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Abstract

In this dissertation, a modified nonlinear Schrödinger equation is derived, which describes

the propagation of ultrashort laser pulses through nonlinear materials in which plasma gen-

eration and laser-induced damage can occur. Differences between this model and models cur-

rently used in the literature are investigated and analyzed by numerical simulations. Ultrafast

laser-induced material modification is investigated using this method by simulating the prop-

agation of fully 3+1D (3 spatial plus 1 time dimension) laser pulses, which are numerically

constructed from experimentally measured beam profiles and pulse shape data. The latest of

these investigations reveals that standard rate-equation models for the free-electron plasma

generation in the material may not adequately describe ultrafast plasma dynamics, and pos-

sible solutions for this problem are discussed. It is expected that a better understanding of

the dynamics of ultrashort laser pulse-induced plasma will enable the accurate simulation

of optical damage in a variety of dielectrics, ultimately leading to an enhanced control of

laser-induced modification to real materials and optical devices.

Index words: Ultrashort, Ultrafast, Nonlinear Optics, Femtosecond Pulses, Plasma
Generation, Laser-induced Damage, Nonlinear Schrödinger Equation
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Chapter 1

Introduction

The latter half of the twentieth century witnessed the simultaneous development and pro-

liferation of high-power laser technology and supercomputers [1]. Each of these individual

developments has revolutionized science and engineering in its own right. The advent of the

commercial laser has allowed physicists to reliably produce electric field strengths comparable

to, and even exceeding, those found within the atom [2]. This provided the first opportunity to

study in detail the sub-discipline of nonlinear optics, where strong electromagnetic fields can

alter a material’s electric and magnetic susceptibilities, normally assumed to be independent

of any external field [3]. Further advances in pulsed-laser technology have created powerful

fields in the infrared, visible, and ultra-violet spectral regions on the order of femtoseconds

in temporal duration [1]. Pulses on this time scale are capable of resolving physical events

which would otherwise be considered instantaneous [4], for example the motion of nuclei

under the influence of the applied field, and have proven to be a very effective tool for the

micromachining of optical materials [5].

Simultaneously, as computers became more powerful and cost efficient, scientists found

new expedience in modeling the evolution and properties of complex physical systems by

numerical simulation [6]. Initially employed to confirm experimental results or theoretical

predictions, simulations are now used frequently as a primary tool of scientific investiga-

tion, with theory and experiment then providing appropriate confirmation. In many cases,

numerical simulation is the only tool a theorist has for making definite predictions when ana-

lytic solutions are unavailable or perturbation theory and other approximation techniques
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are inadequate [7]. This advantage is especially useful in the modeling of nonlinear sys-

tems, where small variations in initial conditions can dramatically alter the final outcome of

observable events [7].

The use of computer simulations to study the interaction of high-power laser fields prop-

agating through nonlinear media is nearly as old as the laser itself [6]. These simulations

have continuously grown in sophistication as computers have become more powerful. It has

recently become possible to simulate the propagation of fully three-dimensional ultrashort

laser pulses, digitally constructed according to experimental data, through nonlinear mate-

rials where laser-induced damage is occurring [8; 9]. The theoretical and computational

modeling of this phenomenon constitute the primary subject matter of this dissertation.

A general introduction to the fields of nonlinear, ultrashort, computational optics, as well

as computational plasma dynamincs is presented in Chapter 3. Here it is discussed how, in the

field of computational optics, it is often necessary to model material dynamics in addition to

laser pulse propagation in order to accurately describe the field-matter interactions. Although

computational optics and computational material dynamics exist as fields in their own right,

the attempt to better unify these two disciplines is a primary theme of this dissertation.

The other primary theme of this dissertation is the attempt to better interface simulations

in nonlinear optics and laser-induced damage with experimentally measured results, and

Chapter 5 will demonstrate that these two themes are interdependent.

Chapter 3 contains a rigorous theoretical discussion of ultrashort pulse propagation in

nonlinear media, commenting on previously established models and proposing additional

corrections to a Drude free current-density contribution to ultrashort pulse propagation.

The models for a Drude free current density that are currently used in the literature are

found to be limiting cases of the more general model free current density (based again on the

Drude model) derived in Chapter 3. This corrected model is then analyzed and compared

with the models currently used in the literature. Results from simulations of solving an

equation for ultrashort pulse propagation, derived in Chapter 3, are then presented to show
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how significant differences between the models for the Drude free current density might arise

in experiment. The pulse propagation equation derived in Chapter 3 will also be used to

model ultrashort pulse evolution in the subsequent two chapters.

In Chapter 4, the results of simulations that examine the role of laser beam geometry and

laser pulse shape in the formation of a free-electron plasma by laser-pulse driven ionization

are presented. The understanding of such processes is extremely important because they

initiate laser-induced damage and permanent optical modification to dielectric materials [5].

The first ionization events in such a process occur in the form of photoionization, which in

transparent materials is a process with a strongly nonlinear dependence on the electric field

[10]. Results of simulations presented in Chapter 4 reveal that beam asymmetries, such as

those found in a laboratory laser pulse, can significantly change the number of ionization

events that occur as a function of spatial coordinates of the material, when compared to

an otherwise identical situation where the beam is perfectly symmetrical. In order to model

ultrashort laser pulses with an asymmetric beam structure, an experimentally measured

beam profile (energy per unit area normal to the propagation axis) was used to numerically

construct the beam geometry of the pulses used in the simulations. These simulations were

compared directly with simulations which assumed a beam structure given by a cylindrically

symmetric Gaussian function of the same beam width, a very common assumption in the

field of computational optics [3]. This finding demonstrates the major role that beam asym-

metries have in producing the spatial structure of the electron plasma and hence permanent

modifications to the material. It thus has direct implications for the use of ultrashort laser

pulses in the efforts to effect changes to transparent materials on the micrometer length

scale.

Chapter 5 describes an experiment where the models of ultrafast plasma generation cur-

rently employed for simulations in computational optics are found to be inadequate. There

the pulse propagation equation derived in Chapter 3 is solved simultaneously with a system

of coupled rate equations describing the dynamics of the free-electron plasma generated by
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ionization for a variety of pulses. The laser pulses in these simulations were numerically

constructed both from experimentally measured beam profiles and experimentally measured

pulse (temporal) shape information. To the author’s knowledge, these simulations were the

first of their kind in two specific ways: first, the initial laser pulses were characterized both

spatially and temporally with experimental data. Most simulations in computational optics

assume analytic forms for both the beam geometry and the pulse shape. Second, it suc-

cessfully interfaced the multi-rate equation model for plasma dynamics [11] with the pulse

propagation equation derived in Chapter 3. The multi-rate equation model was developed

by Rethfeld [11] in 2004 to provide a more detailed description of field-electron interactions

in the conduction band than that of the single-rate equation model developed by Stuart

[12] (which are used in Chs. 3 and 4). Results of these simulations are directly compared

with experimental data, and several notable predictions of the simulations are confirmed,

which would not have been possible with the assumption of cylindrical beam symmetry.

However, there also exists some irreconcilable discrepancies between the results of simula-

tion and experiment, for which a lack of details in the material model is likely responsible.

Possible solutions for this problem are discussed and the implications of interfacing more

complex material models with the computational optics simulations in this dissertation are

examined.

Chapter 6 concludes with a summary of the work contained in this dissertation, as well as

observations of necessary steps in the future of this research. Possibilities for new computa-

tional applications of this dissertation and its potential for future research are also discussed.



Chapter 2

Simulations in Ultrashort Nonlinear Optics

High-power lasers have become an important tool for investigating the characteristics of all

forms of matter [1]. As high-power lasers improve, it is increasingly necessary to understand

and predict the effects of high-intensity pulse-material interactions [10]. This chapter provides

a necessary yet brief introduction to the relevant disciplines of nonlinear, ultrafast, and

computational optics.

Modern commercial lasers produce pulses that, when focused, can easily yield intensities

in excess of 1012 watts per square centimeter [2]. At these intensities the familiar laws of

optics, known as linear optics, break down, and the interaction of light with matter becomes

strongly nonlinear and sometimes destructive [3]. The laser pulses produced to achieve these

intensities have temporal durations, or pulsewidths, on the time scale of femtoseconds. Such

pulses are commonly referred to as ultrashort pulses, a term more generally used to describe

any pulse shorter than 0.5 picoseconds [7]. The corresponding field-material interactions

that occur on the time scale of femtoseconds are generally referred to as ultrafast processes,

although it is not unusual in the literature to find the terms ultrashort and ultrafast used

interchangably without regard to pulse or material reference [13]. Exposure of materials

to high-intensity laser fields over such short periods of time has allowed for clean, precise

modifications of these materials on the micrometer and nanometer length scales [8; 9; 14–19].

Simulations of these processes can provide valuable insight into experimental results and also

help predict the onset of laser-induced damage to optical materials [8; 9; 14].

5
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2.1 Nonlinear Optics

The field of nonlinear optics can be characterized with reference to a material polarization

~P (dipole moment per unit volume, not to be confused with the directional polarization of

the electric field), which can be expanded in powers of the electric field ~E [3]:

~P (ω) = χ(1)(ω) · ~E(ω) + χ(2)(ω1, ω2) : ~E(ω1) ~E(ω2) + (2.1)

χ(3)(ω1, ω2, ω3)
... ~E(ω1) ~E(ω2) ~E(ω3) + . . . ,

where ~E(ωi) is the Fourier component of the electric field with angular frequency ωi and

the respective χ(n)’s are electric susceptibility tensors of rank n + 1 (see Appendix B for a

discussion on the generality of this expression). Each individual term in Eq. (2.1) is subject

to the condition ω =
∑

ωi, i.e. ω = ±ω1 ± ω2 for the second term on the right-hand side,

ω = ±ω1 ± ω2 ± ω3 for the third term, etc. Here, the plus/minus signs on each frequency

value indicate the possibility of both forward and backward propagating field components;

although whether the “plus” represents a forward or backward propagating wave depends

on the convention one uses to define the electric field [3]. The first term on the right-hand

side of Eq. (2.1) describes all of the behavior of linear optics, as the polarization is linear

in the electric field. All remaining terms on the right-hand side represent nonlinear optical

responses; i.e. for which the polarization depends nonlinearly on the applied field. In any

circumstance where the nonlinear terms of Eq. (2.1) are required to provide an adequate

description of field-matter interactions, the medium involved is referred to as a nonlinear

material [3].

It is evident from Eq. (2.1) that the significance of the nonlinear terms increases as the

field strength increases. This condition implies that for sufficiently high intensities, all matter

eventually becomes nonlinear, even air [20]. However, because of the frequency summation

condition, the nonlinear polarization terms are allowed to resonate at frequencies different

from those of the applied field components. For example, if the applied field components in

the second-order term of Eq. (2.1) each have a frequency of ω1, then the polarization field



7

will resonate at a frequency of 2ω1, leading to the process of second harmonic generation [3].

This is a special case of the more general process of sum (or difference) frequency generation,

which can occur with an arbitrary combination of frequencies on any nonlinear polarization

contribution [1].

Several additional consequences of the nonlinear interactions in Eq. (2.1) warrant spe-

cial consideration. First, in isotropic materials all of the even-ordered χ(n) tensors vanish as

required by inversion symmetry [1]. The principle concern of this dissertation is the inter-

action of high-intensity laser pulses in isotropic materials, and therefore the third-order

nonlinear term in Eq. (2.1) will be taken as the primary contribution to the nonlinear polar-

ization, as the higher-order terms usually represent perturbations many orders of magnitude

weaker than those of the third order [21]. Second, if inversion symmetry is present, then many

components of the χ(n) tensors also vanish, further simplifying both the linear and nonlinear

optical responses. Third, the third-order term of Eq. (2.1) is responsible for the phenomenon

of self-focusing, more generally referred to as the Kerr effect [3]. This behavior arises when an

approximately monochromatic field interacts with its own backwards-propagating frequency

component to produce an intensity dependent polarization [1]. For an electric field linearly

polarized in the x̂ direction, the forward propagating component of this contribution is given

by [22]:

~PNL(ω) = χ(3)(ω,−ω, ω)
... ~E(ω) ~E(−ω) ~E(ω)

~PNL(ω) = χ(3)
xxxx(ω,−ω, ω)

3

8

∣

∣

∣

~E
∣

∣

∣

2
~E(ω) (2.2)

where ~E(−ω) = ~E
∗

(ω) because ~E(t) must be a real function, and χ
(3)
xxxx is the (1,1,1,1)

matrix element of the χ(3) tensor. The factor of 3 in Eq. (2.2) is a degeneracy factor arising

from the three possible permutations of the frequency components, while the factor of 1/8

arises due to the ansatz ~E(t) = (1/2) ~E exp(−iωt) + c.c. (where c.c. denotes the complex

conjugate of the preceding quantity), which distinctly expresses the field in terms of forward

(the first term) and backward (the second term) propagating components. From this form

one can use the definition of the electric displacement vector, ~D(ω), to derive an effective
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electric permittivity including both linear and nonlinear effects [1; 23]:

~D(ω) = ǫ0
~E(ω) + ~P (ω) = ǫ0ǫr(ω) ~E(ω) (2.3)

ǫr = 1 + χ(1) +
3

8
χ(3)

xxxx

∣

∣

∣

~E
∣

∣

∣

2

(2.4)

Equation (2.4) can then be used to define an effective index of refraction n =
√

ǫr expressed in

terms of the linear index of refraction n0 =
√

1 + χ(1), the field intensity I = (1/2)n0ǫ0c |E|2,

and the nonlinear index of refraction n2 = 3χ
(3)
xxxx/(4n0ǫ0c) [1]:

neff = n0 + n2I (2.5)

Equation (2.5) is obtained through a binomial expansion of Eq. (2.4), treating the nonlinear

contribution as a perturbation and truncating after the second-order expansion term. Equa-

tion (2.5) explains the self-focusing phenomenon as a function of optical intensity. For n2 > 0,

high-intensity light at the center of a laser beam will travel more slowly than the less intense

light on the wings of the beam, curving the wavefront as though it were propagating through

a lens [24]. If the beam exceeds a critical power, Pcr = (1.22π/2)2λ2/(8πn0n2), where λ is

the optical wavelength, then the Kerr effect overcomes spatial diffraction and, if the pulse

continues to propagate through the material, can initiate a process of catastrophic focusing

(beam collapse) eventually halted by ionization events and plasma effects [5]. In addition to

self-focusing, Eq. (2.5) also predicts the phenomenon of self-phase modulation, by which the

shape of the temporal phase accumulated by the pulse, φ(t) ∝ n2I(t) [3], depends on the

pulse shape as given by the optical intensity I(t). For ultrashort pulses, whose temporal pulse

shapes are very steep, this results in a time-dependent shift of the instantaneous frequency,

∆ω(t) = −∂tφ(t), whereby a pulse will be red-shifted on the leading edge and blue-shifted

on the trailing edge for positive values of n2 [1].

The optical intensities required to produce specific nonlinear optical effects in matter are

shown in Fig. (2.1) [25; 26]. These intensities may be divided into several regimes character-

ized by different nonlinear optical processes and are distinguished in the figure by vertical
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Figure 2.1: The regimes of nonlinear optics.

dashed lines. However, it must be emphasized that such distinctions are only approximate

and may vary for different materials [26]. The perturbative regime in Fig. (2.1) is so named

because the peak electric fields in this range are orders of magnitude smaller than the electric

fields found within the atom [26]. Therefore the laser fields in this regime only perturb the

quantum states of the atom (assuming nonresonant excitation conditions), and nonlinear

interactions are safely modeled as perturbations to the linear polarization in Eq. (2.1) [26].

For the strong-field and relativistic regimes of Fig. (2.1), the electric field strengths are

sufficiently strong to ionize all matter in the immediate vicinity, and optical effects are dom-

inated by the response of free charges and plasmas [26]. In such cases Eq. (2.1) is no longer

a complete description of the optical response, since the material polarization, by definition,

describes the optical response of bound charges only [23]. Here, one must instead employ

an approach that accounts for the presence of a free current density [27]. The transitional

regime in Fig. (2.1) comprises the range of intensities where one must account for both the
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perturbative nonlinear effects described in Eq. (2.1), as well as the presence and formation

of free current densities by ionization [27].

This dissertation is primarily concerned with the perturbative and transitional regimes

of Fig. (2.1), more specifically in the intensity range of 1012 - 1014 W cm−2. At these intensi-

ties, perturbative nonlinear effects, such as self-focusing, compete with transitional processes,

such as photoionization and plasma defocusing, for control of the spatio-temporal evolution

of the laser pulse [19]. Many of the simulations in this dissertation examine the evolution

of laser pulses with intensities initially in the perturbative regime that are driven into the

transitional regime through the process of self-focusing. A detailed discussion of such phe-

nomena, however, requires some understanding of the ultrashort pulses used to obtain these

intensities, and this is the subject of the following section.

2.2 Ultrashort Laser Pulses

To obtain optical intensities sufficient to cause self-focusing and ionization in condensed

matter, a laser pulse (in addition to being spatially focused) is often compressed in time to

durations on the order of femtoseconds, i.e. an ultrashort pulse [1]. Ultrashort pulses can

resolve physical events that occur on the same femtosecond time scale (ultrafast processes),

since any event must be measured with something of equal size or smaller [13]. Ultrashort

pulses also have the advantage of being shorter than the time scale of most phonon interac-

tions (such as lattice heating) [26], and thus materials may be exposed to higher intensity

levels without resulting in permanent optical damage [14]. Ultrashort laser pulses also intro-

duce new complications, because processes assumed to be instantaneous for longer pulses

(such as nuclear motion under the influence of the laser field [28]) often occur on the time

scale of the pulse itself, and therefore require the specification of an explicit time-dependent

response for ultrafast processes [29].

The temporal duration of a laser pulse is measured by the full width at half maximum

(FWHM) of the intensity and is referred to simply as the pulsewidth [30]. The analogous
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spectral width of a pulse is the FWHM of the magnitude squared of the Fourier trans-

form of the electric field into the frequency domain. The relationship between the tem-

poral and spectral widths of a compressed pulse comes in the form of a classical uncer-

tainty relation: ∆ωFWHM ∆tFWHM ∼ 1. Specifically, for a Fourier-resolved Gaussian pulse

∆ωFWHM ∆tFWHM = 2 ln(2), where ∆ωFWHM and ∆tFWHM are the spectral and temporal

widths, respectively [30]. This relation implies that comparatively large spectral widths are

required to create pulses of short temporal widths. The spectral width required to create

an ultrashort pulse can become comparable (within 20 percent) to the value of the carrier

frequency itself and results in unique dispersive properties in addition to traditional group

velocity dispersion.

Ultrashort pulses with temporal widths that approach the duration of a single optical

cycle of the typical laser field (0.5 fs for the near UV, 1.5 fs for visible light, and 3 fs for the

near infrared) present additional challenges. To properly describe any laser pulse, a unique

and unambiguous definition of the electric field is required. The real electric field of a 1D

ultrashort pulse is commonly described in a complex envelope notation [31]:

E(z, t) =
1

2

(

ξ(z, t) ei(k0z−ω0t) eiφ0 + c.c.
)

(2.6)

where ξ(t) is the complex electric field envelope, ω0 is the carrier frequency of the field,

and φ0 is a constant phase offset that determines the relative position of the sinusoidal

modulations within the field envelope. Note that the complex field envelope can be expressed

as ξ(t) = |ξ(t)| eiφ(t) where φ(t) is the temporal phase of the field envelope. In addition to the

specified pulse shape information contained in |ξ(t)| (commonly assumed to be a Gaussian

or hyperbolic secant fucntion), Eq. (2.6) requires a priori knowledge of three separate phase

terms to uniquely describe a propagating wave; the rapidly varying phase of (−ω0t), the

temporal envelope phase φ(t), and the constant phase offset φ0.

Any envelope description of a laser pulse must begin with a meaningful definition of

the carrier frequency ω0 [31]. This parameter is often assumed to be the frequency value at



12

the peak of a pulse’s spectrum, but a more general definition is provided by the spectrally-

weighted average of the frequency [26]

ω0 =

∫∞

0
ω
∣

∣

∣
Ẽ(ω)

∣

∣

∣

2

dω

∫∞

0

∣

∣

∣
Ẽ(ω)

∣

∣

∣

2

dω
, (2.7)

where Ẽ(ω) is the Fourier transform of the real function E(t) as defined in Appendix A.

The primary requirement, however, for using Eq. (2.6) as a mathematical description of an

ultrashort pulse is that ω0 must be invariant under any change in the phase offset φ0 [26].

Brabec and Krauze [26] have shown that the carrier frequency as defined in Eq. (2.7) fulfills

this requirement for laser pulses with temporal widths as short as one optical cycle.

