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Abstract

In this computational study the focus is put on the thermodynamic behavior of coarse-

grained models for flexible polymers. Structural transitions of polymer conformations as a

function of monomer-monomer interaction range, as well as adsorption at curved surfaces of

cylinders of different materials are unraveled. This is accomplished by utilizing the latest

available technologies, such as high-end graphics processing units, and advanced general-

ensemble Monte Carlo methods. A pseudophase diagram of a free 90-mer is constructed

using a microcanonical analysis approach, to demonstrate the effect of interaction range

changes to the liquid and solid structural phases. Various adsorbed polymer structures are

determined for different types of cylindrical substrates. Complete pseudophase diagrams of

a 30-mer adsorbed at 5 different materials are constructed.
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Chapter 1

Introduction

A growing interest in the structural and dynamical behavior of polymers has promoted mul-

tidisciplinary research in recent years. The structure and the biological function of polymers,

particularly of proteins, are strongly connected and misfoldings of proteins can cause severe

illnesses. Over many decades, most of the scientific work has aimed at macroscopic systems

such as single polymers with high polymerization degree or polymer melts. This was mainly

due to the fact that on one hand the experimental equipment was not capable of revealing

finer structural details on smaller scales and on the other hand, the theoretical treatment

of even very simple polymer models was only possible in limits where cooperative effects

on mesoscopic scales could be neglected. Computer simulations, however, made it possible

to investigate systems strongly influenced by finite-size effects, that are not accessible via

experiment. But even with computer simulations many questions remained unanswered,

because of the limited available resources and the high requirements for reliable simulational

results. Still, computer simulations have contributed substantially to a better understand-

ing of phase transitions in general, including thermodynamic transitions in polymer systems

which require mutual interaction of nonbonded monomers such as collapse, aggregation, and

adsorption at substrates. Many of these studies were done in the traditional way of thinking
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that phase transitions only occur in very large systems close to the thermodynamic limit.

This brought up the idea of finite-size scaling; a concept which has also successfully been

applied to polymer systems [1, 2]. However, it has also turned out to be quite difficult

to use this approach for transitions based on nucleation processes, where local effects, in-

cluding competing effects of monomer arrangement inside the nucleus and at the surface,

govern the whole nucleation process. That means, before crystallization can be perceived as

a condensation process on macroscopic scales, the system has to pass a series of “subphase”

transitions [3, 4], which depend on microscopic details and do not necessarily systematically

scale with system size. This has been extensively studied for small atomic clusters [5–7]

and, more recently, for polymers of finite length [8–15]. The simulation and analysis of such

transitions is very demanding and requires computational methodologies and resources that

have only recently become available. These methods, with generalized-ensemble Monte Carlo

algorithms in the lead, even enable a different way of statistical analysis on the basis of the

density of states or microcanonical entropy [16], which, although already having been known

since the foundation of statistical mechanics, has widely been neglected in the long period

of analytic studies, because the density of states is hardly accessible analytically. Phase-

like transitions can be identified even in finite systems, like the here investigated polymer

chains, using a systematic analysis of the inverse microcanonical temperature, as proposed

recently [13].

Polymer adsorption at substrates also plays an important role in nanotechnology. Pep-

tide adhesion on semiconductors [17, 18] for example enables new applications in fields like

bioelectronics. The capacity of lithium batteries can be improved by coating nanowires with

polymers [19]. Biosensors can be built by coating nanotubes with polymers [20]. Adsorbed

polymers find applications in photonics [21] as well.

Because of this wide range of possible applications, it is necessary to understand the

fundamental processes of structure formation of polymers and the adsorption on surfaces.
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The structure of this dissertation is the following. In Chapter 2 the basics of statistical

physics and thermodynamics that are necessary to understand the simulations and their

analysis are summarized. The Monte Carlo method for computer simulations and associated

algorithms and updates are explained in Chapter 3. How Monte Carlo simulations can

benefit from employing state-of-the-art technologies is demonstrated in Chapter 4, where

we implement replica-exchange (parallel tempering) Monte Carlo simulations for flexible

polymers on modern GPUs, as published in [22, 23]. The influence of the interaction range

of non-bonded monomers on the structural phase behavior is investigated in Chapter 5,

following the publications [24, 25]. In Chapter 6 we study the adsorption of a polymer

on nanocylinders with varying radii and surface attraction strengths. A summary of our

research is given in Chapter 7.
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Chapter 2

Essential thermodynamics

2.1 The microcanonical ensemble

Let us consider an isolated system with fixed energy E, volume V and particle number N .

This system with total energy E is composed of two subsystems A and B that are able to

exchange energy with the following condition:

E = EA + EB. (2.1)

With a given energy EA the number of microstates in subsystem A with that energy is given

by g(EA), and g(EB) = g(E − EA) is the number of microstates in subsystem B. The total

number of microstates is then:

g(EA, EB) ≈ g1(EA)× g2(E − EA). (2.2)
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By applying the natural logarithm to Equation 2.2, the multiplicative relationship can be

transformed into an additive one

ln g(EA, E − EA) = ln g1(EA) + ln g2(E − EA). (2.3)

In the total system the probability is the same for every state, i.e., 1/g(E). The probability

of the energy states in subsystem A, however, is determined by the energy EA. To determine

the most probable value for g(EA) we have to find the maximum of ln g(EA, E − EA)

(
∂ ln g(EA, E − EA)

∂EA

)
N,V,E

= 0. (2.4)

Considering Equation 2.3 this can be written as

(
∂ ln g1(EA)

∂EA

)
NA,VA

=

(
∂ ln g2(EB)

∂EB

)
NB ,VB

, (2.5)

with NA, VA and NB, VB being the number of particles and volumes of subsystem A and B,

respectively. I introduce the following abbreviation

β(N, V,E) =

(
∂ ln g(E)

∂E

)
N,V

, (2.6)

so that Equation 2.5 can be written as

βA(NA, VA, EA) = βB(NB, VB, EB). (2.7)

If this equation is satisfied, subsystem A and subsystem B are in thermal equilibrium. This

equilibrium is reached when ln g(E) is maximal. The second law of thermodynamics states

that the entropy of a system with fixed energy E, volume V and particle number N reaches

its maximum when the system is in thermodynamic equilibrium. Thus the entropy S of the
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system is given by

S(E) = kB ln g(E), (2.8)

with kB being the Boltzmann constant. The quantity g(E) here counts the number of states

with energy E. When dealing with continuous systems, g(E) is also called the density

of states. With Equation 2.7, or just βA = βB, we can derive the temperature, because

two bodies in thermal contact are in equilibrium if their temperatures are the same. The

definition of the microcanonical temperature is then

T (E) =

(
∂S(E)

∂E

)−1

N,V

. (2.9)

This also means β = 1/kBT . The inverse thermal energy β is also sometimes referred to

as inverse temperature, since the Boltzmann constant is set to unity in most cases. The

microcanonical entropy in Equation 2.8 and its derivatives with respect to energy play an

important role in identifying phase transitions, see Section 3.3.

2.2 The canonical ensemble

If the system is now allowed to exchange energy with a heat bath, it will reach equilibrium

with the heat bath temperature. But even when the equilibrium is reached there will still be

an exchange of energy between the system and the heat bath. The internal energy U of the

system is constant for a given temperature T in thermal equilibrium, because the entropy

reaches its maximum in equilibrium and dU = TdS. The internal energy can be related

to the statistical average energy U = 〈E〉 = const. in equilibrium. The probability for the

system to be in a microstate with energy Ei in the canonical ensemble is given by

pi =
1

Zcan

e−Ei/kBT . (2.10)
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The mean energy then evaluates to

U = 〈E〉 =
1

Zcan

∑
i

Ei · e−Ei/kBT , (2.11)

with the canonical partition sum

Zcan =
∑
i

e−Ei/kBT =
∑
i

e−βEi =
∑
E

e−βE
∑
i

δE,Ei
=
∑
E

g(E)e−βE. (2.12)

That means the canonical energy distribution can be written as

pcan,E =
1

Zcan

g(E)e−βE. (2.13)

High energy values only contribute significantly at high enough temperatures to the en-

ergy distribution. At low temperatures the low energy microstates dominate. The energy

of the macrostate is then the single maximum energy peak of the energy distribution in

Equation 2.13. (If the system is close to a phase transition with coexistence of phases,

the energy distribution has more than one peak.) With increasing system size the energy

peak gets more pronounced and in the thermodynamic limit, i.e., infinite system size, those

states with energy Emax dominate the energy distribution. The mean energy then becomes

〈E〉 ≈ Emax and ∂S/∂U ≈ ∂S/∂Emax. Ultimately, this means that in the thermodynamic

limit the microcanonical and the canonical temperatures are the same and the quantitative

thermodynamic behavior of the system can be derived from canonical and microcanonical

quantities alike. Refer to [26] for a more detailed elucidation.
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2.3 Thermal fluctuations

Thermodynamic systems react to changes of their environment. Changes in temperature

are reflected by changes in the specific heat, or changes to an external field have effects

on the susceptibility of a magnetic system. For the systems investigated in this work the

specific heat plays an important role. It measures the change in energy necessary when the

temperature of the system is changed

cV (T ) =
CV (T )

N
=

1

N

(
∂U

∂T

)
N,V

, (2.14)

from which

cV (T ) =
1

N

d〈E〉(T )

dT
=

1

NkBT 2

(
〈E2〉 − 〈E〉2

)
(2.15)

can be derived. This means the specific heat corresponds to the thermal fluctuations of the

energy. Equation 2.15 can be generalized for an arbitrary observable O that changes with

temperature

d〈O〉
dT

=
1

kBT 2
(〈O · E〉 − 〈O〉 · 〈E〉) . (2.16)

This is especially useful if O is some kind of order parameter that allows the identification

of different phases or structures. The temperature at which Equation 2.16 assumes an

extremum, can be used to estimate the actual transition temperature. In systems with

finite sizes, the transition temperature estimates do not necessarily coincide perfectly for

different fluctuation quantities. In the thermodynamic limit, however, these temperatures

converge to the same phase transition temperature. With this in mind, whenever the term

“phase transition” is mentioned when referring to a system with finite size, pseudo-phase

transition or structural transition would be more appropriate. But for simplicity and ease

of writing “phase transition” might be used, knowing real phase transitions only appear in

the thermodynamic limit.
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Chapter 3

Methods

3.1 Monte Carlo simulations

In Monte Carlo simulations [2, 26] the thermodynamical behavior of a system is investigated

by preparing “random” states and calculating ensemble averages of quantities, rather than

solving Newton’s equations of motion as in molecular dynamics. The process of generating

theses random samples to calculate ensemble averages is called a Markov process. A Markov

process is a mechanism to transform a system in state C to a new state C ′. This transfor-

mation only depends on the original state C and the transition probability P (C → C ′; ∆τ)

in a “time step” ∆τ , that means it does not depend on any information about former states

the system may have been in. The time step ∆τ is not real time, but “simulation time” to

perform an update to the system. Such a process is driven by the master equation

∆p(C)
∆τ

=
∑
C′

(p(C ′)P (C → C ′; ∆τ)− p(C)P (C ′ → C; ∆τ)) . (3.1)

p(C) is the probability distribution of the system to be in state C, which is independent of

time, i.e., a stationary state. In equilibrium, i.e., ∆p(C)/∆τ = 0 the right side of Equation 3.1
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has to vanish. Since this theoretically would allow cycling processes, which would not lead

to the desired physical statistical equilibrium ensembles, it is demanded that every term of

the sum on the right side vanishes individually. This condition is called detailed balance

P (C → C ′)
P (C ′ → C) =

p(C ′)
p(C) . (3.2)

A Monte Carlo update would not only have to satisfy detailed balance, but also has to

guarantee that every point in phase space can be reached. It should be possible to reach

any state of the system from any other state, in a finite number of updates with a non-zero

probability. This principle is called ergodicity.

