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ABSTRACT

Data sampling methods are promising for analysis of large-scale data sets to reduce
computing time and resources. These methods include uniform (random), and leverage-based
sampling methods with a recent one called shrinkage leverage-based method. In this study, we
compared data sampling methods for accuracy of item parameter estimates in IRT models. In
addition, we introduced a new method of sampling, adjusted shrinkage leverage-based (Adj-
SLEV) method. We analyzed two samples from PISA 2012 mathematics data set that were
normally and non-normally distributed. Random sampling provided the most accurate Rasch
item parameter estimates. The method with the highest accuracy varied depending on the type of
item parameter for 2-pl and 3-pl models, if each parameter was evaluated individually. Adj-
SLEV did not necessarily provide the highest accuracy for each type of item parameter
individually, however, consistently provided a good trade-off when all parameters in a model

were evaluated together.
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CHAPTER 1
INTRODUCTION
1.1 Background

Sampling is an important component of any research since it affects the validity of the
results if the sample is not representative of the population. Data sampling, on the other hand, is
a method used for analysis of large-scale data sets. The analyses of large data sets require longer
time, larger data storage and CPU resources and sometimes different techniques. Recent work on
sampling from a data set has suggested some techniques that may help overcome the estimation
errors due to data sampling. Random sampling (also known as uniform sampling) and non-
random (or leveraged-based sampling) are two general forms of sampling of the data set.
Random (uniform) sampling of the data has been used largely, due to its simplicity. However,
Cohen et al. (2015) has noted that random or uniform sampling is simpler but provides a weaker
form of approximation of the data matrix. Even so, this method is still sufficient to approximate a
large fraction of the original matrix (Cohen et al., 2015). Cohen et al. (2015) suggested an
alternative method that randomly samples each row of the original data matrix with a probability
that is proportional to its statistical leverage score. Although they have shown this method to be
useful, leverage scores are not always easy to compute. In addition, Ma, Mahoney, and Yu
(2015) suggested a new method called shrinkage leverage-based (SLEV) sampling. This method
uses a combination of score probabilities from uniform and leverage-based sampling methods
and has been found to provide improved conditional bias and variance estimates compared to
uniform and leverage-based methods.

Item Response Theory (IRT), also known as latent trait theory, is a modern mental test
paradigm which is extensively used for providing a theoretical basis for psychological

measurement (Embretson, 1996), and for educational measurement (Lord & Novick, 1968). The



invariance assumption is a fundamental property of IRT which makes it distinct from the
classical test theory. This inherent property of IRT entails that the parameters that define the item
properties be independent of the examinee sample, and the parameters that define the examinee
propoerties (e.g., ability) be independent of the item sample (Hambleton, Swaminathan &
Rogers, 1991). Although IRT parameter estimates are assumed to be invariant for any sample
from the population, Stocking (1990) has shown that optimal samples for estimation of item
parameters differ depending on the parameter being estimated. A central assumption of IRT is
that examinees are randomly sampled from a population (Holland, 1990). Thus, when the
distribution of ability is non-normal, for instance, errors in estimation increase in IRT models
(Sass, Schmitt & Walker, 2008). This is a particular problem for statewide testing programs in
that most ability distributions tend to be non-normal (Ho & Yu, 2015).

The recent work on techniques of sampling from a data set is promising for IRT
estimation, because the studies provide methods other than random sampling for overcoming the
estimation errors due to data sampling (e.g., Cohen et al., 2015; Ma et al., 2015). These methods
may decrease the estimation errors for IRT models in the situations where data sampling is
necessary such as large-scale data analyses. This study will compare the data sampling methods
on IRT parameter estimation. In the following section, the objective of this study will further be
introduced. In Chapters 2 and 3, a detailed background for IRT models and data sampling
methods respectively will be provided. In Chapters 4 and 5, an empirical study and its results
will be exhibited. Finally, in Chapter 6, the results from this study will be discussed.

1.2 Objective

Although data sampling methods have been used for estimation of regression based
models (e.g., Cohen et al., 2015; Ma et al., 2015), as yet they have not been studied in estimation
of Item Response Theory (IRT) models. In this study, the effects of different data sampling
methods on IRT parameter estimation will be investigated. We will compare the uniform and
leverage-based sampling methods, and the shrinkage leverage-based (SLEV) method for

estimation of the IRT models. In addition to the SLEV method produced by Ma et al. (2015), we



will introduce a new method of sampling, adjusted shrinkage leverage-based (Adj-SLEV), which
provides an adjustment to the SLEV method. Two empirical examples of normally and non-
normally distributed datasets from PISA 2012 will be presented for comparison of item

parameter estimates from random, leverage-based, SLEV and Adj-SLEV sampling methods.



CHAPTER 2
ITEM RESPONSE THEORY
2.1 Brief Introduction

Item Response Theory (IRT) models have been extensively used in psychological
measurement (Embretson, 1996) and in educational measurement (Lord & Novick, 1968). The
IRT models have also been adopted for research and measurement in other fields including
public health, ecology and sociology. IRT models define the relationship between an appropriate
number of underlying latent traits (Embretson & Reise, 2000) and item responses through a
continuous and monotonic function (Reckase, 2009).

IRT models employ parameters to describe person and item characteristics, and they vary
depending on these parameters. The person parameters account for the differences between
examinees regarding the underlying dimensions being measured, and the item parameters
account for the differences between the items depending on the item types. The IRT models that
assume only one underlying dimension and a logistic link are called unidimensional logistic IRT
models. Members of these models include one-parameter logistic (1-pl), two-parameter logistic
(2-pl), and three-parameter logistic (3-pl; Birnbaum,1968) models which are named depending
on the number of item parameters in the models (e.g., Hambleton et al., 1991; Lord, 1980; Lord
& Novick, 1968). The 1-pl, 2-pl, and 3-pl models were specifically developed for dichotomously
scored item types such as multiple choice items. These are the most commonly used

unidimensional IRT models and they will be the focus of this study.



One of the basic assumptions of IRT is the invariance property of the items and persons.
The invariance property implies that the item parameters are independent of the examinee
sample, and the person parameters are independent of the item sample (Hambleton,
Swaminathan & Rogers, 1991). Although IRT parameter estimates are assumed to be invariant
for any sample from the population, Stocking (1990) has shown that optimal samples for
estimation of item parameters differ depending on the parameter being estimated.