The uniqueness of the electric field is another matter. Figure (2.2) shows how a π/2 shift in

the frequency offset φ0 alters the electric field of an ultrashort pulse where the field envelope

ξ(t) is described by a Gaussian function (black, solid line) with a flat envelope phase (φ(t) =

0) and a pulsewidth of 3.5 fs. Differences of this kind can potentially affect the evolution of a

laser pulse as it propagates through a material [31; 32], particularly in situations where the

optical response is nonlinear with respect to the instantaneous electric field, such as tunneling

and above-threshold ionization [26]. Whereas there are proven methods to experimentally

retrieve both the time dependent amplitude and phase of the field envelope ξ(t) (see for

example Trebino’s Frequency-Resolved Optical Gating method [13]), the true value for the

phase offset φ0 is rarely known with any certainty. In fact, methods for accurately determining

this parameter, or rather for the stabilization of it, constitute a current topic of research

because of their potential significance for optical frequency metrology and optical clocks

[33]. However, since the phase offset is generally not recoverable at the current time, one is

restricted to using a description of pulse propagation which is also invariant under changes

in φ0. A brief outline of such descriptions and the methods used to model the evolution of

the electric field propagating through nonlinear media is presented in the next section.
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Figure 2.2: Two normalized electric fields for a 3.5 fs laser pulse with peak wavelength of
800 nm, both represented by the same Gaussian field envelope (shown in black). The rapidly
varying electric field with zero phase offset (φ0 = 0) is shown by the dotted red line, and a
rapidly varying electric field with a phase offset φ0 = π/2 is shown by the dashed blue line.
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2.3 Computational Nonlinear Optics and Ultrafast Material Dynamics

The most common goal of a computational optics project is to obtain numerical values for

propagating electric and magnetic fields throughout a specified region of space and time [34].

However, it is often desirable (and sometimes necessary) to include calculations of material

dynamics as a secondary yet simultaneous consideration, in order to model field-matter

interactions [3]. Equally, there is a rich field of research primarily dedicated to calculating

the complicated material response to ultrashort pulses while treating the ultrashort pulse

propagation as a secondary yet simultaneous consideration [12; 35–45]. In each case the terms

”primary” and ”secondary” indicate which concern (optics or material dynamics) is modeled

with greater precision and complexity (the primary concern) and which concern is modeled

by a comparatively simple approach (the secondary concern). This section briefly outlines

both of these fields, their methods and their applications, as well as the contributions of this

dissertation to each.

2.3.1 Simulations of Ultrashort Pulse Propagation in Nonlinear Media

When performing a simulation of ultrashort pulse propagation through a nonlinear medium,

one often seeks to recover the electromagnetic field at the end of the propagation for spec-

trographic analysis, as this is the data most easily accessible in the laboratory and is thus

appropriate for comparison. However, simulations have the added advantage that one can

directly monitor the pulse evolution at any point during the propagation, providing physical

insight generally unavailable from experiment. Many methods exist for numerically calcu-

lating the evolution of an ultrashort pulse through a nonlinear material, all of which rely

on some initially assigned form for the electric and magnetic fields provided by the user

[7; 24; 26; 31; 46–49]. These methods include finite-difference time domain schemes [34], beam

propagation methods [3], spectral techniques [6], frequency domain finite element methods

[7], variance matrix methods [7], and ABCD matrix methods [48].
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The most general of these methods is to solve the Maxwell equations directly by a finite

difference time domain (FDTD) scheme [6]. In principal, the FDTD scheme requires no

assumptions about the field other than its initial numerical form. It monitors all vector

components of the real electric and magnetic fields at all points in space and time, and thus

allows for arbitrary polarization of these fields. It accounts for both forward and backward

propagating waves, multiple materials and interfaces (including dielectric stacks or filters

[50]), as well as field reflection and transmission at these interfaces. The disadvantage of

the FDTD approach is that the simulations can be computationally prohibitive to perform

because they must sample a minimum of two points per field oscillation to avoid violating

the Nyquist limit [34]. Because of this, FDTD simulations are often restricted to 1+1D pulse

simulations (one dimension in space and one in time) for all but the shortest of pulses and

propagation lengths. Therefore, if one wishes to efficiently model 3D spatial dynamics (i.e.

not only the temporal evolution but also the beam evolution) of a laser pulse over propagation

distances much greater than the pulse length, then a simplified approach is typically required

in practice. However, as computational power increases FDTD simulations will likely be used

for correspondingly more detailed calculations [7].

An alternative approach to numerically solving the Maxwell equations directly is to solve

a propagation equation for the electric and/or magnetic fields [25]. In this approach one usu-

ally assumes that all bulk materials are non-magnetic and electrically neutral at all times. A

derivation of the wave equation for a propagating electric field from the macroscopic Maxwell

equations using these assumptions is given in Appendix C. A wave propagation equation has

the advantage of being conceptually simpler than Maxwell’s equations, but has the consid-

erable disadvantage of being a second-order partial differential equation in space and time.

Therefore, a wave equation approach still requires significant computational resources to

model any situation other than monochromatic light propagation through isotropic linear

media, which can often be solved more simply using analytical techniques. With some addi-

tional assumptions, however, one can use the wave equation to obtain a simplified first-order
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partial differential equation for the electric field envelope evolving along the propagation axis

[24] and which maintains its validity for pulses as short as a single optical cycle [31]. This

will be referred to as an envelope equation approach and is used as the primary theoret-

ical method of modeling of ultrashort pulse propagation in this dissertation. The derivation

of the general envelope equation used throughout this dissertation is given in Chapter 3.

Solving the first-order partial differential envelope equation is far less demanding in terms

of computational resources than either the FDTD or wave equation approaches [25]. Most

notably, the envelope equation approach has recently been used for the simulation of fully

3+1D (3 spatial plus 1 time dimension) laser pulses through regions where laser-induced

damage is occurring [8].

The additional requirements for the envelope equation to be valid are as follows: the

laser field is linearly polarized and the material is isotropic, so that a scalar approach can

be taken; the pulsewidth is at least one optical cycle in temporal duration; and neither

the electric field amplitude nor the temporal phase vary significantly over the propagation

distance of one optical wavelength [31]. The latter of these requirements is formally know

as the slowly varying wave approximation (SVWA) [31]. Envelope equations describe the

evolution of the complex electric field envelope, ξ(~x, t) as defined in Eq. (2.6), as it travels

along the propagation axis, z, at the group velocity, vg, of the laser pulse [3]. The most

common form of envelope equation is the nonlinear Schrödinger equation (NLSE) [1], also

referred to as the beam propagation equation:

∂ξ

∂z
=

i

2k0

(

∂2

∂x2
+

∂2

∂y2
− k0

vg

∂2

∂τ 2

)

ξ + iγ |ξ|2 ξ, (2.8)

where k0 is the wave vector evaluated at the carrier frequency ω0, and τ = t − z/vg is the

retarded time frame of the laser pulse. Here the first-order derivative in z describes the

evolution along the propagation axis, the second-order derivatives in x and y describe the

beam evolution (diffraction), the second-order τ derivative describes group velocity dispersion

in the retarded time frame, the constant γ = k0ǫ0cn2/2, and the nonlinear term in ξ describes

the Kerr effect contribution to the field evolution, which results in self-phase modulation
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and self-focusing for positive values of the nonlinear refractive index, n2. The NLSE is so

named because, in the absence of the nonlinear contribution, it has the mathematical form of

Schrödinger’s famous equation from quantum mechanics, but it should be emphasized that

Eq. (2.8) is a classical equation.

The NLSE, and the numerous variations of it, have been used for over three decades to

describe the propagation of beams and pulses through a wide variety of nonlinear media

[4; 24; 51]. Variations of the NLSE are often referred to as modified NLSE’s and are ubiq-

uitous in the literature [8; 14; 19; 29; 31; 32; 52–54]. In Chapter 3 of this dissertation it

is shown that one such modification to the NLSE, describing temporal dispersion effects of

free-carrier plasmas on ultrashort pulse propagation, is widely inconsistent in the literature.

In Chapter 3 it is also demonstrated that all of these inconsistent variants of the free-carrier

modification are actually limiting cases of a more general modification. The consequences of

this more general modification are then examined both analytically and with simulations to

determine when and where differences between the variant models become important. These

simulations model fully 3+1D field propagations, solving the envelope equation to demon-

strate numerically how this modification would manifest itself experimentally. In Chapter 4

the modified NLSE is solved for a fully 3+1D laser pulse with beam and temporal asymme-

tries (digitally constructed from experimental data) to examine, for the first time, how these

properties can affect the ultrafast generation of free-carrier plasmas in a dielectric material.

2.3.2 Simulations of Ultrafast Plasma Generation

Simulating the interaction of ultrashort laser pulses with matter often requires the modeling

of ultrafast free-carrier dynamics in addition to modeling the pulse evolution. Such interac-

tions are usually modeled by one of two methods: 1) a set of classical, coupled rate equations

(often a single-rate equation) describing populations of relevant quantities [1; 11; 12; 55],

or 2) a combination of partial differential equations (PDEs) describing the distribution of

charge carriers and/or phonons in phase space or energy space [35–42]. Researchers engaged
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in computational optics (for whom the pulse evolution is primary and material dynamics

are secondary) tend to favor the former method, as it is conceptually simpler and easier

to implement [11]. By contrast, materials researchers often choose the PDE approach while

treating the pulse evolution with a reduced model [56] or an analytical expression [40].

This dissertation uses a combination of the rate equation and PDE approaches. Each

chapter uses a different model of the material dynamics, depending on the goal of the

simulations, and explains the details of each model in turn. Therefore, only a qualitative

introduction to the various models of the material dynamics will be given in this chapter.

However, the successive chapters are organized to reflect the growing complexity of the mate-

rial model used. Chapter 3 is primarily concerned with the macroscopically-averaged effect

of free-carrier dynamics on the field propagation, and models free-carrier plasma generation

with a single-rate equation describing the promotion of valence electrons to the conduc-

tion band by the nonlinear process of photoionization. In Chapter 4 the effects of plasma

generation and laser-induced damage in fused silica are simulated as a function of asymme-

tries in beam and pulse structure. Plasma dynamics in Chapter 4 are again modeled with a

single-rate equation, but with the addition of an impact-ionization term and an electron-hole

recombination contribution. Chapter 5 interfaces the modified NLSE model for a fully 3+1D

ultrashort pulse propagation with a multi-rate equation model for the free-carrier dynamics

in a nonlinear medium. This combination, to the author’s knowledge, has never before been

treated in the literature. Also discussed in Chapter 5 is the possibility, and perhaps the

necessity, of instead interfacing PDE models of carrier dynamics with the modified NLSE.

Classical rate equation models of material dynamics are based on macroscopically aver-

aged field-carrier-material interactions [12]. They often consist of a single-rate equation

describing the instantaneous generation of a free-carrier plasma, including contributions from

photoionization and impact ionization, as well as the possibility of radiative recombination

into the valence band (but usually excluding capture by traps and impurities) [11; 14; 19].

This single-rate equation approach was derived in detail by Stuart et. al., [12] from the
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Fokker-Planck PDE under the assumption of a constant distribution of electrons in energy

space. More recently, Rethfeld developed a multi-rate equation model [11] as an extension of

Stuart’s single-rate equation model, to account for the fact that free electrons must absorb

energy in integer increments of the laser photon energy before accumulating sufficient energy

for impact ionization. The Rethfeld model therefore describes the temporal evolution of mul-

tiple populations of free electrons on a ladder of levels in energy, evenly spaced by the photon

energy. All of the classical rate equation models consist of ordinary differential equations,

which are solvable with standard numerical integrators.

The PDEs most commonly used in the literature to describe carrier dynamics in semi-

conductors and wide bandgap materials are the Boltzmann equation and the Fokker-Planck

equation [36; 40], although other related energy and force-balance equations are also used

[37–39]. The solution of the Boltzmann equation yields the distribution of carriers in phase

space [35] while the solution of the Fokker-Planck equation yields the number carrier density

per unit energy in energy space [36]. While the rate equation approach has been widely used

in the last twenty years (mostly for the purpose of computational optics rather than mate-

rials science), PDEs have been used in the field of material science for well over fifty years

[36; 57; 58]. Of the two PDEs, the Fokker-Planck equation is the easier to implement, because

it models all carrier-field-material interactions phenomenologically and can be expressed as

a continuity equation in energy space [36]. As a continuity equation, it is solvable with stan-

dard finite-difference methods [59]. In contrast, the Boltzmann equation is an integro-PDE

that requires the evaluation of quantum-mechanical collision integrals and must be solved

stochastically, usually with a Monte Carlo method [35]. The Boltzmann equation requires

the maintenance of a six dimensions representing the electron distribution in phase space,

as opposed to the four-dimensional space of the Fokker-Planck equation. The Boltzmann

equation approach also requires the user to solve not just one such equation for the free elec-

trons, but additional Boltzmann equations for the holes and for every phonon mode (both

optical and acoustic) that makes a significant contribution to the material dynamics [40].
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It is therefore a more cumbersome, but also a more complete and generally more accurate,

model than the Fokker-Planck description.

To date, all efforts in computational optics to simulate the propagation of fully 3+1D

laser pulses have used the single-rate equation approach. Some 3+1D and 2+1D (pulses with

cylindrical beam symmetry) simulations have used the classical multi-rate equation model

[55; 60]. To the author’s knowledge, no computational optics project has ever attempted

to perform a fully 3+1D pulse propagation simulation with field-material interactions mod-

eled by the multi-rate equation approach or either of the PDE approaches. Further, no

attempt has been reported in the literature to have included such ultrashort pulse effects as

self-frequency shifting in any of the current models of plasma dynamics, whether rate equa-

tion or PDE. An attempt to do this is essentially an attempt to better unify the concerns

of computational nonlinear optics and computational material dynamics. The theoretical

implications as well as the computational challenges of this effort are examined in Chapter

5.

2.3.3 Simulations in This Dissertation

The simulations in this dissertation, with the exception of those in Chapter 5, are performed

within the framework of computational optics, with the pulse evolution receiving primary

consideration and plasma generation secondary consideration, from a purely computational

perspective. In these cases the pulse evolution along the propagation axis is obtained by

solving a modified NLSE using a split-step algorithm (see Fig. (2.3)) with all terms linear

in the field envelope constituting a linear step and all other terms constituting a nonlinear

step [25]. The linear step is solved using a Fast Fourier Transform, Crack-Nicholson, or

implicit finite differencing technique, while the nonlinear step is solved using fourth-order

and adaptive step-size Runge-Kutta methods. The material dynamics of these simulations

are contained in the calculation of plasma generation, i.e. the promotion of electrons from

the valence band to the conduction band, which is modeled by a single classical rate equation
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Figure 2.3: Schematic of the split-step method used to solve the equation for the electric
field envelope ξ(z) as it evolves along the propagation axis z. The nonlinear step is taken in
the middle of the linear step to achieve an extra order of accuracy.

and solved with an adaptive step-size Runge-Kutta method during the nonlinear step of the

pulse propagation.

At the end of Chapter 5, simulations of plasma dynamics are performed as the primary

computational consideration. These simulations were performed by solving a Fokker-Planck

equation and the Rethfeld multi-rate equation for the distribution of free carriers in the con-

duction band energy space. These simulations used 1+1D electric fields (constructed from

experimental data) that propagate through extremely thin slices of material over which

pulse evolution is negligible (a common approach in the study of the non-equilibrium statis-

tical mechanics of semiconductors and dielectrics [35]). These results are compared to those

predicted by the simpler classical rate equation models commonly used in computational

optics. In Chapter 5, the need for a modified Fokker-Planck equation is addressed. This

Fokker-Planck equation would be designed to account for instantaneous frequency shifts

and other temporal correction effects predicted by the modified NLSE; which to date no



22

model of plasma dynamics, either rate equation or PDE, has attempted to include. Finally,

the challenges of performing fully 3+1D pulse propagation simulations with the modified

Fokker-Planck equation are discussed and preliminary results are presented.



Chapter 3

Free-carrier effects of the Modified Nonlinear Schrödinger Equation

The past decade has seen frequent use of a modified nonlinear Schrödinger equation to

describe ultrashort pulse propagation in materials where free-carrier plasmas are present.

The optical contribution from the resulting free current densities in this equation is often

described using a classical Drude model. However, the ultimate form of this contribution

in the modified nonlinear Schrödinger equation is somewhat inconsistent in the literature.

This ambiguity is clarified in this chapter by deriving the modified nonlinear Schrödinger

equation from the classical wave equation containing a free current-density contribution. The

Drude model is then used to obtain an expression for the complex free-carrier current-density

envelope with temporal dispersion corrections for ultrashort laser pulses. These temporal

dispersion corrections to the current-density term differ from all other models in the literature

in that they depend more sensitively on the value of the Drude free-carrier collision time.

These corrections reduce to the current models in the literature for limiting cases. Theoretical

analysis and computer simulations show that these differences can significantly affect the

dynamic interactions of plasma absorption and plasma defocusing for materials with free-

carrier collision times on the order of one optical cycle (or less) of the applied field.

3.1 Introduction

In the past decade there has been significant interest in the precise modification of materials

on both the micrometer and nanometer length scales [14; 15; 17; 61–63]. High-intensity,

ultrashort laser pulses are now used in micro-machining and nanostructuring applications,

because of the ability to make precise, reversible material modifications both on the surface

23
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and in the bulk, often while avoiding the onset of permanent structural damage to the

material [64]. Ultrashort laser pulses are also an important tool for discovering fundamental

information about optical and material processes that occur on time scales approaching the

limit of one optical cycle of the applied laser field [26; 31]. The widespread use of ultrashort

pulses for these purposes necessitates the development of a more detailed and fundamental

description of free-carrier effects in the femtosecond time regime [65; 66]. Ultimately, this

must involve a systematic investigation of the interplay between high-intensity ultrashort

pulse propagation and the presence of free-carrier plasmas within the material [5; 11]. For

linearly polarized laser pulses, a scalar electric field envelope equation has proven to be an

accurate and efficient method for describing ultrashort pulse propagation in a variety of

isotropic nonlinear materials [3; 31].

Nonlinear envelope equations have been used to model high-intensity laser pulse propa-

gation for over three decades [4; 24; 25; 67]. A basic nonlinear Schrödinger equation (NLSE)

can account for optical diffraction, dispersion, and a Kerr-type nonlinear polarization [1]. As

laser pulses became progressively shorter in duration and correspondingly stronger in inten-

sity, researchers found it necessary to account for high-order energetic and temporal effects

[3]. The energetic (high-intensity) corrections include high-order nonlinearities, multi-photon

absorption, and free-carrier effects [3]. Temporal corrections to the NLSE can be largely

attributed to two papers. In the first of these papers, Blow and Wood [29] provide a basic

model for temporal delay of the nonlinear response, for the material of fused silica in par-

ticular. In the second of these papers, Brabec and Krausz [31] derive a nonlinear envelope

equation valid for laser pulses as short as one optical cycle in duration. This modified NLSE

accounts for high-order dispersion, linear shock, and self-steepening without actually speci-

fying the form of the nonlinear polarization, allowing for a direct incorporation of the Blow

and Wood model for nonlinear delay.

The inclusion of nonlinear delay and high-order energetic corrections to the nonlinear

polarization in the modified NLSE of Ref. [31] is straight-forward. However, inclusion of
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free-carrier effects is somewhat ambiguous, as a free current-density term was not included

in the original wave equation from which the modified NLSE was derived [31]. Contributions

of a Drude free-carrier current density to the modified NLSE to date have frequently been

of the form [14; 64; 68; 69]:

[

∂ξ

∂z

]

fc

= −σ

2
(1 + iω0τc) T̂−1 [ρ ξ] , (3.1)

where ξ is the complex electric field envelope, z is the propagation axis, σ = q2τc/n0cǫ0m(1+

ω2
0τ

2
c ) is the cross-section of inverse Bremsstrahlung absorption, n0 = k0c/ω0 is the linear

index of refraction, q is the free-carrier charge, c is the speed of light in a vacuum, τc is the

free-carrier collision time, ω0 is the carrier frequency of the field, ρ is the time dependent

free-carrier density, and T̂−1 is the inverse of a steepening operator T̂ = 1 + (i/ω0)∂t as

defined in Ref. [31]. The inverse steepening operator in Eq. (3.1) is sometimes assumed to

be unity for longer pulses (i.e. T̂−1 → 1), a zeroth temporal order approximation common in

the literature [19; 52; 70]. In other recent papers the inverse steepening operator is attached

only to the imaginary part of Eq. (3.1) [46; 54]. The author has investigated this matter

and has found that Eq. (3.1), and the other aforementioned free-carrier contributions, are

limiting cases of a more general Drude free-carrier contribution:

[

∂ξ

∂z

]

fc

= −σ

2
(1 + iω0τc) Ĝ−1 [ρξ ] , (3.2)

where Ĝ−1 is the inverse of a free-carrier dispersion operator Ĝ = 1+(i/ω0)g∂t derived in this

chapter. Here g = −iω0τc/(1− iω0τc) is a dimensionless complex constant that distinguishes

the free-carrier operator Ĝ from the steepening operator T̂ . The time derivative coefficient of

the T̂ operator depends only on the carrier frequency ω0 while the Ĝ operator additionally

depends on the electron collision time τc, which is a material parameter from the Drude

model. It will also be demonstrated that Eq. (3.1) is an accurate approximation of Eq. (3.2)

only in the limiting case where the collision time is much greater than an optical cycle of

the applied field.
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In this chapter a derivation of a modified NLSE with a Drude free current-density contri-

bution is presented following the method of Ref. [31]. The resulting equation shows that the

contribution of free carriers is given by Eq. (3.2), the results of which are in turn compared

analytically with the results predicted by Eq. (3.1). Results from simulations that solve the

modified NLSE in fused silica below the threshold of permanent optical damage are also

presented, and Eqs. (3.1) and (3.2) are compared as descriptions of free-carrier effects.

