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Abstract

Brumer and Kramer give sufficient criteria to conclude for a given prime p the non-

existence of an elliptic curve E/Q of conductor p. Some of these criteria arise out of how

primes factor in the 2-division and 3-division fields of the elliptic curve. In this paper we

take a similar approach except instead of Q our base field is any one of the (exactly 9) class

number 1 quadratic imaginary number fields. For a certain 6 of these number fields we are

able, in each case, to exhibit a long list of prime numbers less than 500 that are residual

characteristics of prime ideals for which we have a non-existence result. We then relate these

non-existence results to a conjecture of Cremona.

A new invariant, called the g-integer, of an arithmetical graph is introduced by Lorenzini.

Here we determine the effect on this invariant under basic operations on the arithmetical

graph. We then focus on the case of arithmetical trees whose g-integer is 0 or 1. Moreover,

we compute this invariant for certain modular curves.
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Chapter 1

Introduction

This dissertation consists of work on two distinct projects. The first focuses on a problem

related to elliptic curves while the second looks at an invariant of arithmetical graphs. We

start by summarizing the former.

Different techniques have been used to prove when an elliptic curve, over a number field,

of prime conductor cannot exist. In [Set] it is shown that, over Q, there is an elliptic curve

with a rational point of order 2 and with prime conductor p /∈ {2,3,17} exactly when p−64 is

a square. The successful method involved, which is to determine whether some Diophantine

equations have a solution, was given an analogous attempt, over the class number 1 quadratic

imaginary number fields, Q(
√
−d) for d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, by Shumbusho in

[Shu]. For five of these fields this attempt produced, along with class field theory, ideals that

could never be the conductors of prime conductor elliptic curves.

In [B-K] a different direction for the study of elliptic curves, over Q, of prime conductor

is taken. There, an analysis, broken into cases according to the reduction type at 3, is made

on class number related restrictions for Q(∆
1
3 ) (the field gotten by adjoining a cube root of

the discriminant of the curve) and ramification related restrictions for Q(∆
1
3 )/Q.

Also, in [Cre2] it is conjectured that, over any quadratic imaginary number field, an

elliptic curve of prime conductor p exists only when there is a weight 2 newform, in the

space of cuspidal automorphic forms for Γ0(p), with certain properties.

In Chapter 2 we review some fundamental concepts of elliptic curves that will be needed

chapters on elliptic curves following it. In Chapter 3 we give some fundamental facts con-

cerning ramification in the prime division fields of elliptic curves, over p-adic fields, with

multiplicative reduction. Chapter 4 deals with elliptic curves over the 9 quadratic number

fields in question. I In Chapter 5 we gives results concerning the 3-division field. In partic-

ular, with the 3-division field we obtain results that parallel the type in [B-K]. These results,

along with some in [Shu], yield the primes for our non-existence results. Chapter 5 is used

to discuss them, as well as cases when you do have an existence result.
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The second project studies an integer-valued invariant g(M), called the g-integer of an

arithmetical graph (G,M,R). Arithmetical graphs are interesting combinatorial objects and

from a more abstract realm of degenerating an arithmetical algebraic curve. One naturally

may seek to relate this invariant to other invariants of the arithmetical graph. Two important

invariants of an arithmetical graph are its linear rank g0(M), which is integer-valued, and

its component group Φ(M), which is a finite Abelian group. It is shown in [Lor2] that g(M)

is always bounded above by g0(M). There are other significant relationship between two of

these invariants. For a positive integer x = pai1 · pa2
2 · ... · p

ak
k let `(x) :=

k∑
i=1

ai · (pi − 1).

In [Lor3] it is shown that for an arithmetical tree

`(#Φ(M)) ≤ 2g0(M)

and that as a corollary

#Φ(M) ≤ 4g0(M).

As g(M) ≤ g0(M) one may then try to see whether these two inequalities hold when g0(M)

is replaced by g(M). We address this question in Chapter 13 where we show by example that

the first inequality fails. We also discuss why the second may hold in general, with evidence

given to that end. Namely, we show that this inequality holds whenever either the g-integer

is 1 or the tree has only 3 branches.

In Chapter 7 we consider the concept of gluing two arithmetical graphs together and are

able to show that the change in g-integer is partially the same as the change in the linear

rank. We give examples to show that, however, it does not always behave exactly the same.

In Chapter 8 we look at the operation of blowing up an arithmetical graph and prove that

this new invariant in unchanged after such an operation. In Chapters 9 and 10 we then shift

our focus to arithmetical trees having g-integer at most 1. We are able to construct two

families of arithmetical graphs where g0(M) → ∞, while g(M) is always 0 (resp. 1) in the

first (resp. second). Also, we give a nice complete description of a certain class of g-integer

1 arithmetical trees.

Another direction of study of this invariant is motivated by the fact that there is always

a canonical divisor for g0(M) (see [Lor2]); that is, a degree 2g0(M)− 2 divisor K acting on

the degree g0(M)− 1 divisors by D 7→ K −D, so that D is equivalent to an effective divisor

precisely when K−D is. It is natural to then ask whether there is a degree 2g(M)−2 divisor

that acts analogously on degree g(M) − 1 divisors. We show with an example that on one
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hand there is not always such a canonical divisor, and on the other hand there is sometimes

more than one such divisor.

Finally, it is advantageous to be able to compute this invariant on your favorite example.

Appendix B and Appendix C furnish this ability through programs written in the python

language and used in the SAGE interface. In some cases one may hope to compute by hand

a general formula for g(M) in a family of examples. In Chapter 12 we do exactly this for the

arithmetical graphs associated to the modular curves X0(p2).
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Chapter 2

Introduction to elliptic curves and number fields

We star by reviewing some basic notions of elliptic curves. Let K be a finite field extension

of either Qp (for some prime p) or Q. Let OK be its ring of integers. Let E/K be an elliptic

curve defined over K. At a (non-zero) prime ideal P our elliptic curve E will have either

good, multiplicative, or additive reduction (see 3.6 in [Ade]). It turns out that the reduction

is good at all but finitely many such primes.

There is an ideal in OK , called the conductor of E/K, that catalogs the bad (i.e., multi-

plicative or additive) reduction (see pg. 388 in [Sil1]). The primes that divide the conductor

are precisely the primes of bad reduction. Moreover, E/K has additive reduction at P if

and only if P2 divides the conductor. We will say that E/K has semi-stable reduction at

P if the reduction is either good or multiplicative. If the reduction is semi-stable at every

prime then we say E/K has everywhere semi-stable reduction. Thus, E/K has everywhere

semi-stable reduction if and only if the conductor is square-free.

Let ` be a prime number. The points of order dividing ` on E that are defined over K are

denoted by E[`]. For a fixed Weierstrass equation of E/K we let K(E[`]) denote the field

extension of K gotten by adjoining the coordinates of all points of E[`] to K. It turns out

that this finite extension is Galois and independent of the chosen Weierstrass equation for

E/K.

It is shown that E[`] admits the structure of a two dimensional F` vector space (see 3.4 in

[Ade]). We fix an F` ordered basis on E[`] and hence identify EndF`(E[`]) with GL2(F`). Also,

the natural action of Gal(K(E[`]/K) on E[`] is by F` linear endomorphisms. Consequently,

we then have the associated group homomorphism

ρ : Gal(K(E[`])/K)→GL2(F`).

It is a fact that ρ is injective (see 3.4 in [Ade]).

Suppose that K now denotes a number field. We review class field theory, some of which

will be used in the sequel. A modulus is a formal finite product of positive integral powers of

4



primes (including the infinite ones) of K, c =
∏

pm(p), where for any infinite prime m(p) ≤ 1.

We then have I(c), the group generated by all ideals of K not in the support of c. For a

finite prime p let op be the associated local ring and pv its maximal ideal. One checks that

I(c) contains the following subgroup:

Pc := {(α) fractional ideal of K : if p|c is finite then α ∈ op and α-1 ∈ p
m(p)
v , while if

σv = p|c is infinite then σp(α) > 0}.

The finite quotient group I(c)/Pc is called the ray class group of K with respect to (the

modulus) c. Its order is called the ray class number.

Suppose now that L is a finite Abelian extension of K. If it is the case that the support

of c contains all the primes of K that ramify in L then we have the Artin map

ω : I(c)→ Gal(L/K)

This group homomorphism is defined by sending a prime ideal of K to its Frobenius auto-

morphism with respect to L. It can be shown that the Artin map is always surjective (see

Theorem 1 in X of [Lan]).

Put NL
K(c) :=group of norms of fractional ideals of L that lie above no prime in c. It

turns out that NL
K(c) is always in ker(ω). Further, there is a particular modulus of K, called

the conductor of L/K (see 3.4.1 in [Coh]) and denoted by f(L/K). It turns out that the

primes that divide the conductor are precisely the primes of K that ramify in L. Moreover,

we have that Pf(L/K) is in ker(ω). In this case it can be shown that ker(ω) = PcN
L
F (c).
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Chapter 3

Properties of the `-th division fields: the local case

For all of this chapter, unless otherwise stated, we take up each of the following conventions.

Let K be a finite extension of Qp for some fixed prime p. Let OK denote its ring of integers

with M = (π) the non-units and k := OK/M the associated residue field. Let ` be any fixed

prime. Suppose that E/K is an elliptic curve with multiplicative reduction. Let y2 + a1xy+

a3y = x3 +a2x
2 +a4x+a6 be any fixed minimal Weierstrass equation for E/K. Denote by ∆,

c4, and c6 the usual quantities for this equation. Finally, | · | represents the (π)-adic absolute

value on K.

As E has multiplicative reduction over K and our Weierstrass equation is minimal we

must have (see Proposition VII.5.1(b) in [Sil2]) that c4 ∈ O∗K . Since c3
4−c2

6 = 1728∆ we then

get c6 is also in O∗K .

3.1. Since E has multiplicative reduction over K we know |j(E)| > 1, so we can apply the

theory of Tate curves (see Theorem V.5.3 in [Sil1]). This says there is a unique non-zero

element q of OK such that E is isomorphic over K(
√
−c6) to the Tate curve

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

where

sk(q) =
∑
n≥1

nkqn

1− qn
, a4(q) = −5s3(q), and a6(q) = 5s3(q)+7s5(q)

−12
.

We then get its discriminant being ∆q = q
∏
n≥1

(1− qn)24.

Also, let q
1
` be any fixed `-th root of q in 3.1 and let ζ` be any fixed primitive `-th root of

unity. Let E[`] be the points of order E defined over K that have order diving ` (see Chapter

1). Finally, denote by L the `-th division field of E; that is, L := K(E[`]).

Lemma 3.2. We have K(
√
−c6)(E[`]) = K(

√
−c6, ζ`, q

1
` ).
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Proof : As E and Eq (see 3.1) are isomorphic over K(
√
−c6) we immediately get

K(
√
−c6)(E[`]) = K(

√
−c6)(Eq[`]). Since K(

√
−c6)(Eq[`]) is the smallest extension of

K(
√
−c6) where Eq attains all its `-torsion we have (see Theorem V.3.1(d) in [Sil1]) that

K(
√
−c6)(E[`]) = K(

√
−c6, ζ`, q

1
` ).

Indeed, the `-torsion subgroup of K
∗
/qZ is generated by {[ζ`], [q

1
` ]}.

Corollary 3.3. Suppose ` is odd. Then K(E[`]) = K(
√
−c6, ζ`, q

1
` ).

P roof : We show for L := K(E[`]) that EL/L does not have non-split multiplicative

reduction (and so it will have split multiplicative reduction). This will give (by Theorem

V.5.3 in [Sil1]) that
√
−c6 ∈ L, and hence (by Lemma 3.2) our desired conclusion.

Suppose the reduction is non-split. Then, [E(L) : E0(L)] ≤ 2 (Remark 2.2.4 in [Liu]).

Thus as ` is odd we get E[`] ⊂ E0(L).

Let k0 be the residue field for L. Now E0(L)/E1(L) ∼= Ẽns(k0). Since the reduction is

multiplicative we know #Ẽns(k0) (is finite and) not a multiple of p.

Thus, if ` = p then E[`] is actually in E1(L). But then E1(L) has a subgroup isomorphic

to (Z/`Z)2, contradicting EL/L having multiplicative reduction (see Exercise 4.4 in [Sil2]).

If ` 6= p then E1(L) has no non-zero `-torsion (Proposition 3.1(a) in [Sil2]), so E[`] embeds

in Ẽns(k0) implying that Ẽns(k0) is non-cyclic. But then EL/L cannot have bad reduction,

a contradiction.

Remark 3.4. Note that this corollary cannot be extended to the case ` = 2. Indeed, E/Q
given by y2 + xy + x2 = x3 − 19x + 26 (this is curve 30A2 in [Cre1]) has conductor 30,

c6 = −24013 and Q2(E[2]) = Q2 while
√
−c6 6∈ Q2. Also, E/Q given by y2 + xy + x2 =

x3 + x2 − 135x − 660 (this is curve 15A2 in [Cre1]) has conductor 15, c6 = 521479, and

Q3(E[2]) = Q3 while
√
−c6 6∈ Q3. These examples also tell us that the first part of Proposition

5.1.3 in [B-K] is not true as stated.

Lemma 3.5. It holds that ord(π)(∆) =ord(π)(q).

Proof : We see that ord(π)(q) =ord(π)(∆q) by 3.1, due to the fact that a sequence of ele-

ments of O∗K can converge in OK to only an element of O∗K . Now −ord(π)(j(Eq)) =ord(π)(∆q).

Then, since j(E) = j(Eq), all we have to now show is that ord(π)(j(E)) =ord(π)(∆). As

j(E) =
c34
∆

, and (by 3.1) c4 ∈ O∗K , we have what we want.
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Theorem 3.6. Let e denote the ramification index of L/K. Suppose ` 6= p. Then

e =

{
` if ord(π)(∆) 6≡ 0 (mod `)

1 otherwise

Proof : We have the following diagram:

K(ζ`,
√
−c6, q

1
` ) = L(

√
−c6)

iiiiiiiiiiiiiiii

RRRRRRRRRRRRRRRR

K(ζ`,
√
−c6)

UUUUUUUUUUUUUUUUUUUU
L

kkkkkkkkkkkkkkkkkkkk

K

First, observe that K(ζ`,
√
−c6)/K is unramified. Put, as we can, q = uπs where

s ∈ N ∪ {0} and u ∈ O∗K . Thus s=ord(π)(∆) by Lemma 3.5. If s ≡ 0 (mod `) then

K(ζ`,
√
−c6, q

1
` ) arises by taking K(ζ`,

√
−c6) and adjoining to it any fixed `-th root

of u. Thus, in this case K(ζ`,
√
−c6, q

1
` )/K(ζ`,

√
−c6) is unramified (see [Bir] pg. 91

Lemma 5). If s 6≡ 0 (mod `) then we have some t ∈ N with t < ` such that we get

K(ζ`,
√
−c6, q

1
` ) from K(ζ`,

√
−c6) by adjoining any fixed `-th root of uπt. But then, as π is

still a uniformizer in K(ζ`,
√
−c6) by the unramifiedness of K(ζ`,

√
−c6)/K, the extension

K(ζ`,
√
−c6, q

1
` )/K(ζ`,

√
−c6) is ramified ([Bir] pg. 92 Lemma 6). As [K(ζ`,

√
−c6, q

1
` ) :

K(ζ`,
√
−c6)] = ` in this case (due to K(ζ`,

√
−c6) containing µ`) it follows that the

ramification index of K(ζ`,
√
−c6, q

1
` )/K(ζ`,

√
−c6) is `.

From all this we can deduce the value of e introduced above. Since, L(
√
−c6)/L is unram-

ified unramified we know that the ramification index of L/K equals the ramification index

of L(
√
−c6)/K, which is e.

Corollary 3.7. Let K be a number field. Suppose that E/K is an elliptic curve with mul-

tiplicative reduction at a prime P. Let ` be any prime not contained in P. Let ∆ be the

discriminant of any fixed integral Weierstrass equation for E/K that is minimal at P. Let

Kv denote the completion of K with respect to the P-adic absolute value. Let π be a uni-

formizer for OKv . Then, the ramification index, e, of P in F := K(E[`]), is as in the

Theorem 3.5:

e =

{
` if ord(π)(∆) 6≡ 0 (mod `)

1 otherwise

8



Proof : Let Q be any fixed prime of F above P. Here Fw denotes the completion of F

with respect to the Q-adic absolute value. Embed F and Kv (and hence Kv(E[`])) into Fw.

The ramification index of P in F equals the ramification index for the extension Fw/Kv.

Since Fw = Kv·F = Kv(E[`]) we are done in light of the Theorem 3.6.

Proposition 3.8. Suppose that ` = p and also that ord(π)(q) 6≡ 0 (mod `). Then L/K is

wildly ramified.

