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Chapter 1

Introduction

1.1 Background on Main Results

Throughout this document we shall refer to a set ∆ = {0, v1, . . . , vk} of points in Rk as a non-

degenerate k-dimensional simplex if the vectors v1, . . . , vk are linearly independent.

Define the upper density δ of a measurable set A ⊆ Rd to be

δ(A) = lim sup
N→∞

|A ∩BN |
|BN |

,

where | · | denotes Lebesgue measure on Rd and BN denotes the cube [−N/2, N/2]d.

A result of Katznelson and Weiss [3] states that if A is a measurable subset of R2 of positive

upper density, then its distance set

dist(A) = {|x− y| : x, y ∈ A}

contains all large numbers. In other words, given any sufficiently large λ > 0, there exits x ∈ A

such that on the circle centered at x of radius λ lies another point in A. This result was later

reproven using Fourier analytic techniques by Bourgain in [1]. Bourgain also proved the following

generalization, Theorem 1.1.1 below, and the following “pinned” variant, Theorem 1.1.2 below.

Theorem 1.1.1 is a generalization of the result above to k-simplices. That is, Bourgain proved that
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for all sufficiently large λ, the set A contains an isometric copy of λ ·∆. Theorem 1.1.2 says that

for a fixed x we get all large distances in some large, compact interval.

Theorem 1.1.1 (Theorem 2 in [1]). Let ∆ be a fixed, non-degenerate, k-dimensional simplex. If

A is a measurable subset of Rd of positive upper density with d ≥ k+ 1, then there exist λ0 = λ0(A)

such that for all λ ≥ λ0 one has

x+ λ · U(∆) ⊆ A (1.1)

for some x ∈ A and U ∈ SO(d).

Theorem 1.1.2 (Pinned distances, Theorem 1′ in [1]). Let ∆ = {0, v1, . . . , vk} be a fixed, non-

degenerate, k-dimensional simplex. If A is a measurable subset of R2 of positive upper density, then

there exist λ0 = λ0(A) such that for any given λ1 ≥ λ0 there is a fixed x ∈ A such that

A ∩ (x+ λ · S1) 6= ∅ (1.2)

for all λ0 ≤ λ ≤ λ1.

Our first new result is the following optimal strengthening of Theorem 1.1.1 above. That is,

there are in fact lots of rotations U ∈ SO(d) and lots of elements x ∈ A such that x+λ ·U(∆) ⊆ A.

Theorem 1.1.3 (Density of Embedded Simplices). Let ε > 0 and d ≥ k + 1. If A is a measurable

subset of Rd, then there exist λ0 = λ0(A, ε) such that

∫
SO(d)

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) dµ(U) > δ(A)k+1 − ε (1.3)

for all λ ≥ λ0. In particular, for each λ ≥ λ0 we may conclude that there exist U ∈ SO(d) such

that

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) > δ(A)k+1 − ε (1.4)

and there exist x ∈ A such that

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> δ(A)k − ε1/2. (1.5)
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Note that if the integral in (1.3) is greater than δ(A)k+1 − ε, then there exists some rotation

U ∈ SO(d) such that the integrand

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) > δ(A)k+1 − ε.

So, (1.4) follows easily from (1.3).

Also, if (1.3) holds, then by the definition of limsup, there exists large N such that

∫
SO(d)

|(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) ∩BN |
|BN |

dµ(U) > δ(A)k+1 − ε (1.6)

and

|A ∩BN |
|BN |

< δ(A) + ε1/2. (1.7)

We rewrite the left side of (1.6) and change the order of integration to get

1

|BN |

∫
SO(d)

∫
Rd

1(A∩BN )(x)1(A+λ·U(v1))(x) · · · 1(A+λ·U(vk))(x) dxdµ(U)

=
1

|BN |

∫
Rd

1(A∩BN )(x)

∫
SO(d)

1(A+λ·U(v1))(x) · · · 1(A+λ·U(vk))(x) dxdµ(U)

=
1

|BN |

∫
Rd

1(A∩BN )(x) · µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
dx > δ(A)k+1 − ε,

It follows that there exists some x ∈ A such that

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
>
δ(A)k+1 − ε
δ(A) + ε1/2

> δ(A)k − ε1/2 (1.8)

so that if (1.3) holds, then (1.5) holds.
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Our main new result is the following extension of Bourgain’s pinned distances theorem, Theorem

1.1.2 above, to non-degenerate k-dimensional simplices when k ≥ 2.

Theorem 1.1.4 (Density of Embedded Pinned Simplices). Let ∆ be a fixed non-degenerate k-

dimensional simplex and ε > 0. If A is a measurable subset of Rd with d ≥ k + 2, then there exist

λ0 = λ0(A, ε) such that for any given λ1 ≥ λ0 there is a fixed x ∈ A such that

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> δ(A)k − ε for all λ0 ≤ λ ≤ λ1. (1.9)

It is important to note that Theorem 1.1.4 should hold whenever d ≥ k+1. However, extending

our result to this range appears to require an essentially non-Fourier analytic approach, specifically

an adaptation of the geometric arguments in Bourgain’s Circular Maximal Function Theorem [2]

to the configuration spaces considered in this document.

1.2 Outline

In Chapter 3, we give our interpretation of Bourgain’s proof of Theorem 1.1.1 in the case of

distances, namely the k = 1 case, and a proof of Theorem 1.1.2 on pinned distances in Rd when

d ≥ 3. These proofs are meant to serve as models for the proofs of Theorem 1.1.3 on unpinned

simplices and Theorem 1.1.4 on pinned simplices given in Chapters 4 and 5. For example, in

the case of distances, we must consider the average of a function on a sphere of radius λ while

in the case of simplices, we must consider appropriate multi-linear averages. Chapter 2 includes

preliminary material necessary in the proofs of the Theorems 1.1.1 and 1.1.2. When we begin

discussing simplices in Chapter 4, we include background material appropriate to that case.

Each of the theorems stated above follows from a dichotomy proposition wherein the set A is

contained in the unit cube. The dichotomy is that either our set A behaves as we expect and the

result holds or A exhibits some unexpected behavior which is detected by the Fourier transform in

that the L2-norm of the Fourier transform of the characteristic function on the set A is concentrated

in an annulus. As such, in the proofs of some of these dichotomy propositions, we consider L2-

estimates on appropriate maximal averages, as outlined briefly below.
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The main tool in the proof of the Theorem 1.1.1 in the case of unpinned distances is the decay

of the Fourier transform of the surface measure on the sphere. Similarly, in the proof Theorem

1.1.3 on unpinned simplices, we use a decay estimate specific to the spheres we are considering

along with an appropriate decomposition of the configuration space, the space of all k-simplices in

Rd where d ≥ k + 1, with which we are working.

The main tool in the proof of Theorem 1.1.2 on pinned distances in Rd, where d ≥ 3, is the

L2-estimate on the spherical maximal function, discussed in Chapter 2. We also prove a similar

L2-estimate on appropriate “mollified” maximal averages, “mollified” meaning we are ultimately

considering the average of a function f on a thickened sphere. In the case of these “mollified”

maximal averages, the estimate we need in order to prove Theorem 1.1.2 is stronger than what

we would get from an application of the standard spherical maximal function theorem, as we shall

show in Chapter 3. The is similar for the proof of Theorem 1.1.4 on pinned simplices. Here, we

consider the configuration space of k-simplices in Rd for d ≥ k + 2 and corresponding multi-linear

averages. Thus, the new idea that goes into the proof of Theorem 1.1.4 is the proof of a “mollified”

maximal function estimate in this setting.

As mentioned in Section 1.1, Theorem 1.1.4 should hold in the case where d = k+ 1. However,

this extension requires an essentially non-Fourier analytic approach. As such, in Chapter 6, we

discuss a geometric approach to proving Stein’s spherical maximal function theorem when p = 2.
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Chapter 2

Preliminaries

2.1 Basic Definitions and Facts

2.1.1 Notation

Throughout this document, we use the following:

• A . B means A ≤ C · B, for some constant C > 0 and quantities A,B ∈ R. This is similar

for A & B.

• A� B means A ≤ cB, where c is a sufficiently small constant.

• “1A” denotes the characteristic function on the set A.