3.2 Derivation of a modified NLSE with a free current density

A linearly-polarized laser pulse propagating through a nonlinear isotropic medium with free

carriers can be described by the following wave equation [31; 46] (See Appendix C for the

derivation of this equation):

∇2 ~E − 1

c2

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
+ µ0

∂ ~JF

∂t
. (3.3)

Here c is the speed of light in a vacuum and ~E is the electric field that satisfies the condition

~∇ · ~E = 0 [46]. On the right-hand side of Eq. (3.3) are the two source terms, where ~P is the

total polarization and represents the optical contribution of bound charges, while ~JF is the

free current density and represents the optical contribution of free carriers. Equation (3.3)

requires that the propagation medium is nonmagnetic, and that the magnetic field will not

contribute significantly to the motion of the charged particles. The nonlinear polarization,

~PNL, is considered to be a perturbation to the linear polarization, ~PL, such that ~P = ~PL +

~PNL.

3.2.1 The nonlinear envelope equation

Equation (3.3) is expressed in terms of a linear displacement field ~DL = ǫ0
~E + ~PL. The

resulting expression is Fourier transformed into the frequency domain where ~̃DL(ω) =

(c2/ω2)κ̃2(ω) ~̃E(ω) and κ̃(ω) = k̃(ω) + iα̃(ω)/2 is the complex linear wave vector, k̃(ω) is
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the real part of the wave vector, and α̃(ω) is the intensity based absorption coefficient:

∇2 ~̃E + κ̃2 ~̃E = −µ0ω
2 ~̃PNL − iωµ0

~̃JF . (3.4)

Next, all vectors are expressed in complex notation and in terms of their respective complex

envelope functions:

~E(~x, t) =
1

2

(

ξ(~x, t) ei(k0z−ω0t) + c.c.
)

x̂ , (3.5a)

~PNL(~x, t) =
1

2

(

pnl(~x, t) ei(k0z−ω0t) + c.c.
)

x̂ , (3.5b)

~JF (~x, t) =
1

2

(

jf(~x, t) ei(k0z−ω0t) + c.c.
)

x̂ , (3.5c)

where ω0 is the carrier frequency, k0 is the real part of the complex wave vector, i.e. ℜ[κ̃(ω0)],

and z is the propagation axis. Equations (3.5a - 3.5c) are Fourier transformed to the frequency

domain and substituted into Eq. (3.4). The derivatives along the propagation axis are then

taken, the backwards propagating elements are neglected, and the scalar product with the

x̂ direction is taken to yield a scalar expression in terms of the envelope functions.

(

∇2
⊥ + ∂2

z + 2ik0∂z + κ̃2(ω)− k2
0

)

ξ̃(~x, ω − ω0) = (3.6)

−ω2µ0p̃nl(~x, ω − ω0)− iωµ0j̃f(~x, ω − ω0)

The complex wave vector κ(ω) is Taylor expanded about the carrier frequency ω0, and

Eq (3.6) is inverse Fourier transformed back into the time domain. The equation is then fur-

ther transformed into the retarded time frame traveling at the group velocity vg = 1/∂ωk(ω0)

of the pulse; i.e. z′ = z is the transformed propagation axis and τ = t− z/vg is the retarded

time coordinate. The equation is now rearranged to read:

(

∇2
⊥ + ∂2

z′ + 2ik0Û∂z′ + 2k0ÛD̂b + D̂2
b

)

ξ(~x, τ) = (3.7)

−µ0ω
2
0T̂

2pnl(~x, τ)− iµ0ω0T̂ jf(~x, τ)
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where D̂b is the bound charge linear dispersion operator, and Û and T̂ are steepening oper-

ators defined by:

D̂b = i
α0

2
− α1

2
∂τ +

∞
∑

m=2

km + iαm/2

m!
(i∂τ )

m (3.8a)

Û = 1 + i
k1

k0
∂τ (3.8b)

T̂ = 1 + i
1

ω0

∂τ (3.8c)

where km = ∂mk̃/∂ωm|ω0
and αm = ∂mα̃/∂ωm|ω0

. The slowly-varying-wave approximation

(SVWA) is now applied, i.e. |∂z′E| ≪ k0|E|, allowing one to neglect the second-order deriva-

tive along the propagation axis [31]. The equation is then rearranged to read:

Û
∂ξ

∂z′
= i

[

∇2
⊥

2k0
+

(

Û +
D̂b

2k0

)

D̂b

]

ξ(~x, τ) (3.9)

+ i
ω0 T̂ 2

2n0ǫ0c
pnl(~x, τ)− T̂

2n0ǫ0c
jf (~x, τ).

In principle, this equation may now be solved for the pulse envelope ξ once pnl and jf are

specified. Eq. (3.9) is in fact the nonlinear envelope equation used by some authors in the

literature [64; 68; 71–73]. However, it is common to make additional approximations that

simplify this expression. In transparent materials, it is generally the case that (D̂b/2k0)ξ ≪ ξ.

Also, the SVWA requires that the condition |1−ω0k1/k0| ≪ 1 be satisfied in order to describe

propagation of pulses with temporal durations approaching the limit of one optical cycle

[31]. If this criterion is satisfied, then the approximation Û ≈ T̂ becomes applicable. In fused

silica, for example, ω0k1/k0 ≈ 1.0095 for 800 nm light and the above condition is sufficiently

satisfied. Once these approximations are applied, the equation is multiplied by the inverse

steepening operator T̂−1 and takes the simpler form:

∂ξ

∂z′
=

(

i

2k0
T̂−1∇2

⊥ + iD̂b

)

ξ(~x, τ) (3.10)

+ i
ω0 T̂

2n0ǫ0c
pnl(~x, τ)− jf(~x, τ)

2n0ǫ0c
.
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Equation (3.10) is now identical to the nonlinear envelope equation derived in Ref. [31],

but in SI units and with the addition of a free current-density term. It is notable that no

steepening operators act on the free current density envelope.

This does not mean to imply that there are no temporal corrections necessary to correctly

account for ultrashort pulses propagating through a free-carrier plasma, as per the zeroth

order approximation of Eq. (3.1). However, if such corrections are necessary, Eq. (3.10)

predicts that they must arise from within the free current density envelope itself. Such cor-

rections will depend explicitly on the model one uses to calculate the free current density.

Also, if multiple sources of free current densities exist (e.g. a free-electron gas or a photoion-

ization current) then jf represents the sum of all of their individual contributions. As specific

examples, envelopes for a Drude-type free current density as well as a photoionzation current

will be derived in the following subsections.

3.2.2 The photoionization current density envelope

An important process in high-intensity laser pulse propagation is photoionization, which

often produces the first free charges in an otherwise neutral, nonconducting material [5]. In a

strongly insulating medium this may require the simultaneous absorption of multiple photons

to excite an electron from the valence band to the conduction band. If the instantaneous

intensity within the pulse is in excess of∼ 1014 W cm−2, then ionization processes can become

strongly dependent on the absolute phase of the pulse, thereby invalidating an envelope

treatment in this regime [26]. However, at lower intensities a time-averaged photoionization

absorption is ubiquitous in the modified NLSEs of the literature. Here there also exists some

ambiguity in the form of this contribution; see for example Refs. [14; 52; 68; 74]. Therefore,

an expression for the complex envelope of a time-averaged photoionization current density

~JPI(~x, t) will be derived.

The optical power loss per volume from photoionization is ~JPI · ~E. This quantity, when

time-averaged, is expressed in complex envelope notation and directly related to the energy
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required for valence electrons to cross the forbidden gap U at a number per volume pho-

toionization rate of WPI ; (1/2) j∗pi ξ = WPI U ,[23] where jpi is the photoionization current

density envelope. In terms of the intensity I = (1/2)n0ǫ0c|ξ|2, the resulting current density

envelope in the retarded time frame is

jpi(~x, τ) = n0ǫ0c
WPIU

I
ξ(~x, τ). (3.11)

Eq. (3.11), when substituted into Eq. (3.9) or Eq. (3.10), is in agreement with the form of the

photoionization contribution to the modified NLSE most commonly used in the literature

[8; 19; 46; 54; 64; 68–73].

3.2.3 The Drude free current density envelope

An expression for a plasma fluid contribution to the free current density envelope jf (~x, t)

will now be derived. A current-density vector for a free-carrier fluid ~JFC in an electrically

neutral medium can be described by an equation of force density according to the Drude

model [46].

∂

∂t
~JFC(~x, t) +

1

τc

~JFC(~x, t) =
q

m
~F (~x, t). (3.12)

Here τc is the characteristic free-carrier collision time, m and q are the respective mass and

charge of the individual free carriers, ~F (~x, t) = qρ(~x, t) ~E(~x, t) is the applied force density,

and ρ is the free-carrier number density. Also, it is convenient to define ~F in complex enve-

lope notation where f(~x, t) = qρ(~x, t)ξ(~x, t) is the applied force density envelope function.

Equation (3.12) is Fourier transformed into the frequency domain, the complex envelope

expressions are substituted and phase matched, the scalar product with the x̂ direction is

taken, and the free-carrier current density envelope jfc is related to the force density in

frequency space.

j̃fc(~x, ω − ω0) =
q

m
(τ−1

c − iω)−1f̃(~x, ω − ω0) (3.13)

The (τ−1
c − iω)−1 quantity in Eq. (3.13) is Taylor expanded about ω0 and the entire equation

is inverse Fourier transformed back into the time domain. An investigation of the analyticity
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of the expansion in frequency space shows that it will converge for pulses as short as one

optical cycle in duration as well as for all values of τc, making the result applicable in any

situation where Eq. (3.10) is valid. After a transformation into the retarded time frame the

final result is

jfc(~x, τ) =
q2 τc

m

(

1 + iω0τc

1 + ω2
0τ

2
c

)

Ĝ−1 [ρ(~x, τ)ξ(~x, τ)] (3.14)

where

Ĝ−1 =

∞
∑

m=0

(−i

ω0
g∂τ

)m

=

(

1 +
i

ω0
g∂τ

)−1

(3.15)

is the inverse free charge dispersion operator in Eq. (3.2), and g = (−iω0τc)/(1 − iω0τc) is

a dimensionless complex constant that distinguishes the operators T̂ and Ĝ. Substituting

Eq. (3.14) into Eq. (3.10) gives the stated result of Eq. (3.2), where the cross section of

inverse Bremsstrahlung absorption σ = q2τc/n0cǫ0m(1 + ω2
0τ

2
c ) and n0 = k0c/ω0 is the linear

index of refraction.

The dispersion corrections for free carriers as predicted by Ĝ are clearly distinct from

the other steepening operators T̂ and Û , in that the time derivative coefficient of Ĝ contains

both real and imaginary parts. This distinguishing trait is ultimately traceable to the dif-

ferent physical origins of the respective operators. The operator T̂ originates from residual

time derivatives on the right-hand side of Eq. (3.3), the operator Û originates from linear

dispersion relations of bound charges and a coordinate transformation, and the operator Ĝ

originates from dispersion relations of free charges according to the Drude model.

Since it has already been established that the approximation Û ≈ T̂ is widely applicable

then perhaps the same is true of Ĝ. This, however, would require that the constant g ≈ 1,

which is clearly not the case for collision times on the order of the optical cycle, Toc = 2π/ω0,

or less. Figure (3.1) shows the magnitude of the real and imaginary parts of g as a function

of τc/Toc. It is therefore worth examining whether collision times on the order of one optical

cycle have been published in the recent literature. Table 3.1 shows a list of free-carrier

collision times measured in experiment or used in simulation for a variety of materials in
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Figure 3.1: The magnitude of the real (solid line) and the imaginary (dashed line) parts of
the dimensionless constant g as a function of the characteristic free-carrier collision time τc

scaled by the optical cycle Toc of the applied field.
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Table 3.1: A list of electronic collision times τc provided in recent literature for experiments
and simulations using 800 nm light. Collision times are shown in units of fs as well as
number of optical cycles for the 800 nm wavelength. Also shown is the specific material for
each collision time and references from which the collision times are taken or calculated.

τc (fs) τc/Toc Materials References

0.2 0.075 fused silica [75]
0.4 0.15 fused silica, epithelium [76]
0.7 0.26 stroma [76]
1.0 0.37 fused silica [19]
1.27 0.48 fused silica [14]
1.7 0.64 fused silica [77]
2.12 0.79 sapphire [74]
3.0 1.12 water [68]
10 3.8 fused silica [69] [64]
20 7.5 fused silica [46]
23.3 9.4 fused silica [70]
350 112 air [52]

the recent literature. Note that many of these collision times are indeed on the order of one

optical cycle or less.

It should be emphasized, however, that if one examines the Ĝ operator in the limit of

τc ≫ Toc then Ĝ → T̂ and Eq. (3.1) is recovered. More importantly, in the same limit

Eq. (3.14) reduces to the result derived in Ref. [46], which uses an operator expansion in

time that requires the condition ω0τc ≫ 1 to converge. Note that such a condition would

not be satisfied for the lower collision times listed in Table 3.1. Additionally, in the extreme

limit of zero dissipation (i.e. τc →∞), then jfc(~x, t)→ i(q/mω0)T̂
−1 [ρ(~x, t)ξ(~x, t)], which is

the limiting case for a plasma of truly free particles [78].
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3.2.4 The modified NLSE

To fully characterize Eq. (3.10), a form for the nonlinear polarization envelope must be

specified. In this dissertation the nonlinear polarization derived in Ref. [29] is selected because

of its demonstrated ability to describe the delayed nonlinear optical response of fused silica.

Combining this with the free-carrier and photoionization currents derived in Secs. (3.2.2)

and (3.2.3) a modified NLSE is obtained.

∂ξ

∂z′
=

i

2k0
T̂−1∇2

⊥ξ + iD̂bξ + i
k0ǫ0cn2

2
(1− fr) T̂ |ξ|2ξ

+ i
k0ǫ0cn2

2
frT̂

[
∫ τ

−∞

dτ ′R(τ − τ ′)|ξ(τ ′)|2
]

ξ (3.16)

−σ

2
(1 + iω0τc) Ĝ−1 [ρξ]− WPIU

2 I
ξ

Here n2 is the intensity-based nonlinear index of refraction, fr is the fraction of the Raman

contribution to the nonlinear polarization, and R(τ) is the Raman response function derived

in Ref. [29],

R(τ) =
τ 2
1 + τ 2

2

τ1τ 2
2

e−τ/τ2 sin(τ/τ1),

where the constants τ1 and τ2 are adjustable parameters chosen to provide an adequate

fit with the Raman-gain spectrum [25]. The nonlinear polarization term in Eq. (3.16) now

accounts for self-focusing, self-steepening (nonlinear shock), and stimulated Raman scat-

tering. Eq. (3.16) is the modified NLSE the author proposes as the generally correct choice

for ultrashort pulse propagation through regions of dense plasma. The remainder of this

chapter will explore the significant differences that arise from using Eq. (3.1) as the free-

carrier contribution to the modified NLSE instead of Eq. (3.2) and how such differences

might arise in experiment.

3.3 Analysis of free-carrier contributions to the modified NLSE

This section will explore the predictions of Eqs. (3.1) and (3.2) as descriptions of free-carrier

optical effects. It is instructive to examine the corrections to absorption and phase separately
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when time derivatives of the complex field envelope are present. Therefore, by taking the free-

carrier temporal correction operators T̂−1 and Ĝ−1 to first order, the changes in intensity,

I, and spatio-temporal phase, φ, with respect to the propagation axis are:

[

∂I

∂z′

]

fc

= −σρI − σβτc

[

ρ̇I + ρ
İ

2

]

− σρIη
φ̇

ω0
(3.17a)

[

∂φ

∂z′

]

fc

= −σ

2
ω0τcρ +

ση

2ω0

[

ρİ

2I
+ ρ̇

]

− σ

2
βτcρφ̇ (3.17b)

where all dotted terms indicate time derivatives, and β and η are dimensionless constants

which again distinguish between the descriptions of Eq. (3.1) and Eq. (3.2). Table 3.2 lists

the values for the constants η and β for three different descriptions of free-carrier effects.

If Eq. (3.1) is chosen as a description of free-carrier effects then these constants are simply

β = η = 1 and this description will henceforth be referred to as model I. If instead Eq. (3.2) is

chosen as a description of free-carrier effects then the two constants are related by η = β +1

where β = (ω2
0τ

2
c − 1)/(1 + ω2

0τ
2
c ); this will be referred to as model II. Additionally, a zeroth

temporal order approximation of both models I and II (T̂−1 = 1 and Ĝ−1 = 1, respectively)

is shown for comparison and will be referred to as model III. In this case there are no

time derivative corrections to the free-carrier contribution and the constants are therefore

η = β = 0. Table 3.2 also introduces a color scheme that will be used to distinguish between

the three models in the data to be presented throughout this chapter; model I shown in blue,

model II shown in red, and model III shown in black.

Figure (3.2) shows the numerical value of β as function of τc/Toc for model II. As expected,

for collision times of one optical cycle or less the value of β for model II shows considerable

deviation from unity, and thus models I and II are not in agreement in this regime. For

collision times greater than two optical cycles, Fig. (3.2) shows that models I and II will

be in very good agreement on the value of β = 1. However, agreement between the models

for the constant η is a very different matter. In fact models I and II only agree on the

value of η at a single collision time of τc = ω−1
0 , which is only a fraction of an optical cycle

and simultaneously where β = 0 for model II. Furthermore, models I and II will disagree
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Table 3.2: Three different models of free-carrier effects used in this chapter and their respec-
tive values for the constants η and β in Eq. (3.17).

Model I (red, dotted) Model II (blue, dashed) Model III (black, solid)

Eq. (3.1) Eq. (3.2) Eq. (3.1), T̂−1 = 1
η = 1 η = β + 1 η = 0
β = 1 β = (ω2

0τ
2
c − 1)/(1 + ω2

0τ
2
c ) β = 0

on the value of η by a factor of two for any collision time greater than two optical cycles,

thereby extending the range of collision times where such differences could be significant.

Here it is important to recall that the cross section of inverse Bremsstrahlung absorption, σ,

is also a function of the collision time and will decrease as the imaginary part of g decays

for increasing τc (see the dashed line in Fig. (3.1)). This ensures that differences between

the respective calculations of η will become gradually less significant as one approaches the

limit of small dissipation (i.e. τc ≫ Toc).

Equation (3.17) allows one to determine which pulse attributes will accentuate the differ-

ences between models I and II. For example, a strongly chirped pulse (φ̇ ∼ ±ω0) will make

contributions to the spatio-temporal phase (the third term on the RHS of Eq. (3.17b)) equal

in magnitude to that of the zeroth temporal order (first term on the RHS of Eq. (3.17b).

However, in the case where τc = ω−1
0 this entire contribution is eliminated in model II because

β = 0 under that description. The same is true for the plasma generation and pulse steep-

ening term of Eq. (3.17a), the second term on the RHS. If instead collision times greater

than one optical cycle are adopted, then β ≈ 1 for models I and II while their respective

values for the constant η differ by a factor of two. Here strongly chirped pulses will make

contributions to plasma absorption (Eq. (3.17a)) of similar magnitude to the zeroth tem-

poral order, but the chirp contribution of model II will be twice as strong as the model I
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Figure 3.2: The dimensionless constant β as a function of the collision time scaled by the
optical cycle of the applied field. The dotted red line represents model I, the dashed blue line
represents model II, and the solid black line represents model III shown for comparison. The
grey dot indicates the collision time at which model II and model III are in exact agreement
for the value of β = 0.
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contribution. Analogously, the same is true for the plasma generation and pulse steepening

terms of Eq. (3.17b).