Proof : Since ord(π)(q) 6≡ 0 (mod `) there exists s ∈ N and u ∈ O∗K with s < ` such that

for an appropriate an appropriate fixed choice of `-th root of uπs, which we denote by
√̀
uπs,

we have

K(q
1
` ) = K(

√̀
uπs).

Suppose
√̀
uπs ∈ K(ζ`). Let π0 be any fixed choice of uniformizer for OK(

√̀
uπs) and t0 be

the ramification index for K(
√̀
uπs)/K. Then, as [K(ζ`) : K] | (` − 1), we have st0 =

`·ord(π0)(
√̀
uπs) and t0 ≤ `− 1. Thus ` | st0, contradicting that s, t0 < `.

Consequently,
√̀
uπs 6∈ K(ζ`) must hold so [K(ζ`,

√̀
uπs) : K(ζ`)] = `. Thus,

` | [K(ζ`,
√̀
uπs) : K(

√̀
uπs)] · [K(

√̀
uπs) : K].

Then, since [K(ζ`,
√̀
uπs) : K(

√̀
uπs)] | (`− 1) we know that ` = [K(

√̀
uπs) : K]. Finally, we

see that K(
√̀
uπs)/K is ramified, and hence, by what we just showed, totally ramified.

Therefore, ` divides the ramification index for K(ζ`, q
1
` ,
√
−c6)/K, so, by 3.2, ` divides

the ramification index for K(E[`],
√
−c6)/K. Then, since K(E[`],

√
−c6)/K(E[`]) is

always unramified, we are done with the proof.

While the following proposition is not used in the rest of this article we offer it because it

shows how easy it is, in certain cases, to compute all the higher ramification groups of L/K.

Put G :=Gal(L/K) and GK :=Gal(K/K). For each F/K finite Galois we have on one

hand for each real number u ≥ −1 the upper numbered higher ramification group Gal(F/K)u

and on the other hand for each integer u ≥ −1 the lower numbered higher ramification

group Gal(F/K)u (as in 4.1 and 4.3 of [Ser1]). We then define Gu
K as the (necessarily closed)

subgroup of GK that gets identified with lim←− Gal(F/K)u when we identify GK with our usual

profinite group (here, as expected, the inverse limit is taken over all finite Galois extensions

of K that are contained in K).

9



Lemma 3.9. The restriction homomorphism (GK → G) takes Gu
K (into and) onto Gu.

Proof : If the image were smaller than Gu then Gu
K operates trivially on an element, say

α, of L− LGu . But, by Proposition 3.9 in [Kaw], we know K
GuK =

⋃
FGal(F/K)u , where the

union is taken over all F/K finite Galois, and so K(α) ⊂ FGal(F/K)u for some F/K finite

Galois. But, by Theorem 2.A(II) in [Kaw], LG
u⋂

K(α) = K(α)Gal(K(α)/K)u . Then, since

K(α) = K(α)Gal(K(α)/K)u , due to the fact that FGal(F/K)u
⋂
K(α) = K(α)Gal(K(α)/K)u , we

therefore get K(α) ⊂ LG
u
, a contradiction.

Proposition 3.10. Suppose K/Qp is unramified, ` = p, and L/K is wildly ramified. Then

#G1 = p and #Gu = 1 for u > 1 in Z.

Proof : As K/Qp is unramified we can invoke the Corollaire on pg. 277 in [Ser2], giving

that either #G0 = p2 − p or #G0 = p − 1 holds. By the existence of wild ramification we

know that the former holds and also that #G1 = p. Suppose #G2 6= 1 (so #G2 = p). Thus,

G2 = G
2
p−1 . But Lemma 3.9 then gives that L * K

G
2
p−1
K ; that is, G

2
p−1

K acts non-trivially on

E[p]. This contradicts Theorem A in [Fon].

Remark 3.11. This proposition yields, among other things, a more immediate proof of

Lemma 3.3.2 in [Klu].

Remark 3.12. The conclusion of Proposition 3.10 holds also, as the proof showed, when the

suppositions are the same except that E/K has good (instead of multiplicative) reduction.

Before we proceed let us introduce the following notation.

Let I denote the inertia group of L/K and put againG :=Gal(L/K) and Ip :=Gal(K/Ktr).

Here Ktr denotes the compositum of all finite at worst tamely ramified extensions of K

(thus Ktr contains no finite wildly ramified extension of K). Let ρ : G → GL2(Fp) be any

fixed group homomorphism arising from the usual G-module structure of E[p] (see Chapter

1). Note that ρ is injective.

For the next theorem we make use of the facts that restricting elements of I(K/K) to G

yields the subgroup I and restricting elements of Gal(K/K)) to G gives all of G itself. Also,

we note that the field fixed by all elements of Ip is Ktr.

Theorem 3.13. Suppose that K/Qp is unramified and ` = p. Then the following are both

true:

10



(a) If ord(π)(∆) 6≡ 0 (mod `) then ρ(I) is conjugate to

(
∗ ∗
0 1

)
(so #ρ(I) = `(`− 1)).

(b) If ord(π)(∆) ≡ 0 (mod `) then ρ(I)is conjugate to

(
∗ 0

0 1

)
(so ρ(I) is cyclic of order `−

1), or ρ(I)is conjugate to

(
∗ ∗
0 1

)
.

P roof :

(a) By the Corollary(c) on pg. 277 of [Ser2] we see that we are done in light of Proposition

1.7.

(b) Since either (b) or (c) of the Corollary on pg. 277 of [Ser2] holds we clearly have what

is claimed. Further, we can use the corollary to figure out which occurs.

Remark 3.14. It should be noted that in Theorem 3.13 it is possible to have an example

of an unramified p-adic field K and an elliptic curve E/K of multiplicative reduction such

that ord(π)(∆) ≡ 0 (mod p) and at the same time have ρ(I) be as in (a). For an example

start with E/Q given by y2 + xy = x3 − x2 − x + 1 (this is curve 58A1 in [Cre1]), which

has ∆ = −116 and conductor 58. Take this curve over K := Q2 with ` = p = 2 and π a

uniformizer of Z2. We then have ord(π)(∆) = 2, but
√
−29 ∈ Q2(E[2]) while Q2(

√
−29)/Q2

is ramified. Hence #I = #ρ(I) is not `−1. This example also shows that Proposition 5.1.3.d

in [B-K] is not true as stated.

Theorem 3.15. Suppose that E/K is an elliptic curve with good reduction (keep all other

notation as before), K/Qp is unramified, and ` = p.

(a) If the reduction is ordinary then

ρ(G) is conjugate to a subgroup of

(
∗ ∗
0 ∗

)
(so #ρ(G) | `(`− 1)2) (3.1)

ρ(I) is conjugate to

(
∗ ∗
0 1

)
or is conjugate to

(
∗ 0

0 1

)
. (3.2)

(b) If the reduction is supersingular then

ρ(I) is cyclic of order `2 − 1 (3.3)

ρ(G) = ρ(I) if 2 | [k : F`] (3.4)

[ρ(G) : ρ(I)] = 2 with ρ(G) the normalizer of ρ(I) in GL2(F`) if 2 - [k : F`](3.5)
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Proof : The first part follows from a comment on pg. 273 of [Ser2] along with the

Corollary on pg. 274 of [Ser2]. The second part is a result of Proposition 12 on pg. 275

of [Ser2] (along with a comment made in the first paragraph of Section 2.2. on pg. 279 of

[Ser2]).

We then have the following corollaries to Theorem 3.13 and Theorem 3.15.

Corollary 3.16. Let K be a number field and E/K an elliptic curve. Let ∆ be the dis-

criminant of any fixed integral Weierstrass equation for E/K that is minimal at a prime

P. Suppose that E/K has multiplicative reduction at P and that P is unramified over the

prime number ` that is below it. Let Kv denote the completion of K with respect to the P-adic

absolute value. Let π be a uniformizer for OKv . Let I be an inertia subgroup of P in K(E[`]).

Then the conjugacy class of our ρ(I) is the same as the conjugacy class of the ρ(I) in Thm

3.13.

Corollary 3.17. Let K be a number field and E/K an elliptic curve. Suppose that E/K

has good reduction at P and that P is unramified over the prime number ` below it. Let Kv

denote the completion of K with respect to the P-adic absolute value. Let I (resp. D) be an

inertia (resp. decomposition) subgroup of P in K(E[`]). In the conclusion of Theorem 3.15

replace ρ(G) (resp. ρ(I)) by our ρ(D) (resp. our ρ(I)) here and use our OK/P here in place

of k. Then our ρ(I) and ρ(D) satisfy all properties stated in the conclusion of Theorem 3.15.

12



Chapter 4

Properties of the 3-division field: the number field case

We will let K denote a number field and E/K an elliptic curve. Throughout this chapter ∆

will be the discriminant of a Weierstrass equation for E/K. We denote by ∆
1
3 an arbitrary

but fixed cube root of ∆.

We will investigate K(E[3]), the 3-division field of E/K. This is a Galois extension of

K and #Gal(K(E[3])/K) divides 48 (see 3.4 in [Ade]). Let f(x) ∈ K[x] be any fixed 3rd-

division polynomial of E/K. Recall that f is a separable quartic whose roots in K are

precisely the x-coordinates that occur for P 6= 0 in E(K)[3].

4.1. We have the following facts:

(a) The splitting field of f over K, denoted by Kf , is contained in K(E[3])

(b) [K(E[3]) : Kf ] ≤ 2

(c) K(ζ3,∆
1
3 ) is the splitting field of the cubic resolvent of f (so in particular it is contained

in Kf ).

For (b) and (c) see, respectively, Prop 5.2.2(c) and Proposition 5.4.3 of [Ade].

Lemma 4.2. We have ∆ ∈ K∗3 if and only if 3 - [K(E[3]) : K].

Proof : For the if implication use 4.1(c) and 4.1(a). We have the only if part by (b)

and (c) in 4.1, along with the fact that the degree of Kf over the splitting field of its cubic

resolvent divides 4 (see Proposition 5.4.3 in [Ade]).

Proposition 4.3. Suppose that E/K has everywhere semi-stable reduction. Then a finite

prime P of K(∆
1
3 ) will ramify in K(E[3]) only if 3 ∈ P.
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Proof : Put F := K(∆
1
3 ). We know that EF/F is semi-stable, as well. Let P be prime

of OF with 3 6∈ P. If EF/F has good reduction at P then P is unramified since, by the

Néron-Ogg-Shafarevich Criterion (see Theorem VII.7.1 in [Sil2]), it is unramified locally. If,

however, EF/F has multiplicative reduction at P then we use Corollary 3.7 applied to the

number field F , yielding that if P is ramified in K(E[3]) then the ramification index is 3,

so 3 | [K(E[3]) : F ]. But then by Lemma 4.2 we know ∆ 6∈ K∗3, making 3 | [F : K].

Since 9 - [K(E[3]) : K] we then have that P does not ramify in K(E[3]). Therefore we are

finished.

Proposition 4.4. Suppose K 6= Q(ζ3) is quadratic imaginary of class number 1, and that

E/K has everywhere semi-stable reduction. Suppose further that E/K has no K-rational

three isogeny. Then ∆ 6∈ K∗3 and #Gal(K(E[3])/K) = 48.

P roof : Suppose ∆ ∈ K∗3. Since ζ3 6∈ K and E/K admits no K-rational three-isogeny

we have by Lemma 10(2) and 10(3) in [Kag] that Gal(K(E[3])/K(ζ3)) is isomorphic to

either Q8, the quaternion group of order 8, or Z/4Z. As every subgroup of Q8 is normal

(see Example 2.30 in [Rot]) we see that Q8 must have an order 4 quotient. Thus, in either

case above we see that K(E[3])/K(ζ3) has a quartic Abelian sub-extension, say K
′
/K(ζ3).

Now as ∆ ∈ K∗3 we see that adjoining ζ3 to K is the same as adjoining an appropriate

cube root of ∆ to K. Thus we can write K(ζ3) = K(∆
1
3 ). Then, by Proposition 4.3 we see

that K
′
/K(ζ3) is ramified only possibly at primes lying above ( 3). Consequently, ([Shu]

last paragraph before 2.9) the h(3)(K(ζ3)), the ray class number of K(ζ3) with respect to

the (integral ideal) modulus (3), must be divisible by 4 (see Chapter 2 for background on

class field theory). But, 4 - h(3)(K(ζ3)) (see the table on pg. 31 in [Shu]), a contradiction.

Therefore, ∆ 6∈ K∗3.

Since E/K admits no K-rational three-isogeny we find by Lemma 10(3) from [Kag]

that #Gal(K(E[3])/K) is {8, 16, 48}. Since ∆ 6∈ K∗3 and Lemma 4.2 together tell us that

#Gal(K(E[3])/K) is a multiple of 3, we conclude that #Gal(K(E[3])/K) = 48.

Proposition 4.5. Suppose that K 6= Q(ζ3) is quadratic imaginary of class number 1, and

E/K has prime conductor (π). Further, suppose that E/K has no K-rational three-isogeny.

Then all of the following hold:

(a) ord(π)(∆) 6≡ 0(mod 3)

(b) K(∆
1
3 ) = K((uπk)

1
3 ) for some u ∈ O∗K, some k in {1, 2}, and some cube root of uπk (so

for any u
′ ∈ O∗K and any cube root of u

′
we have K(∆

1
3 ) 6= K(u

′ 13 )).
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Proof :

(a) Let ∆
′

denote the discriminant of any global minimal Weierstrass equation for E/K.

We get, by E/K having conductor (π), that ∆
′

= uπk for some u ∈ O∗K and k ∈ N.

As Proposition 4.4 applies to the discriminant of any Weierstrass equation for E/K, we

see that ∆
′ 6∈ K∗3. Thus, 3=[K(∆

′ 13 ) : K]. Then, since O∗K ⊂ K∗3 we know [K(v
1
3 ) :

K] ≤ 2 for any v ∈ O∗K and any choice of cube root of v. Thus, we see that indeed

k =ord(π)(∆
′
) 6≡ 0(mod 3). As ∆ = b12 ·∆′ for some b ∈ K∗, we must have ord(π)(∆) 6≡

0(mod 3), as well.

(b) This is immediate from (a) as ∆ = b12·∆′ for some b ∈ K∗ implies that K(∆
1
3 ) = K(∆

′ 13 )

for an appropriate cube root of ∆
′
; that is, an appropriate cube root of uπk, where u ∈ O∗K

and k is in N.

We recall that we have a group homomorphism (see Chapter 1):

ρ : Gal(K(E[3])/K)→GL2(F3).

As ρ is injective (see 3.4 in [Ade]) we can and do identify Gal(K(E[3])/K) with its image

under ρ.

4.6. In GL2(F3) we have the matrices

σ :=

(
0 1

1 0

)
τ :=

(
1 −1

1 1

)
and γ :=

(
1 1

0 1

)
.

We have σ2 = 1, τ 8 = 1, and στσ = τ 3 (see pg. 728 in [B-K]).

Remark 4.7. When ρ is surjective we see that K(∆
1
3 ) is the fixed field of a subgroup

of GL2(F3) of order sixteen. But the order sixteen subgroups are precisely the 2−Sylow

subgroups. Hence they are all conjugate to one another. In particular, since# < σ, τ >= 16,

we can assume without loss of generality that the fixed field of < σ, τ > acting on K(E[3])

will be K(∆
1
3 ).

Proposition 4.8. Suppose K 6= Q(ζ3) is quadratic imaginary of class number 1 and that

E/K has everywhere semi-stable reduction. Further, suppose E/K admits no K-rational

three-isogeny. Let P a prime of OK lying above (3). If E has supersingular good reduction at

P then for any fixed K(∆
1
3 ) we have: P factors in K(∆

1
3 ) as p2

1p2 where p1 6= p2.
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Proof : We know K(∆
1
3 ) is a cubic extension of K by Proposition 4.4. Since 3 ramifies

in Q(ζ3) but not in K we know P ramifies in K(ζ3). As K(∆
1
3 , ζ3) is the Galois closure

of K(∆
1
3 )/K and P ramifies in K(∆

1
3 , ζ3), it follows that P ramifies in K(∆

1
3 ). If P were

totally ramified in K(∆
1
3 ) then we would have contradicted Theorem 3.15 (b), which says,

in particular, that the ramification index of P in K(E[3]) is not a multiple of 3. Therefore,

we are done.

Proposition 4.9. Suppose K 6= Q(ζ3) is quadratic imaginary of class number 1, and E/K

has everywhere semi-stable reduction. Further, suppose that E/K admits no K-rational three-

isogeny. If E has supersingular good reduction at no prime above 3 then K(∆
1
3 ) has even

class number.

Proof : To prove this one can use the idea and steps found in Proposition 5.6 of [B-K].

