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ABSTRACT 

 For many species, populations exist as highly fragmented subpopulations linked by 

dispersal. To manage for long-term metapopulation viability effectively, information is needed 

about the factors influencing local subpopulation dynamics and connectivity among 

subpopulations. The objectives of my dissertation were to 1) improve the linkages between 

metapopulation and landscape ecology by developing spatially-explicit dynamic metapopulation 

models allowing for inference about local and landscape-level processes, 2) expand on existing 

metapopulation models by modeling spatio-temporal variation in density, 3) evaluate hypotheses 

regarding the effects of patch hydroperiod, landscape structure, and density-dependence on 

metapopulation dynamics using statistical models, and 4) provide management recommendations 

to enhance the viability of the Chiricahua leopard frog (Lithobates chiricahuensis). Colonization 

rate was influenced by patch hydroperiod, elevation and the spatial distribution of streambeds. 

Patch-specific growth rates were density-dependent and influenced by hydroperiod. The 

proportion of occupied ponds increased initially from the reintroduction of tadpoles into three 

ponds in 2003 to 18 (95% CI; 12, 33) of the 274 available ponds occupied in 2017. 

Metapopulation extinction risk over a 25-yr time horizon (2018-2043) with static environmental 



conditions was predicted to be low (7%) if invasive predator control continues and permanent 

ponds are maintained. However, under a scenario of increasing drought conditions, extinction 

risk is substantially higher, particularly in the most pessimistic scenario where some ponds fail 

and there is no management (40%). Results from my dissertation illustrate the utility of spatially-

explicit statistical models for understanding the processes underlying metapopulation dynamics 

and forecasting metapopulation viability, while formally accounting for uncertainty. 
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 CHAPTER 1  

INTRODUCTION AND LITERATURE REVIEW 

For many taxa, populations exist as highly fragmented subpopulations linked by 

individuals moving through an inhospitable landscape (Wiens 1997). Increased fragmentation 

and habitat degradation by anthropogenic activity can reduce successful migration (Thomas 

2000), limit gene flow (Epps et al. 2005), and increase metapopulation extinction risk (Fahrig 

2007). However, local extinction events are a common characteristic of many metapopulations, 

and thus metapopulation persistence depends on the ability of individuals to colonize vacant 

habitat patches (Hanski 1999). To improve long-term metapopulation viability, information is 

needed about the effects of patch and landscape level factors on patch (e.g., extinction, 

population growth) and inter-patch dynamics (e.g., colonization). This information can be used 

in conjunction with hierarchical spatio-temporal models to forecast metapopulation dynamics 

and viability under uncertain environmental conditions and management alternatives. 

Early metapopulation modeling approaches were non-spatial and assumed the landscapes 

between patches was homogenous, making it impossible to model processes such as connectivity 

(Levins 1969; Levins 1970; Harrison and Quinn 1989; Gyllenberg and Hanski 1992; Hanski 

1994). More recently, metapopulation ecology has focused on spatially-explicit models that 

account for patch quality and the influence of the spatial arrangements of patches on connectivity 

(Day and Possingham 1995; Frank and Wissel 1998; Hanski and Ovaskainen 2003; Harrison et 

al. 2011). To date, such spatially-explicit models have ignored the properties of the intervening 

habitat matrix (Tischendorf and Fahrig 2001) and only considered distance as the Euclidean 
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distance between habitat patches (Sutherland et al. 2012; Sutherland et al. 2014; Chandler et al. 

2015). A limitation of this approach is that animal movement is rarely linear, and more 

biologically meaningful measures of distance have been developed to acknowledge that habitats 

may differ in their resistance to movement (Spear et al. 2010). Advances in mark-recapture 

methods have demonstrated the possibility for directly estimating resistance surfaces and cost 

distances, but these developments have not been integrated into metapopulation models (Royle et 

al. 2013). Accounting for resistance to movement in metapopulation models would make it 

possible to study the landscape factors influencing functional connectivity.  

Patch characteristics are also thought to influence the colonization process (Hanski 1999). 

Emigration rate may be lower from higher quality patches because individuals are able to secure 

a sufficient amount of resources to survive and reproduce. However, higher quality patches may 

also contain more conspecifics, which could lead to an increase in intraspecific competition or 

crowding and increased emigration rate (Denno and Peterson 1995; McCarthy 1999; Matthysen 

2005). Additionally, either improved mating success or a reduced predation rate could lead to 

further increases in the number of individuals per patch (hereafter referred to as density) (Stamps 

1991; Matthysen 2005). In these situations, we may expect emigration rate to be lower in higher 

density patches. Immigration rate is also expected to be influenced by patch quality. Individuals 

may be more likely to settle in higher quality patches (Moilanen and Hanski 1998). However, if 

competition increases with density, and density scales with patch quality, our predictions would 

be reversed (Andreassen and Ims 2001).  

Spatio-temporal variation in patch-level extinction risk is also influenced by variation in 

demographic rates (Wahlberg et al. 2002). For instance, survival or recruitment of new 

individuals into the population may increase with patch quality (Lambrechts et al. 2004). In this 
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case, higher quality patches may contribute more potential migrants to colonize empty patches. 

Patches with larger population sizes, are also less likely to experience an extinction event 

through stochastic processes, relative to small populations (Lande 1993; Hedrick and Kalinowski 

2000). As density increases, growth rates are predicted to decline (Hanski 1998). This population 

regulation may cause population size to oscillate around a carrying capacity over time, and the 

amplitude of oscillations depends on the susceptibility of a species to environmental 

perturbations (Hanski 1999). Most metapopulation models focus on occurrence rather than 

abundance/density (Sutherland et al. 2012; Sutherland et al. 2014). However, without 

considering spatio-temporal variation in density it is impossible to model processes such as 

density-dependent growth or emigration. Moreover, ignoring density-dependence may lead to 

unreasonably high estimates of patch-specific growth rates and metapopulation level abundance.    

For the purposes of conservation, statistical models that can provide probabilistic 

forecasts of metapopulation dynamics are particularly useful, especially when the models are 

used to evaluate specific management alternatives and future environmental conditions. 

However, conventionally, population viability analyses (PVA) have involved a two-step 

procedure in which demographic parameters are estimated or elicited from experts and then the 

point estimates are plugged into a stochastic population model (Heinsohn et al. 2004; Olsen et al. 

2014; Mortensen and Reed 2016). When future environmental conditions are included in these 

models, they are often provided as average conditions (Galimberti et al. 2001). However, these 

conventional practices ignore the uncertainty associated with parameter estimation and future 

environmental conditions. Bayesian forecasting methods can be used to fully account for 

uncertainty by computing posterior predictive distributions for future occupancy states and other 

latent variables, conditional on the observed data.  
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Amphibians are a taxonomic group that is especially sensitive to environmental change 

(Foden et al. 2013). Amphibians in arid environments are particularly sensitive to environmental 

changes such as increasing drought conditions and catastrophic failure of aquatic breeding 

habitat (Welch and MacMahon 2005; Walls et al. 2013). In the southwestern USA, all native 

semi-aquatic frogs (family Ranidae) have declined (Hayes and Jennings 1986), but only the 

Chiricahua leopard frog (Lithobates chiricahuensis) is listed under the US Endangered Species 

Act (USFWS 2007). The L. chiricahuensis metapopulation that occupied the Altar Valley and 

the Buenos Aires Wildlife Refuge (BANWR) went locally extinct by 2001, most likely due to 

the spread of non-native species, including American bullfrog (Lithobates catesbeianus), 

crayfish and fish (USFWS 2007). After eradication of L. catesbeianus from the refuge in 2001, 

L. chiricahuensis were reintroduced to three patches in 2003. A monitoring program was 

established in 2007 and since then, L. chiricahuensis have been observed in cattle tanks other 

than the release locations, with varying ranges in hydroperiod. Conservation of this species 

requires information about the influence of patch characteristics and landscape structure on 

metapopulation dynamics, and predictive models are needed to determine how metapopulation 

viability is likely to be impacted by future environmental conditions and management options. 

The objectives of my dissertation were to 1) improve the linkages between 

metapopulation and landscape ecology by developing spatially-explicit dynamic metapopulation 

models allowing for inference about local and landscape-level processes, 2) expand on existing 

metapopulation models by modeling spatio-temporal variation in density, 3) evaluate hypotheses 

regarding the effects of patch hydroperiod, landscape structure, and density-dependence on 

metapopulation dynamics using statistical models, and 4) provide management recommendations 

for enhancing the viability of the Chiricahua leopard frog (Lithobates chiricahuensis).  
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Abstract 

Metapopulation ecology and landscape ecology aim to understand how spatial structure 

influences ecological processes, yet these disciplines address the problem using fundamentally 

different modeling approaches. Metapopulation models describe how the spatial distribution of 

patches affects colonization and extinction, but often do not account for heterogeneity in the 

landscape between patches. Models in landscape ecology use detailed descriptions of landscape 

structure, but often without considering colonization and extinction dynamics. We present a 

novel spatially-explicit modeling framework for narrowing the divide between these disciplines 

to advance understanding of the effects of landscape structure on metapopulation dynamics. 

Unlike previous efforts, this framework allows for statistical inference on landscape resistance to 

colonization using empirical data. We demonstrate the approach using 11 years of data on a 

threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis 

(Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge 

(BANWR), Arizona, USA from 2007-2017 following a reintroduction in 2003. Results indicated 

that colonization dynamics were influenced by both patch characteristics and landscape structure. 

Landscape resistance increased with increasing elevation and distance to the nearest streambed. 

Colonization rate was also influenced by patch quality, with semi-permanent and permanent 

ponds contributing substantially more to the colonization of neighboring ponds relative to 

intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. 

Our modeling framework can be widely applied to understand metapopulation dynamics in 

complex landscapes, particularly in systems in which the environment between habitat patches 

influences the colonization process. 
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Introduction 

“…connectivity is a concept and a term that is shared between two ecological disciplines – 

landscape ecology and metapopulation ecology. The two disciplines measure connectivity at 

different scales, landscape and patch scale respectively, and use these measures in different 

ways. Yet, the assumed underlying process – movement of organisms across landscapes – is the 

same.” (Tischendorf and Fahrig 2001) 

 

“Unfortunately, despite parallel interests, landscape ecology… and metapopulation ecology… 

remain largely separate disciplines…” (Moilanen and Hanski 2001) 

 

Landscape ecology and metapopulation ecology have been described as distinct disciplines that 

use different approaches to address similar questions about the effects of spatial structure on 

ecological processes (Hanski and Gilpin 1991; Wiens 1997; Moilanen and Hanski 2001; With 

2004). Both branches of ecology aim to understand how habitat fragmentation affects population 

dynamics and viability, but they differ in their ontogeny and emphasis on the characterization 

and relative influence of landscape structure (Hanski and Gilpin 1991; Wiens 1997; Moilanen 

and Hanski 2001; With 2004). Although several authorities have anticipated and advocated for a 

more comprehensive union of landscape ecology and metapopulation ecology (Hanski and 

Gilpin 1991; Wiens 1997; With 2004), the two disciplines have not been fully integrated, 

hindering a synthetic understanding of the role of landscape structure in spatio-temporal 

population dynamics (Baguette et al. 2013; Driscoll et al. 2013).  

The metapopulation approach has a rich theoretical history rooted in a patch-based 

perspective in which a system is described in terms of the proportion of patches occupied by a 
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species (Levins 1970; Hanski and Gilpin 1991; Hanski and Simberloff 1997; Hanski 1999; 

Hanski and Gaggiotti 2004). In the metapopulation context a patch refers to the discrete habitat 

unit within which a semi-autonomous subpopulation occurs. Early theoretical metapopulation 

models considered space implicitly (Hanski and Simberloff 1997), but an interest in describing 

processes such as distance-based colonization and spatially-correlated extinction led to the 

development of spatially realistic metapopulation theory (Hanski and Ovaskainen 2003). One 

important concept that arose from spatially realistic metapopulation theory was ‘connectivity’, 

defined by the degree to which a patch was isolated from other patches in terms of Euclidean 

distance (Hanski 1999). Several models that grew out of spatially realistic metapopulation 

theory, including the incidence function model allowed for statistical inference in some 

scenarios, which allowed for a powerful way of confronting theoretical predictions with 

empirical data (Moilanen and Hanski 1998).  

In contrast to metapopulation ecology, the field of landscape ecology was catalyzed by 

efforts to quantify landscape structure and its effects on ecological processes (Turner 1989). In 

landscape ecology, the focus is on discontinuities in the environment, rather than disjunct 

aggregations of individuals, that correspond to suitable habitat for the species under 

consideration. Landscape ecology has advanced knowledge of how population dynamics are 

influenced by landscape features such as patch edges or boundaries (Schneider-Maunoury et al. 

2016), landscape context (Wiens et al. 1993) and habitat corridors (e.g., (Wiens 1997; With 

2004). One of the major contributions of landscape ecology is a body of theory proposing that 

connectivity is defined not by Euclidean distance, but by functional distance determined by the 

way in which organisms move in response to landscape structure (Wiens et al. 1993). Landscape 

ecologists have developed innovative non-Euclidean distance metrics for quantifying landscape 
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connectivity, such as landscape resistance based on cost-weighted distance functions governed 

by coefficients describing the degree to which landscape features affect movement (McRae and 

Beier 2007) and graph theoretic approaches largely rooted in metapopulation theory (Urban and 

Keitt 2001). One technical challenge facing connectivity modeling is estimating the coefficients 

that determine the resistance surfaces. Frequently, research in landscape ecology has relied 

heavily on expert opinion (Spear et al. 2010; Graves et al. 2013; Peterman et al. 2014) and other 

ad hoc methods to choose, rather than formally estimate, resistance coefficients. Recent 

approaches have demonstrated how resistance coefficients can be estimated using telemetry or 

capture-recapture data (Graves et al. 2013; Hanks and Hooten 2013; Royle et al. 2013; 

Sutherland et al. 2015; Zeller et al. 2015), but not in the context of understanding metapopulation 

dynamics in complex landscapes.  

One of the first attempts to unify concepts from metapopulation ecology and landscape 

ecology was made by Moilanen and Hanski (1998). However, their modified distance metric 

assumes that animals move along straight lines between patches, and it can only be calculated in 

very simple landscapes composed of a small number of habitat types (Baguette et al. 2013). As 

With (2004) explained in her reflection on metapopulation ecology, there is still a need for 

spatially realistic metapopulation models to take a more biologically realistic, process-based 

approach to evaluate the effect of the landscape matrix on colonization (Hanski and Gaggiotti 

2004). A process based approach that takes on a species perspective of connectivity, should 

allow for non-linear movement with habitat-specific resistance coefficients in heterogeneous 

landscapes that are estimated rather than assigned by expert opinion (Schooley and Branch 2009; 

Cosentino et al. 2011). As other authors have pointed out, ignoring the effects of the spatial 

structure of the landscape matrix, particularly when landscapes are complex, heterogeneous, and 
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the remaining amount of suitable habitat is low, negatively affects the ability of patch based 

models to predict colonization and recolonization rates (e.g., (Bender and Fahrig 2005).  

We present an approach for further unifying metapopulation ecology and landscape 

ecology by combining some of the major concepts and contributions from both fields into a 

modeling framework for understanding the role of landscape structure on metapopulation 

dynamics. Our modeling framework is founded on stochastic, spatially-realistic metapopulation 

theory, and recent statistical developments that have made it possible to fit models to empirical 

data (Hanski 2001; MacKenzie et al. 2003; Risk et al. 2011; Sutherland et al. 2012; Sutherland et 

al. 2014; Chandler et al. 2015; Heard et al. 2015). Unlike existing approaches that model 

colonization as a function of Euclidean distance, we use a least cost path approach and present a 

method for directly estimating the resistance coefficients. We demonstrate how our model can be 

used to quantify metapopulation colonization and extinction dynamics using 11 years of 

occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog), an amphibian species 

listed as threatened under the US Endangered Species Act (USFWS 2007).  

Methods: SPATIAL METAPOPULATION MODEL INCLUDING LANDSCAPE RESISTANCE:  

To understand the effects of landscape features on connectivity, we extended the hierarchical 

model of Chandler et al. (2015), which treats colonization probability as a function of Euclidean 

distance among patches. The model consists of three components: a model for patch occupancy 

in the initial time period, a model for occupancy dynamics in subsequent years, and a model for 

detection conditional on occupancy. Occupancy probability during the initial time period (𝜓𝑖,1; 

i=1, …, M) can be modeled as a logit-linear function of patch-level covariates. Importantly, M is 

the number of patches within the entire metapopulation network, not the number of sampled 

patches. While data need only be collected at a subset of patches, the entire metapopulation 
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network must be modeled because a focal patch can be colonized by individuals from any other 

patch, not just the patches in the sample.  

The ecological process model describes patch occupancy (𝑧𝑖,𝑘) in years k>1 as a function 

of colonization (𝛾) and extinction (𝜀) dynamics:  

𝜓𝑖,𝑘 = 𝛾𝑖,𝑘−1(1 − 𝑧𝑖,𝑘−1) +  (1 − 𝜀𝑖,𝑘−1(1 − 𝛾𝑖,𝑘−1))(𝑧𝑖,𝑘−1)                                                     (1) 

𝑧𝑖,𝑘~Bernoulli(𝜓𝑖,𝑘) 

such that an unoccupied patch i is colonized in year k with probability 𝛾𝑖,𝑘−1, and an occupied 

patch becomes extinct with probability 𝜀𝑖,𝑘−1(1 − 𝛾𝑖,𝑘−1), which accounts for the rescue effect 

(Hanski 1999). Spatially-realistic metapopulation models regard colonization probability as a 

function of the occupancy state of every other patch in the metapopulation network and the 

distances among patches. One formulation uses a Gaussian kernel to describe the pairwise 

probabilities of patch i being colonized by at least one disperser from patch m: 

𝜌𝑖,𝑚,𝑘−1 =  𝜌0exp (−𝑑𝑖,𝑚
2 /  2𝜎2)                                                                                                  (2) 

where 𝜌0 is the baseline colonization probability, 𝑑𝑖,𝑚 is the Euclidean distance between patches 

i and m, and 𝜎 is the scale parameter that determines the rate of decay in colonization probability 

as a function of distance. The cumulative probability of a colonization event is given by: 

𝛾𝑖,𝑘−1 = 1 − {∏ 1 − 𝜌𝑖,𝑚,𝑘−1𝑧𝑚,𝑘−1
𝑀
𝑚=1 }                                                                                  (3) 

Similar to Chandler et al. (2015), patch-level extinction rate can be modeled as a logit-linear 

function of patch-level habitat features. This is a spatially explicit model of the colonization and 

extinction processes, but as with previous metapopulation models, it is based on Euclidean 

distance and does not explicitly account for the influence of landscape structure.  
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Drawing on contributions from landscape ecology, we extended the biological realism of 

the model by replacing Euclidean distance with a more functional connectivity measure: least 

cost distance. A least cost path (LCP) is defined as the path with the lowest cost-weighted 

distance between two locations (Dijkstra 1959). Least cost paths can be modeled by imposing a 

grid over the spatial region of interest such that landscape attributes and a set of coefficients that 

determine the resistance of each landscape attribute can be associated with each grid cell. The 

cost-weighted distance between any two locations is the accumulation of costs of moving from a 

focal to adjacent cell along the entire path between two locations.   

To explicitly estimate resistance coefficients in a metapopulation context, we begin with 

a model describing the effects of one or more landscape covariates, c(x), on the cost of moving 

between adjacent cells x and x’. Covariates can be continuous (e.g., percent forested area) or 

discrete (e.g., specific landcover classes) variables. In the case of a single covariate, the cost 

function is: 

𝑐𝑜𝑠𝑡(𝑥, 𝑥′) =  
exp (𝛼1∗ 𝑐1(𝑥))+ exp (𝛼1∗ 𝑐1(𝑥′))

2
            (4)  

where 𝛼1 is the resistance coefficient. Conditional on the cost model, cost-weighted distance 

between patches 𝑖 and 𝑚 (𝑑𝑖,𝑚
𝑐𝑜𝑠𝑡) can be computed by summing the products of costs along a path 

defined by line segments 𝑥1, 𝑥2, … , 𝑥𝐿 and the Euclidean distance among patches: 

𝑑𝑖,𝑚
𝑐𝑜𝑠𝑡 =  ∑ 𝑐𝑜𝑠𝑡(𝐿−1

𝑙=1 𝑥𝑙, 𝑥𝑙+1)‖𝑥𝑙 − 𝑥𝑙+1‖                                                                                     (5) 

where ‖𝑥𝑙 − 𝑥𝑙+1‖ is the Euclidean distance between patches i and m. The LCP is the path with 

the lowest 𝑑𝑖,𝑚
cost among all possible paths between the two locations, and the length of the least-

cost path is denoted by 𝑑𝑖,𝑚
LCP. By replacing this alternative, more process-based distance metric 

into Eq 2, we can more formally unite principles (i.e., connectivity and colonization dynamics) 
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of landscape ecology and metapopulation ecology in a single hierarchical model that can be 

fitted to data from empirical studies. Information about 𝛼1 and hence 𝑑𝑖,𝑚
LCP comes from variation 

in colonization events among sites with different intervening landscapes. As a technical matter, 

covariates should be transformed to ensure that the cost function crosses 1 for any value of 𝛼1. 

This can be accomplished by centering or standardizing continuous covariates, and by coding 

categorical variables with Q levels as Q-1 dummy variables. Such transformations facilitate 

estimation and ensure that cost distance can be interpreted relative to Euclidean distance. 

To draw inferences from data collected at a subset of patches where the species may go 

undetected when present, we model the observed detection/non-detection data (𝑦𝑖,𝑗,𝑘) conditional 

on the latent state of the system:  

𝑦𝑖,𝑗,𝑘 ~ Bernoulli(𝑝𝑖,𝑗,𝑘 × 𝑧𝑖,𝑘)                (6) 

where 𝑝𝑖,𝑗,𝑘 is the probability of detecting a species that is present at patch i during primary 

sampling occasion k and secondary sampling occasion j. This model assumes that colonization 

and extinction occur between, but not within, primary occasions. Variation in detection 

probability can be modeled as a logit-linear function of covariates or random effects.    

CASE STUDY: CHIRICAHUA LEOPARD FROG: Chiricahua leopard frogs occur in the southwestern 

United States and northern Mexico (USFWS 2007). One of the largest metapopulations is 

located in the Altar Valley of Arizona, which includes the Buenos Aires National Wildlife 

Refuge (BANWR, Figure 2.1) where this research was conducted. The Altar Valley is primarily 

semiarid grassland desert with mesquite trees (Prosopis spp.), riparian/wetland areas, and 

foothills (Bezy 2007). Within the Altar Valley there is moderate spatial variation in topography, 

with elevation ranging between 784 and 2,352m. Annual average rainfall is approximately 



19 

 

413mm, with most rainfall occurring during the monsoon season (late June - late September) 

(Bezy 2007). Summer temperature and precipitation vary across BANWR, with lower elevations 

characterized by lower precipitation and higher temperatures while higher elevations are 

characterized by higher precipitation and lower temperatures (Whittaker 1975). Most natural 

amphibian habitat has been lost due to human alteration of the landscape and suitable habitat is 

now almost exclusively stock tanks (APPENDIX A). Stock tanks (hereafter referred to as 

patches) are small (mean=0.15ha, range=0.0084-7.7ha), earthen, man-made water bodies 

originally built to provide water for livestock (Jarchow et al. 2016).  