3.1.1 Metropolis importance sampling

When simulating physical systems with Monte Carlo techniques, it would be highly inefficient

to accept all proposed updates, i.e., set P (C → C ′) = 1, which would be simple sampling

Instead, since we are interested in the thermodynamical behavior of our investigated systems,

we can tune the transition probability in Equation 3.2 so that the important states, i.e., the

most probable states, are sampled most often. This is called importance sampling. In 1953

Metropolis et al. [27] proposed what today is widely know as the Metropolis method. The

probability of a state C of a system in the canonical ensemble is given by p(C) ∼ e−βE(C),

with β = 1/kBT . To the system in state C with energy E(C), an update is proposed to

transform it into state C ′ with energy E(C ′). For a polymer system such an update could be

the displacement of one monomer or the rotation of a part of the chain. In a spin system

it could be the change of one spin or a cluster of spins. The acceptance probability of a

proposed update to the system is given by

P (C → C ′) = min(1, e−β∆E), (3.3)
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where ∆E = E(C ′) − E(C). This means that an update where ∆E ≤ 0 would always be

accepted. If ∆E > 0 a random number r ∈ [0, 1) is generated. Only if r < e−β∆E such an

update would be accepted; it would be rejected otherwise. A simulation with N updates

would generate a time series for an observable O. The mean value calculated from that time

series would than be an estimate for the canonical expectation value of that observable

O =
1

N

N∑
i=0

Oi ≈ 〈O〉. (3.4)

(For an infinitely long simulation (N →∞): O = 〈O〉.) There are, however, a few drawbacks

to the Metropolis algorithm. At low temperatures the widths of the energy distributions be-

come extremely narrow. Also the Boltzmann factor e−βE is very close to zero, which is

reflected in a close-to-zero acceptance rate of proposed updates at low temperatures. The

simulation might get trapped in a low-energy state and impair the statistics. Another prob-

lem with Metropolis arises for simulations near transition temperatures. In case of a first-

order transition, the energy distribution has two peaks of the same height at the transition

point, representing the energies of the two coexisting phases. Since the energies between the

two phases are suppressed entropically, it is very unlikely to sample both peaks with equally

good statistics. Instead the simulation will again get trapped in one of the two states. For

second-order phase transitions, the specific heat diverges at the critical temperature. Since

the specific heat is connected to the energy fluctuations, (compare Equation 2.15), simula-

tions near the transition temperature will suffer from a critical slowing down. This slowing

down is caused by the fact that even small update to the system might result in a dramatic

change in energy and thus a very large value for ∆E > 0 in Equation 3.3, which will lower

the acceptance rate significantly.
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3.1.2 Parallel tempering

To resolve the drawbacks of Metropolis sampling, several generalized-ensemble methods, such

as parallel tempering [28–30], simulated tempering [31, 32], multicanonical sampling[33–36],

and Wang-Landau sampling [37, 38], have been developed. The most popular one, because

of the very easy and straightforward implementation, is parallel tempering, which is also

known as replica-exchange Monte Carlo. The idea behind parallel tempering is simulating

nr copies or replicas of the same system

C = {C1, C2, . . . Cnr} (3.5)

at different temperatures T1 < T2 < . . . < Tnr . Each replica is simulated using the Metropolis

algorithm, for a given number of sweeps, completely independent from all other replicas.

Commonly a sweep is equal to N single updates for a system with N particles. After this an

exchange of temperatures between replica Ci and Cj is proposed. The acceptance probability

for such an exchange is given by

P (Cold → Cnew) = min[1, exp(∆β∆E)], (3.6)

where ∆β = βj − βi is the difference of the inverse temperatures, ∆E = E(Cj) − E(Ci)

is the energy difference, and Cold and Cold are the sets of replicas before and after the ex-

change, respectively. This equation satisfies detailed balance. The exchange of temperatures

between copies allows each copy to be heated up and cooled down throughout the whole

simulated temperature interval. This not only decreases autocorrelation time, but also helps

a conformation that is trapped in a local low energy state to escape and improves the overall

sampling. The most important advantage of parallel tempering is its embarrassingly paral-

lel nature, which makes it especially easy for parallel implementation on modern multicore
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processors, cluster computers and advanced accelerators, such as graphics processing units.

Even though parallel tempering vastly improves the sampling efficiency when compared to

Metropolis, similar restrictions apply. The temperature spacing at low temperatures has to

be chosen in a way that there is enough overlap in the energy histograms to achieve high

enough acceptance rates between low temperature replicas. That being said, parallel tem-

pering is not the optimal method to unravel the lowest temperature or ground-state behavior

of a system, but it still has proven to be a robust simulation tool.

3.2 Monte Carlo updates

The one thing all Monte Carlo updates have in common is their random nature. All Monte

Carlo moves depend on random numbers. Each update requires multiple random numbers to

propose a change to the system, and the acceptance of each Monte Carlo move again depends

on a random number. To obtain good statistics to calculate the desired thermodynamical

averages and their statistical errors, it is necessary to perform simulations with a vast number

of sweeps, often in the order of 109. This imposes serious requirements to the random

number generator (RNG). The RNG has to have a large periodicity, and correlations between

numbers in the sequence and other patterns need to be avoided. For all simulations in this

work, a RNG developed by Marsaglia and Zaman [39], which is known as RANMAR, was

used. This RNG passes all known test suites for the “goodness” of random numbers.

3.2.1 Temperature-dependent single monomer displacement

The most basic and most used Monte Carlo move of all performed simulations is a single

monomer displacement. For this update, one monomer is selected randomly and a previously

generated displacement vector ~d is added to its coordinates. The displacement vector is cre-

ated as follows. Three random numbers ri ∈ [0, 1) are generated. The Cartesian coordinates
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of the displacement vector ~d are then calculated like this

di = (ri − 0.5) · α(T ) i = {x, y, z}. (3.7)

If we neglect the factor α(T ) for a while, this would create a three dimensional vector, whose

coordinates have a value between −1/2 and 1/2. In terms of the polymer models investigated

this would be a fairly large move. Considering the change in energy and the dense structures

for theses polymers at low temperatures, large updates would results in a low acceptance

rate, effectively slowing down the simulation dramatically. This is where the temperature

dependent factor α(T ) comes into play. It is initially set to 1. During the equilibration

phase of each simulation the acceptance ratio of accepted moves versus proposed moves is

measured. If the acceptance rate is higher than 0.55, α(T ) is multiplied by a factor larger

than, but close to 1, and thus making the interval for the coordinates wider. If, on the other

hand, the acceptance ratio drops below 0.45, α(T ) is multiplied by a factor smaller than,

but close to 1. The modification factor α(T ) quickly converges to an optimal value so that

the acceptance rate of the monomer displacement is roughly 50% at all temperatures. In

the production run of each simulation α(T ) is then a fixed value for each temperature and

is not changed anymore.

3.2.2 Slithering snake moves

The slithering snake update involves removing either the first monomer from the polymer

chain and attaching it to the end of the chain, or cutting the last monomer and moving it to

the front. The easiest implementation of this update move would be to calculate the vector

between first and second monomer, then removing the first monomer and adding the vector

to the coordinates of the last monomer. At the newly calculated position the previously cut

monomer would be pasted, and vice versa, of course. This would allow a more rapid change
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to the polymer at fairly high temperatures, compared to the displacement move, but virtually

all such moves would be rejected at dense, low temperature conformations. Nevertheless in

combination with parallel tempering even the lower temperature conformations can profit

from this update, since they are eventually exchanged to higher temperatures, at which

slithering snake updates are accepted, and thus improve the overall sampling.

3.2.3 Crankshaft update

In a crankshaft move a portion of the polymer is rotated around an axis between two ran-

domly chosen monomers by a random angle ϕ. The ends of the polymer are excluded as a

possible pair though, because this would lead to a conformation with the same energy due

to symmetry. Like the slithering snake update, such an update introduces a more global up-

date to the polymer, but only is efficient at high temperatures. Again, for low temperatures

virtually all of such moves are rejected.

3.3 Non-iterative multiple histogram reweighting

Parallel tempering or Metropolis simulations at different temperatures Ti usually yield en-

ergy histograms Hi(E) as a direct result. These histograms can be combined to obtain the

density of states, which makes it possible to perform an inflection-point analysis as proposed

in [13]. Each histogram is an estimate for the density of states gi(E) ∝ Hi(E) exp(βiE)

up to an unknown constant which is different for each βi. For the analysis of the micro-

canonical entropy and its derivatives, it is convenient to continue working with the ratio
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gi(E + ∆E)/gi(E). Entropic differences can then be written as [40, 41]

∆Si(E) = Si(E + ∆E)− Si(E) (3.8)

= ln[gi(E + ∆E)/gi(E)]

= ln[Hi(E + ∆E)]− ln[Hi(E)] + βi∆E.

Introducing the following weight

wi(E) =
Hi(E + ∆E) ·Hi(E)

Hi(E + ∆E) +Hi(E)
, (3.9)

which is reciprocally proportional to the variance of ∆Si(E), yields the weighted average

over all histograms:

∆S(E) =

∑
i ∆Si(E)wi(E)∑

iwi(E)
. (3.10)

This result can be used for an approximation of the inverse microcanonical temperature,

defined as

β(E) ≡ T−1(E) =

(
dS

dE

)
N,V

≈ ∆S(E)

∆E
. (3.11)

To improve the quality of the estimate we start off with the five-point method1 for the

derivatives instead of the difference quotient used in Equation (3.8). Analogously, we can

also directly compute the second derivative2 of the microcanonical entropy. Inflection-point

analysis of β(E) [13] allows us not only to locate, but also to classify transitions in the system.

In this scheme, a transition is of first order, if the derivative of β(E) at the inflection point

1f ′(x) ≈ −f(x+2∆x)+8f(x+∆x)−8f(x−∆x)+f(x−2∆x)
12∆x

2f ′′(x) ≈ −f(x+2∆x)+16f(x+∆x)−30f(x)+16f(x−∆x)−f(x−2∆x)
12∆x2
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Figure 3.1: Comparison of transition signals in β and γ. The peak in γ(E) at E ≈ −350
corresponds to a first-order-like transition. Another peak in γ at E ≈ −375 marks a second-
order-like transition. Both transitions show up as inflection points in β(E) at the respective
energies. If the peak value of γ(E) for a given transition is positive, we classify the transition
as of “first order”. In line with this, a “second-order” transition is classified by a negative
value for the γ-peak.

has a positive peak value γ(E) = dβ(E)/dE > 0. Consequently, an inflection point with a

negative peak value corresponds to a second-order -like transition.

In the example illustrated in Figure 3.1, β(E) has an inflection point at E ≈ −350 and

the corresponding peak in γ(E) is positive. The associated transition is, therefore, first-

order-like. Another inflection point of β(E) is found at E ≈ −375. The peak in γ(E) for

this energy is below zero, indicating a second-order-like transition.

17



Chapter 4

Polymer Simulations on

general-purpose GPUs

In recent years, graphics processing units (GPUs) have become very powerful driven by the

computer gaming industry. Designed to calculate complex scenes of geometrical bodies in

real time, graphic cards have evolved into parallel multithreaded, manycore processors with

extremely high memory bandwidth. With the release of NVIDIA’s Compute Unified Device

Architecture – or CUDA for short – in 2007, and with OpenCL two years later, this enor-

mous computing power was accessible for every programmer outside the computer graphics

field. It quickly became popular in the scientific computing community, with applications

in astronomy [42, 43], medicine [44, 45], financial market analyses [46], molecular dynam-

ics [47, 48], Monte Carlo studies of spin systems [49–51] and Quantum Monte Carlo [52].

This chapter will give a short introduction to the concepts associated with GPU program-

ming and discusses how these can be used to accelerate Monte Carlo simulations of off-lattice

polymer models.
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4.1 Programming GPUs

4.1.1 GPU architecture

Modern GPUs are typically comprised of a number of streaming multiprocessors (SM). Dif-

ferent GPU generations have different features, called compute capabilities. For a complete

comparison of the compute capability versions please refer to [53, Chapter 3]. Whenever

necessary, the differences in these capabilities are pointed out. These SMs differ from tra-

ditional processor design. There are many more arithmetic logical units (ALU) on a GPU

than on a CPU, allowing the GPU to process many computation threads at once. The vast

number of ALUs comes with the sacrifice of cache and control units. Thus all cores of a

SM must perform the same operation at the same time. Code branching has only limited

support and is discouraged.

The computing power of the GPU comes from the ability to execute tens of thousands of

calculations concurrently, performing the same operation on different data. The kernel – the

main function of a GPU program – runs the same code on a number of threads in parallel.

These threads can be arranged in a grid and block layout to match a decomposition of the

investigated system into parts that can be calculated independently.

The grid of independent thread blocks, as shown in Figure 4.1, can be ordered in up to

two dimensions for devices with compute level less than 2.0 (i.e. GT200-based architecture)

and up to three dimension for compute capabilities greater than 2.0. The grid layout can

be changed during the runtime of the program but is immutable for a running kernel. It

is possible to launch different kernels in the same program. Since the introduction of the

Fermi architecture, i.e., compute capability 2.0, the concurrent execution of multiple kernel

functions is possible. Before that different kernels had to be executed successively.

