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Abstract

A Burniat surface X is a particular surface of general type with pg = q = 0, K2
X =

2, 3, 4, 5 or 6. Alexeev and Pardini constructed an explicit compactification of the moduli

space of Burniat surfaces with K2
X = 6.

In this thesis, we describe compactifications of moduli spaces of Burniat surfaces with

2 ≤ K2
X ≤ 5 obtained by adding KSBA surfaces, i.e. slc surfaces X with ample canonical

class KX . We do it in two ways: by describing all one-parameter degenerations, and by using

the theory of matroid tilings by matroid polytopes.
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Chapter 1

Introduction

Burniat surfaces are special cases of surfaces of general type with pg = q = 0, 2 ≤ K2
X ≤ 6.

They were first introduced by Burniat in [Bu66]. Peters [Pet77] reinterpreted Burniat’s

construction using the modern language of branched abelian covers. In [LP01], Lopes and

Pardini proved that a minimal surface S of general type with pg(S) = 0, K2
S = 6, and

bicanonical map of degree 4 is a Burniat surface. Moreover, they showed that minimal

surfaces S with pg = 0, K2
S = 6 and bicanonical map of degree 4 form a four-dimensional

irreducible component of the moduli space of surfaces of general type.

In [KSB88], Kollár and Shepherd-Barron introduced stable surfaces and proposed a way

to compactify the moduli space of surfaces of general type by adding stable surfaces (also

called KSBA surfaces). They showed that the appropriate singularities to permit for the

surfaces at the boundaries of moduli spaces are semi log canonical (slc) and classified all

the semi log canonical surface singularities. The boundedness of slc surfaces with a fixed

canonical class K2 was settled in [Ale94]. In [Ale96a, Ale96b], Alexeev extended Kollár and

Shepherd-Barron’s construction to stable pairs.

In [AP09], Alexeev and Pardini constructed an explicit compactification of the moduli

space of Burniat surfaces with K2 = 6 by adding KSBA surfaces, i.e. slc surfaces X with
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ample canonical classKX , on the boundary. They also gave a constructive algorithm for com-

puting all stable Burniat surfaces (not necessarily from degenerations of smooth surfaces),

which reduced them to computing certain tilings by matroid polytopes.

The aim of this thesis is to extend the results and methods in [AP09] from the caseK2 = 6

to all the remaining cases 2 ≤ K2 ≤ 5. A Burniat surface with K2 = d, 2 ≤ d ≤ 6, is a

Z2
2-cover of Y = Bl9−dP2 branched along 12 irreducible curves consisting of 9 strict preimages

of lines and 3 exceptional divisors. The moduli space Md
Bur of Burniat surfaces with K2 = d

is a subset of dimension d− 2 in the moduli space Mcan of canonical surfaces, where a point

in Md
Bur corresponds to the canonical model of a smooth Burniat surface. When d = 6, 5,

the moduli space Md
Bur is an irreducible component in Mcan. Bauer and Catanese [BC10b]

showed that M4
Bur is a union of two irreducible subvarieties M4

Bur,1 and M4
Bur,2, where a

general point of M4
Bur,1 corresponds to a smooth Burniat surface, while a general surface in

M4
Bur,2 has an A1-singularity (nodal case). Moreover, M4

Bur,1 is an irreducible component in

Mcan, whereas M4
Bur,2 is contained in an irreducible component of dimension 3 in Mcan. The

moduli space M3
Bur is irreducible and is contained in an irreducible component of dimension

4 in Mcan. M2
Bur is just one point so already compact. Thus we will restrict ourselves to

compactifying the moduli space Md
Bur, 3 ≤ d ≤ 5.

We reduce the problem of compactifying Md
Bur to the one of compactifying the moduli

space of certain stable pairs (Y,D); X is an abelian cover of Y ramified in D. A point in

Md
Bur corresponds to the canonical model of a Burniat surface X with K2

X = d. The branch

data is encoded in the Hurwitz divisor DHur (see Chapter 2.2). An abelian cover of a variety

Y with group G or a G-cover is a finite map π : X → Y together with a faithful action of a

finite abelian group G on X such that π exhibits Y as the quotient of X by G. In the case

Y is smooth and X is normal, Pardini in [Par91] described the general structure of abelian

covers π : X → Y using the building data which we will discuss in Chapter 2.2. The work

was extended to the case of non-normal abelian covers in [AP12]. In Chapters 3,4,5, we list
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all the interesting degenerate configurations of stable pairs (Y,D) with K2
X = 3, 4, 5, up to

symmetry, and find their canonical models using the minimal model program for 3-folds.

Here, interesting degenerate configurations are the ones with reducible canonical models.

The construction of the compactified coarse moduli spaces Md

Bur of Burniat surfaces is

an application of [Ale08], which provides a stable pair compactification Mβ(r, n) for the

moduli space of weighted hyperplane arrangements (Pr−1,
∑
biBi) with arbitrary weight

β = (b1, ..., bn), 0 ≤ bi ≤ 1 and bi ∈ Q. In this paper, we apply [Ale08] in the case of P2 and

n = 9 with β = (1
2
, ..., 1

2
).

Several new phenomena happen in the cases K2 ≤ 5 as compared to the case K2 = 6

in [AP09]. Most importantly, when running the minimal model program, in addition to

divisorial contractions occurring in the case K2 = 6, flips and flops also occur. It is also

surprising that some non log canonical degenerations in the case K2 = 6 correspond to log

canonical degenerations in the cases K2 ≤ 5 .

We first study degenerations of stable pairs (Y,D) and apply the minimal model program

to find stable limits. We summarize our main results below.

Theorem 1. The compactified coarse moduli space M
d

Bur of stable Burniat surfaces, or

equivalently, of stable pairs (Y,D), is of dimension d− 2, irreducible for d 6= 4, and with two

components for d = 4. The types of degenerations, up to symmetry, are listed as below.

(i) There are 6 types of degenerate configurations of stable pairs with reducible canonical

models in the moduli space of stable pairs (Y,D) for K2
X = 5 case up to the symmetry group

Z6 described in Chapter 3.

(ii) There are 5 types of degenerations with reducible canonical models in the moduli

space of stable pairs (Y,D) for K2
X = 4 nodal case and 3 types of degenerations for K2

X = 4

non-nodal case up to the symmetry group Z2, described in Chapter 4.

(iii) There are only 2 types of degenerations with reducible canonical models in the moduli
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space of stable pairs (Y,D) for K2 = 3, described in Chapter 5.

According to the general theory of [Ale08], the unweighted stable hyperplane arrange-

ments are described by matroid tilings of the hypersimplex 4(r, n). For the weighted stable

hyperplane arrangements, they could be described by partial tilings of the hypersimplex

4(r, n) that cover a β-cut hypersimplex 4β(r, n).

The polytope 4d
Bur, d ≤ 6, is a polytope in R12 that corresponds to the stable pairs

(Y,D), where Y = Bl9−dP2. We find out all the matroid tilings of the polytope 4d
Bur,

d = 3, 4, 5, and find all possible stable pairs in the compactified moduli space of stable pairs

with K2 = d. All the possible stable pairs produced by this computation coincide with the

degenerations listed in Chapters 3,4,5. However, for Case 8 in Chapter 4 which is a K2 = 4

nonnodal case, we don’t have the corresponding matroiding covering from the computation.

It remains somwhat mysterious why these two methods produce different results in this

special case.
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Chapter 2

Preliminaries

2.1 Stable pairs

Definitions in this section come from [KM98],[Ale94, Ale96a] and [AP09, AP12].

Let X be a projective variety. Let B =
∑
biBi be a linear combination of effective

divisors, where bi is the weight of Bi which is allowed to be an arbitrary rational number

with 0 < bi ≤ 1. The divisors Bi’s are possibly reducible and possibly have irreducible

components in common.

We first give the definition of singularities that are important for the minimal model

program.

Definition 2. Assume that X is a normal variety. A pair (X,B) is called log canonical (lc)

if

(1) m(KX +B) is a Cartier divisor for some integer m > 0,

(2) for every proper birational morphism π : X ′ → X with normal X ′,

KX′ + π−1
∗ B = π∗(KX +B) +

∑
aiEi
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one has ai ≥ −1 . Here the Ei’s are the irreducible exceptional divisors of π, and the

pullback π∗ is defined by extending Q-linearly the pullback on Cartier divisors; π−1
∗ B is the

strict preimage of B.

If char k = 0 thenX has a resolution of singularities π : X´→ X such that Supp (π−1
∗ B)∪

Ei is a normal crossing divisor; then it is sufficient to check the condition ai ≥ −1 for this

morphism π only.

For a nonnormal variety X, we have semi log canonical as the analog of log canonical. We

say a variety is g.d.c (has generically double crossings) if it is either smooth or analytically

isomorphic to xy = 0 outside a closed subset of codimension ≥ 2.

Definition 3. A pair (X,B) is called semi log canonical (slc) if

(1) X satisfies Serre’s condition S2,

(2) X is g.d.c., and no divisor Bi contains any component of the double locus of X,

(3) m(KX +B) is a Cartier divisor for some integer m > 0,

(4) for the normalization ν : Xν → X , the pair (Xν , (double locus) + ν−1
∗ B) is log

canonical.

Assume that X is a curve, then (X,B) is slc if and only if X is at worst nodal, Bj does

not contain any nodes, and for every P ∈ X one has multPB =
∑
bjmultPBj ≤ 1.

Definition 4. Let (X,B) be a semi log canonical pair and f : X → S a proper morphism.

A pair (Xm, Bm) sitting in a diagram

X
φ

99K Xm

f ↘ ↙fm

S

is called a minimal model of (X,B) if
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(1) fm is proper,

(2) φ is a birational contraction, that is, φ−1 has no exceptional divisors,

(3) Bm = φ∗B,

(4) KXm +Bm is Q-Cartier and fm-nef, and

(5) a(E,X,B) < a(E,Xm, Bm) for every φ-exceptional divisor E ⊂ X.

Any two minimal models of (X,B) are isomorphic in codimension one.