In 2001, Chiricahua leopard frogs were extirpated within BANWR, most likely due to 

drought and the spread of non-native Lithobates catesbeianus (American bullfrog) (Jarchow et 

al. 2016). After eradication of bullfrogs from the refuge, Chiricahua leopard frogs were 

reintroduced to three patches in 2003 (Jarchow et al. 2016). A monitoring program was 

established in 2007 and since then, leopard frogs have expanded from the initial reintroduction 

sites (Jarchow et al. 2016), demonstrating their ability to navigate the terrestrial matrix and 

successfully colonize suitable habitat patches (Chandler et al. 2015).  

DATA COLLECTION AND HYPOTHESES: In total, 47 patches were surveyed on BANWR and 

adjoining State Trust land to the west, over a period of 11 years (2007-2017), with a maximum 

of 44 patches surveyed in a given year (i.e., 47 unique patches of M=274 available patches). At 

each patch in each year, two or three visual surveys were conducted in June, prior to the 

monsoon rains that often trigger dispersal. Binary data were recorded indicating if at least one 

individual was detected. Because surveys were conducted during the pre-monsoon season, prior 

to the emergence of most metamorphs and juveniles, the majority of detections were of adults. 

Patch hydroperiod was expected to influence colonization and extinction dynamics, so each 
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patch in the metapopulation was characterized as permanent (PERM; holds water every year, all 

year), semi-permanent (SEMI; holds water each year, but only part of the year), or intermittent 

(INTER; holds water during some years, only part of the year).  

Because leopard frogs were reintroduced into three patches, the initial occupancy status 

for each patch 𝑧𝑖,1 was known and used as data rather than regarded as a latent variable to be 

estimated. Local extinction probability 𝜀𝑖,𝑘−1  and the baseline colonization probability 𝜌0𝑖
 were 

modeled as hydroperiod-specific. Detection probability was modeled as a logit-linear function of 

wind speed and ambient temperature.  

We addressed several hypotheses regarding the influence of landscape features of the 

intervening terrestrial matrix and patch-specific characteristics on leopard frog colonization and 

extinction dynamics. Intermittent stream beds between patches (landscape-level habitat 

characteristic) were hypothesized to increase colonization probability because of the potential for 

moisture in streambeds to decrease frog desiccation rates and increase the probability of 

successful colonization (i.e., reaching a habitat patch; Bull 2009, Westgate et al. 2012). Spatial 

information on intermittent stream beds was obtained from the National Hydrography Dataset 

and used to calculate the distance to nearest streambed for each pixel across our study area. 

Elevation was hypothesized to impede movement and reduce colonization (landscape-level 

habitat characteristic) because elevation is a proxy for ruggedness (correlation with slope, 

r=0.70), and because soil moisture is lower at higher elevations, effectively limiting frog 

rehydration rates (Tracy 1976). An elevation dataset was obtained from the National Elevation 

Dataset digital elevation model (DEM). Both spatial data layers were standardized (i.e., mean 

zero and unit variance) and reclassified to a pixel size of 900m x 900m to improve computational 

efficiency without sacrificing predominant variation in the landscape. We fit four models that 
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differed with respect to the covariates hypothesized to influence landscape resistance (i.e., no 

covariate, elevation, distance to nearest streambed, and elevation + distance to nearest 

streambed). Pearson correlation between elevation and streambed rasters was 0.19. 

For inference, we used Bayesian methods and a custom Metropolis-within-Gibbs sampler 

that used the R package ‘gdistance’ to compute least-cost paths (van Etten 2012). We sampled 

from posterior distributions using 3 Markov chains each of length 15,000, and we discarded the 

first 1000 iterations as burnin. We compared models using effect sizes, credible intervals, and 

posterior deviance statistics, but other Bayesian model selection techniques could have been 

considered (Hooten and Hobbs 2015). Vague priors were used for all parameters (see 

APPENDIX B). R code is provided in the online version of this manuscript in APPENDIX C. A 

description of the joint posterior and full conditional distributions are provided in APPENDIX D.  

Results: We detected frogs at 19 of the 47 sampled ponds over the 11 year survey period. The 

observed occupancy rate provided evidence of initial metapopulation expansion after 

reintroduction into three ponds in 2003 (seven ponds occupied in 2011), followed by contraction 

(three ponds occupied in 2012) and expansion again in more recent years (eight ponds occupied 

in 2017). We detected frogs at ponds as far as 15.4 km from the reintroduction locations.  

Convergence diagnostics (trace plots) for all parameters for our model with elevation 

influencing landscape resistance are included in APPENDIX E. Landscape resistance, and hence 

colonization probability, were affected by landscape structure. Landscape resistance increased as 

elevation among patches increased (mean α1=0.94, 95% CI [0.20, 1.84], Table 2.1). There was a 

slightly weaker effect of distance to nearest streambed (mean α1=0.79, 95% CI [0.11, 1.36]), 

indicating that resistance was lower closer to streams than further away. When we included both 

elevation and distance to nearest streambed, the effects of both covariates decreased and there 
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was no decrease in the deviance, suggesting that the simpler models were more parsimonious 

(APPENDIX F). The influence of elevation on colonization can be seen in the posterior 

distribution of the least cost path between pairs of patches (Figure 2.2 A). The least cost path 

with the highest posterior probability bends around the mountains (Figure 2.2 A). The effect of 

cost distance on colonization probability along each path is illustrated by the fading shades of 

grey (Figure 2.2).  

In addition to inference on the effects of landscape structure on connectivity and 

colonization probabilities, our model yielded estimates of the influence of patch-specific habitat 

characteristics on metapopulation dynamics. Local extinction probability was influenced by 

patch-specific covariates. Patches that hold water permanently had much lower extinction risk 

than patches that hold water semi-permanently or intermittently (Table 2.1). The probability of a 

focal patch being colonized by any neighbor (baseline colonization probability) was influenced 

by patch hydroperiod. Semi-permanent (mean γ2= 0.23, 95% CI [0.09, 0.41]) and permanent 

patches (mean γ3= 0.22, 95% CI [0.05, 0.67]) had a much greater contribution to focal patch 

colonization probability relative to intermittent patches (mean γ1= 0.02, 95% CI [0.01, 0.05]), 

Table 2.1). 

All four of our models yielded similar predictions about spatio-temporal occupancy 

dynamics, and there were minimal differences in the annual number of occupied patches when 

comparing a model with landscape resistance to a model without landscape resistance (Table 2.1, 

APPENDIX F). Our model including elevation effects on landscape resistance predicted lower 

mean number of occupied patches relative to our model without including landscape structure, 

however the credible intervals overlapped (Table 2.1, APPENDIX F). The proportion of 

occupied patches increased rapidly following the reintroduction event in 2003 (Figure 2.3, Table 
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2.1). Expansion occurred primarily within the low to intermediate elevations in the study area 

(Figure 2.1 and Figure 2.3), and disproportionately into permanent and semi-permanent ponds.  

Detection probability was not affected strongly by either wind speed or air temperature 

(Table 2.1). The probability of detecting leopard frogs after three visits ranged from 0.94-0.99, 

and thus failure to account for imperfect detection would have resulted in only a small amount of 

upward bias in estimates of extinction probability and downward bias in estimates of 

colonization probability. The more important reason for modeling the latent ecological process at 

all patches in the metapopulation network, and not just in the sampled patches, was that it 

allowed us to account for colonization by emigrants from unsampled patches. Failure to do so 

would underestimate patch-specific and metapopulation level connectivity.  

Discussion: The model we developed represents another step forward in efforts to unify 

metapopulation and landscape ecology. It can be used to directly model the processes governing 

spatio-temporal variation in occupancy in terms of both patch-level habitat variables and 

landscape structure. In addition, it is possible to estimate least cost paths between any two 

patches, and produce resistance surfaces for entire landscapes, while accounting for uncertainty 

arising from sampling and observation error. Our approach addresses some of landscape 

ecologists’ criticisms of metapopulation ecology (Wiens 1997; With 2004) by integrating a more 

process-based characterization of the matrix (i.e., least cost path modeling) when estimating the 

influence of landscape structure on colonization probability. In accordance with metapopulation 

theory, our model describes how colonization and extinction processes determine spatial and 

temporal variation in occupancy dynamics (Hanski and Gaggiotti 2004).  

Ecological theory predicts, and empirical evidence supports the concept that matrix 

composition and configuration (Ricketts 2001, Driscoll et al. 2013) are important factors 
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influencing connectivity and population dynamics. The modeling framework we presented 

makes it possible to test theoretical predictions regarding the effects of the landscape matrix on 

metapopulation colonization and extinction dynamics. We found evidence in our Chiricahua 

leopard frog system that colonization rate was influenced by elevation among patches. Leopard 

frogs appear to avoid routes that go through high elevations, instead favoring areas of lower 

elevation, even if the Euclidean distance is greater. Elevation can be a good proxy for climatic 

conditions (e.g., temperature, rainfall) and habitat features (e.g., ruggedness, soil moisture) that 

are important determinants of colonization rate (Fan and Van den Dool 2008). Colonization rate 

was also influenced by the distribution of streambeds, providing evidence that dispersing leopard 

frogs may preferentially move through wetter areas where dehydration rates are relatively low.  

In addition to providing more unification between two ecological disciplines, our model 

increases the potential for using ecological theory in applied contexts. Resistance surfaces are 

frequently used as the basis of planning efforts to increase connectivity, but until now, were 

largely based on expert opinion (Spear et al. 2010; Zeller et al. 2012) and were rarely 

accompanied by confidence intervals or other measures of uncertainty. Recently, methods have 

been developed for formally estimating resistance coefficients using capture-recapture, landscape 

genetic or telemetry data (Graves et al. 2013; Hanks and Hooten 2013; Royle et al. 2013; 

Sutherland et al. 2015; Zeller et al. 2015), but not in the context of understanding metapopulation 

dynamics. In heterogeneous systems composed of complex mosaic landscapes, particularly when 

suitable habitat represents a relatively small fraction of the landscape (Hanski and Gaggiotti 

2004), modeling approaches based on simple Euclidean distance or simplistic measures of 

landscape structure, are likely to overestimate pairwise colonization probability. A "mosaic 

management" (Wiens 1997) approach may be most effective, whereby the landscape context in 
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which patches are arranged and the influence of matrix structure on metapopulation dynamics is 

considered during conservation decision making.  

In addition to quantifying the influence of the landscape matrix and patch quality on 

metapopulation dynamics, we used our modeling framework to test predictions regarding the 

effect of variation in patch quality on colonization and local, patch-level extinction rate. We 

found evidence that intermittent ponds contribute very little to the colonization of neighboring 

ponds, relative to semi-permanent or permanent ponds. We also found evidence that annual 

extinction risk was influenced by patch-level characteristics, with local extinction probability 

decreasing with increasing hydroperiod. Taken together, these results suggest that intermittent 

ponds contribute very little to metapopulation-level viability, even if they are located near other 

occupied patches. In spite of an apparent dependence on permanent water bodies, such wetlands 

were historically rare in our study system and are prone to invasion by non-native species such as 

bullfrogs, which require permanent hydroperiod habitat to persist (Rosen et al. 1994). 

Metapopulation viability will therefore require continued invasive species management of ponds 

surrounding BANWR that could act as sources of invaders. These actions include bullfrog 

removal and the maintenance of ephemeral wetlands (e.g., semi-permanent ponds) resembling 

more natural conditions.  

The issue of scale is ubiquitous in landscape ecology, with estimation of landscape 

resistance being no exception. For computational efficiency, we began by using a resolution 

(pixel area) of 900 x 900m for our raster covariates (elevation and distance to nearest streambed). 

Nevertheless, we were still able to document evidence for the effect of landscape structure on 

landscape resistance (Table 2.1, APPENDIX F). We expected the effect of both landscape 

features on resistance would likely increase with increasing resolution, and so we subsequently 
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investigated several other raster resolutions (720x720m, 360x260m; APPENDIX G). However, 

the credible intervals for the effect of landscape structure on landscape resistance overlapped 

substantially for all resolutions that we considered, so we included results from our original 

analysis based on 900x900m resolution rasters (APPENDIX G). In general, researchers should 

be cautious when generating raster covariates, particularly with rare and/or linear landscape 

features.  

 Our work draws on contributions from both metapopulation ecology and landscape 

ecology and hopefully will assist in efforts to unite these fields. In particular, our modeling 

framework provides a way to explicitly estimate matrix effects on connectivity and 

metapopulation colonization dynamics using empirical data. The ability to do so opens up 

opportunities for testing theoretical predictions (e.g., matrix effects on recolonization rates) and 

making more informed conservation decisions (e.g., managing the matrix to decrease patch 

isolation). In addition to the future avenues of research mentioned already, another potential 

extension of our work would be to make use of an abundance-based and/or stage-structured 

formulation (Sutherland et al. 2014). Given sufficient data, our model could be extended to 

estimate patch-specific and metapopulation-level abundance over time and space. Doing so 

would allow for researchers to test predictions regarding the effect of heterogeneity in the 

landscape matrix on density-dependent emigration and immigration (Hanski and Gaggiotti 

2004). Future extensions of our work could also integrate individual-based movement models 

developed from tracking animals moving through the matrix (Harrison et al. 2011) or through 

experimental studies of animal movement (Stevens et al. 2005). Data collected on individual 

movement behavior (e.g., distance, direction, rate) through different habitat types could improve 

precision in our parameter estimation (Harrison et al. 2011), predictability regarding population 



27 

 

persistence (Aben et al. 2014) and provide a more mechanistic understanding of the effect 

landscape structure has on the process of colonization. Each of these extensions would allow for 

a more comprehensive understanding of the effects of spatial structure on the dynamics of 

metapopulations in complex landscapes. 
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Table 2.1. Estimates of the posterior mean, standard deviation and 95% credible intervals for 

detection and occupancy parameters for our spatially explicit model of the influence of elevation 

on landscape resistance and metapopulation dynamics.  

Parameter Description Mean SD 2.5 97.5 

sigma  Scale parameter of colonization function 2.52 0.69 1.48 4.16 

gamma1  
Baseline colonization probability at 

intermittent patches 
0.02 0.01 0.01 0.05 

gamma2  
Baseline colonization probability at semi-

permanent patches 
0.23 0.08 0.09 0.41 

gamma3  
Baseline colonization probability at 

permanent patches 
0.22 0.16 0.05 0.67 

eps1  
Extinction probability at intermittent 

patches 
0.84 0.12 0.57 0.99 

eps2  
Extinction probability at semi-permanent 

patches 
0.79 0.15 0.47 0.99 

eps3  Extinction probability at permanent patches 0.15 0.13 0.02 0.55 

beta0  Intercept of logit-linear detection model 2.07 0.27 1.57 2.62 

beta1  Effect of temperature on logit(p) 0.29 0.36 -0.31 1.1 

beta2  Effect of wind on logit(p) -0.15 0.32 -0.78 0.47 

alpha1  
Linear effect of elevation on landscape 

resistance 
0.94 0.44 0.2 1.88 

z2003  Number of occupied patches in 2003 3 0 3 3 

z2004  Number of occupied patches in 2004 4.22 1.26 2 7 

z2005  Number of occupied patches in 2005 5.26 1.71 2 9 

z2006  Number of occupied patches in 2006 6.31 1.94 3 11 

z2007  Number of occupied patches in 2007 7.58 1.92 5 12 

z2008  Number of occupied patches in 2008 9.41 2.2 6 15 

z2009  Number of occupied patches in 2009 9.13 2.49 6 15 

z2010  Number of occupied patches in 2010 9.65 2.59 6 16 

z2011  Number of occupied patches in 2011 12.22 2.62 8 18 

z2012  Number of occupied patches in 2012 10.18 2.7 6 16 

z2013  Number of occupied patches in 2013 12.82 2.7 8 19 

z2014  Number of occupied patches in 2014 16.26 2.73 12 23 

z2015  Number of occupied patches in 2015 21.42 2.88 17 28 

z2016  Number of occupied patches in 2016 18.26 3.25 13 26 

z2017  Number of occupied patches in 2017 17 3.77 11 26 

Deviance Deviance 142.35 9.82 131.37 165.43 
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Figure 2.1. Potential breeding patches for Lithobates chiricahuensis (Chiricahua leopard frog) in 

the Altar Valley of Arizona. Black outline indicates the boundaries of the Buenos Aires National 

Wildlife Refuge (BANWR). Square symbols indicate permanent patches, triangles indicate 

intermittent patches, and pentagons indicate semi-permanent patches. Colored symbols indicate 

patches that are sampled annually and red indicates the three reintroduction patches. Dots within 

symbols indicate patches where leopard frogs were detected at least one time 
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Figure 2.2 A, B. Posterior distribution of the least cost path between two pairs of patches (red 

and blue circles) chosen to represent how both elevation and distance influence colonization 

probability. Each transparent path was computed from a sample of the posterior distribution of 

the resistance coefficient for elevation. The transparency of the line segments is proportional to 

colonization probability, which declines as cost distance from the focal patch (blue) increases. 

Black polygon indicates the boundary of the Buenos Aires National Wildlife Refuge (BANWR). 

Open circles indicate 274 potential breeding patches for Lithobates chiricahuensis (Chiricahua 

leopard frog). Elevation (m) across the study area is shown in the background of each figure.  
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Figure 2.3. The estimated spatiotemporal occupancy dynamics of Lithobates chiricahuensis 

(Chiricahua leopard frog) from 2003 to 2017 within the Altar Valley of Arizona. Large green 

dots are occupied patches and small black crosses are unoccupied patches. Estimates of patch 

occupancy are posterior modes. Cost (log scale) associated with each pixel (900x900m) based on 

elevation in each pixel and the mean resistance coefficient from our model is shown in the 

background of each figure. 
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CHAPTER 3 

A STATISTICAL FRAMEWORK FOR MODELING DENSITY DEPENDENT 

METAPOPULATION DYNAMICS1 
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1 Howell, P.E., Muths, E., Hossack, B.R., Sigafus, B.H., Chandler, R.B. To be submitted to 

Ecology.
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Abstract 

            In metapopulations, dispersal and population growth rates are influenced by patch quality 

and local density. Recently developed spatial metapopulation models have made it possible to 

account for distance effects on dispersal, but these models typically focus on patch occupancy 

rather than abundance. This simplification makes it impossible to study demographic processes 

such as density-dependent population growth, emigration and immigration. Without being able 

to model demographic processes, it is difficult to quantify how changes in patch and landscape 

scale characteristics will influence metapopulation viability through changes in population 

growth rates and dispersal. Our objective was to develop an integrated abundance-based 

metapopulation model to draw inferences about spatiotemporal variation in density using count 

and presence-absence data. We applied the model to data from an 11-year study of the federally-

threatened Chiricahua leopard frog (Lithobates chiricahuensis) in the Buenos Aires National 

Wildlife Refuge (BANWR), Arizona, USA. Our results indicate that pond-specific population 

growth was influenced by pond hydroperiod and density, such that permanent and semi-

permanent patches with low densities of adult frogs experienced the highest annual population 

growth. Emigration rate was not influenced by pond hydroperiod and immigration rate declined 

as the distance among patches increased. Metapopulation-level abundance increased until 2015, 

when it has appeared to stabilize around 1225 adult frogs (95% CI, 1001-1526). Our study 

extends existing statistical models of metapopulation dynamics by focusing on abundance and 

making it possible to test hypotheses regarding the influence of patch quality and density on 

local dynamics and colonization.  
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Introduction 

Many populations exist as spatially-segregated subpopulations that persist through the 

movement of individuals from occupied, to vacant, but suitable patches. Metapopulation theory 

has provided a framework for predicting changes in occupancy and for understanding the 

underlying processes of colonization and extinction that affect occupancy dynamics (Hanski and 

Gilpin 1991). Early research in metapopulation ecology considered space implicitly and assumed 

suitable patches were homogeneous (Hanski and Gaggiotti 2004). These simplifying 

assumptions make it impossible to model processes such as connectivity or the influence of 

spatial variation in patch quality on metapopulation dynamics. The development of spatially-

realistic metapopulation theory, makes it possible to consider hypotheses regarding the effect of 

variation in patch characteristics (e.g., patch area) and the spatial distribution of patches on 

colonization and extinction rates (Hanski 2001).  

The majority of spatially-explicit metapopulation models arising from spatially-realistic 

metapopulation theory deal with quantifying spatio-temporal changes in occurrence (Hanski 

1999). Traditionally the focus has been on distilling the processes of birth, death, immigration 

and emigration into patch extinction and inter-patch colonization (Hanski and Gaggiotti 2004). 

While trends in occurrence inform us about metapopulation persistence, abundance is a better 

predictor of extinction risk (Morris and Doak 2002, Payne et al. 2011). Not all patches within a 

metapopulation network are equivalent, and occupancy status alone may not accurately reflect 

the contribution of each patch to metapopulation persistence. Patches with a high number of 

expected migrants may be important for re-colonizing patches that become temporarily extinct, 

or colonizing new, vacant patches within the network. In addition, patches with large population 

sizes are less likely go extinct through stochastic processes that disproportionately affect small 
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populations (Lande 1993, Hedrick and Kalinowski 2000). In systems where metapopulation 

dynamics are less dependent on patch quality relative to demographic processes occurring within 

patches (Matthysen 1999), a focus on occurrence could result in inaccurate forecasts of 

metapopulation extinction risk.  

In metapopulations, local dynamics and dispersal are likely influenced by patch quality 

and density (Hanski 1999). However, focusing on occurrence precludes testing hypotheses that 

assess the role of demographic processes occurring within patches. For example, survival or 

recruitment of new individuals into the population may be influenced by patch quality, including 

the density of conspecifics (Lambrechts et al. 2004). In this case, higher quality patches may 

contribute more potential migrants to colonize empty patches. Density may indicate favorable 

habitat conditions, in which case individuals would remain in high density patches or immigrate 

into high density patches (Stamps 1988). Alternatively, density may facilitate increased intra-

specific competition relative to other patches in the metapopulation (Andreassen and Ims 2001; 

De Meester and Bonte 2010), and predictions regarding dispersal would be reversed. However, 

without considering spatio-temporal variation in density it is impossible to model processes such 

as density-dependent growth, emigration, or immigration.  

Recent advancements in statistical techniques have demonstrated methods for using 

repeated count data with imperfect detection to estimate abundance (Chandler and King 2011; 

Dail and Madsen 2011). These advances still consider space implicitly and are therefore similar 

to earlier metapopulation modeling approaches (Levins 1969; Levins 1970; Gyllenberg and 

Hanski 1992; Hanski 1994) in their inability to model fundamental processes such as 

connectivity. At the inter-patch scale, the movement of individuals among local populations is 

influenced by distance among patches and the quality of the intervening habitat matrix (Hanski 
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2001; Hanski and Ovaskainen 2003; Ovaskainen and Hanski 2004). Recent advancements to 

metapopulation modeling have allowed for the direct estimation of connectivity among habitat 

patches (Sutherland et al. 2012; Sutherland et al. 2014; Chandler et al. 2015). However, there is a 

need for a general statistical framework based on spatially realistic metapopulation theory that 

allows for testing hypotheses regarding both local demographic processes and the spatial 

distribution of suitable patches on metapopulation abundance.  

