# GEOCHEMICAL AND GEOCHRONOLOGICAL CONSTRAINTS ON MINERALIZATION WITHIN THE HILLTOP, LEWIS, AND BULLION MINING DISTRICTS, BATTLE MOUNTAIN-EUREKA TREND, NEVADA

by

CHRISTOPHER RONALD KELSON

(Under the Direction of Douglas E. Crowe)

### ABSTRACT

The Hilltop, Lewis, and Bullion mining districts (northern Shoshone Range, Nevada) are part of the Battle Mountain-Eureka trend and contain both vein- and porphyry-type deposits.

New geochronology data from igneous rocks, porphyry-style Cu-Mo mineralization, and vein-hosted minerals elucidate the relationship between magmatic activity, hydrothermal fluid flow, and mineralization. Mostly felsic intrusive rocks were emplaced throughout the area between  $39.3 \pm 0.4$  and  $38.1 \pm 0.4$  Ma and weak Cu + Mo porphyry-style mineralization is associated with some of the intrusions. Ages of igneous rocks are nearly coincident with molybdenite ages, supporting a relation between pluton emplacement and porphyry Cu-Mo mineralization. Ages of quartz vein-hosted gold ( $35.9 \pm 0.1$  Ma, Hilltop deposit) and base-metal minerals ( $38.3 \pm 0.07$  Ma, Gray Eagle mine), established via ages of associated gangue clay minerals, are younger than nearby intrusive igneous rocks and may suggest the vein mineralization formed during prolonged hydrothermal activity related to igneous rock emplacement.

Quartz vein-hosted sulfide minerals from the northern Shoshone Range are isotopically similar ( $\delta^{34}S_{CDT}$  range from -6 to +9 per mil) to sulfide minerals from other Cu-Mo porphyry deposits and Cordilleran vein-type deposits, supporting a mostly magmatic sulfur source. Carbon isotope data from vein gangue carbonate minerals also support a magmatic origin for ore-forming fluids with variable contributions from host rock organic matter or carbonate rocks ( $\delta^{13}C_{PDB}$  range from -0.2 to -11.6 per mil); carbonate oxygen was derived mainly from magmatic fluids ( $\delta^{18}O_{VSMOW}$  range from -1.3 to +14.4 per mil). Primary fluid inclusion data (salinity range from 0 to 6.4 equiv. wt. % NaCl; T<sub>h</sub> range from 109-425°C) and measured  $\delta^{18}O_{VSMOW}$  data (-0.97 to +17.3‰) suggest the ore-bearing vein quartz formed from variable amounts of meteoric and magmatic components (calculated  $\delta^{18}O_{VSMOW}$  -16.2 to +13.3‰).

Depositional temperatures of base metal minerals, calculated using sulfide sulfur isotope geothermometry, range from 249-502°C and agree with vein quartz primary fluid inclusion  $T_h$  values.

Geochronology, stable isotope, and geothermometry data show that vein- and porphyrytype mineralization is genetically related to Eocene magmatism and that some vein mineralization temperatures exceeded relatively low-temperature epithermal conditions and were more closely related to higher temperature porphyry-style processes.

INDEX WORDS: Base Metals, Battle Mountain-Eureka Trend, Bullion District, Carbon, Carbonate, Copper, Cu, Eocene Magmatism, Epithermal, Fluid Inclusions, Geochronology, Geothermometry, Gold, Hilltop District, Hydrothermal, Lewis District, Mineralization, Mo, Molybdenite, Nevada, Oxygen, Porphyry, Quartz, Shoshone Range, Silver, Stable Isotopes, Sulfide, Sulfur, Vein

# GEOCHEMICAL AND GEOCHRONOLOGICAL CONSTRAINTS ON MINERALIZATION WITHIN THE HILLTOP, LEWIS, AND BULLION MINING DISTRICTS, BATTLE MOUNTAIN-EUREKA TREND, NEVADA

by

### CHRISTOPHER RONALD KELSON

B.S., University of Utah, 1994

M.S., Brigham Young University, 1999

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

© 2006

Christopher Ronald Kelson

All Rights Reserved

# GEOCHEMICAL AND GEOCHRONOLOGICAL CONSTRAINTS ON MINERALIZATION WITHIN THE HILLTOP, LEWIS, AND BULLION MINING DISTRICTS, BATTLE MOUNTAIN-EUREKA TREND, NEVADA

by

## CHRISTOPHER RONALD KELSON

Major Professor:

Douglas E. Crowe

Committee:

Robert B. Hawman Michael F. Roden Paul A. Schroeder Sandra J. Wyld

Electronic Version Approved:

Maureen Grasso Dean of the Graduate School The University of Georgia May 2006

### DEDICATION

This dissertation, representing five years' worth of being away from home and family while either working in the field or spending long days, weekends, and odd hours in the laboratory and office, is dedicated to my wife Christa. Without her love, support, and patience, I would not have made it through this.

### ACKNOWLEDGEMENTS

This research would not have been possible without the generous support of the Cortez Joint Venture, and very special thanks to Mr. Robert C. Hays, Jr., Technical Services Superintendent, Cortez Joint Venture. This research was also funded by the Society of Economic Geologists (Hugh E. McKinstry Grant), the Geological Society of America (Grant No. 7180-02), and the Department of Geology, University of Georgia. Permission of the Cortez Joint Venture to publish this investigation is gratefully acknowledged. Thanks to: Dr. Kenneth A. Foland (OSU), Dr. Matthew T. Heizler (NMT), and Mr. Thomas D. Ullrich (UBC) for their assistance and insight with the <sup>40</sup>Ar/<sup>39</sup>Ar data. Dr. Chris Romanek (SREL) and Mr. Tom Maddux (UGA) assisted with the organic carbon isotope data. Dr. Zachary D. Sharp (UNM) provided the silicate oxygen isotope analyses. Richard Markey (AIRIE, Colorado State University) provided the Re-Os analyses. Ms. Julia Cox and Mr. Chris Fleisher (UGA) assisted with stable isotope and electron microprobe analyses, respectively.

I would especially like to thank the members of my dissertation committee for many informative discussions regarding every facet of this study, and for their review of this dissertation.

V

# TABLE OF CONTENTS

| Page                                                        |         |  |  |
|-------------------------------------------------------------|---------|--|--|
| ACKNOWLEDGEMENTSv                                           | ACKNOV  |  |  |
| LIST OF TABLES                                              |         |  |  |
| LIST OF FIGURESx                                            | LIST OF |  |  |
| CHAPTER                                                     | CHAPTE  |  |  |
| 1 INTRODUCTION                                              | 1       |  |  |
| REFERENCES                                                  |         |  |  |
| 2 GEOCHRONOLOGY AND GEOCHEMISTRY OF THE HILLTOP, LEWIS, AND | 2       |  |  |
| BULLION MINING DISTRICTS AND SURROUNDING AREA, BATTLE       |         |  |  |
| MOUNTAIN-EUREKA TREND, NEVADA11                             |         |  |  |
| Abstract                                                    |         |  |  |
| Purpose of Study                                            |         |  |  |
| General Geology of the northern Shoshone Range              |         |  |  |
| Description of Mines in this Study14                        |         |  |  |
| Analytical Methods                                          |         |  |  |
| Results                                                     |         |  |  |
| Discussion                                                  |         |  |  |
| Conclusion                                                  |         |  |  |
| Acknowledgements                                            |         |  |  |
| References                                                  |         |  |  |

| 3      | GEOCHEMICAL AND GEOCHRONOLOGICAL CONSTRAINTS ON                              |       |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
|        | MINERALIZATION WITHIN THE HILLTOP, LEWIS, AND BULLION                        |       |  |  |  |  |  |  |
|        | MINING DISTRICTS, BATTLE MOUNTAIN-EUREKA TREND, NEVADA54                     |       |  |  |  |  |  |  |
|        | Abstract                                                                     | 55    |  |  |  |  |  |  |
|        | Introduction                                                                 | 57    |  |  |  |  |  |  |
|        | Regional Geologic Setting                                                    | 62    |  |  |  |  |  |  |
|        | Northern Shoshone Range and District Geology                                 | 65    |  |  |  |  |  |  |
|        | Battle Mountain – Eureka trend                                               | 67    |  |  |  |  |  |  |
|        | Northern Shoshone Range Mineral Deposits                                     | 68    |  |  |  |  |  |  |
|        | Methods                                                                      | 81    |  |  |  |  |  |  |
|        | Intrusive Igneous Rocks                                                      | 87    |  |  |  |  |  |  |
|        | Geochronology                                                                | 98    |  |  |  |  |  |  |
|        | Relationship between Magmatism and Mineralization                            | 105   |  |  |  |  |  |  |
|        | Discussion: Northern Shoshone Range Vein-Hosted Mineralization               | 116   |  |  |  |  |  |  |
|        | Summary and Conclusion                                                       | 124   |  |  |  |  |  |  |
|        | Acknowledgements                                                             | 125   |  |  |  |  |  |  |
|        | References                                                                   | 126   |  |  |  |  |  |  |
| 4      | CONCLUSION                                                                   | 137   |  |  |  |  |  |  |
| APPEND | ICES                                                                         | 139   |  |  |  |  |  |  |
| А      | Geochemical data and location information for northern Shoshone Range sample | s.139 |  |  |  |  |  |  |
| В      | $^{40}$ Ar/ $^{39}$ Ar data                                                  | 188   |  |  |  |  |  |  |
| С      | Quartz vein-hosted mineral species delineated by sample and deposit.         | 208   |  |  |  |  |  |  |

## LIST OF TABLES

Page

| Table 2.1: Molybdenite Re-Os data from Tenabo, Hilltop, and Park Saddle areas                         |
|-------------------------------------------------------------------------------------------------------|
| Table 2.2: Selenium-sulfide mineral associated with Hilltop molybdenite                               |
| Table 2.3: <sup>40</sup> Ar/ <sup>39</sup> Ar data from the northern Shoshone Range, Nevada           |
| Table 2.4: Microprobe analyses of ore minerals from the northern Shoshone Range, Lander               |
| County, Nevada                                                                                        |
| Table 2.5: Carbon and oxygen stable isotope data from carbonate minerals associated with base-        |
| and precious-metal mineralization, northern Shoshone Range, Lander County,                            |
| Nevada                                                                                                |
| Table 2.6: Sulfur stable isotope data from sulfide and sulfate minerals associated with base- and     |
| precious-metal mineralization, northern Shoshone Range, Lander County, Nevada36                       |
| Table 2.7: Sulfur isotope geothermometry data from four mines and prospects, northern                 |
| Shoshone Range, Lander County, Nevada47                                                               |
| Table 3.1: Types and orientations of ore-bearing structures and Ag:Au ratios for northern             |
| Shoshone Range vein deposits                                                                          |
| Table 3.2: Electron microprobe analyses of sulfide minerals from northern Shoshone Range vein         |
| deposits77                                                                                            |
| Table 3.3: Major and trace element chemical data for northern Shoshone Range igneous rocks            |
|                                                                                                       |
| Table 3.4: $\delta^{13}$ C data for organic carbon-bearing rocks, breccias, and fault gouge, northern |

| Table 3.5: Summary of all K-Ar, Ar/Ar, and Re-Os geochronology data for northern Shoshone                        |
|------------------------------------------------------------------------------------------------------------------|
| Range igneous rocks, molybdenite (porphyry) mineralization, and vein-hosted                                      |
| mineralization100                                                                                                |
| Table 3.6: Salinity and homogenization temperatures for primary fluid inclusion as well as                       |
| oxygen isotope compositions of host vein quartz, northern Shoshone Range vein                                    |
| deposits107                                                                                                      |
| Table 3.7: $\delta^{13}$ C and $\delta^{18}$ O data for carbonate gangue minerals and upper plate (?) limestone, |
| northern Shoshone Range vein deposits112                                                                         |
| Table 3.8: $\delta^{34}$ S data for sulfide and sulfate minerals from northern Shoshone Range vein               |
| deposits115                                                                                                      |
| Table 3.9: Calculated depositional temperatures based on sulfur isotope fractionation between                    |
| two coexisting mineral phases using fractionation equations of Kajiwara and Krause                               |
| (1971)                                                                                                           |

# LIST OF FIGURES

| Page                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|
| Figure 1.1: Location of the Great Basin, Nevada, and mineral trends within north-central                              |
| Nevada2                                                                                                               |
| Figure 1.2: Location of study area with respect to the Golconda thrust and Roberts Mountains                          |
| thrust and major mining trends                                                                                        |
| Figure 1.3: Generalized stratigraphic column of the northern Shoshone Range in the vicinity of                        |
| Mt. Lewis6                                                                                                            |
| Figure 2.1: Back scattered electron images (BEI) of Betty O'Neal mine samples16                                       |
| Figure 2.2: Generalized geologic map of the northern Shoshone Range                                                   |
| Figure 2.3a: <sup>40</sup> Ar/ <sup>39</sup> Ar age spectra and correlation diagrams for GM-3 biotite, DSC BXA clay,  |
| and HT02-1 clay (analyzed by RIL)                                                                                     |
| Figure 2.3b: <sup>40</sup> Ar/ <sup>39</sup> Ar age spectra and correlation diagrams for GM-6 biotite and hornblende, |
| GM-15 biotite and hornblende, and T99413-570 biotite (analyzed by NMGRL)30                                            |
| Figure 2.4: Carbonate and oxygen isotope data from four mineralized areas within the northern                         |
| Shoshone Range, Lander County, Nevada41                                                                               |
| Figure 2.5: Carbonate carbon isotope data from four mineralized areas within the northern                             |
| Shoshone Range, Lander County, Nevada43                                                                               |
| Figure 2.6: Sulfide and sulfate sulfur stable isotope data from six mineralized areas within the                      |
| northern Shoshone Range, Lander County, Nevada45                                                                      |
| Figure 3.1: Location of the Lewis, Hilltop, and Bullion mining districts and mineralized areas                        |
| studied here, northern Shoshone Range, Lander County, Nevada                                                          |

| Figure 3.2: Simplified geologic map of the northern Shoshone Range study area, Lander County,                    |
|------------------------------------------------------------------------------------------------------------------|
| Nevada                                                                                                           |
| Figure 3.3: Examples of northern Shoshone Range vein mineralization71                                            |
| Figure 3.4: Aeromagnetic map of the northern Shoshone Range study area and adjacent areas,                       |
| band pass filtered to emphasize magnetic structures and bodies between the surface                               |
| and 500 m                                                                                                        |
| Figure 3.5: Whole rock chemical data plot for least altered northern Shoshone Range igneous                      |
| rocks compared to igneous rocks related to porphyry systems (modified from Le                                    |
| Maitre, 2002; Seedorff et al., 2005)90                                                                           |
| Figure 3.6: Chondrite-normalized REE diagrams for least altered igneous rocks, northern                          |
| Shoshone Range, compared to other Eocene igneous rocks associated with                                           |
| mineralization in the Carlin trend (data from Ressel et al., in review)94                                        |
| Figure 3.7: MORB-normalized spider diagrams for least altered igneous rocks, northern                            |
| Shoshone Range                                                                                                   |
| Figure 3.8: Summary of all geochronology (K-Ar, Ar/Ar, Re-Os) data for igneous rocks and                         |
| molybdenite mineralization and vein-associated minerals, northern Shoshone Range.                                |
|                                                                                                                  |
| Figure 3.9: Salinity vs. homogenization temperature plot of primary fluid inclusion data from                    |
| northern Shoshone Range ore-bearing quartz veins                                                                 |
| Figure 3.10: Plot of salinity vs. calculated $\delta^{18}$ O for fluids associated with ore-bearing vein quartz. |
|                                                                                                                  |

| Figure 3.11: Plot of primary fluid inclusion homogenization temperatures vs. calculated $\delta^{18}$ O for |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|
| fluids associated with vein quartz carrying epithermal – porphyry-type base- and                            |  |  |  |
| precious metal mineralization                                                                               |  |  |  |
| Figure 3.12: Plot of carbon and oxygen isotope data from carbonate gangue minerals compared                 |  |  |  |
| to Cortez (lower plate) carbonate rocks, Lovie (upper plate?) limestone and organic                         |  |  |  |
| carbon (this study), and calcite in equilibrium with meteoric water and primary                             |  |  |  |
| granodioritic magmatic water at 250°C113                                                                    |  |  |  |
| Figure 3.13: Sulfide and sulfate (barite) sulfur isotope data from northern Shoshone Range vein             |  |  |  |
| deposits117                                                                                                 |  |  |  |

### CHAPTER 1

#### INTRODUCTION

The state of Nevada, located within the Great Basin physiographic province of the western United States, has been an important producer of base- and precious-metals, especially silver, since the 1850s. Economically, gold has surpassed silver as the dominant commodity produced in Nevada since the discovery of sediment (carbonate)-hosted, low-grade, bulk-tonnage gold deposits (Carlin-type deposits) in the 1960s, although base- and precious-metals are mined from a wide variety of deposit types. In 2001, Nevada accounted for nearly 75% of United States gold production and 10% of world gold production, behind only South Africa and Australia (Price and Meeuwig, 2002).

Roberts (1966) first identified 12 mineral "belts" or "trends" – alignments of mines and deposits – throughout Nevada. Each mineral trend consists of several mining districts composed of hundreds of mines, deposits, and prospects. The origin of these mineral trends is not completely understood, although the existence of deep-penetrating crustal structures that acted as conduits for intrusive igneous rocks and/or mineralizing fluids have been postulated by several workers (Roberts, 1966; Shawe, 1991; Zamudio and Atkinson, 1991; Grauch et al., 2003; Howard, 2003; among others). In north-central Nevada, five mineral trends are identified: Getchell, Crescent Valley-Independence, Carlin, Alligator Ridge, and Battle Mountain-Eureka (John et al., 2003). This study focuses on mineralization within part of the Battle Mountain-Eureka trend (Figs. 1.1 and 1.2).



Figure 1.1: Location of the Great Basin, Nevada, and mineral trends within north-central Nevada (modified from John et al., 2003).

Figure 1.2 (next page): Location of study area with respect to the Golconda thrust and Roberts Mountains thrust and major mining trends. Also shown: Inferred western edge of the Precambrian crust (Sr<sub>i</sub>=0.706), Northern Nevada Rift (NNR), Battle Mountain-Eureka trend (BME), Alligator Ridge trend (AR), Carlin trend (C), Crescent Valley-Independence lineament (CVI), and Getchell trend (G). Miogeoclinal ("lower plate") rocks of the Cordillera also shown. Modified from Saleeby and Busby-Spera (1992), and Grauch et al. (2003).