Definition 5. Let (X,B) be a semi log canonical pair and f : X → S a proper morphism.

A pair (Xc, Bc) sitting in a diagram

X
φ

99K Xc

f ↘ ↙fc

S

is called a canonical model of (X,B) if

(1) f c is proper,

(2) φ is a birational contraction, that is, φ−1 has no exceptional divisors,

(3) Bc = φ∗B,

(4) KXc +Bc is Q-Cartier and f c-ample, and

(5) a(E,X,B) ≤ a(E,Xc, Bc) for every φ-exceptional divisor E ⊂ X.

The minimal model (Xm, Bm) is usually not unique, but the canonical model (Xc,4c)

is unique provided KX +B is big and

Xc = ProjS ⊕m≥0 f∗OX (mKX + bmBc) .

The canonical model (Xc, Bc) could be obtained from (Xm, Bm) by a linear system

|d (KXm +Bm)| for d� 0.
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The minimal model program (MMP) is a prodedure for finding a model for each birational

equivalence class. MMP machine for pairs is as follows (We borrow the language from

[Ale13]).

Input:

1. A pair (X,B) of a smooth projective variety X and a Q- or R-divisor B =
∑
biBi

such that ∪Bi is a normal crossing divisor.

2. Or, more generally, a log canonical pair (X,B).

Outputs:

1. Either a minimal model (Xm, Bm) with nef divisor KXm +Bm and dlt or log canonical

singularities, or a variety X ′ birational to X and a Mori-Fano fibration X ′ → X with

relatively ample − (KX′ +B′) and dimX < dimX ′ = dimX.

2. If KX + B is big then also the canonical model (Xc, Bc) with ample (KXc +Bc) and

log canonical singularities.

In our work, we use MMP to find canonical models.

Definition 6. A (X,B) is called stable if it satisfies the following conditions

(1) (Singularities) the pair (X,B) is semi log canonical, and

(2) (Numerical) the divisor KX +B is ample.

Let β = (b1, ..., bn), 0 < bi ≤ 1, bi ∈ Q, be a weight. A hyperplane arrangement is

a pair (Pr−1,
∑
biBi) with weight β, where B1, ..., Bn are hyperplanes in Pr−1. The pair

(Pr−1,
∑
biBi) is lc if for each intersection ∩i∈IBi of codimension k, one has

∑
i∈I bi ≤ k,

where I ⊂ {1, ..., n}. The pair (Pr−1,
∑
biBi) is stable if and only if it is lc and |β| =∑n

i=1 bi > r.

2.2 Abelian covers

We will recall some definitions and theorems from [Par91, AP12].
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Definition 7. Let G be a finite abelian group. An abelian cover with Galois group G, or

a G-cover, is a finite morphism π : X → Y of varieties which is the quotient map for a

generically faithful action of a finite abelian group G.

An isomorphism of G-covers π1 : X1 → Y , π2 : X2 → Y is an isomorphism φ : X1 → X2

such that π1 = π1 ◦ φ.

Let Y be a smooth variety and X be a normal variety. Let G be a finite abelian group

and G∗ = Hom(G,C∗) is the group of characters of G. The G-action on X with X/G = Y

is equivalent to the decomposition:

π∗OX = ⊕
χ∈G∗

L−1
χ , L1 = OY

where the Lχ’s are line bundles on Y and G acts on L−1
χ via the character χ.

Pardini in [Par91] showed that an abelian cover π : X → Y , with group G, with Y

smooth and complete and X normal, is determined up to isomorphism of G-cover by the

building satisfying some relations.

In this thesis we will only discuss the case when G = Zr2, r ∈ N. A set of building data

(Lχ, Dg) for the case G = Zr2 described in [Par91] can be simplified as

• effective Cartier divisors Dg, g ∈ G \ {0} (possibly not distinct),

• line bundles Lχ, χ ∈ G∗.

Moreover the building data for the case G = Zr2 need only satisfy the fundamental relations :

Lχ + Lχ′ ≡ Lχχ′ +
∑
g∈G

εχ,χ
′

g Dg

where εχ,χ′g = 1 if both χ(g) = χ′(g) = −1 and εχ,χ′g = 0 otherwise.

In particular, let G = Z2
2 = {e, a, b, c} and G∗ = {χ0, χ1, χ2, χ3} be the character group

with χ0 ≡ 1 , χ1(b) = χ1(c) = −1, χ2(a) = χ2(c) = −1, χ3(a) = χ3(b) = −1, and assume
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that Pic Y has no 2-torsion. Then the building data only need to satisfy

2Lχ1 = Db +Dc

2Lχ2 = Da +Dc

2Lχ3 = Da +Db

A smooth Burniat surface X with K2 = d, 2 ≤ d ≤ 6, which is a Z2
2-cover of Bl9−dP2 is

determined by building data. The general theory of abelian covers was extended to the case

of non-normal X in [AP12]; it is used in [AP09]. For details of the abelian covers for the

case of non-normal X we will refer to [AP12]. Now we will recall a theorem in [AP12] which

is needed for our work.

For every set of building data (Lχ, Dg), [Par91, Def.2.2] defined a standard abelian cover

explicitly by equations.

Definition 8. For a standard G-cover π : X → Y , the Hurwitz divisor of π is the Q-divisor

DHur :=
∑

i
mi−1
mi

Di, where mi is the ramification index of Di.

The Hurwitz formula

KX ∼Q π∗(KY +DHur)

shows that X is of general type if and only if KY +DHur is big.

In this thesis, we will use mi = 2 and DHur =
∑

1
2
Di.

Theorem. [AP12, Proposition 2.5]. Let π : X → Y be a G-cover and let D be the Hurwitz

divisor of π. Then

(i) The divisor KX is Q-Cartier if and only if KY +D is Q-Cartier.

(ii) KX = π∗(KY +D).

(iii) The variety X is slc if and only if so is the pair (Y,D).
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We consider X as the pair (X, 0).

Corollary 9. [AP12] For a G-cover π : X → Y with Hurwitz divisor D, X is stable if and

only if the pair (Y,D) is stable.

This corollary reduce the problem of compactifying Md
Bur to the one of compactifying

the moduli space of certain paris (Y,D).

2.3 Smooth Burniat surfaces

Burniat surfaces were first introduced by Burniat in 1966. A surface of general type is an

algebraic surface with Kodaira dimension 2. A Burniat surface is a surface of general type

with pg = q = 0, K2 = 2, 3, 4, 5 or 6, where pg (X) = h2 (OX) and q (X) = h1 (OX). We will

use the construction of Burniat surfaces in [Pet77, BHPV].

To construct a Burniat surfaceX withK2
X = 6, we start with an arrangement of 9 distinct

lines A0, A1, A2, B0, B1, B2, C0, C1, C2 in P2. The lines A0, B0, C0 form a non-degenerate

triangle with the vertices PA, PB, PC . Lines A1, A2 pass through PB, B1, B2 pass through

PC , and C1, C2 pass through PA. The other lines are in general position otherwise. Blow up

P2 at PA, PB, and PC . We denote the exceptional divisors on Bl3P2 by A3, B3, C3 and by

Ai, Bi, Ci, i = 0, 1, 2 the strict preimages of Ai, Bi, Ci on P2 . The blowup morphism is as

follows

PAPB

PC

C0

A0 B0 ←

P2

C3

C0

B0

B3

A0

A3

Bl3P2

11



Definition 10. A Burniat surfaceX withK2
X = 6 is a Z2

2-cover of Σ = Bl3P2 for the building

data Da =
∑3

i=0 Ai, Db =
∑3

i=0Bi, Dc =
∑3

i=0Ci, where a, b, c are the 3 nonzero elements

of Z2
2.

In general, a Burniat surface with K2 = d, 2 ≤ d ≤ 6, is a Z2
2-cover of Σ = Bl9−dP2

with the building data Da, Db, Dc, where Σ is the blowup of P2 at PA, PB, PC and Pi with

i = 1, 2 or 3. The following figures from [Pet77, BC09b] are arrangements of 9 lines in P2

for the constuction of Burniat surfaces with K2 = 3, 4, 5.

PAPB

PC

P

K2
X = 5

PAPB

PC

P1

P2
P3

K2
X = 3

PAPB

PC

P2

P1

K2
X = 4 nodal

P2P1

K2
X = 4 non-nodal

In particular, for K2 = 5, the Hurwitz divisor is D =
1

2
(Da +Db +Dc) for a Z2

2-cover.

Let π : Σ→ P2 be the blowup map and A3, B3, C3 and E be exceptional divisors. Then we
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have

−3KΣ = −3 (π∗KP2 + A3 +B3 + C3 + E)

= −3 ((−A0 −B0 − C0 − 2A3 − 2B3 − 2C3) + A3 +B3 + C3 + E)

= 3 (A0 +B0 + C0 + A3 +B3 + C3 − E)

=
∑
i=0,3

(Ai +Bi + Ci) + (2A0 + 2C3 − E) + (2B0 + 2A3 − E) + (2C0 + 2A3 − E)

=
3∑
i=0

(Ai +Bi + Ci) + (A1 + A2) + (B1 +B2) + (C1 + C2)

=
3∑
i=0

(Ai +Bi + Ci)

= 2D

Using the Riemann-Hurwitz formula KX = π∗(KΣ +D), we have

K2
X = (π∗(KΣ +D))2 = 4 · (KΣ +D)2 = 4

(
−1

2
KΣ

)2

= 5.

By the theorem in Section 2.2, we can reduce the problem of compactifying the moduli

space of stable Burniat surfaces with K2 = d to compactifying the moduli space of stable

pairs (Σ, D) described above.

2.4 The compactified moduli space M 6
Bur

Let X be a variety, a compactification X is a compact variety such that X ⊂ X is a dense

subset. More generally, we may also allow X ⊂ X to be non-dense. There are many

compactifications one could choose, but the one we prefer is a ’modular compactification’,

i.e. the points in X also correspond to some geometric objects.