We can and do assume by Remark 4.7 that Gal(K(E[3])/K(∆
1
3 )) =< σ, τ >. Since K(∆

1
3 )

has no real archimedean prime, we get by Proposition 4.3 that K(E[3])/K(∆
1
3 ) is ramified

only possibly at primes that contain 3. Let P be a prime of K(∆
1
3 ) that contains 3. Suppose

that P ramifies in K(E[3]). Let Q be the prime of K below P. Let q be a prime of K(E[3])

lying above P. Thus, as 3 ramifies in Q(ζ3) but not in K, we know that Q ramifies in

K(ζ3,∆
1
3 ) with even ramification index. Then, since K(ζ3,∆

1
3 )/K is the Galois closure of

K(∆
1
3 )/K, we know that Q ramifies in K(∆

1
3 ). Then, as [K(∆

1
3 ) : K] = 3 (by Proposition

4.4), Q factors in K(∆
1
3 ) as P3 or P ·P′2 or P2 ·P′ .

Suppose that Q factors as P2 · P′ . As E/K has either multiplicative or ordinary good

reduction at Q and Q is unramified over (3), we can and do apply either Corollary 3.16 or

Corollary 3.17, which yield #I(q/Q) = 2 or 6. If #I(q/Q) = 6 then as 3 - [K(E[3])/K(∆
1
3 )]

we must have Q totally ramified in K(∆
1
3 ), which it is not. Thus #I(q/Q) = 2 must hold.

But then, as P is ramified over Q in our case here it would follow that P would not ramify

in K(E[3]), contradicting our above supposition that P ramifies in K(E[3]).

Thus, Q factors as either P3 or P ·P′2. Since Q ramifies in K(ζ3,∆
1
3 ) with even ramifi-

cation index, it follows that P ramifies in K(ζ3,∆
1
3 ) with ramification index 2.

Thus, as #I(q/Q) = 2 or 6, by Corollary 3.16 and Corollary 3.17, which we just discussed,

we see that #I(q/P) =2 (again 3 - [K(E[3])/K(∆
1
3 )]), say generated by η. As order(η)=2,

we see that η 6∈ {τ, τ 3, τ 5, τ 7, στ, στ 3, στ 5, στ 7}, since no element in this set has order 2. But

this set is precisely the complement of < σ, τ 2 > in < σ, τ >. Consequently, η ∈< σ, τ 2 >.

We have now shown that if P is any prime of K(∆
1
3 ) ramifying in K(E[3]) and q is any

prime of K(E[3]) lying above P then I(q/P) will be in < σ, τ 2 >. Let K0 be the fixed field
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of < σ, τ 2 > acting on K(E[3]). Thus, K0 is contained in the inertia field for P whenever P

ramifies in K(E[3]). Consequently, K0/K(∆
1
3 ) is unramified and quadratic. But this tells us

that the Hilbert class field of K(∆
1
3 ) is an finite Galois extension of even degree over K(∆

1
3 ).

As the Galois group of this extension is isomorphic to the ideal class group of K(∆
1
3 ), our

claim that K(∆
1
3 ) has even class number follows.

Corollary 4.10. Over Q(
√
−163) we have no elliptic curve of prime conductor (π) if p ∈ (π)

and p is one of the following: 2, 3, 7, 29, 43, 53, 71, 97, 103, 131, 137, 151, 173, 197, 227,

239, 257, 263, 283, 307, 311, 317, 347, 367, 373, 379, 401, 419, 439, 479, 491, 499.

Over Q(
√
−67) we have no elliptic curve of prime conductor (π) if p ∈ (π) and p is one of

the following: 2, 7, 13, 17, 29, 31, 41, 47, 73, 103, 127, 131, 149, 167, 173, 193, 211, 223,

227, 239, 241, 257, 269, 277, 283, 293, 317, 349, 359, 367, 397, 421, 431, 439, 449, 457, 461,

479, 491.

Over Q(
√
−43) we have no elliptic curve of prime conductor (π) if p ∈ (π) and p is one of

the following: 3, 5, 7, 11, 13, 17, 29, 31, 41, 43, 47, 53, 59, 79, 83, 97,107, 109, 127, 139,

157, 173, 181, 193, 197, 227, 239, 241, 251, 263, 311, 313, 349, 353, 367, 379, 397, 401, 431,

439, 443, 461, 479, 487, 491.

Over Q(
√
−19) we have no elliptic curve of prime conductor (π) if p ∈ (π) and p is one of

the following: 2, 3, 5, 7, 11, 13, 17, 23, 29, 41, 43, 59, 83, 97, 101, 131, 139, 167, 173, 191,

193, 197, 199, 241, 257, 263, 271, 277, 283, 313, 317, 347, 349, 367, 389, 397, 401, 419, 439,

443, 461, 463, 467, 491, 499.

Over Q(
√
−7) we have no elliptic curve of prime conductor (π) if p ∈ (π) and p is one of

the following: 2, 3, 5, 7, 11, 23, 29, 31, 43, 53, 59, 67, 71, 79, 103, 107, 109, 127, 137, 149,

151, 157, 163, 173, 179, 193, 227, 233, 241, 257, 263, 277, 283, 311, 313, 317, 331, 359, 367,

373, 379, 389, 401, 421, 439, 443, 449, 457, 463, 479, 487, 491, 499.

Over Q(
√
−1) we have no elliptic curve of prime conductor (π) if p ∈ (π) and p is one of

the following: 2, 3, 5, 7, 13, 17, 23, 31, 37, 41, 59, 61, 73, 89, 97, 101, 103, 109, 113, 149,

167, 173, 193, 227, 239, 241, 263, 269, 281, 283, 293, 311, 313, 337, 349, 353, 367, 373, 389,

397, 401, 409, 419, 421, 433, 439, 457, 461, 479, 491.

P roof : Let K be one of the six fields listed. Suppose E/K is an elliptic curve of prime

conductor (π) with p ∈ (π) and p among those primes listed for K. Then E/K admits

no rational K-rational three-isogeny by [Shu] Proposition 2.15 if p 6= 3 and by Proposition

4.11 below if p = 3. Thus, by Proposition 4.5 (a) we see that K(∆
1
3 ) = K((uπk)

1
3 ) for

17



some u ∈ O∗K and some k in {1, 2}. Then going through each possible choice of u ∈ O∗K
and k ∈ {1, 2} we use PARI/GP ([Pgp]) to perform two computations (see Appendix A).

In fact, since O∗K = {1,−1} and for each k in {1, 2} we have K((πk)
1
3 ) isomorphic over

K to K((−πk) 1
3 ), we will only have to go through K((πk)

1
3 ) for k ∈ {1, 2}. We do indeed

take advantage of this fact in our computations (see Appendix A). The first computation

performed is the factorization of (3) in K(∆
1
3 ). The second is the class number of K(∆

1
3 ). The

former yields that (3) factors in K(∆
1
3 ) with ramification index 3 and inertial degree 2. As 3

in inert in K this implies that (3), as a prime of K, factors in K(∆
1
3 ) as q3. Thus Proposition

4.8 says that E does not have supersingular reduction at (3). The latter computation yields

that K(∆
1
3 ) has odd class number, which, by Proposition 4.9 and the fact that 3 is inert

in K, tells us that E must have supersingular reduction at (3). As the results of these

computations are the same no matter what k ∈ {1, 2} we use we conclude that E/K cannot

exist, as claimed.

Proposition 4.11. Let K be imaginary quadratic of class number 1 with 3 not splitting

completely in K (let P denote the unique prime above 3). If E/K is an elliptic curve having

good reduction away from P, and potentially multiplicative reduction at P, then E/K admits

no K-rational three-isogeny.

Proof : If K = Q(
√
−3) then we are done by the fact that in Table 2 in [Pin] it is shown

that j(E) ∈ OK , making E/K have potentially good reduction everywhere. Thus we assume

K 6= Q(
√
−3). Suppose E/K does admit a K-rational three-isogeny, say to E

′
/K. Then by

Theorem 1.2 in [Pin] there exist τ, τ
′ ∈ K such that

(a) ττ
′
= 36

(b) j(E) = (τ+27)(τ+3)3

τ

(c) j(E
′
) = (τ

′
+27)(τ

′
+3)3

τ ′
.

Since K has class number 1, we know that every elliptic curve over K has a global

minimal Weierstrass equation. First, let ∆ and c4 be the invariants of one (and hence every)

global minimal Weierstrass equation for E/K. By (a) we know that either ordP(τ) > 0

or ordP(τ
′
) > 0. Without loss of generality assume that ordP(τ) > 0. Now since E has

potentially multiplicative reduction at P we have that ordP(j(E)) < 0, so ordP(τ + 27) +

3ordP(τ+3) < ordP(τ). But as ordP(τ) > 0 we already know that ordP(τ+27), ordP(τ+3) >
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0. Thus, ordP(τ) > 4. Hence, ordP(τ+27) ≥ 3. This makes ordP(τ) > 6 (and so ordP(τ+3) =

2). It also makes ordP(τ+27) = 3 (resp. = 6) if 3 is inert (resp. 3 ramifies). Hence, ordP(τ) >

12 if 3 ramifies. But then ordP(∆) = −ordP(j(E)) + 3ordP(c4) =ordP(τ)−ordP(τ + 27) −
3ordP(τ + 3) + 3ordP(c4) =ordP(τ)− 6 + 3ordP(c4) (resp. = ordP(τ)− 12 + 3ordP(c4)) if 3

is inert (resp. if 3 ramifies).

Also, if P
′ 6= P is a prime then ordP′ (j(E)) ≥ 0 since E has good reduction at P

′
,

making

0 ≤ordP′ (j(E)) =ordP′ (τ + 27)+3ordP′ (τ + 3)−ordP′ (τ).

If ordP′ (τ) < 0 then the far right expression equals 3ordP′ (τ), a contradiction. Thus

ordP′ (τ
′
) ≥ 0 since K-isogenous elliptic curves have the same conductors.

Suppose first that 3 is inert. Put ∆ = 3ku where u ∈ O∗K and k ∈ N. Also, we see that

τ = 3mv, τ
′

= 3m
′
v
′

where v, v
′ ∈ OK are not divisible by 3 and m,m

′ ∈ Z (we can do this

by the previous paragraph). Thus v, v
′ ∈ O∗K by (a).

Now suppose 3 ramifies. Since P is not principal (if it were principal then 3 or −3 is in

K∗2, a contradiction) but P2 is we get (∆) = P2k for some k ∈ N. Thus ∆ = 3ku for some

u ∈ O∗K and (along with 1. and the fact from 2 paragraphs ago) we have τ = 3mv, τ
′
= 3m

′
v
′

where v, v
′ ∈ O∗K and m,m

′ ∈ Z.

Consequently (regardless of whether 3 ramifies),

c34
3ku

=
c34
∆

= (τ+27)(τ+3)3

τ
= (3mv+27)(3mv+3)3

3mv
,

so

c34
(3mv+3)3

= (3mv+27)(3
m−6e+3ord(3)(c4)

u)
3mv

,

making

(v
1
3 )3c3436e

(u
1
3 )3(τ+3)3(3

ord(3)(c4)
)3

= 3mv + 27

where u
1
3 (resp. v

1
3 ) denotes the unique cube root of u (resp. v) in K and e denotes the

ramification index of 3 in K (note that τ + 3 6= 0 since otherwise j(E) = 0 contradicting

ordP(j(E)) < 0).

Then we have x ∈ OK with x3−27 = 3mv. Thus, (x−3)(x2+3x+9) = 3mv, so x−3 = 3nw

for some w ∈ O∗K with 0 ≤ n ≤ m. Thus, x = 3 + 3nw, so x2 + 3x+ 9 = 3m−nvw−1, yielding

32nw2 +3n+2w+27 = 3m−nvw−1. We recall that m > 4. If n = 0 then w2 +9w+27 is coprime
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to P; that is, 3mvw−1 is coprime to P making m = 0, a contradiction. If n = 1 then, since

P is the unique prime of K lying above (3), we see that ordP(32nw2 + 3n+2w + 27) is 2 if

3 is inert in K, and is 4 if 3 ramifies in K. This would make m = 3 in both cases (inert or

ramified). Thus n ≥ 2 holds. But then ordP(32nw2 + 3n+2w+ 27) = 3 (resp. = 6) if 3 is inert

(resp. if 3 ramifies). But 32nw2 + 3n+2w + 27 = 3m−nvw−1. Thus, m − n = 3 always holds.

Then, x2 + 3x+ 9 = 27w0 where w0 ∈ O∗K .

Suppose K 6= Q(
√
−1). Thus O∗K = {1,−1}, so v, w ∈ {1,−1}. This makes t3 − 27 +

3mvw−1 ∈ Z[t]. But this cubic polynomial has a root over K. Since K/Q is quadratic it

follows that t3 − 27 + 3mv has a root in Z.

Thus we can (and do) assume that x ∈ Z. Since x2 + 3x+ 9− 27w0 = 0 and w0 ∈ O∗K =

{1,−1}, we get w0 = 1, because w0 = −1 gives that x2 + 3x + 36 = 0, a contradiction

since t2 + 3t + 36 ∈ Z[t] is irreducible. Thus x2 + 3x − 18 = 0 so x ∈ {3,−6}. If x = 3

then, as x3 − 27 = 3mv, we get m = 0, a contradiction. Thus x = −6 holds and so m = 3,

since x3 − 27 = 3mv. This contradicts m > 4. Thus, the proof is complete in the case that

K 6= Q(
√
−1)

Thus, assume K equals Q(
√
−1). Now if w0 = −1 the polynomial t2 + 3t + 9 − 27w0

has discriminant equal to -135. Since
√
−135 6∈ Q(

√
−1) we get that this polynomial is

irreducible over K, contradicting that x is a root of it. Similarly, if w0 = i or −i then the

discriminant is −27 + 108w0, which does not have a square root in Q(
√
−1), because its

norm (down to Q) is 12393, which is not itself a square in Z. If w0 = 1 then x ∈ {3,−6} and

we get a contradiction on m, just as in the previous paragraph.
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Chapter 5

Non-existence results

We now relate our results to a conjecture of Cremona (see the Introduction in [Cre2]). Let

K be a quadratic imaginary number field and p a (non-zero) prime ideal of OK . We have

Γ0(p) :=

{(
a b

c d

)
∈ SL2(OK) : c ∈ p

}
.

Recall hyperbolic three-space H3 := {(z, t) : z ∈ C, t ∈ R>0}. We then have H∗3 := H3 ∪K ∪
{∞}. There is a natural action of Γ0(p) on H∗3 , allowing us to consider the homology group

H1(Γ0(p)\H∗3 ,Q). There is a natural involution on this space, and we consider the eigenspace

associated to the eigenvalue 1, denoted by V +(p). We note that this subspace is isomorphic

to the space of weight 2 cuspidal automorphic forms for Γ0(p). Cremona conjectures (see 3.7

in [Cre2]) that there exists an elliptic curve over a quadratic imaginary number field having

prime conductor p only when there is an element of V +(p) that satisfies certain properties

(see pg. 278 in [Cre2]).

Applying this to the data in the files for Q(
√
−19) and Q(

√
−67) found in [Cre3], it is

then conjectured that p = 19 is the smallest prime number such that there is an elliptic

curve defined over Q(
√
−19) of prime conductor (π) with p ∈ (π). Corollary 4.10 verifies

this claim. For Q(
√
−67) it is conjectured that 11 is the smallest prime such that there is

an elliptic curve of prime conductor (π) with p ∈ (π). Corollary 4.10 verifies this except it

cannot rule out the existence of an elliptic curve of prime conductor dividing either 3 or 5.

Remark 5.1. Note that there are exactly 95 primes less than 500.

In the table 4.2 below, we summarize some of what is known. In each column, other

than the first and last, we count the number of primes p ≤ 500 having a certain respective

property. In the first column the number fields are listed.

The second column counts the number of p occurring for the given field in Corollary 4.10.

The next column gives the number of p having a non-existence result via [Shu] (in [Shu] see

Corollary 3.3, Corollary 4.2, Corollary 5.3, Corollary 6.3a, and Corollary 7.2).
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In the next column we have the number of p for which there is an elliptic curve, over

Q, of conductor p where p is inert in K. These curves can be found in the tables of [Cre1].

Any such curve gives an elliptic curve, over K, of prime conductor. The fifth column gives

the primes p, for which, there is an elliptic curve, over K, of prime ideal conductor p, where

p ∈ p. There curves are those found in tables 3.2.3, 3.3.3, 3.4.3, 3.5.3, and 3.6.3 of [Cre2]

and the tables in [Cre4]. The next column lists the totals for each row. A given K may have

primes contributing to both column 2 and column 3 (resp. contributing to both column 4

and column 5). Each total, though, counts a prime only once.

Finally, the next to last column gives the percentage of primes p ≤ 500 for which we

know, with proof, whether there exists an elliptic curve, over K, of prime conductor p with

p ∈ p. The last column gives, for each K, the smallest prime not included in the total from

the previous column.