The Battle Mountain-Eureka trend consists of 10 mining districts, three of which (Hilltop, Lewis, and Bullion, collectively containing over 140 mines and prospects) were organized shortly after the 1859 Comstock Lode discovery and are located within the northern Shoshone Range in Lander County. Between 1860 and 1936, more than 33 Koz gold (placer and lode), 5 Moz silver, 53 Moz lead, and 20 Moz copper have collectively been produced from the Hilltop, Lewis, and Bullion mining districts (Vanderburg, 1939). Other commodities include mercury, antimony, manganese, turquoise, fluorspar, and barite.

This study focuses on mineralization from eight different locales within the northern Shoshone Range: the Hilltop deposit and Blue Dick and Kattenhorn mines (Hilltop district); the Betty O'Neal mine (Lewis district); the Gray Eagle and Lovie mines, Tenabo deposit, and an unnamed prospect (Bullion district). Although most mines within the silver-rich northern Shoshone Range have been inactive since the 1930s, the area is periodically evaluated and explored for further (gold) mineralization potential.

Most mineralization within the northern Shoshone Range occurs as vein and fracture-fill within early Paleozoic siliceous and siliciclastic rocks (Ordovician Valmy Formation, upper plate, Roberts Mountains allochthon; Fig. 1.3) and/or Tertiary intrusive rocks. Weak Cu + Mo  $\pm$  Au porphyry-type mineralization is also locally associated with some granitic intrusive rocks.

The most abundant vein-hosted ore minerals include pyrite, galena, sphalerite, arsenopyrite, chalcopyrite, fahlore and other sulfosalts. Major silver-bearing minerals include sulfosalts (e.g. fahlore [(Cu,Ag)<sub>12</sub>(Zn,Fe)<sub>2</sub>(As,Sb)<sub>4</sub>S<sub>13</sub>]), Ag-halogens (e.g. chlorargyrite), and lesser argentiferous galena and electrum. Native gold and electrum are rare. Vein-hosted gangue minerals include quartz, calcite with Fe, Mn, and/or Mg, Ba- and/or Ca- sulfates, chlorite, illite ("sericite"), muscovite, smectite and other clays, and remobilized organic carbon.



Figure 1.3: Generalized stratigraphic column of the northern Shoshone Range in the vicinity of Mt. Lewis. Green indicates upper plate units of the Roberts Mountains allochthon; blue indicates autochthonous (lower plate) units. Arrows indicate thrust fault contacts; contact dashed where inferred. Modified from Poole et al. (1992).

Sulfide (ore) minerals are always associated with quartz, commonly with clays, and rarely with chlorite, remobilized organic carbon, or carbonate and sulfate minerals.

Due to the poor primary permeability and porosity of the siliceous and siliciclastic host rocks, mineralization is mostly localized in areas of strong structural preparation, i.e. fault, fracture, and shear zones. Alteration normally associated with vein- or porphyry-type mineralization is largely absent within the host rocks, attesting to the inability of the mineralizing fluids to circulate through the host rocks outside of areas exhibiting pronounced secondary permeability.

Except for the Hilltop gold deposit (Hilltop district), no detailed investigation exists concerning any particular mine within the Hilltop, Lewis, or Bullion mining districts, and only a few investigations (mostly reconnaissance in nature) exist regarding the geology or mining history of the entire area (King, 1876; Spurr, 1903; Emmons, 1910; Lee et al., 1916; Vanderburg, 1939; Gilluly and Gates, 1965; Stewart and McKee, 1977).

This study is the first in-depth, multi-faceted examination of northern Shoshone Range mineralization. The second and third chapters investigate geochronological and geochemical aspects of mineralization including:

- <sup>40</sup>Ar/<sup>39</sup>Ar ages of intrusive igneous rocks located proximal and distal to mineralized areas;
- <sup>40</sup>Ar/<sup>39</sup>Ar ages of gangue minerals associated with vein-hosted base- and preciousmetal mineralization;
- 3. Re-Os ages of molybdenite (porphyry) mineralization;
- 4. The temporal relationship between igneous activity and mineralization;

- Major- and trace-element analysis and geochemical characterization of intrusive igneous rocks;
- 6. Identification and paragenesis of ore and gangue minerals within each mineralized area;
- Stable isotope analysis of sulfide, sulfate minerals (sulfur), carbonate minerals (carbon, oxygen), and vein quartz from each mineralized area;
- Depositional parameters (temperature, salinity) of ore-bearing solutions from each mineralized area;
- 9. Ore-bearing fluid source characterization of each mineralized area.

The results of this study provide new insight into the timing and genesis of ore deposition and the relationship between intrusive igneous rocks and ore, and may elucidate new avenues of base- and precious-metal exploration within this portion of the Battle Mountain-Eureka trend.

### REFERENCES

- Emmons, W.H., 1910, A reconnaissance of some mining camps in Elko, Lander, and Eureka Counties, Nevada: U. S. Geological Survey Bulletin 408, 130 p.
- Gilluly, J., and Gates, O., 1965, Tectonic and igneous geology of the northern Shoshone Range, Nevada: U.S. Geological Survey Professional Paper 465, 153 p.
- Grauch, V.J.S., Rodriguez, B.D., and Wooden, J.L., 2003, Geophysical and isotopic constraints on crustal structure related to mineral trends in north-central Nevada and implications for tectonic history: Economic Geology, v. 98, p. 269-286.
- Howard, K.A., 2003, Crustal structure in the Elko-Carlin region, Nevada during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust: Economic Geology, v. 98, p. 249-268.
- John, D.A., Hofstra, A.H., and Theodore, T.G., 2003, Preface, *in* A Special Issue Devoted to Gold Deposits in Northern Nevada: Part 1. Regional Studies and Epithermal Deposits: Economic Geology, v. 98, p. 225-234.
- Kelson, C.R., Keith, J.D., Christiansen, E.H., and Meyer, P.E., 2000, Mineral paragenesis and depositional model of the Hilltop gold deposit, Lander County, NV, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, May 2000, p. 1107-1132.
- King, C., 1876, Geological and topographical atlas accompanying the report of the Geological Exploration of the Fortieth Parallel.
- Lee, W.T., Stone, R.W., Gale, H.S., and others, 1916, The Overland Route, with a side trip to Yellowstone Park, Pt. B *of* Guidebook of the western United States: U.S. Geological Survey Bulletin 612.

- Poole, F.G., Stewart, J.H., Palmer, A.R., Sandberg, C.A., Madrid, R.J., Ross, R.J., Jr., Hintze, L.F., Miller, M.M., and Wrucke, C.T., 1992, Latest Precambrian to latest Devonian time; Development of a continental margin, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 9.56.
- Price, J.G., and Meeuwig, R.O., 2002, Overview, *in* The Nevada Mineral Industry 2001: Nevada Bureau of Mines and Geology Special Publication MI-2001, p. 3-12.
- Roberts, R.J., 1966, Metallogenic provinces and mineral belts in Nevada: Nevada Bureau of Mines and Geology Report 13, part A, p. 47-72.
- Saleeby, J.B., and Busby-Spera, C., 1992, Early Mesozoic tectonic evolution of the western U.S. Cordillera, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 107-168.
- Shawe, D.R., 1991, Structurally controlled gold trends imply large gold resources in Nevada: In Raines, G.L., Lisle, R.E., Schafer, R. W., and Wilkenson, W.H.. (eds.), Geology and ore deposits of the Great Basin: Geological Society of Nevada, p. 199-212.
- Spurr, J.E., 1903, Descriptive geology of Nevada south of the 40<sup>th</sup> Parallel and adjacent portions of California: U.S. Geological Survey Bulletin 208.
- Stewart, J.H., and McKee, E.H., 1977, Geology and Mineral Deposits of Lander County, Nevada: Nevada Bureau of Mines and Geology Bulletin 88, 106 p.
- Vanderburg, W.O., 1939, Reconnaissance of some mining districts in Lander County, Nevada: U.S. Bureau of Mines Information Circular 7043, p. 47-50.
- Zamudio, J.A., and Atkinson, Jr., W.W., 1991, Igneous rocks of the northeastern Great Basin and their relation to tectonic activity and ore deposits, *in* Buffa, R.H., and Coyner, A.R., eds., Geology and ore deposits of the Great Basin, Field Trip Guidebook Compendium, v. 1: Geological Society of Nevada, p. 229-242.

### CHAPTER 2

# GEOCHRONOLOGY AND GEOCHEMISTRY OF THE HILLTOP, LEWIS, AND BULLION MINING DISTRICTS AND SURROUNDING AREA, BATTLE MOUNTAIN-EUREKA TREND, NEVADA<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Kelson, Chris R., Crowe, Douglas E., and Stein, Holly J., 2005, Geochronology and geochemistry of the Hilltop, Lewis, and Bullion mining districts and surrounding area, Battle Mountain-Eureka trend, Nevada, *in* Rhoden, H.N., Steininger, R.C., and Vikre, P.G., eds., Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada, May 2005, p. 25-42.

Reprinted here with permission from the publisher.

### Abstract

Recent work in the northern Shoshone Range, Lander County, Nevada, provides new insight into the relationship between precious- and base-metal deposits within the Hilltop, Lewis, and Bullion mining districts and to nearby igneous intrusions. Radiogenic and stable isotope data, combined with geochemical analyses, allow us to elucidate the timing and origin of hydrothermal events within the districts.

Five molybdenites from four samples associated with  $Cu + Mo \pm Au$  porphyry-style mineralization from the Hilltop district yield ages from  $40.1\pm 0.2$  to  $40.6\pm 1.2$  Ma with a weighted mean of  $40.23\pm 1.7$  Ma (MSWD = 2.4, 95% CL). A single molybdenite sample from  $Cu + Mo \pm Au$  porphyry-style mineralization at the Tenabo deposit (Bullion district) provides a  $39.0\pm 1.4$  Ma age.  ${}^{40}$ Ar/ ${}^{39}$ Ar ages for biotite and amphibole from unaltered igneous units within and/or proximal to mineralized areas (i.e. Tenabo granodiorite biotite:  $38.85\pm 0.07$  Ma) are nearly coincident with molybdenite ages, supporting a relation between pluton emplacement and porphyry mineralization.

Sulfur isotope data suggest a magmatic origin ( $\delta^{34}S_{CDT}$  range from -4 to +4 per mil) for most sulfide minerals. Carbon isotope data ( $\delta^{13}_{CDT}$  range from -0.2 to -11.6 per mil) from carbonate minerals associated with ore also support a magmatic origin for the ore-forming fluids; carbonate oxygen isotope data ( $\delta^{18}O_{VSMOW}$  range from -1.3 to +14.4 per mil) indicate predominantly magmatic to mixed magmatic/meteoric source fluids. Temperatures of base metal-rich ore-forming fluids calculated using sulfur isotope fractionation between co-existing sulfides are 304-502°C (Gray Eagle mine), 339°C (unnamed prospect), 249°C (Lovie mine), and 434°C (Hilltop deposit).

Geochronology and stable isotope data suggest base- and precious-metal mineralization within the Hilltop, Lewis, and Bullion mining districts is genetically related to Eocene magmatism. Geothermometry indicates that some mineralization temperatures exceeded relatively low-temperature epithermal conditions and were more closely related to higher temperature porphyry-style processes.

### **Purpose of Study**

The numerous precious  $\pm$  base metal occurrences within the northern Shoshone Range contain dissimilar ore minerals and represent epithermal- and/or porphyry-style mineralization. Several granodioritic plutons are emplaced along a west-northwest trend through the area; some are barren and others are associated with Cu  $\pm$  Mo  $\pm$  Au porphyry-style mineralization. Prior to this study, the temporal relationship between mineralization and intrusive igneous rocks within the northern Shoshone Range was poorly understood, and mineralization fluid source(s) and depositional conditions unknown.

The purpose of this study is to: 1) determine the ages of intrusive igneous rocks and mineralization, 2) constrain fluid sources and depositional temperatures of mineralization, 3) elucidate the relationship between intrusive igneous rocks and mineralization, and 4) characterize geochemical differences between mineralized areas within the northern Shoshone Range.

### General Geology of the northern Shoshone Range

The Shoshone Range is a northeast-trending mountain range that extends across north central Nevada. The northern half of the range contains the Lewis and Hilltop mining districts (which include the Betty O'Neal, Hilltop, Blue Dick, and Kattenhorn mines) and a portion of the Bullion mining district (including the Gray Eagle, Lovie, and Tenabo mines); all part of the Battle Mountain-Eureka mineral belt. The northern Shoshone Range is underlain mostly by highly-fractured and faulted Late Cambrian-Middle Devonian siliceous, siliciclastic, and volcanic rocks (allochthonous "upper plate" sequence, Roberts Mountains thrust). Cambrian-Early Mississippian carbonate rocks (lower plate) are rare (Gilluly and Gates, 1965). Eocene-Oligocene and mid-Miocene igneous rocks intrude or overlie the upper plate rocks (Stager, 1977). All of the mines, prospects, and deposits in this study are hosted within fractured and faulted upper plate rocks. Granodioritic intrusions occur within, proximal, and/or distal to each mineralized area.

### **Description of Mines in this Study**

#### *Lewis district: Betty O'Neal mine*

The Betty O'Neal mine is one of 22 mines that comprise the Lewis mining district. It is the largest producer, having produced more than \$3 million in silver, gold, lead, and copper intermittently from 1880 to 1929 (Stager, 1977).

Precious- and base-metal mineralization at the Betty O'Neal mine is associated with two of at least seven temporally-distinct episodes of mineralization:

1. Quartz (early)

- 2. Carbonate + gypsum/anhydrite + epidote  $\pm$  sericite  $\pm$  chlorite  $\pm$  pyrite  $\pm$  fahlore
- 3. Euhedral quartz + fahlore  $\pm$  carbonate + sphalerite + galena + chalcopyrite + bournonite
- 4. Quartz + barite
- 5. Fine grained quartz  $\pm$  pyrite  $\pm$  sericite
- 6. Sericite  $\pm$  quartz  $\pm$  pyrite  $\pm$  clay
- 7. Quartz (late)

Mineralization is controlled and localized in quartz veins along four major shear zones that strike NW to NE and dip between 10-70° NE to NW (Stager, 1977). Ordovician Valmy Formation siliciclastic and siliceous rocks, not the igneous rocks, are hosts for mineralization. Barite does not appear to be associated with precious-metal mineralization, and no gold-bearing mineral was observed. The most abundant ore minerals are Ag-fahlore and other sulfosalts (i.e. chlorargyrite, bromargyrite). "Individual" fahlore grains are typically mixtures of As, Zn, Fe,  $\pm$ Ag-bearing tetrahedrite-tennantite and occasional base-metal minerals (Figure 2-1a).

Betty O'Neal mine ore commonly exhibits minerals and textures indicative of significant amounts of supergene oxidation. Evidence includes: a) Cu and Ag oxidation products along fractures in fahlore; b) malachite, azurite, and Cu-oxides derived from fahlore oxidation; c) fragments of chlorargyrite and bromargyrite in banded lead manganate similar to coronadite (Hewett, 1971) (Figure 2-1b); d) vein pyrite frequently oxidized to hematite.



Figure 2.1: Back scattered electron images (BEI) of Betty O'Neal mine samples. A)Chlorargyrite (chl) grain in banded lead-manganate (e.g. coronadite) surrounded by quartz (q).B) Ag-rich fahlore (F) intergrown with bournonite (B), galena (G), acanthite (A), and oxidized bournonite (ox).

### Hilltop district

The Hilltop district includes the Hilltop, Red Top, Independence, Blue Dick, and Kattenhorn mines, plus over 20 other mines and prospects, and has produced more than \$1 million in gold, silver, copper, lead, barite, antimony, and manganese intermittently from 1880 to 1969 (Stager, 1977).

The Hilltop, Red Top, and Independence mines are collectively referred to as the Hilltop deposit (Lisle and Desrochers, 1988; Kelson et al., 2000). Faulted and brecciated chert, argillite, siltstone, and quartzite of the Ordovician Valmy Formation host the Hilltop deposit. Initial Cu +  $Mo \pm Au$  porphyry-style mineralization is associated with granodioritic intrusives that altered (bleached and recrystallized) the Valmy host rocks. Subsequent epithermal-style precious- and base-metal mineralization is localized in a breccia (the "Main Zone") between two sub-parallel, north-striking and west-dipping faults (the Independence and Hilltop Mine faults). Main Zone mineralization consists of at least six temporally-distinct events:

- 1. Galena + sphalerite + pyrite + fahlore + chalcopyrite + sulfosalts (oldest)
- 2. Quartz + arsenopyrite + pyrite + gold
- Quartz ± arsenopyrite ± kaolinite-group mineral ± pyrite ± carbonate ± barite ± marcasite ± stibnite + gold
- 4 Quartz + arsenopyrite + pyrite + gold
- 5. Melnikovite pyrite + marcasite + pyrite  $\pm$  kaolinite
- 6. Sphalerite/wurtzite (youngest)

Gold also occurs within a discordant quartz breccia pipe located on the east flank of Hilltop. The pipe contains altered Valmy Formation siliciclastic fragments in a matrix of euhedral, cockade quartz and is offset by the hanging wall Independence fault and floored by the Hilltop Mine fault. The precise relationship between breccia pipe and Main Zone mineralization is not clearly understood (Kelson et al., 2000).

The Kattenhorn and Blue Dick mines sporadically produced more than \$300,000 in silver ore from 1880 to 1923 (Stager, 1977). Silver in both deposits occurs mostly within fahlore, and mineralization is localized in northwest-striking quartz veins (up to five feet wide) that dip 45-50° SW (Vanderberg, 1939). Kattenhorn ore contains galena, chlorargyrite, and Sn- and Sebearing fahlore while Blue Dick ore contains acanthite, arsenopyrite, sphalerite, and miargyrite. Barite is associated with quartz and sulfides in both deposits and at least one generation of barren quartz proceeds sulfide mineralization.

### **Bullion** district

The Bullion district consists of more than 90 mines and prospects. The Gray Eagle and Lovie mines, and an unnamed prospect, are considered in this study. Silver, gold, copper, lead, barite, and turquoise were produced from 1869 to 1961. The total value of production from the district is about \$16 million, mostly in gold from the Gold Acres mine (Stager, 1977). The Gold Acres mine is not part of this study. The silver-bearing deposits are quartz veins hosted by both siliciclastic and granitic rocks.

The Gray Eagle mine is located on the west flank of the Granite Mountain stock, and produced more than several hundred thousand dollars in gold, silver, and lead intermittently between 1870 and 1907. The deposit is a fissure vein of banded quartz + sulfide  $\pm$  sericite that strikes N70E and dips 70°N within the Granite Mountain stock (Emmons, 1910; Vanderburg,

1939). Sulfides (arsenopyrite, pyrite, galena, sphalerite, chalcopyrite, fahlore, and rare hessite) and electrum are hosted within quartz veins that exhibit a range of color (clear or milky-white) and crystal size (sucrosic or euhedral,  $\leq 1$ " crystals). Sulfides occur in vugs within the quartz vein or between individual vein quartz crystals; the host rock is weakly to strongly argillized and locally silicified.