The moduli space of Burniat surfaces M6
Bur, is a geometric space whose points represent

13



Burniat surfaces with K2 = 6 up to isomorphism. The compactified moduli space M6

Bur is

constructed in [AP09, Section 5.3] as an adaption of the construction of the moduli space

Mb(3, 9) of weighted hyperplane arrangements of 9 lines in P2 with weight b =
(

1
2
, ..., 1

2

)
.

We refer to [AP09] for details.

Alexeev and Pardini in [AP09] defined the polytope 46
Bur and the moduli space M6

Bur.

Fix weight b =
(

1
2
, ..., 1

2

)
and a polytope 46

Bur (see Chapter 6). We define M6

Bur to be the

moduli space of stable toric varieties over G6
Bur,b of topological type 46

Bur, where G6
Bur,b

is the b-cut of a certain subvariety G6
Bur ⊂ G(3, 9) (see [AP09, Section 5.3]). Thus M6

Bur

parametrizes stable toric varieties Z → G6
Bur,b, and the moment polytopes of the irreducible

components of Z = ∪Zs give a tiling of 46
Bur. For a stable toric variety Z → G6

Bur,b, one

recovers the stable pair (Y,D) as a GIT quotient P 6
Bur,Z//bT , where P 6

Bur,Z = P ×G6

Bur,b

Z

is the pullback of the universal family P .
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Chapter 3

Burniat surfaces with K2 = 5

3.1 Degenerations of Burniat surfaces with K2 = 5.

We consider degenerations of Burniat arrangements of curves on Σ = Bl4P2. When the ar-

rangement on Σ is not log canonical, choose a generic one-parameter family of arrangements

on Σ degenerating to it. Then the limit stable surface splits into several irreducible compo-

nents. Below, we consider such generic degenerations. Let Y be the total space of the one

parameter family of surfaces isomorphic to Σ with the central fiber being the degenerating

arrangement. Let D be the divisor that is the union of D in each fiber. Write Σ0 for the

central fiber of Y . The following figure is Σ0.

PAPB

PC

C0

A0 B0

P

←

C3

C0

B0

B3

A0

A3

E

Σ0

Case 1. The curve A2 degenerates to A0 +C3, B2 degenerates to A0 +B3, and C2 degen-

erates to B3 + C0 (the first figure below). Let LP be the curve in Y consisting of the points
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P in each fiber, which is the intersection of the curves A1, B1, C1. We first blow up the total

space Y along LP , then blow up the resulting total space along A0 in the central fiber. The

central fiber Σ0 becomes Bl4P2 ∪ F1 (the second figure below), where A0 is the (-1)-curve in

F1. Finally we blow up the total space along the proper transform of B3 in the component

Bl4P2 of Σ0. The resulting central fiber is a union of three components Bl4P2 ∪Bl1F1 ∪ F0.

C3

C0

B0

B3

A0

A3

P   

A0 C3

C0

C1

A1

B3

We can use the triple point formula to compute the intersection number (KΣ0 +D) |Yi .C,

where Yi is a component of Σ0 and C is a curve in the component Yi.

Let us recall the triple point formula: let Σ0 = ∪Yi be the central fiber in a smooth

one-parameter family, and assume that Σ0 is reduced and has simple normal crossing. Let C

be the intersection Yi ∩ Yj and assume that it is a smooth curve. Denote by p3 the number

of the triple points of Σ0 contained in C, then

(C|Yi)2 + (C|Yj)2 + p3 = 0.
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By the adjunction formula, we have KΣ0 = (KY + Σ0) |Σ0 and KYi = (KY + Yi) |Yi . Hence

KΣ0|Yi = ((KY + Σ0) |Σ0) |Yi

= KY |Yi + Σ0|Yi

= KY |Yi + 0

= (KYi − Yi) |Yi

= KYi + (Σ0 − Yi) .Yi − Σ0.Yi

= KYi + (the double locus)

Therefore we have the equation

(KΣ0 +D) |Yi = KYi +D|Yi + (the double locus).

The intersection number (KΣ0 +D) |Bl4P2 .C is 0 when the curve C is A1, C0, C1 or C3, and

positive for the other curves in Bl4P2. In the component Bl1F1, (KΣ0 +D) |Bl1F1 .B3 = 0

and (KΣ0 +D) |Bl1F1 .C > 0 for other curves C. We also have (KΣ0 +D) |F0 .C > 0 for all

the curves in the component F0. Thus KΣ0 + D is big, nef and vanishes on B3, C1 and C3.

The 3-fold is the minimal model of the degenerate family. Using the inversion of adjunction

in [Ka07], we see that the pair (Y ,D) is log terminal and D is an effective divisor on X such

that KY +D is nef and big. By Base Point Free theorem, the linear system |n (KY +D)| is

base point free for all sufficiently large n ∈ N. Then we can define a birational morphism by

the linear system |n (KY +D)|, which contracts A1, B3, C0, C1, C3 labeled in the third figure

above. The image of the birational morphism is the canonical model of the degenerate family.

We run MMP for our resulting pair (Y ,D). The surface Bl4P2 becomes P2 after con-

tracting A1, C0, C1, C3. The component Bl1F1 becomes F0 after contracting B3. The central
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fiber of the resulting canonical model is F0 ∪F0 ∪P2, which is the first figure below. For the

component P1 × P1, there is a further degeneration that splits to P2 ∪ P2. We list the three

possible further degenerations below which are the rest three figures. The second and third

figures differ only by a permutation of colors and we classify them as the same type. Thus

there are only two different degenerations, we call them Case 2 and Case 3.

B1

C3

A0

B3

C0

Case 1 Case 2 Case 2 Case 3

Case 1 could be obtained from another degeneration when B1 goes to A0 + B3 and C1

degenerates to B3 +C0 (the first figure below). We first blow up the total space Y along the

line B3 and then blow up along the strict image of A0 in the component Bl3P2 of the central

fiber. Finally we blow up the resulting total space along the proper transform L̃P of the line

LP . The central fiber becomes Bl3P2 ∪ F0 ∪ Bl2F0 (the second figure blow). Running the

minimal model program, we obtain the canonical model of the 3-fold with the central fiber

P2 ∪ F0 ∪ F0 (the third figure below), which is the same as Case 1 above by changing the

color of the building data due to the symmetry. Both degenerations could come from Case 2

in [AP09] for K2 = 6, with A1, B1 and C1 meeting at a point P . Case 2 in this paper could

be obtained from the degeneration of Case 7 in [AP09] for K2 = 6 with the point P on the

boundary of the hexagon.

C3

C0

B0

B3

A0

A3
P

 

C3

C0

A0

B1

A1

 

Case 1
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For the first figure above, if moreover the curve C2 degenerates to C3 +B0, the canonical

model is the same as Case 3 with K2 = 5.

Case 4. When the curve A2 degenerates to A0 +C3 and B2 degenerates to B3 +A0. We

first blow up the total space Y along the line A0 in the central fiber, then blow up along the

curve L̃P , which is the proper transform of LP . The central fiber Σ0 becomes Bl4P2 ∪ F1

and the 3-fold is the minimal model of the degenerate family. This case could be obtained

from Case 6 in [AP09] for K2 = 6 with A1, B1, C1 meeting at a point P .

C3

C0

B0

B3

A0

A3

P  

C3

B3 C1

By contracting C3 and B3 in the component Bl4P2, we get the canonical model of the

3-fold with centeral fiber F1 ∪ P1 × P1 and call it Case 4. In the component F1, curve A0

is the (−1)-curve s, curves B3, C1, C2, C3 are fibers f , and curves A2, B2 are sections of the

numerical type s + f . In the component F0, the double locus is the diagonal s + f and all

of the other curves are fibers.

1

4

2

3
A0

B3

C3

F1

C2

1

4

A1

B0
B1

C0

P1 × P1

∪

Case 4

There exists some further degenerations of Case 4. Take a one-parameter family with

general fibers F1 ∪ F0 we obtained above. In the central fiber, curve C2 coincides with C3,
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curve A2 degenerates to A0 + C3 in the component F1 and the curve A3 coincides with B1

in the component P1 × P1. The total space of the one-parameter family is a union of two

nonsingular three dimensional spaces A1×F1 and A1×F0. Blowing up the total space along

a line in the central fiber is the same as blowing up the line in each three dimensional space

first and then gluing the two resulting surfaces together in the central fiber. Running the

minimal model program, the surface F1 in the central fiber splits into P2∪P1×P1 and P1×P1

in the central fiber becomes P2 ∪ P2, which are as follows.

1

4

2
A0

B3

C3

F1

 

F1 ∪ P1 × P1

 

P2 ∪ P1 × P1

P1 × P1

 

Bl1F0 ∪ P2

B0B1

 

P2 ∪ P2

=

Gluing these two resulting surfaces together, we obtain a further degeneration as in the

first figure below and we denote the canonical model as Case 5. Another possible degener-

ation is that C2 coincides to B3, and B2 degenerates to A0 + B3. The central fiber of the

canonical model is the second figure below, which is prevous Case 2. Since the diagonal of

P1 × P1 could be degenerated to the section s+ f , we have further degenerations (figures 3

and 4 below), both of which are Case 3 showed up before.
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Case 5 Case 2 Case 3 Case 3

Case 6. When the six lines A1, A2, B1, B2, C1, C2 meet at the point P . We first blow

up the total space along the curve LP , then blow up the intersection point P of A1, B1 and

C1 in the component P2 of the central fiber, which is the intersection of A1, B1, C1 in the

exceptional divisor P2 of the blowup. The resulting central fiber contains two components

Bl4P2 ∪ F1, which is the central fiber of the minimal model.

C3

C0

B0

B3

A0

A3

P  

C1
B1

A1
E∪

Running the minimal model program, we contract A1, B1, C1 and get the log canonical

model with the central fiber P1×P1∪F1, where E is the (-1)-curve in F1. There is no further

degeneration for this case.

B3B0

C0C3

P1 × P1

E

B1

A1

F1

∪

Case 6

Case 6 can be obtained from Case 9 [AP09] for K2 = 6, by making A1, B1, C1 intersect

at one point P . For the above surface, if B2, C2 in the second component F1 degenerate to

B1 + E, C1 + E, then it is the central fiber of canonical model of the degeneration which

comes from Case 10 in [AP09] for K2 = 6 .
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3.2 Log canonical degenerations.