We developed a spatially-explicit integrated metapopulation model based on spatially 

realistic metapopulation theory (Hanski 2001). In keeping with the tradition of spatially-realistic 

metapopulation theory, our modeling framework allows for testing the influence of patch quality 

and the spatial distribution of patches on metapopulation dynamics. Our model allows for testing 

hypotheses about the influence of patch density on patch-level growth and dispersal. We can 

quantify trends in metapopulation size, rather than simply occurrence by integrating count and 

presence absence data collected in the field. Integrated population models (IPM) that incorporate 

empirical data collected using multiple sampling processes are at the forefront of ecological 

modeling. Often logistical or financial constraints necessitate collecting more valuable data (e.g., 

count data) at only a subset of sites or in a subset of years. When less informative data (e.g., 

presence-absence data) are collected at other, perhaps broader, spatial or temporal scales, an 

integrated model provides enough flexibility to combine data sets to estimate parameters of 

interest (Besbeas et al. 2002; Brooks et al. 2004). In some cases, IPMs have the added benefit of 

improving precision around parameter estimates (Zipkin and Saunders 2018). While the use of 

IPMs has proliferated in population ecology (Zipkin and Saunders 2018), there are far fewer 

examples of integrated metapopulation models (Harrison et al. 2011).  
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We demonstrated our approach using data collected for the federally-threatened 

Chiricahua leopard frog (Lithobates chiricahuensis) on the Buenos Aires National Wildlife 

Refuge (BANWR), AZ, USA. Previous modeling approaches developed in this system have 

quantified how colonization rate is influenced by the spatial distribution of patches (Chandler et 

al. 2015) and the landscape matrix in which patches are embedded (Howell et al. In Press). These 

previous approaches also allowed us to quantify the influence of  habitat covariates on local 

patch level extinction risk while formally accounting for imperfect detection (Chandler et al. 

2015; Howell et al. In Press). However, previous modeling efforts focused on occurrence and do 

not consider the effect of density on metapopulation dynamics.  

Methods: SPATIALLY-EXPLICIT INTEGRATED METAPOPULATION MODEL: We developed a 

dynamic, spatially-explicit integrated metapopulation model based on spatially realistic 

metapopulation theory (Hanski 2001). Our modeling framework extends the spatially-explicit 

metapopulation occupancy model of Chandler et al. (2015) by estimating spatio-temporal 

variation in density and making it possible to test hypotheses regarding the influence of patch 

quality and density on population growth, emigration and immigration. Our model includes five 

components describing i) initial abundance, ii) local population dynamics, iii) emigration 

probability, iv) immigration rates and v) the observed data conditional on abundance and as a 

function of detection probability. 

Abundance in the first time point is described by the following condition:  

𝑁𝑖,1~ Poisson(𝜓𝑖,1)                                                                                                                    (1) 

Where 𝑁𝑖,1 is the number of individuals at patch i during year one and depends on the expected 

initial abundance, 𝜓𝑖,1. In our system, we know the location of reintroduction events, but not the 

exact number of individuals released (see CASE STUDY: CHIRICAHUA LEOPARD FROG). We 
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therefore treated abundance as zero at non-reintroduction patches, and at the reintroduction 

ponds we used a 𝑁𝑖,1~ Poisson(3) prior to describe our uncertainty about initial abundance.                                                                                                                       

Abundance in subsequent years, t, at each patch i, is dependent on local population dynamics, 

emigration, and immigration. We used a simple geometric growth model and a Poisson 

assumption to describe the number of individuals 𝑁𝑖,𝑡
∗  resulting from local population dynamics: 

𝑁𝑖,𝑡
∗  ~ Poisson(𝑁𝑖,𝑡 * 𝜆𝑖,𝑡)                 (2) 

However, any standard model of population dynamics could be used, including separate models 

for describing the respective contribution of fecundity and survival to population growth. We 

modeled the patch-specific population growth rates 𝜆𝑖,𝑡 as a function of pond hydroperiod and 

pond density (area = pond area in square meters) on the log -linear scale:  

log(𝜆𝑖,𝑡) =  𝛼1 ∗ INTER𝑖 +  𝛼2 ∗  PERM𝑖 +  𝛼3 ∗  SEMI𝑖 +  𝛼4 ∗ (𝑁𝑖,𝑡 /area𝑖)                     (3) 

Emigration was modeled as the proportion of 𝑁𝑖,𝑡
∗  that left a focal patch, using a binomial model 

where 𝜌0 is the probability of emigration: 

 𝐸𝑖,𝑡~Binomial(𝑁𝑖,𝑡−1
∗ , 𝜌0𝑖)              (4) 

We tested the influence of patch level covariates (pond hydroperiod; PERM=permanent pond, 

SEMI=semi-permanent pond, INTER=intermittent pond) on the probability of emigration: 

 𝜌0𝑖 =  𝜌01 ∗ INTER𝑖 +  𝜌02 ∗ SEMI𝑖 +  𝜌03 ∗ PERM𝑖              (5) 

Immigration into a focal patch was quantified as the sum of the successful migrants from all the 

neighboring patches. Successful immigration was modeled with a multinomial distribution:  

 𝐼𝑖,1,𝑡 … 𝐼𝑖,𝑀,𝑡~ Multinomial(𝐸𝑖,𝑡, 𝜋𝑖,𝑚)         (6) 

Where M is the number of patches in the metapopulation and 𝜋𝑖,𝑚 is the probability of 

individuals immigrating into patch i from neighboring patch m. We then summed the Is over all 
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neighboring patches to calculate the number of immigrants into a focal patch. The probability of 

immigration, 𝜋𝑖,𝑚, was modeled as a log-linear function of the Euclidean distance among all 

neighboring patches: 

log(𝜋𝑖,𝑚) = −𝜌1 ∗ d𝑖,𝑚                                       (7) 

The above description is the full model, however it can be simplified. If the multinomial size is 

Poisson, the realized abundance N comes from a Poisson distribution, since the sum of 

multinomial outcomes is also Poisson. Here, the multinomial size is Poisson(𝑁𝑖,𝑡 * 𝜆𝑖,𝑡).  

Thus we modeled realized N as coming from a Poisson model: 𝑁𝑖,𝑡 ~ Poisson(𝐸𝑁𝑖,𝑡) 

Where 𝐸𝑁𝑖,𝑡 is the expected number of individuals and is a function of the sum of the expected 

number of migrants EM to each site i from all M neighboring sites in time t:  

𝐸𝑁𝑖,𝑡 = ∑ 𝐸𝑀𝑚,𝑖,𝑡
𝑀
𝑚=1…𝑀                                                                                                                (8) 

The expected number of migrants to each site i in time t is a function of the probability of 

individuals immigrating to site i from neighboring sites m (𝜋𝑖,𝑚) as well as the local population 

growth (𝜆𝑖,𝑡):  

𝐸𝑀𝑖,𝑚,𝑡 =  𝑁𝑖,𝑡−1 ∗ 𝜆𝑖,𝑡−1 ∗  𝜋𝑖,𝑚               (9) 

CASE STUDY: CHIRICAHUA LEOPARD FROG: The Chiricahua leopard frog is a federally-threatened 

amphibian that occurs within the southwestern United States and portions of northern Mexico 

(Bezy 2007). We studied the metapopulation occupying the BANWR in the Altar Valley, 

southern Arizona (Figure 3.1). The Altar Valley is primarily used for grazing cattle and is 

characterized by semiarid grassland desert along with some riparian/wetland areas, foothills and 

mesquite trees (Bezy 2007). The majority of existing amphibian habitat patches are artificial 

cattle tanks (Bezy 2007). Cattle tanks in our study area are earthen, man-made water bodies that 



 

46 

 

range in size (mean=0.15ha, range=0.0084-7.7ha) and were originally built to provide water for 

livestock (Jarchow et al. 2016). Within BANWR, leopard frogs were extirpated by 2001, most 

likely due to the spread of non-native Lithobates catesbeianus (American bullfrog) (Jarchow et 

al. 2016). Between 2001 and 2003, bullfrogs were eradicated from the refuge and Chiricahua 

leopard frogs were reintroduced to three cattle tanks in 2003 (Jarchow et al. 2016). We based our 

assumption of the extirpation of leopard frogs in BANWR on unpublished data, reporting 

extensive surveys (VES and seining) where leopard frogs were targeted and had occurred on 

BANWR prior to the reintroduction (USGS unpublished, BH Sigafus, pers. communication). 

Further, bullfrogs are known predators of leopard frogs and were common in all water bodies at 

the refuge (USGS unpublished, BH Sigafus and C. Schwalbe, pers. communication). Because of 

these surveys and reports from US Fish and Wildlife Service, we are confident in our assumption 

of no other reintroduction sites. A monitoring program collecting presence-absence data was 

established in 2007, and beginning in 2013 count data were collected at the same subset of 

patches.  

Forty-seven patches were surveyed on BANWR and adjoining State Trust land, over 11 

years (2007-2017). The maximum number of patches surveyed during a single year was 44 and 

47 unique patches, of a possible M=274, were surveyed during the course of our study. From 

2007-2012, we visited each of the surveyed patches K=3 times during the pre-monsoon period 

when the population was assumed to be closed (e.g., no birth, death, immigration, emigration). 

Visual encounter surveys were conducted between 21:00 and 03:00 (Crump and Scott). Two 

observers would each start at the same location on the edge of a pond and walk away from one 

another, until they reached a point directly across from their starting location. If any leopard frog 

was detected, we recorded 𝑦𝑖,𝑘,𝑡 = 1 for patch i (i=1,…n) during survey k (k=1,…K) and year t 
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(t=1,…,T), or 𝑦𝑖,𝑘,𝑡 = 0 if no frogs were detected (presence-absence data). During 2013-2017, 

we collected count data by visiting a patch K=2 or K=3 times during the pre-monsoon season. To 

collect count data, we conducted visual surveys using the dependent double observer method 

(Nichols et al. 2000). Observer one counted the number of frogs observed and recorded the life-

stage (adult, juvenile, metamorph, tadpole) of each individual. Observer two conducted a survey 

immediately following observer one. For this analysis we only considered the counts of adult 

frogs. 

We also characterized each of the M=274 available breeding locationspond (patch) 

hydroperiod as holding water permanently (40 patches, PERM), semi-permanently (10 patches, 

SEMI), and intermittently (224, INTER). We measured the area of each pond in ArcGIS using 

2015 NAIP imagery (USDA-FSA-APFO Aerial Photography Field Office, 2015). For three of 

the ponds, we were unable to effectively determine the pond area, because the boundaries of the 

pond were unclear. For these ponds, we assigned pond area as the maximum area for all other 

ponds in the metapopulation. Wind speed (WIND, range: 0-17.3 kilometers/hour) and ambient 

temperature (TEMP, range: 9.2-41.2 degrees Celsius) were recorded because they can influence 

amphibian detection probability (Weir et al. 2005). All research was conducted under AGFD 

Scientific Collecting Permits SP695065, SP740593 and SP561283; BANWR Special Use 

Permits 2003-6 and 2007-12; and USFWS Permit TE081509.  

MODEL FOR THE SAMPLING PROCESS: For years when we had only presence-absence data (2007-

2012), we modeled the observed data conditional on local abundance and detection probability.  

𝑦𝑖,𝑡𝑘 ~Bernoulli(𝑝𝑖,𝑡,𝑘)                                                                                                      (10) 

𝑝𝑖,𝑡,𝑘 = 1 − (1 − 𝑟𝑖,𝑡,𝑘)𝑁𝑖,𝑡                                                                                                      (11) 
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Where r is the probability of detection in patch i, in primary period t, and secondary sampling 

occasions k for a particular individual (i.e., frog). (1 − 𝑟𝑖,𝑡,𝑘)𝑁𝑖,𝑡 describes the probability of not 

detecting any of the N individuals in patch i, during primary period t. The probability of 

detecting at least one individual is described by 1 −  (1 − 𝑟𝑖,𝑡,𝑘)𝑁𝑖,𝑡. In other words, detection p is 

related to abundance N through r, the binomial sampling probability that a particular individual 

is detected (Royle and Nichols 2003).  

We modeled the influence of temperature and wind on detection probability using a logit-linear 

model.   

logit(𝑟𝑖,𝑡,𝑘) =  𝛽0 +  𝛽1TEMP𝑖,𝑡,𝑘 + 𝛽2WIND𝑖,𝑡,𝑘                                                                     (12) 

For years in which we had count data (2013-2017), we modeled the observed data conditional on 

the latent abundance and as a function of detection probability. We included the influence of 

temperature and wind on detection probability in a logit-linear model. Because a dependent 

double observer method for sampling was used, there are two detection models, one specific to 

each observer: 

𝑦1𝑖,𝑡𝑘 ~Binomial(𝑟1𝑖,𝑡,𝑘, 𝑁𝑖,𝑡)                                                                                                   (13) 

logit(𝑟1𝑖,𝑡,𝑘) =  𝛽0 +  𝛽1TEMP𝑖,𝑡,𝑘 + 𝛽2WIND𝑖,𝑡,𝑘                                                                   (14) 

𝑦2𝑖,𝑡𝑘 ~Binomial(𝑟2𝑖,𝑡,𝑘, 𝑁𝑖,𝑡 −  𝑦1𝑖,𝑡𝑘)                                                                                    (15) 

logit(𝑟2𝑖,𝑡,𝑘) =  𝛽0 +  𝛽1TEMP𝑖,𝑡,𝑘 + 𝛽2WIND𝑖,𝑡,𝑘                                                                   (16) 

Here the 𝛽 parameters in the models of detection probability are regression coefficients to be 

estimated.  

We used a Bayesian approach and performed MCMC sampling using rjags (Plummer 2003) 

called from R (Team 2014) to analyze the model (JAGS model code provide in APPENDIX H). 
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For all parameters, we used vague priors 

(𝛼1 ~ Norm(0, 0.1), 𝛼2 ~ Norm(0, 0.1), 𝛼3 ~ Norm(0, 0.1), 𝛼4 ~ Uniform(−20, 0),  

𝜌01 ~  Uniform(0, 1), 𝜌02 ~   Uniform(0, 1),  𝜌03 ~   Uniform(0, 1), 

𝜌1 =  1 2𝜎2⁄ , 𝜎~Gamma(0.001, 0.001),   𝛽0 ~ Norm(0, 0.1), 𝛽1 ~ Norm(0, 0.1),

 𝛽2 ~ Norm(0, 0.1)). We sampled posterior distributions using 3 Markov chains of length 

15000. Convergence was assessed visually by inspecting trace plots (APPENDIX I).  

Results: Following reintroduction into three patches in 2003, leopard frogs have colonized other 

ponds and expanded the network of occupied patches within the BANWR metapopulation 

(Figure 3.1, Figure 3.2.). Metapopulation level abundance increased steadily from 2004-2013 

(Table 3.1, Figure 3.3). Between 2013 and 2014, average metapopulation abundance more than 

doubled, from an estimated 862 to 2,083 individuals (Table 3.1, Figure 3.3). Following the 

dramatic increase from 2013-2014, there was a decline in metapopulation abundance to 2017 

(Table 3.1, Figure 3.3). In general, the metapopulation spread from the initial reintroduction 

locations in a northwest direction into permanent ponds on State Trust Land (Figure 3.1, Figure 

3.2).   

 Colonization was influenced by the spatial distribution of patches and patch density. As 

the distance between patches increased, the immigration rate decreased (Table 3.1, Figure 3.4) 

and the expected number of migrants from a given patch immigrating into neighboring patches 

declined (Figure 3.4). Isolated patches with a low number of potential migrants and few occupied 

neighbors are unlikely to be colonized naturally by dispersing individuals and currently 

contribute little to metapopulation persistence. The probability of individuals leaving a focal 

patch (i.e., emigration rate) did not vary by pond hydroperiod (Table 3.1). 
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Patch-specific population growth (adult survival from time t-1 to t and growth to the adult 

life stage in time t of individuals recruited into the population through births in t-1) was 

influenced by pond hydroperiod and the patch-specific density of the adult breeding population 

(Table 3.1, Figure 3.5). In general, pond-level dynamics played a larger role in the changes in 

abundance/density relative to the movement of individuals among ponds (Figure 3.2). Semi-

permanent ponds had the highest annual growth followed by permanent and then intermittent 

patches (Table 3.1, Figure 3.5). Lower quality patches contributed very minimally to population 

growth and could be considered a demographic sink (e.g., growth rate less than one; Table 3.1, 

Figure 3.5). Population growth was also strongly negatively density-dependent (Table 3.1), with 

annual growth rate decelerating, as local population size increased (Figure 3.5). 

 For count surveys, detection probability was influenced by both wind speed and ambient 

temperature (Table 3.1). Although the effect was small, the probability that a frog was detected 

increased with decreasing temperature and decreasing wind speed (Table 3.1).  

Discussion: The model we developed expands on existing spatially-explicit metapopulation 

models by estimating patch-specific population density and metapopulation level abundance, 

rather than simply occurrence. By accommodating both count and presence-absence data, we 

tested hypotheses regarding the influence of patch characteristics, including density, on local 

dynamics and the spatial distribution of patches on colonization. In the Chiricahua leopard frog 

system, we showed that population growth was influenced not only by patch characteristics but 

also the density of conspecifics. In addition, patch characteristics did not influence emigration 

rate and patches that were more isolated from neighboring patches experienced lower 

immigration rates.  
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We documented negative density-dependence in our system, with growth rate 

decelerating as population size increased. This result is consistent with previous empirical 

studies of density-dependence in metapopulations (Hanski 1990) Intermittent ponds generally 

had growth rates less than 1, regardless of density, and could be considered demographic sinks. 

Permanent ponds had growth rates greater than 1 (i.e., demographic source) at low pond level 

densities while semi-permanent ponds had the largest range of pond densities at which growth 

rates were greater than 1. Intermittent patches currently make up the vast majority of patches 

within the metapopulation network (n=224/274). In the southwestern United States, rainfall is 

expected to decrease while ambient temperatures are expected to rise as the climate becomes 

more arid (Seager et al. 2007). Lower precipitation could mean that ponds dry out (i.e., are not 

permanent) during the summer. Multiple, consecutive years of drought may lead to ponds going 

from permanent or semi-permanent to intermittent. This type of scenario may necessitate 

managers to intervene. For example, tank restoration may be necessary to provide water long 

enough to support a breeding population.  

Patch hydroperiod affected population growth, but did not influence emigration rate. This 

result is in contrast to other metapopulation studies of the influence of patch quality on 

emigration rate (White and Levin 1981; Kuussaari et al. 1996; Gundersen et al. 2001). For , in 

the Glanville Fritillary butterfly system, lower emigration rates were documented from patches 

with a greater abundance of food resources (White and Levin 1981; Kuussaari et al. 1996). 

However, the strength of the relationship varied by sex, with the effect of patch quality being 

much weaker for females (Kuussaari et al. 1996). We did not investigate stage-specific 

emigration rates in our study and it is possible that emigration rate in the Chiricahua leopard frog 

varies by age, sex or body condition. Similar to the Glanville Fritillary butterfly, female leopard 
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frogs may have a greater tendency to emigrate regardless of patch quality. In other amphibians, 

females have been shown to leave breeding ponds shortly after depositing eggs (Muths et al. 

2010) and there is evidence that dispersal may be female-biased in other anurans (Austin et al. 

2003; Palo et al. 2004). After successfully breeding, female leopard frogs may leave the breeding 

pond to avoid continued harassment by males (Sztatecsny et al. 2006). We also only considered 

adult frogs in our study, and it may that juvenile frogs constitute the majority of dispersing 

individuals (Funk et al. 2005). Any effect of patch quality on emigration rate could be more 

pronounced in this age class relative to adults. Although emigrate ration may be lower at higher 

quality patches, because they produce so many potential migrants, highly productive patches 

may still be the primary source of dispersers.  

We did not consider the impact of density on emigration rate, other metapopulation 

studies suggest emigration rate increases with increasing density if the population exceeds local 

carrying capacity (Dethier and MacArthur 1964). In other cases, emigration rate has been found 

to decrease with increasing density, possibly because of a higher number of potential mates at 

higher density patches (Gilbert and Singer 1973). Chorusing behavior, where males form lek-like 

aggregations and call to females, has been observed in other ranids (Wells 1977). Leopard frogs 

may exhibit similar behavior, leading to a decrease in emigration rate and increase in 

immigration rate with increasing density. If emigration or immigration rate are influenced by 

density, but not pond hydroperiod, this would provide evidence that the presence of potential 

mates could be indicative of the importance of chorusing behavior.  

A widely held contention in anuran ecology is that anurans exhibit high site fidelity and 

natal philopatry. Several mark-recapture studies have demonstrated that a majority of recaptured 

individuals (both juveniles and adults) were recaptured at the pond where they were initially 
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captured (Berven and Grudzien 1990; Waldman and McKinnon 1993). However, it is possible 

that in mark-recapture studies, many of the marked individuals that were not recaptured could 

have dispersed and were never recaptured again. It is also possible that individuals do not 

disperse because conditions in their natal pond are favorable to reproduction and growth. 

Dispersal propensity has been shown to be linked to body condition and environmental 

conditions. During the time of a field study, environmental conditions may not promote dispersal 

(e.g., insufficient rainfall) (Dole 1971) or individuals may be less likely to emigrate depending 

on their internal and external state (Barbraud et al. 2003).  

Expansion from the initial reintroduction patches occurred primarily in a northwestern 

direction and immigration rate declined as distance among patches increased. We were not able 

to fit a model with immigration rate varying by hydroperiod, however the majority of colonized 

patches were permanent hydroperiod ponds. Although there have been fewer studies 

investigating the factors affecting immigration rate using empirical data, available evidence 

suggests that immigration rate increases with patch size and patch quality (Kuussaari et al. 1996). 

The density of neighboring patches could also influence immigration rate in the Chiricahua 

leopard frog. If density of conspecifics indicates favorable habitat, frogs may be more likely to 

settle in high density ponds (Stamps 1988). Alternatively, frogs may avoid higher density ponds 

in favor of less crowded patches where intra-specific competition for resources may be lower 

(Andreassen and Ims 2001; De Meester and Bonte 2010).  

The Chiricahua leopard frog metapopulation increased steadily until 2014, at which point 

the level of abundance of the metapopulation began to decline. In more recent years (2015-

2017), the metapopulation appears to be oscillating around 1200 adult frogs. This 

metapopulation level trend may be explained, in part, by the local pond level density-dependence 
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we documented in our system. Focusing on the transition from 2013-2014 (increase in 

metapopulation abundance) and then 2014-2015 (decrease in metapopulation abundance), we 

found that from 2013-2014 36 patches increased, 1 decreased, and 96 patches had no change in 

density (85 of these patches remained unoccupied). From 2014-2015, although there was a large 

decline in metapopulation abundance, only four patches had a decrease in population size (n=2 

permanent, n=1 intermittent, n=1 semi-permanent pond). Changes in the density of only a few 

ponds seemed to be sufficient to cause substantial changes in metapopulation-level abundance. 

All four occupied ponds that declined in density from 2014-2015 also had some of the highest 

densities during 2014, relative to other occupied ponds in the metapopulation. One hypothesis is 

negative density-dependence (e.g., intraspecific competition for food resources, space; Skogland 

1985, Petranka and Sih 1986): once these ponds exceeded their carrying capacity, local 

population sizes declined, irrespective of any abiotic changes to the system. Another hypothesis 

is declining habitat quality: rainfall in desert ecosystems is often highly localized and could have 

led to a decline in quality of available habitat (e.g., pond depth, amount of submergent 

vegetation) and subsequently lowered the carrying capacity of these ponds (Noy-Meir 1973). 

The patches that declined in population size from 2014-2015 may have received a 

disproportionately small amount of the summer monsoon precipitation. PRISM data over the 

course of our study (2003-2017) indicate that the refuge as a whole experienced lower than 

average summer precipitation from 2010-2012 (data not shown). However, not all ponds 

declined in population size from 2014-2015 and we do not have data on pond-level trends in 

precipitation. Future research focused on pond-level habitat characteristics and climate will help 

elucidate the mechanisms behind the density dependence we observed in our system. 
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Our modeling framework extends existing spatially-explicit metapopulation models by 

quantifying spatio-temporal variation in patch density as well as incorporating multiple data sets 

collected across different temporal scales. By estimating patch density rather than focusing on 

occurrence, we incorporated density-dependence into our model of local population dynamics. 