K 4.10 [Shu] lists [Cre1] table [Cre4] lists total % first prime

Q(
√
−1) 50 61 18 4 87 91.57 23

Q(
√
−2) 0 58 13 0 71 74.73 3

Q(
√
−3) 0 28 19 4 51 53.68 23

Q(
√
−7) 53 26 13 0 73 76.84 13

Q(
√
−11) 0 41 18 3 62 65.26 2

Q(
√
−19) 45 0 14 1 60 63.15 31

Q(
√
−43) 45 0 17 1 63 66.31 2

Q(
√
−67) 42 0 18 1 61 64.21 3

Q(
√
−163) 32 0 21 0 53 55.78 5

Table 5.2
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Chapter 6

a review of arithmetical graphs

An arithmetical graph consists of three objects (as introduced and developed in [Lor1]). The

first is a connected graph G with VG, the set of vertices of G, having exactly 2 ≤ n elements.

We allow for there to be multiple edges between distinct vertices of the graph but do not

allow any self-loops. In addition we require each vertex to have a positive integer multiplicity

attached to it. We always want to fix an ordering on the vertices v1, v2, ..., vn. Then to each

vi we associate a positive integer multiplicity ri. We require this to be done in such a manner

that for each vi we have ri|
∑
rj, where the sum is taken over all vertices adjacent to vi.

We then get the vector R = (r1, r2, ..., rn)t ∈ Zn. We then form a symmetric (n× n)-matrix

M where for i 6= j we have Mi,j := −(the number of edges between vi and vj) and for the

diagonal entries we uniquely put in positive integers so that M · R is the zero vector in Zn.

An arithmetical graph is then the triple (G,M,R).

We will call an element D ∈ Zn a divisor. The matrix Rt defines the Z-module homo-

morphism Rt: Zn → Z by D 7→ Rt · D. The matrix M defines a Z-module homomorphism

M : Zn → Zn by D 7→ M · D. The degree of D is then defined as the integer Rt · D. By

symmetry of M and M · R being zero we see that Rt ·M is zero making Rt · (M ·D) zero;

that is, im(M) ⊂ ker(Rt) and we form the quotient group ker(Rt)/im(M). This is a finite

Abelian group. We denote it by Φ(M) and its order by φ(M).

We will call such aD effective if each component ofD is non-negative. Two divisorsD1, D2

will be called equivalent if D1 −D2 ∈ im(M). We put [D] := {D′ ∈ Zn : D is equivalent to

D
′}. We define the g-integer, denoted g(M), as the smallest non-negative integer such that

every divisor of degree at least g(M) is equivalent to an effective divisor (see Proposition 1.6

[Lor2] for the existence of such an integer). Related to this is the invariant ρ(M), defined

to be the smallest non-negative integer such that there is an effective divisor of degree d

whenever ρ(M) ≤ d. It is clear that ρ(M) 6= 1 and also that ρ(M) ≤ g(M).

Let di denote the number of edges incident to vi. We let β(M) denote the Betti number

of G, so 2 · β(M)− 2 :=
n∑
i=1

(di − 2). A natural way to extend this concept is to include the
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multiplicities of the vertices in the sum. We thus define the linear rank, denoted g0(M), by

2 · g0(M)− 2 =
n∑
i=1

ri(di − 2).

Also, we have

C(M) := {[K] : deg(K) = 2g(M)− 2 and K − E is equivalent to an effective divisor

whenever E is an effective divisor of degree g(M)− 1}.

We will say that K is a canonical divisor for M if [K] ∈ C(M).

An arithmetical graph is called minimal if 2 ≤ Mi,i for all i ∈ {1, ...n} and is called an

arithmetical tree when G is a tree (i.e., β(M) = 0). A vertex vi is called a node if di ≥ 3. It is

called terminal if di = 1. A connecting chain (resp. terminal chain) is a path in G between

two nodes (resp. between a node and a terminal vertex). The weight of a chain is defined to

be gcd{ri : vi is in the chain}. Finally, a node is called a terminal node it has exactly one

connecting chain attached to it.

We can look to arithmetic geometry as a source of arithmetical graphs. Let F be a discrete

valuation field. By a curve over F , X/F , we mean a 1-dimensional F -scheme that is smooth,

proper, geometrically irreducible whose genus, pg(X), is positive. In particular we see that

a curve is projective. By a regular model for a curve X/F we mean a connected regular

OF -scheme that is proper and is such that its generic fiber is isomorphic over F to X/F .

Every curve over F has a regular model.

For a curve X/F and a model X/OF we can consider the k-scheme Xk, the special fiber.

We know that the number of irreducible components of Xk is finite. Denote these as C1, ..., Cn

and let the positive integers r1, ..., rn denote their respective multiplicities. Attached to this

model we have the so-called intersection matrix, which is defined to be the (n × n)-matrix

M where

Mij := −(Ci · Cj).

Note that M ·R is zero where R := (r1, ..., rn)t. We will let G be the connected graph whose

vertices correspond to the irreducible components and whose edges, between distinct vertices

vi and vj, are equal in number to (Ci · Cj).
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Note that if X(K) 6= ∅ then gcd(r1, ..., rn) = 1. Note that if we choose another regular

model of X/K, say one with s1, ..., sm as the associated sequence of multiplicities, then

gcd(r1, ..., rn)=gcd(s1, ...sm).

Unless otherwise stated, we will assume, for a curve in question, that this gcd equals 1. In

light of this assumption, it is shown in [Ray] that when k is algebraically closed we have that

ker(Rt)/im(M) is isomorphic to the group of k-rational points of the scheme of components

of the special fiber of the Néron model of Jac(X)/F .

Conversely, every arithmetical graph (G,M,R) occurs as the degeneration of a curve as

above (see [Win]).
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Chapter 7

Gluing two arithmetical graphs and the effect on the g-integer

Take two arithmetical graphs (G,M,R) and (G
′
,M

′
, R
′
). Let n and m denote respectively

the number of vertices of G and G
′
. Take the unique pair of positive integers (h, h

′
) where

gcd(h, h
′
) = 1 and simultaneously h · rn = h

′ · r′1. One easily checks that gcd(rn, r
′
1) =

rn·r
′
1

r
.

Put r := h · rn = h
′ · r′1. We get from these two arithmetical graphs another arithmetical

graph by in effect gluing G (at its vertex vn) to G
′

(at its vertex v
′
1).

Definition 7.1. The join of (G, vn) to (G
′
, v
′
1) is an arithmetical graph (G

′′
,M

′′
, R
′′
) on

n+m− 1 vertices where for 1 ≤ i, j ≤ n+m− 1

M
′′
i,j :=



Mi,j if i, j ≤ n and (i, j) 6= (n, n)

M
′
i−n+1,j−n+1 if n ≤ i, j and (i, j) 6= (n, n)

Mn,n +M
′
1,1 if (i, j) = (n, n)

0 else

and

R
′′ t

:= (h · r1, h · r2, ..., h · rn−1, r, h
′ · r′2, ..., h

′ · r′m).

When it is clear from the context what the two vertices are where the join is performed

we will simply call it the join of G to G
′

and write it as G⊕G′ , in which case we may denote

M
′′

by M ⊕M ′
.

Definition 7.2. The arithmetical graphs that can be constructed as a join where (h, h
′
) =

(1, 1) will be called reducible. All other arithmetical graphs will be called irreducible. For

the purpose of distinction we may use the phrase simple join when we are in the case that

(h, h
′
) = (1, 1).

Finally, it is clear that the operation of join is commutative, in the sense that (G⊕G′ ,M⊕
M
′
, R
′′
) is explicitly isomorphic to the arithmetical graph that is associated to M

′ ⊕M .

7.3. One easily checks that g0(M
′′
) = h · (g0(M)− 1) + h

′ · (g0(M
′
)− 1) + r + 1.
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It turns out, however, that the g-integer does not transform in the exact same way. The

following result, nonetheless, gives a lower bound.

Proposition 7.4. Let (G
′′
,M

′′
, R
′′
) be the join of (G,M,R) and (G

′
,M

′
, R
′
). We have

g(M
′′
) = h · (g(M)− 1) + h

′ · (g(M
′
)− 1) + r + 1 + ε where 0 ≤ ε ≤M

′′
n,n · r · (r − 1).

Proof : First we show that h ·(g(M)−1)+h
′ ·(g(M

′
)−1)+r+1 ≤ g(M

′′
). Take

(
A

a

)
∈

Div(M) of degree g(M)− 1 that is not equivalent to an effective divisor. Also, take

(
b

B

)
∈

Div(M
′
) of degree g(M

′
)−1 that is not equivalent to an effective divisor. Now


A

a+ b+ 1

B


∈ Div(M

′′
) has degree h ·(g(M)−1)+h

′ ·(g(M
′
)−1)+r. Suppose


A

a+ b+ 1

B

 is equivalent

to some effective divisor. Thus,
A

a+ b+ 1

B

 = M
′′ ·D + E = (x1, ..., xn−1, xn + y1, y2, ..., ym)t + E.

where

E := (e1, ..., en+m−1)t is effective, (x1, ..., xn)t ∈ im(M), and (y1, ..., ym)t ∈ im(M
′
).

But then (
A

a

)
= (x1, ...xn)t + (0, 0, ..., 0, y1 − b− 1)t + (e1, ...en)t.

and (
b

B

)
= (y1, ...ym)t + (xn − a− 1, 0, 0, ..., 0)t + (en, en+1, ..., en+m−1)t.

By

(
A

a

)
and

(
b

B

)
each individually not being equivalent to an effective divisor we find

that y1−b−1+en < 0 and xn−a−1+en < 0; that is, y1 +en < b+1 and xn+en < a+1. But
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xn+y1 +en = a+b+1 (so xn+y1 +en+1 = a+b+2) making y1 +xn+2en < xn+yn+en+1,

which implies that en < 1. As 0 ≤ en we get en = 0. Thus, y1 < b + 1 and xn < a + 1;

that is, y1 ≤ b and xn ≤ a. But from xn + y1 = a + b + 1 we then get a + b + 1 ≤ a + b,

a contradiction. Consequently,


A

a+ b+ 1

B

 is not equivalent to an effective divisor, so we

must have h · (g(M)− 1) + h
′ · (g(M

′
)− 1) + r + 1 ≤ g(M

′′
).

Now suppose that g(M
′′
) > h · (g(M) − 1) + h

′ · (g(M
′
) − 1) + r + 1 + M

′′
n,n · r2. Thus

there is a divisor in Div(M
′′
) of degree h · (g(M)− 1) +h

′ · (g(M
′
)− 1) + r+ 1 +M

′′
r,r · r2 + c

(with 0 ≤ c) that is not equivalent to an effective. As G
′′

has a vertex of multiplicity r we

can and do assume that c < r. But this fact also tells us that we can subtract off the divisor
0

M
′′
n,n · r
0

 and end up with a divisor that is also not equivalent to an effective. Thus we

have


A

α

B

 ∈ div(M
′′
) of degree h · (g(M)− 1) + h

′ · (g(M
′
)− 1) + r + 1 + c such that


A

α

B

+


0

M
′′
n,n · r
0


is not equivalent to an effective.

There is ` ∈ Z such that

h · (g(M)− 1) + 1 ≤ degM ′′

(
A

α + `

)
≤ h · (g(M)− 1) + r

and

h
′ · (g(M

′
)− 1) + 1 ≤ degM ′′

(
−`
B

)
.

To see this is possible note that the effect on the degree that happens when we add

(
0

`

)

onto

(
A

α

)
is adding r · `. This then gives
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h·(g(M)−1)+1
h

≤ degM

(
A

α + `

)
and

h
′ ·(g(M ′ )−1)+1

h′
≤ degM ′

(
−`
B

)
These then give respectively that

g(M) ≤ degM

(
A

α + `

)
and

g(M
′
) ≤ degM ′

(
−`
B

)
Thus (

A

α + `

)
= M ·D1 + E

and (
−`
B

)
= M

′ ·D′1 + E
′

where

E := (e1, ..., en)t and E
′
:= (e

′
1, ..., e

′
m)t are both effective.

But then


A

α

B

+


0

M
′′
n,n · r
0

 =
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M
′′ ·



d11

...

d1n−1

d1n + d
′
11

d
′
12

...

d
′
1m


+



0
...

0

d
′
11

...

d
′
11

−d′11
Mn,n − d1nM

′
1,1

d1n

...

d1n

0
...

0



+



e1

...

en−1

en + e
′
1

e
′
2
...

e
′
m


+



0
...

0

M
′′
n,n · r
0
...

0



Now we can and do assume that both D1 and D
′
1 are such that 0 ≤ d1n , d

′
11
≤ r − 1. This

makes −M ′′
n,n · (r − 1) ≤ −d′11

Mn,n − d1nM
′
1,1, yielding that


A

α

B

 +


0

M
′′
n,n · (r − 1)

0

 is

equivalent to an effective, a contradiction.

The ε in Proposition 7.4 has another upper bound. By the fact g(M) ≤ g0(M
′′
), we

immediately get by combining 7.3 and Proposition 7.4 that

h · (g0(M)− 1) + h
′ · (g0(M

′
)− 1) + r + 1 = h · (g(M)− 1) + h

′ · (g(M
′
)− 1) + r + 1 + ε.

Consequently, we get the bound

Remark 7.5. ε ≤ h · (g0(M)− g(M)) + h
′ · (g0(M

′
)− g(M

′
)).

Corollary 7.6. Let (G
′′
,M

′′
, R
′′
) be the join of (G,M,R) and (G

′
,M

′
, R
′
). If g(M) = g0(M)

and g(M
′
) = g0(M

′
) then g(M

′′
) = g0(M

′′
).

Proof : By Remark 7.5 we know that the ε in Proposition 7.4 must equal 0. Thus,

g(M
′′
) = h · (g(M)− 1) + h

′ · (g(M
′
)− 1) + r + 1.

Since g(M
′
) = g0(M

′
) and g(M

′′
) = g0(M

′′
) by hypothesis we get
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g(M
′′
) = h · (g0(M)− 1) + h

′ · (g0(M
′
)− 1) + r + 1.

By 7.3 this says g(M
′′
) = g0(M

′′
).

Corollary 7.7. Let (G
′′
,M

′′
, R
′′
) be the join of (G,M,R) and (G

′
,M

′
, R
′
). If r = 1 then

g(M
′′
) = g(M) + g(M

′
) + r − 1.

Proof : Since r = 1 we get h = h
′

= 1. The result is then immediate from Proposition

7.4

Example 7.8. It is however possible for the ε in Proposition 7.4 to be strictly positive. For

an example take

This graph has g-integer 0. If we join this graph to itself at the node then the resulting

graph has g-integer 7 (see Appendix C for the computation), making ε = 2 in the formula

for Proposition 7.4.

Proposition 7.9. Let (G,M,R) and (G
′
,M

′
, R
′
) be two arithmetical graphs. We have

φ(M ⊕M ′
) = φ(M) · φ(M

′
)· gcd(rn, r

′
1)2.

Proof : By Corollary 1.3 and Theorem 1.4 in [Lor1] we have

φ(M ⊕M ′
) = det(M⊕M ′

n,n
)

r·r ,

φ(M) = det(Mn,n)
rn·rn ,

and

φ(M
′
) = det(M

′1,1
)

r
′
1·r
′
1

.

By the way in which M ⊕M ′
is formed from M and M

′
we see that

det(M ⊕M ′n,n
) =det(Mn,n)·det(M

′1,1
).

Thus, φ(M ⊕M ′
) · r2 = φ(M) · r2

n · φ(M
′
) · r′1

2
making

φ(M ⊕M ′
) = φ(M) · φ(M

′
) · ( rn·r

′
1

r
)2 = φ(M) · φ(M

′
)·gcd(rn, r

′
1)2,

as claimed.
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Chapter 8

The g-integer and Blow-ups

In this chapter we examine how certain invariants change under a blow-up. We start by

recalling the definition of a blow-up (see 1.8 in [Lor1] for additional facts). Take an effective

divisor Q := (q1, ..., qn)t ∈ Zn and form the (n+ 1× n+ 1)-matrix

MQ :=

(
M +Q ·Qt −Q
−Qt 1

)
Assume for the rest of this chapter that MQ is the intersection matrix associated to an

arithmetical graph (GQ,MQ, RQ) where RQ = (r1, ..., rn,
∑
qiri)

t.

We first note that for B ∈ Div(M) and b ∈ Z we have

MQ ·

(
B

b

)
=

(
M +Q ·Qt −Q
−Qt 1

)
· (b1, ..., bn, b)

t.

=

(
M ·B

0

)
+
(
q1(−b+

∑
qibi), q2(−b+

∑
qibi), ..., qn(−b+

∑
qibi), b−

∑
qibi

)t
(∗)

and hence(
M ·B

0

)
= MQ ·

(
B

b

)
+
(
q1(b−

∑
qibi), q2(b−

∑
qibi), ..., qn(b−

∑
qibi),−b+

∑
qibi

)t
(∗∗).