Cases 1,8 and 5 in [AP09] with K2 = 6 are special. Case 5 in [AP09] with K2 = 6 does not

produce any degenerations with K2 = 5.

For Case 5 in [AP09] with K2 = 6 (the left figure below), there is no corresponding

degeneration with K2 = 5. Since A1, B1, C1 must intersect, the resulting degeneration

has an infinite automorphism group, and therefore it does not correspond to an irreducible

component of a stable pair.

C0

C1A2

B1

A1

 

C0

C1

A2

B1

A1

Cases 1 and 8 in [AP09] with K2 = 6 produce degenerations with K2 = 5. But it is

surprising that the canonical models of the degenerations are irreducible and are the same

as some lc degenerations. We elaborate on the special cases 1 and 8 as following.

We first look at Case 8 in [AP09] with K2 = 6 which is also a degeneration with K2 = 5.

When all of the five lines A1, A2, B1, B2, C1 meet at a point P , we blow up the total space

along the curve LP , and the resulting central fiber is Bl4P2∪F1. Running the minimal model

program, the whole component F1 is contracted and the central fiber of the canonical model

contains only one irrecucible component which is Bl4P2.

C3

C0

B0

B3

A0

A3

P  ∪
E

 

lc
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For Case 1 in [AP09] with K2 = 6, we can degenerate B1 to A0 + B3 to produce the

degeneration with K2 = 5, which is the first figure below. We first blow up the total space

along the curve A0 in the central fiber, then blow up the total space along the strict preimage

of C3 in the central fiber. The resulting central fiber is Bl3P2 ∪ Bl1F1 ∪ F0, which is the

second figure below.

C3

C0

B3

A0

C1

B1

 

B3

Consider the curveB3 in the componentBl3P2 of the central fiber, we have (KY +D) .B3 =

−1

2
< 0 and KΣ0|Bl3P2 .B3 = 0. When we run the minimal model program, there will be a

flip for (Y ,D). The normal bundle of B3 in the total space is O(−1)⊕O(−1). The flip for

(Y ,D) is the Atiyah flop for Y . The process is as follows.

B3

 

After applying the flip to (Y ,D), the central fiber of the resulting 3-fold space is Bl4P2 ∪

F0∪Bl2P2. Finally we blow up the total space along the strict preimage of LP . All of general

fibers and the central fiber are all blown up at one point. Now we have KΣ0 .C ≥ 0 for all

curves C in Σ0. Running the minimal model program, both components F0 and Bl2P2 in

the central fiber are contracted. The central fiber becomes Bl4P2, which is a lc degeneration

of the general fibers Bl4P2.
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lc

From the cases discussed above, we conclude that there are 6 types of degenerate config-

urations with reducible log canonical models for the moduli space of Burniat surfaces with

K2 = 5, up to the symmetry group Z6. All of the 6 cases could be obtained from the de-

generating cases for K2 = 6 listed in [AP09], with the additional condition that A1, B1, C1

meet at a point P . All the canonical models of the degenerate configurations come from

Case 1 and 8 in [AP09] with K2 = 6 are irreducible. Case 5 in [AP09] with K2 = 6 does

not produce any degenerations for K2 = 5. We give a table with the relations between cases

with K2 = 5 and cases in [AP09] with K2 = 6. This table describes how to get cases with

K2 = 5 possibly from cases in [AP09] with K2 = 6 with A1, B1, C1 meeting at one point P .

The column with K2 = 6 is the list of cases in [AP09]. For each case in [AP09], we make

A1, B1 and C1 intersect at a point to produce the case with K2 = 5 and list it next to the

case with K2 = 6 in the first column.
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K2 = 6 K2 = 5 further degenerations with K2 = 5

Case 1 lc

Case 2 Case 1 Case 2,3

Case 3 Case 2 Case 3

Case 4 Case 3

Case 6 Case 4 Case 5,3

Case 5 none

Case 7 Case 5 Case 3

Case 8 lc

Case 9,10 Case 6
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Chapter 4

Burniat surfaces with K2 = 4

We consider P2 with 9 lines. There are two cases with two distinct points P1, P2 which are

intersections of three lines inside the triangle. We denote [BC09b] these two cases as a "nodal

case" and a "non-nodal case".

PAPB

PC

C0

A0 B0

A1

K2
X = 4 nodal

PAPB

PC

C0

A0 B0

K2
X = 4 non-nodal

Let P1 be the intersection of A1, B1 and C1; P2 be the intersection of A1, B2, C2 for nodal

case and A2, B2, C2 for nonnodal case. Let Σ = Bl5P2 be the blowup of P2 at 5 points

PA, PB, PC and P1, P2.

For D =
1

2
(Da +Db +Dc), we have

K2
X = (π∗(KΣ +D))2 =

(
π∗(−1

2
KΣ)

)2

= 4

(
1

4
K2

Σ

)
= 4.

26



For the nodal case, the curve A1 in Σ is a (−2)-curve and KΣ.A1 = 0. The anti-canonical

divisor −KΣ is nef but not ample, so KΣ +D = −1

2
KΣ is not ample which implies X is not

ample. Stable Burniat surfaces X with K2
X = 4 are Z2

2-covers of the canonical models Σc of

Σ with the building data 1
2
D.

For the non-nodal case, we have that X is stable as that −KΣ is ample, and stable

Burniat surfaces X with K2
X = 4 are Z2

2-covers of Σ with the building data 1
2
D.

Definition 11. A Burniat surface X in M3
Bur is the canonical model Σc of a Z2

2-cover of

Σ = Bl5P2 for the building data Da =
∑3

i=0Ai, Db =
∑3

i=0Bi, Dc =
∑3

i=0Ci, where a, b, c

are the 3 nonzero elements of Z2
2.

To compactify the moduli space of stable pairs (Y,D), we will study the total space of

one-parameter families of the surface isomorphic to Σc. For the nodal case, the general fiber

Σc is the blown down of the (-2)-curve A1 of Σ = Bl5P2; for the non-nodal case, the general

fiber Σ is Bl5P2.

C3

C0

B0

B3

A0

A3

A1

 Σc

Σ Σc = contract A1in Σ

K2
X = 4 nodal

C3

C0

B0

B3

A0

A3

Σ

K2
X = 4 non-nodal

For the nodal case, the general fiber Σc is a singular surface with an A1-singularity, which

is obtained from Bl5P2 by contracting the (-2)-curve. To see the degenerating arrangements

with K2 = 4, we will start with surfaces Bl3P2 which are shown in the following figures.
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C3

C0

B0

B3

A0

A3

P1

P2

K2
X = 4 nodal

C3

C0

B0

B3

A0

A3

P1 P2

K2
X = 4 non-nodal

We first consider the nodal case with K2 = 4.

Case 1. The curve A2 degenerates to A0 + C3, B2 degenerates to A0 + B3, and C2

degenerates to B3 +C0. Blowing up the total space Y along the curve LP1 and the curve A0

in Σ0, we see the general fibers are Bl4P2 and the central fiber is Σ0 = Bl4P2 ∪ F1. Next we

blow up the total space along the strict preimage of B3 in the component Bl4P2 of Σ0 and

along the strict transform L̃P2 , which results in the central fiber becoming a union of three

components Bl4P2 ∪ Bl1F1 ∪ F0 (see the first figure of the second row below). Running the

minimal model program, we get the canonical model with central fiber F0 ∪ P2 ∪ P2 and we

call it Case 1. The further degeneration is 4 copies of P2 and we call it Case 2.

C3

C0

B0

B3

A0

A3

P1

P2

  

C3

C0

C1

A1

B3

 

C3

C0

C1

A1

B3

A1

B2

 

Case 1

 

Case 2

Case 3. Either P1 or P2 is on B0 or B3. All degenerating arrangements are the same up

to rotation. WLOG, we can assume that P2 is on B0. To get the minimal model, we first
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blow up the total space Y along the curve B0 in the central fiber. Let curves L̃P1 and L̃P2

be the proper transform of LP1 and LP2 . Then blow up the total space along L̃P1 and L̃P2 .

The central fiber Σ0 becomes Bl4P2 ∪Bl1F1.

C3

C0

B0

B3

A0

A3

P1

P2   

C3

A3

A1

A1

Bl4P2 ∪ Bl1F1

Running the minimal model program, the first figure below is obtained from the com-

ponent Bl4P2 by contracting 3 curves A1, A3, C3. The second figure below is obtained from

the component Bl1F1 by contracting the curve A1. We obtain the canonical model with the

central fiber Σc
0 = F0 ∪ F0 and we denote it as Case 3. This case could be obtained from

Case 4 for K2 = 5.

1

4

2

3

P1 × P1

∪

Case 3

1

4

2

3

P1 × P1

There are further degenerations; however, the further degenerations do not produce any

new cases. For example, when the point 3 in the above figures on the double locus goes to

the point 4, the canonical model of the further degeneration is the same as Case 2.

Case 4. The point P1 and P2 coincide. We blow up the total space Y at the point P in

the central fiber. The central fiber becomes Bl4ptsP2 ∪ P2 which is as follows.
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C3

C0

B0

B3

A0

A3

 +
B1 B2

A1

P1 P2

Then we blow up the total space along the proper transform L̃P1 and L̃P2 . The central

fiber of the minimal model is Bl4P2 ∪ Bl2P2. Running the minimal model program, we

contract A1, A2, B1, B2, C1, C2 in the component Bl4P2 and A1 in the component Bl2P2 in

the central fiber. The central fiber of the canonical model is F0 ∪ F0 which is as follows. We

denote it as Case 4.
C3

C0

B0

B3

A0

A3

+

A1

 +

Case 4

Case 5. The further degeneration of Case 4 above. After blowing up the total space

at P , the points P1, P2 still could coincide in the exceptional divisor P2 of the blowup. We

need to blow up the total space at the point P first, then P1 and P2 will be distinct. Now

we can blow up the total space along the lines L̃P1 and L̃P2 . The following figures are only

the second component of the canonical model, with the first component Bl4P2, which is the

same as the left figure of Case 4 above.