2.2. Assumptions of Item Response Theory

Embretson and Reise (2000) have posited two basic assumptions concerning IRT. Firstly,
an item characteristic curve (ICC) fits to data. Secondly, there exists an underlying latent trait
(e.g., ability) which causes dependencies in examinee responses. These dependencies in the data
can fully be accounted for by the model which is mathematically depicted with the fitted ICC.
Ability and item difficulty are assumed to be on the same scale and in the same units. Although
they can take on values changing from negative infinity to positive infinity, the range is often
restricted to -3 to 3 for convenience (Baker, 2001). Ability is conventionally assumed to have a
standard normal distribution (de Ayala, 2009). Item discrimination is also assumed to have a
scale with a range from negative infinity to positive infinity, theoretically. However, its practical
range is from 0 to 2.5 (Baker & Kim, 2004).

ICC is a monotonically increasing function of ability which presents the probability of a
correct response to an item (see Figures 1-3). The function includes both person and item
parameters as the variables. The person parameter is often called the ability parameter and
denoted with theta (#). The item parameters may consist of item difficulty (b), item
discrimination (a) and pseudo-guessing parameters (c) depending on the IRT model (see Section

2.2). The difficulty parameter and the discrimination parameter are also referred to as location



and slope parameters, respectively (Baker & Kim, 2004). The item difficulty is determined as a
point on the ability score scale that corresponds to median of the ICC, and item discrimination is
the slope of the ICC at this point. The pseudo-guessing parameter indicates a nonzero value of
lower asymptote for ICC, which reflects the correct response to an item by chance (de Ayala,
2009).
2.3 Unidimensional Item Response Theory Models

The most commonly used unidimensional IRT models are the ones for dichotomous
items that use a logistic mathematical link for defining the relationship between the latent
variable (e.g., ability) and the item responses. Dichotomous items have binary response
categories that correspond to either a correct response or an incorrect response. Multiple choice
items are a commonly used example of the dichotomous item type. The number of item
parameters in IRT models is the main decisive factor for the names given to these models.
2.3.1 One-parameter Logistic (1-pl) Item Response Theory Model or Rasch Model

The 1-pl IRT model includes only one item parameter that specifies the difficulty of an
item. The model assumes item discrimination to be equal for all items. The 1-pl model that
specifically fixes the discrimination parameter to one (Birnbaum, 1968, p. 402) is called the

Rasch model (Rasch, 1960). The Rasch model defines the probability that an examinee j with

ability 8 answers the item i correctly (Pl-(ej)) by the following equation:

1
P6) = @)

where b; is the item difficulty parameter for item i. Figure 1 shows the ICCs for three different
Rasch models that have different item location parameters and a fixed slope parameter of one.

The ICCs are parallel to each other since they have an equal slope. The medians of the ICCs



(e.g., P;(8) = 0.5) correspond to the points -1, 0 and 1 on the ability scale, which are the
measures of the item difficulties. The lower asymptotes of the ICCs are zero since the pseudo-
guessing parameters do not exist, or equivalently pseudo-guessing parameters are zero in the

model. The R (R Core Team, 2014) codes for creating Figures 1-3 are provided in Appendix A.

Item Characteristic Curve (ICC) for Rasch Model
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Figure 1: ICC’s for Rasch models

2.3.2 Two-parameter Logistic (2-pl) Item Response Theory Model

The 2-pl IRT model includes two item parameters which are item difficulty and item
discrimination. Item difficulty and item discrimination are allowed to vary from item to item for
predicting probability of correct response to an item given the ability of an examinee. The 2-pl

logistic IRT model defines the probability that an examinee j with ability 8 answers item i

correctly (P;(6;)) by the following equation:



1
1 + e~i(8;-b)’

Pi(6;) = (2)

where b; is the item difficulty parameter for item, and a; is the item discrimination parameter
for item i. Figure 2 shows the ICCs for three different 2-pl IRT models. Although a 2-pl model
allows the item difficulty to vary from item to item, the item difficulties were fixed at zero in
Figure 2 in order to demonstrate the effect of different item discrimination parameters on the
ICCs. The ICCs are not parallel to each other since they have different slopes which are 0.8, 1.5
and 3. The medians of the ICCs (e.g., P;(8) = 0.5) correspond to zero on the ability scale as the
item difficulties were fixed to be zero for each of the ICCs in the figure. The pseudo-guessing
parameters and, accordingly, the lower asymptotes of the ICCs are zero since the model does not

incorporate a pseudo-guessing parameter.

Item Characteristic Curve (ICC) for 2-pl Model
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Figure 2: ICC’s for 2-pl models



2.3.3 Three-parameter Logistic (3-pl) Item Response Theory Models
The 3-pl IRT model incorporates three different item parameters: item difficulty, item
discrimination, and pseudo-guessing parameters. The 3-pl IRT model defines the probability that

an examinee j with ability & answers item i correctly (Pl-(ej)) by the following equation:

1
1 + e~i(0=bi)’

PL(QJ) = C; + (1 — Ci) (3)

where b; is the item difficulty parameter for item i, a; is the item discrimination parameter for
item i, and c; is the pseudo-guessing parameter for item i. Figure 3 depicts the ICCs for three
different 3-pl logistic IRT models. Although a 3-pl model allows the item difficulty and item
discrimination to vary from item to item, they were fixed to be zero and one, respectively, in
order to compare the effect of different pseudo-guessing parameters on the ICCs. The medians of
the ICCs correspond to zero on the ability scale for each of the ICCs since the item difficulties
were fixed at zero for each item. The pseudo-guessing parameters were determined to be 0.0, 0.1
and 0.2. The lower asymptotes of the ICCs in figure 3 are nonzero and they vary according to the

determined pseudo-guessing parameters.



Item Characteristic Curve (ICC) for 3-pl Model
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Figure 3: ICC’s for 3-pl models

2.4 Scale Identification and Linking of the Scales

The scale of ability is arbitrary in the origin and in the unit. The arbitrariness of the
ability scale is denoted as scale indeterminacy or the metric identification problem (de Ayala,
2009, p.41; Baker & Kim, 2004, p. 90). IRT locates item and ability parameters on the same
scale. Therefore, fixing either the ability or item parameter scale solves the metric identification
problem (de Ayala, 2009).Three different methods have been proposed for identifying the metric
of ability in IRT models. The first method is equating via item anchoring which is particularly
employed in existence of multiple examinee samples assuming that the estimates of particular
item parameters are fixed across these groups (e.g., Angoff, 1971; Kolen & Brennan, 2004). The
other methods include person centering and item centering (de Ayala, 2009). We employed item
centering during the calibrations which implies fitting the mean of the item difficulty estimates to

zero during the estimations.
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The item parameter estimates obtained from different samples of examinees are not
comparable since the scales of the items are different (Stocking & Lord, 1983). The estimated
parameters are required to be placed on the same scale before they are compared for bias and
root-mean-square error (RMSE). The indeterminacy of the scale implies that the scale of ability
is unique only after a linear transformation (Lord & Novick, 1968, p. 366) since the
indeterminacy is only in the origin and unit of the ability scale (Stocking & Lord, 1983). The
linear transformation is achievable by the invariance property of IRT modeling (Lord, 1980). In
this study, we employed the mean/sigma equating method for linear transformation of the scales
when comparing estimates from sampled data sets to the estimates from the original dataset
(Marco, 1977).