• Let f be a measurable function on Rd. Then,

||f ||p :=

(∫
Rd
|f(x)|pdx

)1/p

.

• Let f, g ∈ L2(Rd). Then 〈f, g〉 :=
∫
Rd f(x)g(x)dx.
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2.1.2 Fourier Transform

Let dµ be a complex-valued Borel measure on Rd. We define the Fourier transform of dµ (see [7])

to be

d̂µ(ξ) :=

∫
e−2πix·ξdµ(x).

If f ∈ L1(Rd), then dµ = f(x)dx defines a complex-valued Borel measure on Rd. We can thus

extend the definition of the Fourier transform to all L1 functions (and to Schwartz functions, in

particular) on Rd. That is,

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdx. (2.1)

For any function ψ and a given t > 0, we define

ψt(x) = t−dψ(t−1x). (2.2)

We define the convolution of a function ψ and a measure µ as

ψ ∗ dµ(x) =

∫
Rd
ψ(x− y)dµ(y). (2.3)

We can extend this definition to all L1 functions f by identifying f with the measure dµ = f(x)dx.

The following facts will be useful (see [7]):

(i) For any ψ ∈ L1(Rd) and measure dµ,

ψ̂ ∗ dµ = ψ̂ d̂µ. (2.4)

(ii) For any t > 0 and ψ ∈ L1(Rd),

ψ̂t(ξ) = ψ̂(tξ).
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(iii) (Plancherel’s Theorem) For Schwartz functions ϕ and ψ,

∫
Rd
ϕ(x)ψ(x)dx =

∫
Rd
ϕ̂(ξ)ψ̂(ξ)dξ. (2.5)

2.1.3 The Surface Measure on the Sphere and Spherical Averages

Let dσ denote the normalized surface measure on the unit sphere Sd−1 in Rd induced by Lebesgue

measure. For any t > 0, let

dσt(x) :=
1

td−1
dσ(t−1x).

Consider

d̂σ(ξ) =

∫
Rd
e−2πix·ξdσ(x).

Then

d̂σt(ξ) = d̂σ(tξ).

We can trivially bound |d̂σ(ξ)| by 1, for all ξ ∈ Rd. We will also make use of the following estimates

on |d̂σ(ξ)| and |∇d̂σ(ξ)|. These estimates follow from the principle of stationary phase, see for

example, [5]. For all ξ ∈ Rd,

|d̂σ(ξ)| . C(1 + |ξ|)−
d−1
2 (2.6)

and

|∇d̂σ(ξ)| . C(1 + |ξ|)−
d−1
2 . (2.7)

For a function f on Rd, let

Aλf(x) :=

∫
Sd−1

f(x− λy)dσ(y) (2.8)

denote the average of f over the sphere of radius λ > 0 centered at x. A change of variables gives

Aλf(x) = f ∗ dσλ(x). (2.9)
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Let

A∗f(x) := sup
λ>0
|Aλf(x)| (2.10)

denote the spherical maximal function on Rd. We have the following estimate on the spherical

maximal function, due to Bourgain in the case where d = 2 (see [2]) and Stein in the case where

d ≥ 3. The standard proof in the case where d ≥ 3 uses estimates (2.6) and (2.7), see [5].

Theorem 2.1.1. If d ≥ 2 and p > d
d−1 , then

||A∗f ||p . ||f ||p. (2.11)

We make use of Theorem 2.1.1 and a generalization thereof in the proof of Theorem 1.1.2 and

1.1.4.

2.1.4 A smooth cutoff function ψ and some basic properties:

Let ψ : Rd → (0,∞) be a Schwartz function that satisfies

1 = ψ̂(0) ≥ ψ̂(ξ) ≥ 0 and ψ̂(ξ) = 0 for |ξ| > 1.

Note that ψ and ψ̂ are both nonnegative functions and ψ̂ has compact support.

First, we make note of the trivial observation that

∫
ψt(x) dx =

∫
ψ(x) dx = ψ̂(0) = 1

as well as the fact that ψ may be chosen so that

∣∣1− ψ̂t(ξ)∣∣ =
∣∣1− ψ̂(tξ)

∣∣ . min{1, t|ξ|}. (2.12)

Finally we record a formulation, appropriate to our needs, of the fact that for any given small

parameter η, our cutoff function ψt(x) will essentially supported where |x| ≤ η−1t and is approxi-

mately constant on smaller scales. More precisely, we have the following statement.
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Lemma 2.1.1. Let η > 0 and t > 0, then

∫
|x|≥η−1t

ψt(x) dx . η. (2.13)

and ∫ ∫ ∣∣ψt(x− λy)− ψt(x)
∣∣ dσ(y) dx . η (2.14)

provided t ≥ η−1λ.

Proof. Estimate (2.13) is easily verified using the fact that ψ is a Schwartz function on Rd as

∫
|x|≥η−1t

ψt(x) dx =

∫
|x|≥η−1

ψ(x) dx .
∫
|x|≥η−1

(1 + |x|)−d−1 dx . η.

To verify estimate (2.14) we make use of the fact that both ψ and its derivative are rapidly

decreasing, specifically

∫ ∫ ∣∣ψt(x− λy)− ψt(x)
∣∣ dσ(y) dx ≤

∫ ∫ ∣∣ψ(x− λy/t)− ψ(x)
∣∣ dσ(y) dx

.
λ

t

∫
(1 + |x|)−d−1dx .

λ

t
.
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Chapter 3

Distance Sets

In this chapter, we prove Theorem 1.1.1 when k = 1. This proof is meant to serve as a model for

the proof of Theorem 1.1.3 discussed in Chapter 2. We also prove Theorem 1.1.2 for d ≥ 3. This

proof is meant to serve as a model for the proof of Theorem 1.1.4 on pinned simplices.

3.1 Unpinned Distances

Theorem 3.1.1. Let d ≥ 2. Let A ⊂ Rd with δ(A) > 0. Then there exists λ0 = λ0(A) such that

for all λ ≥ λ0, there exists an x ∈ A such that

A ∩ (x+ λSd−1) 6= ∅. (3.1)

Theorem 3.1.1 follows from the following dichotomy proposition for sets in the unit cube.

Proposition 3.1.1. Let δ > 0, 0 < η � δ2, and A ⊂ [0, 1]d such that |A| = δ. Then for any

0 < λ ≤ η4, one of the following holds:

(i) there exists x ∈ A such that

A ∩ (x+ λSd−1) 6= ∅. (3.2)

(ii) ∫
η2/λ≤|ξ|≤1/η−2λ

|1̂A(ξ)|2dξ & δ|A|. (3.3)
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Let’s first see why Theorem 3.1.1 follows from Proposition 3.1.1.

Proof. (Proposition 3.1.1 implies Theorem 3.1.1) Fix δ > 0. Assume the theorem fails for some

A ⊆ Rd with δ(A) > δ. That is, for any J , we can choose a strictly increasing sequence {λj}Jj=1

with λj+1 ≥ η−4λj such that

A ∩ (x+ λjS
d−1) = ∅,

for each j. Since A has positive upper density, we can choose N ≥ λJη−4 such that

|A ∩BN | ≥ δ|BN |. (3.4)

Rescale A∩BN to a subset of [−1/2, 1/2]d and identify [−1/2, 1/2]d with [0, 1]d. We abuse notation

and call this rescaled set A. After possibly deleting some pieces, we can say that |A| = δ. If

A ∩BN does not contain two elements of distance λj apart, then A does not contain two elements

of distance λj/N apart. We can thus apply (ii) from the proposition for λj/N , for each 1 ≤ j ≤ J

and we get that
J∑
j=1

∫
η2N/λj≤|ξ|≤N/η2λj

|1̂A(ξ)|2dξ ≥ C · J · δ|A| > |A|, (3.5)

for J > C · δ−1. On the other hand, since λj+1 ≥ η−4λj , the annuli over which we are integrating

above are disjoint. It follows from this disjointness property and Plancherel’s identity that

|A| =
∫
Rd
|1̂A(ξ)|2dξ ≥

J∑
j=1

∫
η2/λj≤|ξ|≤1/η2λj

|1̂A(ξ)|2dξ, (3.6)

a contradiction.