A1

P
 

P2

P1  +

A1

B1 B2

C1 C2
E1 E2

Consider the line A1 in the component Bl2P2 of the central fiber, we have

(KY +D).A1 = −1

2
< 0
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and

KΣ0 |Bl2P2 .A1 = (KBl2P2 +4) .A1 = 0

According to the minimal model program, there will be a flip for (Y ,D). The normal bundle

of A1 in the total space Y2 is O(−1)⊕O(−1). The flip for (Y ,D) is the Atiyah flop for Y ,

with morphisms on the central fiber below.

B1 B2

E1 E2

A1

B1 B2

A1

E1 E2

X = Bl2P2

B1 B2

A1

E1 E2

X+ = P1 × P1

↙ ↘

When we apply the flip, the other component F1 is blown up at one point on the double

locus. The resulting central fiber is a union of three components Bl4P2 ∪Bl1F1 ∪ F0.

C1

B1

A1

+

A1

4 +

We have (KY +D) .C ≥ 0 for all the curves C in Σ0, and in particular (KY +D) .C = 0

for all the curves C in P1×P1. Running the minimal model program, we obtain the canonical

model by contracting A1, B1, C1 in Bl4P2, A1,4 in Bl1F1 and the whole component P1×P1,

where4 is the double locus. The central fiber of the resulting canonical model is P1×P1∪S,
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where S is obtained from F2 by contracting the (-2)-curve. So S is a surface with an A1-

singularity. We call the canonical model as Case 5.

+

Case 5

A1 − singularity

The following cases are non-nodal cases with K2 = 4.

Case 6. Similar to case 3, but the point P1 is on B0 instead.

C3

C0

B0

B3

A0

A3

P2

P1

  

C3

A3

A2

A1

Bl4P2 ∪ Bl1F1

The central fiber of the resulting canonical model is P1×P1∪P1×P1 and we denote is as

Case 6. Case 6 is not isomorphic to Case 3, in which the central fiber is also P1×P1∪P1×P1,

as the line arrangements are not isomorphic.

1

4

P1 × P1

∪

Case 6

1

4

P1 × P1

There is a further degeneration as follows, in which the central fiber of the resulting

canonical model is a union of four copies of P2. We denote is as Case 7.
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1

4

P1 × P1

∪

1

4

P1 × P1

 

Case 7

Case 8. For non-nodal case, lines A1, A2, B1, B2, C1 and C2 intersect at one point. The

central fiber of the canonical model is P1 × P1 ∪Bl2P2 and we denote is as Case 8.

C3

C0

B0

B3

A0

A3

 +

P1

P2

+

Case 8

In total, there are 5 types of degenerations with reducible canonical models for K2 = 4

nodal case and 3 types of degenerations for K2 = 4 non-nodal case up to the symmetry

group Z2. All of them could be obtained from the cases with K2 = 5.
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K2 = 5 K2 = 4 further degenerations with K2 = 4

Case 1 Case 1 Case 2

Case 2 Case 2

Case 3 Case 6

Case 4 Cases 3,6 Cases 2,7

Case 5 Case 2,7

Case 6 Case 4,8 Case 5
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Chapter 5

Burniat surfaces with K2 = 3

Consider the surface P2 with 9 lines and 3 points P1, P2 and P3. Here P1 be the intersec-

tion point of A1B1, C1; P2 be the intersection point of A1, B2, C1; P3 be the intersection of

A2, B1, C1. Let Σ is the blow-up of P2 at the six points PA, PB, PC and P1, P2, P3. A Burniat

surface X in M3
Bur is the canonical model of a Z2

2-cover of Σ = Bl6P2 for the building data

Da, Db and Dc.

There are three (−2)-curves A1, B1, C1 in Σ and KΣ +D = −1

2
KΣ is nef but not ample.

The canonical model Σc of Σ is obtained from Σ by contracting the three (−2)-curves. Stable

Burniat surfaces X with K2
X = 3 are Z2

2-covers of the canonical models Σc of Σ with the

building data D. The general fiber of a one-parameter family is Σc and it contains three

A1-singularities. We denote the singularities obtained from contracting A1, B1 and C1 by

Q1, Q2, Q3.

PAPB

PC

C0

A0 B0

C3

C0

B0

B3

A0

A3

  Σc  Σc
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Case 1. The three points P1, P2 and P3 coincide. Take a one-parameter family of Σ with

the general fiber Bl5P2 and the central fiber the degenerating arrangement Σ0.

C3

C0

B0

B3

A0

A3

P1

P2

P3

 

C3

C0

B0

B3

A0

A3

We first blow up the total space Y at the point P on the central fiber. The resulting

central fiber is Bl4P2 ∪ P2.

C3

C0

B0

B3

A0

A3

+

B1

A2

P1P3

P2

A1

C1

Now we blow up the total space along the curves L̃P1 , L̃P2 and L̃P3 , which are the proper

transformation of LP1 , LP2 and LP3 . The central fiber turns to be Bl4P2 ∪ Bl3P2. The

component Bl3P2 is the blowup of P2 at P1, P2 and P3. When we run the minimal model

program, the curves A1, B1, C2 in the component Bl3P2 of the central fiber are contracted.

In the general fiber, the curves A1, B1, C1 are contracted as well. Clearly we also have that

Bl3P2 goes back to P2 in the central fiber. The general fiber of the canonical model is Σc,

which we described at the beginning of this section, and the central fiber is P1×P1∪P2. We

denote this case as Case 1.

Q1

Q2

Q3

+

Case 1
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Case 2. The point P1 is on B0 and P2 is on A3. We first blow up the total space along

the curve A3, then blow up along the strict preimage of B0 in Bl3P2. Finally we blow up the

total space along the three curves L̃P1 , L̃P2 and L̃P3 . The central fiber of the minimal model

is Bl4P2 ∪ Bl2F1 ∪ Bl1F0. We obtain the central fiber P2 ∪ P2 ∪ P2 of the canonical model

by contracting the lines labeled in the fourth figure below. We denote this case as Case 2.

  

C3

C0

C1

A1

B1

C1

B1

A1

 

Case 2

There are only 2 types of degenerations with reducible canonical models for K2 = 3.

Both of them could be obtained from cases with K2 = 4 .

We summarize the above computations in the following statement:

Theorem 1. The compactified coarse moduli space Md

Bur of stable Burniat surfaces, or

equivalently, of stable pairs (Y,D), is of dimension d− 2, irreducible for d 6= 4, and with two

components for d = 4. The types of degenerations, up to symmetry, are listed as below.

(i) There are 6 types of degenerate configurations of stable pairs with reducible canonical

models in the moduli space of stable pairs (Y,D) for K2 = 5 case up to the symmetry group

Z6 described in Chapter 3.
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(ii) There are 5 types of degenerations with reducible canonical models in the moduli space

of stable pairs (Y,D) for K2 = 4 nodal case and 3 types of degeneration for K2 = 4 non-nodal

case up to the symmetry group Z2 described in Chapter 4.

(iii) There are only 2 types of degenerations with reducible canonical models in the moduli

space of stable pairs (Y,D) for K2 = 3 described in Chapter 5.

There is only one Burniat surface with K2 = 2, thus the moduli space of Burniat surfaces

with K2 = 2 is just a single point.
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Chapter 6

Matroid tilings

6.1 Vector Matroid and hyperplane arrangements

Definitions in this section are from [Ale13] and [Ja92]. Fix a field k. Consider n vectors

f1, ..., fn spanning a k-vector space W of dimension r. Call a subset I ⊂ n = {1, ..., n} a

base if the vectors {fi, i ∈ I} form a basis of W .

Definition 12. A vector matroid represented by the vectors f1, ...fn ∈ W is the pair (n,B),

where B is the set of all bases.

Let V = W ∗ be the dual space, and think of the vectors fi ∈ W = V ∗ as nonzero linear

functions on V . Each of them defines a hyperplane Bi ∈ PV ' Pr−1.

Note:

1. The condition fi 6= 0 assures that Bi is actually a divisor.

2. The condition that {fi} generates V is equivalent to B1 ∩ ... ∩Bn = ∅.

We denote B (I) as the projective linear subspace of PV : B (I) := ∩i∈IBi.

Lemma 13. (i) I is independent ⇐⇒ codimB (I) ' |I|.

(ii) I is a base ⇐⇒ B (I) = ∅ and |I| = r = dimPV + 1.
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By convention, we set codim∅ = r and P−1 = ∅.

A hypersimplex 4(r, n) is defined to be a convex hull

4(r, n) = Conv(eI |I ∈ n, |I| = r)

= {(x1, ..., xn) ∈ Rn|0 ≤ xi ≤ 1,Σxi = r}

A tiling is a collection of polytopes Qj in Rn which is face-fitting: intersection of any two

Qj1 ∩Qj2 is either empty or is a face of both.

A partial matroid tiling is a tiling consisting of base polytopes in the hypersimplex

4 (r, n) \ ∪ni=1 {xi = 0}. It does not have to cover 4 (r, n) completely.

6.2 Matroid polytopes

According to the general theory of [Ale08], the unweighted stable hyperplane arrangements

are described by matroid tilings of the hypersimplex 4(r, n). Their weighted counterparts

are described by partial tilings of the hypersimplex 4(r, n) in Rn. In this section, we will

discuss the matroid tiling of the certain polytopes 4d
Bur, d ≤ 5 corresponding to Burniat

surfaces with K2 = d.

In [AP09], Alexeev-Pardini defined the polytope 46
Bur corresponding to Burniat surfaces

with K2 = 6, which is a subpolytope of a hypersimplex 4(3, 9). They computed all stable

Burniat surfaces with K2 = 6 by computing matroid tilings of a certain polytope 46
Bur. We

define the corresponding polytopes 4d
Bur, d ≤ 5 similarly to 46

Bur. We use the same method

find all matroid tilings of 4d
Bur, d = 3, 4, 5, and then find all possible stable surfaces in the

main component of the compactified moduli space of Burniat surfaces with K2 = 5.