2.5 Mean-Sigma Equating

The invariance property of IRT implies that the probability that an examinee answers an
item correctly should be independent of the sample of items being calibrated (Hambleton et al.,
1991). In other words, assuming 8 and 6™ are ability estimates for the same examinee from two
different calibrations, the probability for this examinee to answer an item i is expected to be

equal over the calibrations:
Pl-(Q) = Pl-(@*), (4)

Modeling these probabilities using a 2-pl IRT model gives the following equations:

1 _ 1
—a; (8-b;)) —a¥(e*-=p¥)’
1+ e-ai ) 1+e ai(6*-b;) (5)

11



eai (6—-by) — ea;‘(e*—b;‘)’ (6)

a; (6 = b;) = a; (6" — by).
(")

Multiplying 6 and b; by a constant (e.g., A) and dividing a; by the same constant would leave

a;(6 — b;) unchanged. That is,

a.
(6 —b)A=aj(6"— b)). ®
This equation implies that:
a; N
and
6A+B =6". (11)

As a result, replacing the parameters b; with b;, 8 with 8*and a; with a; does not change
the initial probabilities of a correct response which was shown with Equation 4 (Hambleton et
al., 1991). The constants A and B are called metric transformation coefficients. The
transformations place the scale of parameters from a calibration onto the scale of parameters
from a target calibration (de Ayala, 2009). The c; parameter is not affected by the scale
indeterminacy. Therefore, it is invariant across different calibrations without a need for a
transformation (Lord, 1980). There are several methods for obtaining the metric transformation
coefficients. In this study, we will employ Marco’s (1977) mean-sigma method. The mean/sigma

method uses the means and standard deviations of the parameter estimates from two calibrations

12



to determine the coefficients. Assuming the first calibration to be the target calibration, the

following constants can be calculated:

_ a(b(calib1))
o(b(calibz))’ (12)
B = u(bcaivt)) — AR(D(cativz)) (13)

where o (bcqip1)) IS the standard deviation of the estimated b parameters from calibration one,
o (b(calinz)) IS the standard deviation of the estimated b parameters from calibration two,
H(b(calip1)) is the mean of the estimated b parameters from calibration one, and w(bcaiipz)) 1S
the mean of the estimated b parameters from calibration two. The scale of the estimated

parameters from calibration two can be changed into the scale of the estimated parameters from

scale one by employing the following transformations:

bnewy = A(bcaiivz)) + B, (14)

Omewy = A(O(caiivz)) + B, (15)
Anew) = %’ (16)
Clnew) = C(calib2). a7)

13



CHAPTER 3
DATA SAMPLING METHODS
3.1 Randomization versus Statistical Adjustments

Statistical estimations and experimental designs retain some amount of uncontrolled
variation (Cox, 1958). For instance, randomization is a technique that can be used to ensure that
the expected error is zero when the error variable cannot be controlled. The effects of
uncontrolled variation may be reduced by using the available knowledge regarding the nature of
variation. Supplementary information provided by concomitant variables (a.k.a. auxiliary
variables) can be used to increase precision of estimations by means of explaining some of the
uncontrolled variation (Cox, 1958).

IRT models depict the relationship between the latent variable (e.g., ability) and item
responses through mathematical models. This relationship is statistically adjusted by item
characteristics such as item discrimination, item difficulty and guessing parameters (Van der
Linden & Hambleton, 1997). Statistical adjustments can also be applied for sampling the
datasets. Leverage-based sampling methods provide statistical adjustments to data sampling as
opposed to the conventional method of random sampling. Leverage scores are calculated by
using the concomitant variables as predictors in a linear regression model (Ma et al., 2015).

3.2 Data Sampling Methods
In this section, data sampling methods will be introduced. The original data will be

sampled by preserving the data rows because each row corresponds to observations of one

14



individual. The data rows to be sampled in this study are the dichotomously scored examinee
responses to mathematics items.

3.2.1 Uniform (Random) Sampling Method

Uniform sampling draws the data rows uniformly at random, which means each row of the

original data has the same probability of being sampled. That is,

/™ = 1/n (18)

for each i e n where n is the number of rows in the original data matrix (equivalently, the size of
the original sample), and m; is the probability that data raw i will be sampled (Ma et al., 2015).
3.2.2 Leverage-based Sampling Method

Leverage scores are commonly measured as hat-values (h;;) which are the elements in the

diagonal of hat matrix. The hat matrix is calculated by the following equation:

H=XX'X)"X, (19)

where the hat matrix is denoted by H, and X" is the transpose of the design matrix in matrix
formation of linear regression (Hoaglin & Welsch, 1978). In simple regression, the observations
that are far from the mean of predictor variable have high leverage scores. Observations with
high leverage scores have substantial impact on the fitted values. The hat-value measure for

simple regression can be restated as:

(x;-X)?

Sn . = 20
j=1(%j-X)? (20)

1
hii:E-I_

15



with x; as the values of the predictor variable, and x as the mean of the predictor variable (Fox,
1991). In this study, we used a single predictor for calculating the leverage scores to be used for
sampling.

Leverage-based sampling method draws the data according to “an importance sampling
distribution that is proportional to the normalized leverage scores”. The probability that data row

i will be sampled is calculated as:

mbev = hii :

(21)
where h;; is the leverage score for data row i (Ma et al., 2015).