Proposition 8.1. Keep the notation as above. Then have g(MQ) = g(M).

Proof : First we show g(M) ≤ g(MQ). Suppose g(MQ) < g(M). Take D ∈ Div(M) of

degree g(M)−1 that is not equivalent to some effective divisor. Thus, as g(MQ) ≤ g(M)−1

we have for

(
D

0

)
∈ Div(MQ) that

(
D

0

)
= MQ ·D

′
+ E for some D

′
, E ∈ Div(MQ) where

E ≥ 0. Thus, by (**) we get

D = M · (d′1, ..., d
′
n)t + (e1, ..., en)t +

(
q1(−d′n+1 +

∑
qid

′
i), ..., qn(−d′n+1 +

∑
qid

′
i)
)t

.
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and we also get

0 = d
′
n+1 + en+1 −

∑
qid

′
i.

If we show that each entry of this last column vector is non-negative then clearly we will have

reached a contradiction. Now each entry is non-negative if (since each qi ≥ 0)
∑
qid

′
i ≥ d

′
n+1.

But−en+1 = d
′
n+1−

∑
qid

′
i and 0 ≤ en+1, so indeed

∑
qid

′
i ≥ d

′
n+1. Consequently, we conclude

that g(M) ≤ g(MQ).

Now we will show that g(MQ) ≤ g(M). Suppose g(M) < g(MQ). Take

(
D

α

)
∈ Div(MQ)

having degree g(MQ) − 1 that is not equivalent to some effective divisor. Thus D + αQ ∈
Div(M) has degree g(MQ)− 1 since

(r1, ..., rn,
∑
riqi)

t.

is the kernel vector for MQ. Now since g(M) ≤ g(MQ)− 1 we get

D + αQ = M ·D′ + E

for some D
′
, E ∈ Div(M) where E ≥ 0. Thus(

D + αQ

0

)
=

(
M ·D′

0

)
+

(
E

0

)
making (

D

α

)
=

(
M ·D′

0

)
+

(
E

0

)
−

(
αQ

−α

)

=

(
M ·D′

0

)
+

(
E − αQ

α

)
.

This along with

MQ ·

(
D
′

δ

)
=

(
M ·D′

0

)
+
(
q1(−δ+

∑
qid

′
i), q2(−δ+

∑
qid

′
i), ..., qn(−δ+

∑
qid

′
i), δ−

∑
qid

′
i

)t
gives (

D

α

)
=

MQ ·

(
D
′

δ

)
−
(
q1(−δ+

∑
qid

′
i), ..., qn(−δ+

∑
qid

′
i), 0

)t
−(0, 0, ..., 0, δ−

∑
qid

′
i)
t+

(
E − αQ

α

)
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=MQ ·

(
D
′

δ

)
+
(
e1 − q1(α− δ +

∑
qid

′
i), ..., en − qn(α− δ +

∑
qid

′
i), α− δ +

∑
qid

′
i

)t
.

Thus, if δ := α +
∑
qid

′
i then for each 1 ≤ i ≤ n the ith entry in this last column vector

equals ei while the last entry equals 0. Thus we have a contradiction and consequently the

proposition is proven.

Remark 8.2. Since g0(M) ≤ g0(MQ) (see Lemma 2.10 in [Lor3]) we get by Proposition 8.1

that g0(M)− g(M) ≤ g0(MQ)− g(MQ).

We have the following fact for blow-ups. Recall that we have the explicit group isomor-

phism

Θ : Zn/im(M)→ Zn+1/im(MQ).

defined by [D] 7−→ [

(
D

0

)
]. We know Θ is well-defined and injective since

D1 −D2 ∈im(M) if and only if

(
D1

0

)
−

(
D2

0

)
∈im(MQ).

It is surjective since

(q1, q2, ..., qn,−1) ∈ Im(MQ).

Since Θ preserves degree we find that restricting Θ to the subgroup Φ(M) yields

Φ(M) ∼= Φ(MQ).

Proposition 8.3. We have C(M) 6= ∅ if and only if C(MQ) 6= ∅ (see Chapter 5 for the

notation). In fact we know that if K is a canonical divisor for M then

(
K

0

)
is a canonical

divisor for MQ and that if

(
K

k

)
is a canonical divisor for MQ then K + (k · q1, ..., k · qn)t is

a canonical divisor for M . Moreover, restricting Θ|C(M) yields a set bijection

C(M) ∼= C(MQ).
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Proof : Suppose K is a canonical divisor for M and suppose

(
E

e

)
∈ Div(MQ) is an

effective divisor of degree g(MQ) − 1. Thus E + (e · q1, ..., e · qn)t ∈ Div(M) is an effective

divisor of degree g(MQ) − 1. Thus by Proposition 8.1 this divisor has degree g(M) − 1.

Consequently,

K − E − (e · q1, ..., e · qn)t = M ·B + E
′

for some B,E
′ ∈ Div(M) where E

′
is effective. This makes(

K

0

)
−

(
E

e

)
=

(
M ·B

0

)
+

(
E
′

0

)
+ (e · q1, ..., e · qn,−e)t

in turn making

(
K

0

)
−

(
E

e

)
=

MQ ·

(
B

−e+
∑
qibi

)
+



q1(−e+
∑
qibi −

∑
qibi)

q2(−e+
∑
qibi −

∑
qibi)

.

.

.

qn(−e+
∑
qibi −

∑
qibi)

−b+
∑
qibi


+

(
E
′

0

)
+



eq1

.

.

.

eqn

−e



= MQ ·

(
B

−e+
∑
qibi

)
+

(
E
′

0

)
.

Thus

(
K

0

)
is indeed a canonical divisor for MQ.

Now we suppose that

(
K

k

)
is a canonical divisor for MQ and suppose E ∈ Div(M) is an

effective divisor of degree g(M) − 1. Since g(MQ) = g(M) by Proposition 8.1 we find that(
E

0

)
∈ Div(MQ) is an effective divisor of degree g(MQ)− 1. Then

(
K

0

)
−

(
E

e

)
= MQ ·

(
B

b

)
+

(
E
′

e
′

)
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for some

(
B

b

)
,

(
E
′

e
′

)
∈ Div(MQ) where

(
E
′

e
′

)
≥ 0. Thus,

(
K

0

)
+ (k · q1, ..., k · qn, 0)t −

(
E

0

)
= MQ ·

(
B

b

)
+

(
E
′

e
′

)
+ (k · q1, ..., k · qn,−k)t

By (*) we then have

K+(k ·q1, ..., k ·qn)t−E = M ·B+E
′
+(q1(−b+

∑
qibi), ..., qn(−b+

∑
qnbn))t+(k ·q1, ..., k ·qn)t

and

0 = b−
∑
qibi + e

′ − k.

This latter fact says that 0 ≤ k − b +
∑
qibi, which shows (as 0 ≤ qi) that the sum of the

last two column vectors is an effective divisor. Therefore, K+ (k · q1, ..., k · qn)t is an effective

divisor for M .

We now show how the irreducibility/reducibility nature of an arithmetical graph is often

invariant under a blow-up.

Proposition 8.4. If G is irreducible then GQ is also irreducible unless Q takes the following

shape with respect to some elementary basis vector Ei = (0, ..., 0, 1, 0, ..., 0)t of Zn:

Q = q · Ei for some positive integer q and i ∈ {1, .., n} for which ri = 1.

When Q in is this special shape then GQ is reducible in exactly one way.

Proof : Suppose the blow-up is reducible, say at vertex vt with V1 ∪ V2 = VGQ − {vt}
being the associated non-trivial partition of the others vertices in VGQ . Consequently, we

have

rt |
∑
j∈J1

MQt,jrj and rt |
∑
j∈J2

MQt,jrj

where for i ∈ {1, 2} we put Ji := {j : MQt,j 6= 0} ∩ Vi. As J1, J2 6= ∅ we know these 2 above

sums are each non-zero. In light of all this we see that vt 6= vn+1 because

−rn+1 = −
n∑
i=1

riqi =
n∑
i=1

MQn+1,iri.
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Thus we may and do assume that vn+1 ∈ V2. Hence, {V1, V2 − {vn+1}} gives a partition

of VG − {vt}. Moreover, since no vertex in V1 is connected to some vertex in V2 in the

graph GQ we know that no vertex in V1 is connected to some vertex in V2 − {vn+1} in

the graph G. In addition we know that the partition splits G, unless it is trivial. Thus we

will be able to make G reducible at vt with this partition provided the partition is non-

trivial, gcd{ri : vi ∈ V1} = 1, gcd{ri : vi ∈ V2 − {vn+1}} = 1, and rt |
∑
j∈J

Mt,jrj where

J := {j : Mt,j 6= 0} ∩ V1.

Now our partition will be non-trivial unless V2 = {vn+1}. If indeed V2 = {vn+1} we use

the fact that for i 6= t we have qi 6= 0 only when vi ∈ V2 to conclude that Q = q · Et for

some positive integer q. But then we must also have rn+1 = q · rt and moreover there is

an arithmetical graph having exactly 2 vertices, one with multiplicity rt and the other with

multiplicity q · rt. Thus, gcd(rt, q · rt) = 1, so rt = 1. Then vt has multiplicity 1 in G. Finally,

it is clear by G being irreducible and by the structure of singular and trivial blow-ups that

this was in fact the only way to make GQ reducible.

For the rest of the proof we will assume that V2 6= {vn+1} and hence our partition is non-

trivial. By the way blow-ups are constructed and the fact that no vertex in V1 is connected,

in GQ, to vn+1 we see that Mt,j = MQt,j for all j ∈ V1, making J = J1. This gives that

rt |
∑
j∈J

Mt,jrj.

Since {V1, V2} is the partition for the way in which we have made GQ reducible we know

that 1 =gcd{ri : vi ∈ V1} and that 1 =gcd{ri : vi ∈ V2}. Now as rn+1 =
n∑
i=1

riqi and vi ∈ V2

if qi 6= 0 we know that

gcd{ri : vi ∈ V2 − {vn+1}} =gcd{ri : vi ∈ V2} = 1.

We are now finished with the proof.

Proposition 8.5. If GQ is irreducible then G is also irreducible.

Proof : Suppose G is reducible, say at vertex vt with V1 ∪ V2 = VG − {vt} being the

associated non-trivial partition of the others vertices in VG. Now if v`1 and v`2 are distinct

vertices in VG − {vt} that both become connected to vn+1 in GQ then, by the structure of

blow-ups, we know that v`1 and v`2 are connected in G. Thus we would have v`1 and v`2 in

the same Vi. Thus we may and do assume that vn+1 is connected to no vertex in V1. Hence
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{V1, V2∪{vn+1}} gives a non-trivial partition of VQ−{vt} and it moreover splits GQ. Now from

how we are viewing G being reducible we know 1 =gcd{ri : vi ∈ V1}, 1 =gcd{ri : vi ∈ V2},
and

rt |
∑
j∈J

Mt,jrj.

where J := {j : Mt,j 6= 0}∩V1. Note that by what we showed above and by the way blow-ups

are constructed we have J = {j : MQt,j 6= 0} ∩ V1. From all these it is clear now that GQ is

indeed reducible at vt with the above choice of partition of VQ − {vt}.
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Chapter 9

irreducible arithmetical trees of g-integer 0

It is easy to see that for an arbitrary arithmetical graph we have g(M) = 0 if and only if

φ(M) = 1 and ρ(M) = 0. The question still remains as to what values of g0(M) can occur

for the graphs with g(M) = 0. The following family of examples shows that every possible

value of g0(M) will occur.

Example 9.1. Here −1 ≤ k is an arbitrary odd integer. We then have:

Here we use Euclid’s Lemma (Remark 4.2 in [Lor1]) to construct the non-trivial terminal

chains (if k = −1 then we make these two chains start out with vertices of multiplicity 1

and 2). We see that:

(a) G is an irreducible tree

(b) φ(M) = 1

(c) ρ(M) = 0

(d) g0(M) = k+1
2

(e) g(M) = 0.
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Chapter 10

Irreducible arithmetical trees of g-integer 1

It is easy to see that for an arbitrary arithmetical graph we have g(M) = 1 only if 2 ≤ φ(M)

and ρ(M) = 0. Note that the converse is false, however. The question still remains as to

what values of φ(M) and g0(M) can occur for the graphs with g(M) = 1. The following

family of examples shows that for φ(M) = 2 we have that every possible value of g0(M) will

occur.

Example 10.1. Let k be an arbitrary even positive integer. If a, b are any positive integers,

each of which is coprime to k, and with either a+ b = k or a+ b = 3k holding, then consider:

Here we use Euclid’s Lemma (see Remark 4.2 in [Lor1]) to construct the two non-trivial

terminal chains. We see that:

(a) G is an irreducible tree

(b) φ(M) = 2

(c) ρ(M) = 0

(d) g0(M) = k
2
.

If the two multiplicity 1 vertices determined the same class then we see, by Proposition 2.7

in [Lor4], that there would be the only one degree k
2

class represented by an effective. This

would create a contradiction as g(M) ≤ g0(M) = k
2
. Thus they determine different classes,

so it is clear that g(M) = 1.
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Proposition 10.2. Let s be a non-negative integer and put

Ds := {r ∈ Z : r is the degree of a vertex of a minimal arithmetical graph of g-integer s}.

It follows that Ds is an infinite set.

Proof : For any even positive integer k let Gk be the graph in the Example 10.1 that

corresponds to the same k and where a + b = k. For s 6= 0 consider the arithmetical graph

we get when we start with Gk and then join to it, at one of its vertices of multiplicity 1, s−1

copies of Gk, each at a multiplicity 1 vertex. By Proposition 7.4 we see that the resulting

graph has g-integer equal to s. Further, it is clear that this graph is minimal. Finally, if

k
′ 6= k then Gk′ is not similar to (see 1.5 in [A-W]) Gk. Since k was arbitrary we indeed get

Ds being infinite. When s = 0 take for any odd positive integer k the graph in Example 9.1,

yielding that D0 is infinite.

Remark 10.3. Proposition 10.2 shows that no case of Theorem 1.6 nor even Corollary 1.7

in [A-W] is true if we replace their genus of type by our g-integer.

In the rest of this chapter we make use of the following two concepts.

Definition 10.4. Let t(M) denote the number of multiplicity 1 vertices.

10.5. For an arithmetical tree (G,M,R) and a non-terminal vertex v1 that disconnects G

we can perform what is called a break and complete. First we break G at v into two graphs.

Let X1 := {v2, ..., vk} and X2 := {vk+1, ..., v`} be a non-trivial partition of the vertices of G

that are connected to v1. Let Gi be the subgraph of G on the vertices {vj ∈ VG : the path

from v1 to vj goes through some vertex in Xi} ∪ {v1}. Put hi :=gcd{the multiplicities of the

vertices in Gi}. Complete G1 (resp. G2) into an arithmetical tree by first replacing for all vj

in VG1 (resp. in VG2) rj by rj/h1 (resp. by rj/h2), second by attaching a single new vertex

v∗ (resp. v∗) to v1 of multiplicity r∗ :=
∑̀
j=k+1

rj
h1

(resp. r∗ :=
k∑
j=1

rj
h2

), and then finally using

Euclid’s lemma to form a terminal chain with (v1, r/h1) and (v∗, r∗) (resp. (v1, r/h2) and

(v∗, r∗)), ending in a vertex vs1 (resp. vs2). We see that h1 ·rs1 = h2 ·rs2 . Denote this common

value by ω.

Proposition 10.6. Let G be an irreducible tree. If φ(M) ≤ t(M) then 2t(M)−2 ≤ φ(M).
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Proof : Suppose φ(M) ≤ t(M). If G has no nodes then we are immediately done. Suppose

G has at least one node. We note that, by irreducibility of G, we know that a vertex has

multiplicity 1 only when the vertex is terminal. By abuse of notation we write the nodes of

G as

v1, ..., v`.

We let di denote the degree of vi. When vi has at least one terminal chain attached to it we

will let

vi1 , ..., viki

be the terminal vertices of G associated to vi.

We will show, by induction on `, that

2t(M)−2 ≤ φ(M).

First, suppose ` = 1. If t(M) = 1 then we are done. Assume that 2 ≤ t(M). We have

φ(M) =
r
d1−2
1

r11 ·...·r1k1

and d1 = k1. Then, since 2 ≤ t(M), 1 ≤ r1
r1j

, and 2 ≤ r1
1

we have

2t(M)−2 ≤ φ(M).

Now suppose that 2 ≤ `. Suppose further that 2t(M0)−2 ≤ φ(M0) for all irreducible

arithmetical trees that satisfy φ(M0) ≤ t(M0) and whose number of nodes is in {1, ..., `−1}.
Choose a terminal node of G, say v1, such that not all of the multiplicity one vertices of G

are on the terminal chains attached to v1. Let v∗ be the vertex adjacent to v1 on the unique

connecting chain attached to v1. We break G at v∗ in this manner. We then complete it as

in 10.5. Let G1 denote the completion of G − (C − v∗). Write the vertices, from v∗ to the

terminal vertex, of terminal chain in order:

(v∗, vε1 , ..., vεs).