Let’s recall some definitions and results in [AP09, Ale08].
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A matroid polytope BPV ⊂ 4(r, n) is the polytope corresponding to the toric variety

T.V for some geometric point [V ⊂ An] ∈ G(r, n)(k). One can also describe the matroid

polytopes in terms of hyperplane arrangements. Let PV ' Pr and assume that it is not

contained in the n coordinate hyperplane Hi (i.e. all zi 6= 0 on PV ); let B1, ..., Bn ⊂ PV

be Hi ∩ PV . Then for the hyperplane arrangement (PV,
∑
Bi), the matroid polytope BPV

is the convex hull of the points vI ∈ Zn for all I ⊂ n such that ∩i∈IBi = ∅, or in terms of

inequalities as

BPV =

{
(x1, ..., xn) ∈ 4(r, n)|

∑
i∈I

xi ≤ codim ∩i∈I Bi, ∀I ⊂ n

}
.

For a hyperplane arrangement in general position, one has BPV = 4(r, n).

Let b = (b1, ..., bn) be a weight, a b-cut hypersimplex is

4b(r, n) = {(x1, ..., xn)|0 ≤ xi ≤ bi,Σxi = r}

= {α ∈ 4(r, n)|α ≤ b}

We have the theorem in [Ale08]

Theorem. [Ale08, 2.12] The matroid polytope BPV is the set of points (xi) ∈ Rn such that

the pair (PV,
∑
xiBi) is lc and KPV +

∑
xiBi ∼R 0; the interior IntBPV is the set of points

such that (PV,
∑
xiBi) is klt and KPV +

∑
xiBi ∼R 0.

A tiling of the b-cut hypersimplex 4b is a partial matroid tiling of 4(r, n) such that

∪BPMj
⊃ 4b and such that all base polytopes BPMj

intersect the interior of 4b.

Let (PV,
∑
biBi) be a hyperplane arrangement. For a point p ∈ PV , we denote by I(p)

the set of i ∈ n such that p ∈ Bi. We define 4p
b to be the face (possibly empty) of 4b, where

xi = bi for all i ∈ I(p).
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Theorem. [Ale08, 6.6] Let (PV,
∑
biBi) be a hyperplane arrangement of general type. Sup-

pose BPV ∩4b 6= ∅. Then (PV,ΣbiBi) is lc at p if and only if BPV ∩4p
b 6= ∅.

Now let us look at Burniat surfaces with K2 = 5.

A Burniat surface with K2 = 5 is a Z2
2-cover of Bl4P2 for the data

D =
∑

(aiAi + biBi + ciCi + eE)

where Da, Db, Dc are branched divisors of the Galois cover and E is not.

Denote by 4d
Bur the polytope corresponding to Burniat surfaces with K2 = d. This is a

subpolytope of the hypersimplex 4(3, 9) with weight b = (1
2
, ..., 1

2
). In [AP09], the polytope

46
Bur is defined to be

4(3, 9) ⊃ 46
Bur = {(a0, a1, a2, b0, b1, b2, c0, c1, c2) ∈ R9 satisfying

0 ≤ ai, bi, ci ≤
1

2
, i = 0, 1, 2, 3;

2∑
i=0

(ai + bi + ci) = 3;

0 ≤ a3 = c0 + c1 + c2 + b0 − 1 ≤ 1/2;

0 ≤ b3 = a0 + a1 + a2 + c0 − 1 ≤ 1/2;

0 ≤ c3 = b0 + b1 + b2 + a0 − 1 ≤ 1/2; }

For the case K2 = 5 , the divisor D on Σ satisfies KΣ +D = 0 and we got an extra equation

e = a1 + b1 + c1 − 1 comparing to 46
Bur. Since the cover π : X → Y is unramified over E,

the coefficient e ≤ r−1
r

= 0, where r = 1 is the ramification index. Then we define 45
Bur as

follows

4(3, 9) ⊃ 45
Bur = 46

Bur ∩ {e = a1 + b1 + c1 − 1 ≤ 0}
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6.3 Matroid tilings for K2 = 3 case

When lines A0, B0, C0 are distinct, there is at most 4 lines could coincide in a degenera-

tion. WLOG, let A0 be the line coincide with three of the other lines which are among

A1, A2, B1, B2. If a0 + a1 + a2 + b1 ≤ 1, then b0 + b2 + c0 + c1 + c2 ≥ 2 which is the

same as b2 + a0 ≥ 1. the corresponding polytope is BPM ⊂ {b1 + a0 ≥ 1} ∩ 46
Bur. Since

4d
Bur ⊂

{
b2 ≤ 1

2
, a0 ≤ 1

2

}
⊂ {b2 + a0 ≤ 1}, we know BPM ∩ int

(
4d
Bur

)
= ∅. Hence the

assumed degeneration does not appear and there is no degeneration with 4 lines coincide.

Since the moduli space for K2 = 2 is just a point, there is no need to look at tilings for

K2 = 2. We start with the tilings for K2 = 3.

Let P1 be the intersection of A1, B1, C2; P2 be the intersection of A1, B2, C1; P3 be the

intersection of A2, B1, C1. We will use aibjck as the abbreviation of ai + bj + ck. The

hypersimplex 43
Bur is defined to be

43
Bur = 46

Bur ∩ {a1b1c2 ≤ 1, a1b2c1 ≤ 1, a2b1c1 ≤ 1} .

We have the following table.

K2 = 3

Type BPM Case Yj 4(KY |Yi +Di)
2

0 43
Bur Σ 3

1 a1a2b1b2c1c2 ≤ 2 1 P1 × P1 2

2
a0a1b2 ≤ 1

a1c2c3 ≤ 1
2 P2 1

3 a0b0c0 ≤ 1 1 P2 1

Type 1 produces a covering corresponding to Case 1. We let BP1 be a type 1 polytope
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and find all possible coverings containing BP1 .

BP1 = {a1a2b1b2c1c2 ≤ 2}

BP2 = {a0b0c0 ≤ 1}

Calculation: Since
2∑
i=0

ai + bi + ci = 3, a1a2b1b2c1c2 ≤ 2 is equivalent to a0b0c0 ≥ 1.

Let H = {a1a2b1b2c1c2 = 2}. Since F = H ∩ BP1 is a face of BP1 and BP1 in on one

side {a1a2b1b2c1c2 ≤ 2} of the hyperplane H, the base polytope that can fit BP1 along F

should be on the other side {a0b0c0 ≤ 1} of H and have the face in H. The only possible

base polytope is BP2. As BP1∪BP2 = 43
Bur, it is the only covering of43

Bur containing BP1.

Type 2 produces a covering corresponding to Case 2:

BP1 = {a0a1b2 ≤ 1, a1c2c3 ≤ 1}

BP2 = {a2a3b1 ≤ 1, b0b1c2 ≤ 1}

BP3 = {a2c0c1 ≤ 1, b2b3c1 ≤ 1}

Calculation: The base polytope BP1 has faces F1 on H1 = {a0a1b2 = 1} and F2 on

H2 = {a1c2c3 = 1}. It is easy to see that a0a1b2 ≤ 1 is equivalent to a2a3b1 ≥ 1, and

a1c2c3 ≤ 1 is equivalent to a2c0c1 ≥ 1. The only base polytope that can fit BP1 along the

face F1 (respectably F2) is BP2 (respectably BP3). Those three polytopes consist a covering

of 43
Bur.

Type 3: there is no type 3 base polytopes that can fit BP = {a0b0c0 ≤ 1} along the face

{a0b0c0 = 1}.

Let X be the Burniat surface with K2
X = 5 and π : X → Σ, then 4K2

Σ = 3. We can see
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that for each covering
∑
i

4 (KY |Yi +Di) = 3.

We give the table of coverings precisely correspond to the degenerations listed in Chapter

5.

Case Tilings for K2 = 3 From K2 = 4

1 a1a2b1b2c1c2 ≤ 2; a0b0c0 ≤ 1 Case 4

2 b0b2c2 ≤ 1, a2a3b2 ≤ 1; a1c1c2 ≤ 1, b1b3c1 ≤ 1;

a0a1b1 ≤ 1, a1c1c3 ≤ 1 Case 1,3

6.4 Matroid tilings for K2 = 4 case

For the nodal case, we let P1 be the intersection of A1, B1, C1 and let P2 be the intersection

of A1, B2, C2. The hypersimplex 44
Bur (nodal) is defined to be

44
Bur (nodal) = 46

Bur ∩ {a1b1c1 ≤ 1, a1b2c2 ≤ 1} .

We have the following table.

K2 = 4 Nodal Case

Type BPM Case Yj 4(KY |Yi +Di)
2

0 44
Bur(nodal) Σ 4

1 b0b1c1 ≤ 1 3 P1 × P1 2

2 a0a2b2 ≤ 1, b2b3c2 ≤ 1 1,2 P2 1

3 a1a3b1 ≤ 1, a1c0c2 ≤ 1 1 P1 × P1 2

4
b0b1c2 ≤ 1, a1a3b1 ≤ 1

a1c0c1 ≤ 1
1,2 P2 1

5 a1a2b1b2c1c2 ≤ 2 4, 5 P1 × P1 2

6 a0b0c0 ≤ 1 4,5 P1 × P1 2
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Type 1 produces a covering corresponding to Case 3. Start with type 1 polytope BP1.

BP1 = {b0b1c1 ≤ 1} ∩ 44
Bur(nodal)

BP2 = {b2b3c2 ≤ 1} ∩ 44
Bur(nodal)

Calculation: base polytopeBP1 has a face F onH = {b0b1c1 = 1}. SinceH = {b0b1c1 = 1}

is the same as {b2b3c2 = 1}. There are many base polytopes with a face on H. But there

is only one polytope BP2 that fit BP1 well. The covering {BP1, BP2} corresponds to the

degeneration Case 3.

Type 2 produces coverings corresponding to Case 1 and Case 2. Start with type 2

polytope BP1.