3.1.1 Proof of Proposition 3.1.1

Let A ⊆ [0, 1]d and say |A| = δ > 0. Let f = 1A. Suppose that part (i) of the proposition is not

true. Then there exists λ ≤ η4 such that Aλf(x) = 0, for every x ∈ A. It follows that

〈f,Aλf〉 = 0. (3.7)
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Define f1 := f ∗ ψη−1λ. Clearly,

|Aλ(f1)(x)− f1(x)| ≤
∫
|f1(x− λy)− f1(x)|dσ(y).

It follows, then, from (2.14) that

|Aλ(f1)(x)− f1(x)| . η. (3.8)

As a result, for any x ∈ A,

Aλ(f − f1)(x)� η − f1(x). (3.9)

Integrating against f and applying the assumption (3.7), we get that

〈f,Aλ(f − f1)〉 . 〈f, η − f1〉 = |A|η − 〈f, f1〉. (3.10)

We combine this with the following lemma.

Lemma 3.1.1. Let 0 < η < δ and f1 := f ∗ ψη−1λ, then

〈f, f1〉 & δ(1− Cη)|A|. (3.11)

Lemma 3.1.1 along with (3.10) gives

|〈f,Aλ(f − f1)〉| & δ |A|, (3.12)

provided η � δ. The final piece in the proof of Proposition 3.1.1 is the following lemma.

Lemma 3.1.2. If f2 := f ∗ ψη2λ, then

〈f,Aλ(f − f2)〉 . η2/3 |A|. (3.13)

We prove Lemmas 3.1.1 and 3.1.2 below.
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Proof. (Lemma 3.1.1) We must show that

∫
f(x)f1(x)dx ≥ δ2(1− Cη). (3.14)

It follows from Parseval’s identity and the fact that 0 ≤ ψ̂ ≤ 1 that

∫
f(x)f1(x)dx =

∫
|f̂(ξ)|2ψ̂(η−1λξ)dξ ≥

∫
|f̂(ξ)|2|ψ̂(η−1λξ)|2dξ =

∫
f1(x)2dx. (3.15)

Write B for [0, 1]d and let B′ denote [−η−2λ, 1 + η−2λ]d. Of course,

∫
Rd
f1(x)2dx ≥

∫
B
f1(x)2dx.

Cauchy-Schwarz gives ∫
B
f1(x)2 dx ≥

(∫
B
f1(x) dx

)2
. (3.16)

So, it suffices to show that (∫
B
f1(x)dx

)2

≥ δ2(1− Cη). (3.17)

Write ∫
B
f1(x) dx =

∫
Rd
f1(x) dx−

∫
Rd\B′

f1(x) dx−
∫
B′\B

f1(x) dx. (3.18)

Since ψ integrates to 1, we get that

∫
Rd
f1(x) dx =

∫
Rd
f(x)dx = |A|. (3.19)

We can apply 2.13 in Lemma (2.1.1) to get that

∫
Rd\B′

f1(x)2 dx ≤ |A|
∫
|y|&η−2λ

ψη−1λ(y) dy . η|A|. (3.20)

Finally, the fact that λ ≤ η4 ensures that

|B′\B| . η−2λ . η2.
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Then since 0 ≤ f1 ≤ 1, we have ∫
B′\B

f1(x) dx . η2 ≤ δη. (3.21)

Combining (3.19), (3.20), and (3.21), we get

∫
B
f1(x)dx ≥ δ(1− Cη).

It follows that (∫
B
f1(x)dx

)2

≥ δ2(1− 2Cη),

as desired.

Proof. (Lemma 3.1.2) It follows from an application of Cauchy-Schwarz and Plancherel that

〈
f,Aλ(f − f2)

〉2 ≤ |A| ·
∫
|f̂(ξ)|2|1− ψ̂(η2λ ξ)|2|d̂σ(λ ξ)|2 dξ.

Using the decay of d̂σ(ξ), see (2.6), we see that |d̂σ(λξ)|2 ≤ min{1, (λ|ξ|)−1}. We combine this

observation with (2.12) to get

|1− ψ̂(η2λξ)|2|d̂σ(λξ)|2 . min{(λξ)−1, η4λ2|ξ|2} ≤ η4/3. (3.22)

It follows after an application of Plancherel that

〈f,Aλ(f − f2)〉 . η2/3|A|.

Since η � δ2 and

〈
f,Aλ(f2 − f1)

〉
=
〈
f,Aλ(f − f1)

〉
−
〈
f,Aλ(f − f2)

〉
we see that (3.12) together with Lemma 3.1.2 imply that if (3.7) holds, then

〈
f,Aλ(f2 − f1)

〉
& δ|A|. (3.23)
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It then follows, via Cauchy-Schwarz and Plancherel, that

∫ ∣∣f̂(ξ)
∣∣2∣∣ψ̂η2λ(ξ)− ψ̂η−1λ(ξ)

∣∣2 dξ & δ|A|, (3.24)

which is essentially the estimate that we are trying to prove. Now, since (2.12) implies that

∣∣ψ̂η2 λ(ξ)− ψ̂η−1λ(ξ)
∣∣ . η (3.25)

whenever ξ is not contained in {ξ : η/λ ≤ |ξ| ≤ 1/ηλ}, it indeed suffices and concludes the proof of

Proposition 3.1.1.

3.2 Pinned Distances

In this section, we prove the following “pinned” version of Theorem 3.1.1. Just as in the case of

Theorem 3.1.1, the proof of Theorem 3.2.1 is meant to serve as a model for the proof of Theorem

1.1.4 on pinned simplices.

Theorem 3.2.1 (Pinned distances). Let d ≥ 3. If A is a measurable subset of Rd with positive

upper density, then there exist λ0 = λ0(A) such that for any given λ1 ≥ λ0 there is a fixed x ∈ A

such that

A ∩ (x+ λ · S1) 6= ∅ (3.26)

for all λ0 ≤ λ ≤ λ1.

Similar to Theorem 3.1.1, Theorem 3.2.1 follows from the following dichotomy proposition.

Proposition 3.2.1. Let δ > 0, 0 < η � δ3, and A ⊂ [0, 1]d such that |A| = δ. Then, for any

0 < λ0 < λ1 ≤ η4, one of the following holds:

(i) there exists x ∈ A such that

A ∩ (x+ λSd−1) 6= ∅, (3.27)

for all λ ∈ [λ0, λ1].
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(ii) ∫
η2/λ1≤|ξ|≤1/η2λ0

|1̂A(ξ)|2dξ & δ2|A|. (3.28)

Let’s see why the proposition implies the theorem.

Proof. (Proposition 3.2.1 implies Theorem 3.2.1) Fix δ > 0. Assume the theorem fails for some

A ⊆ Rd with δ(A) > δ. That is, for any J , we can choose strictly increasing pairs {(λ(j)
0 , λ

(j)
1 )}Jj=1

with λ
(j+1)
0 ≥ η−4λ

(j)
1 such that

A ∩ (x+ λjS
d−1) = ∅,

for each j. Since A has positive upper density, we can choose N ≥ λ(J)
1 η−4 such that

|A ∩BN | ≥ δ|BN |. (3.29)

Rescale A∩BN to a subset of [−1/2, 1/2]d and identify [−1/2, 1/2]d with [0, 1]d. We abuse notation

and call this rescaled set A. After possibly deleting some pieces, we can say that |A| = δ. If for

each x ∈ A ∩BN , there exists some λ0 ≤ λ ≤ λ1 such that

(A ∩BN ) ∩ (x+ λS1) = ∅,

then, clearly, the same is the case for A. Thus, we can apply (ii) from the proposition for each

(λ
(j)
0 /N, λ

(j)
1 /N) and we get that

J∑
j=1

∫
η2N/λ

(j)
1 ≤|ξ|≤N/η2λ

(j)
0

|1̂A(ξ)|2dξ ≥ J · Cδ2|A| > |A|, (3.30)

for J > Cδ−2. On the other hand, since λ
(j+1)
0 ≥ η−4λ

(j)
1 , the annuli over which we are integrating

above are disjoint. It follows from this disjointness property and Plancherel’s identity that

|A| =
∫
Rd
|1̂A(ξ)|2dξ ≥

J∑
j=1

∫
η2N/λj≤|ξ|≤N/η2λj

|1̂A(ξ)|2dξ, (3.31)

a contradiction.
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3.2.1 Proof of Proposition 3.2.1