In this study, there was a necessity to determine a dependent and a predictor variable in
order to calculate the leverage scores. Traditional mathematics total scores were calculated by
summing up the item scores to be used as the independent variable. We preferred the total raw
scores to the scores after IRT calibration, because the purpose of this study is to achieve the IRT
parameter estimates of the original dataset from the analysis of the subsamples without analyzing
the original dataset. We will refer to the predictor variable as a covariate following the literature
on IRT (e.g., Dai, 2013; Tay, Vermunt & Wang, 2013). The covariate can be selected from
among the concomitant or auxiliary variables if such are available. In this study, we generated a
covariate that has a high correlation with the dependent variable (e.g., r =.90). A covariate
having a higher correlation with the dependent variable is assumed to produce more accurate
leverage scores, because it explains a higher variance in the dependent variable. The selection of

the dependent variable does not have a direct effect on the leverage scores, because the leverage

scores are calculated based on the X matrix (Hoaglin & Welsch, 1978). However, we generated

16



the covariate to have a high correlation with the dependent variable. Therefore, the dependent
variable had an impact on the leverage scores by this means.
3.2.3 Shrinkage Leverage-based (SLEV) Sampling Method

Shrinkage leverage-based (SLEV) sampling method is a new data sampling method
introduced by Ma et al. (2015). The method combines the benefits of uniform and leverage-based
sampling methods by employing a convex combination of the probability distributions from two

methods. The probability that the data row i will be sampled is determined by:

;5" = am;t’ + (1 — a)m; V™, (22)

where a € (0,1), mF¢? is the probability that data row i will be sampled based on the leverage-

Unif
i

based sampling method, and is the probability that data row i will be sampled based on the
uniform (random) sampling method (Ma et al., 2015). Based on the simulation studies, Ma et al.
recommended using @ = 0.9 as a rule of thumb in order to account for the subsample size and
variance inflation trade-off in parameter estimation.
3.2.4 Adjusted Shrinkage Leverage-based (Adj-SLEV) Sampling Method

In this study, we propose an adjustment to the shrinkage leverage-based (SLEV) method.
We propose setting @ = 1 when the leverage score is higher than the uniform probability.
Similarly, we set @ = 0 when the uniform probability is higher than the leverage score (see
Equation 23). Adj-SLEV sampling method ensures that a data row i has at least an equal

probability of being selected as it would have if the sampling distribution of the population was

uniform.
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7.L.l_AdjShr — an.iLev + (1 _ a)n.l_Unif,
if mt > V" thena =1,

(23)
if m* < m;Y"then a = 0.
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CHAPTER 4
EMPRICAL STUDY
4.1 Normal and Non-normal Ability Distributions

We considered two empirical data sets where one of them had an approximately normal
distribution of raw scores (e.g., total score) and the other had a non-normal distribution of raw
scores. The non-normality of the raw score distribution may also indicate non-normality in
distribution of the latent trait (e.g., ability). We considered both normal and non-normal
distribution of ability, because errors in estimation increase in IRT models when the distribution
of ability is non-normal (Sass, Schmitt & Walker, 2008).

The data sets are two different samples from the 2012 cycle of the Program for
International Student Assessment (PISA), which belongs to the Organization for Economic
Cooperation and Development (OECD). PISA assesses students in an international context for
their readiness to become a member of the society when they are near their end of the
compulsory education (OECD, 2013, p.13-18). It measures reading literacy, science literacy, and
mathematics literacy by determining one of these domains as the major domain in each cycle.
The mathematics literacy was the main domain in PISA 2012.

PISA 2012 administered 13 booklets for assessing literacy in mathematics, science, and
reading. The booklets included clusters of items in a rotation design. That is, students were
administered different sets of items. In order to have a sample of students who were administered

the same set of items, we determined to analyze the mathematics data from Booklet 10 for both
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normally and non-normally distributed data sets. The mathematics clusters contained multiple
choice and constructed response items (OECD, 2014).

There were 36 mathematics items in Booklet 10 and four of these items were partial
credit items. We dropped these four items from the data set which resulted in 32 items. As a
result, we used the same items to result in normal and non-normal datasets. However, we
sampled students from different sets of countries to end with normal and non-normal
distributions. More information about the data sets is provided in the following section. PISA
provides four types of missing data. The invalid and missing data were recoded as an incorrect
response, while N/A and unreached items were kept as missing values. We dropped the missing
values from the data set listwise. This resulted in a sample size of 2,058 for an approximately
normal data set and a sample size of 1,906 for the non-normal data set.

4.2 Data set with Normal Ability Distribution (Empirical Study 1)
4.2.1 Distribution of Raw Scores

The data was from four countries including United Kingdom (n; = 959), Germany
(n, = 343), Belgium(n; = 495), and Latvia (n, = 261) with a total sample size of (N =
2,058). The distribution of the mathematics raw scores was as shown in Figure 4. The range of
the scores was 32 with a minimum score of 0 and a maximum score of 32. The mean, median
and mode of the distribution were 16.44, 16.00 and 16.00, respectively.

The skewness and kurtosis of the raw score distribution were estimated and tested for
significance by using R moments package (Komsta & Novomestky, 2015). The moments
package (Komsta & Novomestky, 2015) provides the Anscombe-Glynn test of kurtosis
(Anscombe & Glynn, 1983) and the D’ Agostino test of skewness (D’Agostino, 1970) for normal

samples. Both methods assume a null hypothesis of normality and an alternative hypothesis of
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deviation from normality. Under the null hypothesis of normality, the distribution of the data
should have a kurtosis of three and a skewness of zero. The two-sided tests of skewness and
kurtosis indicated an approximately normal distribution for the five countries with an
insignificant estimate of -0.002 (p = .964) for skewness and a significant estimate of 2.23 (p <
.001) for kurtosis. The Q-Q plot exhibited heavy tails for this distribution (see Figure 2.5). The

normality of the latent ability distribution is estimated in the next section.

Histogram for United Kingdom, Germany, Belgium, and Latvia (N=2,058)
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Figure 5: Q-Q plot for checking normality of total score distribution
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4.2.2 Distribution of Latent Ability

The distribution of the latent ability was investigated for non-normality. We used the sirt
package (Robitzsch, 2013) as implemented in R for estimation of the latent density. The sirt
package allows for semiparametric marginal maximum likelihood (MML) estimation. That is, a
non-parametric estimation of the latent density and the estimation of item parameters using
MML estimation were conducted simultaneously (e.g., Lindsay, Clogg, & Grego, 1991; Wellner,
1986). Log-linear smoothing up to third and fourth moments were fitted to the data for
estimating the latent density (e.g., Xu & von Davier, 2008). The first four moments of a
distribution are mean, variance, skewness and kurtosis, respectively. Taking the third moment of
the distribution into account for smoothing captures the non-normality in the distribution (Xu &
von Davier, 2008).

The best fitting models were determined based on the AIC, BIC and CAIC information
criteria for Rasch, 2-pl and 3-pl models (see Table 1). For each model, the best fitting model was
either smoothed up to third or four moments which indicated non-normal distribution for the
latent ability. A model with log-linear smoothing up to the first moment yielded a relatively best
fit for the Rasch model, a model with log-linear smoothing up to the second moment yielded a
relatively best fit for the 2PL, and a model with log-linear smoothing up to the third moment
yielded a relatively best fit for the 3PL model. The estimated distribution of latent ability from
different models is shown in Figure 6.