While we did not consider the influence of density on emigration and immigration rates, our 

modeling framework is sufficiently flexible to allow for testing hypotheses regarding the 

influence of density on these processes. Integrated population models are at the forefront of 

ecological modelling and provide practical benefits to conservation efforts. The flexibility of 

integrated models allow researchers to incorporate multiple datasets that may otherwise have 

been discarded because of previous constraints. Our efforts address one of these constraints and 

our model could be further extended to incorporate additional types of data sets including mark-

recapture data. Including this kind of data set would allow us to estimate vital rates such as 

survival and fecundity within a spatially-explicit metapopulation model. Our abundance-based 

metapopulation dynamic model can be applied to other taxa and systems, where researchers are 

interested in understanding the influence of demographic processes on metapopulation dynamics. 
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Table 3.1. Estimates of the posterior mean, standard deviation and 95% credible intervals for 

detection and abundance parameters for our spatially explicit integrated metapopulation model. 

Parameter Description Mean   SD  2.5 97.5 

rho1  

Linear effect of Euclidean distance on 

emigration rate 0.12 0.06 0.02 0.24 

rho01 Emigration rate of intermittent patches 0.96 0.04 0.85 1.00 

rho02 

Emigration rate of semi-permanent 

patches 0.99 0.01 0.97 1.00 

rho03 Emigration rate of permanent patches 0.98 0.00 0.97 0.99 

alpha1  

Local population growth at intermittent 

patches 0.06 0.11 -0.16 0.28 

alpha2  

Local population growth at permanent 

patches 0.57 0.02 0.52 0.61 

alpha3  

Local population growth at semi-

permanent patches 0.66 0.04 0.58 0.74 

alpha4  

Effect of population density on local 

population growth -1.89 0.13 -2.14 -1.63 

beta0 

Intercept of logit-linear detection 

model  -1.30 0.07 -1.45 -1.17 

beta1 Effect of temperature on detection  0.11 0.02 0.07 0.16 

beta2 Effect of wind on detection 0.30 0.03 0.24 0.36 

Ntotal[2004]  Metapopulation abundance in 2004 13.44 2.91 8.00 19.00 

Ntotal[2005]  Metapopulation abundance in 2005 27.27 5.72 17.00 40.00 

Ntotal[2006]  Metapopulation abundance in 2006 53.31 10.43 36.00 76.03 

Ntotal[2007]  Metapopulation abundance in 2007 97.91 17.24 68.00 135.03 

Ntotal[2008]  Metapopulation abundance in 2008 163.48 26.16 116.00 219.00 

Ntotal[2009]  Metapopulation abundance in 2009 251.16 35.22 185.00 326.03 

Ntotal[2010]  Metapopulation abundance in 2010 360.80 41.60 283.00 446.03 

Ntotal[2011]  Metapopulation abundance in 2011 494.05 43.27 412.98 582.03 

Ntotal[2012]  Metapopulation abundance in 2012 643.97 43.51 565.00 732.03 

Ntotal[2013]  Metapopulation abundance in 2013 862.46 47.98 777.00 963.00 

Ntotal[2014]  Metapopulation abundance in 2014 2083.41 56.54 1985.00 2209.00 

Ntotal[2015]  Metapopulation abundance in 2015 1186.97 76.79 1054.00 1356.03 

Ntotal[2016]  Metapopulation abundance in 2014 927.66 96.29 768.00 1139.00 

Ntotal[2017]  Metapopulation abundance in 2015 1225.51 135.38 1001.00 1526.00 
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Figure 3.1. Potential breeding patches for Chiricahua leopard frogs in the Altar Valley, Arizona, 

USA (Buenos Aires National Wildlife Refuge [BANWR] and State Trust Land). Black outline 

indicates the boundaries of BANWR. Square symbols indicate permanent patches, triangles 

indicate intermittent patches, and pentagons indicate semi-permanent patches. Colored symbols 

indicate patches that are sampled annually and orange indicates the three reintroduction patches. 

Dots within symbols indicate patches where leopard frogs were detected at least one time.  
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Figure 3.2. Illustration of metapopulation dynamics from 2013-2015. A) Realized abundance in 

2013, B) Local dynamics (abundance after local population growth and before movement), C) 

Movement (net number of individuals gained or lost via movement at each patch), D) Expected 

abundance in 2014 and E) Realized abundance in 2014 for Chiricahua leopard frogs in the 

Buenos Aires National Wildlife Refuge and nearby State Trust Land within the southern Altar 

Valley of Arizona, USA. Local patch level growth represents survival from time t-1 to t and 

growth to the adult life stage of individuals recruited into the population. Immigration is 

quantified as the sum of all contributions of individuals moving from neighboring patches 

(n=274) to a given patch within the metapopulation. 

A B 
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Figure 3.3. Metapopulation realized abundance over time for Chiricahua leopard frogs in the 

Buenos Aires National Wildlife Refuge and nearby State Trust Land within the southern Altar 

Valley of Arizona, USA from 2004-2017. Circles indicate mean abundance and lines indicate the 

upper and lower limit of the 95% credible interval.  
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Figure 3.4. Example of the expected number of migrants (EM) and number of individuals 

expected to remain in a focal pond (n) for a subset of ponds on the Buenos Aires National 

Wildlife Refuge. In this example, n=528 adults are expected to remain within the focal pond 

from 2015-2016, while a total of 8 individuals are expected to immigrate into other ponds within 

the Refuge. The number of expected migrants declines with distance from the focal pond. 
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Figure 3.5. Local population growth as a function of pond hydroperiod and patch-specific 

density (adult frogs/square meter) for Chiricahua leopard frogs in the Buenos Aires National 

Wildlife Refuge and nearby State Trust Land within the southern Altar Valley of Arizona, USA. 

Solid, colored lines indicate mean, dashed lines indicate upper and lower limits of 95% credible 

intervals. Solid black line indicates no change in local population growth.  
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Abstract 

            Successful conservation of at-risk species requires reliable models for projecting the 

consequences of environmental change and management actions on population viability. 

Conventional population viability analysis (PVA) involves a two-step process in which 

parameters are estimated, or elicited from expert opinion, and then used in a stochastic 

population model without accounting for statistical uncertainty. Recently-developed statistical 

PVAs differ because projections are made conditional on empirical data. This allows for 

inference about quantities such as extinction risk, while accounting for parameter uncertainty and 

standard sources of uncertainty arising from demographic and environmental stochasticity. We 

conducted a statistical metapopulation viability analysis using a spatio-temporal occupancy 

model fitted to 11 years (2007-2017) of data on the federally-threatened Chiricahua leopard frog 

(Lithobates chiricahuensis). We considered models of no environmental change and increasing 

drought conditions over 25 years. Based on historical data on pond failure, we included the 

probability that human-made breeding ponds would fail, changing habitat from suitable to 

unsuitable. Additionally, we evaluated management actions involving the restoration of 1, 3, or 6 

ponds, and calculated the marginal gains associated with each level of pond restoration, under 

each model of future environmental change. Projections over a 25-yr time horizon indicated that 

under current environmental conditions, metapopulation extinction risk is low (7%), even when 

no additional ponds are restored. However, under a scenario of increasing drought conditions, 

extinction risk is substantially higher (40%), particularly in the most pessimistic scenario where 

ponds are allowed to fail and there is no management. Active management may be necessary to 

maintain permanent breeding habitat and decrease extinction risk as drought conditions are 

expected to increase over time. Our study illustrates the utility of biologically-realistic statistical 
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models for forecasting viability to inform conservation planning for species and populations at 

risk of extinction. 

Introduction 

Biodiversity is declining worldwide at an alarming rate in response to rapid environmental 

change (Fischlin et al. 2007). In some cases, highly mobile species may be able to respond to 

environmental change by tracking suitable habitat and climate conditions via dispersal (Peterson 

2003; Last et al. 2011). Other species may respond through plasticity in the timing of important 

life history events or by adapting to novel environmental conditions (Joshi et al. 2001). However, 

if adaptation is too slow, or dispersal is limited by environment or demography, animals may be 

unable to move to suitable habitats (Schloss et al. 2012; Bay et al. 2018). Without human 

intervention, this scenario can result in extirpations or extinctions. 

Population viability analysis (PVA) (Beissinger and McCullough 2002; Morris and Doak 

2002) has been developed as a framework for predicting the impacts of environmental change 

and identifying the best conservation actions for reducing extinction risk. In general, PVAs 

involve determining the current status of a population or species and then identifying 

conservation options to enhance long-term persistence (Beissinger 2002). As PVAs have grown 

in popularity as a conservation tool, so has the recognition of their potential pitfalls. 

Conventional PVAs involve estimating parameters with empirical data or eliciting them from 

expert opinion, and then inserting point estimates into stochastic population models without 

formally accounting for statistical uncertainty in parameter estimates (Heinsohn et al. 2004; 

Olsen et al. 2014; Mortensen and Reed 2016). Ignoring parameter uncertainty can result in 

overestimation of the precision associated with predictions of extinction risk. When management 

decisions are made based on erroneously high confidence in projections, there can be negative 
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consequences. For many species of conservation concern, there is a paucity of data available 

with which to conduct a PVA (Morris and Doak 2002; Trenham and Shaffer 2005). When data 

are sparse, accounting for parameter uncertainty is especially important because uncertainty 

around parameter estimates is likely to be high, and should be reflected in the confidence 

intervals around our predictions. Another criticism that has been levied against PVAs is the 

omission of uncertainty about future environmental variation and catastrophic events (Beissinger 

and McCullough 2002; Morris and Doak 2002). When anticipated future conditions are included 

in PVAs, these scenarios are often represented as averages without any measure of uncertainty 

(but see (Oppel et al. 2014; McElderry et al. 2015).  

Recently developed statistical PVAs have made it possible to account for parameter 

uncertainty by fitting biologically-realistic hierarchical models to empirical data (Heard et al. 

2013; Green and Bailey 2015). A statistical framework makes it possible to propagate parameter 

uncertainty, uncertainty arising from the sampling process (MacKenzie et al. 2003), and 

uncertainty surrounding future environmental conditions when making projections of extinction 

risk. In the case of metapopulations, persistence depends on colonization of vacant habitat 

patches, and the spatial distribution of patches affects colonization rates (Hanski et al. 1996). 

Predicting the consequences of management actions on metapopulations, including 

reintroductions and habitat restoration, can be accomplished using spatially-explicit statistical 

models that explicitly estimate the influence of space on metapopulation connectivity 

(Tischendorf and Fahrig 2001).  

Not all animal taxa are equally vulnerable to environmental change, and some groups, 

such as amphibians, are especially sensitive (Foden et al. 2013). Although multiple stressors may 

act in concert, habitat loss has been implicated as the most important factor in amphibian 
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declines (Stuart et al. 2004). Recent estimates suggest that a third of all amphibian species are 

threatened globally (Stuart et al. 2004), and this number is likely to increase in the near future if 

habitat loss and degradation continue. Amphibians require water during a portion of their life 

cycle and increasing drought conditions can result in result in a decline in reproduction 

(Semlitsch 1987; Dodd Jr 1993) and local extinction events (Blair 1957). For amphibians that are 

able to persist in the terrestrial habitat for multiple seasons, drought events may cause them to 

forgo breeding (Dodd Jr 1993). If adults are able to breed in aquatic habitat, drought conditions 

may cause ponds to dry before metamorphs emerge, resulting in catastrophic reproductive failure 

(Semlitsch 1987; Taylor et al. 2006; Amburgey et al. 2012; Amburgey et al. 2014). Unless 

individuals are able to colonize other available aquatic habitat, declines in survival and 

reproduction will lead to extinction of local populations and ultimately a decline in 

metapopulation viability. These facets of amphibian ecology make them a pressing conservation 

challenge and require development of accurate predictive models to evaluate management 

alternatives.  

  Aquatic and semi-aquatic animals in arid environments face a range of threats from 

increasing drought conditions and potential catastrophic breeding failure due to reduced or 

lacking aquatic habitat (Welch and MacMahon 2005; Walls et al. 2013). In the southwestern 

USA, all native semi-aquatic frogs (family Ranidae) have declined (Hayes and Jennings 1986), 

but only the Chiricahua leopard frog (Lithobates chiricahuensis) is listed under the US 

Endangered Species Act (USFWS 2007). The metapopulation of Chiricahua leopard frogs in the 

Altar Valley, Arizona, USA was extirpated in 2001, likely because of invasion by the non-native 

American bullfrog (Lithobates catesbeianus) (Jarchow et al. 2016). Following eradication of 

bullfrogs, Chiricahua leopard frog tadpoles were reintroduced into three ponds on the refuge in 
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2003 (Jarchow et al. 2016). Since then, leopard frogs have expanded to colonize additional ponds 

in the region (Chandler et al. 2015). The USFWS recovery plan for this species requires that a 

PVA be conducted (USFWS 2007). In 2004, a PVA was carried out, however the models were 

not spatially-explicit, many parameters were based on expert-opinion, parameter uncertainty was 

ignored, and specific management alternatives were not explicitly integrated into projections 

(USFWS 2007).  

Our objective was to develop spatially-explicit models to predict the consequence of 

potential management actions and environmental change on metapopulation extinction risk. 

Similar to other desert-dwelling amphibians, increasing drought may be one of the biggest 

threats to Chiricahua leopard frog viability (Semlitsch 2000; Semlitsch 2002; Walls et al. 2013). 

We projected extinction risk 25 years into the future under two models of future environmental 

conditions, a Static model where environmental conditions do not change and a Drought model 

with changing drought conditions. We organized two workshops with BANWR managers and 

identified potential management actions to increase long-term metapopulation persistence, with 

the most feasible management option being restoration of existing ponds to increase 

hydroperiod. We quantified the tradeoff over time between metapopulation persistence and the 

marginal gains of restoring additional ponds.  

Methods: SPATIAL OCCUPANCY MODEL: To quantify metapopulation occupancy dynamics, we 

extended the spatially-explicit occupancy model developed by Chandler et al. (2015) to 

accommodate environmental variation and potential management actions. The model contains 

several components: 1) occupancy in the first year, 2) inter-patch colonization rate, 3) patch-

specific extinction rate, and 4) a model for the observed data, conditional on the latent occupancy 

dynamics. In our system, the occupancy state of each pond in the first year (𝑧𝑖,1) was treated as 
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known because the population had been reintroduced (see STUDY PONDS AND DATA COLLECTION 

BELOW). 

In subsequent years, the occupancy state z for each pond for 𝑡 = 2, … , 𝑇 was modeled as:  

𝜓𝑖,𝑡−1 =  𝛾𝑖,𝑡−1(1 − 𝑧𝑖,𝑡−1) + (1 − 𝜀𝑖,𝑡−1(1 − 𝛾𝑖,𝑡−1))𝑧𝑖,𝑡−1                                                       (1) 

𝑧𝑖,𝑡 ~ Bernoulli(𝜓𝑖,𝑡−1)   

Where  𝛾 is the probability that a patch is colonized and ε is the probability of local extinction. 

The model for persistence (the inverse of local extinction probability) is 1 − 𝜀𝑖,𝑡−1(1 − 𝛾𝑖,𝑡−1), 

which accounts for the rescue effect (Hanski 1999). 

We used a Gaussian model to describe the probability of site i being colonized by at least 

one individual from a neighboring site j: 

𝜌𝑖,𝑗,𝑡 =  𝜌0,𝑗exp (
−𝑑𝑖,𝑗

2

2𝜎2 ) 𝑧𝑗,𝑡−1                              (2) 

logit(𝜌0,𝑗) = 𝜌1 ∗  Inter𝑗 + 𝜌2 ∗  𝑆𝑒𝑚𝑖𝑗 +  𝜌3 ∗  𝑃𝑒𝑟𝑚𝑗                                                              (3) 

where 𝜌0 is the baseline colonization probability (i.e., colonization probability of ponds if they 

were found at the same spatial location), 𝑑𝑖,𝑗 is the Euclidean distance between two ponds, σ is 

the scale parameter that determines how quickly colonization probability declines as a function 

of distance between ponds, and 𝑧𝑗,𝑡−1 is the occupancy state of the neighboring site at the 

previous time point. We allowed baseline colonization probability to vary based upon 

hydroperiod (Inter=Intermittent, Semi=Semi-permanent, Perm=Permanent(Howell et al. In 

Press). 

The cumulative probability of colonization for pond i in year t is then defined as: 

𝛾𝑖,𝑡 = 1 − (∏ 1 − 𝜌𝑖,𝑗,𝑡
𝑀
𝑗=1 )                                                                                                           (4) 

where M is the total number of ponds in the metapopulation.   
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In our first model of extinction rate, site-specific extinction 𝜀𝑖,𝑡−1 was modeled as a logit-linear 

function of pond hydroperiod (Model 1: Static). For our second model we assumed drought also 

influenced pond-level extinction risk (Model 2: Drought):  

logit(𝜀𝑖,𝑡−1) =  𝜀1 ∗ Inter𝑖 +   𝜀2 ∗ Semi𝑖 +  𝜀3 ∗ Perm𝑖 +  𝜀4 ∗ PDSI𝑡−1                      (5) 

As our metric of drought, we used the Palmer Drought Severity Index (PDSI) calculated from 

surface air temperature and precipitation (Dai et al. 2004). PDSI data were available from 2003-

2014, so we predicted PDSI for 2015-2017 using a simple linear model with PDSI varying by 

year.  

We modeled the observed presence-absence data conditional on true site occupancy and 

detection probability.  

𝑦𝑖,𝑡,𝑘 ~Bernoulli(𝑧𝑖,𝑡 x 𝑝𝑖,𝑡,𝑘)                                                                                                       (6) 

logit(𝑝𝑖,𝑡,𝑘) =  𝛽0 +  𝛽1TEMP𝑖,𝑡,𝑘 + 𝛽2WIND𝑖,𝑡,𝑘                                                                        (7) 

where TEMP is ambient temperature WIND is wind speed.   

We used Bayesian methods and a custom Metropolis-within-Gibbs sampler for inference (See 

APPENDIX J for R code). For all parameters we used vague priors (𝜀1 ~Beta(1,1), 𝜀2 ~ 

Beta(1,1),  𝜀3 ~ Beta(1,1),  𝜀4 ~ Beta(1,1), 𝜌1 ~ Unif(0, 100), 𝜌2 ~ Unif(0,100), 𝜌3 ~ Unif(0,100), 

𝜎 ~ Gamma(0.001, 0.001), 𝛽0 ~ Norm(0, 10), 𝛽1~ Norm(0, 10), 𝛽2~ Norm(0, 10). For our Static 

model we sampled from posterior distributions using 3 Markov chains of length 15000, and we 

discarded the first 100 samples as burn-in. For our Drought model we sampled from posterior 

distributions using 3 Markov chains of length 8000, and we discarded the first 100 samples as 

burn-in. Convergence was assessed visually by inspecting trace plots (See APPENDIX K). We 

reported posterior means and credible intervals for all point estimates.  
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FORECASTING METAPOPULATION VIABILITY: We used Bayesian forecasting methods to project 

metapopulation dynamics 25 years into the future. Bayesian forecasting involves computing the 

posterior predictive distributions of the future occupancy states. Posterior predictive distributions 

are conditional on the observed data and therefore naturally incorporate parameter uncertainty 

into predictions of future metapopulation viability. Posterior predictive distributions can be 

easily computed as part of the MCMC procedure by treating future values of the occupancy 

states as unknown random variables. When occupancy depends on time-varying covariates, a 

model is also needed to predict the future covariate values. For example, in our model in which 

extinction rate varied with hydroperiod and drought (Model 2: Drought), we used a simple linear 

model to describe the relationship between our drought index (PDSI) and time (years): 

E(PDSI𝑡) =  𝛼0 +  𝛼1 ∗  Year𝑡   

PDSI𝑡 ∼ Norm(𝐸(𝑃𝐷𝑆𝐼𝑡), 𝜎2) 

where 𝛼0, 𝛼1, and 𝜎2 were estimated from the data. This allowed us to compute posterior 

predictions of occupancy while accounting for uncertainty about drought.  

In addition to environmental conditions, we incorporated the effect of management into 

the models: restoration of 0, 1, 3, or 6 ponds or allowing ponds to fail, under each climate model. 

Ponds were chosen for restoration based on three criteria: 1) ponds with the highest probability 

of colonization from 2017-2018, 2) ponds characterized as semi-permanent or intermittent, and 

3) ponds that were occupied infrequently (i.e., 8 years, or less than half of the study period). The 

pond-specific probability of colonization and occupancy were taken from posterior distributions 

of γ and z from our models fit to empirical data. During our study (2003-2017) three ponds failed 

structurally (i.e., catastrophic weather events such as flooding destroyed the tank or caused it to 

fill completely with sediment) over the course of 11 years out of the 47 ponds surveyed. 
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Extrapolating to all 274 ponds, each pond has approximately a 0.0058% chance of failing in a 

given year (3 ponds/(47 ponds surveyed x 11 survey years)). For each year, whether or not a 

pond i failed was estimated with a Bernoulli model: 

𝐵𝑙𝑜𝑤 𝑂𝑢𝑡𝑖  ~ Bernoulli(0.0058) 

For this scenario, any pond that failed in a given year remained unusable for all subsequent years 

in our projections. Similar to how we treated drought in our projections, we calculated the 

probability of tank failure for each MCMC iteration. Under each model of environmental 

conditions and management action, we conducted simulations forward in time 25 years. We 

computed extinction risk as the proportion of MCMC iterations that resulted in metapopulation 

extinction in each year.  

EVALUATING TRADEOFF BETWEEN EXTINCTION RISK AND MANAGEMENT COST: We quantified the 

tradeoff between the benefits of reducing metapopulation extinction risk and the costs of pond 

restoration using the formula for marginal gains (Conroy and Peterson 2013) to provide an 

objective way for managers to evaluate the effect of pond restoration on metapopulation 

extinction risk: 

𝐺𝑥 =  
𝜙𝑥− 𝜙0

𝑥
                 (10) 

where 𝜙0 is the metapopulation extinction risk (i.e., proportion of MCMC iterations where 

metapopulation went extinct) with no management and 𝜙𝑥 is the metapopulation extinction risk 

assuming x ponds are restored to permanent. In this formula, x can be thought of as the cost of 

restoring a pond, and we assumed that the cost of restoring a pond was the same for all ponds in 

the metapopulation.  
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STUDY SITE AND DATA COLLECTION: Eleven years (2007-2017) of occupancy data and habitat 

covariates were collected for the Chiricahua leopard frog from the Buenos Aires National 

Wildlife Refuge (BANWR) and surrounding public and private land in the Altar Valley of 

southern Arizona, USA (Figure 4.1). This region is used primarily for grazing cattle and is 

characterized by semiarid grassland desert along with some riparian/wetland areas, foothills and 

mesquite trees. This species depends on water bodies that hold water all year for self-sustaining 

populations (USFWS 2007). The majority of permanent water bodies within their range contain 

populations of invasive fish and American bullfrogs (USFWS 2007). Consequently, Chiricahua 

leopard frogs are relegated to man-made habitat (i.e., ponds) constructed to provide water for 

livestock, most of which hold water only intermittently (Figure 4.1). From 2007-2017, 47 ponds 

were surveyed on BANWR and adjoining State Trust land to the west, with a maximum of 44 

ponds surveyed in a given year (47 unique ponds out of M=273 available ponds). Each pond was 

visited a maximum of K=3 times per year for T=11 years during the pre-monsoon period during 

2100 and 0300 hr. We recorded 𝑦𝑖,𝑡,𝑘 = 1 if at least one frog was detected, and 𝑦𝑖,𝑡,𝑘 = 0 if no 

frogs were detected. In addition to presence-absence data, information on hydroperiod was 

assigned. Hydroperiod was assigned as one of three dummy categorical variables: PERM, SEMI, 

and INTER. Of the M total available ponds, 40 ponds held water permanently (PERM), 9 semi-

permanently (SEMI) and 224 intermittently (INTER). We also recorded wind speed (WIND) and 

ambient temperature (TEMP) during each survey. All research was conducted under AGFD 

Scientific Collecting Permits SP616031, SP674249, and SP713908; BANWR Special Use 

Permits 2013-013, 2017-008, and 2015-016; and USFWS Permit TE08548B. Research was 

conducted under approved IACUC procedure 12-334 and A2014 01-028-Y2-A2. 
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Results: From 2003 to 2017, our Static and Drought models yielded similar estimates of 

occupancy trends and covariate effects. The percent of occupied ponds increased from three in 

2003 to 23 (95% CI; 18, 33) in 2015 followed by a decline to 18 (95% CI; 12, 33) in 2017 (Table 

4.1, Figure 4.2). Ponds that held water permanently or semi-permanently during the year had 

higher baseline colonization rates than ponds that only held water intermittently, and as the 

distance among ponds increased, colonization rate declined (Table 4.1). Extinction rate was high 

for intermittent ponds and declined as pond hydroperiod changed to semi-permanent and 

permanent (Table 4.1). There was a small, negative effect of drought on extinction rate, but 

credible intervals for all extinction rate parameters were wide (Table 4.1). There was minimal 

influence of drought on metapopulation dynamics, as evidenced by similar occupancy estimates 

for the Static and Drought model (Table 4.1, Figure 4.2). As wind speed and ambient 

temperature increased, detection probability decreased (Table 4.1).   