Let A ∈ [0, 1]d and say |A| = δ > 0. Let f = 1A. Suppose that we have a pair (λ0, λ1) satisfying

1 ≤ λ0 ≤ λ1 ≤ η, but for which (i) does not hold. It follows that for all x ∈ A there must exist

λ0 ≤ λ ≤ λ1 such that

Aλ(f)(x) = 0. (3.32)

We now let f1 = f ∗ ψη−1λ1 , noting the slight difference from the definition of f1 given in the

proof of Proposition 3.1.1. It follows from (3.32), as in the proof of Proposition 3.1.1, that for all

x ∈ A there must exist λ0 ≤ λ ≤ λ1 such that

Aλ(f − f1)(x) . η − f1(x) (3.33)

and hence that

A ∗(f − f1)(x) & f1(x)− η, (3.34)

for all x ∈ A, where for any Schwartz function g, A ∗(g) denotes the maximal average defined by

A ∗(g)(x) := sup
λ0≤λ≤λ1

|Aλ(g)(x)|. (3.35)

Appealing to Lemma 3.1.1, we may conclude that

〈
f,A ∗(f − f1)

〉
& δ|A|. (3.36)

Arguing as in the proof of Proposition 3.1.1 we see that everything reduces to using the L2-

boundedness of A ∗ together with establishing appropriate estimates for the “mollified” maximal

operator

Mη(f) := A ∗(f − f2) (3.37)

where f2 = f ∗ ψη2 λ0 . Note that

Mη(f) = sup
λ0≤λ≤λ1

∣∣∣∫ f(x− λy) dµη(y)
∣∣∣ (3.38)
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where

dµη = dσ − ψη2λ0λ−1 ∗ dσ. (3.39)

and hence

d̂µη(λ ξ) = d̂σ(λ ξ)
(
1− ψ̂(η2λ0 ξ)

)
. (3.40)

Recall, Theorem 2.1.1 says that

∫
Rd
|A ∗(g)(x)|2 dx .

∫
Rd
|g(x)|2 dx, (3.41)

provided d ≥ 3.

The other result that we need is recorded in the following proposition.

Proposition 3.2.2 (L2-decay of the “Mollified” Maximal Averages Mη). Let d ≥ 3 and η > 0.

Then, ∫
Rd
|Mη(f)(x)|2 dx . η2/3

∫
Rd
|f(x)|2 dx. (3.42)

By the sublinearity of the supremum,

〈f,A∗(f2 − f1)〉 ≥ 〈f,A∗(f − f1)〉 − 〈f,A∗(f − f2)〉. (3.43)

Since η � δ3, then by Cauchy-Schwarz and Proposition 3.2.2

〈f,A∗(f − f2)〉 . ||f ||||A∗(f − f2)||2 . η1/3||f ||22 � δ|A|. (3.44)

We combine (3.36), (5.14), and (3.44) to get

〈f,A∗(f2 − f1)〉 & δ||f ||22, (3.45)

Now, Cauchy-Schwarz and an application of Theorem 2.1.1 give that

〈f,A∗(f2 − f1)〉 ≤ ||f ||2||A∗(f2 − f1)||2 . ||f ||2||f2 − f1||2. (3.46)
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It follows that

||f2 − f1||22 & δ2|A|,

which is precisely the estimate we want to prove.

3.2.2 Proof of Proposition 3.2.2

We will deduce the validity of Proposition 3.2.2 from the following result for the slightly more

general class of operators defined for any L > 0 by

ML(f)(x) = sup
λ0≤λ≤λ1

∣∣∣∫ f(x− λy) dµL(y)
∣∣∣ (3.47)

where

d̂µL(λ ξ) = mL(ξ) d̂σ(λ ξ) (3.48)

with the multiplier mL now any smooth function that satisfies the estimate

|mL(ξ)| . min{1, L|ξ|}. (3.49)

Recall that estimate (2.12) is precisely the statement that |1− ψ̂(Lξ)| . min{1, L|ξ|}.

Theorem 3.2.2. If d ≥ 3,

∫
Rd
|ML(f)(x)|2 dx .

( L
λ0

)1/3
∫
Rd
|f(x)|2 dx. (3.50)

Proof. It is easy to see that

∫
Rd
|ML(f)(x)|2 dx ≤

∫
Rd

sup
λ0≤λ≤λ1

|ML,λ(f)(x)|2 dx. (3.51)

where ML,λ is the Fourier multiplier operator defined by

M̂L,λ(f)(ξ) = f̂(ξ)mL(ξ) d̂σ(λ ξ). (3.52)
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A standard application of the Fundamental Theorem of Calculus, see for example [4], gives

sup
λ0≤λ≤λ1

|ML,λ(f)(x)|2 ≤ 2

∫ λ1

λ0

|ML,t(f)(x)||M̃L,t(f)(x)| dt
t

+ |ML,λ0(f)(x)|2 (3.53)

where M̃L,t(f) = t
d

dt
ML,t(f). We further note that M̃L,t is clearly also a Fourier multiplier operator,

indeed

̂̃
ML,t(f)(ξ) = f̂(ξ)mL(ξ)

(
tξ · ∇d̂σ(tξ)

)
. (3.54)

We can now write

∫
Rd
|ML(f)(x)|2 dx

≤ 2
∞∑

`=blog2 λ0c

∫ 2`

2`−1

∫
Rd
|ML,t(f)(x)||M̃L,t(f)(x)| dx dt

t

+

∫
Rd
|ML,λ0(f)(x)|2 dx.

Applying Cauchy-Schwarz to the first integral above, in the variables x, y, and t together,

followed by an application of Plancherel in two resulting integrations in x as well as in the one that

appears in the second integral above, we obtain the estimate

∫
Rd
|ML(f)(x)|2 dx ≤ 2

∞∑
`=blog2 λ0c

(
I` Ĩ`

)1/2
+ I (3.55)

with

I` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2|d̂σ(t ξ)|2 dξ dt

t
(3.56)

Ĩ` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2

∣∣t ξ · ∇d̂σ(t ξ)
∣∣2 dξ dt

t
(3.57)

and

I =

∫
Rd
|f̂(ξ)|2|mL(ξ)|2|d̂σ(λ0 ξ)|2 dξ. (3.58)
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Combining (3.49) with the decay estimate for d̂σ(ξ) gives

|mL(ξ)|2|d̂σ(tξ)|2 . min{(t|ξ|)−1, L2|ξ|2} ≤ L2/3t−2/3. (3.59)

which ensures, via Plancherel, that

I` .
(L

2`

)2/3
‖f‖22 and I .

( L
λ0

)2/3
‖f‖22. (3.60)

Using the decay of ∇d̂σ(ξ), statement (2.7), we have that Ĩ(ξ) is bounded as well. It follows

immediately from this observation (and Plancherel) that

Ĩ` . ‖f‖22. (3.61)

Combining (3.55), (3.60), and (3.61), we get that

∫
Rd
|ML(f)(x)|2 dx .

L1/3
∞∑

`=blog2 λ0c

2−`/3 +
( L
λ0

)2/3

∫
Rd
|f(x)|2 dx

.
( L
λ0

)1/3
∫
Rd
|f(x)|2 dx

as required.
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Chapter 4

Unpinned Simplices

Here we prove Theorem 1.1.3, an optimal strengthening of Bourgain’s theorem, Theorem 1.1.1, on

unpinned simplices.

4.1 Density of Embedded Simplices

Theorem 4.1.1 (Density of Embedded Simplices). Let ∆ = {0, v1, . . . , vk} be a fixed, non-

degenerate k-dimensional simplex. Let ε > 0. If A is a measurable subset of Rd with d ≥ k + 1,

then there exist λ0 = λ0(A, ε) such that

∫
SO(d)

δ(A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))) dµ(U) > δ(A)k+1 − ε (4.1)

for all λ ≥ λ0.

Just as in the case of distances, Theorem 1.1.4 follows from the following dichotomy proposition.

Proposition 4.1.1 (Dichotomy for Theorem 4.1.1). Let ∆ = {0, v1, . . . , vk} be a fixed, non-

degenerate k-dimensional simplex such that diam(∆) ≤ 1. Let ε > 0 and 0 < η � ε5/2.