The Lovie mine is hosted within Ordovician Valmy Formation siltstone, quartzite, and argillite and Devonian Slaven Formation chert. Sulfide minerals (galena, sphalerite, pyrite, Agrich fahlore, arsenopyrite, and chalcopyrite)  $\pm$  carbonate  $\pm$  quartz occur in  $\leq$  3"-wide veins. Most sulfide mineralization occurs within the northern and central portion of the deposit. Manganeserich gossan commonly surrounds fresh, massive, galena and sphalerite veins and Mn-oxide typically replaces sphalerite along crystallographic boundaries and fractures. The Mn-oxide is not pervasive throughout the deposit and may only be associated with the galena and sphalerite. It clearly post-dates base metal deposition and probably reflects localized mobilization of Mn-rich fluids under supergene (oxidation zone) conditions. The source of the Mn is unknown. Massive barren carbonate veins occur in the southern portion of the deposit, and are cut by barren veins of chlorite + epidote. The paragenetic relationship of the carbonate veins to base-metal mineralization is unclear.

An unnamed prospect, located on the eastern flank of the Granite Mountain stock less than one mile east of the Gray Eagle mine, consists of several caved adits and trenches, and consists of 1-2"-wide quartz + carbonate ± sericite veins with sulfides within Granite Mountain granite. Sulfides include galena, sphalerite, pyrite, arsenopyrite, Ag-fahlore, and geffroyite. Gold was not directly observed, but assay data reveal it to be present in anomalous concentrations.

### **Analytical Methods**

### Rhenium-Osmium (Re-Os)

For this study, a Carius-tube digestion was used. Molybdenite was dissolved and equilibrated with a mixed double Os spike (<sup>185</sup>Re-<sup>188</sup>Os-<sup>190</sup>Os) in HNO<sub>3</sub>-HCl (inverse aqua regia) and sealed in a thick-walled glass ampoule and heated for 12 hours at 230°C (Markey et al. 2003). The double Os spike permits a check for common Os and mass fractionation correction, leading to high precision results. The Os was recovered by distilling directly from the Carius tube aqua regia into HBr, and was subsequently purified by micro-distillation. The Re was recovered by anion exchange. The Re and Os were loaded onto Pt filaments and isotopic compositions were determined using NTIMS on NBS 12-inch radius, 68° and 90° sector mass spectrometer at Colorado State University. Two in-house molybdenite standards, calibrated at AIRIE (Applied Isotope Research for Industry and the Environment), were run as an internal check. The Re-Os data acquired in this study are reported in Table 2-1, accompanied by pertinent information on the samples analyzed and data reduction.

# $^{40}Ar / ^{39}Ar - (NMGRL)$

Mineral separates (GM-6 hornblende and biotite; GM-15 hornblende and biotite; T99413-570 biotite) were loaded into machined Al discs together with a neutron flux monitor (27.84 Ma Fish Canyon Tuff sanidine FC-1) and irradiated for seven hours in D-3 position at the Nuclear Science Center, College Station, Texas.

### Table 2.1: Molybdenite Re-Os data from Tenabo, Hilltop, and Park Saddle areas.

| Location       | Sample         | AIRIE Run # | Description                                                                                                                                                                          | Re, ppm    | <sup>187</sup> Os, ppb | Age, Ma     |
|----------------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|-------------|
| Tenabo         | 99413 560      | MDID-49     | Molybdenite aggrerates (0.5 mm) and occassional pyrite in unaltered biotite + quartz + feldspar granodiorite                                                                         | 58 (2)     | 23.82 (7)              | 39.0 + 1.4* |
| Hilltop        | 97-6 80        | MDID-63     | Molybdenite flakes in 0.5 cm wide quartz vein in Valmy argillite                                                                                                                     | 142.34 (3) | 59.7 (2)               | 40.1 + 0.2  |
| Hilltop        | 97-10 106.1    | MDID-51     | Abundant molybdenite laths with pyrite and sericite in 0.5 cm wide<br>quartz vein in phyllically-altered intrusive-matrix breccia                                                    | 51 (2)     | 21.88 (3)              | 40.6 + 1.2* |
| Hilltop        | 97-10 106.1    | MDID-64     | Replicate analysis                                                                                                                                                                   | 49.59 (3)  | 21.06 (4)              | 40.5 + 0.2  |
| Hilltop        | PH-136 270-380 | MDID-290    | Composite molybdenite sample. Trace molybdenite + chalcopyrite in ~1 mm widequartz veins in brecciated Valmy quartzite, siltstone, and argillite with minor feldspar porphyry matrix | 18.5 (2)   | 7.79 (5)               | 40.2 + 0.4  |
| Park<br>Saddle | XCR-6 340-380  | MDID-291    | Composite molybdenite sample. Trace molybdenite +<br>common pyrite disseminated in strongly phyllically-altered and silicified<br>feldspar porphyry                                  | 0.5769 (2) | 0.2432 (2)             | 40.2 + 0.1  |
| Notes:         |                |             |                                                                                                                                                                                      |            |                        |             |

Samples (6-302 mg) run using Carius tube dissolution with mixed double Os spike to decrease uncertainties

Data are blank corrected, account for common Os, and are corrected for Os mass fractionation Blank corrections include Re and Os concentrations, <sup>187</sup>Os/<sup>188</sup>Os isotopic compositions, and their uncertainties

For Re and <sup>187</sup>Os concentration data, absolute uncertainties shown, all at 2-sigma level, for last digit indicated Decay constant is <sup>187</sup>Re is 1.666 x 10<sup>-11</sup> yr<sup>-1</sup> (Smoliar et al. 1996) and ages assume initial <sup>187</sup>Os/<sup>188</sup>Os of 0.2  $\pm$  0.1 Ages calculated using <sup>187</sup>Os = <sup>187</sup>Re (e<sup> $\lambda t$ </sup> - 1) include all analytical uncertainties and <sup>187</sup>Re decay constant uncertainty

Replicate analyses of molybdenite were made from new or added mineral separate XCR-6 had very limited molybdenite and low Re concentration results from silica dilution, and is not the true concentration of Re in molybdenite

Blanks are Re =  $1.3 \pm 0.2$  pg, Os =  $2.0 \pm 0.6$  pg, and <sup>187</sup>Os/<sup>188</sup>Os composition =  $0.3 \pm 0.9$  for MDID-49, 51, 63, 64. Blanks are Re =  $8.5 \pm 0.6$  pg, Os =  $1.9 \pm 0.1$  pg, and <sup>187</sup>Os/<sup>188</sup>Os composition =  $0.3 \pm 0.05$  for MDID-263, 264, 266, 276, 290, 291.

Samples and monitors were step-heated in a Mo resistance furnace and analyzed with a Mass Analyzer Products 215-50 mass spectrometer on line with an automated all-metal extraction system at the New Mexico Geochronological Research Laboratory (NMGRL). Heating times were ten minutes for hornblende and nine minutes for biotite. Reactive gases were removed during heating with a SAES GP-50 getter operated at ~450°C. Additional cleanup (biotite 6 minutes, hornblende 7 minutes) following heating was accomplished with 2 SAES GP-50 getters, one operated at ~150°C and one at 20°C. Gas also exposed to a W filament operated at ~2000°C.

# <sup>40</sup>Ar/<sup>39</sup>Ar – (RIL)

Three samples (GM-3, biotite; HT02-1, clay; DSC BXA, clay) were irradiated for 31 hours at McMaster University, Ontario, and analyzed at the Radiogenic Isotopes Laboratory (RIL), Department of Geological Sciences, The Ohio State University.

The clay samples were irradiated in Al foil capsules in vacuum (runs #72B10 and #72B11) or in evacuated SiO<sub>2</sub> glass ampoules (run #72B4). For sample run #72C4, aliquots 1 and 2 were for step-heating analyses using sample removed from the ampoule after measuring the recoiled Ar. The amount of sample DSC BXA was severely limited so that only a single aliquot was feasible for the step-heating analysis using sample removed from the #72C7 ampoule after measuring the recoiled Ar. Both the biotite and clay samples were packed into a quartz ampoule (1mm ID, 3mm OD, ~25mm long), and a small piece of Al foil was put on top of the sample to keep it in place. The ampoule was attached to an ultra-high vacuum line and baked at 150°C and pumped to achieve a vacuum with a pressure of ~3 x  $10^{-8}$  mbar. The ampoule was
sealed while under vacuum taking special care not to displace the sample. After irradiation the ampoule was loaded into a small chamber with a quartz glass window on an ultra-high vacuum line. The chamber was heated to 150°C during pumping to achieve a pressure of  $\sim$ 3 x 10<sup>-9</sup> mbar. The ampoule was pierced using a focused UV laser beam to release the gas contained in it. The Ar was purified and analyzed on a MAP 215-50 mass spectrometer. The percentage of <sup>39</sup>Ar and <sup>37</sup>Ar lost by the sample in the ampoule was calculated by comparing amounts of each isotope in the ampoule gas to the concentrations measured for the same sample in normal step- heating analyses. All fractions were corrected uniformly using the recoil % for <sup>39</sup>Ar and for <sup>37</sup>Ar measured independently for each sample. The monitors used were the 27.84 Ma Fish Canyon Tuff sanidine FC-1 and an intralaboratory muscovite with a <sup>40</sup>Ar/<sup>39</sup>Ar age of 165.3 Ma that is assigned an uncertainty of ± 1%.

#### **Electron Microprobe**

Mineral composition data were collected from polished thin sections with a JEOL 8600 Electron Microprobe (Department of Geology, University of Georgia) utilizing Geller dQant automation with Heinrich matrix correction and dPict imaging software. Operating conditions included a 1-µm beam diameter, 15 nA current, and 15 keV accelerating voltage. Standards included pyrite (Fe, S), galena (Pb), cinnabar (Hg), InAs (As), diopside (Si), halite (Cl), and pure metal each for Cd, Zn, Ge, Au, Ag, Cu, Se, Sb, Mn, Sn, and Te.

#### Carbon, Oxygen, and Sulfur Stable Isotopes

Carbonate minerals were reacted overnight with H3PO4 at 50°C using a modification of the McCrea (1950) technique. Sulfide and sulfate minerals were ground together with V<sub>2</sub>O<sub>5</sub>, silica, and Cu-metal and combusted at 1050°C. The resultant CO<sub>2</sub> or SO<sub>2</sub> gas was cryogenically isolated on a vacuum extraction line and analyzed via dual inlet mass spectrometry on a Finnigan MAT 252 in the Stable Isotope Laboratory, Department of Geology, University of Georgia. Laboratory standards NBS-18 carbonatite, NBS-19 limestone (for C, O isotopes) and IAEA-S1 silver sulfide, NBS-123 sphalerite, NBS-127 barium sulfate (for S isotopes) were prepared and analyzed daily with CO<sub>2</sub>or SO<sub>2</sub> samples, respectively. Internal precision was determined to be  $\pm$ 0.1 per mil (1 $\sigma$ ). Compositions are reported in per mil notation relative to PDB (Pee Dee belemnite) for carbon, VSMOW (Vienna Standard Mean Ocean Water) for oxygen, and CDT (Canyon Diablo troilite) for sulfur (Hoefs, 1997).

#### Results

#### **Re-Os** Ages of Molybdenite

The Re-Os chronometer in molybdenite  $(MoS_2)$  provides the tool to date mineralization directly. Molybdenite is a common accessory or major mineral in a wide variety of geologic environments and ore-deposit types. The substitution of Re for Mo in molybdenite is common but can be complete, as the discovery of rheniite (ReS<sub>2</sub>) supports the existence of a Re-Mo solid solution series (Korzhinsky et al., 1994). Essentially no Os is incorporated into molybdenite, so all measured Os is generally assumed to be <sup>187</sup>Os produced by the decay of parent <sup>187</sup>Re. Unlike other isotopic chronometers (Rb-Sr, K-Ar, <sup>40</sup>Ar/<sup>39</sup>Ar) that are more susceptible to subsequent thermal disturbances, the Re-Os chronometer in molybdenite appears to be remarkably robust under most geologic conditions (Stein et al., 1998; 2001, 2003) and remains isotopically closed following molybdenite crystallization.

Six molybdenite samples were collected from molybdenite occurrences (Hilltop, Park Saddle, Tenabo) within the northern Shoshone Range (Figure 2-2 and Table 2-1). The molybdenite occurs within quartz veins or is disseminated within the host rock. Molybdenite in quartz veins is commonly intergrown or associated with small ( $\leq 10\mu$ m) laths of an unidentified selenium-sulfide mineral similar to poubaite and other selenium- sulfides (Fleischer, 1978) (Table 2-2). However, Hilltop's selenium-sulfide mineral contains Sb and at least eight wt. % more Te than similar species, and may represent a previously undescribed mineral.

The five molybdenite samples associated with  $Cu + Mo \pm Au$  porphyry-style mineralization within the Hilltop district yield ages from  $40.1 \pm 0.2$  to  $40.6 \pm 1.2$  Ma with a weighted mean of  $40.23 \pm 1.7$  Ma (MSWD = 2.4, 95% CL). A single molybdenite sample from  $Cu + Mo \pm Au$  porphyry-style mineralization at the Tenabo deposit (Bullion district) yielded a  $39.0 \pm 1.4$  Ma age. The larger errors in Re concentration and age for runs MDID-49 and MDID-51 are due to imperfect spiking. There was enough molybdenite remaining in the Hilltop sample to run a second time (MDID-64).



Figure 2.2: Generalized geologic map of the northern Shoshone Range. Select sample locations and mines, prospects, and deposits considered in this study. Only Tertiary granodioritic and quartz porphyry intrusive rocks shown; all else is undivided upper plate rocks of the Roberts Mountains allochthon (after Gilluly and Gates, 1965).

Table 2.2: Selenium-sulfide mineral associated with Hilltop molybdenite (n=44).

|            | S   | Sb  | Pb  | Se  | Bi   | Те   | 0   | U   | total |
|------------|-----|-----|-----|-----|------|------|-----|-----|-------|
| Avg. wt. % | 4.6 | 0.2 | 5.4 | 2.4 | 56.5 | 28.2 | 1.9 | 1.1 | 100.3 |

## <sup>40</sup>Ar/<sup>39</sup>Ar Data

Eight individual mineral separates from six different samples collected throughout the northern Shoshone Range (Figure 2-2) were analyzed via <sup>40</sup>Ar/<sup>39</sup>Ar. These samples include unaltered Tertiary intrusive rocks (both proximal and distal to base- and precious-metal mineralization) and gangue minerals directly associated with mineralization. Samples were collected from outcrop, surface and underground workings, and drill core/chips. The results and analytical precision of each argon analysis are in Table 2-3 and Figures 2-3a and 2-3b.

 $^{40}$ Ar/ $^{39}$ Ar ages for biotite and hornblende from unaltered igneous units (Table 2-3) within and/or proximal to mineralized areas are nearly coincident with molybdenite ages, supporting a relationship between pluton emplacement and porphyry mineralization. The  $^{40}$ Ar/ $^{39}$ Ar age for Tenabo granodiorite biotite is 38.85 ± 0.07 Ma, similar to the 38.88 ± 0.13 Ma (hornblende average, n = 2) and 38.64 ± 0.19 Ma (biotite average, n = 3) ages for the Granite Mountain stock located midway between the Hilltop and Bullion districts and approximately five miles northwest of Tenabo.

Each age plateau for GM-6 and GM-15 biotite and hornblende, and T99413-570 and GM-3 biotite analyses includes five or more contiguous gas fractions that together represent at least 60% of the total <sup>39</sup>Ar released from each sample. Concordance of the biotite and

## Table 2.3: <sup>40</sup>Ar/<sup>39</sup>Ar data from the northern Shoshone Range, Nevada.

| Location            | Sample    | Description                                                                                                                  | Mineral separate      | Mineral Chemistry                                    | Age (Ma)                                                                      |
|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|-------------------------------------------------------------------------------|
| Granite<br>Mountain | GM-3      | Granodiorite (outcrop)                                                                                                       | Biotite               | K <sub>2</sub> O = 7.90%                             | 38.1 <u>+</u> 0.40 <sup>R</sup>                                               |
| Hilltop             | HT02-1    | Clay-filled vug inside matrix of unmineralized breccia<br>pipe mantling quartz monzonite (Hobo Gulch) intrusion<br>(outcrop) | clay*                 | K <sub>2</sub> O = 0.57% avg.                        | 31.45 <u>+</u> 0.45 <sup>R</sup> **                                           |
| Hilltop             | DSC BXA   | Clay (+ visible gold) partially filling vug inside quartz<br>vein from discordant quartz breccia pipe<br>(outcrop)           | clay*                 | K <sub>2</sub> O = 3.30%                             | 42.1 <u>+</u> 0.40 <sup>R</sup> (IP)<br>35.7 <u>+</u> 0.40 <sup>R</sup> (ISO) |
| Granite<br>Mountain | GM-6      | Granodiorite (outcrop)                                                                                                       | Biotite<br>Hornblende | K <sub>2</sub> O = 7.97%<br>K <sub>2</sub> O = 1.29% | 38.77 <u>+</u> 0.10 <sup>N</sup><br>38.98 <u>+</u> 0.17 <sup>N</sup>          |
| Granite<br>Mountain | GM-15     | Granodiorite (outcrop)                                                                                                       | Biotite<br>Hornblende | K <sub>2</sub> O = 8.31%<br>K <sub>2</sub> O = 1.09% | 39.04 <u>+</u> 0.07 <sup>N</sup><br>38.78 <u>+</u> 0.09 <sup>N</sup>          |
| Tenabo              | 99413-570 | Granodiorite (drill chips from DDH99413-570)                                                                                 | Biotite               | K <sub>2</sub> O = 8.04%                             | 38.85 <u>+</u> 0.07 <sup>N</sup>                                              |

\* = See text for detailed sample description
\*\* = Average of two age plateaus
R = Analysis performed at the Radiogenic Isotopes Laboratory (RIL), Department of Geological Sciences, The Ohio State University.
N = Analysis performed at the New Mexico Geochronological Research Laboratory (NMGRL).
IP = Corrected integrated plateau age
ISO = Corrected isochron age



Figure 2.3a: <sup>40</sup>Ar/<sup>39</sup>Ar age spectra and correlation diagrams for GM-3 biotite, DSC BXA clay, and HT02-1 clay (analyzed by RIL). The arrow indicates steps included in the weighted average plateau ages. All steps included in weighted average plateau age if no arrow is shown. Clay plateaus corrected for argon recoil.