The 25-yr projections from the Static and Drought models indicated a qualitatively 

similar increase in proportion of ponds occupied and increase in extinction risk (Figure 4.2, 

Figure 4.3). The most pessimistic scenario was when drought increased over time and ponds 

were allowed to fail structurally (Figure 4.3). In this scenario, extinction risk increased to ~40% 

by 2043 (Figure 4.3). Restoring additional ponds to permanent hydroperiod increased the mean 

proportion of occupied ponds and lowered extinction risk relative to no management action 

(Figure 4.3). However, credible intervals for proportion of occupied sites under each 

management scenario (restoration of 0, 1, 3, 6) overlapped substantially in both the Static and 

Drought models (Figure 4.4). Based on the estimates of extinction risk from both models (Figure 

4.2), the marginal gain of restoring additional ponds was highest when only a single pond was 

restored (Drought model 1 pond = 0.011, 3 ponds = 0.008, 6 ponds = 0.008; Static model 1 pond 
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= 0.013, 3 ponds = 0.009, 6 ponds = 0.007), given the current number of permanent ponds in the 

metapopulation (n=40). 

Discussion: Projections of Chiricahua leopard frog metapopulation viability 25 years into the 

future were optimistic under a future scenario of a static climate. In the absence of increasing 

drought, high projected metapopulation viability can most likely be attributed to the low 

extinction rate of permanent hydroperiod ponds, an absence of invasive predators, and high 

functional connectivity. The high density of permanent ponds near the reintroduction locations 

and the dispersal capabilities of the Chiricahua leopard frog have allowed them to colonize 

additional ponds from the initial sites of reintroduction. Once permanent ponds are colonized, 

there is low turnover in subsequent years. Invasive competitors/predators (e.g., American 

bullfrog, Lithobates catesbeianus) that also rely on permanent hydroperiod ponds have been 

removed and continue to be monitored so that they can be prevented from re-colonizing 

permanent ponds on the refuge (personal communication Brent Sigafus). However, in a more 

likely scenario where drought conditions continue to worsen, metapopulation extinction risk will 

continue to increase regardless of functional connectivity and continued removal of invasive 

species. In this case, pond maintenance and restoration may be necessary to reduce extinction 

risk and improve long-term metapopulation viability.  

Similar to previous studies of Chiricahua leopard frog metapopulation dynamics 

(Chandler et al. 2015; Howell et al. In Press), we demonstrated a strong influence of distance on 

inter-pond colonization rate, with colonization declining as distance among neighboring ponds 

increased. We also demonstrated a strong influence of pond characteristics on extinction and 

colonization rate in both the Static and increasing Drought models. Permanent ponds are less 

prevalent in our study system (n=40 of 274 pond) relative to ponds with reduced hydroperiods. 
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However, they also had the lowest extinction rates and contributed more to the colonization of 

neighboring ponds. This evidence suggests that permanent hydroperiod ponds are essential to 

maintaining a viable metapopulation of Chiricahua leopard frog. Estimates of metapopulation 

occupancy were similar in the Static and increasing Drought models. This is likely because of the 

variation around the temporal trend in drought from 2003-2014, resulting in a minimal influence 

of drought on pond-level extinction rate and consequently, the proportion of occupied ponds.  

Amphibians face numerous stressors and in the desert southwest, one of the biggest 

threats to their continued persistence is increasing drought conditions (Welch and MacMahon 

2005; Walls et al. 2013). Indeed, during the years of our study (2003-2017) there was a general 

trend of decreasing PDSI, indicative of increasingly severe drought conditions (Figure 4.5). In 

the desert southwest, temperatures are expected to increase, precipitation is expected to decrease 

and both are likely to become more variable leading to suitable breeding habitat becoming more 

unpredictable and sparse (Archer and Predick 2008). Ponds receive some rain in the winter, but 

are reliant primarily on summer monsoon rains to stay full throughout the year (Bezy 2007). If 

summer monsoon rains decrease and continue to occur later in the summer, ponds that 

historically remained full may dry up. Frogs occupying these ponds will either die or be forced to 

attempt dispersal through dry, harsh terrestrial landscapes. Projections over a 25-yr time frame 

suggest that drought substantially increases metapopulation extinction risk to nearly 40% when 

ponds also have a chance of catastrophically failing (e.g., flash flooding causing structural failure 

or complete filling with sediment), relative to when environmental conditions are static over 

time. With the current number of permanent ponds in the network (n=40), management is limited 

in terms of the marginal gain associated with restoring any additional ponds. However, in more 
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realistic scenarios (e.g., consecutive years of severe drought, catastrophic weather events) 

additional management may become necessary.  

Our model of drought was based on PDSI and changes in PDSI influences all ponds 

equally. Although PDSI provides a measure of drought in our study area, the ability to estimate 

the size/depth of each pond and to correlate changes in size with changes in climate would 

provide pond-specific estimates of the influence of drought on pond-level extinction risk. The 

management scenarios we considered in this study are pond-specific and involve targeted 

restoration of individual semi-permanent, or intermittent ponds, so that they will hold water year 

round. However, it may be possible to restore multiple ponds at the same time by removing or 

altering structures, such as dams and floodplain water spreaders, associated with the man-made 

ponds. Water control structures and diversion channels have altered natural runoff pathways and 

affect how ponds fill with water. For example, a concrete water control structure may be built 

after a stock tank, preventing it from filling with runoff after rainfall when it previously would 

have filled. In some cases, it may be possible for managers to remove or alter some of the 

structures associated with ponds to improve the hydroperiod of multiple ponds, rather than 

restoring ponds individually. Targeting the landscape rather than individual ponds could make 

restoration efforts more cost-effective.  

We used a spatially-explicit metapopulation model, to forecast occupancy dynamics and 

extinction risk under different environmental scenarios and management alternatives. Our 

modeling framework accounted for uncertainty in the sampling process, parameter estimation 

and future environmental conditions. Our projections over 25 years suggest that if there is no 

increase in drought conditions, extinction risk is very low. However, current conditions are 

unlikely to remain static, with projections for the Southwestern United States suggesting an 
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increase in severity and extent of drought (Gutzler and Robbins 2011). With a combination of 

increasing drought conditions and a change of ponds failing structurally the extinction risk is 

expected to increase to nearly 40%. Restoring ponds to permanent hydroperiod increased the 

proportion of occupied ponds and decreased metapopulation extinction risk, in both the Static 

and increasing Drought model, suggesting that as drought conditions increase, pond restoration 

may be necessary to ensure availability of permanent hydroperiod ponds and a higher probability 

of persistence of Chiricahua leopard frogs in the Altar Valley, Arizona, USA.  
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Table 4.1. Posterior mean, median, standard deviation, and 95% credible intervals for metapopulation models assuming no influence 

of environmental variation on dynamics (Static) and PDSI (Drought).  

   Static     Drought   

Parameter Description Mean   SD  2.5 Median 97.5   Mean   SD  2.5 Median 97.5 

sigma  

Scale parameter of colonization 

function 3.54 0.80 2.30 3.42 5.36  3.43 0.82 2.10 3.33 5.32 

gamma1  

Baseline colonization at 

intermittent ponds 0.02 0.01 0.01 0.02 0.05  0.02 0.01 0.01 0.02 0.05 

gamma2  

Baseline colonization at semi-

permanent ponds 0.22 0.08 0.09 0.22 0.40  0.26 0.08 0.11 0.25 0.44 

gamma3  

Baseline colonization at permanent 

ponds 0.15 0.12 0.03 0.12 0.52  0.18 0.18 0.03 0.12 0.75 

epsilon1 

Extinction probability at 

intermittent ponds 0.85 0.11 0.58 0.87 0.99  1.00 1.00 0.51 1.00 1.00 

epsilon2 

Extinction probability at semi-

permanent ponds 0.79 0.15 0.46 0.82 0.99  1.00 1.00 0.66 1.00 1.00 

epsilon3 

Extinction probability at permanent 

ponds 0.13 0.11 0.02 0.10 0.40  0.04 0.98 0.00 0.04 1.00 

epsilon4 

Effect of drought on pond level 

extinction rate NA NA NA NA NA  0.26 0.98 0.00 0.44 0.97 

beta0  Intercept of detection model 0.89 0.57 0.83 0.89 0.93  0.88 0.57 0.82 0.88 0.93 

beta1  Effect of temperature on detection 0.57 0.59 0.42 0.56 0.75  0.56 0.59 0.41 0.54 0.74 

beta2  Effect of wind on detection 0.46 0.58 0.32 0.46 0.61  0.45 0.58 0.31 0.45 0.60 

z2003  Number of occupied ponds in 2003 3 0 3 3 3  3 0 3 3 3 

z2004  Number of occupied ponds in 2004 4.42 1.34 2 4 7  4.44 1.33 2 4 7 

z2005  Number of occupied ponds in 2005 5.59 1.79 3 5 10  5.54 1.74 3 5 9 

z2006  Number of occupied ponds in 2006 6.71 2.03 3 6 11  6.63 1.94 3 6 11 
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z2007  Number of occupied ponds in 2007 7.90 1.97 5 8 13  7.94 1.94 5 8 13 

z2008  Number of occupied ponds in 2008 9.61 2.20 6 9 15  9.36 2.02 6 9 14 

z2009  Number of occupied ponds in 2009 9.48 2.54 6 9 15  9.19 2.40 6 9 15 

z2010  Number of occupied ponds in 2010 10.11 2.73 6 10 16  9.51 2.45 6 9 15 

z2011  Number of occupied ponds in 2011 12.79 2.86 8 12 19  12.32 2.61 8 12 18 

z2012  Number of occupied ponds in 2012 10.98 3.06 6 11 18  10.21 2.71 6 10 16 

z2013  Number of occupied ponds in 2013 13.89 3.23 9 13 21  13.00 2.86 8 13 20 

z2014  Number of occupied ponds in 2014 17.63 3.43 12 17 26  17.03 3.11 12 17 24 

z2015  Number of occupied ponds in 2015 23.24 3.85 18 23 33  22.76 3.66 17 22 32 

z2016  Number of occupied ponds in 2016 20.33 4.57 14 20 31  19.74 4.17 14 19 30 

z2017  Number of occupied ponds in 2017 19.46 5.41 12 18 33   18.63 4.93 11 18 31 

 

 

 

 



 

92 

 

 

 

 

Figure 4.1. Hydroperiod of ponds (human-made stock tanks) available for Chiricahua leopard 

frogs within the Buenos Aires National Wildlife Refuge (black polygon) and surrounding State 

Trust land in Arizona, USA. Dark gray symbols are ponds where frogs were reintroduced in 

2003. Light gray symbols are ponds that are surveyed annually (presence-absence data 2007-

2011, count data 2012-present). Symbols with black dots in them denote ponds where frogs have 

been found in at least one year from 2007-2015. 
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Figure 4.2. Mean (triangle = Static, circle = Drought) and 95% credible intervals (black lines = Static, blue lines = Drought) for the 

percent occupied ponds in each year on the Buenos Aires National Wildlife refuge, Arizona, USA.  Projections (2018-2043) are based 

on Static or Drought models, assuming no management action and no ponds failed.          
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Figure 4.3. Mean proportion of occupied ponds over a 25 year time horizon for each model (Static, Stochastic, Drought) with varying 

levels of management (0, 1, 3, 6 ponds restored). The blow out line corresponds to a scenario where no ponds were restored, but 

permanent ponds were allowed to fail and remained unavailable throughout the projections. 
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Figure 4.4. Median (solid lines) and 95% credible intervals (dashed lines) for extinction risk over a 25 year time horizon for the Static 

and Drought models with varying levels of management (0, 1, 3, 6 ponds restored). The blow out line corresponds to a scenario where 

no ponds were restored, but permanent ponds were allowed to fail and remained unavailable throughout the projections. 
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Figure 4.5. Standardized Palmer Drought Severity Index (PDSI) over time (2003-2017). PDSI 

from 2015-2017 was predicted using a linear model of PDSI varying as a function of time. 
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CHAPTER 5 

CONCLUSIONS 

As landscapes become increasingly fragmented, the distributions of individuals will 

likely become more patchy, thereby increasing the relevance of metapopulation theory to 

conservation efforts (Hanski 1999). Spatio-temporal metapopulation dynamics are dependent on 

the demographic processes occurring within suitable patches and dispersal of individuals 

between patches (Hanski 1999; Hanski 2001). Hierarchical statistical models are powerful tools 

for bringing theory to bear when quantifying the patch and landscape level factors affecting 

metapopulation dynamics and for making probabilistic forecasts of metapopulation viability in 

the face of uncertainty. 

Research in spatially-explicit metapopulation ecology has provided a wealth of theory for 

exploring how variation in patch quality and landscape structure influence metapopulation 

dynamics. However, spatially-explicit statistical metapopulation models have treated the 

landscape in between suitable patches as homogeneous (Risk et al. 2011; Sutherland et al. 2012; 

Chandler et al. 2015; Heard et al. 2015). This simplifying assumption of a homogenous 

landscape has prevented a synthetic understanding of the role of landscape structure in spatio-

temporal metapopulation dynamics. Another gap in our understanding of metapopulation 

dynamics comes from the focus on modeling occurrence rather than abundance and density 

(Hanski 1999). Statistical models that can be used to estimate patch density, allow for testing 

hypotheses regarding the influence of demographic processes on extinction and colonization that 

underlie metapopulation dynamics. In addition to describing current and past spatio-temporal
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trends in metapopulation dynamics, metapopulation models can be used to make probabilistic 

predictions of viability in the face of future uncertainty (e.g., climate, management). For models 

of species’ population viability to be useful, such models should be able to predict the 

consequences of management prescriptions (Sauer et al. 2013), while propagating the uncertainty 

in the sampling process, parameter estimation and trends in future environmental scenarios. 

Through the development and enhancement of spatially-explicit metapopulation models, 

my results have increased the potential for using ecological theory in applied contexts (Chapters 

2 and 3). The models developed and applied in each chapter are based on first principles of 

ecology and can be used to formalize hypotheses regarding the dynamics of real 

metapopulations. In Chapter 2, I was able to directly estimate landscape resistance in a 

metapopulation framework and quantify the influence of the landscape matrix on the 

colonization process. In the Chiricahua leopard frog system, landscape resistance increased with 

increasing elevation and distance to the nearest streambed. Colonization rate was also influenced 

by patch quality, with semi-permanent and permanent ponds contributing substantially more to 

the colonization of neighboring ponds relative to intermittent ponds. In Chapter 3, I developed a 

general statistical framework based on spatially-realistic metapopulation theory for estimating 

metapopulation abundance, using multiple data sets. This modeling framework is sufficiently 

flexible to estimate the influence of patch characteristics and density on local dynamics, 

emigration and immigration rates. Pond-specific population growth was influenced by pond 

hydroperiod and pond-specific density, such that semi-permanent patches with low densities of 

adult frogs experienced the highest annual population growth. Contrary to other metapopulation 

studies, emigration probability was not influenced by patch quality.  
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In addition to improving our ability to test tenets of ecological theory, the models 

developed herein can be used to predict future metapopulation extinction risk while propagating 

uncertainty in the sampling process, parameter estimation and future environmental conditions 

(Chapter 4). If environmental conditions remain static and invasive species that also rely on 

permanent ponds continue to be monitored and removed, metapopulation extinction risk was low 

(7%) over a 25-yr time horizon. However, if drought conditions continue to worsen and 

catastrophic tank failure occurs, metapopulation extinction risk may continue to increase (40% 

by 2043) regardless of functional connectivity and continued removal of invasive species. In this 

case, pond maintenance and restoration may be necessary to reduce extinction risk and improve 

long-term metapopulation viability. 

Although I was able to develop a spatially-explicit, abundance-based metapopulation 

model, I only considered the influence of patch characteristics on the dispersal process. Future 

work should test hypotheses about whether emigration or immigration is influenced by local 

density. The focus of my dissertation was the federally-threatened Chiricahua leopard frog, 

however, there are several co-occurring amphibian species that temporally use aquatic habitat 

during the summer monsoons. Future work will focus on fitting spatially-explicit models to data 

collected on these other species to investigate whether this episodic influx of individuals has an 

impact on the metapopulation dynamics of the Chiricahua leopard frog. In this way we can gain 

a better understanding of how the community dynamics function within the BANWR.  

Spatially-realistic metapopulation theory provides hypotheses and predictions for the 

potential influence of patch quality and patch dispersion on extinction and colonization rates that 

influence metapopulation dynamics over space and time (Hanski 2001). Until now what has been 

largely missing are statistical models that allow for the explicit estimation of how landscape 
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resistance influences colonization rates and spatially-explicit models estimating the effects of 

demographic processes on metapopulation dynamics. By developing modeling frameworks for 

addressing these concerns, I have attempted to enhance the applicability of existing spatially-

explicit metapopulation theory, and to learn about the patch and landscape-scale factors affecting 

Chiricahua leopard frog metapopulation dynamics. The ultimate goal being an ability to use 

statistical models and data collected through traditional monitoring programs to provide 

probabilistic predictions of viability.  
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APPENDIX A 

STOCK TANK IMAGE 
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APPENDIX A. STOCK TANK IMAGE. Example of an earthen, man-made stock tank originally 

intended for use by cattle. Ranching is no longer permitted on the Buenos Aires National 

Wildlife Refuge. Stock tanks constitute the majority of available breeding sites for amphibians in 

the Altar Valley of Arizona. 
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APPENDIX B 

PRIOR DISTRIBUTIONS 
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APPENDIX B. PRIOR DISTRIBUTIONS. Prior distributions for parameters estimated in the 

spatially-explicit occupancy model. 

Parameter Symbol Prior 

Linear effect of elevation or distance to streambed on 

landscape resistance 
𝛼1 

Norm(0, 10) 

Scale parameter of colonization function 𝜎 Gamma(0.001, 0.001) 

Baseline colonization probability at intermittent 

patches 𝜌1 Uniform(-∞,∞) 

Baseline colonization probability at semi-permanent 

patches 𝜌2 Uniform(-∞,∞) 

Baseline colonization probability at permanent 

patches 𝜌3 Uniform(-∞ ,∞) 

Extinction probability at intermittent patches 𝜀1 Beta(1, 1) 

Extinction probability at semi-permanent patches 𝜀2 Beta(1, 1) 

Extinction probability at permanent patches 𝜀3 Beta(1, 1) 

Intercept of logit-linear detection model 𝛽0 Norm(0, 10) 

Effect of temperature on logit(p) 𝛽1 Norm(0, 10) 

Effect of wind on logit(p) 𝛽2 Norm(0, 10) 
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APPENDIX C 

R SCRIPT FOR MCMC ALGORITHM 
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library(compiler) 

 

 

 

## MCMC algorithm 

dynroccH <- function(y,            # nSampled x nVisits x nYear 

array of detection/non-detection data 

                    x,             # nSites x 2 matrix of site 

coordinates. Note that nSampled will usually be <nSites 

                    r.cov1,        # resistance covariate 

                    r.cov2=NULL,   # resistance covariate 

                    e.cov,         # extinctio covariate 

                    p.cov1,        # detection covariate 

                    p.cov2,        # detection covariate 

                    nIter=10,      # MCMC iterations 

                    tune,          # Tuning order: 

sigma,gamma0.i,gamma0.s,gamma0.p,eps.i,eps.s,eps.p, 

                                   #               

beta0,beta1,beta2,alpha[1],alpha[2] (12 in total) 

                    estAlpha=TRUE, # Estimate the resistance 

coefficient? 

                    inits=NULL,    # until you run algorithm, 

inits are based on what is given. 

                    zProp=c("ind","vec"), # Update z matrix by 

either proposing z(i,k) or z(,k), respectively 

                    zProbs=NULL,   # matrix of proposal probs 

use if zProp="vec" 

                    monitor.z=FALSE, # store each iteration of 

the z matrix? 

                    report=0,      # Only report progress if >0 

                    plot.z=FALSE,  # Plot the latent presence-

absence state (if report>0) 

                    tol=0)      # This will reject a proposal of 

z(i,k)=1 if mu(i,k-1)<tol 

{ 

 

  zProp <- match.arg(zProp) 

 

  ## Dimensions 

  nSites <- nrow(x) #Number of possible sites instead of only 

the sites sampled 

  nReps <- ncol(y) 

  nYears <- dim(y)[3] 

   

  ## Using this to avoid likelihood calculations for sites not 

sampled 
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  nSampled <- nrow(y) 

  dataYears <- apply(!is.na(y), 3, any) 

 

  anyDetections <- matrix(FALSE, nSites, nYears) 

  anyDetections[1:nSampled,] <- apply(y, c(1,3), sum, 

na.rm=TRUE) > 0 

 

  #Failed is a chr string with names of sites no longer sampled 

because they were destroyed 

  known0 <- matrix(FALSE, nSites, nYears) 

  rownames(known0) <- rownames(x)  

  known0[failed, 8:nYears] <- TRUE  

  notFailed <- 1 - known0 

 

  if(any(anyDetections & known0)) 

      stop("detection data doesn't match blowout data") 

 

  y.wide <- matrix(y, nSampled) 

 

  isInter <- e.cov=="Intermittent" 

  isSemi <- e.cov=="Semi-permanent" 

  isPerm <- e.cov=="Permanent" 

  epsilon <- rep(NA, nSites)   

  gamma0 <- rep(NA, nSites)   

 

    rc2 <- is.null(r.cov2) 

    if(rc2) { 

      r.cov2 <- r.cov1 

      } 

 

  ## initial values 

  gamma <- muz <- matrix(NA, nSites, nYears-1) 

  if(is.null(inits)) { 

      epsilon.p<-epsilon.s<-epsilon.i<-runif(1)  

      sigma <- runif(1,3,4) 

      gamma0.i <- runif(1, 0.01, 0.3) 

      gamma0.s <- runif(1, 0.01, 0.3) 

      gamma0.p <- runif(1, 0.01, 0.3) 

      gamma0[isInter] <- gamma0.i 

      gamma0[isSemi] <- gamma0.s 

      gamma0[isPerm] <- gamma0.p 

      beta0<-runif(1, 0.1, 0.6) 

      epsilon[isInter] <- epsilon.i 

      epsilon[isSemi] <- epsilon.s 

      epsilon[isPerm] <- epsilon.p 

      beta0 <- rnorm(1) 
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      beta1 <- rnorm(1) 

      beta2 <- rnorm(1) 

      alpha <- c(0, 0)  

      p <- plogis(beta0 + beta1*p.cov1 + beta2*p.cov2)  

      z <- matrix(0, nSites, nYears) 

       

      #Which sites were the reintroduction sites 

      reintroSites <- which(rownames(coords) %in% c("Carpenter 

Tank", "Rock Tank", "HQ Breeding Site"))  

      z[reintroSites,1] <- 1  

 

      ## NOTE: For some organisms and systems the maximum 

dispersal distance within a single time step (e.g., annual) may 

be known and it could be considered very unlikely that colonists 

would arrive from patches exceeding this distance. To speed up 

computation, a neighborhood matrix for each patch could be 

supplied to eliminate consideration of colonization from 

neighboring patches that exceed a reasonable distance from the 

focal patch.      