Threads, i.e., individual processes, are bundled in thread blocks that can be arranged

within the grid in three dimensions with a maximum size of 512 × 512 × 64 (GT200-based
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Figure 4.1: Schematic diagram of the grid layout with thread blocks.

cards) or 1024×1024×64 on Fermi. However, there is also a limit for the maximum number

of threads within a block, i.e., 512 threads or 1024 threads for GT200 or Fermi, respectively.

Valid block layouts for GT200 cards, for example, are: 512× 1× 1, 128× 2× 2, 1× 512× 1,

1×8×64, and 2×4×64. Each thread can be identified by a unique id, that can be calculated

from its coordinates within the grid.

At the execution of the kernel, 32 threads are grouped together into a warp. These

warps are then assigned to a SM, and the group of threads is executed concurrently. The

best efficiency is achieved, when all of the threads within a warp have to perform the same

operations. As mentioned earlier branching in the execution of the code can lead to efficiency

loss, because the operations will be serialized, thus leading to underutilization of the cores.
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In practice it is preferable to start many more threads than cores that exist on the device.

While the number of SMs and cores per SM is subject to changes within different GPU

generations, the warp size is a fixed quantity. This means the same program can run on a

wide range of devices with different capabilities, harnessing the maximum potential, because

the distribution of the warps is done in hardware on the device. This feature is called

transparent scalability.

texture memory

shared

constant memory

global memory

shared

local local local local

Figure 4.2: Schematic diagram of the memory hierarchy and layout on current GPUs.

Graphics cards are equipped with several types of memory, see Figure 4.2. The largest

memory available is the global memory, which is typically in the range of 1 to 6 GBs today.

The global memory can be read and written by specific functions from the CPU side – also

called host –, and every thread on the GPU device has read-write access to global memory

as well. A large memory on the device is necessary since it is not possible for the device to

access the RAM of the host. This means all data that need to be processed by the GPU have

to be copied to the device for calculation, and the results need to be copied back to RAM

for evaluation. One disadvantage of the global memory is its rather high latency. Reading
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and writing to global memory take of the order of hundreds of clock cycles. The constant

memory is a special region in global memory. It is initialized on the host and is read-only on

the device. During the first read of data in constant memory, its content is cached in lower

latency on-chip cache memory, so that consecutive access to the same data is much faster.

The size of constant memory is very limited. It is only 64 KB for all card generations. The

texture memory is another read-only memory, that has to be initialized on the host before

kernel execution. Texture memory has its roots in the original purpose of graphics processing

and is also used for caching. With increased cache memories since the introduction of Fermi,

this memory has become mostly obsolete for GPGPU programming. Registers and shared

memory are very fast, low latency on-chip memories. Access to these memories is usually a

lot faster than global memory. Registers are available per thread, and only that one thread

they are assigned to has read-write access. Shared memory is allocated to a thread block

within the same SM. All threads in that thread block have read and write access to shared

memory. The total number of registers per SM is 16384 for GT200-based chips and is twice

that number for Fermi. Shared memory sizes are 16 KB on GT200 and 48 KB on Fermi [54].

There is also local memory, which is a per thread memory region residing in global memory.

The size of local memory available per thread is 16 KB for GT200 and was increased to 512

KB on Fermi. However, access to local memory is not cached, so it suffers the same latency

drawbacks as global memory accesses.

CUDA name OpenCL name

global memory global memory
constant memory constant memory

shared memory local memory
local memory private memory

grid NDrange
thread block work group

thread work item

Table 4.1: Comparison of CUDA and OpenCL nomenclature.
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In principle, the concepts of thread and memory layout are the same for CUDA and

OpenCL. Even scheduling and grouping of threads works the same for both approaches.

But the nomenclature is different. Table 4.1 summarizes the most important differences. In

particular local memory depicts different memories in the two nomenclatures and is not to

be confused.

4.1.2 CUDA and OpenCL

The CUDA software developer toolkit comes in two variants, a high-level C/C++ interface

to GPU functions, the so-called CUDA runtime API, and a lower level programming layer the

CUDA driver API. The toolkit contains a set of extensions to the C programming language

to accomplish the most common tasks in GPU programming, like memory management

and operations, but also new data types for mathematical calculations. For a detailed

description of the CUDA programming language see [53, 55]. CUDA runs exclusively on

NVIDIA hardware. However an open standard is being developed and supported by all

major GPU vendors and other hardware developers. The Open Computing Language[56]

(OpenCL) is maintained by the Khronos Group. All the same concepts apply to CUDA and

OpenCL. OpenCL is comparable to the CUDA driver API, being closer to the hardware and

more explicit. But high level interfaces for various programming languages such as C++,

Python and Java exist that make accelerated GPU computing available through comfortable

functions. A scheme of the sequence of a typical parallel GPU program is shown in Figure 4.3.

The program starts like any other program on the host with the initialization of variables

and data. For a GPU program one also has to allocate and initialize all memories that are

needed for the calculations on the GPU in addition to those on the CPU. When all data are

copied to the device memory, the kernel function is called and the program now spreads into

the parallel portion. Multiple threads concurrently perform the calculations on the GPU.

The execution of the kernel on the GPU is completely independent from the host, which in
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CPU section

start kernel

GPU section

synchronization 
barrier

CPU section

Figure 4.3: Scheme of the sequence in a parallel GPU program.

principle could proceed in its own execution. For this reason a synchronization barrier has

to be implemented in the main program to wait for the calculations on the device to finish.

After the kernel finishes its execution, the results of the computation need to be copied back

to the host for further processing. Since compute capability 2.0, it is possible to have more

than one kernel running at the same time.

4.2 Model and implementation

4.2.1 Elastic, flexible polymer model

As an example for a molecular system, we consider the following elastic bead-spring ho-

mopolymer chain, as illustrated in Figure 4.4. All monomers interact via a shifted and

truncated pairwise Lennard-Jones potential

Umod

LJ (rij) = ULJ(rij)− ULJ(rc), (4.1)
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ULJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (4.2)

where rij is the distance between two monomers i and j. The Lennard-Jones parameters are

ε = 1 and σ = 2−1/6r0, the minimum of the potential is at r0 = 0.7 and the cutoff radius is

rc = 2.5σ. The shift in the potential is done, to avoid a discontinuity at the cutoff radius.

To model the bonds between adjacent monomers, we use the finitely extensible nonlinear

UTVK
31

UTVK
31

U-,5, + UTVK
31

U-,5, + UTVK
31

Figure 4.4: Rendering of a 13-mer to illustrate monomer–monomer interaction. Bonded
neighbors interact via a FENE potential UFENE and a modified Lennard-Jones potential
Umod

LJ . Between all non-bonded monomer pairs only the Lennard-Jones potential is effective.

elastic (FENE) anharmonic potential

UFENE(rii+1) = −K
2
R2 log

[
1−

(
rii+1 − r0

R

)2
]
. (4.3)

We follow the parametrization found in [9, 10], to be able to compare results. The minimum

of the FENE potential is at r0 = 0.7 and the potential diverges for r → r0±R with R = 0.3.

The spring constant K equals 40. The total energy of a conformation C = (~r1, · · · , ~rN) for
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Figure 4.5: The Lennard-Jones potential ULJ describes the interaction between non-bonded
monomers. The bonds are modeled with a finitely extensible nonlinear elastic potential
UFENE in addition to the Lennard-Jones term. The plot shows the form of the standalone
FENE potential and the sum of FENE and Lennard-Jones, which is the effective bond-
potential.

a chain with N monomers is then given by

E(C) =
1

2

N∑
i,j=1
i 6=j

Umod

LJ (rij) +
N−1∑
i

UFENE(rii+1). (4.4)

The form of the potentials is plotted in Figure 4.5, showing the Lennard-Jones potential for

the non-bonded monomers and the effective bond potential, the sum of Lennard-Jones and

FENE potential. The simulations were carried out using replica-exchange Monte Carlo as

described in Section 3.1.2.
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4.2.2 GPU implementation

In this section the focus lies on implementational details. The listings in this section con-

tain CUDA specific syntax emphasizing the most relevant parts of a CUDA program. All

calculations are performed using single-precision floating-point operations. Single-precision

operations are usually faster by a factor of 8 than double-precision operations, because one

double-precision unit is shared among 8 ALUs. For NVIDIAs professional line of Tesla cards

the factor between single and double precision is only two.

Listing 4.1: Specification of the thread layout and kernel call within the main program.

1 dim3 dimGrid(NCONFS);

2 dim3 dimBlock(BS);

3 run <<<dimGrid ,dimBlock >>>(d_confs ,d_rnds ,d_energies ,d_rees ,

d_rgyrs);

4 cudaThreadSynchronize ();

Listing 4.1 shows how the main GPU function in invoked from the host. First, one needs

to set up the dimension for the grid of threads. In this case, the three-dimensional variable

dimGrid is initialized with only one dimension, the number of replicas. This means that

every replica of the system runs independently in its own thread block. The size of such a

thread block dimBlock is set to a constant BS which depends on the number of beads in the

polymer. Again the thread block can be three-dimensional, but only one dimension is used

here. Details will be discussed in Section 4.3. After setting up the grid layout, the kernel

run is called with the given layout embraced by triple chevrons and a list of arguments.

Because a kernel function call returns the control immediately back to the main program,

the synchronization barrier cudaThreadSynchronize() instructs the main program to wait until

GPU is finished with the execution of the kernel. In our implementation the exchange of

replicas is done on the CPU, while the GPU is used for the Metropolis algorithm with the
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expensive energy calculation, see Figure 4.6.

.......N replica

scheduler

k GPU cores

.......N thread blocks
w/ M threads each

.......

Figure 4.6: Schematic representation of parallel implementation of replica-exchange simu-
lation on GPUs. Each of the N simulated replicas is assigned to one thread block with M
threads. These thread blocks are then processed by the k streaming multiprocessors on the
GPU. Usually N > k for optimal usage of the GPU resources.

Listing 4.2: The kernel function – showing the usage of shared memory and the main

work loop. TX is the unique id for each thread.

1 __global__ void run

2 (Polymer* d_confs , float* d_rnds , float* d_energies ,

3 float* d_rees , float* d_rgyrs) {

4 int id = blockIdx.x;

5 __shared__ Polymer ps;

6 //.. initialization of some variables

7 if (TX == 0)

8 ps = d_confs[id];

9 __syncthreads ();

10 while (n < NSWEEPS) {

11 oneSweep (&ps, rnds , n);

12 ener = energy (&ps);

13 if (TX == 0) {
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14 Ree = endToEndDistance (&ps);

15 Rgyr = radiusOfGyration (&ps);

16 d_energies[n+offset] = ener;

17 d_rees[n+offset] = Ree;

18 d_rgyrs[n+offset] = Rgyr;

19 n++;}

20 __syncthreads ();

21 }

22 if (TX == 0)

23 d_confs[id] = ps;

24 __syncthreads ();

25 }

A pruned record of the insides of the kernel function is shown in Listing 4.2. In line 5

of that listing, the index of the current thread block is assigned to an integer variable and

is used to link this thread block to a specific replica. The shared memory for a local copy

of the replica is allocated in line 6. This means that all threads within this block, and only

those, have fast access to the copy. The actual process of copying the selected replica to

shared memory is shown in lines 5–9, where only one thread is assigned to copy the polymer

conformation from the array of conformations d confs in global memory to shared memory.

The barrier syncthreads() lets all other threads of that block wait for the copying to finish

before proceeding with the actual calculation. In line 11 the function oneSweep containing

the Metropolis algorithm and the energy calculation is executed by all thread in that block

in parallel. The details of the parallel implementation and CUDA specifics are shown in

Listings 4.3 and 4.4. Again, only one thread is used in lines 13–20 to collect statistics. The

local copy of the polymer is copied back to global memory in line 23 for further evaluation

on the CPU.
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Listing 4.3: Calculation of pairwise FENE interactions.

1 if (TX < N-1) {

2 r = distance(p, TX , TX+1);

3 energy[TX]+= -0.5*K*R*R*__logf (1-((r-r0)/R)*((r-r0)/R));

4 }

5 __syncthreads ();

Due to the fact that every thread executes the same code, it is possible to insert condi-

tions based on the id of the thread to alter what each thread actually calculates. Since in

this model there are only pairwise interactions between monomers, it is possible to paral-

lelize the calculation of the energy. For the FENE part of the potential this is particularly

straightforward, because only consecutive monomers are involved, see Listing 4.3. Each

thread calculates only one pair of monomers as part of the potential. Line 3 of that listing

shows the call to a special math function logf(). This is a hardware accelerated single

precision implementation of the natural logarithm, providing additional speed up.