Figure 2.3b: <sup>40</sup>Ar/<sup>39</sup>Ar age spectra and correlation diagrams for GM-6 biotite and hornblende, GM-15 biotite and hornblende, and T99413-570 biotite (analyzed by NMGRL). The arrow indicates steps included in the weighted average plateau ages.

hornblende mineral pairs from Granite Mountain (GM-6, -15) help constrain the cooling rate of the Granite Mountain pluton, as each minerals' closure to argon loss is different (~500°C and ~300°C for hornblende and biotite, respectively; McDougall and Harrison, 1999). Assuming cooling via simple conduction, the Granite Mountain pluton cooled 200°C during a ~100,000 to 480,000-year span.

Two K-bearing clay samples were collected for Ar-Ar analysis. Sample HT02-1 is from the matrix of an unmineralized breccia pipe that mantles the quartz monzonite-granodiorite Hobo Gulch intrusive immediately southeast of Hilltop. Sample DSC BXA is from the discordant quartz breccia pipe located on the east flank of Hilltop.

Neither clay sample (HT02-1 or DSC BXA) yields a clear age plateau (Figure 2-3a). The age for HT02-1 ( $31.45 \pm 0.45$  Ma) is the average of two integrated plateau ages from two separate runs, as each run yielded a different plateau age ( $31.3 \pm 0.4$  Ma and  $31.6 \pm 0.5$  Ma, respectively). The very limited amount of sample DSC BXA allowed only one analysis, yielding different ages between the corrected integrated plateau age ( $42.1 \pm 0.9$  Ma) and the corrected isochron age ( $35.7 \pm 0.4$  Ma). The true age of DSC BXA clay lies between these two values.

#### **Electron Microprobe Data**

Major- and trace-element compositions of base- and precious-metal-bearing minerals were determined via electron microprobe from seven deposits/mineralized areas (Betty O'Neal, Hilltop, Kattenhorn, Blue Dick, Grey Eagle and Lovie mines and an unnamed prospect) within the northern Shoshone Range. The 18-element routine (Fe, S, Pb, Hg, As, Si, Cl, Cd, Zn, Ge, Au, Ag, Cu, Se, Sb, Mn, Sn, and Te) was also utilized to verify ore mineral identification. Low (96-99%) totals are probably the result of sulfur volatilization from sample during exposure to the electron beam and/or rough or uneven sample topography. Widening the beam diameter to 5µm and analyzing sulfur first minimized sulfur volatilization. Most analyses were collected from polished thin sections, polished slabs and fluid inclusion thick-sections. Mineral compositions were verified via EDS prior to each analysis to account for all constituent elements. A summary of ore mineral compositions from each deposit is reported in Table 2-4.

#### Stable Isotope Data – Carbonate, Sulfide, and Sulfate Minerals

Carbon and oxygen stable isotope data were collected from 18 carbonate minerals from the Hilltop, Betty O'Neal, and Lovie mines, and an unnamed prospect. The carbonate minerals occur with base- or precious-metal minerals or alone in veins or breccia matrix.

Ten carbonate samples were collected from the Hilltop deposit. Isotope values range from -11.7 to -2.5 per mil ( $\delta^{13}C_{PDB}$ ) and from +2.4 to +14.4 ( $\delta^{18}O_{VSMOW}$ ). Six samples from the Betty O'Neal mine yield -4.5 to -2.9 per mil ( $\delta^{13}C_{PDB}$ ) and -1.3 to +8.7 per mil ( $\delta^{18}O_{VSMOW}$ ). See Table 2-5 for complete data summary.

Ninety-two sulfide and sulfate minerals were collected from Granite Mountain and the Betty O'Neal, Lovie, Kattenhorn, Gray Eagle, and Hilltop mines and are summarized in Table 2-6.

Table 2.4: Microprobe analyses of ore minerals from the Blue Dick, Betty O'Neal, Gray Eagle mines and the unnamed prospect, northern Shoshone Range, Lander County, Nevada.

|          | Blue Dic | ck mine (Hi | illtop distri | ct)    |        |       |       |          | Betty O'N | eal mine ( | Lewis dist | rict)      |             |         |        |        |
|----------|----------|-------------|---------------|--------|--------|-------|-------|----------|-----------|------------|------------|------------|-------------|---------|--------|--------|
|          | pv       | fah         | ac            | mia    | asp    |       |       |          | ρv        | fah        | ас         | sph        | aal         | CDV     | chl    | bn     |
| Fe       | 46.03    | 1.77        | 0.26          | 0.01   | 31.72  |       |       | Fe       | 44.83     | 2.36       | 0.06       | 2.21       | 0.20        | 27.81   | 0.04   | 0.08   |
| S        | 51.87    | 23.21       | 13.60         | 18.59  | 18.87  |       |       | S        | 52.15     | 22.73      | 15.40      | 32.34      | 13.42       | 33.87   | 0.01   | 19.83  |
| Sb       | 0.02     | 25.85       | 0.56          | 37.12  | 0.77   |       |       | Sb       | 0.01      | 25.54      | 0.00       | 0.02       | 0.09        | 0.05    | 0.02   | 25.31  |
| As       | 0.00     | 0.89        | 0.02          | 0.40   | 43.10  |       |       | As       | 0.16      | 1.05       | 0.00       | 0.00       | 0.00        | 0.00    | 0.01   | 0.53   |
| Zn       | 0.04     | 5.13        | 0.07          | 0.02   | 0.00   |       |       | Zn       | 0.06      | 4.68       | 0.22       | 61.85      | 0.76        | 0.08    | 0.05   | 0.02   |
| Pb       | 0.01     | 0.01        | 0.02          | 0.17   | 0.11   |       |       | Pb       | 0.00      | 0.01       | 0.00       | 0.01       | 88.29       | 0.00    | 0.04   | 41.69  |
| Si       | 0.09     | 0.04        | 0.24          | 0.07   | 3.84   |       |       | Si       | 0.03      | 0.03       | 0.03       | 0.10       | 0.04        | 0.05    | 0.19   | 0.01   |
| Ag       | 0.01     | 17.23       | 84.45         | 39.97  | 0.04   |       |       | Ag       | 0.04      | 21.91      | 86.40      | 0.57       | 0.07        | 0.08    | 88.23  | 0.03   |
| Cu<br>Mo | 0.04     | 25.94       | 0.06          | 0.00   | 0.09   |       |       | Cu<br>Mo | 0.06      | 22.52      | 2.21       | 0.09       | 0.31        | 32.78   | 0.05   | 13.12  |
|          | 0.03     | 0.05        | 0.04          | 0.00   | 0.00   |       |       |          | 0.05      | 0.05       | 0.00       | 0.43       | 0.00        | 0.03    | 0.41   | 0.00   |
| Sn       | 0.00     | 0.00        | 0.00          | 0.00   | 0.00   |       |       | Sn       | 0.00      | 0.02       | 0.00       | 0.00       | 0.02        | 0.02    | 0.02   | 0.00   |
| Se       | 0.01     | 0.05        | 0.10          | 1.36   | 0.00   |       |       | Se       | 0.01      | 0.00       | 1.03       | 0.00       | 0.17        | 0.00    | 0.00   | 0.18   |
| Cd       | 0.03     | 0.10        | 0.43          | 0.00   | 0.00   |       |       | Cd       | 0.02      | 0.20       | 0.46       | 0.62       | 0.05        | 0.01    | 0.41   | 0.00   |
| Ge       | 0.00     | 0.00        | 0.01          | 0.00   | 0.00   |       |       | Ge       | 0.00      | 0.00       | 0.00       | 0.01       | 0.02        | 0.00    | 0.04   | 0.00   |
| CI       | 0.00     | 0.03        | 0.08          | 0.03   | 0.01   |       |       | CI       | 0.01      | 0.02       | 0.08       | 0.00       | 0.05        | 0.00    | 3.41   | 0.01   |
| Те       | 0.00     | 0.00        | 0.13          | 0.00   | 0.00   |       |       | Те       | 0.02      | 0.00       | 0.15       | 0.02       | 0.05        | 0.04    | 0.09   | 0.00   |
| Hg       | 0.02     | 0.12        | 0.04          | 0.32   | 0.00   |       |       | Hg       | 0.00      | 0.02       | 0.00       | 0.00       | 0.01        | 0.01    | 0.01   | 0.03   |
| Total    | 98.17    | 100.43      | 100.10        | 98.06  | 98.56  |       |       | Total    | 96.75     | 101.19     | 106.11     | 98.25      | 103.57      | 94.81   | 91.55  | 100.87 |
| n        | 11       | 3           | 3             | 1      | 1      |       |       | n        | 6         | 10         | 1          | 5          | 10          | 2       | 11     | 1      |
|          | Grey Ea  | igle mine ( | Bullion dis   | trict) |        |       |       |          |           |            | Unnamed    | l prospect | (Bullion di | strict) |        |        |
|          | py       | fah         | asp           | sph    | gal    | сру   | hes   | elec     |           |            | py         | fah        | asp         | sph     | gal    | qeo    |
| Fe       | 45.58    | 3.43        | 35.04         | 9.63   | 0.19   | 28.70 |       | 0.00     |           | Fe         | 45.25      | 3.10       | 34.76       | 6.24    | 0.04   | 24.62  |
| S        | 52.35    | 24.06       | 21.92         | 32.76  | 13.58  | 34.05 |       | 0.17     |           | S          | 53.84      | 25.84      | 21.80       | 34.18   | 14.42  | 32.77  |
| Sb       | 0.02     | 28.10       | 0.17          | 0.02   | 0.02   | 0.04  |       | 0.00     |           | Sb         | 0.01       | 27.33      | 0.04        | 0.03    | 0.19   | 0.00   |
| As       | 0.19     | 0.88        | 43.54         | 0.00   | 0.00   | 0.00  |       | 0.00     |           | As         | 0.00       | 1.06       | 43.63       | 0.00    | 0.00   | 0.00   |
| Zn       | 0.14     | 4.09        | 0.01          | 54.99  | 0.10   | 0.04  |       | 0.00     |           | Zn         | 0.01       | 4.20       | 0.00        | 58.01   | 0.06   | 0.12   |
| Pb       | 0.00     | 0.01        | 0.00          | 0.00   | 85.44  | 0.00  |       | 0.00     |           | Pb         | 0.00       | 0.00       | 0.01        | 0.02    | 87.71  | 0.00   |
| Si       | 0.07     | 0.04        | 0.01          | 0.04   | 0.03   | 0.08  |       | 0.04     |           | SI         | 0.01       | 0.01       | 0.01        | 0.01    | 0.05   | 0.00   |
| Ag       | 0.02     | 5.22        | 0.02          | 0.01   | 0.96   | 0.02  | 60.39 | 22.83    |           | Ag         | 0.03       | 8.02       | 0.01        | 0.01    | 0.08   | 12.79  |
| Cu<br>Mn | 0.05     | 34.72       | 0.04          | 0.04   | 0.07   | 34.00 |       | 0.12     |           | Mn         | 0.04       | 33.50      | 0.00        | 0.09    | 0.07   | 27.20  |
|          | 0.01     | 0.04        | 0.02          | 0.22   | 0.02   | 0.01  |       | 77 20    |           |            | 0.02       | 0.00       | 0.01        | 0.21    | 0.02   | 0.00   |
| Sn       | 0.04     | 0.03        | 0.00          | 0.00   | 0.00   | 0.02  |       | 0.00     |           | Sn         | 0.02       | 0.00       | 0.00        | 0.00    | 0.03   | 0.07   |
| Se       | 0.00     | 0.00        | 0.00          | 0.00   | 0.00   | 0.00  |       | 0.00     |           | Se         | 0.00       | 0.00       | 0.00        | 0.00    | 0.00   | 0.00   |
| Cd       | 0.00     | 0.06        | 0.00          | 1.34   | 0.06   | 0.02  |       | 0.10     |           | Cd         | 0.00       | 0.00       | 0.00        | 1.05    | 0.08   | 0.05   |
| Ge       | 0.00     | 0.00        | 0.00          | 0.00   | 0.05   | 0.00  |       | 0.00     |           | Ge         | 0.00       | 0.00       | 0.00        | 0.00    | 0.00   | 0.00   |
| CI       | 0.01     | 0.01        | 0.00          | 0.01   | 0.05   | 0.01  |       | 0.03     |           | CI         | 0.00       | 0.01       | 0.01        | 0.01    | 0.05   | 0.04   |
| Те       | 0.03     | 0.00        | 0.02          | 0.02   | 0.12   | 0.00  | 37.99 | 0.03     |           | Те         |            |            |             |         |        |        |
| Hg       | 0.04     | 0.00        | 0.02          | 0.05   | 0.03   | 0.00  |       | 0.00     |           | Hg         |            |            |             |         |        |        |
| Total    | 98.54    | 100.78      | 100.88        | 99.16  | 100.74 | 97.66 | 98.38 | 100.67   |           | Total      | 99.23      | 103.10     | 100.38      | 99.85   | 102.80 | 97.72  |
| n        | 5        | 5           | 4             | 4      | 5      | 3     | 2     | 1        |           | n          | 3          | 2          | 3           | 5       | 3      | 1      |

Table 2.4 (continued): Microprobe analyses of ore minerals from the Hilltop, Lovie, and Kattenhorn mines, northern Shoshone Range, Lander County, Nevada.