       

 

      ## create resistance surface 

      cost <- exp(alpha[1]*r.cov1 + alpha[2]*r.cov2) 

      ## calculate conductances among neighbors 

      tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16)  

      #adjust diag.conductances 

      tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE)  

      ## calculate least cost distance between all pairs of 

sites. 

      if(!estAlpha) 

          alpha <- c(0,0) ## Force alpha to be 0 if you aren't 

estimating it. Results in appox Euclidean dist 

      #calculate the ecological distance matrix 

      D <- costDistance(tr1CorrC,x,x)/1000  

      G <- gamma0*exp(-D^2/(2*sigma^2)) 

 

      for(k in 2:nYears) {  

          PrNotColonizedByNeighbor <- 1 - gamma0*exp(-

D^2/(2*sigma^2)) * t(z[,rep(k-1, nSites)]) 

          PrNotColonizedAtAll <- apply(PrNotColonizedByNeighbor, 

1, prod) 

          gamma[,k-1] <- 1 - PrNotColonizedAtAll 

          muz[,k-1] <- z[,k-1]*(1-epsilon*(1-gamma[,k-1])) + (1-

z[,k-1])*gamma[,k-1] #Rescue effect 
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          muz[,k-1] <- muz[,k-1]*notFailed[,k] #Exclude 3 sites 

no longer sampled 

          z[,k] <- rbinom(nSites, 1, muz[,1]) 

          z[known0[,k],k] <- 0  

          z[which(anyDetections[,k]),k] <- 1  

      } 

  } else { 

      gamma0.i <- inits$samples["gamma0.i"] 

      gamma0.s <- inits$samples["gamma0.s"] 

      gamma0.p <- inits$samples["gamma0.p"] 

      gamma0[isInter] <- gamma0.i 

      gamma0[isSemi] <- gamma0.s 

      gamma0[isPerm] <- gamma0.p 

      sigma <- inits$samples["sigma"] 

      epsilon.i <- inits$samples["epsilon.i"] 

      epsilon.s <- inits$samples["epsilon.s"] 

      epsilon.p <- inits$samples["epsilon.p"] 

      epsilon <- rep(NA, nSites) 

      epsilon[isInter] <- epsilon.i 

      epsilon[isSemi] <- epsilon.s 

      epsilon[isPerm] <- epsilon.p 

      alpha<-c(inits$samples["alpha1"],inits$samples["alpha2"]) 

      D <- inits$D 

      beta0 <- inits$samples["beta0"] 

      beta1 <- inits$samples["beta1"] 

      beta2 <- inits$samples["beta2"] 

      p <- plogis(beta0 + beta1*p.cov1 + beta2*p.cov2) 

      z <- inits$z 

      .Random.seed <- inits$seed ## use same random seed as 

before 

  } 

 

  ll.z <- matrix(0, nSites, nYears) 

  ll.y <- array(0, c(nSampled, nReps, nYears)) 

  for(k in 2:nYears) { 

      PrNotColonizedByNeighbor <- 1 - gamma0*exp(-D^2/(2*sigma^2  

))*t(z[,rep(k-1, nSites)]) 

      PrNotColonizedAtAll <- apply(PrNotColonizedByNeighbor, 1, 

prod) 

      gamma[,k-1] <- 1 - PrNotColonizedAtAll 

      muz[,k-1] <- z[,k-1]*(1-epsilon*(1-gamma[,k-1])) + (1-

z[,k-1])*gamma[,k-1] #PH rescue effect 

      muz[,k-1] <- muz[,k-1]*notFailed[,k] 

      ll.z[,k-1] <- dbinom(z[,k], 1, muz[,k-1], log=TRUE) 

      if(k > 4) { ## Ignore first 4 years without data 
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          ## Now p has the same dimensions of y. No need to do 

p[,,k-4] 

          ## p is now an array. Note k-4 b/c p only has 6 years. 

Should make dims of p and y consistent 

          ll.y[,,k] <- dbinom(y[,,k], 1, z[1:nSampled,k]*p[,,k], 

log=TRUE) 

      } 

  } 

  ll.z.cand <- ll.z 

  ll.z.sum <- sum(ll.z) 

  ll.y.cand <- ll.y 

  ll.y.sum <- sum(ll.y, na.rm=TRUE) 

  gamma.cand <- gamma 

  muz.cand <- muz 

 

    nz1 <- z ## Used to compute expected occupancy at each site 

 

    zkup <- rep(0, nYears-1) 

 

  ## posterior samples 

  nPar <- 13+nYears 

  samples <- array(NA, c(nIter, nPar)) 

  zK <- matrix(NA, nSites, nIter) 

  colnames(samples) <- c("sigma", "gamma0.i", "gamma0.s", 

"gamma0.p", 

                         "epsilon.i", "epsilon.s","epsilon.p", 

                         "beta0", "beta1", "beta2", "alpha1", 

"alpha2", 

                         paste("zk", 1:nYears, sep=""), 

"deviance") 

 

  reportit <- report>0 

    nzup <- rep(0, nYears-1) 

  zA <- NULL 

  if(monitor.z) 

      zA <- array(NA_integer_, c(nSites, nYears, nIter)) 

 

  if(reportit) { 

      cat("iter 1\n") 

      cat("    theta =", 

round(c(sigma,gamma0.i,gamma0.s,gamma0.p,epsilon.i,epsilon.s,eps

ilon.p,beta0,beta1,beta2,alpha), 5), "\n") 

      cat("    z[k] =", round(colSums(z), 2), "\n") 

      cat("    ll.z =", round(sum(ll.z), 2), "\n") 

      cat("    deviance =", round(-2*ll.y.sum, 2), "\n") 

      cat("    time =", format(Sys.time()), "\n") 
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      if(plot.z) { 

          library(lattice) 

          zd <- data.frame(z=as.integer(z), 

year=factor(rep(2003:2017, each=nSites)), 

                           x=as.numeric(x[,1])/1000, 

y=as.numeric(x[,2])/1000) 

          print(xyplot(y ~ x | year, zd, groups=z, aspect="iso", 

pch=c(1,16), as.table=TRUE)) 

      } 

  } 

 

  ## Sample from posteriors 

  for(s in 1:nIter) { 

 

    ll.z.sum <- sum(ll.z) ## This is important! 

 

    if(reportit) { 

    if(s %in% c(2:100) || s %% report == 0) { 

      cat("iter", s, "\n") 

      cat("    theta =", round(samples[s-1,1:12], 5), "\n") 

      cat("    z[k] =", zk, "\n") 

      cat("    accepted", round(zkup/(nSites)*100, 1), "percent 

of z[k] proposals \n") 

      cat("    sum(ll.z) =", ll.z.sum, "\n") 

      cat("    deviance =", round(samples[s-1,"deviance"], 2), 

"\n") 

      cat("    time =", format(Sys.time()), "\n") 

      if(plot.z) { 

          library(lattice) 

          zd$z <- as.integer(z) 

          print(xyplot(y ~ x | year, zd, groups=z, aspect="iso", 

pch=c(1,16), as.table=TRUE)) 

      } 

    } 

    } 

 

    if(estAlpha) { 

       

      library(gdistance)  

    #Metropolis update for alpha 

    alpha1.cand <- rnorm(1, alpha[1], tune[11]) 

    #create resistance surface 

    cost <- exp(alpha1.cand*r.cov1 + alpha[2]*r.cov2)  

    ## calculate conductances among neighbors 

    tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16) 
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    tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE) #adjust diag.conductances 

 

    ## calculate least cost distance between all pairs of sites. 

    D.cand <- costDistance(tr1CorrC,x,x)/1000 #calculate the 

ecological distance matrix 

    G.cand <- gamma0*exp(-D.cand^2/(2*sigma^2  )) 

 

    for(k in 2:nYears) { 

      zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

      gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

      muz.cand[,k-1] <- (z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

      ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

    prior.alpha.cand <- dnorm(alpha1.cand, 0, 10, log=TRUE) 

    prior.alpha <- dnorm(alpha[1], 0, 10, log=TRUE) 

 

    ll.z.sum.cand <- sum(ll.z.cand) 

    if(runif(1) < exp((ll.z.sum.cand + prior.alpha.cand) - 

                        (ll.z.sum + prior.alpha))) { 

      alpha[1] <- alpha1.cand 

      D <- D.cand 

      G <- G.cand 

      gamma <- gamma.cand 

      muz <- muz.cand 

      ll.z <- ll.z.cand 

      ll.z.sum <- ll.z.sum.cand 

      } 

 

    if(!rc2) { 

    #Metropolis update for alpha[2] 

    alpha2.cand <- rnorm(1, alpha[2], tune[12]) 

    #create resistance surface 

    cost <- exp(alpha[1]*r.cov1 + alpha2.cand*r.cov2) 

    ## calculate conductances among neighbors 

    tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16)  

    tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE) #adjust diag.conductances 

    ## calculate least cost distance between all pairs of sites. 

    D.cand <- costDistance(tr1CorrC,x,x)/1000 #calculate the 

ecological distance matrix 

    G.cand <- gamma0*exp(-D.cand^2/(2*sigma^2  )) 
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    for(k in 2:nYears) { 

      zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

      gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

      muz.cand[,k-1] <- (z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

      ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

    prior.alpha.cand <- dnorm(alpha2.cand, 0, 10, log=TRUE) 

    prior.alpha <- dnorm(alpha[2], 0, 10, log=TRUE) 

 

    ll.z.sum.cand <- sum(ll.z.cand) 

    if(runif(1) < exp((ll.z.sum.cand + prior.alpha.cand) - 

                        (ll.z.sum + prior.alpha))) { 

      alpha[2] <- alpha2.cand 

      D <- D.cand 

      G <- G.cand 

      gamma <- gamma.cand 

      muz <- muz.cand 

      ll.z <- ll.z.cand 

      ll.z.sum <- ll.z.sum.cand 

      } 

    } 

} 

 

    ## Metropolis update for sigma 

    sigma.cand <- rnorm(1, sigma, tune[1]) 

    if(sigma.cand > 0) { 

        G.cand <- gamma0*exp(-D^2/(2*sigma.cand^2  )) 

      for(k in 2:nYears) { 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <- (z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

      prior.sigma.cand <- dgamma(sigma.cand, 0.001, 0.001) 

      prior.sigma <- dgamma(sigma, 0.001, 0.001) 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.sigma.cand) - 

                        (ll.z.sum + prior.sigma))) { 

          sigma <- sigma.cand 

          gamma <- gamma.cand  

          ll.z <- ll.z.cand 

          ll.z.sum <- ll.z.sum.cand 
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          muz <- muz.cand 

          G <- G.cand 

      } 

    } 

 

    #Metropolis update for gamma0 at intermittent sites (part of 

the gammaDist calculation) 

      prior.gamma0.cand <- prior.gamma0 <- 0 

    gamma0.i.cand <- rnorm(1, gamma0.i, tune[2]) 

    if(gamma0.i.cand > 0 & gamma0.i.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isInter] <- gamma0.i.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.i <- gamma0.i.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 

    } 

  } 

 

 

    #Metropolis update for gamma0 at semi-permanent sites (part 

of the gammaDist calculation) 

    gamma0.s.cand <- rnorm(1, gamma0.s, tune[3]) 

    if(gamma0.s.cand > 0 & gamma0.s.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isSemi] <- gamma0.s.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 
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        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.s <- gamma0.s.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 

    } 

  } 

 

 

    #Metropolis update for gamma0 at permanent sites (part of 

the gammaDist calculation) 

    gamma0.p.cand <- rnorm(1, gamma0.p, tune[4]) 

    if(gamma0.p.cand > 0 & gamma0.p.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isPerm] <- gamma0.p.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon*(1-gamma.cand[,k-

1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.p <- gamma0.p.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 

    } 

  } 
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    ## Metropolis update for epsilon (intermittent sites) 

    epsilon.i.cand <- rnorm(1, epsilon.i, tune[5]) 

    if(epsilon.i.cand > 0 & epsilon.i.cand < 1) { 

        for(k in 2:nYears) { 

            muz.cand[isInter,k-1] <- z[isInter,k-1]*(1-

epsilon.i.cand*(1-gamma[isInter,k-1])) + (1-z[isInter,k-

1])*gamma[isInter,k-1]  

            muz.cand[isInter,k-1] <- muz.cand[isInter,k-

1]*notFailed[isInter,k] 

            ll.z.cand[isInter,k-1] <- dbinom(z[isInter,k], 1, 

muz.cand[isInter,k-1], log=TRUE) 

        } 

        prior.epsilon.i.cand <- dbeta(epsilon.i.cand, 1, 1, 

log=TRUE) 

        prior.epsilon.i <- dbeta(epsilon.i, 1, 1, log=TRUE) 

        if(runif(1) < exp((sum(ll.z.cand[isInter,]) + 

prior.epsilon.i.cand) - 

                          (sum(ll.z[isInter,]) + 

prior.epsilon.i))) { 

            epsilon.i <- epsilon.i.cand 

            epsilon[isInter] <- epsilon.i.cand 

            muz[isInter,] <- muz.cand[isInter,] 

            ll.z[isInter,] <- ll.z.cand[isInter,] 

        } 

    } 

 

 

    ## Metropolis update for epsilon (semi-permanent sites) 

    epsilon.s.cand <- rnorm(1, epsilon.s, tune[6]) 

    if(epsilon.s.cand > 0 & epsilon.s.cand < 1) { 

        for(k in 2:nYears) { 

            muz.cand[isSemi,k-1] <- z[isSemi,k-1]*(1-

epsilon.s.cand*(1-gamma[isSemi,k-1])) + (1-z[isSemi,k-

1])*gamma[isSemi,k-1]  

            muz.cand[isSemi,k-1] <- muz.cand[isSemi,k-

1]*notFailed[isSemi,k] 

            ll.z.cand[isSemi,k-1] <- dbinom(z[isSemi,k], 1, 

muz.cand[isSemi,k-1], log=TRUE) 

        } 

        prior.epsilon.s.cand <- dbeta(epsilon.s.cand, 1, 1, 

log=TRUE) 

        prior.epsilon.s <- dbeta(epsilon.s, 1, 1, log=TRUE) 

        if(runif(1) < exp((sum(ll.z.cand[isSemi,]) + 

prior.epsilon.s.cand) - 

                          (sum(ll.z[isSemi,]) + 

prior.epsilon.s))) { 
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            epsilon.s <- epsilon.s.cand 

            epsilon[isSemi] <- epsilon.s.cand 

            muz[isSemi,] <- muz.cand[isSemi,] 

            ll.z[isSemi,] <- ll.z.cand[isSemi,] 

        } 

    } 

 

 

    ## Metropolis update for epsilon (permanent sites) 

    epsilon.p.cand <- rnorm(1, epsilon.p, tune[7]) 

    if(epsilon.p.cand > 0 & epsilon.p.cand < 1) { 

        for(k in 2:nYears) { 

            muz.cand[isPerm,k-1] <- z[isPerm,k-1]*(1-

epsilon.p.cand*(1-gamma[isPerm,k-1])) + (1-z[isPerm,k-

1])*gamma[isPerm,k-1]  

            muz.cand[isPerm,k-1] <- muz.cand[isPerm,k-

1]*notFailed[isPerm,k] 

            ll.z.cand[isPerm,k-1] <- dbinom(z[isPerm,k], 1, 

muz.cand[isPerm,k-1], log=TRUE) 

        } 

        prior.epsilon.p.cand <- dbeta(epsilon.p.cand, 1, 1, 

log=TRUE) 

        prior.epsilon.p <- dbeta(epsilon.p, 1, 1, log=TRUE) 

        if(runif(1) < exp((sum(ll.z.cand[isPerm,]) + 

prior.epsilon.p.cand) - 

                          (sum(ll.z[isPerm,]) + 

prior.epsilon.p))) { 

            epsilon.p <- epsilon.p.cand 

            epsilon[isPerm] <- epsilon.p.cand 

            muz[isPerm,] <- muz.cand[isPerm,] 

            ll.z[isPerm,] <- ll.z.cand[isPerm,] 

        } 

    } 

 

 

 

    ## update z 

    ## We can update each z(i,t) individually, and it results in 

better mixing than updating a vector of z's 

    zkup <- rep(0, nYears-1) 

   for(k in 2:nYears) { 

       anyDet <- anyDetections[,k]==1  

       zknown <- anyDet | !notFailed[,k]  

 

       prop.back <- prop.cand <- 0 

       for(i in 1:nSites) { 
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           if(zknown[i]) 

               next 

           ## Reject highly unlikely proposals (before proposing 

them) 

           ## This speed trick shouldn't affect anything but 

           ## can double check by changing toleranc (tol) 

           if(z[i,k]<1 & muz[i,k-1]<tol) 

               next 

           zk.wide <- matrix(z[,k], nSites, nReps) 

           zk.cand <- z[,k] 

           zk.cand[i] <- 1-z[i,k] 

           zk.cand.wide <- matrix(zk.cand, nSites, nReps) 

 

           ll.y.tmp <- 0 

           ll.y.cand.tmp <- 0 

           if((k > 4) & (i <= nSampled)) { ## Ignore first 4 

years without data 

               ll.y.cand.tmp <- dbinom(y[i,,k], 1, 

zk.cand[i]*p[i,,k], log=TRUE) 

               ll.y.tmp <- sum(ll.y[i,,k], na.rm=TRUE) 

           } 

           ## RC: Prior must be calculated for time k and k+1 

b/c change in z affects both 

           ll.z.cand[i,k-1] <- dbinom(zk.cand[i], 1, muz[i,k-1], 

log=TRUE) 

           ll.z2 <- ll.z2.cand <- 0 

           if(k < nYears) { 

               zkt.cand <- matrix(zk.cand, nSites, nSites, 

byrow=TRUE) 

               gamma.cand[,k] <- 1 - exp(rowSums(log(1-

G*zkt.cand))) 

               muz.cand[,k] <- (zk.cand*(1-epsilon*(1-

gamma.cand[,k])) + (1-zk.cand)*gamma.cand[,k])*notFailed[,k+1] 

               ll.z.cand[,k] <- dbinom(z[,k+1], 1, muz.cand[,k], 

log=TRUE) 

               ll.z2 <- sum(ll.z[,k]) 

               ll.z2.cand <- sum(ll.z.cand[,k]) 

           } 

           if(runif(1) < exp((sum(ll.y.cand.tmp, na.rm=TRUE) + 

ll.z.cand[i,k-1] + 

                              ll.z2.cand + prop.back) - 

                             (ll.y.tmp + ll.z[i,k-1] + 

                              ll.z2 + prop.cand))) { 

               z[,k] <- zk.cand 

               ll.z[i,k-1] <- ll.z.cand[i,k-1] 

               if(k < nYears) { 
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                   gamma[,k] <- gamma.cand[,k] 

                   muz[,k] <- muz.cand[,k] 

                   ll.z[,k] <- ll.z.cand[,k] 

               } 

               if((i <= nSampled) & (k>4)) { 

                   ll.y[i,,k] <- ll.y.cand.tmp 

               } 

               zkup[k-1] <- zkup[k-1] + 1 

           } 

       } 

   } 

 

    nz1 <- nz1+z 

 

    #Update for beta0 

    beta0.cand<-rnorm(1, beta0, tune[8]) 

    p.cand <- plogis(beta0.cand + beta1*p.cov1 + beta2*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p[,,dataYears], log=TRUE) 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta0.cand <- dnorm(beta0.cand, 0, 10, log=TRUE)  

    prior.beta0 <- dnorm(beta0, 0, 10, log=TRUE) 

 

    ll.y.sum <- sum(ll.y, na.rm=TRUE) 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta0 <- beta0.cand 

        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 

 

    #Update for beta1 

    beta1.cand<-rnorm(1, beta1, tune[9]) 

    p.cand <- plogis(beta0 + beta1.cand*p.cov1 + beta2*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta1.cand <- dnorm(beta1.cand, 0, 10, log=TRUE)  
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    prior.beta1 <- dnorm(beta1, 0, 10, log=TRUE) 

 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta1 <- beta1.cand 

        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 

 

    #Update for beta2 

    beta2.cand<-rnorm(1, beta2, tune[10]) 

    p.cand <- plogis(beta0 + beta1*p.cov1 + beta2.cand*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta2.cand <- dnorm(beta2.cand, 0, 10, log=TRUE)  

    prior.beta2 <- dnorm(beta2, 0, 10, log=TRUE) 

 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta2 <- beta2.cand 

        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 

 

    zk <- colSums(z) 

 

    samples[s,] <- c(sigma, gamma0.i, gamma0.s, gamma0.p, 

                     epsilon.i, epsilon.s, epsilon.p, 

                     beta0, beta1, beta2, alpha, zk=zk, 

deviance=-2*ll.y.sum) 

    zK[,s] <- z[,nYears] 

    if(monitor.z) 

        zA[,,s] <- z 

  } 

 

  final.state <- list(z=z, D=D, samples=samples[s,]) 

  library(coda) 

  return(list(samples=samples, final.state=final.state, 

              zK=zK, zA=zA, Ez=nz1/nIter, 
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              seed=.Random.seed)) 

} 

 

dynroccHC <- cmpfun(dynroccH) 
This software has been approved for release by the U.S. Geological Survey 

(USGS). Although the software has been subjected to rigorous review, the USGS 

reserves the right to update the software as needed pursuant to further 

analysis and review. No warranty, expressed or implied, is made by the USGS 

or the U.S. Government as to the functionality of the software and related 

material nor shall the fact of release constitute any such warranty. 

Furthermore, the software is released on condition that neither the USGS nor 

the U.S. Government shall be held liable for any damages resulting from its 

authorized or unauthorized use. 
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APPENDIX D 

JOINT POSTERIOR DISTRIBUTIONS FOR MCMC SAMPLER 
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APPENDIX D. JOINT POSTERIOR DISTRIBUTIONS FOR MCMC SAMPLER. Description 

of joint posterior distributions and full conditional distributions used in the MCMC algorithm. 

The full joint posterior distribution of the parameters, conditional on the data, is proportional to 

the product of likelihood and prior probability distributions:  

𝑝(𝜀, 𝜶, 𝝆, 𝜎, 𝒛, 𝒑|𝒚)  ∝ 𝑝(𝒚|𝒛, 𝒑)𝑝(𝒛𝒕|𝒛𝑡−1𝜺,𝜶, 𝝆, 𝝈)𝑝(𝜀)𝑝(𝜶)𝑝(𝝆)𝑝(𝜎)𝑝(𝒑)    Eq. S1 

Where p( ) indicates a probability distribution, and bold font indicates a vector or array. Indexing 

has been omitted from dynamic parameters, latent variables and data for clarity. Here, z indicates 

the latent occupancy state and y is the presence-absence data.  