It should be emphasized that any dissimilarities between the models of free-carrier effects

will be comparatively stronger on the trailing edge of the pulse, because the plasma density

ρ has had more time to accumulate. Note that on the trailing edge of the pulse, İ will be

negative by definition, while the sign of the plasma generation rate ρ̇ will depend on the

description one uses to calculate ρ as a function of time. Also, it will often be the case that φ̇

will be negative on the trailing edge of the pulse due to self phase modulation (φ̇ ∼ n2İ) and

plasma induced blue shifting [52; 79]. Under such conditions Eq. (3.17) predicts that model

I will significantly mischaracterize the effects of plasma absorption and defocusing on the

trailing edge of the pulse. It is notable that the value of the collision time has been interpreted

as a measure to characterize the balance between plasma absorption and plasma defocusing

[64]. This being the case, model I will significantly mischaracterize the balance of plasma

absorption and defocusing for a large range of collision times currently used in the literature.

These effects are detectable by examining phase accumulation and energy absorption during

ultrashort pulse propagation, which is addressed using numerical simulation as described in

the next section.

3.4 Description of Simulations

In order to explore how the different models of free-carrier effects compare with other ultra-

short optical processes, simulations have been performed solving Eq. (3.16) in fused silica

at a peak laser wavelength of 800 nm. This material and wavelength were chosen because

the optical properties of fused silica are comparatively well characterized in the literature

for 800 nm light. Additionally, Table 3.1 shows that the values of the collision time for fused

silica used in the literature span more than three orders of magnitude, encompassing collision

times much less than, on the order of, and much greater than a single optical cycle for an 800
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Table 3.3: A list of the optical and material parameters used for all the simulations reported
in this chapter. Material parameters are those for fused silica.

Symbol Description Value Units

λ Initial wavelength 800 nm
wr Initial beam waist 75 µm
I0 Initial peak intensity 5.3× 1013 W cm-2

Lz Sample length 100 µm
n0 Linear refractive index 1.45
k2 GVD coefficient 361 fs2cm-1

n2 Nonlinear refractive index 2.48× 10−16 cm2W-1

fr Raman response fraction 0.18
τ1 Raman sinusoidal time 12.2 fs
τ2 Raman decay time 32 fs
U Material band gap 9 eV
m Reduced electron-hole mass 0.5 me

e0 free-carrier charge 1.602× 10−19 C

nm field, making it an ideal material for this study. Table 3.3 lists the optical and material

parameters that are used for every simulation reported in this chapter.

Discrepancies between models I and II are examined by simulating the propagation of

ultrashort pulses through 100 µm of fused silica. These simulations have been organized to

search for such differences over a variety of pulsewidths and collision times. Differences in the

results predicted by models I and II should scale inversely with the pulsewidth. Therefore

simulations are performed for pulses with FWHM pulsewidths of τfwhm = 10, 20, and 40

fs. For each value of the pulsewidth, simulations are performed at 15 free-carrier collision

times ranging from 0.2−16.0 fs (i.e. 0.075−6 optical cycles), thus encompassing most of the

collision times found in Table 3.1. Finally, for each pulsewidth and collision time catagory,

three simulations are performed using models I , II, and III, respectively, to describe free-

carrier effects, making a total of 135 simulations. The initial energy for each pulse was

appropriately selected to obtain an incident peak intensity of 5.3 × 1013 W cm-2. Under
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the assumption of a flat spatio-temporal phase and cylindrical beam symmetry, the initial

electric field envelope is then assigned the form:

ξ(r, τ, z = 0) = ξ0 exp

(

− r2

w2
r

− 2ln(2)τ 2

τ 2
fwhm

)

, (3.18)

where ξ0 =
√

2I0/n0ǫ0c.

In solving Eq. (3.16) it is necessary to simultaneously solve a rate equation for the free-

carrier plasma density ρ as a function of space and time [12]:

∂ρ

∂t
= WPI(|ξ|). (3.19)

In this chapter photoionization is considered as the only generator of free carriers, noting

a recent work that found avalanching (impact ionization) to be negligible in fused silica

for pulses as short as 90 fs at the intensities under consideration [19]. In principle, however,

impact ionization can also be added. Additionally, the generated free-electron densities are at

least two orders of magnitude below the molecular density of fused silica, 2.2×1022 cm-3,[14].

Therefore a full valence band is assumed throughout.

The photoionization rate WPI(|ξ|) is given by the Keldysh formula for photoionization

in a solid [80]:

WPI(|ξ|) =
2ω0

9π

(

mω0√
γ1 ~

)3/2

Q(γ, x) exp (−̟ 〈x + 1〉). (3.20)

Here the Keldysh parameter γ = ω0

√

mU/e0 |ξ|, γ1 = γ2/(1 + γ2), γ2 = 1 − γ1, ̟ =

π (K(γ1)−E(γ2)) /E(γ2), and x = (2U/πω0)(
√

1− γ2/γ)E(γ2). The notation 〈·〉 denotes

the integer part, and the functions K and E are complete elliptical integrals of the first and

second, respectively, kind as defined in Ref. [81]. The function Q(γ, x) is given by

Q(γ, x) =

√

π

2K(γ2)

∞
∑

n=0

exp (−n̟) Φ
(

√

ϑ(n + 2ν)
)

,

where ϑ = π2/4K(γ2)E(γ2), ν = 〈x + 1〉 − x, and Φ(z) =
∫ z

0
exp(y2 − z2)dy is the Dawson

function.

The solid line in Fig. (3.3) shows the Keldysh photoionization rate as a function of the

optical intensity in fused silica for the parameters listed in Table 3.3. Note that the Keldysh
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Figure 3.3: Photoionization rate as a function of optical intensity in fused silica according to
the theory of Keldysh. The solid line shows the full Keldysh expression, while the dashed line
shows the common multiphoton ionization approximation valid at low intensities. Optical
and material parameters used to calculate this rate are those from Table 3.3.
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parameter γ is used to distinguish between the domains of multiphoton ionization (MPI)

(γ ≫ 1) and tunneling ionization (γ ≪ 1). In the presented simulations the condition γ = 1

is satisfied at an intensity of 2.7 × 1013 W cm-2. The dashed line in Fig. (3.3) shows the

Keldysh MPI rate; WPI = σ6I
6, where σ6 = 6.04 × 10−47(cm2 W−1)6s-1cm-3 for the chosen

parameters in this chapter. Because the simulations in this chapter never exceed their initial

peak intensity of 5.3 × 1013 W cm-2, most of the pulses lay in the domain of multiphoton

ionization. However, the peak intensities in these simulations are too high to be accurately

modeled by the MPI rate and yet too weak to be in the tunneling regime. Therefore the full

Keldysh photoionization formula is used throughout.

For the simulations in this chapter, it was sufficient to set the bound charge disper-

sion operator to D̂b = −i(k2/2)∂2
τ , as no linear absorption from bound charges is assumed

(αm = 0), and higher linear dispersion terms were found to have no significant effect when

included. In fact, even group velocity dispersion had only small effects, because the propa-

gation distance of 100 µm is very small compared to the group velocity dispersion (GVD)

length LGVD = τ 2
fwhm/|k2| ∼ 1 cm for the shortest pulse (the 10 fs pulse). Additionally, a rel-

atively large beam waist of 75 µm was chosen for a peak intensity of 5.3×1013 W cm-2. This

was done in an effort to reduce the influence of spatial diffraction and allow one to concen-

trate on how ultrashort free-carrier effects compare with other nonlinear optical processes.

Eq. (3.16) is solved using a split step method, with the first two terms of the right-hand

side constituting a “linear” step and the rest of the terms constituting a “nonlinear” step.

Eq. (3.16) is solved simultaneously with Eq. (3.19), which is in turn solved using a fourth

order Runge-Kutta method.

3.5 Results

Figure (3.4) shows the total energy transmission (transmittivity) as a function of the free-

carrier collision time after propagating through a 100 µm sample of fused silica. For λ = 800

nm, one optical cycle is ≈ 2.67 fs; the values of τc in the plots of Fig. (3.4) range from 0.075 to
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6 optical cycles (0.2 - 16 fs), covering three orders of magnitude in order to sample the wide

range of collision times listed for fused silica in Table 3.1. The transmittivity plots are shown

for each of the three initial pulses with FWHM pulsewidths of 10, 20, and 40 fs. Each plot

in the figure shows results from the free-carrier descriptions of model I (dotted line) model

II (dashed line) and model III (the zeroth temporal order approximation of models I and

II, shown for comparison as a solid line). These are further distinguished by a color scheme

of red, blue, and black, respectively; i.e. the convention introduced in Table 3.2. Note the

discrepancies in transmittivity on the order of 1% that occur between models I and II for a

10 fs pulse. Equally notable is the fact that this difference in transmittivity can be seen over

the large range of collision times ranging from approximately 1 fs and finally converging at

about 16 fs. This range of discrepancy extends over 5.5 optical cycles of collision time and is

the direct result of the pulse chirp term in Eq. (3.17a), which demonstrates that only instan-

taneous frequency shifts can cause discrepancies of this kind for collision times greater than

one optical cycle. These differences also occur for the 20 and 40 fs pulse transmittivity plots.

As expected, pulses with the same initial intensity but a longer pulsewidth will ultimately

decrease the magnitude of all field time derivative corrections.

To show specific discrepancies arising in intensity and phase at the trailing edges of the

pulses, results from some of the most instructive simulations are examined. Figs. (3.5−3.8)

show selected intensity and phase profiles comparing the three aforementioned models of

free-carrier effects. The figures use the same graphing and color convention introduced

in Table (3.2). These figures are organized in an identical manner to display the spatial

intensity at the trailing edge of the pulse, I(r, τ = +τfwhm); the temporal intensity at

the spatial center, I(r = 0, τ); the spectral intensity at the spatial center, S(r = 0, ω) =

(1/2)n0ǫ0c
∣

∣

∣
ξ̃(r = 0, ω − ω0)

∣

∣

∣

2

; and the corresponding phase for each intensity. Also shown is

the maximum plasma density as a function of the propagation distance. Note that all max-

imum plasma densities are at least an order of magnitude below the threshold of permanent
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Figure 3.4: Transmittivity after propagating through 100 µm of fused silica shown for 10, 20
and 40 fs pulses. Transmittivity is shown as a function of the free-carrier collision time. The
dotted red line represents model I, the dashed blue line represents model II, and the solid
black line represents model III shown for comparison.
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Figure 3.5: Selected results of a 10 fs pulse after propagating through 100 µm of fused silica
with a free-carrier collision time of 0.42 fs. The dotted red line represents model I, the dashed
blue line represents model II, and the solid black line represents model III. (a) and (b) show
the spatial intensity and phase at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show
the temporal intensity and phase at the spatial center (r = 0), (e) and (f) show the spectral
intensity and phase at the spatial center (r = 0), and (g) shows the peak plasma density as
a function of the propagation distance.
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Figure 3.6: Selected results of a 10 fs pulse after propagating through 100 µm of fused silica
with a free-carrier collision time of 1.0 fs. The dotted red line represents model I, the dashed
blue line represents model II, and the solid black line represents model III. (a) and (b) show
the spatial intensity and phase at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show
the temporal intensity and phase at the spatial center (r = 0), (e) and (f) show the spectral
intensity and phase at the spatial center (r = 0), and (g) shows the peak plasma density as
a function of the propagation distance.
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Figure 3.7: Selected results of a 10 fs pulse after propagating through 100 µm of fused silica
with a free-carrier collision time of 2.6 fs. The dotted red line represents model I, the dashed
blue line represents model II, and the solid black line represents model III. (a) and (b) show
the spatial intensity and phase at the trailing edge of the pulse (τ = 10 fs), (c) and (d) show
the temporal intensity and phase at the spatial center (r = 0), (e) and (f) show the spectral
intensity and phase at the spatial center (r = 0), and (g) shows the peak plasma density as
a function of the propagation distance.
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Figure 3.8: Selected results of a 20 fs pulse after 100 µm of propagation in fused silica with a
free-carrier collision time of 0.42 fs. The dotted red line represents model I, the dashed blue
line represents model II, and the solid black line represents model III. (a) and (b) show the
spatial intensity and phase at the trailing edge of the pulse (τ = 20 fs), (c) and (d) show
the temporal intensity and phase at the spatial center (r = 0), (e) and (f) show the spectral
intensity and phase at the spatial center (r = 0), and (g) shows the peak plasma density as
a function of the propagation distance.
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structural damage in fused silica, and yet frequently above a recently established value for

reversable refractive index modification [64].

Figure (3.5) shows results from 10 fs pulse propagation for a collision time of 0.42 fs. The

collision time of 0.42 fs (τc = ω−1
0 ) is of special significance, as this results in the constant β

in Eq. (3.17) equals zero for model II. As discussed in Sec. (3.3), this collision time results

in a significant disagreement between the two free-carrier dispersion descriptions on the

contribution from plasma generation and pulse steepening to energy absorption, as well as

the contribution of instantaneous frequency shift (pulse chirp) to the spatio-temporal phase

at this collision time. Plots (a) and (b) in Fig. (3.5) show how strong this disagreement

becomes at the trailing edge of the pulse, where the plasma density is highest. Although the

differences in the spatial intensity are indeed noticeable, it is the spatial phase that displays

the largest discrepancy between the descriptions of free-carrier effects in Fig. (3.5). It is

evident from the temporal phase in Fig. (3.5d) (due largely to self phase modulation) that

there is an average temporal chirp of φ̇ ≈ −ω0/4 on the trailing edge of the pulse. The last

term in Eq. (3.17b) explains how the presence of such a strong temporal chirp at the trailing

edge of the pulse leads to better agreement between model II and model III than with model

I in spatial phase; because β = 0 for models II and III, whereas β = 1 for model I.

Figs. (3.6) and (3.7) show results from 10 fs pulse propagation in a material with elec-

tron collision times of 1.0 and 2.67 fs, respectively. Figures (3.6b) and (3.7b) show little or

no difference in the spatial phase at the trailing edge of the pulse. However, these figures

do reveal very subtle differences between the free-carrier descriptions in the plots of tem-

poral intensity, temporal phase, spectra and maximum plasma densities. Figure (3.8) shows

selected profiles for 20 fs pulse propagation with a collision time of 0.42 fs. Comparison

of Figs. (3.5b) and (3.8b) demonstrates how doubling the pulsewidth dramatically reduces

the discrepancies between the three free-carrier descriptions. Although a small difference in

spatial intensity is retained in Fig. (3.8a), all other intensity and phase profiles, as well as

the maximum plasma densities, of models I and II are in very good agreement with the
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zeroth temporal order approximation description of model III. This makes the discrepancies

between the free-carrier descriptions at higher pulsewidths and collision times in Fig. (3.4)

most interesting, because such differences, though difficult to detect in an individual profile

will, upon integration over the entire pulse intensity, yield noticeable changes in the total

pulse energy. At longer pulsewidths or higher intensities, plasma densities sufficient to cause

permanent optical damage will occur, increasing the magnitude of these discrepancies. A

study of such effects, however, would likely necessitate the inclusion of avalanching in the

temporal evolution of the free-carrier plasma. The process of impact ionization depends

sensitively on the description of free-carrier absorption [11; 55; 56], which in turn can be

significantly influenced by ultrashort effects, as demonstrated by Eq. (3.17a). The resulting

significance of temporal corrections to the avalanching has yet to be addressed in the lit-

erature, to the author’s knowledge. Such an investigation is currently planned as a future

study.

3.6 Conclusion

A modified nonlinear Schrödinger equation has been derived that includes a free-carrier

contribution calculated from the Drude model. Intrinsic to this calculation is an inverse

free charge dispersion operator whose expansion converges for all values of the free-carrier

collision time, as well as for laser pulses as short as a single optical cycle. It therefore retains

all of the specified information about free-charge dispersion contributions without resorting

to a limiting case, and provides an accurate description of a Drude free-carrier current density

wherever the modified NLSE is valid. The free-carrier current density derived in this chapter

and the dispersion relations contained therein are shown to converge to other descriptions of

ultrashort free-carrier current densities currently in use in the literature for the limiting case

in which the collision time is much greater than an optical cycle. If, however, the free-carrier

collision time is on the order of one optical cycle or less, then significant differences in plasma

absorption and defocusing may arise for pulses that are strongly chirped or steepened.
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Collision times in the range of one optical cycle or less are frequently cited or measured

in the literature, while the use of ultrashort pulses with steep edges and large frequency

shifts are ubiquitous. Simulations presented in this chapter suggest that strongly chirped

ultrashort pulses, with an instantaneous frequency shift comparable to the carrier frequency,

may effect changes to energy absorption and phase accumulation that only the free-carrier

dispersion relations derived in this chapter are adequate to explain. As research into laser-

induced damage and laser-plasma interactions further engages the use of ultrashort pulses

that approach a single optical cycle, this chapter should provide a more general and complete

method for describing free-carrier dispersion relations in the context of a nonlinear envelope

propagation equation.



Chapter 4

Simulations of Pulse Propagation and Plasma Generation using

Asymmetrical Beams and Pulses

Recent experiments on optical damage by ultrashort laser pulses have demonstrated that the

temporal pulse shape can dramatically influence plasma generation in fused silica [14]. In this

chapter a modified 3+1D nonlinear Schrödinger equation for the pulse propagation, coupled

to a rate equation for the plasma density in the dielectric material, is used to simulate pulse

propagation and plasma formation in fused silica. Results are presented from simulations

performed to analyze the influence of pulse shape and beam geometry on the formation of

the electron plasma and hence modification in the bulk material. In particular, the effect

of pulses reconstructed from experimental data is simulated. It is expected that a better

understanding of the dynamics of laser-induced plasma generation will enable the accurate

simulation of optical damage in a variety of dielectrics, ultimately leading to an enhanced

control of optical damage to real materials and optical devices. The work presented in this

chapter closely follow publications by the J. R. Gulley, S. W. Winkler, and W. M. Dennis in

Refs. [8; 9].

4.1 Motivation

Over the past decade there has been a significant increase in the demand for methodologies for

accurate and reproducible modification of materials on both the micrometer and nanometer

length scales [14; 15; 17; 61–63]. In particular, it is desirable to effect modifications to a

given material’s optical properties, e.g. the creation of waveguide [18] or grating structures[5],

while avoiding the onset of irreversible damage [61]. High-intensity, ultrashort laser pulses

52



53

are now finding use in micro-machining and nanostructuring applications because of the

ability to make precise material modifications both on the surface and in the bulk, without

causing permanent damage to the material [64]. The widespread use of ultrashort pulses

for this purpose necessitates developing a more detailed and fundamental understanding of

the physical processes leading to such modification and damage on the sub-picosecond time

scale [65; 66]. Ultimately, this must involve a systematic investigation of the interplay between

high-intensity ultrashort pulse propagation and the generation of free-carrier plasmas within

the material [5; 11].

The development of general and widely applicable models for ultrafast laser pulse induced

plasma generation has been addressed by numerous authors [5; 9–12; 19; 46; 63; 65; 66; 80; 82–

88]. To date, many authors have used cylindrically symmetric, single pulse (2+1D) simula-

tions of laser pulse propagation both for comparison with experimental results and to develop

a more general understanding of ultrafast optical damage [5]. The ubiquity of 2+1D simu-

lations is understandable considering the computational, memory, and storage requirements

necessary to simulate the propagation of complex, three-dimensional fields that can undergo

significant phase and structural distortions due to nonlinear effects. However, the case for

running simulations with more complicated beam structures and pulse shapes has already

been made by other authors [89; 90]. With continuing advances in computational hardware,

there is good reason to expect that fully three-dimensional pulse (3+1D) simulations will

play an increasingly important role in providing a more realistic comparison with experi-

mental results, particularly in cases where it is important to accurately determine damage

thresholds for asymmetrical beams and pulses. In this chapter, 3+1D pulse propagation sim-

ulations have been used to explore the effects of double-pulse sequences and asymmetrical

beam profiles on plasma generation in fused silica. These simulations were performed over a

range of pulse energies, with particular emphasis on determining the effect of both the spatial

beam profile and the temporal pulse shape on laser pulse induced plasma, as suggested by

recent work in the literature [63; 87; 91].
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4.2 Simulations of Ultrashort Pulse Propagation and Plasma Generation

in Fused Silica

In this chapter, the electric field of a linearly polarized laser pulse can be expressed in terms

of a slowly varying, complex envelope function as described by Eq. (3.5a) [3]. The evolution

of ultrashort pulses along the propagation axis may be described by the modified nonlinear

Schrödinger equation (NLSE) derived in Chapter 3.16. The description of plasma generation

in this chapter is based on a modified version of the single-rate equation model proposed by

Stuart [12] and is briefly introduced below.