We choose, as we can, to have the multiplicity of vε1 equal to r1, the multiplicity of v1.

Put ω1 :=gcd(r11 , ..., r1k1
). We know that

r
d1−2
1 ·ω1

r11 ·...·r1k1
is a positive integer. and also that ω1

divides both r1 and r∗. Thus, in addition we get ω1|rεj for all j ∈ {2, ..., s}. Consequently,

gcd(C) | gcd(r∗, rε1 , ..., rεs).
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Thus, by G being irreducible, it is immediate that the only place at which we can possibly

make G1 reducible is at a vertex in V := {vε1 , ..., vεs}.
Now, since rεi+1

< rεi for any i ∈ {1, .., s−1} we see that G1 can not be made reducible at

any vertex in V . Thus, G1 is irreducible. Clearly G1 is a tree. By construction, G1 has exactly

one fewer node than G does. Let t(M1) be defined to be the number of multiplicity 1 vertices

in G1. Let t(M
′
) denote the number of multiplicity 1 vertices in G−C. Thus, t(M1) = t(M

′
)

if rεs 6= 1, while t(M1) = t(M
′
) + 1 if rεs = 1. Now, let us show that φ(M1) ≤ t(M1). We

note that

φ(M) = φ(M1) · r
d1−2
1

r11 ·...·r1k1
· rεs (∗)

We know that
r
d1−2
1

r11 ·...·r1k1
· rεs is an integer since it is clear that

r
d1−2
1 ·ω1

r11 ·...·r1k1
and rεs

ω1
are each

integers. Put p := t(M)− t(M ′
). If p = 0 then

φ(M1) = φ(M)

rεs ·
r
d1−2
1

r11
·...·r1k1

≤ φ(M) ≤ t(M) = t(M
′
) ≤ t(M1).

Now suppose 1 ≤ p. Thus,

rεs ·
r
d1−2
1

r11 ·...·r1k1
= rεs · r

p−1
i · r1

r1p+1
· ... · r1

r1k1

where p ≤ k1. Hence,

2p−1 ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
(∗∗)

and if 2 ≤ rεs then moreover

2p ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
(∗ ∗ ∗).

Thus,

φ(M1) = φ(M)

rεs ·
r
d1−2
1

r11
·...·r1k1

≤


φ(M)
2p−1 if rεs = 1

φ(M)
2p

if 2 ≤ rεs

Thus, as 1 ≤ φ(M)
2p−1 , we know

φ(M)
2p−1 ≤ φ(M)− (p− 1) ≤ t(M)− (p− 1) = t(M)− p+ 1 = t(M

′
) + 1,

and so if rεs = 1 then φ(M)
2p−1 ≤ t(M

′
) + 1 = t(M1). If 2 ≤ rεs then 1 ≤ φ(M)

2p
and hence we have

φ(M)
2p
≤ φ(M)− p ≤ t(M)− p = t(M

′
) = t(M1).

43



Thus, no matter what the value of p is we must always have φ(M1) ≤ t(M1). Hence, by the

inductive hypothesis, we get 2t(M1)−2 ≤ φ(M1). Thus, based upon how we write φ(M) in (∗)
we see that we get 2t(M)−2 ≤ φ(M) if we can show somehow that

2t(M)−t(M1) ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
.

If 2 ≤ rεs then p = t(M)− t(M1) and so, when p 6= 0, (∗∗) above gives that

2t(M)−t(M1) = 2p−1 ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
.

If rεs = 1 then p− 1 = t(M)− t(M1) and so, when p 6= 0, (∗ ∗ ∗) gives

2t(M)−t(M1) = 2p ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
.

Finally, if p = 0 then t(M)− t(M1) ≤ 0 and we trivially get

2t(M)−t(M1) ≤ rεs ·
r
d1−2
1

r11 ·...·r1k1
.

We then obtain the following corollary.

Corollary 10.7. Let G be an irreducible tree with φ(M) ≤ t(M). Then φ(M) ≤ 3.

Proof : Since 2t(M)−2 ≤ φ(M) by Proposition 10.6, we get 2t(M)−2 ≤ t(M), making t(M),

and hence φ(M), at most 4.

Suppose now that φ(M) = 4. By Prop 10.6 we get t(M) = 4. We first see that G must

have more than one node (it clearly must have at least one node, unless φ(M) = 1) for if it

had exactly one node then

φ(M) = r1
r11
· r
r12
· ... · r

r1d−4
· r2

1

with d ≥ 4. This makes r1 = 2 and r1i = 2 if 1i ∈ {1, ..., d − 4}. But then G is clearly

reducible.

Form G1 as in Proposition 10.6. We can then inductively assume that φ(M1) 6= 4. Thus

φ(M1) ∈ {1, 2}. If φ(M1) = 1 and rεs = 1 then t(M1) = 2, making t(M) = 3. But then

4 = r1
r11
· r1
r12
· ... · r

r1d−4
· r2

1, so r1 = 2 and we see that G is reducible. If φ(M1) = 1 and rεs 6= 1

then t(M1) = 1 (and t(M) = 3) or t(M1) = 2 (and t(M) = 2). In the former we see that

r2
1 · rεs divides 4, a contradiction. In the latter case we get that r1 = 2, and hence that G

is reducible. Therefore, φ(M1) = 2 must hold. If rεs = 1 then t(M1) = 2 (and t(M) = 3) or
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t(M1) = 3 (and t(M) = 2). In the former we get r2
1 dividing 2. In the latter we get r1 = 2

and hence G being reducible. If, instead, rεs 6= 1 then either t(M1) = 1 (and t(M) = 3) or

t(M1) = 2 (and t(M) = 2) or t(M1) = 3 (and t(M) = 1). If t(M) = 3 or t(M) = 2 then

r1 · rεs divides 2, a contradiction. If t(M) = 1 then rεs = 2 and all but one terminal vertex

associated to v1 has multiplicity equal to r1. Since the other terminal vertex is 1 we find that

rεs = 1 must hold, a contradiction. Thus φ(M) 6= 4 indeed holds, as claimed.

Remark 10.8. Proposition 10.6 always applies to an irreducible arithmetical tree of g-

integer 1. The reason is because there must be φ(M) degree 1 classes represented by an

effective divisor, and any such divisors naturally corresponds to vertices of multiplicity 1.

Remark 10.9. We recall that there is a specific important pairing on the component group

(see 3.1 in [Lor4] for its definition):

Φ(M)× Φ(M)→ Q/Z.

It is a useful tool in determining the g-integer in certain situations.

Proposition 10.10. If G is an irreducible tree with g(M) = 1 and φ(M) = 2 then t(M) = 2.

Proof : If t(M) 6= 2 then t(M) = 3. If G has exactly one node then, as φ(M) = 2, we

see that the multiplicity of the node is 2 and that 4 ≤ t(M), a contradiction. Thus we can

and do assume that G has at least two nodes. We will complete the proof by induction on

the number of nodes. Form G1 as in Proposition 10.6.

First suppose that φ(M1) = 1. If rεs = 1 then t(M1) = 2 so t(M) = 2, making r1 = 2.

As r1 = 2 we must have an even number of adjacent chains of weight 1, a contradiction. If

on the other hand rεs 6= 1 then t(M1) = 1 (so t(M) = 2) or t(M1) = 2 (so t(M) = 1). In the

former case rεs · r1 divides 2, a contradiction. In the latter case rεs = 2, yielding, along with

t(M) = 1, that exactly one adjacent chain has weight relatively prime to r1, a contradiction.

Now suppose that φ(M1) 6= 2. If rεs = 1 then t(M1) = 2 (so t(M) = 2) or t(M1) = 3

(so t(M) = 1). In the former case we must have then that r1 divides 1. In the latter case

we can blow-down all the terminal chains ending in r1, yielding an irreducible tree with

one fewer node than G. The component group is still of order 2 and there are still exactly

three multiplicity one vertices. If we take the two multiplicity 1 vertices of G that are not

associated to the node used in making G1 then these same vertices in this new tree are still

distinct in light of pairing the difference of these two vertices with itself (as in Proposition
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3.2 in [Lor4]) along with the fact that the component group of G is of prime order. If rεs 6= 1

then t(M1) = 2 (so t(M) = 1) or t(M1) = 3 (so t(M) = 0). In the former all but exactly one

weight of an adjacent chain is relatively prime to r1, a contradiction. In the latter G
′
violates

the inductive hypothesis because the two multiplicity 1 vertices in G that are distinct remain

distinct in G1, in light of the pairing (see prop. 3.2 in [Lor4]).

Corollary 10.11. If G is a tree with g(M) = 1 then φ(M) ≤ 4.

Proof : Suppose G is a tree with g(M) = 1. If G is irreducible then we are done in light

of the Corollary 10.7 and Remark 10.8. Suppose that G is reducible. Thus, we have

G = ((...((G1 ⊕G2)⊕G3)⊕ ...)⊕Gk)

where 2 ≤ k, each Gi is irreducible, and each join is a simple join. Since g(M) = 1 we

use Proposition 7.4 and Corollary 7.7 and find that one of the two following collections of

facts holds. The first is that each Gi has g-integer 0, and that of all the multiplicities of the

vertices at which the k− 1 joins take place there is exactly one of them of multiplicity equal

to 2 with all the other multiplicities being equal to 1. The second is that exactly one Gi will

have g-integer 1 with the all the rest having g-integer 0, and that the multiplicities of the

vertices at which the k − 1 joins take place are all equal to 1.

The next two facts are easily seen to hold due to Proposition 7.9, along with the fact

that an arithmetical graph of g-integer 0 has its component group having order 1.

If G
′

and G
′′

are trees, one of which has g-integer 0 and the other g-integer 1, then at

any simple join, G
′ ⊕G′′ , where the associated multiplicity equals 1 we have

φ(M
′ ⊕M ′′

) = φ(M
′
) · φ(M

′′
) · 12 ∈ {φ(M

′
), φ(M

′′
)}.

If G
′

and G
′′

are trees of g-integer 0 then at any simple join, G
′ ⊕ G′′ , of multiplicity 2

we have

φ(M
′ ⊕M ′′

) = φ(M
′
) · φ(M

′′
) · 22 = 4.

These two facts, along with the fact that φ(Mi) ≤ 4, by Corollary 10.7 along with Remark

10.8, and the fact the operation of join is commutative, yield

φ(M1 ⊕M2 ⊕ ...⊕Mk) ≤ 4,

as desired.

The following example contains two important arithmetical trees. We note that both

have g-integer 1.
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Example 10.12.

10.13. Let (G,M,R) be an irreducible arithmetical tree. If there is a vertex vi that is not

a node and is such that Mi,i = 1 we blow it down to get another arithmetical tree, say

(G
′
,M

′
, R
′
). This is irreducible (by Proposition 8.5), and has g(M

′
) = 1 (by Proposition

8.1). If the new tree then has a vertex v
′
j that is not a node with M

′
j,j = 1, then we repeat

the process. We continue to repeat it until then are no more such vertices (that are not

nodes) to blow-down.

Proposition 10.14. Let (G,M,R) be an irreducible arithmetical tree of g-integer 1 having

exactly one node. After applying the process described in 10.13 we get an arithmetical tree

isomorphic to a tree in either Example 10.1 or Example 10.12.

Proof : Let (G
′
,M

′
, R
′
) be the arithmetical tree resulting from 10.13. This has a single

node. Let r
′

denote the multiplicity of this node. We know that φ(M
′
) 6= 1 since g(M

′
) 6= 0.

Hence, φ(M
′
) is 2 or 3 (by Corollary 10.7). Further at least two vertices have multiplicity 1 by

Remark 10.8. Moreover, any such vertex is terminal by irreducibility. Hence, by the formula

for the order of the component group of a tree we see that there is a terminal chain ending in
r
2

(in case φ(M
′
) = 2) or r

3
(in case φ(M

′
) = 3), with all other chains, except those ending in

1, ending in r. But there cannot be any chains (by 10.13) ending in r because then on that

chain there would be a vertex v
′
i (that is not a node) with M

′
i,i = 1. Thus (G

′
,M

′
, R
′
) has

exactly three terminal chains. If φ(M
′
) = 2 then exactly two terminal chains end in 1, and

we see that this is a tree in Example 10.1. On the other hand, if φ(M) = 3 then g(M) = 1

forces each chain to end in 1 and r = 3. We are clearly have one of the trees in Example

10.12.

Corollary 10.15. The number of non-isomorphic irreducible trees having exactly one node

and exactly three terminal chains of g-integer 1 and linear rank s is 5 if s = 1, 3
2
· φ(s) if s

6= 1 is odd, and 3 · φ(s) if s is even (here φ denotes the Euler totient function).
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Proof : If s = 1 then we have three such trees from Example 10.1 and two from Example

10.12. For s 6= 1 The trees in Example 10.1 with 2s = k provide all of the examples. The ones

where the node has self-intersection Mi,i equal to 1 (resp. 2) number φ(k)
2

(resp. φ(2k)
2

). The

total number is φ(k)+φ(2k)
2

= φ(2s)+φ(4s)
2

. If s is odd (resp. even) then this number is φ(s)+2φ(s)
2

(resp. 2φ(s)+4φ(s)
2

).

Proposition 10.16. If G is an irreducible tree with g(M) = 1 and φ(M) = 2 then we

can naturally associate to G simpler arithmetical trees. Namely, by repeatedly breaking and

completing G (as in 10.5), we get a collection of irreducible trees G1, G2, ..., Gk, each with

only one node. We can construct the G1, G2, ..., Gk so that each has exactly two multiplicity

1 vertices, with both such vertices terminal and associated to the same node. Moreover, we

can additionally take these trees so that G1 has g-integer 1 and each other Gi has g-integer

0.

Proof : If G has exactly one node then we are done by Proposition 10.10. Suppose G

has more than one node. We know that G itself has exactly two multiplicity 1 vertices, with

both being terminal by irreducibility. If the two vertices happen to be associated to the same

node then break G at that node so that the two terminal chains form one piece. Otherwise,

break G along any connecting chain on the unique path between these two vertices. In either

case, complete each piece into an arithmetical graph. If we let ω be the weight of such a

chain then

φ(M) = φ(M1) · φ(M2) · ω2

making φ(M1) = 2 and φ(M2) = 1. Thus g(M2) = 0 clearly. Now since the above formula

forces ω = 1 we see that there are two multiplicity 1 vertices on G1. The difference of these

two vertices is non-zero in Φ(M1) since if it were not then we get a contradiction using the

pairing (see 10.9) on G. This is accomplished by observing that the difference of the two

multiplicity 1 vertices in G2 is zero in Φ(M2). We see that taking the difference of the two

multiplicity 1 vertices in G and pairing it with itself yields an integer, which is equal to the

sum of the the analogous representatives in G1 and G2 plus an additional sum. But this

additional sum is an integer, since it is the pairing applied to the difference of a pair of

vertices on a tree with no nodes paired with itself. For each of the two resulting arithmetical

trees we can, if needed, cut and complete again until we get what is claimed.
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Proposition 10.17. If G is an irreducible tree with g(M) = 1 and φ(M) = 3 then we

can naturally associate to G simpler arithmetical trees. Namely, by repeatedly breaking and

completing G (as in 10.5), we get a collection of irreducible trees G1, G2, ..., Gk, each with

only one node. We can construct the G1, G2, ..., Gk so that each has exactly three multiplicity

1 vertices, with all three such vertices terminal and associated to the same node. Moreover,

we can additionally take these trees so that G1 has g-integer 1 with φ(M1) = 3 and each

other Gi has g-integer 0.

Proof : The proof is similar to that of the Proposition 10.16, in that we cut and complete

in the same manner until we reach our desired results.
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Chapter 11

Existence of a canonical divisor

If G is reduced, or more generally if g(M) = g0(M) then G has a canonical divisor (see

Proposition 4.2(b) in [Lor2]). It is not true, however, that there is always a canonical divisor,

as the next example shows.

Example 11.1.

Here we have g0(M) = 6 and g(M) = 5, yet no canonical divisor. We have Φ(M) ∼= Z/4Z×
Z/4Z. We note that of the 16=φ(M) divisor classes of degree 4=g(M) − 1 exactly twelve

are represented by an effective. See Appendix C for these computations.

On the other hand it is possible to have more than one canonical class.

Example 11.2.