|                                                                                                         | Hilltop mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne and im                                                                                                                                                                      | mediate ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rea (Hillto                                                                                                                                                | op district)                                                                                                                                                    |       |                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                                                                                       | ру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fah                                                                                                                                                                            | mia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | asp                                                                                                                                                        | sph                                                                                                                                                             | gal   | сру                                                                                                                                       | stib                                                                                                                                                                      | bn                                                                                                                                                                                | cst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | elec                                                                                                                                                         |
| Fe                                                                                                      | 44.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.88                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.10                                                                                                                                                      | 7.94                                                                                                                                                            | 0.21  | 29.22                                                                                                                                     | 0.04                                                                                                                                                                      | 0.04                                                                                                                                                                              | 3.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| S                                                                                                       | 51.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.16                                                                                                                                                                          | 20.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.49                                                                                                                                                      | 32.93                                                                                                                                                           | 11.88 | 33.49                                                                                                                                     | 27.51                                                                                                                                                                     | 19.43                                                                                                                                                                             | 26.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
| Sb                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.58                                                                                                                                                                          | 40.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.46                                                                                                                                                       | 0.02                                                                                                                                                            | 0.21  | 0.03                                                                                                                                      | 70.83                                                                                                                                                                     | 24.29                                                                                                                                                                             | 25.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
| AS<br>Za                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.36                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.51                                                                                                                                                      | 0.00                                                                                                                                                            | 0.00  | 0.00                                                                                                                                      | 0.56                                                                                                                                                                      | 1.16                                                                                                                                                                              | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Zn                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.30                                                                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                       | 55.56                                                                                                                                                           | 0.31  | 0.21                                                                                                                                      | 0.02                                                                                                                                                                      | 0.26                                                                                                                                                                              | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| PD                                                                                                      | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                                                                                                                                                       | 0.00                                                                                                                                                            | 83.44 | 0.00                                                                                                                                      | 0.00                                                                                                                                                                      | 43.41                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| 51                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                       | 0.07                                                                                                                                                            | 0.04  | 0.02                                                                                                                                      | 0.04                                                                                                                                                                      | 0.02                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Ag                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.14                                                                                                                                                                           | 39.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                       | 0.03                                                                                                                                                            | 0.42  | 0.02                                                                                                                                      | 0.05                                                                                                                                                                      | 0.03                                                                                                                                                                              | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.40                                                                                                                                                        |
| Cu                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30.20                                                                                                                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                       | 0.70                                                                                                                                                            | 0.23  | 33.23                                                                                                                                     | 0.06                                                                                                                                                                      | 13.39                                                                                                                                                                             | 35.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
|                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                                                                                                                                                       | 0.70                                                                                                                                                            | 0.03  | 0.01                                                                                                                                      | 0.02                                                                                                                                                                      | 0.02                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Au<br>Ora                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                       | 0.03                                                                                                                                                            | 0.01  | 0.01                                                                                                                                      | 0.02                                                                                                                                                                      | 0.00                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65.07                                                                                                                                                        |
| Sn                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.91                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                       | 0.06                                                                                                                                                            | 0.00  | 0.05                                                                                                                                      | 0.26                                                                                                                                                                      | 0.04                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Se                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                           | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                       | 0.02                                                                                                                                                            | 2.15  | 0.01                                                                                                                                      | 0.24                                                                                                                                                                      | 0.09                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
|                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                       | 1.21                                                                                                                                                            | 0.04  | 0.01                                                                                                                                      | 0.00                                                                                                                                                                      | 0.00                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Ge                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                       | 0.01                                                                                                                                                            | 0.01  | 0.02                                                                                                                                      | 0.00                                                                                                                                                                      | 0.05                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
|                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                       | 0.01                                                                                                                                                            | 0.07  | 0.00                                                                                                                                      | 0.01                                                                                                                                                                      | 0.03                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| le                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                       | 0.02                                                                                                                                                            | 0.08  | 0.01                                                                                                                                      | 0.00                                                                                                                                                                      | 0.00                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |
| Hg                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.11                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                       | 0.01                                                                                                                                                            | 0.01  | 0.04                                                                                                                                      | 0.01                                                                                                                                                                      | 0.00                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
| Iotai                                                                                                   | 97.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.85                                                                                                                                                                          | 101.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.89                                                                                                                                                      | 99.44                                                                                                                                                           | 99.13 | 96.37                                                                                                                                     | 99.61                                                                                                                                                                     | 102.25                                                                                                                                                                            | 100.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.46                                                                                                                                                        |
| n                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                         | 11                                                                                                                                                              | 14    | 1                                                                                                                                         | 5                                                                                                                                                                         | 3                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                           |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                 |       |                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |
|                                                                                                         | Lovie min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion                                                                                                                                                                     | district)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |       | Kattenhor                                                                                                                                 | m mine (H                                                                                                                                                                 | illtop distri                                                                                                                                                                     | ct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |
|                                                                                                         | Lovie min<br>py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e (Bullion<br>fah                                                                                                                                                              | district)<br>asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sph                                                                                                                                                        | gal                                                                                                                                                             |       | Kattenhor                                                                                                                                 | n mine (H<br>py                                                                                                                                                           | illtop distri<br>fah                                                                                                                                                              | ct)<br>gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chl                                                                                                                                                          |
| Fe                                                                                                      | Lovie min<br>py<br>45.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e (Bullion<br>fah<br>4.48                                                                                                                                                      | district)<br>asp<br>36.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sph<br>7.80                                                                                                                                                | gal<br>0.23                                                                                                                                                     |       | Kattenhor<br>Fe                                                                                                                           | n mine (H<br>py<br>44.12                                                                                                                                                  | illtop distri<br>fah<br>1.21                                                                                                                                                      | ct)<br>gal<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chl<br>0.14                                                                                                                                                  |
| Fe<br>S                                                                                                 | Lovie min<br>py<br>45.61<br>52.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e (Bullion<br>fah<br>4.48<br>23.36                                                                                                                                             | district)<br>asp<br>36.23<br>21.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sph<br>7.80<br>33.27                                                                                                                                       | gal<br>0.23<br>13.46                                                                                                                                            |       | Kattenhor<br>Fe<br>S                                                                                                                      | n mine (H<br>py<br>44.12<br>49.48                                                                                                                                         | illtop distri<br>fah<br>1.21<br>15.33                                                                                                                                             | ct)<br>gal<br>0.00<br>12.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chl<br>0.14<br>0.08                                                                                                                                          |
| Fe<br>S<br>Sb                                                                                           | Devie min<br>py<br>45.61<br>52.59<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45                                                                                                                                    | district)<br>asp<br>36.23<br>21.11<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sph<br>7.80<br>33.27<br>0.01                                                                                                                               | gal<br>0.23<br>13.46<br>0.24                                                                                                                                    |       | Kattenhor<br>Fe<br>S<br>Sb                                                                                                                | rn mine (H<br>py<br>44.12<br>49.48<br>0.06                                                                                                                                | illtop distri<br>fah<br>1.21<br>15.33<br>7.69                                                                                                                                     | ct)<br>gal<br>0.00<br>12.62<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chl<br>0.14<br>0.08<br>0.00                                                                                                                                  |
| Fe<br>S<br>Sb<br>As                                                                                     | Devie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48                                                                                                                            | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00                                                                                                                       | gal<br>0.23<br>13.46<br>0.24<br>0.00                                                                                                                            |       | Kattenhor<br>Fe<br>S<br>Sb<br>As                                                                                                          | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00                                                                                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16                                                                                                                             | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | chl<br>0.14<br>0.08<br>0.00<br>0.00                                                                                                                          |
| Fe<br>S<br>Sb<br>As<br>Zn                                                                               | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60                                                                                                                   | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69                                                                                                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09                                                                                                                    |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn                                                                                                    | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07                                                                                                                 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28                                                                                                                    | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00                                                                                                                  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb                                                                         | Devie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00                                                                                                           | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00                                                                                                      | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96                                                                                                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb                                                                                              | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00                                                                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17                                                                                                            | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                          |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si                                                                   | Devie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03                                                                                                   | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01                                                                                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01                                                                                                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si                                                                                        | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55                                                                                                 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17                                                                                                    | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>0.00<br>6.62                                                                                                  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag                                                             | Py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33                                                                                          | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02                                                                                      | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22                                                                                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag                                                                                  | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04                                                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82                                                                                           | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75                                                                                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu                                                       | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78                                                                                 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14                                                                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.15                                                                                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu                                                                            | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.06                                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01                                                                                  | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00                                                                                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn                                                 | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10                                                                         | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59                                                                      | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02                                                                                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn                                                                      | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02                                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36                                                                          | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00                                                                                 |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au                                           | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02                                                                 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05                                                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03                                                                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au                                                                | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01                                                                 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06                                                                  | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18                                                                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn                                     | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93                                                         | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00                                                      | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.03                                                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn                                                          | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00                                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58                                                          | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00                                                                 |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se                               | Py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01                                                 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00<br>0.00                                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.01<br>0.01                                                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se                                                    | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01                                                 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84                                                  | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00<br>0.06                                                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd                         | Devie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0 | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.11                                         | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00<br>0.00<br>0.00<br>1.01                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.03<br>0.02<br>0.03<br>0.01<br>0.01<br>0.03                                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd                                              | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00                                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.14                                          | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00<br>0.06<br>0.32                                                 |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd<br>Ge                   | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0 | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.11<br>0.01                                 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.00<br>0.00<br>1.01<br>0.00                                      | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.05<br>0.02<br>0.03<br>0.01<br>0.03<br>0.01<br>0.03<br>0.01                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd<br>Ge                                        | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00                         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.14<br>0.01                                  | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.04<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.00<br>0.18<br>0.00<br>0.32<br>0.00                                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Sn<br>Se<br>Cd<br>Ge<br>Cl                   | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0 | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.11<br>0.01<br>0.03                         | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.00<br>0.00<br>1.01<br>0.00<br>0.00                              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.01<br>0.01<br>0.03<br>0.01<br>0.03                           |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd<br>Ge<br>Cl                                  | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01                                                 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.14<br>0.01<br>0.05                          | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.04<br>0.00<br>0.08<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.32<br>0.00<br>4.50                 |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Cd<br>Ge<br>Cl<br>Te             | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.01<br>0.01<br>0.03<br>0.00<br>0.03<br>0.00 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00<br>0.00<br>1.01<br>0.00<br>0.01<br>0.07              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.01<br>0.01<br>0.01<br>0.03<br>0.01<br>0.06<br>0.05                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd<br>Ge<br>Cl<br>Te                            | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00         | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.14<br>0.01<br>0.05<br>0.25<br>0.25          | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.04<br>0.00<br>0.08<br>0.00<br>0.08<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00<br>0.18<br>0.00<br>0.32<br>0.00<br>4.50<br>0.22 |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>e<br>Cl<br>E<br>E<br>H<br>g      | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00     | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.01<br>0.01<br>0.01<br>0.03<br>0.00<br>0.00 | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00<br>0.00<br>1.01<br>0.00<br>0.01<br>0.07              | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.01<br>0.01<br>0.03<br>0.01<br>0.05<br>0.05<br>0.01                   |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se<br>Cd<br>Ge<br>Cl<br>Te<br>Hg                      | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.01 | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.01<br>0.05<br>0.25<br>0.13                  | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.04<br>0.00<br>0.08<br>0.01<br>0.00<br>0.08<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00<br>0.32<br>0.00<br>4.50<br>0.18<br>0.00                         |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>e<br>Cl<br>E<br>E<br>Hg<br>Total | Lovie min<br>py<br>45.61<br>52.59<br>0.01<br>0.09<br>0.06<br>0.00<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 | e (Bullion<br>fah<br>4.48<br>23.36<br>21.45<br>0.48<br>11.60<br>0.00<br>0.03<br>19.33<br>17.78<br>0.10<br>0.02<br>0.93<br>0.01<br>0.11<br>0.01<br>0.03<br>0.00<br>99.69        | district)<br>asp<br>36.23<br>21.11<br>0.03<br>44.95<br>0.11<br>0.14<br>0.00<br>0.02<br>0.03<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>7.80<br>33.27<br>0.01<br>0.00<br>56.69<br>0.00<br>0.01<br>0.02<br>0.14<br>1.59<br>0.05<br>0.00<br>0.00<br>1.01<br>0.00<br>0.01<br>0.07<br><br>99.84 | gal<br>0.23<br>13.46<br>0.24<br>0.00<br>0.09<br>85.96<br>0.01<br>0.22<br>0.15<br>0.02<br>0.03<br>0.01<br>0.03<br>0.01<br>0.03<br>0.01<br>0.05<br>0.01<br>100.55 |       | Kattenhor<br>Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Cu<br>Mn<br>Au<br>Sn<br>Cu<br>Cu<br>Te<br>Hg<br>Total | n mine (H<br>py<br>44.12<br>49.48<br>0.06<br>0.00<br>0.07<br>0.00<br>0.55<br>0.04<br>0.06<br>0.02<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.01<br>94.47        | illtop distri<br>fah<br>1.21<br>15.33<br>7.69<br>0.16<br>19.28<br>0.17<br>1.17<br>16.82<br>30.01<br>0.36<br>0.06<br>4.58<br>0.84<br>0.14<br>0.01<br>0.05<br>0.25<br>0.13<br>98.26 | ct)<br>gal<br>0.00<br>12.62<br>0.16<br>0.00<br>0.06<br>84.27<br>0.96<br>0.16<br>0.03<br>0.01<br>0.02<br>0.01<br>1.41<br>0.04<br>0.00<br>0.08<br>0.01<br>0.00<br>9.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chl<br>0.14<br>0.08<br>0.00<br>0.00<br>0.00<br>6.62<br>65.75<br>0.00<br>0.00<br>0.18<br>0.00<br>0.06<br>0.32<br>0.00<br>4.50<br>0.18<br>0.02<br>77.84        |

Notes: Py, pyrite; fah, fahlore; mia, miargyrite; asp, arsenopyrite; sph, sphalerite; gal, galena; cpy, chalcopyrite; chl, chlorargyrite-bromargyrite; stib, stibnite; bn, bournonite; cst, chalcostibnite; ac, acanthite; ele, electrum; geo, geffroyite.

n = number of analyses

All data in average wt. %

-- = not analyzed

Minerals not listed in tables = not present in samples analyzed.

Table 2.5: Carbon and oxygen stable isotope data from carbonate minerals associated with baseand precious metal mineralization, northern Shoshone Range, Lander County, Nevada.

| Deposit | Sample       | Description                                                    | Host Rock             | $\delta^{13}C_{PDB}$ | $\delta^{18}O_{VSMOW}$ |
|---------|--------------|----------------------------------------------------------------|-----------------------|----------------------|------------------------|
| HT      | 97-8-106.8-1 | 1/2"-wide qtz vein with carb + py +cpy in center               | Phyl. altered Tgd     | -6.1                 | 2.9                    |
| HT      | 97-8-136-1   | F.g. carb in center of 3/4"-wide euhedral qtz vein.            | Prop. altered Tgd     | -8.8                 | 3.3                    |
| HT      | 97-8-136-2   | 1/4"-wide envelope of euhedral carb bordering 97-8-136-1 vein. | Prop. altered Tgd     | -11.7                | 6.0                    |
| HT      | 97-10-305.8  | 1/8"-wide envelope of carb+bar+kaol bordering qtz vein.        | Prop. altered Tfp     | -2.5                 | 3.3                    |
| HT      | 97-11-168    | 1/2"-wide cal veinlet                                          | Valmy siliciclastics  | -8.7                 | 9.3                    |
| HT      | 97-11-700-2  | 1/8"-wide envelope of carb+bar bordering 97-11-700-3 vein.     | Valmy siliciclastics  | -6.0                 | 12.8                   |
| HT      | 97-11-700-3  | 1/2" -wide carb+qtz+bar+rock frag vein.                        | Valmy siliciclastics  | -5.2                 | 7.9                    |
| HT      | 97-13-221-1  | Euhedral cal xtals in f.g. groundmass (97-13-221-3)            | Phyl-prop alt Tgd     | -5.4                 | 2.4                    |
| HT      | 97-13-221-3  | F.g. carb+ser groundmass                                       | Phyl-prop alt Tgd     | -4.9                 | 2.7                    |
| HT      | 97-13-92.5   | < 1/2" -wide carb vein.                                        | Phyl. altered Tfp     | -5.9                 | 14.4                   |
| BON     | 1-8S-B-2     | < 3/4"-wide carb vein between massive qtz and wall rock        | n/a                   | -3.4                 | 8.7                    |
| BON     | 05A-1        | Carb+qtz matrix between rock clasts                            | Breccia               | -4.5                 | 7.3                    |
| BON     | 06A-1        | Carb matrix between rock clasts w/ gal+fah+sph                 | Breccia               | -3.4                 | 0.1                    |
| BON     | 29A-1        | 1/2"-wide cal vein (with rock clasts)                          | Massive qtz vein      | -3.7                 | -0.6                   |
| BON     | 32-1         | Massive carb                                                   | Massive carb vein     | -2.9                 | -1.3                   |
| BON     | 55-1         | Massive carb                                                   | Massive carb vein     | -3.4                 | 2.9                    |
| Lovie   | 42-2         | Massive cal cut by chl+ep veins                                | Massive cal vein      | -0.2                 | 17.0                   |
| UN      | CK02-11-1    | Qtz+cal vein with ser+py+gal+sph+fah+asp                       | Phyl-arg. altered Tgd | -2.3                 | 2.6                    |

Notes:

HT = Hilltop mine; BON = Betty O'Neal mine; Lovie = Lovie mine; UN = unnamed prospect.

Atleration: Phyl = phyllic; Prop = propylitic; Arg = argillic.

Tgd = Tertiary granodiorite; Tfp = Tertiary feldspar porphyry.

Carb = carbonate; py = pyrite; cpy = chalcopyrite; qtz = quartz; kaol = kaolinite; bar = barite; gal = galena; fah = fahlore; sph = sphalerite; asp = arsenopyrite; ser = sericite; chl = chlorite; cal = calcite; ep = epidote.

All data corrected using the fractionation factor of calcite at  $50^{\circ}$ C = 1.00922525

Unless specified, "carb" refers to CaCO<sub>3</sub> with small impurities of Fe, Mg, or Mn.

For all carbon and oxygen isotope values  $\sigma$  = 0.1 per mil

Table 2.6: Sulfur stable isotope data from sulfide and sulfate minerals associated with base- and precious metal mineralization, northern Shoshone Range, Lander County, Nevada.

| Deposit | Sample       | Mineral | $\delta^{34}S_{CDT}$ | Deposit | Sample         | Mineral | $\delta^{34}S_{CDT}$ |
|---------|--------------|---------|----------------------|---------|----------------|---------|----------------------|
| BON     | 49-1         | bar     | 19.3                 | HT      | 97-8-380.6-B7  | mel py  | -0.4                 |
| BON     | 04B-1        | ру      | 4.9                  | HT      | 97-8-380.6-B6  | mel py  | -12.1                |
| BON     | 52           | bar     | 18.2                 | HT      | 97-8-380.6-B4  | mel py  | -7.2                 |
| Lovie   | 03B-2        | sph     | 6.2                  | HT      | 97-8-380.6-B5  | mel py  | -7.6                 |
| Lovie   | 05-1         | sph     | 5                    | HT      | 97-8-466       | bar     | 15.2                 |
| Lovie   | 35A-1        | gal     | 5.6                  | HT      | 97-8-380.6-B8  | mel py  | 5.6                  |
| Lovie   | 09-1         | bar     | 20.9                 | HT      | 97-8-416       | stib    | 5.5                  |
| Lovie   | 27-1         | ру      | 7.1                  | HT      | 97-8-106.8-2   | ру      | 5.5                  |
| Lovie   | 03A-1        | ру      | 5.1                  | HT      | 97-8-380.6-C   | mel py  | 2                    |
| KATT    | 27A-1        | bar     | 13.6                 | HT      | 97-8-380.6-B3  | mel py  | -5.4                 |
| KATT    | 31-1         | bar     | 11                   | HT      | 97-8-380.6-B1  | mel py  | 4.6                  |
| KATT    | 12-1         | bar     | 16.3                 | HT      | 97-8-380.6-B2  | mel py  | 1.1                  |
| KATT    | 09-1         | bar     | 21.5                 | HT      | 97-9-358-1     | py/asp  | 5.8                  |
| GE      | 05-1         | sph     | 6.7                  | HT      | 97-10-1084.5-2 | ру      | 5.1                  |
| GE      | 04-2         | ру      | 6.6                  | HT      | 97-10-1084.5-1 | sph     | 4.9                  |
| GE      | X1-1         | ру      | 6.3                  | HT      | 97-10-106.1-1  | moly    | 4.3                  |
| GE      | 10-1         | ру      | 6.2                  | HT      | 97-10-1181.5-2 | ру      | 6                    |
| GE      | 05-2         | ру      | 5.8                  | HT      | 97-10-1161.7   | ру      | 6.4                  |
| GE      | 09-2         | py      | 6.8                  | HT      | 97-10-1160.6-2 | ру      | 5.4                  |
| GE      | 07-2         | py      | 6.5                  | HT      | 97-10-1160.6-1 | gal     | 3.2                  |
| GE      | 04-4         | sph     | 7.1                  | HT      | 97-11-665.3-1  | bar     | 10.4                 |
| GE      | 04-1         | gal     | 5.8                  | HT      | 97-11-700-1    | bar     | 5.9                  |
| GM      | 18           | bar     | 17.7                 | HT      | 97-11-665.3-4  | py      | 5.8                  |
| HT      | HT02-12-SITE | stib    | 3.8                  | HT      | 97-11-1232.5-1 | py      | 22                   |
| HT      | HT02-14-1    | ру      | 4.3                  | HT      | 97-11-1235.4-1 | bar     | 16.3                 |
| HT      | HT02-8-1     | stib    | 3.9                  | HT      | 97-11-1106-1   | bar     | 10.9                 |
| HT      | CK02-4/5-1   | ру      | -2.1                 | HT      | 97-11-665.3-3  | sph     | 5.2                  |
| HT      | CK02-4/5-2   | py      | 4.5                  | HT      | 97-11-1027.5-1 | py      | 4.4                  |
| HT      | CK02-4/5-3   | py/asp  | 3.5                  | HT      | 97-11-991      | ру      | 6.2                  |
| HT      | CK02-22      | bar     | 18                   | HT      | 97-11-1235.4-2 | ру      | 14.4                 |
| HT      | CKO2-31      | gal     | 3.1                  | HT      | 97-13-221-2    | ру      | 5.8                  |
| HT      | CKO2-28      | ру      | 4.1                  | HT      | 97-13-373-1    | ру      | 4.8                  |
| HT      | CKO2-29-1    | ру      | 4.4                  | HT      | 97-14-212      | stib    | 2.9                  |
| HT      | CKO2-21      | bar     | 17.7                 | HT      | 97-15-488.5-3  | ру      | 5.3                  |
| UN      | CK02-11-3    | ру      | 7                    | HT      | 97-15-488.5-1  | ру      | -2.7                 |
| UN      | CK02-11-2    | sph     | 6.2                  | HT      | 97-15-488.5-2  | ру      | 6.9                  |
| UN      | CK02-11      | ру      | 6.9                  | HT      | 97-15-488.5-5  | ру      | 7.1                  |
| HT      | Sb-P-1       | bar     | 14.8                 | HT      | 97-16-484-1    | ру      | -15.6                |
| HT      | Sb-P-2-2     | bar     | 21.3                 | HT      | 97-16-484-2    | ру      | 5.3                  |
| HT      | Sb-P-2-1     | stib    | 3.3                  | HT      | 97-16-503.3-3  | ру      | -1.9                 |
| HT      | 97-1-497B-1  | bar     | 12.7                 | HT      | 97-16-503.3-1  | ру      | -15.9                |
| HT      | 97-5-473.5-1 | bar     | 14.3                 | HT      | 97-16-339      | ру      | 4.1                  |
| HT      | 97-6-434     | stib    | 3.3                  | HT      | 97-16-430.9-2  | ру      | -1.0                 |
| HT      | 97-6-80-1    | moly    | 5.6                  | HT      | 97-16-503.3-2  | ру      | -10.6                |
| HT      | 97-7-365-PY3 | ру      | 2                    | HT      | 97-16-430.9-1  | ру      | -2.1                 |
| HT      | 97-7-365-PY4 | ру      | 2.3                  | HT      | 97-16-430.9-3  | ру      | 4.2                  |
| HT      | 97-7-365-PY2 | ру      | -2.6                 | HT      | BURNS-05       | bar     | 16                   |
| HT      | 97-8-436-1   | ру      | -2.7                 | HT      | IND. N. ADIT-1 | ру      | 4.9                  |

BON = Betty O'Neal mine; Lovie = Lovie mine; KATT = Kattenhorn mine; GE = Grey Eagle mine; GM = Granite Mountain; HT = Hilltop deposit / area; UN = Unnamed prospect.

bar = barite; py = pyrite; sph = sphalerite; gal = galena; stib = stibnite; asp = arsenopyrite; moly = molybdenite; mel py = melnikovite pyrite (b=band)

For all sulfur isotope data  $\sigma = 0.1$ .