BP1 = {a0a2b2 ≤ 1, b2b3c2 ≤ 1}

BP2 = {b0b1c1 ≤ 1, a2c1c3 ≤ 1}

BP3 = {a1a3b1 ≤ 1, a1c0c2 ≤ 1}

BP4 = {a1a3b1 ≤ 1, a1c0c2 ≤ 1, b0b1c1 ≤ 1}

BP5 = {a1a3b1 ≤ 1, a1c0c2 ≤ 1, b2b3c2 ≤ 1}

Calculation: the base polytopeBP1 has faces onH1 = {a0a2b2 = 1} andH2 = {b2b3c2 = 1}.

The equation b2b3c2 ≤ 1 is equivalent to b2c0a0a1a2c2 ≤ 2 which is b0b1c1 ≥ 1. The only base

polytope that fit BP1 along H2 is BP2. H1 is the same as {a1a3b1 = 1}, there are two cases

that can cover 44
Bur and fit BP1 along H1. It is easy to check that BP3 = BP4 ∪ BP5 and

there are two coverings {BP1, BP2, BP3} and {BP1, BP2, BP3,BP4} containing BP1. Those

two base polytopes correspond to the degeneration Case1 and Case 2.

Type 3, type 4 does not produce new coverings.
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Type 5 and 6 produces coverings corresponding to Case 4,5. In Case 5, the equation

a1b1b2c1c2 ≤ 2 could be implies by a1b1c1 ≤ 1 and b2, c2 ≤ 1
2
. So the BP1 = {a0b0c0 ≤ 1} is

the same as BP2 = {a0b0c0 ≤ 1, a1b1b2c1c2 ≤ 2}.

For K2 = 4 nonnodal case, let P1 be the intersection of A1, B1, C1 and P2 be the inter-

section of A2, B2, C2. The hypersimplex 44
Bur (nonnodal) is defined to be

44
Bur (nonnodal) = 46

Bur ∩ {a1b1c1 ≤ 1, a2b2c2 ≤ 1} .

We have the following table.

K2 = 4 Nonodal case

Type BPM Case Yj 4(KY |Yi +Di)
2

0 44
Bur (nonnodal) Σ 4

1 b0b1c1 ≤ 1 6 P1 × P1 2

2 b0b1c1 ≤ 1, a1c1c3 ≤ 1 7 P2 1

3 a1a2b1b2c1c2 ≤ 2 8 P1 × P1 2

Type 1 produces a covering corresponding to Case 6.

BP1 = {b0b1c1 ≤ 1}

BP2 = {b2b3c2 ≤ 1} .
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Type 2 produces a covering corresponding to Case 7.

BP1 = {b1b3c1 ≤ 1, a0a1b1 ≤ 1}

BP2 = {b0b2c2 ≤ 1, a2c2c3 ≤ 1}

BP3 = {a2a3b2 ≤ 1, b1b3c1 ≤ 1, a2c0c1 ≤ 1}

BP4 = {a2a3b2 ≤ 1, b2b3c2 ≤ 1}

Type 3 produces a covering corresponding to Case 8.

We give the table of coverings that precisely correspond to the degenerations listed in

Chapter 5.

# Tilings for K2 = 4 From K2 = 5

1 a1c0c2 ≤ 1, a1a3b1 ≤ 1; a1a2b2 ≤ 1, b2b3c2 ≤ 1; Case 1

b0b1c1 ≤ 1, a2c1c3 ≤ 1

2 b0b1c1 ≤ 1, a1a3b1 ≤ 1, a1c0c2 ≤ 1; Case 2

a1a3b1 ≤ 1, a1c0c2 ≤ 1, b2b3c2 ≤ 1;

3 b0b1c1 ≤ 1; b2b3c2 ≤ 1 Case 4

4 a1a2b1b2c1c2 ≤ 2; a0b0c0 ≤ 1 Case 6

5 a1a2b1b2c1c2 ≤ 2

a0b0c0 ≤ 1, a1b1b2c1c2 ≤ 2 Case 6

6 b0b1c1 ≤ 1; b2b3c2 ≤ 1 Case 3,4

7 b0b1c1 ≤ 1, a1a3b1 ≤ 1; a0a2b2 ≤ 1, b2b3c2 ≤ 1; Case 5

a0a2b2 ≤ 1, a2c1c3 ≤ 1, b0b1c1 ≤ 1;

a1a3b1 ≤ 1, a1c0c2 ≤ 1, b2b3c2 ≤ 1;

8 a1a2b1b2c1c2 ≤ 2; a0b0c0 ≤ 1; Case 6

Case 8 is a special case we need to discuss. The base polytope BP = {a1a2b1b2c1c2} ∩
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44
Bur (nonnodal) contains the whole hypersimplex 44

Bur (nonnodal), while the degeneration

contains two components. This stays mysterious why those two methods give different

results.

6.5 Matroid tilings for K2 = 5 case.

let P1 be the intersection of A1, B1, C1. The hypersimplex 45
Bur is

45
Bur = 46

Bur ∩ {a1b1c1 ≤ 1} .

We have the following table.

K2 = 5

Type BPM Case Yj 4(KY |Yi +Di)
2

0 45
Bur Σ 5

1 a0a2b2 ≤ 1 4 P1 × P1 2

2 a2a3b2 ≤ 1, a2c0c2 ≤ 1 1,2,3,5 P2 1

3 a1a3b1 ≤ 1, b0b1c1 ≤ 1 5 P2

4 a1a2b1b2c1 ≤ 2 6 P1 × P1 2

5 a1a2b1b2c1c2 ≤ 1 6 P1 × P1 2

Type 1 produces a covering corresponding to Case 4.

BP1 = {a0a2b2 ≤ 1}

BP2 = {a1a3b1 ≤ 1}

There are several polytopes with the face a0a2b2 = 1 corresponding to degenerations.

However, only BP2 fit BP1 well.
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Type 2 produces coverings corresponding to Cases 1, 2, 3 and 5.

BP1 = {a2c0c2 ≤ 1, a2a3b2 ≤ 1}

BP2 = {a1c1c3 ≤ 1, b0b1c1 ≤ 1}

BP3 = {a0a1b1 ≤ 1, b1b3c2 ≤ 1}

BP4 = {a1c1c3 ≤ 1, b0b1c1 ≤ 1, a0a1b1 ≤ 1}

BP5 = {a1c1c3 ≤ 1, b0b1c1 ≤ 1, a2a3b2 ≤ 1}

BP6 = {a0a1b1 ≤ 1, b1b3c2 ≤ 1, a1c1c3 ≤ 1}

BP7 = {a0a1b1 ≤ 1, b1b3c2 ≤ 1, a2c0c2 ≤ 1}

We start with BP1. The complement of a2c0c2 ≤ 1 is a1c1c3 ≤ 1 and the complement

of a2a3b2 ≤ 1 is a0a1b1 ≤ 1. Base polytopes BP2 and BP5 fit BP1 along a2c0c2 = 1, while

BP3 and BP7 fit BP1 along a2a3b2 = 1. We also know BP2 is BP4 ∪ BP5 and BP3 is

BP6 ∪BP7. The covering {BP1, BP2, BP3}, {BP1, BP4, BP5, BP3}, {BP1, BP2, BP6, BP7},

{BP1, BP4, BP5, BP6, BP7} correspond to degenerations Case 1, Case 2, Case 5 and Case 3.

Type 3 does not produce any new coverings.

Both Type 4 and Type 5 produce the same covering corresponding to Case 6.

We give the table of coverings that precisely correspond to the degenerations listed in

Chapter 3.
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# Tilings for K2 = 5 From K2 = 6

1 a0a2b2 ≤ 1, b2b3c2 ≤ 1; a1c0c2 ≤ 1, a1a3b1 ≤ 1; Case 2

a2c1c3 ≤ 1, b0b3c1 ≤ 1

2 a0a2b2 ≤ 1, b2b3c2 ≤ 1;a2c1c3 ≤ 1, b0b3c1 ≤ 1; Case 3

a1a3b1 ≤ 1, a1c0c2 ≤ 1, b2b3c2 ≤ 1;

a0a1b1 ≤ 1, a1c1c3 ≤ 1, b1b3c2 ≤ 1;

3 a0a2b2 ≤ 1, b2b3c2 ≤ 1; Case 4

a1a3b1 ≤ 1, a1c0c2 ≤ 1, b2b3c2 ≤ 1;

a0a1b1 ≤ 1, a1c1c3 ≤ 1, b1b3c2 ≤ 1;

a1c1c3 ≤ 1, b0b1c1 ≤ 1, a1a3b1 ≤ 1;

a0a2b2 ≤ 1, a2c1c3 ≤ 1, b0b1c1 ≤ 1;

4 a0a2b0 ≤ 1; a1a3b1 ≤ 1; Case 6

5 a1a3b1 ≤ 1, a1c0c1 ≤ 1; a0a2b2 ≤ 1, a2c2c3 ≤ 1; Case 7

a1c2c3 ≤ 1, b0b1c2 ≤ 1, a1a3b1 ≤ 1;

a1a2b2 ≤ 1, b2b3c1 ≤ 1, a0c0c1 ≤ 1;

6 a1a2b1b2c1c2 ≤ 2; a0b0c0 ≤ 1; Cases 9,10

Section 5.3 shows that degenerations listed in Section 2,3,4 are all the degenerations in

our compactified moduli spaces of stable Burniat surfaces with 3 ≤ K2 ≤ 5.

6.6 Programming by Polymake

This section is based on the introduction of polymake on the official website www.polymake.org.

Polymake is a tool one could use to study convex polytopes and polyhedra. In this paper, we

use the program polymake to check the matroid tilings of the hypersimplex4d
Bur, d = 3, 4, 5.