Listing 4.4: Calculation of pairwise Lennard-Jones potential.

1 for (int i = 0; i < (N >> 1); i++) {

2 if (TX < N) {

3 if (TX > i) {

4 idx1 = i;

5 idx2 = TX;

6 }

7 else {

8 if ( (N & 1) == 0) {

9 idx1 = N - 1 - i;

10 idx2 = idx1 + TX;
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11 }

12 else {

13 idx1 = N - 2 - i;

14 idx2 = idx1 + 1 + TX;

15 }

16 }

17 r = distance (p, idx1 , idx2);

18 if (r < rc && idx1 != idx2 ) {

19 float rs6 = __powf (sigma / (r - ls), 6.0f);

20 energy[TX] += 4.0 * epsilon * ( (rs6*(rs6 -1)) - E_lj_rc

);

21 }

22 ...

23 __syncthreads ();

For the Lennard-Jones part of the potential, it is not that trivial. In principle it would

be possible to calculate all possible pairs prior to the simulation, but this approach would

easily exceed the maximum number of threads per block even for relatively short polymer

chains. Instead of calculating and itemizing all possible pairs, indices for pairs are calculated

“on-the-fly” and are assigned to threads as shown in Listing 4.4. For both parts of the

potential, one pair of monomers is assigned to one thread to perform the actual calculation

of the energy. The results of those calculations are stored in the array energy. When all

threads are finished with their part, a parallel reduction is performed on this array to obtain

the total energy. Instead of using only a single thread and a loop for the summation of

the array elements, multiple threads calculate different portions of the sum. A very detailed

explanation of parallel reduction on GPUs and different optimization strategies are discussed

in Ref. [57].
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4.3 Results

4.3.1 Performance comparison

To compare the performance of two different implementations, we define a speed-up factor

as follows,

Sp =
tCPU

tGPU

, (4.5)

where tCPU is the execution time on a single CPU core and tGPU is the runtime on the

respective device. All runtimes were measured with cutil-timers, which are wrapper functions

to the standard C library call gettimeofday. This ensures a consistent time measurement on

a variety of systems, and to measure GPU and CPU times alike. On the CPU side, only the

time taken for the actual calculation was measured. No initialization of variables or any file

operations were included in the measurements. To consider the extra overhead which comes

with GPU computing, the time taken to copy the data hence and forth the device has been

included along with the time taken for the sweeps. For the speed comparison, short runs of

400 sweeps per replica were performed. Every 1000 sweeps the replicas were copied back to

the host to perform the replica-exchange update. The system size of the benchmark chain

was N = 55. The hardware specifications of the graphics cards and the reference GPU can

be found in Table 4.2.
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reference CPU GPU1 GPU2 GPU3

name Xeon E5620 Tesla C1060 GTX285 GTX480

# processors 1 30 30 15

# cores per processor 4 (only 1 used) 8 8 32

RAM 16384MB 4096MB 1024MB 1536MB

clock speed 2.4GHz 1.3GHz 1.48GHz 1.4GHz

max. threads per block - 512 512 1024

shared memory size - 16kB 16KB 48kB

registers per block - 16384 16384 32768

Table 4.2: Specifications of the used hardware for GPU/CPU speed comparison.

First, naive porting of CPU to GPU codes already shows maximum speed-ups around

6–7 for GT200-based cards GPU1 and GPU2 compared to the reference implementation on

the CPU. With GPU3, based on the Fermi architecture, the maximum speed-up is about

9. In Figure 4.7 the dependency of the speed-ups on the number of replicas is plotted for

the examined GPUs. In this naive approach, each replica of the system was assigned to one

thread block containing only one thread. Because of the embarrassingly parallel nature of

the parallel tempering algorithm, it is possible to outperform a single CPU when more than

36 replicas of the system are simulated on GPU1, 32 replicas or 13 replicas for GPU2 or

GPU3 respectively. This is possible due to the large number of cores available on GPUs,

even though their clock speeds are lower than that of modern CPUs. As mentioned in

Section 4.1, the size of the thread blocks is limited, and threads on the GPU are bundled to

groups called warps. The maximum number of simultaneously active threads in a SM is 1024,

i.e., 32 warps, for GT200-based cards (GPU1 and GPU2) and 1536 threads, i.e., 48 warps

for Fermi-based GPU3. These warps do not necessarily have to belong to the same thread
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Figure 4.7: Speep-up factor Sp vs. number of replicas nr for naive porting of CPU code to
GPU. Lines are only guides for the eye.

block. Thus also 16 warps from two different thread blocks can be active simultaneously

in a single SM, or 3 blocks of 10 warps, or 4 blocks of 8 warps, and so on, up to 8 blocks

of 4 warps. This grouping of warps from up to 8 different thread blocks is a limitation of

all examined GPUs. The SM is not able to gather as many warps from different thread

blocks until its warps or thread limit is reached; explaining the peaks in Figure 4.7. Since

there are 30 streaming multiprocessors on GPU1 and GPU2, the maximum number of active

warps on the device is reached for 240 thread blocks of 1 thread each. Each SM calculated

the single thread of 8 different thread blocks. GPU3, however, has 15 multiprocessors, thus

is only capable of executing 120 blocks with 1 thread per block at a time. The maximum

speed-up for this thread layout is to be expected at multiples of 240 for GPU1 and GPU2,

and multiples of 120 for GPU3. Essentially thread blocks with threads other than multiples

of 32 – the warp size – are not recommended at all and should be avoided at all costs.
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Figure 4.8: Average GPU time 〈tGPU〉 in seconds vs. number of replicas nr for the naive
GPU version.

Another interesting finding is that the total runtime of the kernel is the same, whether

only one multiprocessor is busy and all the others are idling, or all SMs are equally busy.

This leads to a step-like graph, see Figure 4.8, when plotting the kernel runtime versus

the number of replicas, i.e., the number of thread blocks. With this in mind, an improved

version was implemented with a parallel calculation of the energy function as shown in

Listings 4.3 and 4.4. The thread block size was set to 64 – a multiple of the warp size

and greater than the number of monomers – each block again holding one replica. The

improved implementation also exploits low-latency memory access by using shared memory

for storing the coordinates of the monomers. Thus all threads within a block have fast access

to them when needed for the calculation of their portion of the energy. Performance is also

gained by substituting calls to the standard C library math library functions with optimized

hardware accelerated CUDA versions. The hardware accelerated functions usually have a
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lower precision than their software counterparts, but are executed much faster. As shown

in Figure 4.9, this implementation is much faster than the CPU version, when more than

2 replicas are simulated. The maximum speed-up factor for GPU1 is 68, 78 for GPU2 and

for GPU3 even 130. Again for the two GT200-based cards, multiples of 240 active thread

blocks are a limit for the maximum speed-up. With 240 active thread blocks of 64 threads

each, there are 15360 threads running on the GPU. The total number of threads divided

by the number of SMs in these cards equals 512. These 512 threads are a collection of 2

warps from 8 different thread blocks. So, with this parametrization the occupancy of the

multiprocessors is only at 50%, since 1024 active threads per SM are possible with GT200-

based cards. For GPU3, the first maximum is at 120 thread blocks, which complies with a

total number of 7680 threads. Even though GPU3 is capable of running 1536 threads in each

of its 15 SMs at a time, only 512 threads are active, due to the 8 thread block limitation (this

equals to an occupancy of 33%). These occupancy values come from the fact that only 64
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Figure 4.9: Speep-up factor Sp vs. number of replicas nr for the GPU version with parallelized
energy calculation.
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threads per replica are used for the energy calculation. A different implementation with more

threads or bigger system sizes, which require more threads could increase the occupancy of

the multiprocessors and thus increase the efficiency even further. The step-like shape of the
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Figure 4.10: Average GPU time 〈tGPU〉 in seconds vs. number of replicas nr for the improved
GPU version.

curve in Figure 4.10 every 30 replica for GPU1 and GPU2 coincides with the number of

SMs, meaning that with every additional thread block the overall speed-up drops until each

of the 30 multiprocessors again is equally busy. Also noticeable is that for GPU1 and GPU2

the first maximum of the speed-up factor is reached for 120 thread blocks. That means

all cores are equally busy, but apparently there seems to be plenty of latency in memory

operations. Thus, the overall speed-up is not affected by adding the same amount of work

to each multiprocessor, up to 240 thread blocks in total. For GPU3 the increase in kernel

runtime occurs every 15 thread blocks, corresponding to the number of SMs in the given

card. Consequently, to maximize the benefit from GPU implementations it is necessary to

keep all multiprocessors on the GPU equally busy.
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naive improved

GPU1 6.1× 68×

GPU2 7.2× 78×

GPU3 9× 130×

Table 4.3: Overview of maximum achieved speed-ups – max (Sp(nr)) – for the two different
GPU implementations, compared to the single-core CPU implementation.

Table 4.3 is a summary of the maximum speed-up factors achieved in our simulations,

employing the two different implementations. The ratio of speed-ups from GPU1 and GPU2

is nearly the same as the ratio of their respective clock speeds. Whereas GPU3 with a

similar clock speed shows significant speed-ups, which originate from the difference in the

chip design of the two GPU generations. To benefit from the new GPU generation the

only change necessary to the program was a different layout of the thread blocks with the

knowledge of the architecture as shown in Table 4.2. This demonstrates the easy portability

of GPU programs to exploit advances in new hardware generations.

4.3.2 Thermodynamics

Let us now briefly review the thermodynamical properties of elastic polymers with 13 and 55

monomers, which non-trivially freeze into icosahedral structures at low temperatures [9, 10].

In Figure 4.11 the specific heat, given by

CV
N

=
1

N

∂〈E〉
∂T

=
β2

N
(〈E2〉 − 〈E〉2), (4.6)

for the 13-mer and 55-mer, obtained by our parallel tempering simulations at 128 tempera-

tures, is plotted. The very pronounced peak at low temperatures, T ≈ 0.33 for the 13-mer

38



0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
T

0

2

4

6

8

10

12

C
V

/N

N = 13

N = 55

Figure 4.11: Specific heat for homopolymers with 13 and 55 monomers. The distinct peak at
low temperatures signals the freezing transition. Below that temperature these two polymers
form icosahedral crystals. Error bars are of the size of the line width.

and T ≈ 0.31 for the 55-mer, indicates the freezing transition. Below these temperatures,

the respective polymers have an icosahedral crystal structure. A change in the monotonic

behavior of the specific heat curves occurs at higher temperatures, T ≈ 1.0 for the 13-mer

and T ≈ 1.6 for the 55-mer. To get an insight of what is happening to the polymers at these

temperatures it is advantageous to look at another quantity. Figure 4.12 shows the thermal

fluctuation of the squared radius of gyration. The following expression,

r2
gyr =

1

N

N∑
k=1

(~rk − ~rmean)2, (4.7)

defines the squared radius of gyration, where ~rmean is the center of mass of the polymer.

The radius of gyration describes the mean distance of every monomer from the center of the
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Figure 4.12: Radius of gyration for the 13-mer and 55-mer as a function of temperature.
Both the freezing transition at low temperatures and the Θ-collapse at higher temperatures
are clearly observable as peaks.

polymer and is thus a spherical approximation of the polymer extension. From its thermal

fluctuation
∂〈r2

gyr〉
∂T

=
〈E · r2

gyr〉 − 〈E〉 · 〈r2
gyr〉

T 2
, (4.8)

structural transition temperatures can be located very easily. The peaks corresponding to

the freezing transition at low temperatures coincide with the respective peaks in the specific

heat. The maxima at high temperatures indicate the Θ-transition, where the random coil

polymer conformations collapse to very compact, but disordered liquid-like structures. The

temperatures are consistent with the signals in the specific heat curves. Table 4.4 gives an

overview of all structural “phases” of the two investigated polymer chains.
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structural phase 13-mer 55-mer

gas

liquid

solid

Table 4.4: Exemplified polymer structures for the 13-mer and 55-mer. The top row shows the
coil-like structures the polymer forms at high temperatures. In the middle are the collapsed
or liquid structures. The bottom row contains the crystals the polymer forms below the
freezing point.
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4.4 Conclusions

In this chapter it was shown that replica-exchange Monte Carlo simulations of polymer mod-

els can be performed quite efficiently on GPUs. Even for off-lattice models this is a suitable

approach. With very simply naive porting of CPU code to the GPU, we find considerable

performance gains of factors about 6–9 compared to a single CPU implementation. Utilizing

the unique architecture of GPUs with its different memory layers and the ability to schedule

a massive amount of threads, we improved the GPU program to attain speed-up factors of

around 70 for the GTX285, and even speed-up factors up to 130 for the Fermi-based GTX480

card. It should be noted that our implementation represents a rather basic level of utilizing

all the advantages GPUs offer. There is still more potential for further optimizations of the

code.