Let A ⊆ [0, 1]d with d ≥ k + 1, then for any λ satisfying 0 < λ ≤ η4, one of the following must

hold:
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(i) ∫
SO(d)

|A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))|dµ(U) > |A|k+1 − ε (4.2)

(ii)

1

|A|

∫
Ωλ

|1̂A(ξ)|2 dξ & Ckε
2 (4.3)

where

Ωλ = Ωλ(η) = {ξ ∈ Rd : η2 λ−1 ≤ |ξ| ≤ η−2λ−1}. (4.4)

Proof. (Proposition 4.1.1 implies Theorem 4.1.1) Let ε > 0, 0 < η � ε5/2. Suppose A ⊆ Rd with

δ(A) > 0. Suppose the conclusion of Theorem 4.1.1 fails to hold for the set A. That is, there exist

arbitrarily large λ such that

∫
SO(d)

δ(A ∩ (A+ λU(v1)) ∩ · · · ∩ (A+ λU(vk))dµ(U) ≤ δ(A)k+1 − ε. (4.5)

That is, for any fixed J we can choose an increasing sequence λ1 < λ2 < · · · < λJ for which

the inequality above holds and λj ≤ η4λj+1. By the definition of limsup, there exists an integer N

with N ≥ η−4λ1 such that

δ(A)k+1 − ε/2 ≤
(
|A ∩BN |
|BN |

)k+1

− ε/4. (4.6)

and that

∫
SO(d)

|AN ∩ (AN + λ(j) · U(v1)) ∩ · · · ∩ (AN + λ(j) · U(vk))|
Nd

dµ(U) ≤ δ(A)k+1 − ε/2 (4.7)

holds for all 1 ≤ j ≤ J , where AN = A ∩BN . To get the last inequality, we use Fatou’s Lemma.

Rescale A ∩ BN to a subset of [−1/2, 1/2]d and identify [−1/2, 1/2]d with [0, 1]d. We abuse

notation and call this rescaled set A. If A ∩ BN does not contain an isometric copy of λj ·∆ for

any j, then A does not contain an isometric copy of
λj
N
·∆ for any j. Choose J > Cε−2. Then, we

24



can apply part (ii) of the proposition for each 1 ≤ j ≤ J : On the one hand,

J∑
j=1

1

|A|

∫
Ωλj/N

|1̂A(ξ)|2dξ & Jε2 > 1. (4.8)

On the other hand, it follows from the choice of the increasing sequence {λj} that the sets {Ωλj/N}

are disjoint. By the disjointness of {Ωλj/N} and by Plancherel’s theorem, we get that

J∑
j=1

1

|A|

∫
Ωλj/N

|1̂A(ξ)|2dξ ≤ 1

|A|

∫
Rd
|1̂A(ξ)|2dξ = 1, (4.9)

giving a contradiction.

4.2 Background

Here, we give facts and definitions specific to the case of simplices.

4.2.1 The multi-linear operators A(j)
λ

Let ∆ = {0, v1, . . . , vk} be a fixed k-dimensional simplex. Without loss of generality we may assume

that |v1| = 1. For each 1 ≤ j ≤ k we introduce the multi-linear operator A(j)
λ , defined initially for

Schwartz functions g1, . . . , gj , by

A(j)
λ (g1, . . . , gj)(x) =

∫
· · ·
∫
g1(x− λy1) · · · gj(x− λyj) dσ(d−j)

y1,...,yj−1
(yj) · · · dσ(d−1)(y1), (4.10)

where dσ(d−1) denotes the measure on the unit sphere Sd−1 ⊆ Rd induced by Lebesgue measure

normalized to have total mass 1 and dσ
(d−j)
y1,...,yj−1 denotes, for each 2 ≤ j ≤ k, the normalized measure

on the sphere

Sd−jy1,...,yj−1
⊆ y + [y1, . . . , yj−1]⊥ ' Rd−j+1

of radius rj = dist(vj , [v1, . . . , vj−1]) centered at y ∈ [y1, . . . , yj−1] with y · yi = vj · vi for all

1 ≤ i ≤ j − 1.
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The multi-linear operator A(j)
λ is a natural object for us to consider in light of the observation

that it could have equivalently be defined for each 1 ≤ j ≤ k using the formula

A(j)
λ (g1, . . . , gj)(x) :=

∫
SO(d)

g1(x− λ · U(v1)) · · · gj(x− λ · U(vj)) dµ(U) (4.11)

and hence for any bounded measurable set A ⊆ Rd, the quantity

〈
1A,A(k)

λ (1A, . . . , 1A)
〉

=

∫
SO(d)

|A ∩ (A+ λ · U(v1)) ∩ · · · ∩ (A+ λ · U(vk))| dµ(U). (4.12)

A trivial, but important, observation will be the fact that

∣∣∣A(j)
λ (g1, . . . , gj)(x)− gj(x)A(j−1)

λ (g1, . . . , gj−1)(x)
∣∣∣ (4.13)

≤ sup
y1,...,yj−1∈Rd

∫ ∣∣gj(x− λyj)− gj(x)
∣∣ dσ(d−j)

y1,...,yj−1
(yj).

4.2.2 A second averaging operator and some basic estimates

We now introduce a second averaging operator, which we also denote by A(j)
λ , defined initially for

any Schwartz function g, by

A(j)
λ (g)(x) =

∫
· · ·
∫ ∣∣∣∫ g(x− λyj) dσ(d−j)

y1,...,yj−1
(yj)

∣∣∣ dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1) (4.14)

Note that if the functions g1, . . . , gj−1 are all bounded in absolute value by 1, then clearly

∣∣A(j)
λ (g1, . . . , gj)(x)

∣∣ ≤ A(j)
λ (gj)(x). (4.15)

Fix 1 ≤ j ≤ k. It is easy to see, using Minkowski’s inequality, that for any Schwartz function g

we have the crude estimate ∫ ∣∣A(j)
λ (g)(x)

∣∣2 dx ≤ ∫ |g(x)|2 dx. (4.16)
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However, arguing more carefully one can just as easily obtain, using Plancherel’s identity, the

estimate

∫ ∣∣A(j)
λ (g)(x)

∣∣2 dx ≤ ∫ · · · ∫ (∫ |ĝ(ξ)|2
∣∣ ̂
dσ

(d−j)
y1,...,yj−1(λ ξ)

∣∣2 dξ) dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1).

(4.17)

Just as in the case of unpinned distances, we made use of the decay estimate of the Fourier transform

of the surface measure on the sphere, here, we will have use for the following estimate

∣∣ ̂
dσ

(d−j)
y1,...,yj−1(ξ)

∣∣+
∣∣∇ ̂
dσ

(d−j)
y1,...,yj−1(ξ)

∣∣ ≤ C∆

(
1 + dist(ξ, [y1, . . . , yj−1])

)−(d−j)/2
. (4.18)

This is indeed a consequence of the decay of the Fourier transform of the surface measure on the

sphere Sd−j ⊆ Rd−j+1, see (2.6), (2.7) in Chapter 2.

Lemma 4.2.1. Let η > 0 and t > 0, then

sup
y1,...,yj−1∈Rd

∫ ∫ ∣∣ψt(x− λy)− ψt(x)
∣∣ dσ(d−1)

y1,...,yj−1
(y) dx . η, (4.19)

provided t ≥ η−1λ.

The proof of Lemma 4.2.1 is the same as the proof of Lemma 2.1.1.

4.3 Proof of Dichotomy Proposition

Let f = 1A and δ = |A|. Suppose that 0 < λ ≤ η4 and that (i) does not hold. Then,

〈f,Ajλ(f, . . . , f)〉 ≤ 〈f, δk − ε〉 = (δk − ε) · δ. (4.20)

If we let f1 := f ∗ψη−1λ, then from (4.13) and (2.14), it follows for all x ∈ Rd and 1 ≤ j ≤ k we

have

∣∣∣A(j)
λ (f, . . . , f, f1)(x)− f1(x)A(j−1)

λ (f, . . . , f)(x)
∣∣∣ . η. (4.21)
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We can use (4.21) repeatedly and reorganize terms to get

f1(x)k +

k∑
j=1

f1(x)k−jA(j)
λ (f, . . . , f, f − f1)(x) . A(k)

λ (f, . . . , f)(x) + η. (4.22)

Integrate the terms above against f and combine the result with (4.20) to get

k∑
j=1

〈
ffk−j1 ,A(j)

λ (f, . . . , f, f − f1)
〉
≤ 〈f, δk − fk1 − ε/2〉 (4.23)

provided η � ε.