Attempts to derive a comprehensive model of plasma generation have been made by many

authors [5; 10–12; 19; 46; 63; 65; 66; 80; 82–88]. The simulations in this chapter use the model

developed by Stuart et al. [12; 83] which has been modified to account for saturation of the

plasma density and conservation of momentum during impact ionization [14; 19]. Electrons in

the valence band are excited to the conduction band either by photoionization or by impact

ionization (avalanche) processes; relaxation to the valence band occurs through electron-hole

recombination. In the single-rate equation model, the time evolution of the plasma density

is described by [14]

dρ

dt
=

(

WPI +
σIρ

(1 + m/me)Ueff

)(

1− ρ

ρmax

)

− ρ

τr
, (4.1)

where Ueff = (U0+e2 |ξ|2 /4mω2
0) [40] is the effective band gap taking into account the “wiggle

energy” of the electron in an applied field, me is the electron rest mass, and τr is the electron

recombination time. In this chapter the Keldysh theory of photoionization of solids [80] is

used to calculate the photoionization rate WPI as given by Eq. (3.20). The Keldysh theory

has been widely used to describe photoionization in fused silica and other optical glasses

[5; 14; 19; 64; 65; 91].

In general terms the behavior predicted by Eq. (3.16) and Eq. (4.1) is as follows: seed

electrons are initially generated by a highly nonlinear photoionization process; these electrons

can then absorb sufficient energy from the laser pulse to undergo impact ionization [14]. At
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the leading edge of the pulse (provided the plasma density is still far below saturation),

the instantaneous intensity can reach a threshold value (∼1 TWcm−2 in fused silica) where

the avalanche rate will balance the decay rate due to electron recombination. The plasma

density will then experience a net gain so long as the instantaneous intensity remains above

this threshold, perhaps far into the tail of the pulse. Thus plasma densities can be achieved

that may cause either reversible or permanent modifications to the material. The work

presented in this chapter is concerned with exploring the details of plasma generation in the

intensity regime where photoionization, avalanche, and electron recombination processes all

contribute significantly to the plasma evolution.

Computer simulations based upon the numerical integration of Eq. (3.16) and Eq. (4.1)

for the pulse envelope and plasma density, respectively, were performed to investigate pulse

propagation and plasma generation in fused silica. Fused silica was chosen because it is very

well characterized at a wavelength of 800 nm, which is easily accessed by Ti:sapphire laser

systems. The material parameters for fused silica that are used in the simulations of this

chapter are summarized in Table 4.2 [14].

Table 4.1: Simulation parameters for fused silica.

Parameter Description Value Units

n0 Linear refractive index 1.45
k2 GVD coefficient 361 fs2cm-1

n2 Nonlinear refractive index 2.48× 10−16 cm2W-1

U0 Material band gap 9 eV
τc Electron collision time 1.27 fs
m Reduced electron-hole mass 0.5 me

ρmax Maximum plasma density 6.6× 1022 cm-3

τr Electron recombination time 150 fs

Eq. (3.16) is integrated in this chapter using a split step method with the linear diffraction

and dispersion terms constituting the linear step and the remaining terms constituting the

nonlinear step. The linear step is solved using a Crank-Nicholson finite-difference algorithm,

while the nonlinear step is solved in the time domain using a fourth-order Runge-Kutta
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method [59]. Eq. (4.1) is solved purely in the time domain using a fourth-order Runge-Kutta

method.

All simulations were performed using a 256× 256 spatial grid; however convergence was

tested using a 512× 512 spatial grid. The spatial resolution is taken to be 10w0/256, where

w0 is a measure of the beam width. The temporal grids used in these simulations contained

either 512 or 1024 points, depending on whether one or two pulses were propagated; again,

convergence was tested using higher resolution. For single pulse simulations, the temporal

resolution was 10τ0/512, where τ0 is the 1/e2 width of a Gaussian pulse.

The pulse parameters used in the simulations of this chapter were based upon the fol-

lowing considerations: peak powers were chosen to approach and exceed the critical power for

catastrophic self-focusing (∼2.6 MW in fused silica); peak intensities were chosen to exceed

the threshold above which impact ionization dominates electron recombination (∼1 TW

cm-2); however the average fluence was chosen to remain below the theoretical single pulse

threshold for permanent surface damage (∼1.6 J cm-2) [14]. Within these criteria, twelve

experiments were simulated. All simulations began at the surface of the material and are

numerically constructed according to the formulas:

ξ(x, y, τ, z = 0) = ξ0 F (x, y) P (τ), (4.2)

P (τ) =
B1√
2πτ0

exp

(

−(τ + τs)
2

τ 2
0

)

+
B2√
2πτ0

exp

(

−(τ − τs)
2

τ 2
0

)

. (4.3)

Eq. (4.2) allows one to numerically construct pulses with any spatial beam profile, F (x, y),

and pulse shape, P (τ), of the author’s chosing. Once a beam profile and pulse shape is chosen

the entire system is assigned a total energy, which is used to determine the amplitude constant

ξ0. The formula for the pulse shape in Eq. (4.3) allows one to simulate the propagation of

double-pulse trains, where two Gaussian pulses are separated in time by 2τs and have relative

strengths given by the dimensionless scaling constants B1 and B2. Note that if B1 = B2 = 1

and τs = 0 the single Gaussian pulse profile is recovered.
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Simulations for the single 1 µJ symmetric pulse (described in detail below) were repeated

using a hyperbolic-secant temporal pulse shape. The space-time profiles and peak plasma

density plots for both Gaussian and sech2 pulses are very similar, indicating that the results

presented in this chapter would also be applicable if a sech2 initial pulse shape was assumed.

In this chapter τ0 = 150 fs for all simulations (corresponding to a FWHM pulsewidth of 176

fs). The pulse separation 2τs will be taken as either 500 fs or zero.

The beam profile F (x, y) is taken to be either a cylindrically symmetric Gaussian beam

profile or an experimentally measured slightly asymmetrical beam profile. When assigned a

cylindrical Gaussian beam profile, F (x, y) has a 1/e2 width of 5.8 µm. In order to obtain

the experimental spatial profile, pulses from a Clark MXR CPA-2010 Ti:sapphire laser

system were imaged with a magnification of 2.7 on a Dalsa 1M15 digital camera. A syn-

chronized chopper/shutter combination was used to ensure that single-pulse beam profiles

were acquired. The pulse intensity on the camera was reduced to ensure detector linearity by

using a a CVI TLM-1-800 laser mirror at normal incidence combined with neutral density

filters which were inserted in an expanded section of the beam. Multiple beam profiles were

acquired and a representative profile chosen. The Gaussian symmetric and asymmetric beam

profiles used in this chapter are shown in Fig. (4.1). The differences between the two pro-

files of Fig. (4.1) are minor, with the asymmetrical profile containing occasional off-center

intensity maxima, though no strong “hot spots”. The asymmetric spatial profile includes

significantly higher spatial frequencies (fsp), in the range 1.7× 105 m−1 < fsp < 8× 105 m−1.

Both profiles represent pulses of the same average fluence and beam width.

Six of the twelve simulations presented in this chapter use the symmetric Gaussian beam

profile while the other six use the asymmetric beam profile. Within each beam profile group

of six, two are assigned a total pulse energy of 1 µJ, two a total energy of 0.75 µJ, and two

a total energy of 0.5 µJ. The 1 µJ and 0.5 µJ energy groups of two are further divided into

single pulse and double-pulse train simulations. The 0.75 µJ simulations in each group of

six are temporally asymmetric double-pulse train simulations in which the leading (trailing)
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Figure 4.1: Normalized beam profiles, F (x, y), for (a) a cylindrically symmetric Gaussian
profile and (b) an experimentally measured beam profile from an amplified Ti:Sapphire
laser.
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pulse is twice as energetic as the trailing (leading) pulse, respectively. This yields a total

of twelve simulations intended to provide insight into the importance of beam geometry,

energy and pulse shape in the propagation of ultrashort laser pulses accompanied by plasma

formation. All of the above pulses were propagated through 100 µm of fused silica, and

the spatial and temporal evolution of both the pulse envelope and the plasma density was

recorded.

4.3 Results for Pulse Propagation

4.3.1 Propagation of single pulses and temporally symmetric double pulse

trains with a Gaussian spatial beam profile

Space-time (x-τ) intensity profiles at y = 0 for a set of four single pulses are shown at

four points (0 µm, 10 µm, 50 µm, and 100 µm) along the propagation axis in Fig. (4.2).

Figure (4.2a) shows the x-τ profile for a 0.5 µJ pulse. In this case there is some evidence

of plasma effects as exemplified by slight absorption and defocusing on the trailing edge of

the pulse after propagation through 100 µm of fused silica. By comparison, in Fig. (4.2b)

one can observe that for a 1 µJ pulse, absorption in the trailing edge of the pulse is clearly

evident after only 10 µm and that by 50 µm there is considerable self-focusing on the leading

edge of the pulse as well as significant plasma-induced distortion on the trailing edge.

In Fig. (4.3) the space-time intensity profiles for a set of four double-pulse trains (pulses

separated by 500 fs) are shown at two points (0 µm and 100 µm). Figure (4.3a) shows profiles

for a double-pulse train with a total energy of 0.5 µJ. As can be seen from the lack of either

focusing or defocusing in this figure, self-focusing and diffraction are approximately balanced

after propagation through 100 µm of fused silica. This indicates that plasma generation has

not produced a free-electron density that is high enough to cause observable optical effects.

The space-time intensity profiles for the 1 µJ double-pulse train are shown in Fig. (4.3b).

Note that the initial energy of each pulse in this figure is the same as the pulse shown in

Fig. (4.2a); i.e. the first pulse in Fig. (4.3b) at 100 µm is identical to the single-pulse at
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Figure 4.2: Single pulse space-time profiles after propagating 0 µm, 10 µm, 50 µm, and
100 µm through fused silica for a (a) 0.5 µJ symmetric pulse; (b) 1 µJ symmetric pulse; (c)
0.5 µJ noisy asymmetric pulse; (d) 1 µJ noisy asymmetric pulse.
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100 µm in Fig. (4.2a). In this case however, the laser-induced plasma now leads to a local

intensity minimum at the spatial center of the trailing pulse.

We conclude this section by noting that for all of the simulations presented in this chapter,

the full propagation distance (100 µm) corresponds to approximately half the diffraction

length for the corresponding Gaussian beam in fused silica. Therefore the effects of linear

diffraction in the case of Gaussian beam symmetry are small but observable in the simulations

of this chapter.

4.3.2 Propagation of single pulses and temporally symmetric double pulse

trains with a spatially asymmetric noisy beam profile

Every symmetric pulse in Fig. (4.2) (a) and (b) and Fig. (4.3) (a) and (b) is compared

with its asymmetrical analog Fig. (4.2) (c) and (d) and Fig. (4.3) (c) and (d), respectively.

This will begin by contrasting the spatially symmetric 0.5 µJ pulse in Fig. (4.2a) with

its spatially noisy asymmetric analog shown in Fig. (4.2c). After 100 µm of propagation,

the spatially symmetric pulse shows significant absorption at the trailing edge compared

to the assymmetric pulse, while the asymmetric pulse shows increased diffraction. Similarly,

comparison of Fig. (4.3a) and Fig. (4.3c) shows clearly that while the symmetric double-pulse

train experiences predictably little diffraction, the spatially asymmetric double-pulse train

has diffracted significantly after 100 µm of propagation while showing no strong evidence of

self-focusing.

For the cases of both symmetric and asymmetric pulses it is interesting to compare

propagation of the low energy single pulse cases with the high energy double-pulse cases

since the initial energy in each individual pulse is identical, i.e. the first pulses in Fig. (4.3)

(b) and (d) are identical with pulses shown in Fig. (4.2) (a) and (c). However for the trailing

pulses in Fig. (4.3) (b) and (d) there is significant absorption, particularly in the case of the

symmetric pulse where there has been absorption at the spatial center of the pulse. These

effects are a consequence of the finite lifetime of the free-electron density.
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Figure 4.3: Double-pulse train space-time profiles after propagating 0 µm and 100 µm through
fused silica for a (a) 0.5 µJ symmetric double-pulse train; (b) 1 µJ symmetric double-pulse
train; (c) 0.5 µJ noisy asymmetric double-pulse train; (d) 1 µJ noisy asymmetric double-pulse
train.
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By comparing the profiles of the two most intense single pulses, Fig. (4.2) (b) and (d),

one observes that the mild beam asymmetries, in this case, do not lead to strong differences

as these pulses propagate. It is worth noting that for these two simulations the nonlinear

effects are (at least initially) the strongest and appear to offset the additional diffraction

that results from a noisy beam profile. Furthermore, the interaction of the optical pulse

with the free-electron plasma through absorption and defocusing is most clearly seen on the

trailing edges of these pulses. Finally, note that for the highest intensity pulses studied in this

chapter, the effect of diffraction (even for pulses with high-spatial frequency components) is

dominated by nonlinear and plasma effects.

4.3.3 Propagation of temporally asymmetric double pulse trains

The double-pulse trains in Fig. (4.4) are designed to examine the importance of temporal

asymmetries in ultrashort pulse propagation. Figure (4.4a) shows a 0.75 µJ cylindrically

symmetric train in which the leading pulse has half the energy of the trailing pulse (0.25 µJ

and 0.5 µJ, respectively). This temporal configuration will be referred to as a “back-heavy”

pulse train. Figure (4.4b) then shows a 0.75 µJ cylindrically symmetric train where the

leading pulse has twice the energy of the trailing pulse (0.5 µJ and 0.25 µJ, respectively),

and this temporal configuration will be referred to as a “front-heavy” pulse train. Figure (4.4)

(c) and (d) have identical temporal configurations to Fig. (4.4) (a) and (b), but have the

spatially noisy beam profile of Fig. (4.1b).

Fig. (4.4) (a) and (b) both show evidence of plasma effects on the trailing pulses after

100 µm of propagation. Most notably, the 0.5 µJ trailing pulse in Fig. (4.4a) is nearly

identical to the 0.5 µJ leading pulse in Fig. (4.4b) at 100 µm, showing little dependance on

the relative temporal position for the high energy pulse. The profiles of the 0.25 µJ pulses at

100 µm in Fig. (4.4) (a) and (b), however, clearly depend on their relative temporal position

in the pulse train. Figure (4.4) (c) and (d) show that both the 0.5 µJ and 0.25 µJ pulses in

each simulation appear identical to those in the other simulation regardless of their temporal
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Figure 4.4: Double-pulse train (0.75 µJ) space-time profiles after propagating 0 µm and
100 µm through fused silica for a (a) spatially symmetric “back-heavy” double-pulse train;
(b) spatially symmetric “front-heavy” double-pulse train; (c) spatially noisy “back-heavy”
double-pulse train; (d) spatially noisy “front-heavy” double-pulse train.
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Figure 4.5: Peak plasma densities as a function of position, z, in fused silica in the y = 0
plane for a single symmetric pulse with energy (a) 0.5 µJ and (b) 1 µJ.

position in the pulse train. In fact, the pulses in Fig. (4.4) (c) and (d) at 100 µm are quite

well predicted by comparison with the leading pulses in Fig. (4.3) (c) and (d). This suggests

that noise in the spatial beam profile has a greater influence on ultrashort pulse propagation

than the temporal configuration of the double pulse train for the cases under study.

4.4 Results for Plasma Generation

4.4.1 Plasma generation induced by single pulses and temporally symmetric

double pulse trains with a Gaussian spatial beam profile

The maximum plasma densities (in the y = 0 plane) that are generated in fused silica during

the propagation of symmetric single and double-pulse trains are plotted as a function of

the propagation distance, z, in Fig. (4.5) and Fig. (4.6), respectively. Note that there is a

difference of three orders of magnitude in the peak plasma density between Fig. (4.6) (a)
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Figure 4.6: Peak plasma densities as a function of position, z, in fused silica in the y = 0
plane for a symmetric double-pulse train with total energy (a) 0.5 µJ and (b) 1 µJ.

and (b), despite there being only a factor of two difference in pulse energy, thus exemplifying

the importance of the highly nonlinear photoionization process.

It is also interesting to compare the peak plasma densities that result from the propaga-

tion of a single 0.5 µJ pulse with that of a pulse train comprising two 0.5 µJ pulses as shown

in Fig. (4.5a) and Fig. (4.6b), respectively. In the case of the double-pulse train, the effect of

impact ionization is manifested by a peak plasma density that is approximately two orders

of magnitude higher than that for a single 0.5 µJ pulse for the first 50 µm of propagation.

By comparison, if photoionization were the sole mechanism of plasma generation, the peak

plasma densities for these two cases would differ by a factor of approximately two.

Finally, note the significant differences in the structure of the plasma channels gener-

ated by single and double-pulse trains; in particular the relative homogeneity of the plasma

channel generated by the symmetric double-pulse trains.
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Figure 4.7: Peak plasma density as a function of position, z, in fused silica in the (a) y = 0
and (b) x = 0 plane for a single noisy asymmetric pulse with energy 0.5 µJ and in the (c)
y = 0 and (d) x = 0 plane for a single noisy asymmetric pulse with energy 1 µJ.

4.4.2 Plasma generation induced by single pulses and temporally symmetric

double pulse trains with a spatially asymmetric noisy beam profile

Figure (4.7) and Fig. (4.8) show the peak plasma density plots for the single and double

asymmetric pulses, respectively. In these figures, density plots in both the y-z and x-z planes

are shown in order to illustrate the asymmetry in the plasma density. Note that all of the peak

plasma density plots resulting from asymmetric pulse propagation differ considerably from

their cylindrically symmetric analogs, much more than might be expected from the intensity
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Figure 4.8: Peak plasma density as a function of position, z, in fused silica in the (a) y = 0
and (b) x = 0 plane for an asymmetric double-pulse train with energy 0.5 µJ and in the (c)
y = 0 and (d) x = 0 plane for an asymmetric double-pulse train with energy 1 µJ.
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plots shown in Fig. (4.2) and Fig. (4.3). The author posits that this is results from small

intensity variations present in the asymmetrical pulses having a major influence on plasma

generation due to the highly nonlinear photoionization step; this combined with enhanced

diffraction due to high spatial frequency components causes the noisy asymmetric pulses to

create plasma channels with a more complex structure than their cylindrically symmetric

counterparts.

It is notable that the peak plasma densities resulting from propagation of the most

intense symmetric pulse (Fig. (4.5 b)) and asymmetric pulse (Fig. (4.7) (c) and (d)) exhibit

the smallest structural differences as a result of differences in beam symmetries than their

lower intensity analogs, as was also the case with the intensity profiles depicted in Fig. (4.2)

(c) and (d). This behavior is likely a consequence of the geometry of the simulations, i.e.

the laser pulse is focused directly on the material surface. In this case nonlinear and plasma

effects excise the diffraction for the 1 µJ asymmetric single pulse. In contrast, for the case

of pulses that are intentionally focused within the bulk of the material rather than at the

surface, the author expects that mild beam asymmetries may lead to increased diffraction

prior to plasma generation, causing the pulse evolution to deviate significantly from that of

its cylindrically symmetric analog even for pulses with peak power well above the critical

power. A detailed investigation of this case will be the subject of a future study.

4.4.3 Plasma generation induced by temporally asymmetric double pulse

trains

The maximum plasma densities (in the y = 0 plane) that are generated in fused silica during

the propagation of spatially symmetric but temporally asymmetric double-pulse trains are

plotted as a function of the propagation distance, z, in Fig. (4.9). The results from the

“back-heavy” pulse train configuration shown in Fig. (4.9a) are strongly similar to the “front-

heavy” results in Fig. (4.9b). However, a careful comparison between the two reveals that

the “back-heavy” configuration yields slightly higher peak plasma densities throughout the
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Figure 4.9: Peak plasma densities as a function of position, z, in fused silica in the y = 0
plane for a 0.75 µJ double-pulse train with a (a) “back-heavy” pulse and (b) “front-heavy”
pulse.

propagation. This is likely due to the fact that impact ionization resulting from the high

energy pulses will be greater in the case of a trailing high energy pulse, as it will inherit

previously generated seed electrons from the leading lower energy pulse.

The maximum plasma densities generated by propagation of spatially noisy, temporally

asymmetric double-pulse trains in Fig. (4.10) show, again, only minor differences between the

temporal symmetry configurations. A comparison of the peak plasma densities in Fig. (4.10)

with those of Fig. (4.9) reveals that the differences resulting from the chosen temporal asym-

metries are almost negligible when compared to those resulting from noisy beam symmetry.