In this example we have g(M) = 11 while g0(M) = 15. We have Φ(M) ∼= Z/4Z× Z/4Z
and there are exactly two degree 10 divisor classes not represented by an effective, say A and

B. We then see that A + B has to be a canonical divisor. Since a canonical divisor in this
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example is determined by its action on {A,B}, we know there is at most one more possible

canonical class, namely [2A]. We observe that 2A will be a canonical divisor if and only if

2A ∼ 2B. By using the program in Appendix C we find that there are indeed two canonical

classes, so 2A ∼ 2B in particular, must hold. The canonical classes have the following degree

20 divisors as representatives:

We noted above that a canonical exists whenever g(M) = g0(M). Also, there will always

be one as long as either φ(M) ≤ 5 or the number of degree g(M) − 1 divisor classes not

represented by an effective is at most 2 or at least φ(M)− 2. An example where a canonical

divisor exists yet none of the above hold is:

Example 11.3.

Here g(M) = 8, g0(M) = 10, Φ(M) ∼= Z/6Z × Z/6Z, and there are exactly 30 degree 7

classes represented by an effective. It turns out that there is exactly one canonical class. An

explicit representative of this class is the following degree 14 divisor (see Appendix C for all

these computations):
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Chapter 12

Computations for modular curves

Let p ≥ 5 be a prime and consider the modular curve X0(p2)/Qunr
p . The associated intersec-

tion matrix M for its minimal regular model is found in 1.5 of [Edi1]. It is shown in [Edi2]

that Φ(M) is cyclic of order p2−1
24

.

Proposition 12.1. We have g(M) = φ(M)− 1.

Proof : If p = 12k + 1 then M is the matrix

1 −1 −1 −k −k
−1 2 0 0 0

−1 0 3 0 0

−k 0 0 kp −k
−k 0 0 −k kp


and R = (p− 1, (p− 1)/2, (p− 1)/3, 1, 1)t. One then checks directly that

M · (12k − 6, 6k − 3, 4k − 2, 1, 1)t = (−1, 0, 0, 6k, 6k)t

M · (12k − 3, 6k − 2, 4k − 1, 1, 1)t = (0,−1, 0, 3k, 3k)t

M · (12k − 2, 6k − 1, 4k − 1, 1, 1)t = (0, 0,−1, 2k, 2k)t.

This has two important consequences. The first is that every degree 0 divisor is equivalent to

one of the form (0, 0, 0, a,−a)t, and hence, since Φ(M) is cyclic, the class of (0, 0, 0, 1,−1)t

generates the component group. The other consequence is that every effective divisor is equiv-

alent to an effective divisor supported only possibly at the multiplicity 1 vertices. Putting

these together we see that there are exactly φ(M)−s+1 effective classes of degree φ(M)−s
for s ∈ {1, 2, ..., φ(M)}. Therefore, g(M) = φ(M)− 1.

The three other cases p = 12k+ 5, p = 12k+ 7, p = 12k+ 11 are similar. In the first case

M is
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

1 −1 −1 −k −k
−1 2 0 0 0

−1 0 3 −1 −1

−k 0 −1 kp+ (p+ 1)/3 −k
−k 0 −1 −k kp+ (p+ 1)/3


and R = (p− 1, (p− 1)/2, (p+ 1)/3, 1, 1)t with

M · (12k − 2, 6k − 1, 4k, 1, 1)t = (−1, 0, 0, 6k + 2, 6k + 2)t

M · (12k + 1, 6k, 4k + 1, 1, 1)t = (0,−1, 0, 3k + 1, 3k + 1)t

M · (12k + 2, 6k + 1, 4k + 1, 1, 1)t = (0, 0,−1, 2k + 1, 2k + 1)t.

In the second case we have that M is

1 −1 −1 −k −k
−1 3 0 0 0

−1 0 2 −1 −1

−k 0 −1 kp+ (p+ 1)/2 −k
−k 0 −1 −k kp+ (p+ 1)/2


and R = (p− 1, (p− 1)/3, (p+ 1)/2, 1, 1)t with

M · (12k, 4k, 6k + 1, 1, 1)t = (−1, 0, 0, 6k + 3, 6k + 3)t

M · (12k + 4, 4k + 1, 6k + 3, 1, 1)t = (0,−1, 0, 2k + 1, 2k + 1)t

M · (12k + 3, 4k + 1, 6k + 2, 1, 1)t = (0, 0,−1, 3k + 2, 3k + 2)t.

In the last case M is

1 −1 −1 −k −k
−1 2 0 0 0

−1 0 3 −1 −1

−k 0 −1 kp+ (5p+ 5)/6 −k
−k 0 −1 −k kp+ (5p+ 5)/6


and R = (p− 1, (p+ 1)/2, (p+ 1)/3, 1, 1)t with

M · (12k + 4, 6k + 3, 4k + 2, 1, 1)t = (−1, 0, 0, 5k + 5, 5k + 5)t

M · (12k + 7, 6k + 4, 4k + 3, 1, 1)t = (0,−1, 0, 3k + 3, 3k + 3)t

M · (12k + 7, 6k + 4, 4k + 3, 1, 1)t = (0, 0,−1, 2k + 2, 2k + 2)t.
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For the same reasons we get in these three cases too that g(M) = φ(M)− 1.

Corollary 12.2. G has exactly one canonical class.

Proof : This holds since, by the Proposition 12.1, there are exactly φ(M) − 1 effec-

tive classes of degree g(M) − 1. An explicit canonical divisor is (0,0,0,-2,2 · φ(M) − 2)t =

2 · (0, 0, 0,−1, φ(M) − 1)t. To verify this one simply checks the degree g(M) − 1 divisor

(0, 0, 0,−1, φ(M) − 1)t is not equivalent to an effective. If it were equivalent to an effective

then (0, 0, 0, 1,−1)t would not generate all of Φ(M).
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Chapter 13

Bounding φ(M) in terms of the g-integer

In this chapter we assume throughout that our arithmetical graph (G,M,R) is in fact an

arithmetical tree.

Definition 13.1. For a positive integer x = pai1 · pa2
2 · ... · p

ak
k let `(x) := Σ(ai − 1) · pi.

13.2. From Theorem 2.4 in [Lor3] we have

`(φ(M)) ≤ 2 · g0(M).

13.3. As a corollary to 13.2 we have

φ(M) ≤ 4g0(M).

It turns out that 13.2 does not hold if we replace g0(M) by g(M), as the next example

shows.

Example 13.4.

One checks using Appendix C that g(M) = 7. But φ(M) = 23, making `(φ(M)) = 22.
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13.5. The analogue of 13.3 is, however, not settled. It may be that the inequality

φ(M) ≤ 4g(M)

holds for all arithmetical trees.

We now present three cases where it is satisfied.

Proposition 13.6. Suppose that G has exactly one node and exactly three terminal chains.

Further suppose φ(M) 6= 1. It then follows that b
√
φ(M)c ≤ g(M).

Proof : We show that the number of degree ξ := b
√
φ(M)c − 1 equivalence classes that

are represented by an effective divisor is less than φ(M). We note first that any effective

divisor can be represented by an effective divisor whose support is a subset of the terminal

vertices. This holds by Proposition 2.7 and Proposition 3.4 in [Lor4]. These say that if ri

and rj are the multiplicities of two different vertices on the same terminal chain, with the

second vertex terminal, then the vector with ri
rj

in the component for the terminal vertex,

−1 in the component for the other vertex, and 0 elsewhere, is in im(M). Hence, they allow

us to take our arbitrary effective divisor and add to it divisors of the above shape yielding

ultimately an effective divisor with 0 in every component except possibly the components of

the terminal vertices.

Let v1, v2, v3 denote the three terminal vertices, with r1, r2, r3 as their respective multi-

plicities.

We are thus reduced to counting the number of degree ξ effective divisors with the above

type of support. Let c1, c2, c3 be the values of such a divisor at the three terminal vertices.

Thus,

r1c1 + r2c2 + r3c3 = ξ − 1. (*)

Thus, 0 ≤ c1 ≤ ξ−1 and 0 ≤ c2 ≤ ξ−1−c1. Moreover, for any c1, c2 within the above param-

eters there is at most one non-negative c3 making (*) hold. Now the number of such (c1, c2, c3)

is at most 1 + 2 + ...+ ξ + (ξ + 1) = (ξ+1)·(ξ+2)
2

=
(b
√
φ(M)c)·(b

√
φ(M)+1c)

2
=
b
√
φ(M)c

2
+b
√
φ(M)c

2
.

One easily checks, since φ(M) 6= 1, that this is less than φ(M).

Corollary 13.7. Under the hypotheses of Lemma 13.6 we have that φ(M) ≤ 4g(M).

Proof : Since b
√
φ(M)c ≤ g(M) we get φ(M) ≤ (g(M) + 1)2. As (g(M) + 1)2 ≤ 4g(M)

whenever 0 < g(M) the proof is complete.
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Proposition 13.8. If g(M) ≤ 1 then φ(M) ≤ 4g(M).

Proof : This was shown for g(M) = 1 in 10.11. If g(M) = 0 then φ(M) = 1 and we have

the inequality in this case too.

Lemma 13.9. If a, b, c are positive integers with gcd(a, b)=1, a|c, and b|c then we have
c
a·b ≤ 21+c−(a+b).

Proof : Put α := c
a·b . One easily checks that, provided at most one of α, b, c equals 1,

−1 ≤ α · b · c− b− c− α,

equivalently, a
b·c ≤ 1 + a− (b+ c). If α = 1 we already have what we want to show. If 2 ≤ α

and b, c = 1 then we are trying to see whether α ≤ 2α−1 holds, which clearly does.

Proposition 13.10. Let (G
′′
,M

′′
, R
′′
) be the join of (G,M,R) and (G

′
,M

′
, R
′
). If φ(M) ≤

4g(M) and φ(M
′
) ≤ 4g(M

′
) then φ(M

′′
) ≤ 4g(M

′′
).

Proof : By Proposition 7.4 and Proposition 7.9, we see its enough to show

φ(M) · φ(M
′
) · rn·r

′
1

h′ ·h ≤ 4h·(g(M)−1)+h
′ ·(g(M ′ )−1)+r+1.

As φ(Mi) ≤ 4g(Mi), we see that all we have to show is

rn·r
′
1

h′ ·h ≤ 4h1·(g(M1)−1)+h2·(g(M2)−1)+ω+1−g(M1)−g(M2).

Recall that r = rn · h = r
′
1 · h. Thus,

rn·r
′
1

h′ ·h = r·r
h·h′ ·h·h′ , making

√
rn·r

′
1

h′ ·h = r
h·h′ . This along with

the fact that

1 + ω − h− h′ ≤ h · (g(M1)− 1) + h
′ · (g(M2)− 1) + ω + 1− g(M1)− g(M2).

tells us that it is sufficient to show

ω
h·h′ ≤ 21+ω−h−h′ .

But this last inequality does indeed hold by the Lemma 13.9.
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Appendix A

Programs for computing the factorization of (3) in K(∆
1
3 ) and the class

number of K(∆
1
3 )

Let K = Q(
√
d) where d = 4k + 1 with k ≤ −2. Let p be a prime number. Let (π) be a

prime of OK be a prime of K lying above (3).

Consider the two field extensions K(π
ε
3 ) for ε = 1, 2. For each we aim to compute the

class number of K(π
ε
3 ) as well as the ramification and inertial indices of the factorization of

(3) in K(π
ε
3 ).

When (d
p
) 6= −1 (i.e., p is not inert in K) the following GP/PARI code performs the

two above tasks.

d=

p=

K=bnfinit(y^2-y+(1-d)/4);

P=idealprimedec(K,p);

q=P[1];

r=bnfisprincipal(K,q);

a=r[2][1];

b=r[2][2];

g=x^3-Mod(a+b*y,y^2-y+(1-d)/4);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp

g=x^3-Mod((a+b*y)^2,y^2-y+(1-d)/4);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp
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When (d
p
) = −1 (i.e., p is inert in K) the following GP/PARI code performs the two

above tasks.

d=

p=

f=polcompositum(x^2-d, x^3-p)[1];

L=bnfinit(f);

idealprimedec(L,3)

L.clgp

ff=polcompositum(x^2-d, x^3-p^2)[1];

LL=bnfinit(ff);

idealprimedec(LL,3)

LL.clgp

Now let K = Q(
√
d) where d = −1. Let p be a prime number. Let (π) be a prime of OK

be a prime of K lying above (3).

Consider the four field extensions K(π
ε
3 ) and K(i · π ε

3 ) for ε = 1, 2. For each we aim to

compute its class number as well as the ramification and inertial indices of the factorization

of (3) in the field itself.

When (d
p
) 6= −1 (i.e., p is not inert in K) the following GP/PARI code performs the

two above tasks.

d=-1

p=

K=bnfinit(y^2-d);

P=idealprimedec(K,p);

q=P[1];

r=bnfisprincipal(K,q);

a=r[2][1];

b=r[2][2];

g=x^3-Mod(a+b*y,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp
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g=x^3-Mod(-b+a*y,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp

g=x^3-Mod((a+b*y)^2,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp

g=x^3-Mod(-2*a*b+(a^2-b^2)*y,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp

When (d
p
) = −1 (i.e., p is inert in K) the following GP/PARI code performs the two

above tasks.

d=-1

p=

f=polcompositum(x^2-d,x^3-p)[1];

L=bnfinit(f);

idealprimedec(L,3)

L.clgp

ff=polcompositum(x^2-d,x^3-p^2)[1];

LL=bnfinit(ff);

idealprimedec(LL,3)

LL.clgp
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K=bnfinit(y^2-d);

g=x^3-Mod(p*y,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp

g=x^3-Mod((p^2)*y,y^2-d);

L=rnfinit(K,g);

Leqn=rnfequation(K,g,1)[1];

Labs=bnfinit(Leqn);

idealprimedec(Labs,3)

Labs.clgp
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Appendix B

Programs for computing the g-integer of an arbitrary arithmetical graph

In this appendix we give the code of a program using the python language and the SAGE

interface that computes a host of invariants of any arithmetical graph.

In the main function the user enters the R (here as a row vector) and the matrix M . The

program starts by computing and displaying the orders of the cyclic factors of Φ(M) when

decomposed as a product of finite cyclic groups. It also determines and displays the value

of g0(M). It then starts at d := g0(M) − 1 and computes the number of degree d classes

represented by an effective divisor. It decreases d by 1 and repeats this until it finds fewer

than φ(M) such classes for d. Once this happens g(M) is found. In the process of doing this

repetition any divisor class of degree d that is represented by an effective divisor will have an

effective representative for it printed out. It then computes all the degree 2g(M)−2 effective

classes (which are necessarily φ(M) in number) and then goes down this list one by one and

checks which (if any) are canonical divisors. Finally, the g-integer is displayed along with the

number of canonical classes and (if any) representatives of these divisor classes.