We combine the above with the following lemma.

Lemma 4.3.1. Let η > 0 and f1 := f ∗ ψη−1λ, then

〈f, δk − fk1 〉 . 〈f, η〉 (4.24)

Lemma 4.3.1 follows almost immediately from Lemma 3.1.1. Indeed, it suffices to establish the

result when k = 1, namely that

∫
f(x)f1(x) dx ≥ δ2(1− Cη) |A| (4.25)

since from Hölder’s inequality we would then obtain

(δ − Cη)k |A|k ≤
(∫

f(x)f1(x) dx
)k
≤ |A|k−1

∫
f(x)f1(x)k dx

from which the full result immediately follows.

Combining Lemma 4.3.1 with (4.23) we see that if η � ε and (4.20) holds, then there exist

1 ≤ j ≤ k such that ∣∣∣〈ffk−j1 ,A(j)
λ (f, . . . , f, f − f1)

〉∣∣∣ ≥ Ck ε|A|. (4.26)
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Hence, using (4.15) and the fact that 0 ≤ f1 ≤ 1, that

〈
f,A(j)

λ (f − f1)
〉
≥ Ck ε|A|. (4.27)

The final ingredient in the proof of Proposition 4.1.1 is the following

Lemma 4.3.2 (Error term). If f2 := f ∗ ψη2λ, then for any 1 ≤ j ≤ k we have the estimate

〈
f,A(j)

λ (f − f2)
〉
. η2/5|A|. (4.28)

Indeed, since

〈
f,A(j)

λ (f2 − f1)
〉
≥
〈
f,A(j)

λ (f − f1)
〉
−
〈
f,A(j)

λ (f − f2)
〉

we see that (4.27) together with Lemma 4.3.2 will imply that if η . ε5/2 and (4.20) holds, then

there exist 1 ≤ j ≤ k such that

〈
f,A(j)

λ (f2 − f1)
〉
≥ Ck ε|A|. (4.29)

It then follows, via Cauchy-Schwarz and Plancherel, that

∫ ∣∣f̂(ξ)
∣∣2∣∣ψ̂η2λ(ξ)− ψ̂η−1λ(ξ)

∣∣2 dξ ≥ Ckε
2 |A|, (4.30)

which is essentially the estimate that we are trying to prove and since (2.12) implies that

∣∣ψ̂η2λ(ξ)− ψ̂η−1λ(ξ)
∣∣� η (4.31)

whenever ξ /∈ Ωλ, it indeed suffices and concludes the proof of Proposition 4.1.1.
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4.3.1 Proof of Lemma 4.3.2

It follows from an application of Cauchy-Schwarz and Plancherel that

〈
f,A(j)

λ (f − f2)
〉2 ≤ |A| ·

∫
|f̂(ξ)|2|1− ψ̂(η2λ ξ)|2I(λ ξ) dξ

where

I(ξ) =

∫
· · ·
∫ ∣∣ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1). (4.32)

While from (4.18), the trivial uniform bound I(ξ) � 1, and an appropriate “conical” decom-

position, depending on ξ, of the configuration space over which the integral I(ξ) is defined, we

have

I(ξ) ≤ C∆(1 + |ξ|)−(d−j)/2. (4.33)

Combining this observation with (2.12) we obtain the uniform bound

|1− ψ̂(η2λ ξ)|2I(λ ξ)� min{(λ|ξ|)−1/2, η4λ2|ξ|2} ≤ η4/5 (4.34)

which, after an application of Plancherel, completes the proof.
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Chapter 5

Pinned Simplices

Here, we’ll discuss the following pinned version of Theorem 1.1.3 in Chapter 4.

5.1 Density of Embedded Pinned Simplices

Theorem 5.1.1 (Density of Embedded Pinned Simplices). Let ∆ be a fixed non-degenerate k-

dimensional simplex and let ε > 0. If A is a measurable subset of Rd with d ≥ k + 2, then there

exist λ0 = λ0(A, ε) such that for any given λ1 ≥ λ0 there is a fixed x ∈ A such that

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> δ(A)k − ε for all λ0 ≤ λ ≤ λ1. (5.1)

Proposition 5.1.1 (Dichotomy for Theorem 5.1.1). Let ∆ be a fixed, non-degenerate k-dimensional

simplex such that diam(∆) ≤ 1. Let ε > 0 and 0 < η � ε3. Let A ⊆ [0, 1]d with d ≥ k + 2. Then

for any pair (λ0, λ1) satisfying 0 < λ0 ≤ λ1 ≤ η4, one of the following must hold:

(i)

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
> |A|k − ε for all λ0 ≤ λ ≤ λ1. (5.2)

(ii)

1

|A|

∫
Ωλ0,λ1

|1̂A(ξ)|2 dξ ≥ Ckε2 (5.3)

where

Ωλ0,λ1 = Ωλ0,λ1(η) = {ξ ∈ Rd : η2 λ−1
1 ≤ |ξ| ≤ η−2λ−1

0 }. (5.4)
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Proof. (Proposition 5.1.1 implies Theorem 5.1.1) Let ε > 0, 0 < η < ε3. Suppose A ⊆ Rd with

δ(A) > 0. Suppose the conclusion of Theorem 4.1.1 fails to hold for the set A. That is, there exist

arbitrarily large pairs (λ0, λ1) of real numbers such that for all x ∈ A one has

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
≤ δ(A)k − ε

for some λ0 ≤ λ ≤ λ1.

For a fixed integer J � ε−2 we choose a sequence of such pairs {(λ(j)
0 , λ

(j)
1 }Jj=1 with the property

that 1 ≤ λ(j)
0 ≤ η4λ

(j+1)
1 for 1 ≤ j < J . We now choose N so that λ

(J)
1 ≤ η4N and

δ(A)k − ε ≤
(
|A ∩BN |
Nd

)k
− ε/2. (5.5)

Rescale A ∩ BN to a subset of [−1/2, 1/2]d and identify [−1/2, 1/2]d with [0, 1]d. We abuse

notation and call this rescaled set A. If the conclusion of the theorem does not hold for A ∩ BN ,

that is, if for all x ∈ A one has

µ
({
U ∈ SO(d) : x+ λ · U(∆) ⊆ A

})
≤ δ(A)k − ε,

for some λ0 ≤ λ ≤ λ1, then this is similar for A and (λ
(j)
0 /N, λ

(j)
1 /N). Choose J ≥ Ckε

−2. Thus,

we can apply part (ii) of the proposition for each 1 ≤ j ≤ J . On the one hand,

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 /N,λ

(j)
1 /N

|1̂A(ξ)|2dξ ≥ CkJε2 > 1. (5.6)

On the other hand, it follows from the choice of the increasing sequence {λ(j)
0 /N} that the sets

Ω
λ
(j)
0 /N,λ

(j)
1 /N

are disjoint. By the disjointness of Ω
λ
(j)
0 ,λ

(j)
1

and by Plancherel’s theorem, we get that

J∑
j=1

1

|A|

∫
Ω
λ
(j)
0 /N,λ

(j)
1 /N

|1̂A(ξ)|2dξ ≤ 1

|A|

∫
Rd
|1̂A(ξ)|2dξ = 1, (5.7)

giving a contradiction.
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5.2 Proof of Dichotomy Proposition

Suppose that we have a pair (λ0, λ1) satisfying 1 ≤ λ0 ≤ λ1 ≤ η4N , but for which (i) does not

hold. It follows that for all x ∈ A there must exist λ0 ≤ λ ≤ λ1 such that

A(k)
λ (f, . . . , f)(x) ≤ δk − ε. (5.8)

We now let f1 = f ∗ ψη−1λ1 , noting the slight difference from the definition of f1 given in the

proof of Proposition 4.1.1. It follows from (5.8), as in the proof of Proposition 4.1.1, that for all

x ∈ A there must exist λ0 ≤ λ ≤ λ1 such that

k∑
j=1

f1(x)k−jA(j)
λ (f, . . . , f, f − f1)(x) ≤ δk − f1(x)k − ε/2 (5.9)

provided η � ε, and hence that

k∑
j=1

A(j)
∗ (f − f1)(x) ≥ f1(x)k − δk + ε/2 (5.10)

for all x ∈ A, where for any Schwartz function g, A(j)
∗ (g) denotes the maximal average defined by

