note that these two varieties cover

V0 ∩ Z(x5 + x1x4 − x2x3) \ Z(x3, x4, x5), so in order to understand the quotient on V0,

we just need to know the quotient on all of these affine varieties and then glue. Recall that

the orbits of Ψ1 are closed.

Using Mumford’s theorem, we see that the quotient of U03 is an orbit space, since alge-

braic tori are linearly reductive algebraic groups, and the orbits of Ψ1 are closed. We now

want to compute the coordinate ring of the quotient so we look at the ring of invariants

of U03. C[U03] = C[x1, x2, x3, x4, x5, x
−1
3 ]/〈x5 + x1x4 − x2x3〉 = C[x1, x2, x3, x4, x

−1
3 ] and

C[U04] = C[x1, x2, x3, x4, x5, x
−1
4 ]/〈x5 + x1x4 − x2x3〉 = C[x1, x2, x3, x4, x

−1
4 ]. Note that since

x0 is nonzero, x5 is a linear combination of x3 and x4, so we only need these two open subsets

to cover U0. We now find the ring of invariants for all of these rings under the action of Ψ1.
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Let f ∈ C[U03]. f =
∑
xi11 x

i2
2 x

i3
3 x

i4
4 , where i1, i2, i4 ∈ N ∪ {0}, and i3 ∈ Z. Then ψ∗(g ×

f) =
∑
hi3+i4xi11 x

i2
2 x

i3
3 x

i4
4 (since Ψ∗1(F ) = F ◦ Ψ1 for a function F ). If f ∈ C[U0]H , then

Ψ1(g × f) = f so then

∑
hi3+i4xi11 x

i2
2 x

i3
3 x

i4
4 =

∑
xi11 x

i2
2 x

i3
3 x

i4
4 , for all h ∈ C∗.

This yields that hi3+i4 = 1 for any h ∈ C∗, therefore i3 + i4 = 0 and i3 = −i4. Therefore

f =
∑
xi11 x

i2
2 x
−i4
3 xi44 and C[U03]H = 〈x1, x2, x

−1
3 x4〉, thus Spec(C[U03]H) ∼= A3. By symmetry,

we have C[U04]H = 〈x1, x2, x
−1
4 x3〉 and likewise Spec(C[U04]H) ∼= A3.

Note that the intersection of these two open sets, say U034, is an open set such that

C[U034]H = 〈x1, x2, x3x
−1
4 , x4x

−1
3 〉, so

U034/H = Spec(C[U034]H) = Spec(〈x1, x2, x3x
−1
4 , x4x

−1
3 〉) = A3 \ P,

where the coordinate ring for A3 is C[x1, x2, x3] and P is the plane Z(x3). The gluing of

Spec(C[U03]H) with Spec(C[U04]H) over the intersection gives us:

U034/H = A3 \ P ↪→ U03/H = A3;(
x1, x2,

x3

x4

)
7→

(
x1, x2,

x3

x4

)
;

U034/H = A3 \ P ↪→ U04/H = A3;(
x1, x2,

x3

x4

)
7→

(
x1, x2,

x4

x3

)
.

So gluing these two open sets of the cover gives us U0/H = U03/H ∪ U04/H =

Spec (C [x1, x2])× Proj (C [x3, x4]) ∼= A2 × P1.

We now can see from symmetry that U1/H = Spec (C [x0, x2]) × Proj (C [x3, x5]) and

U2/H = Spec (C [x0, x1])×Proj (C [x4, x5]). The affine schemes in all of these product spaces

will glue together to form Proj (C [x0, x1, x2]) ∼= P2, but the copy of P1 will change over this

space, thus we have a P1 bundle over P2.

We now investigate what bundle it is. We will compute the transition functions between

the open sets Ui/H, and look at how the P1 changes as we vary where we are in P2. Let us

start by computing the transition function from U0/H to U1/H over the intersection.
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The affine plane Spec(C[x1, x2]) can be thought of as the affine open set P2 \ Z (x0)

where the homogeneous coordinate ring of P2 is A = C [x0, x1, x2]. Computing the transition

functions we obtain:

U0/H → U1/H

(1, x1, x2) 7→
(

1
x1
, 1, x2

x1

)
,

 1 0

x2 −x1

 x3

x4

 =

 x3

x5

 ;

Analogously, we can compute transition functions from U1/H to U2/H

U1/H → U2/H

(x0, 1, x2) 7→
(
x0

x2
, 1
x2
, 1
)
,

 x2 −x0

0 1

 x3

x5

 =

 x4

x5

 ;

and also from U0/H to U2/H

U0/H → U2/H

(1, x1, x2) 7→
(

1
x2
, x1

x2
, 1
)
,

 0 1

x2 −x1

 x3

x4

 =

 x4

x5

 ;

We cannot simultaneously diagonalize these transition matrices, so this bundle does not

split, and does not have an easy description. Looking back at the original action Ψ, there is

a gluing. Let B be the P1 bundle over P2. By symmetry, we now have a description of the

quotient of an open set of Q̂ by (C∗)2. Let S be the variety (Z(x0, x1, x2)× Z(y3, y4, y5)) ∪