Furthermore, it is possible to access multiple GPUs in a single workstation within the

same program. Also nodes of established cluster computers can be equipped with GPUs.

A hybrid programming using CUDA/OpenCL and the traditional message passing interface

(MPI) would be used in such a scenario. In the last years more and more supercomputers

have been equipped with GPUs to deliver cost and energy efficient performance. The future

of supercomputing is going to be massively parallel with the need of hybrid programming

schemes.
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Chapter 5

Influence of the interaction range on

flexible polymer structures

5.1 Introduction

In this chapter, we will investigate how structure formation of a single elastic, flexible poly-

mer depends on the range of interaction between nonbonded monomers. The goal is to

construct a phase diagram that separates potential structural phases for all classes of flex-

ible polymers under the influence of a thermal environment. In recent years, much work

has been dedicated to the identification of structural phases of flexible polymers by using

standard representations of generic coarse-grained lattice and off-lattice models for polymers.

However, as recent studies of discrete models have shown [8, 58–61], it is also important to

understand to what extent the formation of these structural phases is affected by the effec-

tive range of the attractive nonbonded interactions competing with excluded-volume effects.

One of the most interesting features found in these studies was that, for sufficiently short

interaction range, collapse and nucleation are not separate transitions anymore, and a liquid

phase does not exist. It is also known that geometric properties of atomic clusters depend
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sensitively on the range of interaction [5–7, 62].

We here present the results of extensive generalized-ensemble Monte Carlo simulations of

a generic Lennard-Jones model for elastic, flexible polymers in continuum in order to reveal

the interaction-range dependent phase structure under the influence of finite-size effects.

Since the latter essentially affects the behavior in the regime where coil-globule and freezing

transitions meet, we also thoroughly compare conventional canonical and more detailed

microcanonical analyses of this multiple transition point.

5.2 Model and Methods

5.2.1 Model

For this study, we employ a very similar model of a single elastic, flexible homopolymer chain

that we used in Chapter 4. A very important difference, however, is an additional parameter

in the Lennard-Jones potential to control the effective interaction range. All monomers,

bonded and non-bonded, interact via a truncated, shifted Lennard-Jones potential

Umod

LJ (rij) = ULJ(rij)− ULJ(rc), (5.1)

with

ULJ(rij) = 4ε

[(
σ

rij − rs

)12

−
(

σ

rij − rs

)6
]
, (5.2)

where the energy and length scales are set to ε = 1 and σ = (r0 − rs)/2
1/6, respec-

tively. We choose a cut-off radius rc = 2.5σ + rs such that Umod
LJ (rij) ≡ 0 for rij > rc

and ULJ(rc) = (−3983616/244140625)ε ≈ −0.016317ε. The bonds between neighboring

monomers are modeled using the anharmonic FENE (finitely extensible nonlinear elastic)
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potential [63]

UFENE(rii+1) = −K
2
R2 log

[
1−

(
rii+1 − r0

R

)2
]
. (5.3)

We locate its minimum at r0 = 0.7, set R = 0.3, and choose K = 40 [9, 10]. The total energy

of a conformation C = (~r1, · · · , ~rN) for a chain with N monomers is then given by

E(C) =
1

2

N∑
i,j=1
i 6=j

Umod

LJ (rij) +
N−1∑
i=1

UFENE(rii+1). (5.4)

Within our simulations, the parameter rs is used to control the width of the potential. The
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Figure 5.1: Behavior of the modified Lennard-Jones potential for different values of rs.

qualitative behavior of the influence of rs on the shape of the potential is shown in Figure 5.1.

While it is convenient to use rs in the definition of the potential, it is more useful for the

subsequent analysis to introduce the potential width δ as a new parameter. For this purpose
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only, we define a square well potential

Usq(r) =


∞ if r ≤ r1

−εsq if r1 < r < r2

0 if r ≥ r2

, (5.5)

with the constant εsq = ε/2 + ULJ(rc) such that εsq = (236173393/488281250)ε ≈ 0.483683ε

and r1 and r2 being the radii where Umod
LJ (r1) = Umod

LJ (r2) = −εsq, independent of rs (see

Figure 5.2).
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Figure 5.2: The potential width δ is defined by the width of a square well potential of depth
−εsq, which is the difference of the two distances r1 and r2 where the Lennard-Jones potential
equals −εsq.

The relationship between the simulation parameter rs and the potential width δ is linear:

δ = r2 − r1 = λ(r0 − rs), (5.6)
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with

λ = 21/6

(1 +

√
1

2

)1/6

−
(

1−
√

1

2

)1/6


≈ 0.312382. (5.7)

The maximum value of δ is determined by the unmodified Lennard-Jones term, i.e., for

rs = 0, and reads δmax = λr0 ≈ 0.218667.

5.2.2 Simulation method

For our simulations, we employed the replica-exchange Monte Carlo method known as par-

allel tempering, see Chapter 3.1.2. One set of simulations was performed on GPUs using

either nr = 112 or 128 replicas, depending on the card generation. The calculation of the

energy was carried out in parallel by using 128 threads per replica. Consequently there were

up to 16384 threads running concurrently on the graphic cards. The advantages of utilizing

graphic cards for parallel tempering simulations of polymers have already been discussed

in Chapter 4 and have been published in References [22, 23]. This simple scheme can be

applied for values of δ as small as about 0.06. For smaller values of δ the freezing transition

barrier becomes so strong that an algorithmic improvement is necessary.

Such is made possible by multiple Gaussian modified ensembles (MGME) [64–66], which

we will explain later. This Monte Carlo method retains all advantages of parallel tempering,

in that it facilitates efficient implementation on parallel computers. At the same time,

the sampling of entropically suppressed conformations is increased. The method allows

the simulation of strong first-order polymer crystallization for chain lengths up to N =

147 at very small interaction width δ ≈ 0.030 and for the 90-mer down to δ ≈ 0.015. A

simulation of all structural phases of these polymers with standard parallel tempering is
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virtually impossible. We performed MGME simulations on a parallel computer cluster using

the message passing interface (MPI).

The basic idea of MGME simulations is to multiply the Boltzmann factor of single canoni-

cal ensemble by a Gaussian form centered around some central energy value EG,i and a width

∆EG, such that PB
MGME,i ∼ e−βiE−[(E−EG,i)/∆EG]2 . In consequence, the probability for a state

with energy E to occur in the ith modified ensemble becomes

PMGME,i(E) ∼ eS(E)−βiE−[(E−EG,i)/(∆EG)]
2

, (5.8)

where S(E) = ln g(E) is the microcanonical entropy and g(E) is the density of states. In case
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Figure 5.3: Second derivative of the microcanonical entropy S(E) showing a positive peak
signaling a first-order like transition. Error bars are the size of the line width.

of first-order-like transitions, S(E) becomes convex with d2S(E)/d2E > 0 in a certain finite

energy interval, limited by two distinct energies E+ and E− with d2S(E)/dE2(E = E+) =

d2S(E)/dE2(E = E−) = 0, see Figure 5.3. In this case the energy distribution is bimodal.
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In MGME simulations the counter term to S(E) in Equation (5.8) of the form −(E/∆EG)2

shifts positive d2S(E)/d2E values to negative, provided that ∆EG is small enough. Thus,

energy distribution functions within the single Gaussian ensembles PMGME,i(E) have strictly

uni-modal shape. This absence of double-peaked distributions improves the Monte Carlo

sampling problem of entropically suppressed regions of state space, while a proper choice of

the remaining parameters EG,i and βi ensures a sufficient overlap between neighboring par-

allel tempering partitions at i and i + 1. Possible algorithmic approaches to the parameter

choice are described in Ref. [64]. For illustration, in Figure 5.4 we show a combined energy
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Figure 5.4: Accumulated multi-histogramHmulti(E) from MGME simulations forN = 90 and
δ ≈ 0.030 (upper curve). The parallel tempering partition consists of nr = 80 single Gaussian
ensembles (replicas). Some histograms for single Gaussian ensemble are also displayed. They
are all of uni-modal shape.

histogram obtained in actual MGME simulations, the multi-histogram Hmulti(E). The sim-

ulation covers the entire energy interval of interest for a N = 90 polymer at δ ≈ 0.030. In

addition, neighboring single energy histograms in-between i and i + 1 as displayed in the

figure have sufficiently large overlap to facilitate swap-updates with reasonable acceptance
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rates. For the given example, the overlap O =
∫

min[Pi(E), Pi+1(E)]dE in-between neigh-

boring probability distributions of the parallel tempering partition was tuned to a value

O ≈ 0.63 . . . 0.64. This particular value results in acceptance rates Pacc ≈ 0.5 for swap up-

dates. We remark that less optimal parallel tempering partitions for MGME simulations can

easily be found, and as long as O > 0.1 are still considered to be efficient. In our early sim-

ulations we actually employed the simple displacement updates for all Cartesian monomer

coordinates.
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Figure 5.5: Tunneling auto-correlation time as explained in the text as a function of δ
at N = 90 for simple displacement updates (triangles), improved by slithering snake and
crankshaft moves (circles).

For these, we measure the tunneling auto-correlation time τtunnel in units of sweeps,

which counts the time in-between the assignment of a specific conformation (on the parallel

tempering partition) to i = 1, then to i = nr and finally to i = 1 again. Figure 5.5 displays

these times (triangles) for the N = 90 polymer as a function of δ. We observe rapidly

increasing values for short ranged potentials, which renders simulations of short ranged

potentials hard. In typical parallel tempering simulations, we perform O(109) sweeps for
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each of the nr copies. Including slithering snake and crankshaft updates (circles) reduces

the time scale substantially.

5.3 Results

5.3.1 Comparison with previous studies

In a recent study [60, 61], Taylor et al. investigated a flexible homopolymer chain, where the

non-bonded monomers interact via a square-well potential with variable width. Constructing

a phase diagram as a function of temperature and potential width, they identified three

phases for sufficiently large interaction ranges: expanded coils for high temperatures and

crystalline (frozen) structures for very low temperatures, separated by a collapsed-globule

phase for intermediate temperatures. The collapse transition was found to be pre-empted

by the freezing transition for narrow potentials. While in a canonical analysis approach the

signals for the collapse transition vanish, the microcanonical approach is still able to locate

the positions of all transitions.

Since the collapse transition point is included in the Maxwell regime of the liquid-solid

transition, Taylor et al. concluded that what remains is a first-order-like transition from

coil to crystal. This argumentation is fully consistent with the assumption that liquid-solid

and coil-globule transitions become indistinguishable in the thermodynamic limit. For the

continuum model we used, we can clearly confirm these findings. Figure 5.6 shows how

the inflection point associated with the second-order collapse transition enters the Maxwell

regime of the liquid-solid transition (dashed lines), if δ is decreased below a threshold value.

However, this argumentation is not sufficiently consequential in light of the microcanoni-

cal interpretation of the results obtained for a finite system. First, the Maxwell construction

is adapted from the theory of real gases, where it is necessary to get rid of unphysical behav-
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Figure 5.6: Comparison of the microcanonical inverse temperature β(E) for three values of δ.
The triangles mark the corresponding peak position in the derivative of β(E) for the freezing
transition. The circles correspond to the maxima in γ(E) marking the collapse transition.
The dotted lines are located at β-values obtained by Maxwell constructions. Areas A1 and
A2 enclosed by β curves and Maxwell line coincide.

ior in the infinite system. Here, this is not necessary. The “back-bending effect” smoothly

disappears for large systems. Therefore, a Maxwell construction is not needed at all. The

analysis of inflection points is sufficient to uniquely identify and classify transitions. Second,

in contrast to the canonical “heat bath” temperature, the inverse microcanonical tempera-

ture is a well-defined quantity on fundamental statistical grounds. Taking this into account,

both transitions remain separate, but microcanonically they cross over. This is a pure finite-

size effect. Both transition temperatures will converge to the same transition point in the

thermodynamic limit.

In Figure 5.6, the microcanonical temperature curves are shown for three potential

widths, δ ≈ 0.06, 0.03, and 0.015. Circles mark the transition points for the Θ-collapse
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and triangles the freezing transition. In addition to the results from the inflection point

analysis, the Maxwell line associated with the freezing transition is also included. While for

rather broad potentials, i.e., δ & 0.1 the temperatures obtained by inflection point analysis

and Maxwell construction match, these definitions of the transition temperature differ for

narrower potentials.