In fact, during the last 30 µm of propagation, the peak densities in Fig. (4.9) are an entire

order of magnitude greater than those of Fig. (4.10). Again this suggests that noise in the

spatial beam profile has a greater influence on plasma generation than the temporal config-

uration of the double pulse train for the cases under study.
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Figure 4.10: Peak plasma density as a function of position, z, in fused silica for spatially
asymmetric 0.75 µJ double-pulse trains in the (a) y = 0 and (b) x = 0 plane for a “back-
heavy” train and in the (c) y = 0 and (d) x = 0 plane for a “front-heavy” train.
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4.5 Discussion

Many of the results of this chapter are summarized in Fig. (4.11) and Fig. (4.12), which

allow for a direct comparison of peak pulse intensity with the peak plasma density for each

simulation as a function of the propagation distance. In both of these figures, results from

simulations with single pulses and temporally symmetric pulse trains are shown in black

while results from simulations with temporally asymmetric pulse trains are shown in gray.

Figure (4.11a) and Fig. (4.12a) show results from spatially symmetric simulations while

Fig. (4.11b) and Fig. (4.12b) show the results of spatially noisy simulations.

We note that in every simulation with an asymmetric spatial beam profile, Fig. (4.12)

shows considerable variability in the peak density values when compared to their relatively

smooth symmetric counterparts. As indicated previously, this variability results from small

spatial fluctuations in intensity present in the noisy spatially asymmetric pulses. Also, for

every simulation with an asymmetric spatial beam profile there appears to be a drop in the

peak intensity in the range 50−65 µm. This drop is again caused by enhanced diffraction

due to high spatial frequency components overcoming nonlinear processes and spreading the

spatial profile. This comparatively sudden drop in intensity lowers the production of free

electrons and is mirrored by a corresponding decline in peak plasma density as shown in

Fig. (4.12).

Figure (4.11) reveals that the 0.75 µJ and 1 µJ double-pulse trains have the same peak

intensities as the single 0.5 µJ pulses, i.e. for the 1 µJ double-pulse case the intensity peaks

in the leading pulse. This is significant in that, for spatially symmetric pulses, Fig. (4.12)

shows that propagation of a single 0.5 µJ pulse and the 1 µJ double-pulse train lead to the

same peak plasma density after 100 µm of propagation in fused silica indicating that at these

pulse energies, plasma generation predominantly occurs during the first pulse at 100 µm. By

contrast for the asymmetric 1 µJ double-pulse train the peak plasma density occurs during

the trailing pulse. Meanwhile, both the intensities and peak plasma densities of the spatially

noisy, temporally asymmetric pulse trains, track with those of the single 0.5 µJ pulse after
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Figure 4.11: Peak intensity as a function of position, z, in fused silica for (a) each spatially
symmetric simulation and (b) each spatially noisy asymmetric simulation reported in this
chapter. Results from temporally symmetric simulations are shown in black; results from
temporally asymmetric simulations are in gray.
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Figure 4.12: Peak plasma density as a function of position, z, in fused silica for (a) each
spatially symmetric simulation and (b) each spatially noisy asymmetric simulation reported
in this chapter. Results from temporally symmetric simulations are shown in black; results
from temporally asymmetric simulations are in gray.
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∼ 75 µm. This indicates that the companion 0.25 µJ pulse has ceased to play a significant

role regardless of the temporal configuration.

4.6 Concluding Remarks

Simulations of ultrashort pulse propagation and plasma generation near to the damage

threshold have been performed for 100 µm of fused silica. In particular, fully 3+1D sim-

ulations were performed for the cases of single pulses and (both temporally symmetric and

asymmetric) double pulse trains with both Gaussian and noisy spatially asymmetric beam

profiles. For the cases of overlapping validity, the results from these simulations are in good

agreement with 2+1D simulations of other authors [14; 19]. Temporal asymmetries in double

pulse trains were found to play a much smaller role than spatial asymmetries for the cases

under study. It is notable that a comparison of the single symmetric and noisy asymmetric

pulse propagation results often reveals only small differences in the space-time intensity

and spatial fluence profiles. However for the cases of spatially noisy asymmetric pulses, the

plasma density in the material exhibits a significantly different structure than their spatially

symmetric counterparts. The author attributes this behavior to the transformation of small

spatial variations in the intensity into large variations in the plasma density due to (i) the

highly nonlinear photoionization step and (ii) to increased diffraction. Such variations in

plasma density may present a problem for researchers who wish to use ultrashort pulses

to precisely modify the optical properties of dielectric materials; as a consequence, future

simulations will focus on a more detailed exploration of plasma generation and laser damage

caused by “realistic” ultrashort pulses.



Chapter 5

Models of Free-Carrier Dynamics and the Modified Nonlinear

Schrödinger Equation

In Chapters 3 and 4, simulations of ultrashort pulse propagation in fused silica were per-

formed while modeling the material dynamics with classical rate equations for the plasma

density of free electrons. In this chapter, results from fully 3+1D pulse propagation simu-

lations using pulses constructed from experimental data are presented and compared with

corresponding experimental results. This study is the first of its kind in that it uses exper-

imental data as a template for both the beam structure and pulse shape of the laser field

in the simulations. It is also the first study, to the author’s knowledge, to interface the

multi-rate equation model for plasma dynamics (developed by Rethfeld) with a fully 3+1D

modified NLSE simulation. Several successes of this study include an improved prediction

of the laser-induced damage threshold for the conditions under consideration as well as the

correct prediction of post-experimental beam structure in many cases.

However, some discrepancies between the experimental and computational data suggest

that plasma dynamics in the material are not being modeled properly for laser pulse energies

near the threshold of optical damage. Therefore, in this chapter the multi-rate equation model

of Rethfeld [11] is compared to the Fokker-Planck equation (FPE) description of plasma

dynamics [41] in a continuous energy space. Results solving the multi-rate equation model are

compared to the solutions of the more detailed FPE model for illustrative 1D pulse-material

interactions. It is noted that the FPE must be modified, just as the NLSE was modified,

to account for ultrashort dispersion corrections to free-carrier absorption predicted by the

modified NLSE derived in Chapter 3. This issue has not been addressed in the published
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literature for any model of plasma dynamics, FPE or otherwise. It is further noted that in

order to account for shifts in the instantaneous optical frequency of an ultrashort laser pulse,

i.e. shifts in the average energy per photon as a function of space and time, the calculation

of the photoionization rate must be evaluated with this non-constant value both for pulse

propagation and plasma evolution models. Finally, the benefits and challenges of performing

fully 3+1D pulse propagation simulations by simultaneously solving the modified NLSE with

a modified FPE are discussed.

5.1 A Computational Dilemma

The modeling of free-electron behavior in semiconductors and wide band gap dielectrics is

fundamentally a problem of non-equilibrium statistical mechanics [35]. In materials science,

free-carrier dynamics are commonly modeled by a Boltzmann transport equation [40], a

Fokker-Planck equation [36; 41], or energy and momentum balance equations [37; 38]. These

methods use a mix of classical, quantum mechanical, and solid state physics, with varying

degrees of phenomenological approximations [35; 44]. They also present formidable compu-

tational challenges inherent to solving systems of partial differential equations and integro-

partial differential equations [59]. For this reason, simulations in computational optics (such

as those in Chapters 3 and 4) usually model this behavior with a phenomenological rate

equation for a particular population of free carriers [12], or a discrete set of particle popula-

tions [55]. However, recent collaborative work by Winkler [60] and the author suggests that

a more detailed, partial differential equation (PDE) description of plasma dynamics may be

required to accurately describe fully 3+1D pulse propagation through dielectric materials.

5.1.1 Comparing Experiment with Simulation

Due to the ubiquitous approximation of cylindrical beam symmetry and the use of a single

phenomenological rate equation for the modeling of plasma dynamics, simulations in non-

linear optics and laser-induced damage are frequently used for qualitative, rather than quan-
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titative comparisons with experimental data. For example, modified NLSE simulations that

use the single-rate equation approach for calculating plasma dynamics often underestimate

laser-induced damage threshold pulse energies by a factor of two or greater [14; 92]. In subse-

quent simulations reported in the literature, this considerable discrepancy is usually removed

with one of two methods. The first method is to tune laser pulse parameters in the simulation

(such as pulse energy or beam width) away from their experimentally measured values so

that optical damage is predicted (see for example Ref. [14]), and using the results to make

qualitative comparisons with experiment. The second method is to tune material parameters

in the simulation (such as the Drude collision time or the effective electron mass) away from

experimentally measured values so that the simulation results (such as an optical damage

threshold or energy transmission measurement) match best with experiment. In Refs. [46]

and [52], Drude collision times of 20 fs and 23 fs are chosen for simulations in fused silica

so as to match the experimental results reported in these papers, despite the fact that most

laboratory measurements of the Drude collision time for fused silica are on the order of 1 fs

or less [75–77]. Ideally, if one forgoes the approximation of cylindrical beam symmetry (and

that of an analytic pulse shape) in favor of a fully 3+1D laser pulse numerically constructed

from laboratory measured data, then the method of tuning pulse parameters in the simula-

tion should become unnecessary. Concurrently, if one uses a more accurate model of plasma

dynamics (such as Rethfeld’s multi-rate equation model [11] instead of Stuart’s single-rate

equation model [12] for electrons in the conduction band), then the method of tuning mate-

rial parameters in the simulation away from experimentally measured values should become

unnecessary. A structured test of these hypotheses formed the basis of a collaborative work

between Winkler and the author [60].

A full description of this collaborative work is found in the Ph.D. dissertation of Win-

kler [60], but the experimental aspects can be summarized as follows. A 1 µJ ultrashort

laser pulse from an amplified Ti:Sapphire laser system, with center wavelength of 800 nm,

is characterized in the laboratory with a measurement of the beam profile and a FROG
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Figure 5.1: Initial spatio-temporal characterization of the laser pulse in Winkler’s experiment:
(a) the normalized beam profile, and (b) the normalized amplitude (solid) and temporal phase
(dashed) retrieved from a FROG trace. Taken from Ref. [60].
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(Frequency-Resolved Optical Gating [13]) trace, from which the pulse shape and temporal

phase information is retrieved, see Fig. (5.1). Laser pulses of incrementally increasing ener-

gies were then propagated through a 25 cm focal length lens and focused onto a 200 µm

thick sample of fused silica glass. The energy of these pulses ranged from 1 µJ to 80 µJ, with

pulsewidths of 135 fs and a focused FWHM beam width of 25 µm. Laser-induced damage

to the fused silica sample was observed at pulse energies of 60 µJ and higher. After exiting

the sample the pulses propagated 25 cm in air and were recollimated with another 25 cm

focal length lens. Final beam profiles were then measured and final FROG traces were taken.

However, the pulse shape and temporal phase information for the pulses near or above the

damage threshold of 60 µJ was not retrievable from the final FROG traces due to large

spatio-temporal dependencies in the pulse (see Sec. 3.4 in [60] for a detailed discussion of

this issue).

For the purpose of comparison with the experimental results, simulations developed by

the author were performed using the initial laser pulse conditions shown in Fig. (5.1). Note

that the beam profile in Fig. (5.1a) has been clipped (i.e. not measured) on the edges. To

compensate for this lack of information in the experimental measurement, the beam profile

in Fig. (5.1a) was numerically extrapolated on the wings and the edges were smoothed by

application of a fourth-order ”super-Gaussian” soft aperture with a diameter equal to the

width of the laboratory beam profiler. This smoothed beam profile was numerically focused

using a Fourier transform method [23; 60] to account for a 25 cm focal length lens. The

resulting beam profile at the geometric focus was combined with the retrieved temporal field

amplitude and phase information from Fig. (5.1b) to numerically construct a laser pulse

electric field envelope for each of the given laboratory pulse energies.

Pulse propagation through the fused silica sample was simulated by solving Eq. (3.16)

simultaneously with the multi-rate equation model for plasma generation developed by Reth-

feld [11]. The material parameters used for this simulation are found in Table 4.2, with the

exception of the collision time which was varied from 1 fs to 15 fs. After exiting the fused



81

silica sample, pulse propagation through 25 cm of air to the second 25 cm focal length

lens was simulated, again using a Fourier transform technique [23; 60], where the beam was

recollimated and the final beam profiles were numerically calculated. Figure (5.2) shows a

comparison of the experimentally measured (left column) and numerically predicted (right

column) final beam profiles for pulses with initial energies of 1 µJ, 10 µJ, 50 µJ, and 80 µJ.

The simulations correctly predict the experimentally measured damage threshold pulse

energy of 60 µJ only when using a Drude collision time of 4 fs, a significant improvement

when compared to the much longer collision times chosen in the other authors’ simulations

[46; 64; 69; 70] so as to match their experiments. However, 4 fs is still significantly larger than

the experimentally measured collision times on the order of 1 fs or less [75–77]. Simulations

performed by Winkler and the author, using a collision time of 1 fs, predicted a reduced

optical damage threshold energy of 30 µJ, contradicting the laboratory measurement of this

value by a factor of two. Comparison of the final beam profiles from experiment and simula-

tion in Fig. (5.2) similarly reveal minor improvements in prediction of beam structure, but

also display irreconcilable discrepancies for energies near and above the damage threshold.

For the pulse energies of 1 µJ and 10 µJ, Fig. (5.2) shows good agreement between the

beam profiles of experiment and simulation. For these pulse energies, spatially localized “hot

spots” on the wings and offset from the center of the beam are predicted by the simulations,

information that would not be available from calculations assuming cylindrical beam sym-

metry. For the 50 µJ and 80 µJ pulses, localized “hot spots” on the wings of the beam are

predicted with comparatively good accuracy. However, these higher energy pulse simulations

predict the presence of intensity maxima in the center of the beams which are wholly absent

from the corresponding experimental measurements. Further, these discrepancies in the beam

centers were predicted by the simulations using a Drude collision time of 4 fs (the collision

time that predicted the laboratory measured damage threshold pulse energy) as well as for

those that used the collision time of 10 fs, the results of which are shown in Fig. (5.2). Thus,

for the results presented in this section, the two standard methods of reconciling simulation
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Figure 5.2: Final normalized beam profiles for the 1 µJ experiment (a) and simulation (b),
the 10 µJ experiment (c) and simulation (d), the 50 µJ experiment (e) and simulation (f),
and the 80 µJ experiment (g) and simulation (h). The color scale, from zero to the peak,
ranges blue-green-yellow-red, respectively. The black outlined boxes that appear in the left
column indicate the edges of the laboratory beam-profiler device. Simulations used a collision
time of 10 fs. Taken from Ref. [60].
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with experiment (adjusting pulse parameters or adjusting the Drude collision time) becomes

superfluous in the first case and unhelpful in the second.

5.1.2 Interpretation of Results

Assuming the correctness of both experimental and computational procedures (the author

recognizes that this is not a trivial assumption), the results of this study suggest, at a

minimum, one of several troubling possibilities: 1) the modified NLSE does not correctly

model the pulse evolution under the assumed conditions, 2) the numerically constructed

form of the electric field was not representative of the true electric field, or 3) the multi-

rate equation model of plasma dynamics did not adequately describe the behavior of the

material. The first of these possibilities appears, to the author, to be the least probable.

The fundamental limitations of the modified NLSE derived in Chapter 3 were laid out in

precise detail in 1997 by Brabec and Krausz [31]. During the study presented in this section,

Winkler and the author took care to ensure that the limitations imposed by this equation

were not exceeded in the simulations or in the experiments.

The second of these possibilities, that the electric field was not properly represented in

the simulations, must be considered as less probable an explanation than it otherwise would

have been if a cylindrical beam symmetry or an analytic pulse shape had been assumed,

which is currently the standard in the field of computational nonlinear optics. Nevertheless,

there remain several possible sources of error in numerically constructing the electric field

envelope. The initial beam profile in Fig. (5.1a), having been clipped on the edges during the

experimental measurement, may not have been adequately represented by extrapolating and

smoothing process as formerly described. Additionally, the assignment of the retrieved pulse

shape and temporal phase from Fig. (5.1b) assumes that the temporal dependence of the

initial complex field envelope does not change as a function of its relative position in the laser

beam. The likelihood of either of these possibilities is considerably diminished by the fact

that the low energy beam profiles in Figs. (5.2a,b) and Figs. (5.2c,d) are in comparatively
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good agreement. In fact, to the author’s knowledge, no study has been published to date

where a fully 3+1D laser pulse is constructed from the combined information of a laboratory

measured beam profile and a FROG trace, making the results presented in this section among

the most of accurate of their kind with regard to the characterization of the initial electric

field.

The most probable source of error is therefore the chosen model for the plasma dynamics,

for which several more detailed models exists. This conclusion is further supported by the fact

that the low energy beam profiles in Figs. (5.2a,b) and Figs. (5.2c,d) agree relatively well, as

comparatively little plasma generation occurs at the lower pulse energies. The higher energy

pulses in Figs. (5.2e,f) and Figs. (5.2g,h) approach or exceed the damage threshold, where

plasma dynamics most strongly influence the pulse propagation, and it is in this regime where

major discrepancies are found in the final beam profiles. If discrepancies between experiment

and simulation presented in this section are in any way attributable to misrepresenting the

form of the electric field in the simulations, then this error is correctable with more detailed

experimental characterizations of the initial laser pulse. However, if the error is attributable

to an inadequate model for the plasma dynamics, then the results of this section suggest

that many of the simulations of computational nonlinear optics that aspire to model the

interactions of laser-induced damage may be misleading. In this case the burden of resolving

discrepancies between experiment and simulation lies plainly with the developer (and user)

of the simulations.

The simulations presented in this section employed Rethfeld’s multi-rate equation [11] to

model the plasma dynamics. In short, the model describes a “ladder” of k discrete free-carrier

populations, nj(~x, t) (j = 0...k), in the energy space ǫ of the conduction band, separated by

integer multiples of the photon energy ~ω0. The individual populations may be summed

to determine the total free-carrier density ρ(~x, t) =
∑k

j=0 nj(~x, t). Combined with contri-

butions of the Keldysh photoionization rate WPI given by Eq. (3.20) and the electron-hole
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recombination term, the multi-rate equation takes the form:

∂tn0 = WPI + 2 αimp nk −W1pt n0 − n0/τr

∂tnj = W1pt nj−1 −W1pt nj − nj/τr (5.1)

∂tnk = W1pt nk−1 − αimp nk − nk/τr

where n1 represents the first level on the energy ladder ǫ = 0, nj represents the jth energy

level j~ω0, nk represents the final energy level ǫ = k~ω0. The integer k is calculated by

k = 〈ǫcrit/~ω0 + 1〉, where 〈〉 denotes the integer part of the enclosed quantity,

ǫcrit =
m + 2mv

m + mv

(

U0 +
e2
0 |ξ|2

4mω2
0

)

(5.2)

is the critical energy for impact ionization, m is the effective mass of the conduction band

electron, and mv is the effective mass of the valence band electron. The rate of single photon

absorption is given by W1pt = σI(t) in accordance with the Drude theory of conductivity.

The impact ionization rate αimp is taken to be instantaneous. A visual description of the

plasma evolution predicted by the multi-rate equation is given in Fig. (5.1.2) (taken from

Ref. [11]) where CB and VB stand for conduction band and valence band, respectively. This

model was developed so as to provide a significant improvement over Stuart’s single-rate

equation model for electrons in the conduction band (the model that was used in Chapters

3 and 4). It accounts for the fact that a newly freed electron will not, even at high optical

intensities, become immediately capable of impact ionization, but must drift up the ladder

to the critical energy.

Although the superiority of the Rethfeld’s multi-rate equation model to Stuart’s single-

rate equation model is not disputed in the literature, the single-rate equation model remains

the preference of most computational optics researchers [8; 9; 14; 19; 20; 27; 46; 52–54; 64; 68–

72; 74; 78; 89]; perhaps due to the multi-rate equation’s increased computational complexity.

However, the results presented in this section indicate that even the multi-rate equation

model may not provide an adequate description of plasma dynamics for ultrashort laser

pulses near the threshold of optical damage. Fortunately, there exist several more detailed
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Figure 5.3: A schematic of the avalanching process as modeled by Eq. (5.1). Taken from
Ref. [11].

descriptions of this behavior in the form of partial differential equation models, the most

common of which are the Boltzmann equation and the Fokker-Planck equation [12; 40].

These PDE descriptions of plasma effects are briefly introduced the next section.