#### Discussion

#### Age of Igneous rocks and Mineralization

Igneous rocks within the Battle Mountain-Eureka trend comprise three distinct age groups: 100-85 Ma (Middle to Late Cretaceous), 43-37 Ma (Eocene to early Oligocene), and ~15 Ma (middle Miocene) (Christiansen and Yeats, 1992; Maher and Browne, 1993). Data from this study (Table 2-3) and others (McKee and Silberman, 1970; Lisle and Desrochers, 1988) support an Eocene age for intrusive igneous rocks within the northern Shoshone range. These Eocene igneous rocks are part of the Tuscarora magmatic belt; a belt of 43 to 37 Ma calc-alkalic plutonic and volcanic rocks extending east-southeast across northern Nevada and west-central Utah. Several mineral deposits are associated with the Tuscarora magmatic belt, most notably the Bingham porphyry-copper deposit (Christiansen and Yeats, 1992).

Igneous rocks representing all three age groups occur with at least 20 base- and preciousmetal mineral deposits within the Battle Mountain-Eureka trend, although establishing a definitive link between each deposit and its nearby igneous body is often impossible (Maher and Browne, 1993). However, the age of the Cu+Mo±Au porphyry-style mineralization within the northern Shoshone range has been established via molybdenite and the Re-Os method (Table 2-1).

Rhenium-osmium data from Tenabo, Park Saddle, and Hilltop molybdenite and <sup>40</sup>Ar/<sup>39</sup>Ar data from nearby intrusive rocks support contemporaneous emplacement of both barren and molybdenite-bearing plutons throughout the northern Shoshone range. However, the paragenetic position of molybdenite at the Hilltop deposit has been difficult to establish as the relative ages

of molybdenite-bearing veins and base- and precious-metal-bearing veins have not been directly observed. The temporal relationship between molybdenite, the granodioritic intrusions within and proximal to the Hilltop deposit, and Hilltop's Au-bearing epithermal mineralization is not completely clear; however, soil geochemistry verifies a spatial relationship between the intrusions and molybdenite (Kelson et al., 2000). The alteration (recrystallization, bleaching  $\pm$  sericitization) of Hilltop's Ordovician Valmy Formation host rocks has been attributed to the nearby granodioritic intrusions. Assuming the granodioritic intrusions are responsible for molybdenite mineralization, then the presence of altered Valmy clasts within base- and precious-metal-bearing veins (Lisle and Desrochers, 1988; Kelson et al., 2000) may infer the earliest position of molybdenite within the Hilltop deposits' paragenetic sequence of mineralization.

Radiometrically determining the age of gold is not possible unless a datable phase (e.g. molybdenite, illite) is deposited with the gold. Gold at the Hilltop deposit occurs within the Main Zone and the discordant quartz breccia pipe, possibly representing two separate gold-bearing events (Kelson et al., 2000). Main Zone gold is sub-microscopic and intimately associated with arsenopyrite, pyrite, and silica; discordant quartz breccia pipe gold is frequently macroscopic and occurs as native Au or electrum.

A small (< 1mg) sample of K-bearing clay was recovered from a vug containing visible gold within the quartz matrix of the discordant quartz breccia pipe. The discordant quartz breccia pipe contains clasts of altered (bleached + recrystallized) Ordovician Valmy Formation rock types supported in a matrix of euhedral quartz  $\pm$  gold. XRD analysis and NEWMOD modeling of the XRD pattern suggest a mixture of 70% di-octahedral mica and 30% di-octahedral smectite. The single K-bearing phase was probably either muscovite or illite – both common accessory minerals in hydrothermal deposits – as K is not a principal interlayer cation in di- (or

tri-) octahedral smectites (Deer et al., 1999; Guilbert and Park, 1999).  $^{40}$ Ar/ $^{39}$ Ar analysis of DSC BXA yields corrected ages of 42.1 ± 0.9 Ma (integrated plateau age) and 35.7 ± 0.4 Ma (isochron age) respectively. The age of DSC BXA clay (and associated gold within the discordant quartz breccia pipe) is between 42.1 ± 0.9 and 35.7 ± 0.4 Ma, assuming the clay + gold assemblage is hypogene and was not deposited/remobilized under supergene conditions.

Sample HT02-1 is a kaolinite-group clay with an illitic (10 Å d-spacing 20) component from the unmineralized breccia pipe that mantles Hilltop's Hobo Gulch intrusive (41.2  $\pm$  0.5 Ma (K-Ar); Kelson et al., 2000). The pipe contains angular, variably-sized, altered, angular clasts of Ordovician Valmy Formation quartzite, siltstone, chert, and argillite, and Hobo Gulch (?) intrusion in a matrix of rock flour and clay (sample HT02-1). Two separate HT02-1 <sup>40</sup>Ar/<sup>39</sup>Ar analyses yield corrected integrated plateau ages of 31.6  $\pm$  0.4 Ma and 31.3  $\pm$  0.5 Ma, respectively (average 31.45  $\pm$  0.45 Ma).

It is unlikely that the breccia pipe mantling the Hobo Gulch intrusion formed ~10 Ma after emplacement of the Hobo Gulch intrusion. Alternatively, the age of sample HT02-1 may reflect: 1) Initial mineral formation under supergene conditions, 2) remobilization and deposition of original breccia pipe matrix material under supergene conditions, 3) remobilization (or Ar-Ar resetting) of original mineral ~31.45 Ma by another hydrothermal "event" that did not reset nearby primary igneous minerals, or 4) the Ar-Ar age reported for sample HT02-1 is completely erroneous.

#### Fluid Sources: Stable Isotope Data

Stable isotope (carbon, oxygen, sulfur) data from carbonate, sulfide, and sulfate ore and gangue minerals were collected from several mineralized areas within the northern Shoshone Range (Tables 2-5 and 2-6) to elucidate fluid sources and calculate formation temperatures.

Hydrothermal calcite deposition was probably initiated by degassing of  $CO_2$  and/or a change in fluid pH, not cooling, as a decrease in fluid temperature will actually raise calcite solubility. Loss of  $CO_{-2}$  will increase the fluid's pH resulting in calcite super-saturation and deposition. Fluid boiling is also an important process influencing calcite precipitation (Zheng, 1990).

 $δ^{18}$ O data from carbonate minerals are plotted in Figure 2-4 relative to meteoric water, primary magmatic (granodiorite) water, and water in equilibrium with limestone.  $δ^{18}$ O values from the Betty O'Neal mine and Hilltop deposit range from –1.3 to +8.7 per mil and +2.4 to +14.4 per mil, respectively. Comparatively, calcite in equilibrium with pure magmatic water at 250°C (cmag) and calcite in equilibrium with pure meteoric water at 250°C (cmet) are also plotted. The carbonate  $δ^{18}$ O data suggest varying degrees of fluid mixing between primary magmatic water and meteoric water without interaction with any carbonate (i.e. limestone) rock types. Generally, the data support a stronger meteoric signature for Betty O'Neal mine carbonate minerals than for Hilltop carbonate minerals. Likewise, unnamed prospect carbonate mineral  $δ^{18}$ O data support a strong meteoric water influence. One Lovie mine carbonate mineral ( $δ^{18}$ O = +17 per mil) clearly reflects a non-meteoric water fluid source, and may be explained by either oxygen isotope fractionation between the carbonate mineral and primary magmatic water at ~



Notes: mw = Central-north central Nevada meteoric water; pmw = Primary magmatic (granodiorite) water; ew = Water in equilibrium with limestone (all reference values from Field and Fifarek, 1985); cmag = calcite in equilibrium with pmw @ 250°C; cmet = calcite in equilibrium with mw @ 250°C (Friedman and O'Neil, 1977); UN = unnamed prospect (n=1); Lovie = Lovie mine (n=1); BON = Betty O'Neal mine (n=6); Hilltop = Hilltop deposit (n=10).

Figure 2.4: Carbonate oxygen isotope data from four mineralized areas within the northern

Shoshone Range, Lander County, Nevada.

200°C instead of 250°C or minimal interaction between mostly primary magmatic water and a calcareous (i.e. limestone) lithology.

Three key observations may be derived from these oxygen isotope data. First, the autochthonous "lower plate" carbonate rocks below the Roberts Mountains thrust did not isotopically influence the formation of the carbonate minerals, attesting to a shallow, near-surface source of the original hydrothermal systems and/or great depth of the underlying lower plate assemblage. Second, hydrothermal fluids did not ascend through (or interact with) lower plate carbonate rocks from some deep-seated source. Third, the  $\delta^{18}$ O value of carbonate from a carbonate + sulfide-bearing vein at the unnamed prospect (UN) reflects mixing of meteoric and magmatic fluids. Since the vein is hosted by Granite Mountain granodiorite, the lack of a dominant magmatic signature suggests the Granite Mountain stock was almost or completely devoid of any magmatic water at the time the carbonate + sulfide-bearing vein formed, or the magmatic water emanated from another source.

 $\delta^{13}$ C data of carbonate minerals are plotted in Figure 2-5 relative to limestone, organic carbon, igneous rocks, and hydrothermal carbonate minerals.  $\delta^{13}$ C values from the Betty O'Neal mine and Hilltop deposit range from -4.5 to -2.9 per mil and -11.7 to -2.5 per mil, respectively.  $\delta^{13}$ C of the Lovie mine (-0.2 per mil) and the unnamed prospect (-2.3 per mil) samples are also plotted. The data are typical of carbonate mineral values from other porphyry- or vein-type deposits (Field and Fifarek, 1985). The Hilltop, Lovie, and Betty O'Neal mines are all hosted by upper plate rocks, some of which contain an appreciable amount of organic carbon, i.e. Ordovician Valmy Formation chert (Gilluly and Gates, 1965; Kelson et al., 2000). However, only one of 17 samples (Hilltop sample 97-8-136-2,  $\delta^{13}$ C = -11.7 per mil) suggest organic carbon contribution. Although organic carbon is common in most upper plate rocks, its absence here



Notes: ls = limestone; oc = organic carbon; ig rx = igneous rocks (total C); hc = hydrothermal carbonates (all reference values from Field and Fifarek, 1985); UN = unnamed prospect (n=1); Lovie = Lovie mine (n=1); BON = Betty O'Neal mine (n=6); Hilltop = Hilltop deposit (n=10).

Figure 2.5: Carbonate carbon isotope data from four mineralized areas within the northern

Shoshone Range, Lander County, Nevada.

attests to the overall low primary permeability of the upper plate rock types. A high water:rock ratio and channeled fluid flow may be inferred, as circulating hydrothermal fluids mostly followed faulted, fractured, brecciated, and sheared zones and interacted minimally with the surrounding rocks.

The lack of an organic carbon signature in Hilltop's vein carbonate minerals may indicate separate alteration (removal of organic carbon) and mineralization (deposition of carbonate minerals) events. Drill hole data document the lack of organic carbon from the entire hanging wall of the Hilltop deposit, i.e. most/all organic carbon in the Valmy Formation host rocks was probably removed during initial Cu+Mo±Au porphyry mineralization. Kelson et al. (2000) showed that later epithermal fluids at Hilltop lacked the ability to remove (bleach) organic carbon from surrounding host rock, and suggested vein carbonates + sulfides were associated with the initial porphyry event. However, the paucity of organic carbon in the  $\delta^{13}$ C data may indicate two separate events, one that bleached Hilltop's hanging wall rocks and one that formed the carbonate + sulfide veins (studied here) emplaced in the hanging wall.

Sulfide and sulfate  $\delta^{34}$ S data (Table 2-6) from six mineralized areas are illustrated in Figure 2-6. All sulfide data from the Gray Eagle, Lovie, and Betty O'Neal mines and most of Hilltop's sulfide data cluster together near  $\delta^{34}$ S values of granitic rocks and hydrothermal sulfides (Field and Fifarek, 1985). Hilltop's most depleted sulfide values ( $\delta^{34}$ S range from -15.9 to -10.6 per mil) probably reflect a biologic influence on sulfide formation (Hoefs, 1997). Sulfate data from the Hilltop, Kattenhorn, Lovie, and Betty O'Neal mines and a Granite Mountain-hosted barite vein cluster together and fall within documented hydrothermal sulfate ranges (Field and Fifarek, 1985).



Notes:  $SO_{-2}$  = Volcanic gas; gr rx = granitic rocks;  $H_2S$  = volcanic gas; sed rx = sedimentary rocks; sulfide = hydrothermal sulfides; sulfate = hydrothermal sulfates (Field and Fifarek, 1985; Hoefs, 1997). Gray boxes indicate sulfide data: GE = Gray Eagle mine (n=9); Lovie = Lovie mine (n=5); BON = Betty O'Neal mine (n=1); Hilltop = Hilltop deposit / area (n=54, including UN). Striped boxes = sulfate data: BON (n=2); Lovie (n=1); Katt = Kattenhorn mine (n=3); GM = Granite Mountain (n=1); Hilltop (n=12). Stippled box = melnikovite pyrite (Hilltop, n=9).

Figure 2.6: Sulfide and sulfate sulfur isotope data from six mineralized areas within the northern Shoshone Range, Lander County, Nevada.

 $\delta^{34}$ S data from Hilltop Cu + Mo ± Au porphyry- and four of six subsequent epithermalstyle mineralizing events illustrate variable sulfur sources that contributed to the development of the Hilltop deposit. A magmatic fluid source is reflected in sulfide  $\delta^{34}$ S values for: Initial porphyry event (molybdenite, +4.3 to +5.6 per mil); Event 1 (galena, sphalerite, +3.2 to +5.4 per mil); Event 2 (pyrite, arsenopyrite - main Au-bearing event, +3.5 to +4.5 per mil), and Event 3 (stibnite, +2.9-+5.5 per mil).  $\delta^{34}$ S values of pyrite, marcasite, and melnikovite pyrite (-12.1 to +5.4 per mil) support both biologic and magmatic sulfur sources for the Event 5 assemblage.

#### *Geothermometry*

Temperatures of ore mineral formation are calculated using sulfur-isotope fractionation between coexisting sphalerite, galena, and/or pyrite.

The isotopic composition of sulfur in coexisting sulfide minerals is a function of their formation temperature; therefore, cogenetic sulfide minerals exhibit slight isotope ratio differences as a function of temperature. The extent of isotope fractionation depends on temperature, and the amount varies between different minerals. The extent of isotope fractionation between phases is minimal at higher (>600°C) temperatures and becomes more pronounced at lower (<300°C) temperatures (Bethke and Barton, 1971; Krauskopf and Bird, 1995).

Geothermometry calculations using  $\delta^{34}$ S values (Kajiwara and Krouse, 1971) of coexisting sulfide mineral pairs (sphalerite-pyrite, sphalerite-galena, galena-pyrite) from the Lovie mine, Gray Eagle mine, the unnamed prospect, and the Hilltop deposit are reported in Table 2-7. Extraordinarily high calculated temperatures (>900°C) certainly represent mineral formation

| Deposit | Sample Pair      | Mineral pair | $\Delta$ per mil | Temp <sup>o</sup> C |
|---------|------------------|--------------|------------------|---------------------|
| Lovie   | 03A, B           | sph-py       | 1.1              | 249                 |
| GE      | 05-1,2           | sph-py       | 0.9              | 304                 |
| GE      | 04-1,2           | gal-py       | 0.8              | 900                 |
| GE      | 04-1,4           | gal-sph      | 1.3              | 511                 |
| GE      | 04-2,4           | py-sph       | 0.5              | 502                 |
| UN      | CK02-11-2,3      | sph-py       | 0.8              | 339                 |
| Hilltop | 97-10-1084.5-1,2 | sph-py       | 0.2              | 952                 |
| Hilltop | 97-10-1160.6-1,2 | gal-py       | 2.2              | 434                 |
| Hilltop | 97-11-665.3-3,4  | sph-py       | 0.6              | 434                 |

Table 2.7: Sulfur isotope geothermometry data from four mines and prospects, northern Shoshone Range, Lander County, Nevada.

under isotopic disequilibrium conditions; temperatures <500°C may represent isotopic equilibrium. Lower temperatures from the Lovie and Gray Eagle mines and the unnamed prospect (249-339°C) fall within typical epithermal temperature ranges (Henley and Brown, 1985). Temperatures >400°C have been measured within active geothermal systems (Henley, 1985), supporting the calculated temperatures of Hilltop's Event 1 assemblage (434°C) that may represent the porphyry-epithermal mineralization transition (Kelson et al., 2000).

#### Conclusions

This study of upper plate mineralization within part of the Battle Mountain-Eureka mineral belt (northern Shoshone Range, Lander County, Nevada) has established:

- 1. The temporal relationship between molybdenum porphyry mineralization (~40 Ma) and granodioritic igneous rocks (~39 Ma);
- 2. The age of gold mineralization (between  $42.1 \pm 0.9$  and  $35.7 \pm 0.4$  Ma) of hypogene(?) smectite-illite clay associated with visible gold within the discordant quartz breccia pipe at the Hilltop deposit;
- 3. Identification of and geochemical differences between base- and precious metal-bearing minerals from seven mines, prospects, and deposits. Some minerals (e.g. pyrite, fahlore) are ubiquitous in all deposits, while others (e.g. electrum, sphalerite, arsenopyrite, bournonite) are not. Variable fahlore composition between deposits may reflect differences in the physical (i.e. temperature) and/or chemical (fahlore equilibration with other minerals) nature of each respective ore-forming fluid.