(Z(x3, x4, x5)× Z(y3, y4, y5)) ∪ (Z(x0, x1, x2)× Z(y0, y1, y2)). Therefore,

(Q̂ \ S)/(C∗)2 = B × Z(y3, y4, y5) t Z(x0, x1, x2)×B.
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Appendix A

Macaulay 2 and Magma Coding Used

This is the Macaulay 2 coding to give us the geometry of π1 (Q2) in Chapter 3:

i1 : R=QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing

i2 : M = matrix { {x,w,z,y},{y,x,w,z},{z,y,x,w},{w,z,y,x}}

o2 = | x w z y |

| y x w z |

| z y x w |

| w z y x |

4 4

o2 : Matrix R <--- R

i3 : I = minors(3,M) --Built in Macaulay 2 for the ideal defined by kxk minors

i4 : hilbertPolynomial(I, Projective=>false)

o4 = 6i - 2

--This tells us we have a curve of degree 6 and arithmetic genus 3

o4 : QQ[i]

i5 : Z = singularLocus(I);

i6 : Z

o6 = Z

i8 : hilbertPolynomial(Z,Projective=>false)

o8 = 16

o8 : QQ[i]

--This tells us the curve is singular

i10 : toString I

o10 = ideal(x^3+y^2*z-x*z^2-2*x*y*w+z*w^2,x^2*y+

y*z^2-y^2*w-2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,

y^3-2*x*y*z+x^2*w+z^2*w-y*w^2,y^3-2*x*y*z+x^2*w+z^2*w-

y*w^2,x^3+y^2*z-x*z^2-2*x*y*w+z*w^2,x^2*y+

y*z^2-y^2*w-2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,

x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,y^3-2*x*y*z+

x^2*w+z^2*w-y*w^2,x^3+y^2*z-x*z^2-2*x*y*w+z*w^2,

x^2*y+y*z^2-y^2*w-2*x*z*w+w^3,x^2*y+y*z^2-y^2*w-

2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,y^3-2*x*y*z+
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x^2*w+z^2*w-y*w^2,x^3+y^2*z-x*z^2-2*x*y*w+z*w^2)

i11 : quit

Process M2 finished

Then we move to Magma in order to finish.

> Q:=RationalField();

> P3<x,y,z,w>:=ProjectiveSpace(Q,3);

> X:=Scheme(P3,[x^3+y^2*z-x*z^2-2*x*y*w+z*w^2,x^2*y+y*z^2-

y^2*w-2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,y^3-2*x*y*z+x^2*w

+z^2*w-y*w^2,y^3-2*x*y*z+x^2*w+z^2*w-y*w^2,x^3+y^2*z-x*z^2-2*x*y*w

+z*w^2,x^2*y+y*z^2-y^2*w-2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w

+x*w^2,x*y^2-x^2*z+z^3-2*y*z*w+x*w^2,y^3-2*x*y*z+x^2*w+z^2*w-

y*w^2,x^3+y^2*z-x*z^2-2*x*y*w+z*w^2,x^2*y+y*z^2-y^2*w-2*x*z*w

+w^3,x^2*y+y*z^2-y^2*w-2*x*z*w+w^3,x*y^2-x^2*z+z^3-2*y*z*w

+x*w^2,y^3-2*x*y*z+x^2*w+z^2*w-y*w^2,x^3+y^2*z-x*z^2-2*x*y*w+ z*w^2]);

> Dimension(X);

1

> C:=Curve(X);

> ArithmeticGenus(C);

3

> Degree(C);

6

> IsReduced(C);

true

> IsIrreducible(C);

false

> IrreducibleComponents(C);

[

Scheme over Rational Field defined by

y^2 + 2*y*z + 2*z^2 + 2*z*w + w^2,

x + y + z + w,

Scheme over Rational Field defined by

y^2 - 2*y*z + 2*z^2 - 2*z*w + w^2,

x - y + z - w,

Scheme over Rational Field defined by

x + z,

y + w,

Scheme over Rational Field defined by

x - z,

y - w

]

> SingularPoints(C);

{@ (-1 : 1 : -1 : 1), (1 : 1 : 1 : 1) @}
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> K<i>:=CyclotomicField(4);

> C:=BaseChange(C,K);

> PK3<x,y,z,w>:=AmbientSpace(C);

> IrreducibleComponents(C);

[

Scheme over K defined by

x + i*z + (i + 1)*w,

y + (-i + 1)*z - i*w,

Scheme over K defined by

x + i*z + (-i - 1)*w,

y + (i - 1)*z - i*w,

Scheme over K defined by

x - i*z + (i - 1)*w,

y + (-i - 1)*z + i*w,

Scheme over K defined by

x - i*z + (-i + 1)*w,

y + (i + 1)*z + i*w,

Scheme over K defined by

x + z,

y + w,

Scheme over K defined by

x - z,

y - w

]

> SingularPoints(C);

{@ (-1 : 1 : -1 : 1), (1 : 1 : 1 : 1), (-i : -1 : i : 1), (i : -1 : -i : 1) @}

--Dimension -1 means the intersection is empty

> L1:=IrreducibleComponents(C)[1];