The joint density of the data conditional on the latent occupancy state is: 

𝑝(𝒚|𝒛, 𝒑) =  ∏ ∏ ∏ 𝐵𝑒𝑟𝑛(𝑧{𝑖𝑘} × 𝑝{𝑖𝑗𝑘})

𝐾

{𝑘=1}

𝐽

{𝑗=1}

𝑀

{𝑖=1}

                                                                            Eq. S2 

We used a Gibbs sampler to draw values from the joint posterior. Gibbs sampling involves 

sampling each parameter (or blocks of parameters) from its full conditional distribution, which is 

the distribution of parameter conditional on the data and all other parameters in the model. For 

example, the full conditional distribution of 𝜀1is 𝑝(𝜀1|𝒚, 𝒛, 𝜶, 𝝆, 𝜎, 𝒑), but because several of the 

probability densities do not include 𝜀1, we can simplify it to: 

𝑝(𝜀1|𝒛, )  ∝ 𝑝(𝒛𝒕|𝒛𝒕−𝟏, 𝜺,𝜶, 𝝆, 𝝈)𝑝(𝜀1)         Eq. S3 

Because z does not change when ε changes, we do not need 𝑝(𝒚|𝒛), so it can be omitted from the 

left-hand side of the equation. Additionally, p(𝜀1) can be omitted from the right-hand side of 

Equation 2 because z does not appear in p(𝜀1). Below is the full conditional, after omitting 

unnecessary terms: 

𝑝(𝒛|𝒚, 𝜀1)  ∝ 𝑝(𝒚|𝒛)𝑝(𝒛𝒕|𝒛𝒕−𝟏, 𝜺,𝜶, 𝝆, 𝝈)         Eq. S4 
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All other full condition distributions are computed in the same fashion. We used the Metropolis-

Hastings algorithm to sample. The joint posterior distribution for the extinction rate of semi-

permanent 𝜀2 and permanent ponds 𝜀3 along with the scale parameter of the colonization 

function σ, baseline colonization probability for intermittent 𝜌1,  semi-permanent 𝜌2 and 

permanent ponds 𝜌3, the resistance parameter 𝛼1, the intercept for the probability of detection 

𝛽0, effect of wind on detection 𝛽2 and effect of temperature 𝛽1 on detection have the same 

notation, with the exception of the epsilon parameter. As described in APPENDIX B, our prior 

distribution, (e.g., 𝑝(𝜀1)), is as follows: 𝛼1~𝑈𝑛𝑖𝑓(−10,10), σ~𝐺𝑎𝑚𝑚𝑎(1, 0.1), 𝜌1 = 0, 𝜌2 =

0, 𝜌3 = 0,𝜀1~𝐵𝑒𝑡𝑎(1, 1), 𝜀2~𝐵𝑒𝑡𝑎(1, 1), 𝜀3~𝐵𝑒𝑡𝑎(1, 1),  𝛽0~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10), 𝛽1~ 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 10), 𝛽2~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10).  

For the latent variable z, the full conditional distribution is somewhat more complicated as z in 

the current year at a given patch is dependent on the previous year patch occupancy and 

subsequent year patch occupancy.  

The full conditional for 𝑧𝑖,𝑘 is as follows: 

𝑝(𝑧𝑖,𝑘|𝑦𝑖,𝑘, 𝑧𝑖,𝑘−1, 𝑧𝑖,𝑘+1) ∝  𝑝(𝑦𝑖,𝑘|𝑧𝑖,𝑘)𝑝(𝑧𝑖,𝑘|𝑧𝑖,𝑘−1, 𝑧𝑘+1)      Eq. S5 

The prior for 𝑧𝑖,𝑘 takes the following form: 

𝑧𝑖,𝑘 =  ∏ ∏ 𝐵𝑒𝑟𝑛(𝜓𝑖,𝑘−1) 

𝐾

𝑘=1

𝑀

𝑖=1

                                                                                                            Eq. S6 

Where 𝜓𝑖,𝑘−1 is dependent on dynamic colonization and extinction rate parameters and is 

computed using Equation 1 from the manuscript: 

𝜓𝑖,𝑘 = 𝛾𝑖,𝑘−1(1 − 𝑧𝑖,𝑘−1) +  (1 − 𝜀𝑖,𝑘−1(1 − 𝛾𝑖,𝑘−1))(𝑧𝑖,𝑘−1)     Eq. S7 

The joint likelihood for our data takes on the following form: 
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𝑝(𝒚|𝒛) =  ∏ ∏ 𝐵𝑒𝑟𝑛(𝑦𝑖,𝑗|𝑧𝑖)

𝐾

𝑘=1

𝑀

𝑖=1

                                                                                                       Eq. S8 

Where M is the number of patches in the metapopulation (M=273), and K is the number of years 

(K=15) of our study. Bold indicates an array. 
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APPENDIX E 

CONVERGENCE DIAGNOSTICS 
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APPENDIX E. CONVERGENCE DIAGNOSTICS. Trace plots and posterior density for 

elevation model. 
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APPENDIX F 

PARAMETER ESTIMATES 
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APPENDIX F. PARAMETER ESTIMATES. Estimates of the posterior mean, standard 

deviation and 95% credible intervals for detection and occupancy parameters for our spatially 

explicit model of the influence of A) no landscape structure (i.e., colonization probability based 

on Euclidean distance among patches), B) distance to nearest streambed, and C) both elevation 

and distance to nearest streambed on landscape resistance and metapopulation dynamics. 

A. No landscape structure 

     

Parameter Description Mean   SD  2.5 97.5 

sigma  

Scale parameter of colonization 

function 3.51 0.8 2.32 5.2 

gamma1  

Baseline colonization probability at 

intermittent patches 0.02 0 0.01 0.05 

gamma2  

Baseline colonization probability at 

semi-permanent patches 0.23 0.1 0.1 0.39 

gamma3  

Baseline colonization probability at 

permanent patches 0.16 0.1 0.03 0.51 

eps1  

Extinction probability at intermittent 

patches 0.85 0.1 0.58 0.99 

eps2  

Extinction probability at semi-

permanent patches 0.79 0.2 0.46 0.99 

eps3  

Extinction probability at permanent 

patches 0.13 0.1 0.02 0.41 

beta0  

Intercept of logit-linear detection 

model 2.07 0.3 1.57 2.63 

beta1  Effect of temperature on logit(p) 0.3 0.4 -0.31 1.1 

beta2  Effect of wind on logit(p) -0.15 0.3 -0.77 0.46 

z2003  Number of occupied patches in 2003 3 0 3 3 

z2004  Number of occupied patches in 2004 4.41 1.3 2 7 

z2005  Number of occupied patches in 2005 5.56 1.8 3 9 

z2006  Number of occupied patches in 2006 6.66 2 3 11 

z2007  Number of occupied patches in 2007 7.85 1.9 5 12 

z2008  Number of occupied patches in 2008 9.55 2.2 6 15 

z2009  Number of occupied patches in 2009 9.42 2.5 6 15 

z2010  Number of occupied patches in 2010 10.03 2.7 6 16 
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z2011  Number of occupied patches in 2011 12.71 2.8 8 19 

z2012  Number of occupied patches in 2012 10.89 3 6 18 

z2013  Number of occupied patches in 2013 13.78 3.2 9 21 

z2014  Number of occupied patches in 2014 17.51 3.4 12 25 

z2015  Number of occupied patches in 2015 23.11 3.8 18 32 

z2016  Number of occupied patches in 2016 20.17 4.5 14 31 

z2017  Number of occupied patches in 2017 19.28 5.4 12 32 

Deviance Deviance 142.58 9.81 131.37 165.27 

 

B. Distance to nearest streambed 

    

Parameter Description Mean   SD  2.5 97.5 

sigma  

Scale parameter of colonization 

function 2.42 0.6 1.53 3.88 

gamma1  

Baseline colonization probability at 

intermittent patches 0.03 0.02 0.01 0.09 

gamma2  

Baseline colonization probability at 

semi-permanent patches 0.31 0.1 0.14 0.53 

gamma3  

Baseline colonization probability at 

permanent patches 0.18 0.13 0.04 0.56 

eps1  

Extinction probability at intermittent 

patches 0.85 0.11 0.57 0.99 

eps2  

Extinction probability at semi-

permanent patches 0.82 0.14 0.49 0.99 

eps3  

Extinction probability at permanent 

patches 0.12 0.1 0.02 0.39 

beta0  

Intercept of logit-linear detection 

model 2.07 0.27 1.57 2.63 

beta1  Effect of temperature on logit(p) 0.3 0.36 -0.32 1.08 

beta2  Effect of wind on logit(p) -0.14 0.32 -0.77 0.47 

alpha1  

Linear effect of elevation on landscape 

resistance 0.79 0.32 0.11 1.36 

z2003  Number of occupied patches in 2003 3 0 3 3 

z2004  Number of occupied patches in 2004 4.41 1.23 2 7 

z2005  Number of occupied patches in 2005 5.42 1.62 3 9 

z2006  Number of occupied patches in 2006 6.34 1.79 3 10 

z2007  Number of occupied patches in 2007 7.4 1.67 5 11 

z2008  Number of occupied patches in 2008 9.07 1.89 6 14 

z2009  Number of occupied patches in 2009 8.77 2.24 6 14 
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z2010  Number of occupied patches in 2010 9.43 2.48 6 15 

z2011  Number of occupied patches in 2011 12.42 2.74 8 19 

z2012  Number of occupied patches in 2012 10.94 3.09 6 18 

z2013  Number of occupied patches in 2013 14.67 3.45 9 23 

z2014  Number of occupied patches in 2014 19.36 3.95 13 29 

z2015  Number of occupied patches in 2015 25.77 4.68 19 37 

z2016  Number of occupied patches in 2016 23.96 5.76 15 37 

z2017  Number of occupied patches in 2017 23.99 6.96 14.00 40.00 

Deviance Deviance 142.23 9.58 131.39 164.87 

 

C. Elevation and Distance to Nearest Streambed 

     

Parameter Description Mean   SD  2.5 97.5 

sigma  

Scale parameter of colonization 

function 2.13 0.68 1.1 3.7 

gamma1  

Baseline colonization probability at 

intermittent patches 0.03 0.02 0.01 0.08 

gamma2  

Baseline colonization probability at 

semi-permanent patches 0.28 0.1 0.11 0.49 

gamma3  

Baseline colonization probability at 

permanent patches 0.24 0.17 0.05 0.7 

eps1  

Extinction probability at intermittent 

patches 0.85 0.12 0.56 0.99 

eps2  

Extinction probability at semi-

permanent patches 0.81 0.14 0.47 0.99 

eps3  

Extinction probability at permanent 

patches 0.15 0.13 0.02 0.52 

beta0  

Intercept of logit-linear detection 

model 2.07 0.27 1.57 2.64 

beta1  Effect of temperature on logit(p) 0.3 0.36 -0.32 1.09 

beta2  Effect of wind on logit(p) -0.15 0.32 -0.78 0.47 

alpha1  

Linear effect of elevation on 

landscape resistance 0.81 0.48 -0.05 1.8 

alpha2  

Linear effect of distance to streambed 

on landscape resistance 0.47 0.46 -0.47 1.27 

z2003  Number of occupied patches in 2003 3 0 3 3 

z2004  Number of occupied patches in 2004 4.24 1.22 2 7 

z2005  Number of occupied patches in 2005 5.2 1.62 3 9 

z2006  Number of occupied patches in 2006 6.16 1.82 3 10 

z2007  Number of occupied patches in 2007 7.37 1.75 5 12 

z2008  Number of occupied patches in 2008 9.15 2.02 6 14 

z2009  Number of occupied patches in 2009 8.78 2.31 5 14 

z2010  Number of occupied patches in 2010 9.35 2.45 6 15 
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z2011  Number of occupied patches in 2011 12.09 2.56 8 18 

z2012  Number of occupied patches in 2012 10.29 2.73 6 16 

z2013  Number of occupied patches in 2013 13.37 2.92 9 20 

z2014  Number of occupied patches in 2014 17.32 3.23 12 25 

z2015  Number of occupied patches in 2015 22.79 3.63 17 31 

z2016  Number of occupied patches in 2016 20.2 4.39 14.00 31.00 

z2017  Number of occupied patches in 2017 19.51 5.33 12 32 

Deviance Deviance 142.37 9.70 131.38 165.28 
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APPENDIX G 

COMPARISON OF RASTER RESOLUTIONS 
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APPENDIX G. COMPARISON OF RASTER RESOLUTIONS. Estimates of the median and 

95% credible intervals for resistance coefficients for our spatially explicit model of the influence 

of elevation (black squares) and distance to nearest streambed (open triangles) on landscape 

resistance and metapopulation dynamics. 
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APPENDIX H 

JAGS MODEL CODE FOR ABUNDANCE MODELS 
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APPENDIX H. JAGS MODEL CODE FOR ABUNDANCE MODELS. JAGS model code for 

each of our model of Chiricahua leopard frog metapopulation dynamics.  

model{ 

 

  #Ecological process - Abundance 

  #Site productivity 

  alpha1 ~ dnorm(0,0.1) #Inter site coefficient for productivity 

  alpha2 ~ dnorm(0,0.1) # Perm site coefficient for productivity 

  alpha3 ~ dnorm(0,0.1) # Semi-permanent site coefficient for 

productivity 

  alpha4 ~ dunif(-20, 0) #Pond area coefficient for productivity 

 

  #Abundance in first year after reintroduction.  

  N[15,1] ~ dpois(3) #Carpenter 

  N[33,1] ~ dpois(3) #Rock 

  N[274,1] ~ dpois(3) #HQ Breeding Site  

 

  #Dispersal parameters 

  rho0[1] ~ dunif(0,1) # Pr(not dispersing from Inter site) 

  rho0[2] ~ dunif(0,1) # Pr(not dispersing from Semi site) 

  rho0[3] ~ dunif(0,1) # Pr(not dispersing from Perm site) 

  #combination of sigma (shape of dispersal kernel) and gamma0. 

Should be small, positive 

  rho1 ~ dgamma(0.001, 0.001)  

 

  #Data model 

  p0A ~ dnorm(0, 0.1) #observer 1 detection rate intercept 

  tempA ~ dnorm(0, 0.1) # both observer detection rate temp 

  windA ~ dnorm(0, 0.1) # both observer detection rate wind 

 

#Transition probs  

for(i in 1:nSites) { #site loop 

 

  #Probability of not leaving a patch, based on hydroperiod 

  #These are the non-migrants from a given patch 

 

  pi[i,i] <- rho0[hydro[i]] #diagonals 

  pi0[i,i] <- 0 #set diagonals of the transition matrix to 0, 

b/c they will not be defined in the indexing below 

   

  for(m in 1:(i-1)) {  

  #This indexing will fill the bottom half of a square matrix 
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  #Unnormalized probability of moving from site i to site m, 

depends on distance among sites 

  #And hydroperiod of neighboring site 

  pi0[i,m] <- exp(-rho1*d[i,m]) #bottom half of matrix 

 

  #Normalized probability of moving from site i to m 

  pi[i,m] <- (1-pi[i,i])*pi0[i,m] / nc[i] #Rows of pi must sum 

to 1. A frog either stays or leaves a focal patch. 

  } 

   

  for(m in (i+1):nSites) { 

    #This indexing will fill the top half of a square matrix 

    pi0[i,m] <- exp(-rho1*d[i,m]) #top half of matrix 

    pi[i,m] <- (1-pi[i,i])*pi0[i,m] / nc[i] 

  } 

   

  #Probability of going from i to any site in the network 

  nc[i] <- sum(pi0[i,1:nSites]) 

 }  

     

    #N in year 1 

    Ntotal[1] <- sum(N[,1]) 

     

    for(t in 2:nYears){ #year loop 

      for(i in 1:nSites){ 

       

       #recruitment 

       lambda[i, t-1]<-exp(alpha1*Inter[i] + alpha2*Perm[i] + 

alpha3*Semi[i] + alpha4*N[i,t-1]/area[i]) 

       

        #expected number of individuals at site i 

        EN[i,t] <- pi[,i] %*% (N[,t-1]*lambda[,t-1]) 

 

        # N[i,t] is Poisson since the sum of multinomial 

outcomes is 

        # Poisson, if multinomial size is also Poisson. Here 

multinomial 

        # size is Pois(N[i,t-1]*lambda), but we're using 

expected value 

        #instead of realized. 

 

          N[i,t] ~ dpois(EN[i,t]) #number of individuals at site 

i 

        } 

        #N in subsequent years 

        Ntotal[t]<-sum(N[,t]) 
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      } 

   

#Occupancy data. Year of reintroduction 2003 (so adults could be 

seen 2004 onward). 2007-2012. 

 

for (i in 1:nSampled){#surveyed sites only 

  for (k in 1:nReps){ #3 replicate surveys 

    for (t in 4:9){ #years 2007 to 2012 

 

    y[i,k,t]~dbern(p[i,k,t]) 

    p[i,k,t]<-1-(1-r[i,k,t])^N[i,t] 

    logit(r[i,k,t])<-p0A + windA*wind[i,k,t]+tempA*temp[i,k,t] 

 

    } #close year loop 

    }#close rep loop 

  for(k in 1:2){ 

    for (t in 10:nYears){ #year 10-14, 2013-2017 

    logit(r1[i,k,t])<- p0A + tempA*temp[i,k,t] + 

windA*wind[i,k,t] 

    y1[i,k,t] ~ dbin(r1[i,k,t], N[i,t]) 

    logit(r2[i,k,t])<- p0A + tempA*temp[i,k,t] + 

windA*wind[i,k,t] 

    y2[i,k,t] ~dbin(r2[i,k,t], N[i,t]-y1[i,k,t]) 

    } #close year loop 

  } #close rep loop 

} #close site loop 

} 
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APPENDIX I 

CONVERGENCE DIAGNOSTICS FOR ABUNDANCE MODEL 
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APPENDIX I. CONVERGENCE DIAGNOSTICS FOR ABUNDANCE MODEL. Trace plots 

and posterior density for coefficients from the model of Chiricahua leopard frog metapopulation 

dynamics.  
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APPENDIX J 

R SCRIPT FOR MCMC ALGORITHM USED IN PVA 
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library(compiler) 

## MCMC algorithm 

dynroccH <- function(y,            # nSampled x nVisits x nYear 

array of detection/non-detection data 

                    x,             # nSites x 2 matrix of site 

coordinates. Note that nSampled will usually be <nSites 

                    r.cov1,        # resistance covariate 

                    r.cov2=NULL,   # resistance covariate 

                    e.cov,         # extinction covariate 

                    e.cov2,        # extinction covariate 

                    p.cov1,        # detection covariate 

                    p.cov2,        # detection covariate 

                    nIter=10,      # MCMC iterations 

                    tune,          # Tuning order: 

sigma,gamma0.i,gamma0.s,gamma0.p,eps.i,eps.s,eps.p, 

                                   #               

beta0,beta1,beta2,alpha[1],alpha[2] (12 in total) 

                    estAlpha=TRUE, # Estimate the resistance 

coefficient? 

                    inits=NULL,    # until you run algorithm, 

inits are based on what is given. 

                    zProp=c("ind","vec"), # Update z matrix by 

either proposing z(i,k) or z(,k), respectively 

                    zProbs=NULL,   # matrix of proposal probs 

use if zProp="vec" 

                    monitor.z=FALSE, # store each iteration of 

the z matrix? 

                    report=0,      # Only report progress if >0 

                    plot.z=FALSE,  # Plot the latent presence-

absence state (if report>0) 

                    tol=0)      # This will reject a proposal of 

z(i,k)=1 if mu(i,k-1)<tol 

{ 

 

  zProp <- match.arg(zProp) 

 

  ## Dimensions 

  nSites <- nrow(x)  

  nReps <- ncol(y) 

  nYears <- dim(y)[3] 

   

  ## Using this to avoid likelihood calculations for sites not 

sampled 

  nSampled <- nrow(y) 
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  dataYears <- apply(!is.na(y), 3, any) 

 

  anyDetections <- matrix(FALSE, nSites, nYears) 

  anyDetections[1:nSampled,] <- apply(y, c(1,3), sum, 

na.rm=TRUE) > 0 

 

  known0 <- matrix(FALSE, nSites, nYears) 

  rownames(known0) <- rownames(x)  

   

  known0[failed, 8:nYears] <- TRUE #failed is a chr string with 

names of sites no longer sampled. 

  notFailed <- 1 - known0 

 

  if(any(anyDetections & known0)) 

      stop("detection data doesn't match blowout data") 

 

  y.wide <- matrix(y, nSampled) 

 

  #For colonization, use this handy trick 

  isInter <- e.cov=="Intermittent" 

  isSemi <- e.cov=="Semi-permanent" 

  isPerm <- e.cov=="Permanent" 

   

  #For extinction risk, need to have a logit linear model 

because drought varies over time not space 

  water<-model.matrix(~ e.cov-1) 

  colnames(water)<-c("Inter", "Perm", "Semi") 

  rownames(water)<-rownames(x) 

   

  #set up dummy variables 

  Inter<-water[,1]  

  Perm<-water[,2] 

  Semi<-water[,3] 

   

  #PDSI for extinction risk that varies over time with drought 

  pdsi<-e.cov2 

   

  gamma0 <- rep(NA, nSites)   

 

 

    rc2 <- is.null(r.cov2) 

  if(rc2) { 

      r.cov2 <- r.cov1 

  } 

 

  ## initial values 
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    gamma <- muz <- epsilon<- matrix(NA, nSites, nYears-1) 

    if(is.null(inits)) { 

      epsilon.p<-epsilon.s<-epsilon.i<-epsilon.c<-runif(1)  

      sigma <- runif(1,3,4) 

      gamma0.i <- runif(1, 0.01, 0.3) 

      gamma0.s <- runif(1, 0.01, 0.3) 

      gamma0.p <- runif(1, 0.01, 0.3) 

      gamma0[isInter] <- gamma0.i 

      gamma0[isSemi] <- gamma0.s 

      gamma0[isPerm] <- gamma0.p 

      beta0<-runif(1, 0.1, 0.6) 

      beta0 <- rnorm(1) 

      beta1 <- rnorm(1) 

      beta2 <- rnorm(1) 

      alpha <- c(0, 0) 

      p <- plogis(beta0 + beta1*p.cov1 + beta2*p.cov2) ## inits 

for p 

      z <- matrix(0, nSites, nYears) 

       

      reintroSites <- which(rownames(coords) %in% 

                              c("Carpenter Tank", "Rock Tank", 

"HQ Breeding Site")) # reintroduction sites 

      z[reintroSites,1] <- 1  

 

      cost <- exp(alpha[1]*r.cov1 + alpha[2]*r.cov2) 

      ## calculate conductances among neighbors 

      tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16) ##8) 

      tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE) #adjust diag.conductances 

      ## calculate least cost distance between all pairs of 

sites. 

      if(!estAlpha) 

          alpha <- c(0,0) ## Force alpha to be 0 if you aren't 

estimating it. Results in appox Euclidean dist 

      D <- costDistance(tr1CorrC,x,x)/1000 #calculate the 

ecological distance matrix 

      G <- gamma0*exp(-D^2/(2*sigma^2)) 

 

      for(k in 2:nYears) { #nYears 

          epsilon[,k-1]<-plogis(epsilon.i*Inter + epsilon.s*Semi 

+ epsilon.p*Perm + epsilon.c*e.cov2[k-1]) 

         

          PrNotColonizedByNeighbor <- 1 - gamma0*exp(-

D^2/(2*sigma^2)) * t(z[,rep(k-1, nSites)]) 
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          PrNotColonizedAtAll <- apply(PrNotColonizedByNeighbor, 

1, prod) 

          gamma[,k-1] <- 1 - PrNotColonizedAtAll 

          muz[,k-1] <- z[,k-1]*(1-epsilon[,k-1]*(1-gamma[,k-1])) 