A(j)
∗ (g)(x) := sup

λ0≤λ≤λ1
A(j)
λ (g)(x). (5.11)

Consequently, provided η � ε and appealing to Lemma 4.3.1, we may conclude that there must

exist 1 ≤ j ≤ k such that 〈
f,A(j)

∗ (f − f1)
〉
& ε|A|. (5.12)

Let f2 = f ∗ ψη2λ0 . Define the following “mollified” maximal operator

M(j)
η (f) := A(j)

∗ (f − f2). (5.13)
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By the sublinearity of the supremum,

〈f,A(j)
∗ (f2 − f1)〉 ≥ 〈f,A(j)

∗ (f − f1)〉 − 〈f,A(j)
∗ (f − f2)〉. (5.14)

In addition to (5.12), by Cauchy-Schwarz, we get that

〈f,A(j)
∗ (f2 − f1)〉 . ||f ||2||A(j)

∗ (f2 − f1)||2 (5.15)

and

〈f,A(j)
∗ (f − f2)〉 . ||f ||2||A(j)

∗ (f − f2)||2. (5.16)

So, similar to the proof of Proposition 3.2.1, we see that everything reduces to establishing the

L2-boundedness of A(j)
∗ together with appropriate estimates for the “mollified” maximal operator.

The precise results that we need are recorded in the following two propositions.

Proposition 5.2.1 (L2-Boundedness of the Maximal Averages A(j)
∗ ). If d ≥ j + 2, then

∫
Rd
|A(j)
∗ (g)(x)|2 dx .

∫
Rd
|g(x)|2 dx. (5.17)

Proposition 5.2.2 (L2-decay of the “Mollified” Maximal AveragesM(j)
η ). Let η > 0. If d ≥ j+2,

then ∫
Rd
|M(j)

η (f)(x)|2 dx . η2/3

∫
Rd
|f(x)|2 dx. (5.18)

Combining Proposition 5.2.1 and (5.15), we get that

〈f,A(j)
∗ (f2 − f1)〉 . ||f ||2||f2 − f1||2. (5.19)

If we combine Proposition 5.2.2 and (5.16), we get

〈f,A(j)
∗ (f − f2)〉 . η2/3||f ||22. (5.20)
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Then, combining, (5.12), (5.19), and (5.20) we conclude that

||f2 − f1||22 & ε2|A|, (5.21)

provided η � ε3, which is the estimate we need to prove.

The proofs of Propositions 5.2.1 and 5.2.2 are presented in Section 5.3 below.

5.3 Proofs of Maximal Function Estimates

5.3.1 Proof of Proposition 5.2.1

We first note that Cauchy-Schwarz ensures

∫
Rd
|A(j)
∗ (g)(x)|2 dx ≤

∫
· · ·
∫ ∫

Rd
sup

λ0≤λ≤λ1

∣∣∣∫ g(x−λyj) dσ(d−j)
y1,...,yj−1

(yj)
∣∣∣2 dx dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1).

Now for fixed y1, . . . , yj−1 we can clearly identify [y1, . . . , yj−1]⊥ with Rd−j+1 and dσ
(d−j)
y1,...,yj−1

with a constant (depending only on d and δ) multiple of dσ(d−j), the normalized measure on the

unit sphere Sd−j ⊆ Rd−j+1 induced by Lebesgue measure. We can write Rd = Rj−1 × Rd−j+1,

g(x) = gx′(x
′′), and apply Stein’s spherical maximal function theorem for functions in L2(Rd−j+1),

see Theorem 2.1.1 in Chapter 2. That is,

∫
Rd−j+1

sup
λ0≤λ≤λ1

∣∣∣∫ g(x− λy) dσ(d−j)(y)
∣∣∣2 dx .

∫
Rd−j+1

|g(x)|2 dx (5.22)

whenever d ≥ j + 2. This gives

∫
Rd

sup
λ0≤λ≤λ1

∣∣∣∫ g(x− λy) dσ(d−j)
y1,...,yj−1

(y)
∣∣∣2 dx

= C∆

∫
Rj−1

∫
Rd−j+1

sup
λ0≤λ≤λ1

∣∣∣∫ gx′(x
′′ − λy) dσ(d−j)(y)

∣∣∣2 dx′′ dx′
≤ C

∫
Rj−1

∫
Rd−j+1

|gx′(x′′)|2 dx′′ dx′ = C

∫
Rd
|g(x)|2 dx

with the constant C independent of the initial choice of frame y1, . . . , yj−1. The result follows.
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5.3.2 Proof of Propositions 5.2.2

First, note that

M(j)
η (f) = sup

λ0≤λ≤λ1

∫
· · ·
∫ ∣∣∣∫ f(x− λyj) dµ(j)

η (yj)
∣∣∣ dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1) (5.23)

where

dµ(j)
η = dσ(d−j)

y1,...,yj−1
− ψη2λ0λ−1 ∗ dσ(d−j)

y1,...,yj−1
. (5.24)

and hence

µ̂
(j)
η (λ ξ) =

̂
dσ

(d−j)
y1,...,yj−1(λ ξ)

(
1− ψ̂(η2λ0 ξ)

)
. (5.25)

We will deduce the validity of Proposition 5.2.2 from the following result for the slightly more

general class of operators defined for any L > 0 by

M(j)
L (f) = sup

λ0≤λ≤λ1

∫
· · ·
∫ ∣∣∣∫ f(x− λy) dµ

(j)
L (y)

∣∣∣ dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1) (5.26)

where

d̂µ
(j)
L (λ ξ) = mL(ξ)

̂
dσ

(d−j)
y1,...,yj−1(λ ξ) (5.27)

with the multiplier mL now any smooth function that satisfies the estimate

|mL(ξ)| . min{1, L|ξ|}. (5.28)

Recall that estimate (2.12) is precisely the statement that |1− ψ̂(Lξ)| . min{1, L|ξ|}.

Theorem 5.3.1. If d ≥ j + 2, then

∫
Rd
|M(j)

L (f)(x)|2 dx .
( L
λ0

)1/3
∫
Rd
|f(x)|2 dx. (5.29)
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Proof. An application of Cauchy-Schwarz gives

∫
Rd
|M(j)

L (f)(x)|2 dx ≤
∫
· · ·
∫ [∫

Rd
sup

λ0≤λ≤λ1
|ML,λ(f)(x)|2 dx

]
dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1).

(5.30)

where ML,λ is the Fourier multiplier operator defined by

M̂L,λ(f)(ξ) = f̂(ξ)mL(ξ)
̂

dσ
(d−j)
y1,...,yj−1(λ ξ). (5.31)

A standard application of the Fundamental Theorem of Calculus, see for example [4], gives

sup
λ0≤λ≤λ1

|ML,λ(f)(x)|2 ≤ 2

∫ λ1

λ0

|ML,t(f)(x)||M̃L,t(f)(x)| dt
t

+ |ML,λ0(f)(x)|2 (5.32)

where M̃L,t(f) = t
d

dt
ML,t(f). We further note that M̃L,t is clearly also a Fourier multiplier operator,

indeed

̂̃
ML,t(f)(ξ) = f̂(ξ)mL(ξ)

(
tξ · ∇ ̂

dσ
(d−j)
y1,...,yj−1(tξ)

)
. (5.33)

We now immediately see that

∫
Rd
|M(j)

L (f)(x)|2 dx

≤ 2

∞∑
`=blog2 λ0c

∫ 2`

2`−1

∫
· · ·
∫ ∫

Rd
|ML,t(f)(x)||M̃L,t(f)(x)| dx dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1)

dt

t

+

∫
· · ·
∫ ∫

Rd
|ML,λ0(f)(x)|2 dx dσ(d−j+1)

y1,...,yj−2
(yj−1) · · · dσ(d−1)(y1).