The sirt package provides the rasch.mmle2 function which estimates skewness for the
latent ability distribution. However, it does not provide an estimate of kurtosis for the latent
ability distribution. The R sirt package uses equation 24 for estimating skewness, however, it

does not provide an estimate of kurtosis. We have written an R function for estimating the
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kurtosis by using the equation 25. Theta.k, pi.k, and mean.trait are reported by the rasch.mmle2
function and they describe the latent distribution of ability. Theta.k is a vector of the grid points
over which the ability should be evaluated, pi.k is the distribution of ability on theta.k, and
mean.trait is the estimated mean of ability (Robitzsch, 2015). The estimated skewness for the
best fitting models were 0.00, -0.294, and -2.258 for Rasch, 2PL and 3PL models, respectively.

The estimated kurtosis was 3.00, 2.745, and 8.254 for these models, respectively.

Y pi.k = (theta.k — mean. trait)?

Skewness = (24)

3 )
Y.(pi.k = (theta.k — mean. trait)z)(i)

Y pi.k * (theta.k — mean. trait)*

Kurtosis = (25)

4.7
Y.(pi.k * (theta.k — mean. trait)z)(i)

Table 1: Model Fit Information for Models with Log-linear Smoothing up to the Specified

Moments
Moments Mean Variance
Model Fit AIC BIC CAIC AIC BIC CAIC
Indices

Rasch 68651.86 68837.64 68870.64 68651.95 68837.72 68870.72
Models 2-pl  67941.79 68302.07 68366.07 67918.70 68278.99 68342.99
3-pl 6791197 6845241 68548.41 67851.95 68392.38 68488.38
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Table 1 Continued: Model Fit Information for Models with Log-linear Smoothing up to

the Specified Moments

Moments Skewness Kurtosis
Model Fit AIC BIC CAIC AIC BIC  CAIC
Indices

Rasch 68646.93 68838.33 68872.33 68643.74 68840.78 68875.78
Models  2-pl 67920.40 68286.32 68351.32 67919.23 68290.77 68356.77
3-pl 67804.57 68350.63 68447.63 67805.08 68356.77 68454.77
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Figure 6: Estimated distribution of latent ability from different models
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4.3 Data set with Non-normal Ability Distribution (Empirical Study 2)
4.3.1 Distribution of Raw Scores

The data from the five countries with the lowest mathematics average scores among 31
participating countries in PISA 2012 were selected for this dataset. The mathematics average for
these counties varied from 368 to 386, while the average was 494 for all participating countries
(OECD, 2014). The distribution of the mathematics raw scores exhibited a positively skewed
distribution for this sample (see Figure 2.7). The dataset included 240 students from Peru, 356
students from Indonesia, 609 students from Qatar, 282 students from Colombia and 419 students
from Jordan (N=1,906). Remembering that the number of items was 32, the range of the scores
was observed to be 31 with a minimum score of 0 and a maximum score of 31. The mean,
median and mode of the distribution were 9.13, 8.00 and 6.00, respectively. Among the students
in the population, 62.2% scored below 9 and 69.9% scored below 10. Only 5.9 % of the students
scored 20 and higher.

The skewness and kurtosis of the raw score distribution were estimated and tested for
significance by using the R moments package (Komsta & Novomestky, 2015). The Anscombe-
Glynn test of kurtosis (Anscombe & Glynn, 1983) and D’ Agostino test of skewness
(D’Agostino, 1970) for normal samples both indicated deviation from normality. The two-sided
tests of skewness and kurtosis exhibited a significant non-normality for the distribution of the
five countries with the estimates of 1.099 (p <.001) and 4.124 (p < .001), respectively. The non-
normality of the observed scores may indicate a non-normal latent ability distribution as well.
The Q-Q plot indicates a right skew in the distribution (see Figure 8). In the next section, we

estimated the distribution of latent ability.
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Histogram for Peru, Indonesia, Qatar, Colombia and Jordan (N=1,906)
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Figure 8: Q-Q plot for checking normality of total score distribution
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4.3.2 Distribution of Latent Ability

The observed distribution of the scores exhibited non-normality for the five countries.
However, the distribution of the latent ability yet needs to be investigated for the non-normality.
We used the sirt package (Robitzsch, 2013) as implemented in R for estimation of the latent
density. Log-linear smoothing up to third and fourth moments were fitted to the data for
estimating the latent density (e.g., Xu & von Davier, 2008). The best fitting models were
determined based on the AIC, BIC and CAIC information criteria for Rasch, 2-pl and 3-pl
models (see Table 2). For each model, the best fitting model was either smoothed up to third or
four moments which indicated non-normal distribution for the latent ability. A model with log-
linear smoothing up to the fourth moments yielded a relatively best fit for the Rasch model,
while a model with log-linear smoothing up to the third moments yielded a relatively best fits for
2-pl and 3-pl models. The estimated skewnesses for the best fitting models were 0.958, 0.289,
and -2.099 for Rasch, 2-pl and 3-pl models, respectively. Similarly, the estimated kurtoses were
4.062, 2.922, and 6.029 for these models, respectively. The estimated distribution of latent ability

from different models is shown in Figure 9.

Table 2: Model Fit Information for Models with Log-linear Smoothing up to the Specified

Moments
Moments Mean Variance
Model
Fit AIC BIC CAIC AIC BIC CAIC
Indices

Rasch ~ 54468.97  54652.21 54685.2 54471.64 54654.88 54687.88
Models 2-pl 5377551  54130.89 541949 53777.13 54132.51 54196.51
3-pl 53628.69  54161.75 54257.8 53616.56 54149.63 54245.63
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Table 2 Continued: Model Fit Information for Models with Log-linear Smoothing up to the

Specified Moments

Moments Skewness Kurtosis
Model
Fit AIC BIC CAIC AlC BIC CAIC
Indices
Rasch 54391.11 54579.91 54613.90 54350.41 54544.75 54579.75
Models 2-pl 53767.32 54128.25 54193.30 53769.12 54135.60 54201.60
3-pl 53540.68 54079.30 54176.30 53540.31 54084.48 54182.48
Distribution of Latent Ability
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Figure 9: Estimated distribution of latent ability from different models
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4.4 Sampling the Empirical Data Sets