+ (1-z[,k-1])*gamma[,k-1] # rescue effect 

          muz[,k-1] <- muz[,k-1]*notFailed[,k] # Exclude 3 sites 

no longer sampled 

          z[,k] <- rbinom(nSites, 1, muz[,1]) ##Only works with 

muz[,1] 

          z[known0[,k],k] <- 0  

          z[which(anyDetections[,k]),k] <- 1 #detections in y, z 

must be 1 

      }#close years 

  } else { 

      gamma0.i <- inits$samples["gamma0.i"] 

      gamma0.s <- inits$samples["gamma0.s"] 

      gamma0.p <- inits$samples["gamma0.p"] 

      gamma0[isInter] <- gamma0.i 

      gamma0[isSemi] <- gamma0.s 

      gamma0[isPerm] <- gamma0.p 

      sigma <- inits$samples["sigma"] 

      epsilon.i <- inits$samples["epsilon.i"] 

      epsilon.s <- inits$samples["epsilon.s"] 

      epsilon.p <- inits$samples["epsilon.p"] 

      epsilon.c <- inits$samples["epsilon.c"] 

      alpha<-c(inits$samples["alpha1"],inits$samples["alpha2"]) 

      D <- inits$D 

      beta0 <- inits$samples["beta0"] 

      beta1 <- inits$samples["beta1"] 

      beta2 <- inits$samples["beta2"] 

      p <- plogis(beta0 + beta1*p.cov1 + beta2*p.cov2) 

      z <- inits$z 

      .Random.seed <- inits$seed ## use same random seed as 

before 

  } 

  ## Added starting values for gamma, conditional on inits for z 

 

  ##  browser() 

 

  ll.z <- matrix(0, nSites, nYears) 

  ll.y <- array(0, c(nSampled, nReps, nYears)) 

  for(k in 2:nYears) { 

      epsilon[,k-1]<-plogis(epsilon.i*Inter + epsilon.s*Semi + 

epsilon.p*Perm + epsilon.c*e.cov2[k-1]) 

      PrNotColonizedByNeighbor <- 1 - gamma0*exp(-D^2/(2*sigma^2  

))*t(z[,rep(k-1, nSites)]) 
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      PrNotColonizedAtAll <- apply(PrNotColonizedByNeighbor, 1, 

prod) 

      gamma[,k-1] <- 1 - PrNotColonizedAtAll 

      muz[,k-1] <- z[,k-1]*(1-epsilon[,k-1]*(1-gamma[,k-1])) + 

(1-z[,k-1])*gamma[,k-1]  

      muz[,k-1] <- muz[,k-1]*notFailed[,k] 

      ll.z[,k-1] <- dbinom(z[,k], 1, muz[,k-1], log=TRUE) 

      if(k > 4) { ## Ignore first 4 years without data 

          ## Now p has the same dimensions of y. No need to do 

p[,,k-4] 

          ## p is now an array. Note k-4 b/c p only has 6 years. 

Should make dims of p and y consistent 

          ll.y[,,k] <- dbinom(y[,,k], 1, z[1:nSampled,k]*p[,,k], 

log=TRUE) 

      } 

  } 

  ll.z.cand <- ll.z 

  ll.z.sum <- sum(ll.z) 

  ll.y.cand <- ll.y 

  ll.y.sum <- sum(ll.y, na.rm=TRUE) 

  epsilon.cand <- epsilon 

  gamma.cand <- gamma 

  muz.cand <- muz 

 

  nz1 <- z ## Used to compute expected occupancy at each site 

 

  zkup <- rep(0, nYears-1) 

 

  ## posterior samples 

  nPar <- 14+nYears 

  samples <- array(NA, c(nIter, nPar)) 

  zK <- matrix(NA, nSites, nIter) 

  colnames(samples) <- c("sigma", "gamma0.i", "gamma0.s", 

"gamma0.p", 

                         "epsilon.i", "epsilon.s","epsilon.p", 

"epsilon.c", 

                         "beta0", "beta1", "beta2", "alpha1", 

"alpha2", 

                         paste("zk", 1:nYears, sep=""), 

"deviance") 

 

  reportit <- report>0 

    nzup <- rep(0, nYears-1) 

  zA <- NULL 

  if(monitor.z) 

      zA <- array(NA_integer_, c(nSites, nYears, nIter)) 



 

150 

 

  if(reportit) { 

      cat("iter 1\n") 

      cat("    theta =", 

round(c(sigma,gamma0.i,gamma0.s,gamma0.p,epsilon.i,epsilon.s,eps

ilon.p,epsilon.c,beta0,beta1,beta2,alpha), 5), "\n") 

      cat("    z[k] =", round(colSums(z), 2), "\n") 

      cat("    ll.z =", round(sum(ll.z), 2), "\n") 

      cat("    deviance =", round(-2*ll.y.sum, 2), "\n") 

      cat("    time =", format(Sys.time()), "\n") 

      if(plot.z) { 

##          browser() 

          library(lattice) 

          zd <- data.frame(z=as.integer(z), 

year=factor(rep(2003:2017, each=nSites)), 

                           x=as.numeric(x[,1])/1000, 

y=as.numeric(x[,2])/1000) 

          print(xyplot(y ~ x | year, zd, groups=z, aspect="iso", 

pch=c(1,16), as.table=TRUE)) 

      } 

  } 

 

  ## Sample from posteriors 

  for(s in 1:nIter) { 

 

    ll.z.sum <- sum(ll.z) ## This is important! 

 

    if(reportit) { 

    if(s %in% c(2:100) || s %% report == 0) { 

      cat("iter", s, "\n") 

      cat("    theta =", round(samples[s-1,1:13], 5), "\n") 

      cat("    z[k] =", zk, "\n") 

      cat("    accepted", round(zkup/(nSites)*100, 1), "percent 

of z[k] proposals \n") 

      cat("    sum(ll.z) =", ll.z.sum, "\n") 

      cat("    deviance =", round(samples[s-1,"deviance"], 2), 

"\n") 

      cat("    time =", format(Sys.time()), "\n") 

      if(plot.z) { 

          library(lattice) 

          zd$z <- as.integer(z) 

          print(xyplot(y ~ x | year, zd, groups=z, aspect="iso", 

pch=c(1,16), as.table=TRUE)) 

      } 

    } 

    } 
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    if(estAlpha) { 

       

    #Metropolis update for alpha 

    alpha1.cand <- rnorm(1, alpha[1], tune[11]) 

    cost <- exp(alpha1.cand*r.cov1 + alpha[2]*r.cov2) #create 

resistance surface 

 

    ## calculate conductances among neighbors 

    tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16) ##8) 

    tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE) #adjust diag.conductances 

 

    ## calculate least cost distance between all pairs of sites. 

    D.cand <- costDistance(tr1CorrC,x,x)/1000 #calculate the 

ecological distance matrix 

    G.cand <- gamma0*exp(-D.cand^2/(2*sigma^2  )) 

 

    for(k in 2:nYears) { 

      zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

      gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

      muz.cand[,k-1] <- (z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

      ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

 

      prior.alpha.cand <- dnorm(alpha1.cand, 0, 10, log=TRUE) 

      prior.alpha <- dnorm(alpha[1], 0, 10, log=TRUE) 

 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.alpha.cand) - 

                        (ll.z.sum + prior.alpha))) { 

      alpha[1] <- alpha1.cand 

      D <- D.cand 

      G <- G.cand 

      gamma <- gamma.cand 

      muz <- muz.cand 

      ll.z <- ll.z.cand 

      ll.z.sum <- ll.z.sum.cand 

      } 

 

    if(!rc2) { 

    #Metropolis update for alpha[2] 

    alpha2.cand <- rnorm(1, alpha[2], tune[12]) 
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    cost <- exp(alpha[1]*r.cov1 + alpha2.cand*r.cov2) #create 

resistance surface 

 

    ## calculate conductances among neighbors 

    tr1 <- transition(cost, transitionFunction=function(x) 

1/mean(x), directions=16) ##8) 

    tr1CorrC <- geoCorrection(tr1, type="c", 

multpl=FALSE,scl=FALSE) #adjust diag.conductances 

 

    ## calculate least cost distance between all pairs of sites. 

    D.cand <- costDistance(tr1CorrC,x,x)/1000 #calculate the 

ecological distance matrix 

    G.cand <- gamma0*exp(-D.cand^2/(2*sigma^2  )) 

 

    for(k in 2:nYears) { 

      zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

      gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

      muz.cand[,k-1] <- (z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

      ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

 

      prior.alpha.cand <- dnorm(alpha2.cand, 0, 10, log=TRUE) 

      prior.alpha <- dnorm(alpha[2], 0, 10, log=TRUE) 

 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.alpha.cand) - 

                        (ll.z.sum + prior.alpha))) { 

      alpha[2] <- alpha2.cand 

      D <- D.cand 

      G <- G.cand 

      gamma <- gamma.cand 

      muz <- muz.cand 

      ll.z <- ll.z.cand 

      ll.z.sum <- ll.z.sum.cand 

      } 

    } 

  } 

 

    ## Metropolis update for sigma 

    sigma.cand <- rnorm(1, sigma, tune[1]) 

    if(sigma.cand > 0) { 

        G.cand <- gamma0*exp(-D^2/(2*sigma.cand^2  )) 

      for(k in 2:nYears) { 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 
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        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <- (z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

      prior.sigma.cand <- dgamma(sigma.cand, 0.001, 0.001)  

      prior.sigma <- dgamma(sigma, 0.001, 0.001) 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.sigma.cand) - 

                        (ll.z.sum + prior.sigma))) { 

          sigma <- sigma.cand 

          gamma <- gamma.cand  

          ll.z <- ll.z.cand 

          ll.z.sum <- ll.z.sum.cand 

          muz <- muz.cand 

          G <- G.cand 

      } 

    } 

 

    #Metropolis update for gamma0 (part of the gammaDist 

calculation) 

      prior.gamma0.cand <- prior.gamma0 <- 0 

    gamma0.i.cand <- rnorm(1, gamma0.i, tune[2]) 

    if(gamma0.i.cand > 0 & gamma0.i.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isInter] <- gamma0.i.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE)#[isocc] 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.i <- gamma0.i.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 



 

154 

 

    } 

  } 

 

 

    #Metropolis update for gamma0 (part of the gammaDist 

calculation) 

    gamma0.s.cand <- rnorm(1, gamma0.s, tune[3]) 

    if(gamma0.s.cand > 0 & gamma0.s.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isSemi] <- gamma0.s.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE)#[isocc] 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.s <- gamma0.s.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 

    } 

  } 

 

 

    #Metropolis update for gamma0 (part of the gammaDist 

calculation) 

    gamma0.p.cand <- rnorm(1, gamma0.p, tune[4]) 

    if(gamma0.p.cand > 0 & gamma0.p.cand < 1) { 

        gamma0.cand <- gamma0 

        gamma0.cand[isPerm] <- gamma0.p.cand 

        G.cand <- gamma0.cand*exp(-D^2/(2*sigma^2  )) 

      for(k in 2:nYears) { #nYears 

        zkt <- matrix(z[,k-1], nSites, nSites, byrow=TRUE) 

        gamma.cand[,k-1] <- 1 - exp(rowSums(log(1-G.cand*zkt))) 

        muz.cand[,k-1] <-(z[,k-1]*(1-epsilon[,k-1]*(1-

gamma.cand[,k-1])) + (1-z[,k-1])*gamma.cand[,k-1])*notFailed[,k] 
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        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE)#[isocc] 

    } 

      ll.z.sum.cand <- sum(ll.z.cand) 

      if(runif(1) < exp((ll.z.sum.cand + prior.gamma0.cand) - 

                        (ll.z.sum + prior.gamma0))) { 

        gamma0.p <- gamma0.p.cand 

        gamma0 <- gamma0.cand 

        gamma <- gamma.cand 

        muz <- muz.cand 

        ll.z <- ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

        G <- G.cand 

    } 

  } 

 

    ## Metropolis update for epsilon (intermittent sites) 

    epsilon.i.cand <- rnorm(1, epsilon.i, tune[5]) 

 

    for(k in 2:nYears) { 

      ##calculate epsilon.cand 

      epsilon.cand[,k-1]<-plogis(epsilon.i.cand*Inter + 

epsilon.s*Semi + epsilon.p*Perm + epsilon.c*pdsi[k-1]) 

      ##calculate muz 

      muz.cand[,k-1] <- z[,k-1]*(1-epsilon.cand[,k-1]*(1-

gamma[,k-1])) + (1-z[,k-1])*gamma[,k-1]  

      muz.cand[,k-1] <- muz.cand[,k-1]*notFailed[,k] 

      ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

    } 

      ## Priors 

      prior.epsilon.i.cand <- dnorm(epsilon.i.cand, 0, 10, 

log=TRUE)  

      prior.epsilon.i <- dnorm(epsilon.i, 0, 10, log=TRUE) 

     

      ll.z.sum.cand <- sum(ll.z.cand) 

       

      if(runif(1) < exp((ll.z.sum.cand + prior.epsilon.i.cand) - 

                        (ll.z.sum + prior.epsilon.i))) { 

         

        epsilon.i <- epsilon.i.cand 

        epsilon<- epsilon.cand 

        muz <- muz.cand 

        ll.z<-ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

      } 
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      ## Metropolis update for epsilon (semi-perm sites) 

      epsilon.s.cand <- rnorm(1, epsilon.s, tune[6]) 

       

      for(k in 2:nYears) { 

        ##calculate epsilon.cand 

        epsilon.cand[,k-1]<-plogis(epsilon.i*Inter + 

epsilon.s.cand*Semi + epsilon.p*Perm + epsilon.c*pdsi[k-1]) 

        ##calculate muz 

        muz.cand[,k-1] <- z[,k-1]*(1-epsilon.cand[,k-1]*(1-

gamma[,k-1])) + (1-z[,k-1])*gamma[,k-1]  

        muz.cand[,k-1] <- muz.cand[,k-1]*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

      ## Priors 

      prior.epsilon.s.cand <- dnorm(epsilon.s.cand, 0, 10, 

log=TRUE) 

      prior.epsilon.s <- dnorm(epsilon.s, 0, 10, log=TRUE) 

       

      ll.z.sum.cand <- sum(ll.z.cand) 

       

      if(runif(1) < exp((ll.z.sum.cand + prior.epsilon.s.cand) - 

                        (ll.z.sum + prior.epsilon.s))) { 

         

        epsilon.s <- epsilon.s.cand 

        epsilon<- epsilon.cand 

        muz <- muz.cand 

        ll.z<-ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

      } 

     

      ## Metropolis update for epsilon (perm sites) 

      epsilon.p.cand <- rnorm(1, epsilon.p, tune[7]) 

       

      for(k in 2:nYears) { 

        ##calculate epsilon.cand 

        epsilon.cand[,k-1]<-plogis(epsilon.i*Inter + 

epsilon.s*Semi + epsilon.p.cand*Perm + epsilon.c*pdsi[k-1]) 

        ##calculate muz 

        muz.cand[,k-1] <- z[,k-1]*(1-epsilon.cand[,k-1]*(1-

gamma[,k-1])) + (1-z[,k-1])*gamma[,k-1]  

        muz.cand[,k-1] <- muz.cand[,k-1]*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 
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      ## Priors 

      prior.epsilon.p.cand <- dnorm(epsilon.p.cand, 0, 10, 

log=TRUE) 

      prior.epsilon.p <- dnorm(epsilon.p, 0, 10, log=TRUE) 

       

      ll.z.sum.cand <- sum(ll.z.cand) 

       

      if(runif(1) < exp((ll.z.sum.cand + prior.epsilon.p.cand) - 

                        (ll.z.sum + prior.epsilon.p))) { 

         

        epsilon.p <- epsilon.p.cand 

        epsilon<- epsilon.cand 

        muz <- muz.cand 

        ll.z<-ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 

      } 

     

      ## Metropolis update for epsilon (perm sites) 

      epsilon.c.cand <- rnorm(1, epsilon.c, tune[8]) 

       

      for(k in 2:nYears) { 

        ##calculate epsilon.cand 

        epsilon.cand[,k-1]<-plogis(epsilon.i*Inter + 

epsilon.s*Semi + epsilon.p*Perm + epsilon.c.cand*pdsi[k-1]) 

        ##calculate muz 

        muz.cand[,k-1] <- z[,k-1]*(1-epsilon.cand[,k-1]*(1-

gamma[,k-1])) + (1-z[,k-1])*gamma[,k-1]  

        muz.cand[,k-1] <- muz.cand[,k-1]*notFailed[,k] 

        ll.z.cand[,k-1] <- dbinom(z[,k], 1, muz.cand[,k-1], 

log=TRUE) 

      } 

      ## Priors 

      prior.epsilon.c.cand <- dnorm(epsilon.c.cand, 0, 10, 

log=TRUE) 

      prior.epsilon.c <- dnorm(epsilon.c, 0, 10, log=TRUE) 

       

      ll.z.sum.cand <- sum(ll.z.cand) 

       

      if(runif(1) < exp((ll.z.sum.cand + prior.epsilon.c.cand) - 

                        (ll.z.sum + prior.epsilon.p))) { 

         

        epsilon.c <- epsilon.c.cand 

        epsilon<- epsilon.cand 

        muz <- muz.cand 

        ll.z<-ll.z.cand 

        ll.z.sum <- ll.z.sum.cand 
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      } 

     

    ## update z 

    ## We can update each z(i,t) individually, and it results in 

better mixing 

    zkup <- rep(0, nYears-1) 

   for(k in 2:nYears) { 

       anyDet <- anyDetections[,k]==1  

       zknown <- anyDet | !notFailed[,k]  

 

       prop.back <- prop.cand <- 0 

       for(i in 1:nSites) { 

           if(zknown[i]) 

               next 

           ## Reject highly unlikely proposals (before proposing 

them) 

           ## This speed trick shouldn't affect anything but 

           ## can double check by changing toleranc (tol) 

           if(z[i,k]<1 & muz[i,k-1]<tol) 

               next 

           zk.wide <- matrix(z[,k], nSites, nReps) 

           zk.cand <- z[,k] 

           zk.cand[i] <- 1-z[i,k] 

           zk.cand.wide <- matrix(zk.cand, nSites, nReps) 

 

           ll.y.tmp <- 0 

           ll.y.cand.tmp <- 0 

           if((k > 4) & (i <= nSampled)) { ## Ignore first 4 

years without data 

               ll.y.cand.tmp <- dbinom(y[i,,k], 1, 

zk.cand[i]*p[i,,k], log=TRUE) 

               ll.y.tmp <- sum(ll.y[i,,k], na.rm=TRUE) 

           } 

           ## Prior must be calculated for time k and k+1 b/c 

change in z affects both 

           ll.z.cand[i,k-1] <- dbinom(zk.cand[i], 1, muz[i,k-1], 

log=TRUE) 

           ll.z2 <- ll.z2.cand <- 0 

           if(k < nYears) { 

               zkt.cand <- matrix(zk.cand, nSites, nSites, 

byrow=TRUE) 

               gamma.cand[,k] <- 1 - exp(rowSums(log(1-

G*zkt.cand))) 

               muz.cand[,k] <- (zk.cand*(1-epsilon[,k]*(1-

gamma.cand[,k])) + (1-zk.cand)*gamma.cand[,k])*notFailed[,k+1] 
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               ll.z.cand[,k] <- dbinom(z[,k+1], 1, muz.cand[,k], 

log=TRUE) 

               ll.z2 <- sum(ll.z[,k]) 

               ll.z2.cand <- sum(ll.z.cand[,k]) 

           } 

           if(runif(1) < exp((sum(ll.y.cand.tmp, na.rm=TRUE) + 

ll.z.cand[i,k-1] + 

                              ll.z2.cand + prop.back) - 

                             (ll.y.tmp + ll.z[i,k-1] + 

                              ll.z2 + prop.cand))) { 

               z[,k] <- zk.cand 

               ll.z[i,k-1] <- ll.z.cand[i,k-1] 

               if(k < nYears) { 

                   gamma[,k] <- gamma.cand[,k] 

                   muz[,k] <- muz.cand[,k] 

                   ll.z[,k] <- ll.z.cand[,k] 

               } 

               if((i <= nSampled) & (k>4)) { 

                   ll.y[i,,k] <- ll.y.cand.tmp 

               } 

               zkup[k-1] <- zkup[k-1] + 1 

           } 

       } 

   } 

 

    nz1 <- nz1+z 

 

    #Update for beta0 

    beta0.cand<-rnorm(1, beta0, tune[9]) 

    p.cand <- plogis(beta0.cand + beta1*p.cov1 + beta2*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p[,,dataYears], log=TRUE) 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta0.cand <- dnorm(beta0.cand, 0, 10, log=TRUE)  

    prior.beta0 <- dnorm(beta0, 0, 10, log=TRUE) 

 

    ll.y.sum <- sum(ll.y, na.rm=TRUE) 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta0 <- beta0.cand 
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        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 

 

    #Update for beta1 

    beta1.cand<-rnorm(1, beta1, tune[10]) 

    p.cand <- plogis(beta0 + beta1.cand*p.cov1 + beta2*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta1.cand <- dnorm(beta1.cand, 0, 10, log=TRUE)  

    prior.beta1 <- dnorm(beta1, 0, 10, log=TRUE) 

 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta1 <- beta1.cand 

        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 

 

    #Update for beta2 

    beta2.cand<-rnorm(1, beta2, tune[11]) 

    p.cand <- plogis(beta0 + beta1*p.cov1 + beta2.cand*p.cov2) 

    z.wide <- z[,rep(1:nYears, each=nReps)] 

    z.a <- array(z.wide, c(nSites, nReps, nYears)) 

 

    ll.y.cand[,,dataYears] <- dbinom(y[,,dataYears], 1, 

z.a[1:nSampled,,dataYears]*p.cand[,,dataYears], log=TRUE) 

    prior.beta2.cand <- dnorm(beta2.cand, 0, 10, log=TRUE)  

    prior.beta2 <- dnorm(beta2, 0, 10, log=TRUE) 

 

    ll.y.sum.cand <- sum(ll.y.cand, na.rm=TRUE) 

 

    if(runif(1) < exp((ll.y.sum.cand + prior.beta0.cand) - 

                      (ll.y.sum + prior.beta0))) { 

        beta2 <- beta2.cand 

        p <- p.cand 

        ll.y <- ll.y.cand 

        ll.y.sum <- ll.y.sum.cand 

    } 
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    zk <- colSums(z) 

 

 

    samples[s,] <- c(sigma, gamma0.i, gamma0.s, gamma0.p, 

                     epsilon.i, epsilon.s, epsilon.p, epsilon.c, 

                     beta0, beta1, beta2, alpha, zk=zk, 

deviance=-2*ll.y.sum) 

    zK[,s] <- z[,nYears] 

    if(monitor.z) 

        zA[,,s] <- z 

  } 

 

 

 

  final.state <- list(z=z, D=D, samples=samples[s,]) 

  library(coda) 

  return(list(samples=samples, final.state=final.state, 

              zK=zK, zA=zA, Ez=nz1/nIter, 

              seed=.Random.seed)) 

 

 

} 

 

 

dynroccHC <- cmpfun(dynroccH) 

#This software has been approved for release by the U.S. 

Geological Survey (USGS). Although the software has been 

subjected to rigorous review, the USGS reserves the right to 

update the software as needed pursuant to further analysis and 

review. No warranty, expressed or implied, is made by the USGS 

or the U.S. Government as to the functionality of the software 

and related material nor shall the fact of release constitute 

any such warranty. Furthermore, the software is released on 

condition that neither the USGS nor the U.S. Government shall be 

held liable for any damages resulting from its authorized or 

unauthorized use. 
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APPENDIX K 

CONVERGENCE DIAGNOSTICS FOR PVA 
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APPENDIX K. CONVERGENCE DIAGNOSTICS FOR PVA. Trace plots and posterior density 

for A) model without PDSI and B) model with PDSI. 

 

A) 
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B) 
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