5.3.2 Interaction range dependency

In the following, we will investigate how the interaction range δ of the potential influences

transition points in the system. We have plotted the first and second derivatives of the

microcanonical entropy for the 90-mer in Figure 5.7 as well as specific heat curves and

thermal fluctuations of the radius of gyration in Figure 5.8.
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Figure 5.7: (Top) The microcanonical inverse temperature as a function of energy for the
90-mer at different values for the potential width δ. All inflection points of the inverse
temperature that signal a transition are marked by a circle. (Bottom) Derivative of the
inverse temperature β(E) as a function of energy.
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In Figure 5.7 (top) the inverse microcanonical temperature is shown as a function of

energy. The unmodified and largest interaction range δ = δmax ≈ 0.22 corresponds to

the leftmost temperature curve. Two effects can be observed as the potential width δ is

reduced: The freezing transition marked by the non-monotonic region, also referred to as

“back-bending” or “convex intruder” [16, 67], is shifted to higher energies. It also becomes

more pronounced for narrower potentials. Another effect of narrowing the interaction length

is that the collapse transition, indicated by the shoulders in the γ(E)-curves, shifts to lower

temperatures. The difference in transition temperatures becomes smaller and smaller for

shorter interactions range. In the bottom part of Figure 5.7 we show the second derivative

of the entropy. With decreasing potential width the freezing transition, signaled by the

peak of positive value, shifts to higher energies. The first four curves also show a peak

with negative value below the freezing transition, marking the solid-solid transition in the

incomplete outer shell of the icosahedron in the core. Note that the solid-solid transitions

are second-order-like and occur only for δ > 0.12. At higher energies, above the freezing

transition, the curves exhibit a maximum marking the collapse transition. This maximum

is shifted to lower energies, as δ decreases.

We also looked at two canonical quantities to identify transitions in the system. A typical

quantity that gives insight into the thermodynamic behavior of the system is the specific

heat, as shown in Figure 5.8 (top). With decreasing potential width, the signal for the

freezing transition, i.e., the pronounced peak at low temperatures, shifts to slightly higher

temperatures. For smaller values of the interaction length the freezing temperature drops

again. The maxima of the peaks increase with decreasing δ. The solid-solid transition is just

visible as a small shoulder below the freezing peak. While the freezing temperature changes

only slightly, the collapse temperature undergoes more significant changes. The shoulders

indicating the collapse transitions become narrower with decreasing potential width.
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Figure 5.8: (Top) Specific heat and (bottom) thermal fluctuation of the radius of gyration
for the 90-mer parametrized by δ.

In this case it is often more advantageous to investigate structural quantities, such as the

radius of gyration rgyr, which is a measure for the spatial extension of the polymer. Let’s

discuss the thermal fluctuations of rgyr as shown in Figure 5.8 (bottom). For each δ, there
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are two prominent peaks. The low-temperature peaks belong to the liquid-solid transition

and their locations agree well with those of the respective specific heat peaks. At higher

temperatures we find very pronounced peaks that indicate the collapse transition. Again,

we can see that with smaller δ the difference between gas-liquid and liquid-solid transition

temperatures decreases. The Θ-collapse moves to lower temperatures for short interaction

ranges.
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Figure 5.9: Comparison of three different definitions for the freezing transition temperature
of the 90-mer. The crosses are transition temperatures indicated by the respective peaks
in the first derivative of the microcanonical entropy. Peak positions of the specific heat
are represented by triangles. The circles are the transition points obtained by Maxwell
construction.

To compare different approaches for transition temperatures, we show the behavior of

three definitions for the freezing temperature in Figure 5.9. While specific heat peaks and

Maxwell construction agree over the entire δ-range, the values obtained via microcanonical

analysis visibly deviate for δ . 0.1. This is not surprising, because in the case of the specific

heat and Maxwell indicators, freezing and collapse signals mix, whereas the inflection points
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purely indicate the freezing transition only. Therefore, we will construct the structural

phase diagram in the following entirely by means of the microcanonical inflection points of

the inverse temperature.

5.3.3 Phase diagram for the 90-mer

With all the transition temperatures acquired from the microcanonical analysis, we can

construct the structural phase diagram for the 90-mer, parametrized by temperature T and

interaction range δ. There are three major phases, see Figure 5.10. In the “gas” phase

G at high temperatures and short-range interaction, polymer conformations are dominated

by expanded coils. For interaction ranges δ & 0.02, the “liquid” phase L separates the

gas phase from distinct solid phases. The red curve in Figure 5.10 is the Θ-transition line,

where the expanded coil collapses into disordered, but compact globular states. Reducing

the temperature, the polymer structures change from globular to crystalline at the freezing

transition line indicated by the green line. With decreasing potential width the liquid phase

region becomes smaller, as the collapse transition shifts to lower temperatures. The inset in

Figure 5.10 shows the crossover of collapse and freezing at very small interaction ranges. In

the microcanonical analysis it is still possible to single out both transition temperatures. At

about δ = 0.12 the solid-solid transition (blue line) merges with the freezing transition.
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Figure 5.10: (Top) Phase diagram for the 90-mer, obtained by pure microcanonical analysis.
The inset shows the crossover of the transition temperatures for collapse and freezing tran-
sition. (Bottom) Probability for zero (nic = 0) and nonzero (nic ≥ 1) number of icosahedral
cores in low temperature structures, cf.[9, 10].

The solid phase Sico−aM is dominated by structures with at least one icosahedral core

and an incomplete outer shell of anti-Mackay type (hcp), see Figure 1 and Figure 2 in

Ref. [9, 10]. By reducing the temperature further and passing the solid-solid transition line,

the packing is optimized and a Mackay-type fcc layer forms (phase Sico−M). However, the

icosahedral interior becomes energetically less optimal for δ < 0.15, and it is replaced by a

decahedral arrangement of monomers. These structures can also possess extended fcc-packed

fractions (Sfcc/deca). Following former studies of atomic cluster models with short-ranged

interactions [5–7], one might expect a separate fcc phase to be present at extremely small δ-

values and temperatures. We will discuss this crossover in more detail for a simpler example
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in the following section.

5.3.4 Analysis of low-temperature structures

The characterization of the solid phases in the structural phase diagram is challenging and

almost completely determined by surface effects. It is instructive to investigate the low-

temperature crystal structures of flexible polymers at different ranges δ of the monomer–

monomer interaction potential. As an example, we choose the 55-mer, which forms a per-

fectly shaped icosahedron for δ = δmax ≈ 0.220 [9, 10]. In contrast to the 90-mer, its

geometric phases are more stable and can be identified clearly. The qualitative behavior

however, is similar for longer chains.

As a first step, we pick 106 independent conformations from the lowest-temperature

partition of the multiple Gaussian modified ensemble for every 0.030 ≤ δ ≤ 0.220 in steps

of ∆δ ≈ 0.015. The inverse microcanonical temperatures of those conformations are in the

range 4 ≤ β ≤ 5. For the identification of the solid phases, it is useful to measure the

integrated radial distribution function with respect to the particle closest to its center of

mass (com), i.e., the total number of monomers inside a sphere of radius r around the center

monomer icom:

N s
icom(r) =

∑
i 6=icom

Θ(r − ri,icom) , (5.9)

where ri,icom is the distance between monomer i and the center monomer, and Θ(r) is the

Heaviside function. The results are shown in Figure 5.11, where each individual curve is the

average over the data measured for each of the 106 conformations. One can clearly differ-

entiate two types of curves for N s
icom(r). For δ = δmax ≈ 0.220 we know that the monomer

positions correspond to the vertices in two icosahedral layers with radii of circumscribed

spheres of 0.67 and 1.33, containing 13 and 55 monomers, respectively. That fact is clearly

supported by the corresponding jumps in N s
icom(r) marked by grid lines at the bottom scale.
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Figure 5.11: Averaged integrated radial distribution functions N s
icom(r) for the N = 55-mer

at different values of δ. Data was obtained from many independent low-energy configurations
at inverse microcanonical temperatures 4 ≤ β ≤ 5. Curves are plotted for different values
of δ in steps of ∆δ ≈ 0.015. Grid lines and values at top scale correspond to nth nearest
neighbor (1 ≤ n ≤ 5) positions in the fcc-lattice with lattice constant r0. Grid lines and
values at bottom scale correspond to radii of circumscribed spheres of icosahedra with edge
lengths r0 and 2r0, cf. Equation (5.3).
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For decreasing interaction range, starting at δ < 0.12, the shape of N s
icom(r) changes qualita-

tively, indicating that the low-energy states are not icosahedral anymore, which is consistent

with Figure 5.10 (bottom). The function now shows jumps at radii corresponding to nth

nearest neighbor distances in the fcc lattice (upper scale and grid lines). We emphasize that

this crossover picture is very stable, even though we measure at temperatures well above

T = 0.

In order to unravel the structural details, we now look at the putative ground-state

structures and measure their (binned) pair distribution function:

g(r) =
∑
j

(
N s
j (r + 0.5∆r)−N s

j (r − 0.5∆r)
)
, (5.10)

where we set ∆r ≤ 10−2. In other words, we measure distances between all pairs of monomers

in the configuration, rather than only the distance of all monomers from a single center

monomer as above, and count them in a histogram. We can clearly differentiate three

different structural types in different regions of the interaction length. We plot g(r) in

Figure 5.12 for three representative values of δ and visualize the corresponding conformations

in Figure 5.13. The peaks of the red curves (open squares) in Figure 5.12 correspond to

icosahedral structures, which have been discussed above. For very small δ (blue peaks, filled

diamonds), i.e., for very short ranged potentials, we find that all peaks coincide with nearest

neighbor positions in the fcc lattice. In Figure 5.12, the values at the top scale and the grid

lines correspond to the nth-to-nearest neighbor distances (1 ≤ n ≤ 19) in the fcc lattice. All

peaks of g(r) of the ground state at δ ≈ 0.030 agree very well with these values. However,

there are structures in-between (green peaks, filled squares), which are neither icosahedral

nor completely fcc structures. Those structures resemble ground states found for atomic,

range-dependent Morse clusters [5, 6]. In fact, the ground state at δ = 0.110 corresponds

to the decahedral structure “55C” found in [6] (cp. Figure 5.13 b and Figure 7 in [6]). For
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Figure 5.13: Visualizations of ground-state structures corresponding to data plotted in Fig-
ure 5.12 a) Icosahedron at δ = δmax, cf. [9, 10]; b) δ ≈ 0.110, cf. decahedral structure 55C
in [6]; c) δ ≈ 0.030, all monomers occupy atomic positions at the fcc lattice.
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other values of δ close to 0.110, we also find the defective decahedral structures described

there.

5.4 Conclusions

We have studied the influence of the interaction length of a Lennard-Jones potential on the

structural behavior of an elastic, flexible polymer. We applied advanced simulation methods

by using replica-exchange parallel tempering on graphics cards and multiple Gaussian mod-

ified ensembles to tackle the strong first-order-like behavior of the freezing transition. We

employed the microcanonical inflection-point analysis method [13] that made it possible to

construct a structural phase diagram for an elastic flexible polymer with 90 monomers. This

analysis of the microcanonical entropy allows to resolve the positions of structural transitions

which are much more uncertain in canonical analyses. We are able to precisely locate and

also classify transitions by investigating the first and second derivative of the entropy. Both

derivatives can be evaluated easily. We find that the liquid phase, separating the extended

coil “gas”-like phase from the crystalline solid phases, becomes smaller for shorter interac-

tion ranges. For sufficiently small interaction range, we eventually observe a crossover of

transition lines. The crossover point marks the triple point in the thermodynamic limit and

thus the direct transition from gas to solid. According to the microcanonical signals, both

transitions remain separate for finitely long polymers. Summarizing the structural analysis

of the solid phases, we find that the icosahedral ground-state structures identified for the

standard Lennard-Jones potential [9, 10] do not survive at smaller interaction ranges. In

analogy to former studies of atomic Morse clusters [5–7], we find transitions from icosahe-

dral to decahedral and fcc structures for decreasing interaction range. These transitions are

strongly influenced by the repulsive part of the potential as they are mainly triggered by

released stresses in the conformation.
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Chapter 6

Polymer adsorption on nanocylinders

6.1 Introduction

In this chapter the thermodynamic behavior of a coarse-grained flexible homopolymer in the

presence of an attractive cylindrical substrate is investigated. We are interested in the struc-

tural phase behavior of the polymer with changing surface attraction strengths. The effective

monomer–surface attraction strength is associated with the radius of a modelled nanocylin-

der. The objective of this study is the creation of a complete phase diagram indicating all

possible structures the polymer can assume as a function of the radius of the nanocylinder

and temperature. Previous studies of polymers adsorbed on planar surfaces [68–73] on lat-

tices as well as in continuum, already provide insight in the structural phases of adsorbed

chains. Recently also the adsorption on curved surfaces [74–78] was the focus of many stud-

ies. We try to connect the findings of adsorption on curved surface and those on planar

surfaces, since the limit of a infinite cylinder radius yields the same characteristics of a pla-

nar surface. We simulate a 30-mer interacting with nanocylinders of ten different radii and

five materials using parallel tempering. Multiple geometrical observables and their thermal

fluctuations are analyzed to locate and identify structural phase transitions. Finally we are
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able to assemble pseudophase diagrams for all 5 nanocylinder materials and identify desorbed

and adsorbed polymer conformations.