Data sampling methods included in this study were random, leverage-based, SLEV, and
Adj-SLEV sampling methods. These methods were described broadly in section 3.2. Sampling
of data sets based on data sampling methods were done using the R (R Core Team, 2014)
software. The R code used for data sampling is given in Appendix C.3. From each data set, 548
students were sampled, which corresponds to 27% of the students for dataset with an
approximately normal raw score distribution (N=2,058) and 29% of the students for the dataset
with a non-normal raw score distribution (N=1,906). Fifty data sets were sampled for each data
sampling method. For leverage-based sampling methods, we generated a covariate that has a
high correlation with the dependent variable (e.g., r =.90). This covariate was used to predict
total mathematics score in a univariate linear regression model in order to calculate the leverage
scores. The leverage scores were later normalized to create an importance sampling distribution
for sampling data rows from the full datasets (Ma, 2015). R (R Core Team, 2014) code for
generating the covariate and calculating leverage scores are given in Appendix C.3.
4.5 Parameter Estimation
4.5.1 Estimation of Parameters from Full Data Sets

Our interest in this study was Bayesian estimation of IRT models (i.e. marginalized
Bayesian estimation; Mislevy, 1986). Estimation of item parameters can be done by using the
Markov Chain Monte Carlo (MCMC) method as implemented in the computer software
OpenBUGS (Lunn, Spiegelhalter, Thomas & Best, 2009). Bayesian estimation specifies a prior
distribution for the parameters to be estimated (Baker & Kim, 2004). The convention is assuming
a normal prior distribution for the latent ability. However, the ability distribution may not be

normal necessarily (Hambleton & Swaminathan, 1985). In this study, we presented two
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empirical studies: one with approximately normal total score distribution and one with non-
normal total score distribution. The non-normality of the total score distribution may also
indicate non-normality of the ability distribution, although it does not guarantee the non-
normality for ability. Similarly, the normality of the total scores does not guarantee normality of
the latent score distribution. The semi-parametric analyses can be used to estimate the latent
density. We used the R sirt package (Robitzsch, 2013) for estimation of the latent density. The
sirt package allows for semiparametric marginal maximum likelihood estimation with log-linear
smoothing. The log-linear smoothing up to third or fourth moments can be used to address the
non-normality in the latent density (Xu & von Davier, 2008). The analyses of full datasets could
be done using MCMC estimation if the ability distribution is normal. Alternatively, semi-
parametric estimation with log-linear smoothing could be used when the ability distribution is
either normal or non-normal.

The semi-parametric analyses of the approximately normal dataset using the R sirt
package (Robitzsch, 2013) resulted with approximately normal distributions of ability for Rasch
and 2-pl models, and a skewed distribution for the 3-pl model (see Table 1). Therefore, either
MCMC estimation or semi-parametric estimation with log-linear smoothing can be used for item
parameter estimation of Rasch and 2-pl models, and semi-parametric analyses can be used for
item parameter estimation of the 3-pl model. On the other hand, semi-parametric analyses of a
non-normal dataset with log-linear smoothing up to fourth moments yielded a relatively best fit
for the Rasch model, while the analyses with log-linear smoothing up to the third moments
yielded relatively best fits for 2-pl and 3-pl models (see Table 2). Therefore, item parameter
estimation for the non-normal dataset can be done using semi-parametric analyses with log-linear

smoothing. In this paper, we used semi-parametric marginal maximum likelihood estimation
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with log-linear smoothing as implemented in the R sirt package (Robitzsch, 2013) for estimation
of the full datasets, regardless of the ability distribution. Our goal was to ensure consistency of
estimation errors due to estimation method between different models.
4.5.2 Estimation of Parameters from Sampled Data Sets

Data sets of approximately 30% sample sizes were sampled from full datasets based on
uniform, leverage, SLEV, and Adj-SLEV methods. Estimation of item parameters for each
sampled data set was done by using the Markov Chain Monte Carlo (MCMC) method as
implemented in the computer software OpenBUGS (Lunn et al., 2009). The following priors

were used for MCMC estimation of item parameters:

6; ~ Normal(0,1), j=1,..,N,
b; ~ Normal(0,1), i=1,..,n,
a; ~ Normal(0,1) and a; >0, i=1,..,n,
c; ~ Beta(5,17), i=1,..,n
where 6; is ability of examinee j, and b; is the item difficulty parameter, a; is the item

discrimination parameter and c; is the pseudo-guessing parameter for item i, respectively.
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CHAPTER 5
RESULTS

5.1 Accuracy Analyses

Analyses were conducted to compare accuracy of the parameter estimates from different
data sampling methods. The full data sets with approximately normal and non-normal
distributions given in Section 5 were sampled based on different data sampling methods given in
Section 3. The estimated parameters from sampled data sets were analyzed for their accuracy
compared to the estimates from full data sets. The indices used as a measure of accuracy were
bias, root-mean-square error (RMSE), mean absolute error (MAE) and Pearson correlation.
Before the accuracy analysis, the scales of estimates from data subsamples were all placed on the
scale of the estimates from analysis of the full dataset by using mean/sigma equating method
(Marco, 1977).

The bias, RMSE, MAE, and Pearson correlation were computed across 32 items and 50
replications for each sampling method. The following equations were used for calculating the
accuracy indices for estimated item difficulty parameter from full data sets for item i (b;), and

estimated item difficulty parameter from sampled data sets for item i from rth replication (bj,):

5 32 /1y N
21%i21(bi — biy)

Bias(B) == C0x32 (26)
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222 2%, |b; — by |

MAE (b) = 27
b 50x32 @7
- 22, %32, (b; — by )?
RMSE(b) = |/r=t==ht W (28)
SE(b) 50x32
1 50
Cor(h, b) = %z Cor (b, by) (29)
r=1

5.2 Data Set with Normal Raw Score Distribution

Accuracy indices were calculated for comparing parameter estimates from the empirical
data set with normal total score distribution and parameter estimates from samples of these
datasets over 50 replications. The latent ability distribution was normal for Rasch and 2-pl
models, and non-normal for 3-pl model (see Table 1). The results for different models from
different sampling methods were compared in Tables 3-6. A factorial ANOVA test was
conducted for each type of parameter using RMSE as the dependent variable, and sampling
method as the independent variable (see Table 7). Pairwise comparisons with Bonferroni
correction was administered for examining the significant differences in estimation accuracy
between the sampling methods (see Table 7).