5.2 Partial Differential Equation Models of Plasma Dynamics

5.2.1 The Boltzmann Equation

The Boltzmann transport equation is a semi-classical integro-differential equation which can

be used to model the dynamics of condensed matter on the microscopic level [93]. In principle,

it describes the time evolution of a distribution function b(~x,~k, t) in phase space. In its full

form, the Boltzmann equation is expressed [35]:

∂b

∂t
+

~Fext

~
· ~∇k b +

~~k

m
· ~∇x b =

(

∂b

∂t

)

scattering

(5.3)
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where ~Fext is the total external force, ~k is the wave vector, and the term on the right-hand

side consists of quantum mechanical collision integrals describing all the relevant scattering

processes. In practice, authors simulating ultrashort pulse-material interactions typically

neglect the spatial diffusion term on the right-hand side [37; 40; 93], ~∇xb = 0, which is

consistent with the assumption of an electrically neutral material. Additionally, authors

investigating the material dynamics under the influence of an AC electric field are typically

interested in the time-averaged quantities of Eq. (5.3) [37; 40; 93]. Under this condition, if

the only external force acting on a particle comes from the A.C. field then the momentum

gradient term on the left-hand side of Eq. (5.3) averages to zero [37] and the equation then

reads:

∂b

∂t
=

(

∂b

∂t

)

scattering

(5.4)

and is frequently called “the Boltzmann Equation” in the literature [37; 40; 44; 93].

Although the Eq. (5.4) allows for the inclusion of an arbitrary number of scattering pro-

cesses, in the case of free-electron dynamics these processes typically include electron-electron

interactions (e-e), electron-phonon interactions (e-pn), phonon-assisted photon absorption

(e-pn-pt) which is the microscopic analog of laser energy absorption by free carriers, pho-

toionization (pi), and impact ionization (imp). Further, the inclusion of microscopic phonon

effects necessitates the solving of additional Boltzmann equations for the various optical

and acoustic phonon modes (sβ(~x,~k, t) where β indicates the phonon mode) that make

significant contributions to the plasma dynamics. Phonon-phonon interactions are usually

neglected [40]. The resulting set of coupled Boltzmann equations are:

∂b

∂t
=

(

∂b

∂t

)

e−e

+

(

∂b

∂t

)

e−pn

+

(

∂b

∂t

)

e−pn−pt

+

(

∂b

∂t

)

pi

+

(

∂b

∂t

)

imp

(5.5)

∂sβ

∂t
=

(

∂sβ

∂t

)

pn−e

+

(

∂sβ

∂t

)

pn−e−pt

(5.6)

Eq. (5.5) and Eq. (5.6) have two notable advantages over other approaches. First, they

require few, if any, phenomenological approximations for the scattering processes [40] and

thus provide the most complete description of plasma dynamics in this dissertation. Second,
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the quantized nature of pulse-material interactions (such as laser-pulse energy absorption

by integer multiples of the photon energy) arise naturally under this formulation. How-

ever, solving Eq. (5.5) and Eq. (5.6) simultaneously can be extremely time consuming, as

the quantum mechanical collision integrals must be evaluated stochastically [44], often by

Monte Carlo integration techniques. To reduce the complexity of these calculations, many

authors investigating the interaction of ultrashort pulses with matter consider only one spa-

tial dimension (or sometimes one spatial point), purely isotropic materials, and a parabolic

dispersion relation for free electrons, i.e. b(~x,~k, t) −→ b(ǫ, t), where ǫ = ~
2k2/(2m) is the

free-electron energy. Even with these simplifications the Boltzmann equation is far more

arduous to implement directly than the Fokker-Planck equation, which is why the latter has

been selected as the basis for this chapter. For a more detailed discussion of the Boltzmann

equation and formulas for the collision integrals above please see Refs. [40; 44; 93].

5.2.2 The Fokker-Planck Equation

The Fokker-Planck equation (FPE) is a classical PDE that can be used to model the free-

electron dynamics of condensed matter in energy space [36]. It is derivable directly from, and

independently from, the Boltzmann equation [43; 94] under the assumption of an isotropic

material with characteristic relaxation times. FPEs have been used since 1930 [57] to phe-

nomenologically model stochastic behavior, such as Brownian motion. In the context of

ultrafast plasma dynamics, it describes the time evolution of a distribution function f(~x, ǫ, t)

which gives the number density of free electrons per unit energy such that:

ρ(~x, t) =

∫ ∞

0

f(~x, ǫ, t) dǫ, (5.7)

where ρ(~x, t) is the free-carrier density and

ρ(~x, t) 〈ǫe〉ǫ =

∫ ∞

0

ǫ f(~x, ǫ, t) dǫ, (5.8)

gives the total energy of the free-electron gas. Note that 〈ǫe〉ǫ indicates the average energy

per free electron and, for a distribution in thermal equilibrium, is related to the electron gas
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temperature by 〈ǫe〉ǫ = (3/2)kBT . where 〈〉ǫ indicates the energy average defined to be

〈g〉ǫ =

∫∞

0
g(ǫ)f(ǫ, t)
∫∞

0
f(ǫ, t)

.

The energy distribution function f(ǫ, t) is also related to the solution of the Boltzmann

equation by b(ǫ, t) = f(ǫ, t)D(ǫ), where D(ǫ) is the density of states in the energy domain.

Suppressing the spatial dependence for notational simplicity, the FPE for plasma

dynamics of an absorbing medium is given by [36; 41; 94]:

∂f

∂t
= − ∂

∂ǫ
[D1(ǫ)f(ǫ, t)] +

∂2

∂ǫ2
[D2(ǫ)f(ǫ, t)] + S(ǫ, t), (5.9)

where D1(ǫ) and D2(ǫ) are energy drift and dispersion coefficients, respectively, and S(ǫ, t)

is a term representing the contributions of sinks and sources of the electron distribution. For

the case of an alternating electric field, the drift and dispersion coefficients were first derived

by Holway [36; 41; 94] in terms of the root mean square of the electric field amplitude, Erms,

which is related to the electric field envelope as defined in Eq. (3.5a) by Erms = |ξ| /
√

2.

Expressed in terms of the optical intensity I(t), Holway’s D1(ǫ) and D2(ǫ) coefficients are

D1(ǫ) = σ(ǫ)I(t) +
2

3

∂σ

∂ǫ
I(t)ǫ− Upnγ(ǫ), (5.10)

D2(ǫ) =
2

3
σ(ǫ)I(t)ǫ, (5.11)

where

σ(ǫ) =
e2
0 τc(ǫ)

n0ǫ0cm [1 + ω2
0τ

2
c (ǫ)]

(5.12)

is now the energy dependent cross-section of inverse Bremsstrahlung absorption, since the

collision time τc(ǫ) is energy dependent. The last term in Eq. (5.10) is a term that accounts

for electron energy dissipation into the lattice, where Upn is the characteristic phonon energy

and γ(ǫ) is the characteristic electron-phonon scattering rate.

There are three sources and sinks of plasma electrons [12; 19; 95]:

S(ǫ, t) = Rpi(ǫ, t) + Rimp(ǫ, t) + Rrec(ǫ, t). (5.13)
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Here the first term on the right-hand side provides the contribution of photoionization:

Rpi(ǫ, t) = WPI(ξ)F (ǫ, ξ), (5.14)

where WPI(ξ) is given by Eq. (3.20), and F (ǫ, ξ) is the distribution function of the photoion-

ized electrons such that
∫∞

0
F (ǫ, ξ)dǫ = 1. This dissertation uses the formulation given by

Kaiser [40], et. al.; F (ǫ, ξ) = δ(ǫ− ǫpi) where

ǫpi =
~ω

(1 + m/mv)

〈

U0 +
e2

0
|ξ|2

4mω2

~ω
+ 1

〉

(5.15)

is the initial kinetic energy of the photoionized electron and the 〈〉 notation denotes the

integer part of the enclosed quantity. The second term of the right-hand side of Eq. (5.13)

is given by Keldysh’s model of impact ionization:

Rimp(ǫ, t) = −νi(ǫ)f(ǫ, t) + 4νi(2ǫ + U0)f(2ǫ + U0, t). (5.16)

Here νi(ǫ) is the impact ionization probability rate given by

νi(ǫ) = Pα

[

ǫ− ǫcrit

ǫcrit

]2

Θ(ǫ− ǫcrit), (5.17)

ǫcrit is the critical energy for impact ionization to occur, Θ(x) is the Heaviside step function,

Pα is a characteristic collision rate, m is the effective mass of the conduction electron and

mv is the effective mass of the valence electron. The factor of 4 on the right-hand side of

Eq. (5.16) can be understood by integrating the equation over all energy to find that the

total rate of impact ionization is
∫∞

0
νi(ǫ)f(ǫ, t)dǫ. Finally, the third term on the right-hand

side of Eq. (5.13) is an electron-hole recombination contribution.

Rrec(ǫ, t) = −f(ǫ, t)

τs
(5.18)

In the absence of both source terms and the electron-lattice energy dissipation term,

Eq. (5.9) can be multiplied by ǫ and integrated over all energy to find the total energy

absorbed from the laser field and deposited into the free-electron gas. Note that in this
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integration the dispersion term vanishes upon integration by parts, implying that the total

energy per unit volume per unit time absorbed from the laser field by the electron gas is

∂I

∂z
=

∫ ∞

0

(

σ(ǫ)I(t)f(ǫ, t) +
2

3

∂σ

∂ǫ
I(t)ǫf(ǫ, t)

)

dǫ. (5.19)

This ensures that all energy absorption from the laser field by the electron gas comes from

the drift term of equation Eq. (5.9), whereas the dispersion terms only serves to spread peaks

in the electron energy distribution.

The FPE treats plasma dynamics in a continuous way, and Eq. (5.9) is often rewritten

in the form of a continuity equation in energy space [12; 36; 41; 95]:

∂f

∂t
= − ∂

∂ǫ

[

Veff(ǫ, t)f(ǫ, t)−Ddif(ǫ, t)
∂f

∂ǫ

]

+ S(ǫ, t), (5.20)

where

Veff(ǫ, t) =
1

3
σ(ǫ)I(t)− Upnγ(ǫ) (5.21)

and

Deff(ǫ, t) =
2

3
σ(ǫ)I(t)ǫ (5.22)

are effective drift and diffusion coefficients. This is a mathematically convenient expression

(the energy derivative of σ(ǫ) does not appear in this formulation) and is more amenable to

solve numerically using standard finite difference techniques. However, the author wishes to

reiterate the warning of Holway [94] that while Veff(ǫ, t) behaves like a drift term, it does not

represent the true average change in energy per electron per unit time, nor does the effective

diffusion term in Eq. (5.20) conserve energy. Therefore, this formulism no longer allows one

to confine laser pulse energy absorption to the drift term of the right-hand side [41].

5.3 Comparing the Rethfeld and Fokker-Planck Descriptions of Plasma

Dynamics

This section presents preliminary results of an study comparing the Rethfeld multi-rate

equation [11] with the FPE [94] as models of plasma dynamics. For the simulations presented
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in Sec. 5.1.1, the multi-rate equation was used and was solved with an adaptive step-size

Runge-Kutta method for coupled ordinary differential equations [59]. In this section the FPE

is solved for a laser pulse interacting with the fused silica sample surface at the threshold

pulse energy for optical damage and the results of which are compared to predictions of

the Rethfeld model. The FPE is solved using a split-step method solving the source terms,

Eq. (5.13), in one step (a plasma generation step) and the remaining Fokker-Planck transport

terms in another step (a PDE step). The PDE step itself is also solved using a split-step

method. Here the effective drift term of Eq. 5.20) was solved using a two-step Lax-Wendroff

scheme [59] while the effective diffusion term was solved using a foward-time centered-space

method [59], both of which are second-order accurate methods. The source terms were again

solved using adaptive step-size Runge-Kutta methods of fourth-order accuracy.

Table 5.1: Simulation parameters for the Fokker-Planck equation.

Parameter Description Value Units

Upn Phonon energy 0.033 eV
γ Phonon scattering rate 0.1 fs-1

Pα Keldysh impact parameter 1.5 fs-1

U0 Material band gap 9 eV
m Effective electron (conduction) mass 1 me

mv Effective electron (valence) mass 1 me

τr Electron recombination time 150 fs

This study was performed by numerically constructing 1D laser pulses from the experi-

mental information in Fig. (5.1), for pulse energies ranging from 30 µJ to 60 µJ, thus using

the energies near the laboratory measured damage threshold for the fused silica sample. More

specifically, this study takes the focused laser beam from Sec. 5.1.1, extracts a 1D laser pulse

from the center of the focused beam, and allows this pulse to interact with the material

surface while monitoring the plasma dynamics using the Rethfeld and FPE models. This

laser pulse has the temporal shape given in Fig. (5.1b) and, in the case of the 60 µJ pulse,

has a peak intensity of 3.08×1013 W cm−2. Required parameters used in solving the FPE
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are listed in Table 5.3. Throughout the interaction of the laser pulse with the material, a

constant collision time of 5 fs was assumed for both models. The FPE model also used stan-

dard values for the characteristic phonon energy Upn = 0.033 eV [12] and phonon collision

rate γ = 1014 s−1 [96].

Figure (5.3) shows the resulting distribution of electrons in energy space for the 60 µJ

laser pulse at three separate times as measured in the retarded time frame of the pulse

(f(ǫ, τ = −100 fs), f(ǫ, τ = 0 fs), and f(ǫ, τ = −100 fs)) as well as the total plasma density

as a function of time for both models. Note that the results for the Rethfeld model appear

as a series of bars representing discrete populations (the energy ladder) while the FPE dis-

tribution is continuous. The three vertical dotted lines on in Fig. (5.3d) indicate the three

temporal positions at which the distributions of Fig. (5.3a), Fig. (5.3b), and Fig. (5.3c) were

measured. The evolution of these distributions may be described as follows. Figure (5.3a)

shows the initial stages of the evolution where photoionization is the primary generator of

plasma electrons. At this stage there has been noticeable energy absorption by free carriers,

occupying higher energy levels in the conduction band, but photoionization remains domi-

nant. Figure (5.3b) shows the free-carrier energy distributions at the temporal center of the

laser pulse. Here the optical intensity is at its highest (see Fig. (5.1)) and the critical energy

for impact ionization is increased according to the manner of Eq. (5.2). Thus, both distribu-

tions are temporarily allowed to drift further up in energy space without impact ionization

occuring. As the intensity lowers on the trailing edge of the pulse, the critical energy for

impact ionization is also lowered, and many of the higher energy electrons in the distribu-

tions are suddenly “caught” in a region with a very high probability of impact ionization.

These electrons avalanche and form the final distributions seen in Fig. (5.3c).

Fig. (5.3d) demonstrates that the FPE model actually predicts permanent laser-induced

damage on the sample surface for this collision time whereas the Rethfeld model does not

(using the common ultrafast optics definition of ρ > 1021cm−3 as an indicator of damage).

This is due to the fact that the Rethfeld model explicitly assumes that newly freed electrons
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(whether by photoionization or avalanching) first appear at the bottom of the conduction

band. This is not generally true, and the FPE model accounts for the fact that photoionized

electrons have some residual kinetic energy when they first appear in the conduction band. It

also accounts for the fact that impact ionization does not generally start electrons off at the

bottom of the conduction band either, but splits the residual kinetic energy of the impacting

conduction electron, ǫcrit −U0, evenly between the two resulting low energy electrons. All of

this poses another significant problem. The more detailed FPE model was implemented and

tested against the Rethfeld model in hopes of achieving a result closer to the experimentally

measured damage threshold for a 60 µJ pulse under the conditions of Sec. 5.1.1. However,

Fig. (5.3d) clearly demonstrates that the FPE model, such as it is, predicts results even

further removed from experimentally measured values than the Rethfeld model. This same

simulation was repeated with pulse energies ranging from 30 µJ to 55 µJ, using collision

times from ranging from 5 fs to 10 fs. Although these simulations were below the damage

threshold, the same qualitative behavior displayed throughout Fig. (5.3) appeared in all

cases.

5.4 Discussion

Here is presented a list of possible explanations for the results presented in this chapter. If

still better material models are needed to accurately model the pulse propagation through the

sample, there are several promising possibilities. The first option is to include the explicit

energy dependence of the electronic collision time and the phonon scattering rate in the

FPE. The second option is to implement the fifth-order nonlinear polarization contribution

[3]. This may have the effect of counter acting the effects of self-focusing somewhat [1], but

detailed studies on this subject are limited [21]. It is also still possible that the laser pulse was

not properly represented at the sample surface. If the sample were displaced even a half of a

millimeter away from the geometric beam focus, then the peak intensities of the simulations

could be lowered considerably, thereby raising the damage threshold pulse energy.
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Figure 5.5: The normalized intensity in the x-τ plane for (a) the initial 60 µJ laser pulse and
(b) the 60 µJ pulse after 200 µm of propagation through fused silica with a collision time of
5 fs. The instantaneous frequency as a function of time through the respective spatial centers
of these pulses (see the dotted white lines in (a) and (b)) is shown by (c). The frequency
of the pulse in (a) is shown by the red (dotted) line and that of the final pulse is shown
by the blue (solid) line. The grey (dashed) lines in (c) marks the multi-photon ionization
transition between a 7-photon process (the lowest region), a 6-photon required process (the
middle region), and a 5-photon process (the top region).
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Another striking possibility is that, to the author’s knowledge, no model of plasma

dynamics to date account for ultrashort pulse effects. One plain example of this is the fre-

quency dependence of photoionization. At lower optical intensities the dominate photoion-

ization process is multi-photon ionization where the simultaneous absorption of N photons

of energy ~ω are required to cross the band gap U0 [80] (N = 6 in fused silica for 800 nm

light). Shifts in the instantaneous frequency of a laser pulse can therefore lead to a drastically

altered photoionization rate if, for example, 7 photons of a particular instantaneous frequency

are suddenly required to cross the band gap instead of 6. The real question then becomes, do

the pulses presented in this chapter contain such frequency shifts? Figure (5.4c) displays the

instantaneous frequency as a function of the retarded time at the spatial center the initial

pulse given in Fig. (5.1b) and for the 60 µJ laser pulse after having propagated through the

200 µm fused silica sample (a collision time of 5 fs with the multi-rate equation model was

used to obtain this result). Note that the grey (dashed) line in Fig. (5.4c) gives the transition

frequency from a 6-photon photoionization process to a 7-photon process. Note further that

significant portions of the final pulse, shown in Fig. (5.4b), lie within the 7-photon region,

particularly the red-shifted front of the pulse where photoionization is required to initiate

the plasma generation process. This could have the result of delaying the onset of plasma

generation and possibly avoiding laser-pulse induced material modification.

The absorption of photons of arbitrary instantaneous frequencies (i.e. arbitrary photon

energies) also introduces a problem into the Rethfeld description of avalanching by breaking

the evenly spaced “ladder” model of electron populations. One could in principle simply

extend the Rethfeld model into a continuous energy space, treating each discrete energy bin

as an individual population capable of advancing an electron up the conduction band by

arbitrary intervals of ~ω. This extended Rethfeld model could also account for the more

detailed placements of electrons in the conduction band as given by the source terms of

the FPE. However, by creating a continuous distribution in energy space, one is essentially

approximating the solution to the FPE, but without the physically relevant dispersion terms.
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Rather than take this approach, one may as well just solve the FPE. Unfortunately, inter-

facing the FPE with the modified NLSE for pulse propagation is not straightforward and no

attempt of this kind has been reported in the literature to the author’s knowledge.

5.5 Interfacing PDE Models of Plasma Dynamics with the Modified NLSE

All models of plasma dynamics to date are, to the author’s knowledge, inconsistent with

the predictions of the modified NLSE for ultrashort pulse propagation. In the FPE model,

for example, laser energy absorption by free carriers is given by Eq. (5.19), whereas the

modified NLSE derived in Chapter 3 predicts, to a first-order temporal correction, a free-

carrier absorption given by Eq. (3.17). If one assumes for simplicity that the collision time,

and therefore the absorption cross-section σ, are independent of the conduction band energy,

then the FPE model cannot account for temporal corrections inherent to ultrashort pulse

propagation as demonstrated in Chapter 3, nor can any other model of plasma dynamics in

the literature. This is probably due to the fact that these models were derived before the

ultrashort corrections to the Drude free current density were necessary (i.e. before the advent

of ultrashort pulses). However, for the sake of consistency, a modified Fokker-Planck equation

should be derived. Such an investigation should begin by deriving a rate equation for the free

current-density distribution in energy space ~Υ(~x, ǫ, t) [42] from the Boltzmann equation [35].