- Identification of source fluid(s) for ore and gangue minerals via C, O, and S stable isotopes. Carbonate δ<sup>13</sup>C data suggest a magmatic, not organic, source for carbon; carbonate δ<sup>18</sup>O data support variable mixing between magmatic and meteoric water. Sulfide δ<sup>34</sup>S data mostly support a magmatic source for sulfur, except for depleted δ<sup>34</sup>S values (-12.1 per mil; biogenic influence) of Event 5 melnikovite pyrite and pyrite from Hilltop.
- 5. Geothermometry of ore minerals using sulfur isotope fractionation between coexisting sulfide minerals. Calculated formation temperatures (249-339°C) of sulfides at the Lovie and Gray Eagle mines and the unnamed prospect fall within typical epithermal temperature ranges. Temperatures of 434°C from Hilltop's Event 1 assemblage may indicate the transition between porphyry-epithermal mineralization.

Future work includes fluid inclusion analysis, oxygen and hydrogen (silicate minerals) and additional sulfur (sulfide minerals) isotope analysis to help constrain fluid sources and depositional temperatures. Additional <sup>40</sup>Ar/<sup>39</sup>Ar ages of other intrusive rocks within the northern Shoshone Range are forthcoming.

#### Acknowledgements

This research would not have been possible without the generous support of Placer Dome U.S., Inc. and the Cortez Joint Venture, and special thanks to Mr. Robert C. Hays, Jr., Technical Services Superintendent, Cortez Gold Mines. This research was also funded by the Society of Economic Geologists (Hugh E. McKinstry Grant), Geological Society of America (Grant No.

7180-02), and the Department of Geology, University of Georgia. Permission of Placer Dome U.S., Inc. and the Cortez Joint Venture to publish this investigation is gratefully acknowledged. Thanks to Dr. Kenneth Foland (RIL) and Dr. Matthew Heizler (NMGRL) for their assistance and insight with the <sup>40</sup>Ar/<sup>39</sup>Ar data. Richard Markey (AIRIE, Colorado State University) provided the Re-Os analyses. Julia Cox and Chris Fleisher (University of Georgia) assisted with stable isotope and electron microprobe analyses, respectively. The authors are also indebted to Mr. Steve Ludington and Mr. Robert Schafer for their critical review of this manuscript.

#### References

- Bethke, P.M., and Barton, P.B., 1971, Distribution of some minor elements between coexisting sulfide minerals: Economic Geology, v. 66, p. 140-163.
- Christiansen, R.L., and Yeats, R.S., 1992, Post-Laramide geology of the U.S. Cordilleran region, *in* Burchfiel, B. C., Lipman, P. W., and Zoback, M. L., eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3.
- Deer, W.A., Howie, R.A., and Zussman, J., 1999, The rock forming minerals: Longman, Essex, 696 p.
- Emmons, W.H., 1910, A reconnaissance of some mining districts in Lander and Eureka Counties, NV: Geological Survey Bulletin 408, p. 117-118.
- Field, C.W., and Fifarek, R.H., 1985, Light stable-isotope systematics in the epithermal environment, *in* Berger, B.R., and Bethke, P.M., eds., Geology and geochemistry of epithermal systems: Chelsea, MI, Society of Economic Geologists, Reviews in Economic Geology, v. 2, p. 99-128.

Fleischer, M., 1978, New mineral names: American Mineralogist, v. 63, p. 1289-1291.

- Friedman, I., and O'Neil, J.R., 1977, Data of geochemistry, Sixth Edition: U.S. Geological Survey Professional Paper 440-KK.
- Guilbert, J.M., and Park, C.F. Jr., 1999, The geology of ore deposits: W.H. Freeman and Company, New York, 985 p.
- Gilluly, J., and Gates, O., 1965, Tectonic and igneous geology of the northern Shoshone Range, Nevada: U.S. Geological Survey Professional Paper 465, 153 p.
- Henley, R.W., 1985, The geothermal framework of epithermal deposits, *in* Berger, B.R., and Bethke, P.M., eds., Geology and geochemistry of epithermal systems: Chelsea, MI, Society of Economic Geologists, Reviews in Economic Geology, v. 2, p. 1-43

- Henley, R.W., and Brown, K.L., 1985, A practical guide to the thermodynamics of geothermal fluids and hydrothermal ore deposits, *in* Berger, B.R., and Bethke, P.M., eds., Geology and geochemistry of epithermal systems: Chelsea, MI, Society of Economic Geologists, Reviews in Economic Geology, v. 2, p. 25-44.
- Hewett, D.F., 1971, Coronadite Modes of occurrence and origin: Economic Geology, v. 66, p. 104-177.
- Hoefs, J., 1997, Stable isotope geochemistry: Springer-Verlag, New York, 201 p.
- Kajiwara, Y., and Krouse, H.R., 1971, Sulfur isotope partitioning in metallic sulfide systems: Canadian Journal of Earth Science, v. 8, p. 1397-1408.
- Kelson, C.R., Keith, J.D., Christiansen, E.H., and Meyer, P.E., 2000, Mineral paragenesis and depositional model of the Hilltop gold deposit, Lander County, NV, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, May 2000, p. 1107-1132.
- Korzhinsky, M.A., Tkachenko, S.I., Shmulovich, K.I., Taran, Y.A., and Steinberg, G.S., 1994, Discovery of a pure rhenium mineral at Kudriavy volcano: Nature, v. 369, p. 51-52.
- Krauskopf, K.B., and Bird, D.K., 1995, Introduction to geochemistry: McGraw-Hill Inc., New York, 647 p.
- Lisle, R.E., and Desrochers, G.J., 1988, Geology of the Hilltop gold deposit, Lander County, Nevada: In Schafer, R. W., Cooper, J. J., and Vikre, P. G. (eds.), Bulk mineable precious metal deposits of the western United States, p. 101-117.
- Maher, B.J., and Browne, Q.J., 1993, Constraints on the age of gold mineralization and metallogenesis in the Battle Mountain-Eureka mineral belt, Nevada: Economic Geology, v. 88, p. 409-478.
- Markey, R.J., Hannah, J.L., Morgan, J.W., and Stein, H.J. (2003) A double spike for osmium analysis of highly radiogenic samples: Chemical Geology, v. 200, p. 395-406.

- McCrea, J.M., 1950, On the isotopic chemistry of carbonates and a paleo-temperature scale: Journal of Chemical Physics, v. 18, p. 849-857.
- McKee, E.H., and Silberman, M.L., 1970, Geochronology of Tertiary igneous rocks in central Nevada: Geological Society of America Bulletin, v. 81, p. 2317-2328.
- McDougall, I., and Harrison, T.M., 1999. Geochronology and Thermochronology by the <sup>40</sup>Ar/<sup>39</sup>Ar method, Oxford Univ. Press, NY, 2<sup>nd</sup> edition, 269 p.
- Smoliar, M.I., Walker, R.J., and Morgan, J.W. (1996) Re-Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites: Science, v. 271, p. 1099-1102.
- Stager, H.K., 1977, Geology and mineral deposits of Lander County, Nevada: Nevada Bureau of Mines and Geology Bulletin 88, 106 p.
- Stein, H.J., Morgan, J.W., Markey, R.J., and Hannah, J.L., 1998, An introduction to Re-Os: What's in it for the mineral industry?: Society of Economic Geologists Newsletter, no. 32, p. 1, 8-15.
- Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L., and Scherstén, A., 2001, The remarkable Re-Os chronometer in molybdenite: how and why it works: Terra Nova, v. 13, no. 6, p. 479-486.
- Stein, H., Scherstén, A., Hannah, J., and Markey, R. (2003) Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite: Geochimica et Cosmochimica Acta, v. 67, no. 19, p. 3673-3686.
- Vanderburg, W.O., 1939, Reconnaissance of some mining districts in Lander County, Nevada: U.S. Bureau of Mines Information Circular 7043, p. 47-50.
- Zheng, Y-F., 1990, Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO<sub>-2-</sub>: Mineralium Deposita, v. 25, p. 246-250.

### CHAPTER 3

# GEOCHEMICAL AND GEOCHRONOLOGICAL CONSTRAINTS ON MINERALIZATION WITHIN THE HILLTOP, LEWIS, AND BULLION MINING DISTRICTS, BATTLE MOUNTAIN-EUREKA TREND, NEVADA<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Kelson, Chris R., Crowe, Douglas E., and Stein, Holly J. For submission to *Economic Geology*.

#### Abstract

The Hilltop, Lewis, and Bullion mining districts, located in the northern Shoshone Range, Lander County, Nevada, are part of the greater Battle Mountain-Eureka trend and include both vein- and porphyry-type deposits hosted within siliceous and siliciclastic upper plate rocks of the Roberts Mountains allochthon.

<sup>40</sup>Ar/<sup>39</sup>Ar and Re-Os chronology of igneous rocks, porphyry-style Cu-Mo mineralization, and gangue minerals associated with vein-hosted mineralization elucidate the relationship between magmatic activity, hydrothermal fluid flow, and mineralization. Dominantly felsic intrusive rocks were emplaced throughout the northern Shoshone Range between  $39.3 \pm 0.4$  and  $38.1 \pm 0.4$  Ma along a W-NW trend, and minor Cu + Mo  $\pm$  Au porphyry-style mineralization is associated with some of the intrusions. <sup>40</sup>Ar/<sup>39</sup>Ar ages for biotite and/or hornblende from unaltered igneous rocks within and/or proximal to mineralized areas are nearly coincident with molybdenite ages ( $40.1 \pm 0.6$  Ma, average) supporting a relation between pluton emplacement and porphyry Cu-Mo mineralization. Constraints on the deposition of quartz vein-hosted gold  $(35.9 \pm 0.1 \text{ Ma}, \text{Hilltop deposit})$  and base-metal mineralization  $(38.3 \pm 0.1 \text{ Ma}, \text{Gray Eagle mine})$ are established via <sup>40</sup>Ar/<sup>39</sup>Ar ages of associated gangue clay (illite, muscovite) minerals. The discrepancies between the ages of Au- and base-metal-bearing vein-hosted mineralization (younger) and nearby intrusive igneous rocks (older) suggests the vein mineralization formed during prolonged hydrothermal activity related to igneous rock emplacement or from heat associated with a second, slightly younger phase of intrusive igneous rocks at depth.

The quartz vein-hosted sulfide (ore) minerals from the northern Shoshone Range are isotopically similar ( $\delta^{34}S_{CDT}$  range from -6 to +9 per mil) to other sulfide minerals from Cu-Mo porphyry deposits and Cordilleran vein-type deposits, supporting a mostly magmatic sulfur source, except hypogene melnikovite (banded, botryoidal) pyrite from the Hilltop deposit ( $\delta^{34}S_{CDT}$  range from -4 to -15 per mil), which reflects biogenic influence. Carbon isotope data from vein gangue carbonate minerals ( $\delta^{13}C_{PDB}$  range from -0.2 to -11.6 per mil) support mixed magmatic  $\pm$  organic matter  $\pm$  carbonate rock sources for carbon; carbonate oxygen was derived mainly from magmatic fluids ( $\delta^{18}O_{VSMOW}$  range from -1.3 to +14.4 per mil). Pressure-corrected primary fluid inclusion data (salinity range from 0 to 6.4 equiv. wt. % NaCl; T<sub>h</sub> range from 109-425°C), in conjunction with measured  $\delta^{18}O_{VSMOW}$  data (-0.97 to +17.3‰), suggest the orebearing vein quartz formed from variable mixtures of magmatic and meteoric components (calculated  $\delta^{18}O_{VSMOW}$ -16.2 to +13.3‰).

Depositional temperatures of ore (base metal) minerals, calculated using sulfur isotope fractionation between co-existing sulfides, range from 250-500°C and agree with the range of vein quartz primary fluid inclusion  $T_h$  values.

Geochronology and stable isotope data show that quartz vein-hosted precious and base metal mineralization and molybdenite (porphyry) mineralization within the Hilltop, Lewis, and Bullion mining districts are genetically related to Eocene magmatism. Sulfur isotope fractionation and fluid inclusion geothermometry indicates that some vein mineralization temperatures exceeded relatively low-temperature epithermal conditions and were more closely related to higher temperature porphyry-style processes.

#### Introduction

The Battle Mountain-Eureka trend, one of Nevada's major alignments of base- and precious-metal mines and deposits (Roberts, 1966), is located within the Great Basin province – one of the world's most prodigious gold-producing regions. Although metals are produced from a wide variety of deposit types within these trends, gold has been recovered mostly from sediment (carbonate)-hosted Carlin (disseminated)-type deposits since the 1960s (John et al., 2003). In 2001, Nevada accounted for nearly three quarters of United States gold production and a tenth of world gold production, behind only South Africa and Australia (Price and Meeuwig, 2002).

The Battle Mountain-Eureka trend consists of 10 mining districts, three of which (Hilltop, Lewis, and Bullion districts) are located in the northern Shoshone Range in Lander County (Figs. 3.1, 3.2). These districts, organized shortly after the 1859 Comstock Lode discovery, include over 140 mines and prospects (Stewart and McKee, 1977). Unlike Carlin-type deposits, mineralization within the northern Shoshone Range occurs mostly as vein- and fracture-fill in upper plate, early Paleozoic siliceous and siliciclastic rocks. Minor Cu + Mo  $\pm$  Au porphyry-style mineralization is associated with some granitic intrusive rocks emplaced through the northern Shoshone Range along a west-northwest trend (Kelson et al., 2000).

Between 1902 and 1936, more than 33 Koz gold (placer and lode), 5 Moz silver, 53 Moz lead, and 20 Moz copper have been collectively produced from the Hilltop, Lewis, and Bullion districts accounting for 59%, 27%, 49%, and 8% (respectively) of total Au, Ag, Pb, and Cu produced from all 15 mining districts within Lander County during that time (Vanderburg, 1939). Other commodities including mercury, antimony, turquoise, fluorspar, barite, and



Figure 3.1: Location of the Lewis, Hilltop, and Bullion mining districts and mineralized areas studied here, northern Shoshone Range, Lander County, Nevada. See Fig. 3.1 for names of mineralized areas.
Figure 3.2 (following page): Simplified geologic map of the northern Shoshone Range study area, Lander County, Nevada. Major geographic features and mineralized areas in this study are shown. Modified from Gilluly and Gates (1965) and Cortez Joint Venture (unpublished) map.



manganese were also produced. Since 1936, mining operations in the northern Shoshone Range have largely ceased. However, considerable interest in exploring and re-evaluating the inactive mines (mostly for gold) within the Hilltop, Lewis, and Bullion districts continues to present day, due to their close proximity to other Bullion district Au deposits (Tenabo deposit, 1.5 Moz total Au (McCusker, 2004); Gold Acres, 700 Koz total Au, and the Pipeline/South Pipeline complex, > 20 Moz total Au (R. Hays, pers. comm., 2006)).

Despite the production histories of the Hilltop, Lewis, and Bullion mining districts and their close spatial association to large Au-bearing deposits (e.g. Pipeline/South Pipeline, Fortitude), there are relatively few descriptive studies (Emmons, 1910; Vanderburg, 1939; Stewart and McKee, 1977) and no detailed studies concerning mineralization within these districts, with the exception of the Hilltop deposit. The Hilltop deposit (Hilltop district) has been examined more thoroughly in recent years (Desrochers, 1984; Lisle and Desrochers, 1988; Kelson et al, 2000; Kelson et al., 2005) as it is the largest gold deposit (2 Moz gold, Kelson et al., 2000) within the silver- and base metal-dominant northern Shoshone Range.

This paper is the first in-depth examination of northern Shoshone Range mineralization. We use Re-Os and <sup>40</sup>Ar/<sup>39</sup>Ar geochronology, stable and radiogenic isotopes, fluid inclusion data, and major and trace element data from eight mineralized areas within the Hilltop, Lewis, and Bullion districts to establish temporal-chemical relationships between intrusive igneous rocks and vein- and porphyry-type mineralization, and the conditions under which mineralization occurred.

# **Regional Geologic Setting**

Nevada lies within the Cordillera of the North American continent. A brief history of important geologic events that have shaped this portion of north-central Nevada and the Cordillera is summarized here; see Madrid and Roberts (1991) for detailed stratigraphy and tectonic information.

The geology of Nevada records a long and complex tectonic, sedimentary, and igneous history from Precambrian to Tertiary beginning with the fragmentation and subsequent rifting of a Late Proterozoic supercontinent between 600 and 555 Ma (Armin and Mayer, 1983; Burchfiel et al., 1992). This breakup formed a north-trending passive continental margin (most of present-day Nevada) along the western edge of North America. Subsequent subsidence of this western passive edge initiated deposition of up to 5,000 m of shallow-water, carbonate-platform (miogeoclinal) sediments from Precambrian to Devonian time (Stewart and Poole, 1974; Stewart, 1980; Cook and Taylor, 1991). Simultaneously, a westward thickening wedge of deepwater, siliceous and siliciclastic (eugeoclinal) sediments was deposited west of and adjacent to the carbonate sediments.

Sedimentation along this passive margin continued until the Middle Paleozoic, when the deep-water rocks were thrust 100 to 145 km (Roberts et al., 1958; Stewart and Poole, 1974; Nilson and Stewart, 1980; Burchfiel and Royden, 1991) eastward over the coeval shallow-water (autochthonous, lower plate) rocks along the Roberts Mountains thrust during the Late Devonian-Early Mississippian Antler orogeny. The transported (allochthonous, upper plate) sequence consists mostly of Cambrian to Devonian chert, argillite, sandstone, siltstone, and

greenstone. The autochthonous (lower plate) sequence consists of limestone and dolomite with lesser shale and sandstone (Nilson and Stewart, 1980; Turner et al., 1989). Estimates for the duration of allochthon emplacement range from 8 my (Nilson and Stewart, 1980; Burchfiel and Royden, 1991) to 35 my (Carpenter et al., 1994). The exact cause(s) of the Antler orogeny are unclear (Nilson and Stewart, 1980); allochthon emplacement probably resulted from the partial closure of a small ocean basin between the continental margin and the Sierran-Klamath island arc (Burchfiel and Davis, 1972), although direct arc-continent collision is suspect (Poole, 1974; Johnson and Pendergast, 1981; Burchfiel and Royden, 1991; Carpenter et al., 1994). Imbricate thrusting and extensive folding of the allochthonous (upper plate) rocks accompanied the Antler Orogeny. Subsequent erosion of the resultant topographic high (Antler orogenic belt) during the Mississippian shed detrital material into depressions east (Chainman-Diamond Peak trough) and west (Pumpernickel-Havallah trough) of the belt (Gilluly and Gates, 1965; Roberts, 1966; Stewart, 1980). The Roberts Mountains thrust and Roberts Mountains allochthon lie ~20 km east of the study area (Fig. 1.1).