Results showed that the error in estimates increase as the number of parameters in the
model increases, namely from Rasch model to 3-pl model (see Tables 3-6). For the Rasch model,
there was a significant method effect for estimation of item difficulty (b) parameter (see Table

7). The smallest RMSE was achieved by random sampling method (see Tables 3-6), and pairwise
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comparisons indicated the RMSE from random sampling was significantly different than other
sampling methods (see Table 7). For the 2-pl model, item discrimination (a) was best estimated
by random sampling method (see Tables 3-7). The difference between random sampling and
Adj-SLEV, however, was not significant at 0.01 level. Although the smallest RMSE for item
difficulty (b) in 2-pl was produced by SLEV sampling method (see Tables 3-6), the RMSE
estimates from leverage-based, SLEV, and Adj-SLEV methods were not significantly different
than each other (see Table 7). Considering the trade-off between item discrimination and item
difficulty parameters, Adj-SLEV sampling method resulted in the best recovery for 2-pl model.
There was not a significant sampling method effect for estimation of item discrimination (a) in
the 3-pl model (see Table 7). However, the smallest RMSEs were produced by random and Adj-
SLEV methods (see Tables 3-6), and they were not significantly different than SLEV method
(see Table 7). The smallest RMSE was achieved with SLEV sampling method for item difficulty
(b) (see Tables 3-6), and it was not significantly different than the RMSE from leverage-based
sampling method (see Table 7). RMSE from Adj-SLEV was significantly different than SLEV
method, and it was not significantly different than leverage-based method at .05 level (see Table
7). The smallest RMSE was achieved by leverage-based sampling method for pseudo-guessing
(c) parameters (see Tables 3-6). However, it was not significantly different than SLEV method
(see Table 7). Adj-SLEV method was significantly different than leverage-based method,
however was similar to SLEV method at .05 significance level. Determining a method that gives
the best parameter estimates for all parameters in a 3-pl model was challenging. The trade-off for
the parameter estimates apparently can be best achieved by using the SLEV method. Adj-SLEV
sampling method may also produce a good trade-off which can be compared to results from the

leverage-based sampling method.
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Table 3: Accuracy Indices for Different Models from Random

Sampling Method

Random
Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000 0.000 0.000 0.000 0.000
MAE 7.228 13.850 31.316 44.607 54.010 7.188
RMSE 8.950 17.645 44,935 57.795 78.842 12.206
Correlation .998 .945 957 .890 .755 124

Note. Values for bias, MAE and RMSE are multiplied by 100.

Table 4: Accuracy Indices for Different Models from Leverage-based

Sampling Method

Leverage-based

Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000 0.000 0.000 0.000 0.000
MAE 8.293 15.324 29.309 47.980 51573 6.026
RMSE 10.492 20.675 41.768 61518 75.475 11.098
Correlation  .997 925 .963 871 176 72

Note. Values for bias, MAE and RMSE are multiplied by 100.

Table 5: Accuracy Indices for Different Models from SLEV Sampling

Method

SLEV

Rasch 2-pl 3-pl

b a b a b C

Bias 0.000 0.000 0.000 0.000 0.000 0.000
MAE 8.611 15.301 28.996 48.045 51.042 6.136

RMSE 10.812 20.550 41.221 61.246 74.802 11.182
Correlation  .997 9.257 .964 .872 .780 .769

Note. Values for bias, MAE and RMSE are multiplied by 100.
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Table 6: Accuracy Indices for Different Models from Adj-SLEV

Sampling Method

Adj-SLEV
Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000 0.000 0.000 0.000 0.000
MAE 7.853 14496 30.122 45.978 52.475 6.470
RMSE 9.889 19.319 42720 58.742 76.487 11.582
Correlation .997 935 961 .882 770 152

Note. Values for bias, MAE and RMSE are multiplied by 100.

Table 7: ANOVA and Pairwise Comparisons with Bonferroni Correction for RMSE

ANOVA Pairwise Comparisons
Model Parameter F p Random Leverage SLEV
Rasch b 9.923  .002 Leverage <.001
SLEV <.001 1.000
Adj-SLEV .007 .360 .043
2-pl a 6.828  .010 Leverage <.001
SLEV <.001 1.000
Adj-SLEV .018 .204 391
2-pl b 7.243  .008 Leverage .001
SLEV <.001 1.000
Adj-SLEV .047 1.000 295
3-pl a 0.380  .538 Leverage .034
SLEV .065 1.000
Adj-SLEV 1.000 244 409
3-pl b 15.483 <.001 Leverage <.001
SLEV <.001 1.000
Adj-SLEV <.001 434 .018
3-pl C 10.431  .001 Leverage <.001
SLEV <.001 1.000
Adj-SLEV .001 .010 .056

Note. 1) Log transformation was applied to parameter estimates.
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5.3 Data Set with Non-normal Raw Score Distribution

In this section, accuracy indices were compared for parameters from the empirical data
set with the non-normal total score distribution and for parameters from subsamples of the non-
normal dataset over 50 replications. The latent ability distribution was found to be non-normal
for Rasch, 2-pl and 3-pl models (see Table 2). The accuracy indices for different models from
different sampling methods were shown in Tables 8-11. The differences in RMSE estimates from
different sampling methods were examined by factorial ANOVA test for each type of parameter
(see Table 12). Pairwise comparisons with Bonferroni correction was administered for further
investigation of differences in RMSE between the sampling methods (see Table 12).

Results showed that the errors from Empirical Study 2 were larger compared to the errors
from Empirical Study 1, due to non-normality of the ability distribution. The errors also
increased as the number of parameters in the model increased, similar to previous results in
section 5.2. For the Rasch model, best recovery was achieved by the random sampling method
(see Tables 8-12). The sampling method was not significant for estimation of 2-pl model
parameters at .05 significance level (see Table 12), however there was a method effect for
estimation of item discrimination (a) at .10 significance level. The smallest error was achieved
by leverage-based and Adj-SLEV sampling methods for estimation of item discrimination(a)
(see Tables 8-12), and these two were not significantly different than SLEV method (see Table
12). Similarly, random and Adj-SLEV sampling methods provided smallest errors for estimation
of item difficulty (b) (see Tables 8-11), and they were not significantly different than SLEV
method, although they were marginally different than leverage-based method (see Table 12).
Considering the trade-off between item discrimination and item difficulty parameters, the Adj-

SLEV sampling method can be used to result in the smallest RMSEs. The sampling methods

37



which resulted in the smallest recovery indices varied for the 3-pl model depending on the type
of the accuracy index. The best MAE for 3-pl was achieved with shrinkage based sampling
method for item discrimination (a), with Adj-SLEV based sampling for item difficulty(b), and
with leverage-based sampling method for pseudo-guessing (c) parameters (see Tables 8-12). The
smallest RMSE for 3-pl model was achieved with the Adj-SLEV for item discrimination (a) (see
Tables 8-12), although the results from different sampling methods were not significantly
different (see Table 12). The sampling method effect was significant at .10 significance level for
estimation of item difficulty (b), however it was not significant at .05 significance level. Adj-
SLEV gave the smallest RMSE estimate for item difficulty (b) (see Tables 8-12), and it was not
significantly different than random sampling method (see Table 12). The best RMSE estimates
for estimation of pseudo-guessing (c) was from leverage-based and Adj-SLEV sampling
methods (see Tables 8-12), and it was not significantly different than the estimate from SLEV
method (see Table 12). The trade-off for all parameter estimates suggested using the Adj-SLEV
method for estimation of this parameter. Overall, Adj-SLEV can be used for considering the
trade-off between item discrimination, item difficulty and item pseudo-guessing parameters in 3-

pl model.