6.2 Model

The polymer that is interacting with a nanocylinder in this chapter is modelled the same

way as in Section 4.2.1. Interaction between all monomers is described by a shifted and

truncated Lennard-Jones potential

Umod

LJ (rij) = ULJ(rij)− ULJ(rc), (6.1)

ULJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (6.2)

In addition to the Lennard-Jones term the FENE potential

UFENE(rii+1) = −K
2
R2 log

[
1−

(
rii+1 − r0

R

)2
]
, (6.3)

is used to model the bonds between adjacent monomers. The parametrization for both

potentials is the same as before, compare Chapter 4.2.1. Investigated was a polymer with

N = 30 monomers.
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Figure 6.1: Coordinates for integration of Lennard-Jones potential in case of the nanocylinder

For the nanocylinder a homogeneous distribution of atoms is assumed. The potential

energy that affects a monomer with distance D from the cylinder surface for a nanocylinder

with radius R is calculated as follows:

Ucyl(R,D) = εcπ

∫ 2π

0

dϕ

∫ R

0

ρdρ

(
63

64x11/2
− 3

2x5/2

)
, (6.4)

with

x = (D +R)2 + ρ2 − 2ρ(D +R) cosϕ. (6.5)

The potential is essentially a Lennard-Jones like interaction of monomers with the nanocylin-

der. In the potential of the form as in Equation (6.2), with σ ≡ 1, the Cartesian coordinates

are transformed into cylindrical coordinates. Then an integration over the z-coordinate from
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Figure 6.2: Cylinder potential for εc = 1.0 and different nanocylinder radii R. The dashed
line represents the potential for R→∞, which coincides with the potential of the wall.

negative infinity to infinity is performed along the cylinder axes as shown in Figure 6.1. The

resulting potential in Equation 6.4 can only be evaluated numerically. To avoid the compute

intensive task of calculating the cylinder potential, which is needed at every Monte Carlo

step, the potential is evaluated prior to the simulation and stored in an array. It is restricted

to a minimum cutoff distance Dmin,cut = 0.5 and a maximum cutoff distance Dmax,cut = 5.0.

Below the minimum distance the potential is set to infinity and above the maximum distance

it is set to zero. The cylinder potential for εc = 1.0 for different values of R is plotted in

Figure 6.2. Different value for εc can be understood as different materials the nanocylinder is

composed of. In the limiting case R→∞ the cylinder potential coincides with a wall poten-

tial, that could be obtained by integrating the Lennard-Jones potential over the half-space
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for y < 01 The wall potential has the form

Uwall = 4πεc

(
1

45y9
− 1

6y3

)
. (6.6)

This allows at least a qualitative comparison of structures to previous studies of polymer

adsorption at walls [40, 73, 79]. For a given conformation C = (~r1, . . . , ~rN , R) for a polymer

of length N and a nanocylinder with radius R, the total energy is

E(C) =
1

2

N∑
i,j=1
i 6=j

Umod

LJ (rij) +
N−1∑
i=1

UFENE(rii+1) +
N∑
i=1

Ucyl(R,Di). (6.7)

Simulations were performed in a simulation box, with steric walls in x− and y−direction.

The size of the box in both x− and y−direction is set to R + 2N . This restriction keeps

the polymer from moving too far away from the cylinder. A restriction of the z−direction is

not necessary, since the cylinder spans over the whole z−axis. Simulations were performed

using parallel tempering at 80 temperatures for 5 different nanocylinder materials, i.e., for

εc = {1.0, 2.0, 3.0, 4.0, 5.0}. For each temperature, each value of εc, and each radius, 5 · 107

sweeps were performed to gather sufficient statistical data for the canonical quantities with

reasonable error bars. The error bars were obtained using the binning method[80–82].

6.3 Results

In the following section we look at various observables and their thermal fluctuations

to locate and identify structural transitions of a 30-mer interacting with nanocylin-

ders composed of 5 different materials. For each material 10 different radii R =

{0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 10.0} were simulated. The effective attraction of the

1Integration over the half-space x < 0 is also possible. Since the cylinder stretches along the z-axis, this
would mean that either the y-z-plane or the x-z-plane would represent the wall boundary.
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cylinder to the polymer grows with the cylinder radius, as more material is added to the

cylinder, as plotted in Figure 6.2. The information of all observables, i.e., the peak po-

sitions, minima, and maxima, is combined to construct structural phase diagrams for all

nanocylinder materials as a function of the respective cylinder radius.

6.3.1 Thermodynamics

Specific heat cV

The first observable we want to analyze is the specific heat. Figure 6.3 shows the complete

set of specific heat plots for all radii and values of εc. For εc = 1.0 (Figure 6.3 top left) the

specific heat plots show two peaks for most radii. A stable peak for all radii at T ∼ 0.35

signals the freezing or liquid-solid transition. Below that temperature all polymers, adsorbed

or desorbed, have a well defined crystalline structure. For R = 10.0 the freezing temperature

is slightly shifted to a lower temperature. The reason for this becomes apparent later, when

the type of crystal that is formed is investigated. The second peak visible for all radii

R > 0.25 identifies the adsorption transition. With increasing cylinder radius the adsorption

temperature increases as well. For εc ≥ 2.0 again the freezing transition is a stable peak at

T ∼ 0.35. Deviations from the freezing temperature are caused by an overlap of multiple

structural changes, e.g. for R = 0.25, εc = 2.0 the freezing and adsorption transitions are so

close to each other, that they are visible as only one peak. The adsorption temperatures again

are shifted to higher temperatures with increasing cylinder radius. Since our main interest is

to study the adsorbed structures, the temperature interval is limited to T ∈ [0.1, 2.5]. That

means for those radii that do not show a peak at high temperatures in the specific heat

anymore, the adsorption temperature is above T = 2.5.
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Figure 6.3: Specific heat curves for the interaction of a 30-mer with nanocylinders at 10
different radii, plotted for εc = 1.0 (top left), 2.0 (top right), 3.0 (middle left), 4.0 (middle
right), and 5.0 (bottom).
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Radius of gyration and its thermal fluctuations

As in the chapters above the squared radius of gyration r2
gyr is a geometrical observable

that helps identifying structural phases of the polymer. In Figure 6.4 is the complete set of

squared radius of gyration plotted versus temperature. An interesting feature of those plots

is the spreading of r2
gyr at the high temperature end for εc ≥ 2.0. This is caused by the fact,

that for stronger effective attraction the polymer gets adsorbed at high temperatures, where

the polymer would assume elongated coil-like structures and the cylinder surface restricts the

monomer movement. The thermal fluctuations of r2
gyr calculated according to Equation 2.16,

shown in Figure 6.5, exhibit peaks at those temperatures where the change of r2
gyr with

temperature is maximal. For εc = 1.0 and 2.0 the thermal fluctuations of r2
gyr show two

pronounced peaks. The peak at low temperatures T ∼ 0.35 indicates the freezing transition.

For εc = 1.0 and R ≥ 3.0 the fluctuation of the radius of gyration show minima around

the freezing temperature. The crystalline structures for these polymers have a larger radius

of gyration than the liquid structures. The polymer flattens out on the cylinder surface,

resulting in an increase of r2
gyr. The peak at high temperatures signals the Θ-transition. The

polymer collapses from the coil-like structures at high temperature to compact structures

below. Another interesting feature of the collapse transition is a shift to lower temperatures

for all adsorbed polymers. The adsorption itself can not be identified by looking at the radius

of gyration alone, but information from other quantities allows this conclusion. The collapse

temperature is T ∼ 1.35 for desorbed polymers and drops below T = 1.0 for εc ≥ 2.0 where

adsorption appears at higher temperatures. For εc ≥ 3.0 there are multiple smaller peaks

and shoulders at temperatures below T ∼ 0.5, which correspond to the freezing/flattening

of the polymer in the presence of the nanocylinder surface.
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Figure 6.4: Squared radius of gyration as a function of temperature for the 30-mer.

73



0.0 0.5 1.0 1.5 2.0 2.5
T

−2

−1

0

1

2

3
d
〈r

2 gy
r〉

/
d
T

εc = 1.0

R = 0.1

R = 0.25

R = 0.5

R = 0.75

R = 1.0

R = 1.5

R = 2.0

R = 3.0

R = 4.0

R = 10.0

0.0 0.5 1.0 1.5 2.0 2.5
T

−1

0

1

2

3

4

5

d
〈r

2 gy
r〉

/
d
T

εc = 2.0

0.0 0.5 1.0 1.5 2.0 2.5
T

−1

0

1

2

3

4

5

6

d
〈r

2 gy
r〉

/
d
T

εc = 3.0

0.0 0.5 1.0 1.5 2.0 2.5
T

−1

0

1

2

3

4

5

6

7

8

d
〈r

2 gy
r〉

/
d
T

εc = 4.0

0.0 0.5 1.0 1.5 2.0 2.5
T

−1

0

1

2

3

4

5

6

7

8

d
〈r

2 gy
r〉

/
d
T

εc = 5.0

Figure 6.5: Fluctuation of the squared radius of gyration vs. temperature for the 30-mer in
presence of cylinders with 10 different radii and 5 different values of εc.
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Polymer extension perpendicular to the cylinder surface

To obtain information mainly about the low temperature structures of the polymer, I intro-

duce a new observable rperp = Dmax(C) − Dmin(C) that measures the difference of distance

between the monomer farthest away from the cylinder Dmax(C) and the monomer that is

closest to the cylinder surface Dmin(C). In Figure 6.6 this quantity is plotted for all simu-

lated materials and radii. The value of rperp at the lowest temperature gives insight about

the structures of the polymers. For rperp ≈ 0 all monomers have about the same distance

from the cylinder surface, i.e., the polymer forms one layer on the surface. rperp ≈ r0 means

the polymer assumes a two layered structure. Three layers are associated with rperp ≈ 2r0.

Due to the length of the polymer N = 30 higher level of layering is not observed and higher

values of rperp at low temperatures can not be connected with a layered structure anymore.

The thermal fluctuations of this quantity, as shown in Figure 6.7, show two peaks for each

radius. The peaks at higher temperatures correspond to the adsorption transition and are

in good agreement with the adsorption temperatures signaled in the specific heat. The low

temperature peaks T ≤ 0.4 correspond to the freezing transition. A positive peak value

means in this case a decrease in rperp when going from higher to lower temperatures. If the

thermal fluctuations show a peak with a negative value, that means the distance of monomers

from the surface increases for the crystal when compared to the unordered liquid structure.
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Figure 6.6: Extent of the 30-mer perpendicular to the cylinder surface rperp plotted against
temperature.
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Figure 6.7: Thermal fluctuations of rperp as a function of temperature.
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Number of monomer–surface contacts

The last quantity that was investigated is the number of monomer–surface contacts nc.

A monomer is considered to be in contact with the nanocylinder when its distance from

the cylinder is D ≤ 0.95, which is slightly above the distance where the cylinder potential

becomes minimal. In Figure 6.8 the number of contacts for the investigated 30-mer is plotted

as a function of temperature for all simulated values of R and εc. The number of contacts

provides information about the adsorption of the polymer as well as information about the

low temperature structures. If nc ∼ 30, i.e., all monomers are in contact with the cylinder,

the polymer forms one layer on the surface. For nc ∼ 15 around half the monomers are

in contact with the cylinder surface. At the lowest temperature this corresponds to a two

layered crystal structure. Three layers can be related to nc ∼ 10. This interpretation agrees

with the information obtained from the analysis of rperp and by visualizing the corresponding

polymer structures. Analyzing the thermal fluctuations of this quantity, see Figure 6.9, gives

additional information about the adsorption transition. d〈nc〉/dT shows a peak where the

number of surface contacts increases, going from high temperatures to low temperatures.