Applying Cauchy-Schwarz to the first integral above, in the variables x, y1, . . . , yj−1, and t

together, followed by an application of Plancherel in two resulting integrations in x as well as in

the one that appears in the second integral above, we obtain the estimate

∫
Rd
|M(j)

L (f)(x)|2 dx ≤ 2

∞∑
`=blog2 λ0c

(
I` Ĩ`

)1/2
+ I (5.34)
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with

I` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2I(t ξ) dξ

dt

t
(5.35)

Ĩ` =

∫ 2`

2`−1

∫
Rd
|f̂(ξ)|2|mL(ξ)|2Ĩ(t ξ) dξ

dt

t
(5.36)

and

I =

∫
Rd
|f̂(ξ)|2|mL(ξ)|2I(λ0 ξ) dξ (5.37)

where, as in the proof of Lemma 4.3.2, we have defined

I(ξ) =

∫
· · ·
∫ ∣∣ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1) (5.38)

and analogously now also define

Ĩ(ξ) =

∫
· · ·
∫ ∣∣ξ · ∇ ̂

dσ
(d−j)
y1,...,yj−1(ξ)

∣∣2 dσ(d−j+1)
y1,...,yj−2

(yj−1) · · · dσ(d−1)(y1). (5.39)

Combining (5.28) with (4.33), and recalling that we are assuming that d ≥ j + 2, gives

|mL(ξ)|2I(t ξ)� min{(t|ξ|)−1, L2|ξ|2} ≤ L2/3t−2/3 (5.40)

which ensures, via Plancherel, that

I` .
(L

2`

)2/3
‖f‖22 and I .

( L
λ0

)2/3
‖f‖22. (5.41)

Arguing as in the proof of estimate (4.33), we can see that estimate (4.18) for ∇ ̂
dσ

(d−j)
y1,...,yj−1(ξ)

ensures that Ĩ(ξ) is bounded whenever d ≥ j+2. It follows immediately from this observation (and

Plancherel) that

Ĩ` . ‖f‖22. (5.42)
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Combining (5.34), (5.41), and (5.42), we get that

∫
Rd
|M(j)

L (f)(x)|2 dx�

L1/3
∞∑

`=blog2 λ0c

2−`/3 +
( L
λ0

)2/3

∫
Rd
|f(x)|2 dx

�
( L
λ0

)1/3
∫
Rd
|f(x)|2 dx

as required.
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Chapter 6

A Geometric Approach to Proving

Stein’s Spherical Maximal Function

Theorem

In this chapter, we give a sketch of non-Fourier analytic proof of Stein’s spherical maximal function

estimate in the case where p = 2.

6.1 Set up

Let f be a Schwartz function on Rd. Let

Mf(x) := sup
1≤λ≤2

∣∣∣∣∫ f(x− λy)dσ(y)

∣∣∣∣ . (6.1)

This is similar to the maximal function in (2.1.1), but here we are restricting our λ to 1 ≤ λ ≤ 2.

Theorem 6.1.1. Let f be a Schwartz function on Rd. If d ≥ 3, then

||Mf ||2 . ||f ||2.
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For each x ∈ Rd, there exits λ = λ(x) so that if

Tf(x) =

∫
Sn−1

f(x− λ(x)y)dσ(y),

then Mf(x) ≤ 2Tf(x), for every x ∈ Rd. Otherwise, Mf(x) is not the supremum over all such λ.

Let

σε(y) =
1

ε
1{y:||y|−λ(x)|≤ε}(y)

and

Tεf(x) =

∫
Rd
f(x− λ(x)y)dσε(y).

It follows from the way we define the surface measure dσ that

||Tεf − Tf ||2 → 0 as ε→ 0. (6.2)

Thus, it suffuces to prove the following claim

Claim 6.1.1. Let f be a Schwartz function on Rd. Then

||Tεf ||2 . ||f ||2,

uniformly in ε.

It then follows from Claim 6.1.1 and (6.2) that

||Mf ||2 . ||Tf ||2 ≤ ||Tεf ||2 + ||Tεf − Tf ||2 . ||f ||2 + ||Tεf − Tf ||2.

If we let ε→ 0, we get that

||Mf ||2 . ||f ||2,

as desired.
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6.2 Sketch of Proof of Main Estimate

To prove Claim 6.1.1, it suffices to show

||TεT ∗ε f ||2 . ||f ||2, (6.3)

where T ∗ε is the dual operator of Tε.

We have Tεf(x) =
∫
Rd f(x− t(x)y)dσε(y). A change of variables gives

Tεf(x) =

∫
Rd
f(z)σε

(
x− z
λ(x)

)
dz. (6.4)

Let Kε(x, z) = σε

(
x−z
λ(x)

)
. Then,

T ∗ε f(x) =

∫
Kε(z, x)f(z)dz. (6.5)

It follows that

TεT
∗
ε f(x) =

∫
Kε(x, z)

∫
KεK(y, z)f(y)dydz =

∫ (∫
Kε(x, z)Kε(y, z)dz

)
f(y)dy. (6.6)

Write

Lε(x, y) =

∫
Kε(x, z)Kε(y, z)dz. (6.7)

We use the following lemma of Schur (see [7]).

Lemma 6.2.1. (Schur’s Test) Let ε > 0. Let Lε(x, y) be as above so that

∫
Rd
|Lε(x, y)|dx ≤ A for each y,

and ∫
Rd
|Lε(x, y)|d(y) ≤ B for each x.
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Then for f ∈ L2(Rd) the integral defining Tεf converges for almost every x and there is an estimate

||Tεf ||2 ≤
√
AB||f ||2.

Thus, in order to use Schur’s Test, we must show

∫
Rd
|Lε(x, y)|dx,

∫
Rd
|Lε(x, y)|dy

bounded uniformly in y and x respectively. We can assume that |x− y| ≤ 1. Notice that

Lε(x, y) =
1

ε2
m({z :

∣∣|z − x| − λ(x)
∣∣ ≤ ε, ∣∣|z − y| − λ(y)

∣∣ ≤ ε}).
There are two extreme cases in which these “thickened spheres” can intersect which we consider.

First, these spheres can intersect transversally. In this case, it is easy to see that the measure of

their intersection is bounded above by Cε2.

Second, consider, for the moment, that we are in two dimensions and consider the case where

the thickened circles are tangent to one another in the sense that the circle centered at y sits inside

the circle centered at x. Then, we can certainly write

λx − λy & |x− y|. (6.8)

Near the point of tangency, these circles look like parabolas gx(r) = r2

λx
and gy(r) = r2

λy
, where

r ∈ R. Since we are thickening these circles by ε, then it is clear that

∣∣∣∣ r2

λy
− r2

λx

∣∣∣∣ . ε (6.9)

and thus it follows from (6.8) that

r .

(
ε

|x− y|

)1/2

. (6.10)
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It follows then that the measure of the intersection is bounded above by

C · ε ·
(

ε

|x− y|

) 1
2

=
ε

3
2

|x− y|
1
2

. (6.11)

Now, consider rotating these parabolas around the vertical R-axis to get paraboloids in three

dimensions. When we do this, we are adding another direction of length

(
ε

|x− y|

) 1
2

. (6.12)

Thus, to get the volume of the intersection, we multiply (6.11) and (6.12) so that

C ·
(

ε

|x− y|

) 3−1
2

· ε =
ε

3+1
2

|x− y|
3−1
2

(6.13)

We can continue this process so that for any d ≥ 3, the measure of the intersection of these thickened

spheres is bounded above by

C ·
(

ε

|x− y|

) d−1
2

· ε =
ε
d+1
2

|x− y|
d−1
2

. (6.14)

Now, we can write

∫
Lε(x, y)dy .

∫
|x−y|≤1

1

ε2

(
ε2 +

ε
d+1
2

|x− y|
d−1
2

)
dy .

∫
|y|≤1

1

|y|
d−1
2

dy ≤
∫ 1

0
r
d−1
2 dr ≤ 1, (6.15)

for every x ∈ Rd, as desired. Similarly,
∫
Lε(x, y)dx ≤ 1, for every y ∈ Rd. Note the importance

that d is at least 3 above. If d = 2, then ε
d+1
2

ε2
is large so that the second inequality above does

not hold. However, when d ≥ 3, we can certainly say ε
d+1
2

ε2
< 1. Since (6.15) holds, it then follows

from Schur’s Test, Lemma 6.2.1, that TεT
∗
ε f(x) is a bounded operator from L2 to L2, as desired.
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