As written in this appendix the program is set to compute the arithmetical graph asso-

ciated to the minimal regular model of X0(169) over Qunr
13 . The generated output for this

example is included below (after the code).

def effective_class_number_check(M_temp,list_temp,i_temp,phi_temp):

listz=[list_temp[0]]

print listz[0],len(listz)

i=0

while len(listz)<phi_temp and i<len(list_temp)-1:

i=i+1

check=True

for j in range(0,len(listz)):

tempvect=[]

firsttemp=list_temp[i]

secondtemp=listz[j]
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for y in range(0,len(list_temp[0])):

tempvect=tempvect+[firsttemp[y]-secondtemp[y]]

ab=gap.SolutionIntMat(M_temp,tempvect)

cd=gap.IsBool(ab)

ef=eval(str(cd))

if ef==False:

check=False

if check==True:

listz=listz+[list_temp[i]]

print listz[len(listz)-1],len(listz)

print ""

print len(listz),"is the number of classes of

degree",i_temp,"represented by an effective"

print "------------------------------------------------

-------------------"

return listz

def thing(vectss,i_temp,R_temp):

vectsss=[]

finished=False

j=len(R_temp)-1

while finished==False and 0<=j:

if i_temp<R_temp[j]*(vectss[j]+1):

j=j-1

else:

finished=True

if j==-1:

return vectss,False

else:

for k in range(len(R_temp)):

if k==j:

vectsss=vectsss+[vectss[j]+1]

elif j<k:

vectsss=vectsss+[0]

else:

vectsss=vectsss+[vectss[k]]

return vectsss,True

def main():

R=[12,6,4,1,1]

M=[[1,-1,-1,-1,-1],[-1,2,0,0,0],[-1,0,3,0,0],[-1,0,0,13,-1],
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[-1,0,0,-1,13]]

number_of_vertices=len(R)

phi=1

linear_rank=0

for i in range(len(R)):

linear_rank=linear_rank+R[i]*(M[i][i]-2)

linear_rank=(linear_rank+2)/2

invariant_factors=[]

A=gap.SmithNormalFormIntegerMat(M)

for ik in range(1,number_of_vertices):

if 1<A[ik][ik]:

invariant_factors+=[A[ik][ik]]

phi=phi*(A[ik][ik])

if 1<len(invariant_factors):

print "The component group has order",phi

print "The component group is of type (",

for i in range(len(invariant_factors)):

print invariant_factors[i],

if i!=len(invariant_factors)-1:

print ",",

print ")"

elif len(invariant_factors)==1:

print "The component group is cyclic of order",invariant_factors[0]

else:

print "The component group has order 1"

print "The linear rank is",linear_rank

print ""

if linear_rank==0:

g=0

if linear_rank==1 and phi!=1:

g=1

if linear_rank==1 and phi==1:

g=0

if 1<linear_rank:

totally_done=False

i=linear_rank

while totally_done==False and 1!=i:

i=i-1

vect=[]

for u in range(0,len(R)):

vect=vect+[0]

final=[]

done=False
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while (done==False):

vectssss,decision=thing(vect,i,R)

vect=vectssss

if decision==False:

done=True

else:

degree_of_vectz=0

for z in range(0,len(R)):

degree_of_vectz=degree_of_vectz+R[z]*vect[z]

if degree_of_vectz==i:

final.append(vect)

if 0==len(final):

totally_done=True

g=i+1

if 1==len(final) and phi!=1:

totally_done=True

g=i+1

if 1==len(final) and phi==1:

done=True

else:

list_of_classes=effective_class_number_check(M,final,i,phi)

if len(list_of_classes)<phi:

totally_done=True

g=i+1

vectt=[]

for uu in range(0,len(R)):

vectt=vectt+[0]

finall=[]

donee=False

while (donee==False):

vecttssss,decisionn=thing(vectt,2*g-2,R)

vectt=vecttssss

if decisionn==False:

donee=True

else:

degree_of_vectzz=0

for zz in range(0,len(R)):

degree_of_vectzz=degree_of_vectzz+R[zz]*vectt[zz]

if degree_of_vectzz==2*g-2:

finall=finall+[vectt]

list_of_classess=

effective_class_number_check(M,finall,2*g-2,phi)

canonical_list=[]
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for q in range(0,len(list_of_classess)):

t=-1

check3=True

while (check3==True and t<=len(list_of_classes)-2):

t=t+1

i=-1

check2=False

while (check2==False and i<=len(list_of_classes)-2):

i=i+1

ttt=[]

for cc in range(0,len(R)):

aaa=list_of_classess[q]

bbb=list_of_classes[t]

ddd=list_of_classes[i]

ttt=ttt+[aaa[cc]-bbb[cc]-ddd[cc]]

uuu=gap.SolutionIntMat(M,ttt)

vvv=gap.IsBool(uuu)

www=eval(str(vvv))

if www==False:

check2=True

if check2==False:

check3=False

if check3==True:

canonical_list=canonical_list+[list_of_classess[q]]

if i==1 and g!=2:

if phi==1:

g=0

else:

g=1

print "The g-integer is",g

print "The number of canonical classes is",len(canonical_list)

print "These classes are",canonical_list

print ""

print ""

main()

Once the above program runs on X0(169)/Qunr
13 (see Chapter 13) it outputs:

The component group is cyclic of order 7

The linear rank is 8

[0, 0, 0, 0, 7] 1

69



[0, 0, 0, 1, 6] 2

[0, 0, 0, 2, 5] 3

[0, 0, 0, 3, 4] 4

[0, 0, 0, 4, 3] 5

[0, 0, 0, 5, 2] 6

[0, 0, 0, 6, 1] 7

7 is the number of classes of degree 7 represented by an effective

-------------------------------------------------------------------

[0, 0, 0, 0, 6] 1

[0, 0, 0, 1, 5] 2

[0, 0, 0, 2, 4] 3

[0, 0, 0, 3, 3] 4

[0, 0, 0, 4, 2] 5

[0, 0, 0, 5, 1] 6

[0, 0, 0, 6, 0] 7

7 is the number of classes of degree 6 represented by an effective

-------------------------------------------------------------------

[0, 0, 0, 0, 5] 1

[0, 0, 0, 1, 4] 2

[0, 0, 0, 2, 3] 3

[0, 0, 0, 3, 2] 4

[0, 0, 0, 4, 1] 5

[0, 0, 0, 5, 0] 6

6 is the number of classes of degree 5 represented by an effective

-------------------------------------------------------------------

[0, 0, 0, 0, 10] 1

[0, 0, 0, 1, 9] 2

[0, 0, 0, 2, 8] 3

[0, 0, 0, 3, 7] 4

[0, 0, 0, 4, 6] 5

[0, 0, 0, 5, 5] 6

[0, 0, 0, 6, 4] 7

7 is the number of classes of degree 10 represented by an effective

-------------------------------------------------------------------

The g-integer is 6

The number of canonical classes is 1

These classes are [[0, 0, 0, 5, 5]]
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Appendix C

A program for computing the g-integer of an arithmetical tree with

exactly one node

In this appendix we give the code of a program using the python language and the SAGE

interface that computes a host of invariants of an arithmetical tree when there is only one

node.

Inside the main function the user sets the value for the multiplicity of the node and

then the multiplicities (in any order) of the vertices adjacent to the node (the user should

personally make sure that the multiplicity of the node divides the sum of the multiplicities

of the adjacent vertices or else the result will not be an arithmetical graph). From there the

program creates the terminal chains by using Euclid’s algorithm (see Remark 4.2 in [Lor1]).

The program starts by computing and outputting R (as a row vector) and M . It then

determines and displays the orders of the cyclic factors of Φ(M) when decomposed as a

product of finite cyclic groups. It also determines and displays the value of g0(M). It then

(as in Appendix B) starts at d := g0(M) − 1 and computes the number of degree d classes

represented by an effective divisor. It decreases d by 1 and repeats this until it finds fewer

than φ(M) such classes for d. Once this happens g(M) is found. In the process of doing this

repetition any divisor class of degree d that is represented by an effective divisor will have an

effective representative for it printed out. It then computes all the degree 2g(M)−2 effective

classes (which are necessarily φ(M) in number) and then goes down this list one by one and

checks which (if any) are canonical divisors. Finally, the g-integer is displayed along with the

number of canonical classes and (if any) representatives of these divisor classes.

As written in this appendix the program is set to compute Example 11.1. The generated

output is included below (after the code).

def effective_class_number_check(M_temp,list_temp,i_temp,phi_temp):

listz=[list_temp[0]]

print listz[0],len(listz)

i=0
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while len(listz)<phi_temp and i<len(list_temp)-1:

i=i+1

check=True

for j in range(0,len(listz)):

tempvect=[]

firsttemp=list_temp[i]

secondtemp=listz[j]

for y in range(0,len(list_temp[0])):

tempvect=tempvect+[firsttemp[y]-secondtemp[y]]

ab=gap.SolutionIntMat(M_temp,tempvect)

cd=gap.IsBool(ab)

ef=eval(str(cd))

if ef==False:

check=False

if check==True:

listz=listz+[list_temp[i]]

print listz[len(listz)-1],len(listz)

print ""

print len(listz),"is the number of classes of

degree",i_temp,"represented by an effective"

print "--------------------------------------------------

-----------------"

return listz

def thing(vectss,i_temp,R_temp,terminal_temp):

vectsss=[]

finished=False

j=len(terminal_temp)-1

while finished==False and 0<=j:

if i_temp<R_temp[terminal_temp[j]]*(vectss[terminal_temp[j]]+1):

j=j-1

else:

finished=True

if j==-1:

return vectss,False

else:

for k in range(len(R_temp)):

if k in terminal_temp:

if k==terminal_temp[j]:

vectsss=vectsss+[vectss[terminal_temp[j]]+1]

elif terminal_temp[j]<k:

vectsss=vectsss+[0]
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else:

vectsss=vectsss+[vectss[k]]

else:

vectsss=vectsss+[0]

return vectsss,True

def main():

node_mult=8

S=[3,2,1,1]

R=[node_mult]

number_of_chains=len(S)

chain_lengths=[]

sum_S=0

for i in range(number_of_chains):

sum_S+=S[i]

chain_length_count=1

R=R+[S[i]]

temp=S[i]

if node_mult%temp==0:

chain_lenghts=chain_lengths+[1]

else:

tempa=-((node_mult%temp)-temp)

R=R+[tempa]

checker=False

chain_length_count=1

while checker==False:

if temp%tempa==0:

chain_length_count=chain_length_count+1

checker=True

else:

tempb=-((temp%tempa)-tempa)

temp=tempa

tempa=tempb

R=R+[tempb]

chain_length_count=chain_length_count+1

chain_lengths=chain_lengths+[chain_length_count]

print "R=",R

number_of_vertices=1

node_adjacent_indices=[1]

for i in range(1,len(S)):

number_of_vertices+=chain_lengths[i-1]

node_adjacent_indices+=[number_of_vertices]
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number_of_vertices+=chain_lengths[len(S)-1]

M=[]

for i in range(number_of_vertices):

zero_vector=[]

for j in range(number_of_vertices):

zero_vector+=[0]

M+=[zero_vector]

M[0][0]=sum_S/R[0]

for i in range(len(S)-1):

M[0][node_adjacent_indices[i]]=-1

for j in range(node_adjacent_indices[i]+1,

node_adjacent_indices[i+1]):

M[0][j]=0

M[0][node_adjacent_indices[len(S)-1]]=-1

if node_adjacent_indices[len(S)-1]+1<=number_of_vertices-1:

for i in range(node_adjacent_indices[len(S)-1]+1,

number_of_vertices):

M[0][i]=0

tempholder=node_adjacent_indices+[number_of_vertices]

for i in range(len(S)):

for j in range(tempholder[i],tempholder[i+1]):

for k in range(number_of_vertices):

if j==k and j==tempholder[i] and j!=tempholder[i+1]-1:

M[j][k]=(R[0]+R[j+1])/R[j]

elif j==k and j!=tempholder[i] and j==tempholder[i+1]-1:

M[j][k]=R[j-1]/R[j]

elif j==k and j==tempholder[i] and j==tempholder[i+1]-1:

M[j][k]=R[0]/R[j]

elif j==k and j!=tempholder[i] and j!=tempholder[i+1]-1:

M[j][k]=(R[j-1]+R[j+1])/R[j]

elif k==0 and j==tempholder[i]:

M[j][k]=-1

elif (2<=k-j or 2<=j-k) and k!=0:

M[j][k]=0

elif k-j==1 and j!=tempholder[i+1]-1:

M[j][k]=-1

elif j-k==1 and j!=tempholder[i]:

M[j][k]=-1

number_of_vertices=len(R)

print "M is the following matrix:"

for i in range(number_of_vertices):

print M[i]

linear_rank=R[0]*(len(S)-2)-R[number_of_vertices-1]
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terminal_indices=[]

for i in range(1,len(S)):

terminal_indices+=[tempholder[i]-1]

linear_rank-=R[tempholder[i]-1]

terminal_indices+=[number_of_vertices-1]

linear_rank=linear_rank/2+1

phi=1

invariant_factors=[]

A=gap.SmithNormalFormIntegerMat(M)

for ik in range(1,number_of_vertices):

if 1<A[ik][ik]:

invariant_factors+=[A[ik][ik]]

phi=phi*(A[ik][ik])

if 1<len(invariant_factors):

print "The component group has order",phi

print "The component group is of type (",

for i in range(len(invariant_factors)):

print invariant_factors[i],

if i!=len(invariant_factors)-1:

print ",",

print ")"

elif len(invariant_factors)==1:

print "The component group is cyclic of order",invariant_factors[0]

else:

print "The component group has order 1"

print "The linear rank is",linear_rank

if linear_rank==0:

g=0

if linear_rank==1 and phi!=1:

g=1

if linear_rank==1 and phi==1:

g=0

if 1<linear_rank:

totally_done=False

i=linear_rank

while totally_done==False and 1!=i:

i=i-1

vect=[]

for u in range(0,len(R)):

vect=vect+[0]

final=[]

done=False

while (done==False):
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vectssss,decision=thing(vect,i,R,terminal_indices)

vect=vectssss

if decision==False:

done=True

else:

degree_of_vectz=0

for z in range(0,len(R)):

degree_of_vectz=degree_of_vectz+R[z]*vect[z]

if degree_of_vectz==i:

final.append(vect)

if 0==len(final):

totally_done=True

g=i+1

if 1==len(final) and phi!=1:

totally_done=True

g=i+1

if 1==len(final) and phi==1:

done=True

else:

list_of_classes=effective_class_number_check(M,final,i,phi)

if len(list_of_classes)<phi:

totally_done=True

g=i+1

vectt=[]

for uu in range(0,len(R)):

vectt=vectt+[0]

finall=[]

donee=False

while (donee==False):

vecttssss,decisionn=thing(vectt,2*g-2,R,terminal_indices)

vectt=vecttssss

if decisionn==False:

donee=True

else:

degree_of_vectzz=0

for zz in range(0,len(R)):

degree_of_vectzz=degree_of_vectzz+R[zz]*vectt[zz]

if degree_of_vectzz==2*g-2:

finall=finall+[vectt]

list_of_classess=effective_class_number_check(M,

finall,2*g-2,phi)

canonical_list=[]

for q in range(0,len(list_of_classess)):
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t=-1

check3=True

while (check3==True and t<=len(list_of_classes)-2):

t=t+1

i=-1

check2=False

while (check2==False and i<=len(list_of_classes)-2):

i=i+1

ttt=[]

for cc in range(0,len(R)):

aaa=list_of_classess[q]

bbb=list_of_classes[t]

ddd=list_of_classes[i]

ttt=ttt+[aaa[cc]-bbb[cc]-ddd[cc]]

uuu=gap.SolutionIntMat(M,ttt)

vvv=gap.IsBool(uuu)

www=eval(str(vvv))

if www==False:

check2=True

if check2==False:

check3=False

if check3==True:

canonical_list=canonical_list+[list_of_classess[q]]

if i==1:

if phi==1:

g=0

else:

g=1

print "The g-integer is",g

print "The number of canonical classes is",len(canonical_list)

print "These classes are",canonical_list

print ""

print ""

main()

Once the above program runs on Example 11.1 it outputs:

R= [8, 3, 1, 2, 2, 1]

M is the following matrix:

[1, -1, 0, -1, -1, -1]

[-1, 3, -1, 0, 0, 0]

[0, -1, 3, 0, 0, 0]
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[-1, 0, 0, 4, 0, 0]

[-1, 0, 0, 0, 4, 0]

[-1, 0, 0, 0, 0, 8]

The component group has order 16

The component group is of type ( 4 , 4 )

The linear rank is 6

[0, 0, 0, 0, 0, 5] 1

[0, 0, 0, 0, 1, 3] 2

[0, 0, 0, 0, 2, 1] 3

[0, 0, 0, 1, 0, 3] 4

[0, 0, 0, 1, 1, 1] 5

[0, 0, 0, 2, 0, 1] 6

[0, 0, 1, 0, 1, 2] 7

[0, 0, 1, 0, 2, 0] 8

[0, 0, 1, 1, 0, 2] 9

[0, 0, 1, 1, 1, 0] 10

[0, 0, 1, 2, 0, 0] 11

[0, 0, 2, 0, 1, 1] 12

[0, 0, 2, 1, 0, 1] 13

[0, 0, 3, 0, 0, 2] 14

[0, 0, 3, 0, 1, 0] 15

[0, 0, 3, 1, 0, 0] 16

16 is the number of classes of degree 5 represented by an effective

-------------------------------------------------------------------

[0, 0, 0, 0, 0, 4] 1

[0, 0, 0, 0, 1, 2] 2

[0, 0, 0, 0, 2, 0] 3

[0, 0, 0, 1, 0, 2] 4

[0, 0, 0, 1, 1, 0] 5

[0, 0, 0, 2, 0, 0] 6

[0, 0, 1, 0, 1, 1] 7

[0, 0, 1, 1, 0, 1] 8

[0, 0, 2, 0, 0, 2] 9

[0, 0, 2, 0, 1, 0] 10

[0, 0, 2, 1, 0, 0] 11

[0, 0, 3, 0, 0, 1] 12

12 is the number of classes of degree 4 represented by an effective

-------------------------------------------------------------------

[0, 0, 0, 0, 0, 8] 1

[0, 0, 0, 0, 1, 6] 2
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[0, 0, 0, 0, 2, 4] 3

[0, 0, 0, 0, 3, 2] 4

[0, 0, 0, 1, 0, 6] 5

[0, 0, 0, 1, 1, 4] 6

[0, 0, 0, 1, 2, 2] 7

[0, 0, 0, 1, 3, 0] 8

[0, 0, 0, 2, 0, 4] 9

[0, 0, 0, 2, 1, 2] 10

[0, 0, 0, 2, 2, 0] 11

[0, 0, 0, 3, 0, 2] 12

[0, 0, 0, 3, 1, 0] 13

[0, 0, 1, 1, 2, 1] 14

[0, 0, 1, 2, 1, 1] 15

[0, 0, 2, 1, 1, 2] 16

16 is the number of classes of degree 8 represented by an effective

-------------------------------------------------------------------

The g-integer is 5

The number of canonical classes is 0

These classes are []
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