> L2:=IrreducibleComponents(C)[2];

> L3:=IrreducibleComponents(C)[3];

> L4:=IrreducibleComponents(C)[4];

> L5:=IrreducibleComponents(C)[5];

> L6:=IrreducibleComponents(C)[6];

> Dimension(Intersection(L1,L2));

-1

> Dimension(Intersection(L1,L3));

0

> Dimension(Intersection(L1,L4));

0

> Dimension(Intersection(L1,L5));

0

> Dimension(Intersection(L1,L6));

0
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> Dimension(Intersection(L2,L3));

0

> Dimension(Intersection(L2,L4));

0

> Dimension(Intersection(L2,L5));

0

> Dimension(Intersection(L2,L6));

0

> Dimension(Intersection(L3,L4));

-1

> Dimension(Intersection(L3,L5));

0

> Dimension(Intersection(L3,L6));

0

> Dimension(Intersection(L4,L5));

0

> Dimension(Intersection(L4,L6));

0

> Dimension(Intersection(L5,L6));

-1

So we know that it is a tetrahedron since it has six lines where they intersect at four points in

such a way to create a tetrahedron. We now go back to MaCaulay 2 to look at the geometry

of π1 (Q3):

i1 : R=QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing

i2 : M = matrix { {x,w,z,y},{y,x,w,z},{z,y,x,w},{w,z,y,x}}

o2 = | x w z y |

| y x w z |

| z y x w |

| w z y x |

4 4

o2 : Matrix R <--- R

i3 : I = minors(4,M)

o3 : Ideal of R

i4 : hilbertPolynomial(I, Projective=>false)

2

o4 = 2i + 2

o4 : QQ [i]

i5 : Z=singularLocus(I);

i6 : hilbertPolynomial(Z, Projective=>false)
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o6 = 6i - 2

o6 : QQ [i]

i7 : toString I

o7 = ideal(x^4-y^4+4*x*y^2*z-2*x^2*z^2+z^4-4*x^2*y*w-4*y*z^2*w

+2*y^2*w^2+4*x*z*w^2-w^4)

i8 : toString Z

o8 = R/(x^4-y^4+4*x*y^2*z-2*x^2*z^2+z^4-4*x^2*y*w-4*y*z^2*w+2*y^2*w^2+

4*x*z*w^2-w^4,4*x^3+4*y^2*z-4*x*z^2-8*x*y*w+4*z*w^2,-4*y^3+8*x*y*z

-4*x^2*w-4*z^2*w+4*y*w^2,4*x*y^2-4*x^2*z+4*z^3-8*y*z*w+4*x*w^2,

-4*x^2*y-4*y*z^2+4*y^2*w+8*x*z*w-4*w^3)

We note that the Hilbert polynomial of the singular locus is equal to that of π1 (Q2) which

makes us curious. We move back to Magma.

> Q:=RationalField();

> K<i>:=CyclotomicField(4);

> P3<x,y,z,w>:=ProjectiveSpace(K,3);

> X:=Scheme(P3,[x^4-y^4+4*x*y^2*z-2*x^2*z^2+z^4-4*x^2*y*w-4*y*z^2*w+2*y^2*w^2+

4*x*z*w^2-w^4]);

> Dimension(X);

2

> Degree(X);

4

> IsReduced(X);

true

> IsIrreducible(X);

false

> IrreducibleComponents(X);

[

Scheme over K defined by

x - y + z - w,

Scheme over K defined by

x + y + z + w,

Scheme over K defined by

x - i*y - z + i*w,

Scheme over K defined by

x + i*y - z - i*w

]

> SingX:=Scheme(P3,[x^4-y^4+4*x*y^2*z-2*x^2*z^2+z^4-4*x^2*y*w-4*y*z^2*w+2*y^2*

w^2+4*x*z*w^2-w^4,4*x^3+4*y^2*z-4*x*z^2-8*x*y*w+4*z*w^2,-4*y^3+8*x*y*z-4*x^2*w

-4*z^2*w+4*y*w^2,4*x*y^2-4*x^2*z+4*z^3-8*y*z*w+4*x*w^2,-4*x^2*y-4*y*z^2+4*y^2*

w+8*x*z*w-4*w^3]);

> IrreducibleComponents(X);
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[

Scheme over K defined by

x - y + z - w,

Scheme over K defined by

x + y + z + w,

Scheme over K defined by

x - i*y - z + i*w,

Scheme over K defined by

x + i*y - z - i*w

]

> IrreducibleComponents(SingX);

[

Scheme over K defined by

x + i*z + (i + 1)*w,

y + (-i + 1)*z - i*w,

Scheme over K defined by

x + i*z + (-i - 1)*w,

y + (i - 1)*z - i*w,

Scheme over K defined by

x - i*z + (i - 1)*w,

y + (-i - 1)*z + i*w,

Scheme over K defined by

x - i*z + (-i + 1)*w,

y + (i + 1)*z + i*w,

Scheme over K defined by

x + z,

y + w,

Scheme over K defined by

x - z,

y - w

]

Therefore, the suspicions are confirmed.