The integral of this quantity over all energy would then yield the total free-carrier density;

~Jf(~x, t) =

∫ ∞

0

~Υ(~x, ǫ, t)dǫ, (5.23)

or, in complex envelope notation

jf(~x, t) =

∫ ∞

0

υ(~x, ǫ, t)dǫ, (5.24)

where υ(~x, ǫ, t) is the complex envelope of ~Υ(~x, ǫ, t). The modified Fokker-Planck equation

must then be given by a continuity equation in energy space [42];

∂f

∂t
= − ∂

∂ǫ

(

1

2
ℜ [ξ∗(~x, t)υ(~x, ǫ, t)]

)

+ S(ǫ, t), (5.25)



99

where ξ is the electric field envelope. This derivation is the subject of ongoing research by the

author. Due to the complicated energy dependence of parameters in the FPE model, deriving

an analytic form for the free current density envelope, as presented in Chapter 3, may not be

possible. Generally, when calculating the plasma dynamics, υ(~x, ǫ, t) and f(~x, ǫ, t) will have

to be solved simultaneously. The function υ(~x, ǫ, t) can then be integrated over all energy

and the resulting current density envelope can be inserted directly into Eq. (3.10).

Once a modified FPE is interfaced in a consistent manner with the modified NLSE, one

is then faced with the equally significant problem of much slower simulations. For the results

presented in this chapter, the FPE simulations ran nearly two orders of magnitude longer

to run than the corresponding multi-rate equation simulations. A modified FPE is likely

to be even more computationally illusive, requiring the additional calculation of field and

current-density time derivatives. Parallelization and additional optimization would play an

important role in minimizing this problem in the future.

5.6 Concluding Remarks

Recent experimental work, in collaboration with simulations written by the author, have

demonstrated that more detailed PDE models of plasma dynamics may be necessary to

accurately model high-intensity ultrashort pulse propagation through dielectric materials.

Simulations of ultrashort pulse propagation utilizing fully 3+1D laser pulses numerically

constructed according to laboratory measured beam profiles and pulse shape information

were interfaced with the multi-rate equation description of plasma dynamics in fused silica.

The final results were compared directly to those of experiment, and represent, to the author’s

knowledge, the most detailed study of its kind to date. Discrepancies between the results of

simulation and experiment appeared near the optical damage threshold, and suggest that

more detailed material models are in order. A Fokker-Planck equation describing a continuous

energy space for the free-electron gas was used for this purpose and compared with Reth-

feld’s multi-rate equation description. Preliminary results were presented and possibilities for
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future investigations with still more detailed material models were proposed. In particular, a

modified Fokker-Planck equation is needed to account for instantaneous frequency shifts and

the ultrashort free-carrier dispersion corrections predicted by the Eq. (3.16). The benefits of

interfacing this modified Fokker-Planck equation with the modified NLSE are that all ultra-

short pulse effects will appear explicitly in evolution of the electron plasma, which to date

has not been addressed in the literature for any model of plasma dynamics. It also has the

advantage of including plasma energy diffusive effects and lattice effects in a phenomenolog-

ical manner so that a more laborious Boltzmann equation approach is not required. However,

a comprehensive derivation should be performed starting from the Boltzmann equation, and

is currently planned as a future research project.



Chapter 6

Conclusions

Simulations in computational optics have proven to be very effective tools for gaining insight

into ultrafast laser pulse-induced damage in optical materials. Such studies in principle

require the accurate modeling not only of ultrashort pulse propagation through nonlinear

media, but also the dynamics of the free-electron plasma. For practical considerations, many

simulations in the field of computational optics employ simplified models for pulse propa-

gation such as analytical beam geometries and pulse shapes, as well as simplified models

for plasma evolution, such as a single-rate equation. The work presented in this dissertation

was a deliberate attempt by the author to test the validity of these simplifications, which in

many cases were found wanting.

A modified nonlinear Schrödinger equation (NLSE) for ultrashort pulse propagation was

derived in Chapter 3. This equation included ultrashort temporal corrections to the free

current density envelope as described by the Drude model. In the same chapter this free-

carrier contribution to the modified NLSE was analyzed and compared to other models

currently used in the literature. Results from simulations solving the modified NLSE for

the material of fused silica were then presented to demonstrate how differences between

such models might arise in experiment. Simulations solving the modified NLSE were again

used in Chapter 4 to examine the influence of laser beam geometry and pulse shape on

plasma generation and laser pulse induced modification in fused silica using the single-rate

equation description of Stuart [12] to model the excitation of a free-electron plasma in the

conduction band. It was found that minor asymmetries in the beam shape, such as those

found in the typical laboratory laser beam, can significantly affect the generation of the
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free-electron plasma in dielectric materials. This work thus demonstrates the need for more

detailed descriptions of pulse and beam structure if one intends to accurately predict laser

pulse-induced modifications to a material or perform spectrographic analysis on the predicted

outgoing laser pulse to provide insight into the field-material interactions.

In Chapter 5, simulations solving the modified NLSE for ultrashort pulse propagation

were performed using laser pulses numerically constructed according to experimentally mea-

sured beam profiles and pulse shape data, all the while using the multi-rate equation descrip-

tion developed by Rethfeld [11] to model the plasma dynamics in the conduction band. To

the author’s knowledge, these simulations are the first of their kind using pulses both spa-

tially and temporally constructed according to laboratory data, as well as interfacing the

multi-rate equation model of plasma dynamics with the modified NLSE for pulse propaga-

tion. Direct comparison with experimental results revealed unique successes in the prediction

of pulse evolution, but also suggest that more detailed material models should be employed

in future simulations for an improved, direct comparison with experiment. Chapter 5 the

case for using more detailed models of plasma dynamics in computational optics, and sev-

eral possible options of such models, including a Fokker-Planck equation [41] modified to

account for ultrashort optical effects, are proposed.

However, more advanced models of plasma dynamics, such as the Fokker-Planck equation,

can only be interfaced with the modified NLSE derived in Chapter 3 once a comprehensive

formalism has been developed for the distribution of the free current density in energy

space. This step is necessary to ensure that the energy absorption from the laser field by

the free carriers, as predicted by the model of plasma dynamics, is consistent with the

ultrashort temporal corrections to the free-carrier energy absorption predicted in modified

NLSE of Chapter 3. Such a study has not been addressed in the published literature, to

the author’s knowledge. Additionally, all of the simulations presented in this dissertation

were performed on a single-processor platform, taking a maximum time of two weeks to

complete 300 steps along the propagation axis. Using the same single-processor platform, it
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would take approximately two weeks to complete a single step along the propagation axis

if the pulse propagation equation were to be solved simultaneously with the Fokker-Planck

equation (depending on the intensity of the field). Therefore, for practical considerations,

the author’s code will need to be parallelized in the future to reduce the total computation

time.

If the interfacing of a modified Fokker-Planck equation with the modified NLSE still

does not produce results that match with experiment, as evidenced by a study similar to

that presented in Sec. 5.1.1, then one might try employing the still more detailed Boltzmann

equation description of material dynamics [40; 93]. This would require an even longer compu-

tational time period to model the plasma dynamics, but for most simulations it would still be

more efficient than replacing the pulse propagation equation with an FDTD technique. Once

an adequate technique for predicting fully 3+1D pulse pulse propagation through a plasma

generating medium is established, secure knowledge about the pulse intensity through all

space and time can be used to test new models such as Gruzdev’s [82; 97; 98] prediction of

a laser-induced damage threshold intensity of 1013 W cm−2 that is completely independent

of impact ionization processes. It is expected that the better understanding provided from

such studies will enable the accurate simulation of optical damage in a variety of materials,

ultimately leading to an enhanced control of laser-induced modification to dielectrics and

semiconductors.



Appendix A

On the Fourier Transform, Optical Intensity, and Spectrum

In this dissertation, any quantity in frequency space which can be usefully defined as the

Fourier transform of a real time physical quantity is indicated by a tilde symbol overhead.

Additionally, the symmetric definition of the Fourier transform is used throughout this disser-

tation such that a forward Fourier transform into frequency space and the inverse transform

back into the time domain are expressed as [99]:

f̃(ω) =
1√
2π

∫ ∞

−∞

f(t) eiωt dt, (A.1)

f(t) =
1√
2π

∫ ∞

−∞

f̃(ω) e−iωt dω. (A.2)

Having used the symmetric form of the Fourier transform, the time and frequency expressions

for the function f are also related by Parseval’s Theorem [99]:

∫ ∞

−∞

|f(t)|2 dt =

∫ ∞

−∞

∣

∣

∣
f̃(ω)

∣

∣

∣

2

dω. (A.3)

The Fourier transform of the electric field (or any real time quantity) expressed in the

complex envelope notation of Eq. (2.6) will thus take the form:

Ẽ(ω) =
1√
2π

∫ ∞

−∞

1

2

(

ξ(t)e−iω0t+iφ0 + c.c)
)

eiωt dt,

Ẽ(ω) = ξ̃(ω − ω0)
eiφ0

2
+ ξ̃∗(ω + ω0)

e−iφ0

2
. (A.4)

where the first term represents the forward propagating field component and the second term

represents the backwards propagating field component [3]. It is now possible to define time-

averaged and frequency-averaged intensities I(t) and S(ω), respectively. A straightforward
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time average of |E(t)|2 yields (1/2)ξ(t)ξ∗(t), but the frequency average of
∣

∣

∣
Ẽ(ω)

∣

∣

∣

2

requires

careful consideration. Initially, the frequency average of
∣

∣

∣
Ẽ(ω)

∣

∣

∣

2

is

∣

∣

∣
Ẽ(ω)

∣

∣

∣

2

=
1

4

∣

∣

∣
ξ̃(ω − ω0)

∣

∣

∣

2

+
1

4

∣

∣

∣
ξ̃(ω + ω0)

∣

∣

∣

2

. (A.5)

However, since E(t) must be real the well known condition Ẽ∗(ω) = Ẽ(−ω) applies [81].

This further implies that the envelope function in frequency space must be symmetric, i.e.

ξ̃(ω) = ξ̃(−ω). Also, note that Eq. (A.5) is itself symmetric about ω = 0. Therefore, if

the associated spectral width ∆ω, defined to be the full width at half maximum of
∣

∣

∣
ξ̃(ω)

∣

∣

∣

2

,

is much smaller than the carrier frequency (∆ω ≪ ω0) then for positive values of ω the

right-hand side of Eq. (A.5) reduces to the first term only. Likewise, for negative frequencies

the right-hand side reduces to the second term only. Thus, the total contribution of both

forward and backward components to the frequency averaged spectrum can be expressed

as
∣

∣

∣
Ẽ(ω′)

∣

∣

∣

2

= (1/2)
∣

∣

∣
ξ̃(ω′ − ω0)

∣

∣

∣

2

, where ω′ is nonnegative. The optical intensity and the

spectrum may now be defined as [30]:

I(t) =
1

2
nǫ0c |ξ(t)|2 (A.6)

S(ω) =
1

2
nǫ0c

∣

∣

∣
ξ̃(ω − ω0)

∣

∣

∣

2

(A.7)

where n is the index of refraction, ǫ0 is the permittivity of free space, and c is the speed of

light in a vacuum. Note that although the spectrum S(ω) is a function of frequency, it is

not written with a tilde because it is not the Fourier transform of a useful function of time.

Finally, note these two quantities are also related by Parseval’s theorem:

∫ ∞

−∞

I(t) dt =

∫ ∞

0

S(ω) dω. (A.8)



Appendix B

The Nonlinear Polarization

Although Eq. (2.1) is widely used in the literature, it can be deceiving. The polarization ~P

in Eq. (2.1) is not the Fourier transform of the real time polarization into frequency space.

Rather, all functions in this expression are the real time Fourier components which propagate

with the specified frequency.

Strictly speaking, the nth-order polarization terms in real time and frequency space are

given by the following expressions [22]:

~P (n)(t) =

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

dt1dt2 · · · dtn
←→χ (n)(t1, t2, ..., tn) ~E(t− t1) ~E(t− t2) · · · ~E(t− tn),

(B.1)

~̃P (n)(ω) =

∫ ∞

−∞

∫ ∞

−∞

· · ·
∫ ∞

−∞

dω1dω2 · · ·dωn
←̃→χ

(n)
(ω1, ω2, ..., ωn) ~̃E(ω1) ~̃E(ω2) · · · ~̃E(ωn). (B.2)

However, the summation condition of the frequencies must still be satisfied in frequency

space such that for any polarization term ω = ω1 + ω2 + · · · + ωn; thus eliminating one of

the integrals in frequency to give

~̃P (n)(ω) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

dω1 · · · dωn−1
←̃→χ

(n)
(ω1, ω2, ..., ωn) ~̃E(ω1) ~̃E(ω2) · · · ~̃E(ωn). (B.3)

where ωn = ω−(ω1+· · ·+ωn−1). Eq. (B.1) and Eq. (B.3) are the generally correct expressions

for the nth-order polarization. Eq. (2.1) is best interpreted as the real time contribution

to the polarization of multiple monochromatic fields and thus provides a good qualitative

description of nonlinear optical behavior in many cases. For ultrashort pulses which are not

monochromatic, the complete descriptions of Eq. (B.1) or Eq. (B.3) should be used [22].
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Appendix C

Derivation of the Wave Propagation Equation

The spatially-averaged macroscopic Maxwell equations in matter are [23]:

~∇· ~D = ρf (C.1a)

~∇× ~E = −∂ ~B

∂t
(C.1b)

~∇· ~B = 0 (C.1c)

~∇× ~H = ~Jf +
∂ ~D

∂t
, (C.1d)

Where ~E is the electric field, ~B is the magnetic field, ~D = ǫ0
~E+ ~P is the electric displacement

field, ~H = ~B/µ0− ~M is the auxiliary field, ~P is the material polarization, ~M is the material

magnetization, and the two source terms ρf and ~Jf are the free charge density and free current

density, respectively. The initial assumptions for deriving the wave propagation equation are

that the material is nonmagnetic, ~M = 0, and that the free charge density ρf = 0. Note

that the condition ρf = 0 does not imply that ~Jf = 0, it only states that no part of the bulk

material is allowed to have a nonzero electric monopole moment.

With the above assumptions, the cross product of Eq. (C.1b) is taken and the double

cross product vector identity is applied to the right-hand side,

~∇(~∇· ~E)−∇2 ~E = − ∂

∂t
~∇× ~B. (C.2)

Eqs. (C.1a) and (C.1d) are inserted into the first term on the left-hand side, and the right-

hand side, respectively:

−
~∇(~∇· ~P )

ǫ0
−∇2 ~E = − ∂

∂t

(

µ0
~Jf + ǫ0µ0

∂ ~E

∂t
+ µ0

∂ ~P

∂t

)

.
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The resulting expression can be rewritten as a wave equation with source terms appearing

on the right-hand side.

∇2 ~E − 1

c2

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
+ µ0

∂ ~Jf

∂t
−

~∇(~∇· ~P )

ǫ0
(C.3)

The ~∇(~∇· ~P ) term in Eq. (C.3) is a polarization diffraction contribution which can some-

times be reduced [100] or eliminated [46], depending on the form of the polarization. In

isotropic materials the polarization ~P must be aligned with the electric field and may be

expressed in frequency space as given in Appendix B:

~̃P ( ~̃E, ω) = ǫ0χ̃
(1)(ω) ~̃E(ω) + ~̃PNL( ~̃E, ω), (C.4)

where χ̃(1) is the linear susceptibility and ~̃PNL represents all of the nonlinear contributions to

the total polarization. Note that the time-frequency Fourier transform of Eq. (C.1a) yields

~∇· ~̃P = −ǫ0
~∇· ~̃E if ρf = 0. Substituting Eq. (C.4) into this expression yields

ǫ0χ̃
(1) ~∇· ~̃E + ~∇· ~̃PNL( ~̃E) = ǫ0

~∇· ~̃E. (C.5)

Examining Eq. (C.5) in the absence of nonlinear effects (assuming an isotropic, uniform

medium) reveals that both sides of this equation must vanish for the case of linear optics.

This approximation is also valid for the entire perturbative regime of nonlinear optics [26],

see Fig. (2.1), and thus the last term of Eq. (C.3) will not make appreciable contributions

at those intensities. At higher intensities in the intermediate regime of nonlinear optics, it

is generally the case that ionization and plasma effects become much stronger than any

polarization diffraction effects [46]. Therefore, the approximation ∇· ~P ≈ 0 is assumed for

all descriptions of pulse propagation in this dissertation. Eq.(C.3) can then be expressed as:

∇2 ~E − 1

c2

∂2 ~E

∂t2
= µ0

∂2 ~P

∂t2
+ µ0

∂ ~Jf

∂t
, (C.6)

where the electric field propagates through an electrically neutral, nonmagnetic, isotropic

medium at intensities in the linear, perturbative, and intermediate regimes of Fig. (2.1).



Appendix D

Optical quantities derived from a known complex dielectric response

This section derives analytical expressions for common optical quantities as a function of

the complex electric permittivity (and complex optical susceptibility). All expressions herein

exist not in real time but in frequency space and will carry a tilde overhead to indicate that

they are Fourier transforms of real time functions. It is assumed that the field in question is

linearly polarized and the materials are isotropic, so an effective dielectric response function

may be expressed in terms of an effective susceptibility [3].

ǫ̃eff(ω) = 1 + χ̃eff(ω) (D.1)

Here the term effective means that the susceptibility may include nonlinear effects and plasma

contributions in addition to the traditional linear optical terms.

D.1 Real Index of Refraction and Intensity-Based Absorption Function

The complex index of refraction is defined by

ñ(ω) =
√

ǫ̃eff . (D.2)

The complex refractive index can also be written in terms of real and imaginary parts;

ñ = ñr + i
α̃ c

2 ω
, (D.3)

where ñr is the real index of refraction, α̃ is the intensity-based absorption function, c is

the speed of light in a vacuum, and ω is the frequency of the electric field. The effective

electric permittivity is also written is terms of real and imaginary parts: ǫ̃eff = ǫ̃r + iǫ̃i, the
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index of refraction is squared and the real and imaginary parts of the resulting expression

are equated.

ñ2 = ñ2
r −

(

α̃ c

2 ω

)2

+ i
α̃ c

ω
ñr = ǫ̃r + iǫ̃i

ñ2
r −

(

α̃ c

2 ω

)2

= ǫ̃r (D.4)

α̃ c

ω
ñr = ǫ̃i (D.5)

Equation (D.4) is multiplied by ñ2
r , Eq. D.5 is substituted into the second term, and the

resulting expression is solved for ñr.

ñ4
r −

(

α̃ c

2 ω

)2

ñ2
r = ǫ̃r ñ2

r (D.6)

ñ4
r −

(

ǫ̃i

2

)2

= ǫ̃r ñ2
r

(

ñ2
r

)2 − ǫ̃r

(

ñ2
r

)

−
(

ǫ̃i

2

)2

= 0

ñ2
r =

ǫ̃r ±
√

ǫ̃ 2
r − 4 (−ǫ̃i/2)2

2

ñr = ±

√

ǫ̃r ±
√

ǫ̃ 2
r + ǫ̃ 2

i

2
(D.7)

Eq. (D.6) is quartic in ñr and therefore Eq. (D.7) yields four analytical solutions. However,

by definition the only physically realizable solution must be real and positive for all nonzero

frequencies (excluding the possibility of metamaterials). The real index and the absorption

function are therefore:
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ñr =

√

ǫ̃r +
√

ǫ̃ 2
r + ǫ̃ 2

i

2
(D.8)

α̃ =
ǫ̃i ω

ñr c
=

√
2 ω

c

√

− ǫ̃r +

√

(ǫ̃r)
2 + (ǫ̃i)

2. (D.9)

D.2 Reflection and Transmission Coefficients of Absorbing Media

The above functions of ñr(ω) and α̃(ω) will be used to determine energy reflection and trans-

mission coefficients for light at normal incidence, R̃ and T̃ , respectively. Let the respective

functions for medium one, ñ1r(ω) and α̃1r(ω), and medium two, ñ2r(ω) and α̃2r(ω), be given

by the Equations (D.8) and (D.9). The energy reflection and transmission coefficients for

absorbing media at normal incidence are defined to be [23]:

R̃ =

∣

∣

∣

∣

ñ1 − ñ2

ñ1 + ñ2

∣

∣

∣

∣

2

, T̃ = 1− R̃. (D.10)

Collecting the real and imaginary parts for the complex indices, the respective expressions

for R̃ and T̃ are:

R̃ =
(ñ1r − ñ2r)

2 + (α̃1r − α̃2r)
2 c2

4ω2

(ñ1r + ñ2r)2 + (α̃1r + α̃2r)2 c2

4ω2

(D.11)

T̃ =
4
(

ñ1rñ2r + α̃1rα̃2r
c2

4ω2

)

(ñ1r + ñ2r)2 + (α̃1r + α̃2r)2 c2

4ω2

. (D.12)

Note that if both absorption constants are zero, then the well-known linear coefficients are

recovered [23]. Also, because of the c2/ω2 factors, at least one absorption function must be

on the order of 104 cm−1 to make appreciable contributions to R̃ and T̃ in the visible/near-IR

frequency range, assuming ñ1r and ñ2r are of order unity.
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