The peak positions are in agreement with the corresponding specific heat peaks and the

peak positions of the thermal fluctuations of rperp. One exception is observed at R = 10.0

and εc = 2.0. This positive peak suggests that the number of surface contacts is smaller at

lower temperatures. When looking at the actual number of contacts of that parameter set

in Figure 6.8 the number indeed decreases from 21 to 20 contacts, which leads to the peak

in the fluctuation quantity. This is no fundamentally new or different transition, but it is

merely caused by the definition of the number of contacts. The one monomer causing the

peak in d〈nc〉/dT has a distance very close to the threshold and is not counted anymore in

the crystal at low temperatures.
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Figure 6.8: Number of contacts of a 30-mer with nanocylinders of different radii vs temper-
ature.
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Figure 6.9: Fluctuations of the number of contacts as a function of temperature.
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6.3.2 Pseudophase diagrams

The information from all canonical quantities about transitions and structural changes to the

polymer is accumulated and forms the foundation of the construction of the pseudophase

diagrams in Figures 6.10 (εc = 1.0), 6.11 (εc = 2.0), 6.12 (εc = 3.0), 6.13 (εc = 4.0),

and 6.14 (εc = 5.0). The thickness of the lines, marking the transitions, indicates that

precise transition temperatures are difficult to ascertain, since the canonical quantities for a

finite system, such as the short polymer chain investigated here, have slightly different peak

positions.

From the high temperature specific heat peaks and the monomer–surface contact num-

bers and their fluctuations, the separation into two main parts of the phase diagrams can be

derived. Three desorbed phases can be identified: desorbed elongated (DE) at high temper-

atures, the desorbed globule phase (DG), and the desorbed compact or crystal phase (DC)

at low temperatures. Representative conformations of the desorbed phases are depicted in

Table 6.1. The three main adsorbed phases, (AE) for adsorbed elongated, adsorbed globule

(AG), and adsorbed crystal (AC), can further be subcategorized according to the number

of layers the polymer forms at the cylinder surface. For weak surface attraction, i.e., small

cylinder radii and low εc, the polymer conformations have large similarities with the desorbed

crystal. The crystallized polymer is adsorbed at the nanocylinder, forming the CC phase,

where the monomer–monomer attraction is stronger than the monomer–surface attraction.

The crystal is in contact with the surface, but number of surface contacts is appreciably

smaller than for the AC3 phase. Hence, a flattening of the polymer on the surface does not

happen in this region of the phase diagram. In the AC3 phase the polymer is attached to

the nanocylinder in three layers, with around a third of its monomers forming bottom layer.

With increasing cylinder radius, and thus effective surface attraction, there is a transition to

two-layered crystals (AC2); and, finally, for strong surface–monomer attraction the polymer

is completely flattened to a single layer in the AC1 phase. For εc = 4.0 and 5.0 the phase
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diagrams show a distinct specialty in the adsorbed globule phase (AG1), for radii larger

than R ≈ 1.0 or R ≈ 0.75 respectively, the surface attraction becomes strong enough that

all monomers are in contact with the cylinder even before the polymer crystallizes at lower

temperatures. In the case of εc = 5.0, the strongest simulated surface attraction, single

layered polymer conformations can be found even before the chain collapses (AE1). Exam-

ple structures for all adsorbed phases can be found in Table 6.2. An interesting feature for

all studied nanocylinder materials is, that the freezing transition temperature is the most

stable at T ∼ 0.35 within small deviations, for all radii. The adsorption temperature line

moves to smaller radii with increasing surface attraction. Another interesting discovery is

the crossover of collapse and adsorption temperature. With increasing surface attraction the

crossover moves to smaller radii, while the temperature at which the crossover appears re-

mains almost the same T ∼ 1.3. The collapse transition temperature is lower for all adsorbed

phases. It is nearly constant for the desorbed polymers and drops to lower temperatures for

adsorbed polymers. The decrease in the collapse temperature becomes more pronounced

with increasing surface attraction. This is caused be the conformational restrictions, the

polymer suffers from in the adsorbed phase.

The phase diagrams for all values of εc have one characteristic in common. There is

the desorbed region for small radii, i.e. weak surface attraction, and on the other hand the

adsorbed region for strong surface attraction at large cylinder radii. The structures we have

identified for the desorbed phases are essentially the same as for the free polymer [9, 10, 22],

see also Chapter 4 and Table 4.4. Since the cylinder radius can be associated with the

effective surface attraction, it seems obvious to compare our findings with a recent study

of polymer adsorption at a planar surface with varying attraction strength [73, 79]. In

that study a semi-flexible polymer was adsorbed on an attractive wall with a potential of

the form in Equation 6.6. The pseudophase diagram for a chain with N = 20 monomers

was constructed as a function of surface attraction and temperature. Essentially the phase
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diagram has the same features, namely, desorbed phases DE, DG and DC for weak surface

attraction and various adsorbed phases for strong attraction. For the adsorbed phases the

notation of the layered structures differs marginally, but they also find complete adsorbed

single-layered conformations (AC1) and structures with more layers (AC2a and AC2b), see

Figure 3 in [73]. The similarities found are undeniable, since for very large radii, in particular

for R → ∞, the cylinder potential and the wall potential coincide. For small radii the

single-layered structures start wrapping around the cylinder. Because of the short chain

length we do not find completely wrapped structures as in a study of polymer adsorption

on nanowires [78]. In the case of the adsorption on a nanowire, the polymer forms highly

ordered monolayers covering the wire. These structures strongly depend on the effective

radius of the nanowire and only appear for large attraction strengths. We might find similar

structures in our model for strong enough surface attraction and longer polymer chains. This

will be of interest in possible future studies.
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Figure 6.10: Pseudophase diagram of the 30-mer in the presence of a nanocylinder with
εc = 1.0. The thickness of the lines represents the uncertainties of the exact transition
temperatures. The names of the structure are described in the text and representative
structures are printed in Table 6.1 and Table 6.2.

Figure 6.11: Pseudophase diagram of the 30-mer in the presence of a nanocylinder with
εc = 2.0.
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Figure 6.12: Pseudophase diagram of the 30-mer in the presence of a nanocylinder with
εc = 3.0.

Figure 6.13: Pseudophase diagram of the 30-mer in the presence of a nanocylinder with
εc = 4.0.
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Figure 6.14: Pseudophase diagram of the 30-mer in the presence of a nanocylinder with
εc = 5.0.

DC DG DE

Table 6.1: Typical conformations of all desorbed pseudophases (DC, DG, DE) for the 30-mer.
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AC1 (large radius) AC1 (small radius)

AC2 (large radius) AC2 (small radius)

AC3 CC

AG1 AG

AE1 AE

Table 6.2: Characteristic conformations of all adsorbed pseudophases (AC1, AC2, AC3, CC,
AG1, AG, AE1, AE) for the 30-mer as described in the text.
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6.4 Conclusions

In this chapter we have investigated the thermodynamic behavior of a coarse-grained flexible

homopolymer with 30 monomers in the presence of an attractive cylindrical surface. The

monomer–surface attraction strength increases with the cylinder radius. In the limit of an

infinite cylinder radius the surface is comparable to a planar surface. Parallel tempering

simulations for 5 different nanocylinder materials with 10 different radii each at 80 tempera-

tures enabled us to create pseudophase diagrams. By carefully analyzing various observables,

like the specific heat and geometrical quantities, such as the radius of gyration, number of

monomer–surface contacts and polymer extension perpendicular to the cylinder surface, we

were able to locate and identify structural transitions in the system. We find desorbed poly-

mer structures for cylinders with weak surface attraction or at high temperatures, that are

similar to simulations of free polymers. Various absorbed pseudophases are identified as well.

For very strong attraction we find adsorbed elongated polymers at high temperatures. Glob-

ular polymer droplets on the cylinder surface are found and also highly ordered crystalline

polymer layers on the surface. Depending on the cylinder radius and the attraction strength

we find one, two or three layers for the adsorbed crystals. Higher levels of layers are not

observed because of the rather short length of the polymer. The structural phases found in

our study are comparable to structures found for a similar polymer model [73] adsorbed at

a planar surface.
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Chapter 7

Summary and Outlook

The main interest of this thesis was the thermodynamic behavior of flexible polymers. The

polymer is represented by a coarse-grained bead-spring model, where a group of atoms that

forms a monomer is regarded as a single bead. Bonds in the polymer chain are represented

by a flexible spring. Structural transitions of the polymer in an implicit dilute solution were

studied using cutting-edge technology and sophisticated simulation techniques.

For free polymers in continuum, the efficiency of using modern graphics processing units

(GPUs) for speeding up Monte Carlo simulations was found to be impressive. Previous

findings regarding the thermodynamic behavior and structure formation of the investigated

flexible polymer were confirmed. Employing a highly parallel implementation of replica-

exchange Monte Carlo, yields about a factor of 130 of increase in efficiency, when compared

to serial execution on a CPU. This allows us to gather much more statistics in a much

shorter time. Even with main stream graphics card primarily designed for demanding com-

puter games like the consumer cards of Nvidia’s Geforce series, we are able to speed up our

simulations by factors of around 100. The main vendors of graphics cards recognized the

potential of this new application and started to develop and release special hardware for

scientific applications based on the same design as their consumer cards. These professional
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cards offer higher memory bandwidth and faster double-precision performance. Since the

performance per core seems to have reached a plateau for traditional CPU computing, the

future of scientific computing will rely on hybrid architectures. Even the world largest super-

computers today are built using a heterogeneous design, using GPUs alongside traditional

CPU clusters. With the knowledge gained in our investigations, we feel prepared for the

challenges of this new generation of scientific computing.

Further we have studied the influence of the interaction range of the non-bonded

monomers on the structural phases of a flexible polymer. We employed parallel tempering

simulations to calculate the density of states for polymer, where we altered the interaction

length of the Lennard-Jones potential effective between monomers. In addition to that we

needed to apply multiple Gaussian modified ensembles to deal with the strong first-order-

like behavior of the freezing transition for the polymer at low temperatures. The energy

histograms of our parallel tempering simulations were reweighted and combined evaluate the

microcanonical entropy and its first and second derivative. By analyzing the derivatives we

were able to precisely locate and classify transitions of the system. A pseudophase diagram

of the investigated 90-mer was constructed as a function of interaction length and tempera-

ture. The liquid phase that separates the extended coil or “gas”-like phase from the compact

crystalline structures becomes smaller for shorter interaction ranges. It eventually vanishes

for very small interaction length and we observe a direct transition from gas to solid. In the

microcanonical view we actually see a crossover of collapse and freezing transition, which

is a finite size effect and will disappear in the thermodynamic limit. The interaction range

also has an influence on the crystal structure found at very low temperatures. The icosahe-

dral structures in the solid phase are not sustained for shorter interaction length. We find

evidence for the transition to fcc structures for very short interaction ranges via decahedral

crystals at intermediate interaction lengths.

Finally we investigated the adsorption of a flexible homopolymer on nanocylinders.
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Again, we applied the replica-exchange Monte Carlo method to single polymer chain in-

teracting with cylinders of different materials and radii. In our model the effective surface

attraction of the nanocylinder increases with the radius of the cylinder. For infinitely large

radii, the potential of the cylinder matches that of a attractive planar wall. The thermody-

namic information of several structural observables was gathered to construct pseudophase

diagrams for 5 different cylinder materials as a function of the cylinder radius and tempera-

ture. Aside from the already known desorbed phases, that are similar to our previous studies

of free polymers, we find various adsorbed polymer structures. For small radii and weak sur-

face attraction at low temperatures, the already compact polymer crystal is adsorbed on

the nanocylinder. With increasing radius, the surface attracts the monomers more strongly

and we observe a flattening of the polymer on the surface. Due to the relatively short chain

length of only 30 monomers, in our study, we see three, two or one layer of adsorbed compact

polymers. For very strong surface attraction we find evidence for single-layered structures

in the globular and even the coil phase, at higher temperatures, as well. An interesting con-

tinuation of this study would investigate longer chains. Higher layers of adsorbed crystals

are to be expected as well as complete wrapping of the nanocylinder for small radii and

strong surface attraction. Also of interest would be the polymer interaction with a more

realistic representation of a nanotube, modelling the tube on coarse-grained particle based

level instead of a homogeneous body.
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