Table 8: Accuracy Indices for Different Models from Random Sampling

Method
Random
Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000 0.000 0.000 0.000 0.000
MAE 9.034 11.507 14.187 120.953 31.804  4.807
RMSE 11.645 14.872 19.515 154.669 41.402 8.419
Correlation .997 957 .988 .805 .849 .706

Note. Values for bias, MAE and RMSE are multiplied by 100.
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Table 9: Accuracy Indices for Different Models from Leverage-based

Sampling Method

Leverage-based

Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000 0.000 0.000 0.000  0.000
MAE 11.051 10.624 15.485 115.162 33.129 4.437
RMSE 13.855 13.701 21.085 155.653 42.754 8.086
Correlation  .996 963 .987 .803 .839 129

Note. Values for bias, MAE and RMSE are multiplied by 100.

Table 10: Accuracy Indices for Different Models from SLEV Sampling

Method
SLEV
Rasch 2-pl 3-pl
b a b a b Cc
Bias 0.000 0.000 0.000 0.000 0.000  0.000
MAE 11.098 11.230 15.088 113.476 32.445 4.502
RMSE 13.738 14.759 20.555 151.424 42.003 8.150
Correlation  .996 .958 .987 .813 .844 124

Note. Values for bias, MAE and RMSE are multiplied by 100.

Table 11: Accuracy Indices for Different Models from Adj-SLEV

Sampling Method

Adj-SLEV
Rasch 2-pl 3-pl
b a b a b c
Bias 0.000 0.000  0.000 0.000 0.000  0.000
MAE 11.128 10.665 14.464 114.000 31.678 4.526
RMSE 13.958 13.705 19.578 149.892 40.857 8.093
Correlation .996 963 .988 816 .853 728

Note. Values for bias, MAE and RMSE are multiplied by 100.
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Table 12: ANOVA and Pairwise Comparisons with Bonferroni Correction for

RMSE
ANOVA Pairwise Comparisons
Model Parameter F p Random Leverage SLEV
Rasch b 40.762 <.001 Leverage <.001

SLEV <.001 1.000
Adj-SLEV ~ <.001 1.000 1.000

2pl a 3.210 .075 Leverage .044
SLEV 1.000 .078
Adj-SLEV ~ .037 1.000 .067
2pl b 0.001 .982  Leverage .024
SLEV 242 1.000
Adj-SLEV ~ 1.000 .052 434
3pl a 4,003 .047  Leverage 1.000
SLEV 1.000 .840
Adj-SLEV ~ .650 290 1.000
3pl b 3.582 .060 Leverage .006
SLEV .836 370
Adj-SLEV ~ .867 <.001 021
3pl c* 3.038 .030 Leverage .001
SLEV 021 520
Adj-SLEV ~ .004 942 .605

Note. 1) Log transformation was applied to parameter estimates.
2) Welch's correction for unequal variances was shown with "*" if applied.
Correction was also applied to pairwise comparisons.
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CHAPTER 6
DISCUSSION

In this study, we compared different data sampling methods for Bayesian estimation of
IRT model parameters. These methods were random, leverage-based, shrinkage leverage-based
(SLEV), and adjusted shrinkage leverage-based (Adj-SLEV) sampling methods. Estimation of
item parameters in IRT models were our interest in this study. Two empirical data sets consisting
of binary scored responses to mathematics achievement items were provided. These data sets had
normally and non-normally distributed total score distributions. Semi-parametric estimation of
data sets with log-linear smoothing indicated normal ability distribution for the Rasch, and 2-pl
models, and non-normal ability distribution for the 3-pl model for the data set with normal total
score distribution. Similarly, semi-parametric estimation of data sets with log-linear smoothing
indicated non-normal ability distribution for each of the Rasch, 2-pl, and 3-pl model for the data
set with non-normal total score distribution. The MCMC method was administered for Bayesian
estimation of the sampled data sets. Bayesian estimation requires determining a prior distribution
for parameters to be estimated. The convention is assuming a normal prior distribution for the
ability distribution. The errors in item parameter estimates may increase when the normality
assumption for ability is violated.

Results showed that the errors in parameter estimates were higher when the ability
distribution was non-normal. Errors also increased as the number of parameters in the model
increased for both normally and non-normally distributed ability. The sampling method that

provides the best item parameter estimates varied based on the model, based on the specific
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parameter in a model, and based on the ability distribution. The random sampling method
appeared to provide best item parameter estimates for the Rasch model, both for the data sets
with normal and non-normal ability distributions. For 2-pl model, the sampling methods
exhibited a differential effect on item parameter estimation for the normally distributed ability,
however not for the non-normally distributed ability. For the normal ability, the sampling
method that provides the best estimate varied for item difficulty and item discrimination
parameters, when they were evaluated individually. Adj-SLEV method, on the other hand,
provided best estimates for this model when the results for both item parameters were considered
together. For non-normal ability, Adj-SLEV and SLEV methods provided the best estimates for
both type of item parameters based on the pairwise comparison tests with Bonferroni correction.

The effect of sampling method on estimation of 3-pl model varied depending on the
parameter type and ability distribution. For normal ability, the sampling method effect was
insignificant for estimation of item discrimination, although it was significant for estimation of
item difficulty and item guessing parameters. Results from factorial ANOVA and pairwise
comparisons yielded leverage-based, SLEV and Adj-SLEV methods to perform comparable
when all parameters in a 3-pl model were considered together, although SLEV method may
outperform the other two. For non-normal ability, the sampling method effect was marginally
significant for estimation of item discrimination, insignificant for estimation of item difficulty,
and significant for estimation of item guessing parameter. The trade-off for all parameter
estimates suggested using the Adj-SLEV method for estimation of this parameter.

Overall, the most accurate estimates of item parameters were from random sampling
method for Rasch model, and from either SLEV or Adj-SLEV for 2-pl and 3-pl models

considering all parameters in the model. For these models, Adj-SLEV either provided the best
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estimates, or was a good alternative of the best model. Random sampling method, on the other
hand, did not provide as accurate results as other sampling methods for 2-pl and 3-pl models

when all parameters in the models were considered together.
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APPENDIX A

ITEM PARAMETER ESTIMATES FROM APPROXIMATELY NORMAL DATA

(EMPIRICAL STUDY 1)

Table Al: Item Difficulty Estimates from Different Sampling Methods for Rasch Model

Rando