In this section,we will give the details of how to check that {BP1, BP2} is a tiling of 43
Bur
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in R9, where

43
Bur = {(a0, a1, a2, b0, b1, b2, c0, c1, c2) ∈ R9 satisfying

0 ≤ ai, bi, ci ≤
1

2
, i = 0, 1, 2, 3;

2∑
i=0

(ai + bi + ci) = 3;

0 ≤ a3 = c0 + c1 + c2 + b0 − 1 ≤ 1/2;

0 ≤ b3 = a0 + a1 + a2 + c0 − 1 ≤ 1/2;

0 ≤ c3 = b0 + b1 + b2 + a0 − 1 ≤ 1/2;

a1 + b1 + c2 ≤ 1, a1 + b2 + c1 ≤ 1, a2 + b1 + c1 ≤ 1}.

and

BP1 = {a1 + a2 + b1 + b2 + c1 + c2 ≤ 2} ∩ 43
Bur

BP2 = {a0 + b0 + c0 ≤ 1} ∩ 43
Bur

An inequaliy k0 + k1x1 + ... + kdxd ≥ 0 is encoded as [k0, ..., kd] in polymake. We con-

sider a0, a1, a2, b0, ..., c2 as variables x1, ..., x9 and then all inequalities for 43
Bur could be

encoded in polymake. For the equality
∑2

i=0(ai + bi + ci) = 3, we use two inequalities∑2
i=0(ai + bi + ci) ≤ 3 and

∑2
i=0(ai + bi + ci) ≥ 3 to describe it. We define the polytope

43
Bur and name it as Delta_B3 in polymake as follows.

"polytope Delta_B3";

$inequalities=new Matrix<Rational>([

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
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[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1/2, -1, 0, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, -1, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, -1, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, -1, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, -1, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, -1, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, 0, -1],

[3, -1, -1, -1, -1, -1, -1, -1, -1, -1],

[-3, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[-1, 0, 0, 0, 1, 0, 0, 1, 1, 1],

[3/2, 0, 0, 0, -1, 0, 0, -1, -1, -1],

[-1, 1, 1, 1, 0, 0, 0, 1, 0, 0],

[3/2, -1, -1, -1, 0, 0, 0, -1, 0, 0],

[-1, 1, 0, 0, 1, 1, 1, 0, 0, 0],

[3/2, -1, 0, 0, -1, -1, -1, 0, 0, 0],

[1, 0, -1, 0, 0, -1, 0, 0, 0, -1],

[1, 0, -1, 0, 0, 0, -1, 0, -1, 0],
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[1, 0, 0, -1, 0, -1, 0, 0, -1, 0]]);

$Delta_B3 = new Polytope <Rational> (INEQUALITIES => $inequalities);

print_constraints($inequalities);

Comparing to 43
Bur, we only need to define one more equation for BP1 and BP2 in poly-

make. We add [2,0,-1,-1,0,-1,-1,0,-1,-1] for BP1 and [1,-1,0,0,-1,0,0,-1,0,0] for BP2, which

correspond to equations a1 + a2 + b1 + b2 + c1 + c2 ≤ 2 and a0 + b0 + c0 ≤ 1. To check

that polytopes BP1, BP2 cover 43
Bur, it is enough to look at the intersection of 43

Bur and

(int (BP1 ∪BP2))c, which can be described as some inequalities as well. It is obvious that

43
Bur = BP1 ∪BP2. Now we want to check BP1 and BP2 fit well. Since BP1 intersect BP2

along H = {a0 + b0 + c0 = 1}, polytopes BP1, BP2 fit well if the faces BP1∩H and BP2∩H

are exactly the same. We change our problem to checking whether BP1 ∩H and BP2 ∩H

have the same vertices. The face BP1 ∩H is {a1 + a2 + b1 + b2 + c1 + c2 = 2} ∩ 43
Bur and

BP2∩H is {a0 + b0 + c0 ≤ 1}∩43
Bur. The following is the program for checking the vertices

of BP1 ∩H and BP2 ∩H which are completely the same.

$inequalities=new Matrix<Rational>([

[2, 0, -1, -1, 0, -1, -1, 0, -1, -1],

[-2, 0, 1, 1, 0, 1, 1, 0, 1, 1],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
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[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1/2, -1, 0, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, -1, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, -1, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, -1, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, -1, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, -1, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, 0, -1],

[3, -1, -1, -1, -1, -1, -1, -1, -1, -1],

[-3, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[-1, 0, 0, 0, 1, 0, 0, 1, 1, 1],

[3/2, 0, 0, 0, -1, 0, 0, -1, -1, -1],

[-1, 1, 1, 1, 0, 0, 0, 1, 0, 0],

[3/2, -1, -1, -1, 0, 0, 0, -1, 0, 0],

[-1, 1, 0, 0, 1, 1, 1, 0, 0, 0],

[3/2, -1, 0, 0, -1, -1, -1, 0, 0, 0],

[1, 0, -1, 0, 0, -1, 0, 0, 0, 1],

[1, 0, -1, 0, 0, 0, -1, 0, -1, 0],

[1, 0, 0, -1, 0, -1, 0, 0, -1, 0]]);

$BP_1H=new Polytope<Rational>(INEQUALITIES=>$inequalities);

print_constraints($inequalities);

$inequalities=new Matrix<Rational>([

[1, -1, 0, 0, -1, 0, 0, -1, 0, 0],
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[-1, 1, 0, 0, 1, 0, 0, 1, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1/2, -1, 0, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, -1, 0, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, -1, 0, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, -1, 0, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, -1, 0, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, -1, 0, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, -1, 0, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, -1, 0],

[1/2, 0, 0, 0, 0, 0, 0, 0, 0, -1],

[3, -1, -1, -1, -1, -1, -1, -1, -1, -1],

[-3, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[-1, 0, 0, 0, 1, 0, 0, 1, 1, 1],

[3/2, 0, 0, 0, -1, 0, 0, -1, -1, -1],

[-1, 1, 1, 1, 0, 0, 0, 1, 0, 0],

[3/2, -1, -1, -1, 0, 0, 0, -1, 0, 0],

[-1, 1, 0, 0, 1, 1, 1, 0, 0, 0],
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[3/2, -1, 0, 0, -1, -1, -1, 0, 0, 0],

[1, 0, -1, 0, 0, -1, 0, 0, 0, 1],

[1, 0, -1, 0, 0, 0, -1, 0, -1, 0],

[1, 0, 0, -1, 0, -1, 0, 0, -1, 0]]);

$BP_2H=new Polytope<Rational>(INEQUALITIES=>$inequalities);

print_constraints($inequalities);

print $BP_1H->VERTICES;

print $BP_2H->VERTICES;

Output :

polytope > print $BP_1H->VERTICES;

1 0 1/2 1/2 1/2 1/2 1/2 1/2 0 0

1 1/2 1/2 1/2 1/2 1/2 0 0 0 1/2

1 1/2 0 1/2 0 1/2 1/2 1/2 0 1/2

1 1/2 1/2 1/2 1/2 1/4 1/4 0 1/4 1/4

1 1/2 1/4 1/4 0 1/2 1/2 1/2 1/4 1/4

1 1/2 1/2 1/2 1/2 0 1/2 0 0 1/2

1 1/2 1/2 0 0 1/2 1/2 1/2 0 1/2

1 1/2 1/2 1/4 1/4 1/2 1/4 1/4 1/4 1/4

1 1/2 1/4 1/2 1/4 1/4 1/2 1/4 1/4 1/4

1 0 1/4 1/2 1/2 1/4 1/2 1/2 1/4 1/4

1 0 1/2 1/4 1/2 1/2 1/4 1/2 1/4 1/4

1 1/2 1/2 1/2 1/2 0 0 0 1/2 1/2

1 1/2 1/2 0 0 1/2 0 1/2 1/2 1/2

1 1/2 0 1/2 0 0 1/2 1/2 1/2 1/2

1 0 1/2 1/2 1/2 1/2 0 1/2 0 1/2
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1 0 1/2 1/2 1/2 1/4 1/4 1/2 1/4 1/4

1 0 1/2 1/2 1/2 0 1/2 1/2 0 1/2

1 1/2 1/2 0 1/2 1/2 0 0 1/2 1/2

1 1/2 0 1/2 1/2 0 1/2 0 1/2 1/2

1 1/2 0 0 0 1/2 1/2 1/2 1/2 1/2

1 0 0 1/2 1/2 1/2 1/2 1/2 0 1/2

1 0 1/4 1/4 1/2 1/2 1/2 1/2 1/4 1/4

1 0 1/2 0 1/2 1/2 1/2 1/2 0 1/2

polytope > print $BP_2H->VERTICES;

1 0 1/2 1/2 1/2 1/2 1/2 1/2 0 0

1 1/2 1/2 1/2 1/2 1/2 0 0 0 1/2

1 1/2 0 1/2 0 1/2 1/2 1/2 0 1/2

1 1/2 1/2 1/2 1/2 1/4 1/4 0 1/4 1/4

1 1/2 1/4 1/4 0 1/2 1/2 1/2 1/4 1/4

1 1/2 1/2 1/2 1/2 0 1/2 0 0 1/2

1 1/2 1/2 0 0 1/2 1/2 1/2 0 1/2

1 1/2 1/2 1/4 1/4 1/2 1/4 1/4 1/4 1/4

1 1/2 1/4 1/2 1/4 1/4 1/2 1/4 1/4 1/4

1 0 1/4 1/2 1/2 1/4 1/2 1/2 1/4 1/4

1 0 1/2 1/4 1/2 1/2 1/4 1/2 1/4 1/4

1 1/2 1/2 1/2 1/2 0 0 0 1/2 1/2

1 1/2 1/2 0 0 1/2 0 1/2 1/2 1/2

1 1/2 0 1/2 0 0 1/2 1/2 1/2 1/2

1 0 1/2 1/2 1/2 1/2 0 1/2 0 1/2

1 0 1/2 1/2 1/2 1/4 1/4 1/2 1/4 1/4

1 0 1/2 1/2 1/2 0 1/2 1/2 0 1/2
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1 1/2 1/2 0 1/2 1/2 0 0 1/2 1/2

1 1/2 0 1/2 1/2 0 1/2 0 1/2 1/2

1 1/2 0 0 0 1/2 1/2 1/2 1/2 1/2

1 0 0 1/2 1/2 1/2 1/2 1/2 0 1/2

1 0 1/4 1/4 1/2 1/2 1/2 1/2 1/4 1/4

1 0 1/2 0 1/2 1/2 1/2 1/2 0 1/2
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