Sedimentary and tectonic patterns remained essentially unchanged until the Late Pennsylvanian-Permian Humboldt orogeny, when uplift throughout much of Nevada produced a widespread unconformity and an influx of coarse detrital material into basins east of the Antler belt (Ketner, 1977). The Humboldt orogeny probably represents a period of tectonic adjustment instead of a true mountain-building event (Snyder et al., 1991) and possibly includes reactivation of the Antler orogenic belt.

During the Late Permian-Early Triassic Sonoma orogeny another deep marine assemblage of mid Paleozoic to Permian siliceous, siliciclastic, and volcanic basinal strata (Miller et al., 1992) was thrust eastward between 70 and 100 km over coeval shallow-water

deposits on the Antler orogenic belt and erosional remnants of the Roberts Mountains allochthon along the Golconda thrust (Burchfiel and Davis, 1972; Stewart, 1980; Snyder and Brueckner, 1983). Although several theories explaining the Sonoma orogeny have been proposed, a model advocaing the collision between an eastward-migrating island arc and (subsequent accretion to) the continent is the most widely accepted (Speed, 1971; Silberling, 1973; Speed, 1979; Stewart, 1980; Miller et al., 1992). The Golconda thrust and Golconda allochthon lie ~100 km west of the study area (Fig. 1.1). An active continental margin west of Nevada and the accretion of oceanic terranes onto the western edge of the continent marked the culmination of the Sonoma orogeny (Burchfiel et al., 1992).

The Early to Middle Mesozoic Cordillera was dominated by continued shallow- and deep-water marine and volcanogenic sediment deposition over central and western Nevada, east of a magmatic arc or arcs now represented by Triassic and Jurassic igneous rocks in western Nevada, eastern California, and southwest Arizona. This arc formed across all earlier paleogeographic belts, indicating a probable adjustment in the configuration and interaction of the Kula, Farallon, and North American plates and the association with the development of an active east-dipping subduction zone (Miller et al., 1992). Contractional deformation (folding and thrusting) began to affect the arc and back-arc in the Jurassic and culminated in the development of the Sevier fold-thrust belt in the Cretaceous (Burchfiel et al., 1992; Dickenson, 1992). Arc magmatism continued during the Cretaceous and was accompanied inland by felsic crustal-melt intrusions associated with the Cretaceous crustal thickening.

Widespread magmatic activity occurred throughout Nevada between 43 and 17 Ma, gradually migrating southward with time, including the eruption of extensive siliceous tuffs between 34 and 17 Ma (Stewart, 1980). Regional uplift and possible reactivation of an older, pre-

existing crustal feature – the Northern Nevada rift (John et al., 2000) - occurred during middle to late Tertiary time (Zoback and Thompson, 1978). Extension within the Great Basin has become the dominant land-shaping force since middle Miocene time and continues to present day (Thompson and Burke, 1974; Christiansen and Yeats, 1992) providing the regions' familiar Basin-and-Range topography.

# Northern Shoshone Range and District Geology

The Shoshone Mountains (and their northern extension, the Shoshone Range), one of several northeast-trending mountain ranges within Lander County, extend over 300 km and rise over 1500 m (5000 ft) above the adjacent valleys. The Hilltop, Lewis, and Bullion districts (Fig. 3.2) cover approximately 200 km<sup>2</sup> of the range's northern end, and are flanked by the Battle Mountain district (Galena Range, northwest) and Cortez district (Cortez Mountains, southeast) within the greater Battle Mountain-Eureka trend.

Early geologic descriptions (King, 1876; Spurr, 1903; Emmons, 1910; Lee et al., 1916) of the northern Shoshone Range are largely reconnaissance in nature; detailed, comprehensive studies were completed by Gilluly and Gates (1965) and Stewart and McKee (1977). Emmons (1910) first documented Hilltop, Lewis, and Bullion district mineralization and included maps and descriptions of then-accessible underground mines. Vanderburg (1939) and Stager (1977) also provide comprehensive overviews of individual mine and district production histories, geology, and ore occurrences.

Paleozoic and Tertiary rocks underlie the northern Shoshone Range. The oldest and most abundant are allochthonous siliceous/siliciclastic sedimentary and volcanic rocks of the

Ordovician Valmy Formation (chert, argillite, quartzite, siltstone, and greenstone), Silurian Elder Sandstone, and Devonian Slaven Chert (Gilluly and Gates, 1965). No lower plate (autochthonous) carbonate rocks occur in this study area, although lower plate windows (i.e. Goat Ridge, Red Rock, Gold Acres, Pipeline) are exposed further south (Roberts, 1960, Foo et al., 1996) and rare, small carbonate lenses exist within the upper plate formations (Gilluly and Gates, 1965). Structural displacement and deformation of the Paleozoic strata is widespread and locally intense; these rock units are frequently in thrust fault contact with one another and commonly exhibit extreme internal folding, imbrication, and tectonic thickening due mostly to compressional stresses associated with the Antler orogeny. Ordovician Valmy Formation thickness in the northern Shoshone Range is estimated to be more than 7600 m (25,000 ft); five times its original depositional thickness (Gilluly and Gates, 1965).

Tertiary rocks include Eocene granodioritic intrusive rocks and Miocene or Pliocene felsic intrusive rocks, basalt, andesite and rhyolite flows, and tuffs. The Eocene intrusive rocks are emplaced along a west-northwest trend through the northern Shoshone Range, and are located both proximal and distal to mineralized areas (Gilluly and Gates, 1965; Stager, 1977; Kelson et al., 2000; Kelson et al., 2005). The largest Eocene intrusion in the northern Shoshone Range is Granite Mountain, which covers approximately 10 km<sup>2</sup> and rises over 600 m (2000 ft) above the adjacent valleys. Late Tertiary volcanic rocks occur throughout the range but are most abundant on its eastern flank. Basin and range faults bound the Shoshone Mountains and have tilted the range 5-15° east (Lisle and Desrochers, 1988).

The existence of a caldera centered on Mt. Lewis (western half, northern Shoshone Range) has been debated (Wrucke and Silberman, 1975, 1977; Gilluly, 1977; Stewart, 1980; White, 1985), and may have played an important role in structurally-preparing the upper plate

rocks for subsequent mineralizing fluids within at least the Lewis and Hilltop mining districts. Currently, its temporal and genetic relationship to nearby Lewis and Hilltop district mineralization is unclear.

#### **Battle Mountain – Eureka Trend**

Roberts (1966) first identified 12 mineral "belts" or trends – alignments of mines and deposits, including the Battle Mountain – Eureka trend – throughout Nevada. The origin of these mineral trends is not completely understood. Several workers (Roberts, 1966; Shawe, 1991; Zamudio and Atkinson, 1991; Grauch et al., 2003; Howard, 2003; among others) have presented geologic, isotopic, and geophysical data supporting deep-penetrating crustal structures underlying or coincident with mineral trends that may have acted as conduits for intrusive igneous rocks and/or mineralizing fluids. The Carlin and Battle Mountain-Eureka trends roughly parallel each other and the Northern Nevada rift, but neither are coincident with the western edge of the Precambrian crust as inferred by the  ${}^{87}$ Sr/ ${}^{86}$ Sr = 0.706 (Kistler and Peterman, 1978) and  ${}^{208}$ Pb/ ${}^{204}$ Pb = 38 (Tosdal et al., 2000) isopleths.

The Battle Mountain-Eureka is a northwest-trending alignment of over 30 major base and precious-metal mines and deposits (and hundreds of smaller mines and prospects), comprising 10 mining districts (Roberts, 1966) covering approximately 4400 km<sup>2</sup> of north-central Nevada. Mineralization occurs within a wide variety of deposit types (skarn, vein, stockwork, and disseminated "Carlin-type") and is hosted by both upper and lower plate rocks. Igneous rocks within the trend delineate three separate magmatic pulses – 100-85 Ma, 40-34 Ma, and ~15 Ma (Christiansen and Yeats, 1992; Maher et al., 1993) – each associated with the deposition of

different metals or suites of metals (Maher et al., 1993). Most of the mineralization within the Battle Mountain – Eureka trend, including the Hilltop, Lewis, and Bullion mining districts, is associated with 40-34 Ma igneous rocks (Shawe, 1991; Maher et al., 1993; Kelson et al., 2005).

#### **Northern Shoshone Range Mineral Deposits**

The northern Shoshone Range contains both porphyry-style Cu-Mo±Au and vein-type mineralization. Vein-type mineralization is ubiquitous, and ore from the Hilltop, Lewis, and Bullion mining districts comes from this type. Most mines within these districts have been inactive since the 1930s; however, recent (1974-1980) reevaluation of two deposits (Hilltop and Tenabo, both historic producers of vein-hosted base- and/or precious metals) has delineated additional Au reserves. The Hilltop deposit is estimated to contain 2 Moz of near surface, bulk-mineable (non- Carlin-type) Au with appreciable (porphyry) Cu + Mo hosted within highly fractured host rocks (Lisle and Desrochers, 1988; Kelson et al., 2000; Kelson et el., 2005). Nearly 1 Moz Au was mined intermittently from Tenabo between 1974 and 1980, with another 580 Koz Au recently delineated (McCusker, 2004).

This study focuses on mostly vein-type mineralization from eight different locales within the northern Shoshone Range: the Hilltop deposit and Blue Dick and Kattenhorn mines (Hilltop district); the Betty O'Neal mine (Lewis district); the Gray Eagle and Lovie mines, Tenabo deposit, and an unnamed prospect (Bullion district) (Table 3.1). Table 3.1: Types and orientations of ore-bearing structures and Ag:Au ratios for northern Shoshone Range vein deposits.

| Mineralized area | Main ore-bearing<br>structure(s) | Strike, Dip (°)<br>of ore-bearing structure(s) | Ag:Au | Reference |
|------------------|----------------------------------|------------------------------------------------|-------|-----------|
|                  |                                  |                                                |       |           |
| Betty O'Neal     | Vein                             | N30W, 20-50E                                   | 161   | 1         |
| Blue Dick        | Vein                             | N45W, 45SW                                     | 32    | 2         |
| Kattenhorn       | Vein                             | N45W, 45SW                                     | 102   | 2         |
| Hilltop          | Breccia bounded by two faults    | Due N, 25W                                     | 10    | 3,4       |
| Hilltop          | Discordant quartz breccia pipe   | Due N, 90                                      | ~3    | 3,4       |
| Gray Eagle       | Fissure vein                     | N70E, 70N                                      | 60    | 1         |
| Unnamed prospect | Vein, shear zone                 | N70E, 90                                       | 15    |           |
| Lovie            | Vein                             | N65E, 20-50SE                                  | 109   | 1         |
| Tenabo           | Sheeted zones                    | Due W, 30S                                     | ~10   | 1         |

References: 1=Emmons, 1910; 2=Vanderburg, 1939; 3=Lisle and Desrochers, 1988; 4=Kelson et al., 2000.

#### Vein-type mineralization

Paleozoic siliceous/siliciclastic (upper plate) rocks of the Roberts Mountains allochthon and/or Tertiary intrusive igneous rocks host the vein deposits within the northern Shoshone Range (Fig. 3.3a - 3.3p). The Ordovician Valmy Formation, consisting of chert, argillite, quartzite, siltstone, and lesser greenstone (see Gilluly and Gates (1965) and Kelson et al. (2000) for detailed petrographic descriptions) underlies most of the northern Shoshone Range and hosts most of the mineralization. Mineralization occurs only in areas of intense structural preparation (breccias, faults, fractures, and shear zones) and decreases rapidly away from these areas. Alteration halos around veins in upper plate host rocks are largely absent; intrusive igneous host rocks adjacent to veins are locally argillized, silicified, and/or sericitized.

Vein-hosted ore and gangue mineral assemblages are generally similar between deposits. Gangue minerals include quartz (ubiquitous), calcite with Fe, Mn, and/or Mg, Ba- and/or Casulfates (common), and rare clay, e.g. chlorite, illite ("sericite"), muscovite, or smectite; ore is always associated with quartz. Except for Hilltop's discordant quartz breccia pipe (Fig. 3.3a and 3.3b), veins are comprised of massive clear or milky-white, coarsely crystalline to microcrystalline quartz. Quartz also occurs within fine-grained silica-sulfide veins (Fig. 3.3c and 3.3d) and breccia matrix (Fig. 3.3e) (e.g. Hilltop deposit, Kelson et al., 2000) and with organic carbon-rich matrix in barren Blue Dick mine pebble dikes or breccias (Fig. 3.3f). Sulfide phases include galena, sphalerite, arsenopyrite, pyrite, chalcopyrite, fahlore, and other sulfosalts (Figs. 3.3g – 3.3p). Native gold (Fig. 3.3a) and electrum are rare, and are more commonly found disseminated in pyrite, arsenopyrite, and arsenian pyrite (based on assay data) (Fig. 3.3d). Major silver-bearing minerals include fahlore and other sulfosalts, with subordinate argentiferous

Figure 3.3 (following pages): Examples of northern Shoshone Range vein mineralization. See text for explanation of Hilltop deposit mineralization "Events".

- A) Quartz matrix with visible gold (yellow arrows) and mixed-layered smectite/illite clay (sample DSC BXA, red arrows), discordant quartz breccia pipe, Hilltop deposit.
- B) Discordant quartz breccia pipe, Hilltop deposit. Angular clasts of altered Valmy Formation argillite (tan) and chert (gray) within gold-bearing quartz matrix.
- C) Ore sample, Hilltop deposit. Based on quartz vein morphology, this sample is similar to the discordant quartz breccia pipe. Large quartz vein contains pyrite + galena + sphalerite + fahlore + arsenopyrite + rare cassiterite, and clearly post-dates breccia formation: Note silica-sulfide veinlet cutting breccia and quartz vein, and spreading along quartz vein / breccia boundary. Assay data (CK02-4 = 3 ppm Au; CK02-5 = 11 ppm Au) supports the relationship between silica-sulfide veinlets (Event 2) and Au.
- D) Back scattered electron image of the Au-bearing silica-sulfide veinlet (Event 2). Veinlet is composed of a fine-grained mixture of quartz (Q) + pyrite (P) + arsenopyrite / arsenian pyrite (A-P). Arsenopyrite crystals frequently possess pyritic rims. Gold has not been directly observed within the silica-sulfide veins and probably occurs as sub-micron sized particles within one or more of these phases.
- E) Massive silica-sulfide (Event 2, main zone, Hilltop deposit) matrix cataclasite containing altered fragments of Valmy Formation chert, cut by younger veins of Event 5 melnikovite pyrite. Assay data: 4.8 ppm Au, 4.8 ppm Ag, > 1% As. Note finely-banded pyrite within the veins.

- F) Unmineralized pebble dike, Blue Dick mine. Variably-sized, sub-angular fragments of siliceous and siliciclastic rocks and altered feldspar porphyry wall rock in a fine-grained quartz + organic carbon matrix. This pebble dike was not observed in other northern Shoshone Range vein deposits.
- G) Galena + chalcopyrite + fahlore + arsenopyrite + pyrite bearing quartz vein, Lovie mine.
- H) Molybdenite-bearing quartz vein (sample 97-10 106.1), porphyry mineralization, Hilltop deposit.
- I) Ore-bearing quartz vein, Betty O'Neal mine. Note secondary Cu-oxide minerals within larger patches of fahlore. Assay data: 21 ppb Au, 602 ppm Ag.
- J) Back scattered electron image of Betty O'Neal mine ore. Sulfide phases include bournonite(B), Ag-bearing fahlore (F), galena (G), and argentite (A). Ox = oxidized bournonite.
- K) Gray Eagle mine ore. Pyrite + galena + fahlore + arsenopyrite ± chalcopyrite ± sphalerite ± electrum bearing quartz vein hosted by Granite Mountain granite. Wall rock adjacent to veins is argillized ± silicified ± sericitized.
- L) Galena + sphalerite (part of Event 1 assemblage, Hilltop deposit) as matrix within Hilltop fault zone (main zone lower boundary) clast-supported breccia. Note presence of both altered (bleached) and unaltered (i.e. organic-carbon bearing), sub-rounded fragments of Valmy Formation chert, indicating significant clast movement and the close proximity of unaltered (and unmineralized) footwall rocks of the Hilltop fault (and main zone).
- M) Back scattered electron image of Betty O'Neal mine ore (hand sample = black / purple gossan between drusy quartz veins). Electron microprobe reveals alternating bands of Pb- (light) and Mn- (dark) oxide (e.g. coronadite; Ramdohr, 1969) between / within

quartz veins. Vugs within the banded material contain small, euhedral crystals of the same material.

- N) Back scattered electron image of the same sample in Figure 3M. Raft (?) of chlorargyrite within alternating Pb- and Mn-oxide bands. Assay data: 172 ppb Au, 2891 ppm Ag (~87 oz/t, Ag).
- O) Melnikovite (banded) pyrite (Event 5, main zone, Hilltop deposit). Late-stage, post-Au mineralization banded pyrite and marcasite surrounding clasts of altered intrusive igneous rock and altered Valmy Formation chert and quartzite. Some Event 5 mineralization contains very high Sb and As concentrations (with lesser Co and Ni) and formed under alternating magmatic and biologic influences (see sulfur isotope data).
- P) "Massive" pyrite (Event 5, main zone, Hilltop deposit) as matrix surrounding clasts of altered intrusive igneous rocks and Valmy Formation argillite, chert, and quartzite. Thin, black silica-sulfide veinlets at upper right represent Event 2 mineralization (main Au-bearing event).







BEI GRIT-38B-MnPb-ox bands







galena and electrum. Silver:gold ratios for deposits studied here (based on samples collected for this study) range from 10 to 161, with an average of 62. See Table 3.2 and Appendix A for assay data from each deposit.

In addition to pyrite, fahlore  $[(Ag,Cu)_{10}(Fe,Zn)_2(Sb,As)_4S_{13}]$  is ubiquitous but varies compositionally between deposits (Table 3.2). These differences may provide insight into the temperature and composition of the ore-forming fluids (Wu and Petersen, 1977; Sack and Goodell, 2002; Sack et al., 2002; Sack et al., 2003), although at present all phases necessary to use these minerals as thermometers have not been found.

Northern Shoshone Range vein deposits are comprised of several generations of veins, a common feature of hydrothermal ore deposits (Silberman, 1985). Since most underground workings are no longer accessible and representative samples from each deposit can be collected only from dumps, in-situ evaluation of vein paragenesis is nearly impossible. However, multiple generations (or events) of barren and ore-bearing fluids have been documented via microscopy and EMPA for the Hilltop deposit and Betty O'Neal mine:

# Event No.Hilltop deposit (Kelson et al., 2000):1.Quartz + arsenopyrite + galena + sphalerite + pyrite + fahlore +

chalcopyrite + sulfosalts (oldest)

2. Quartz + arsenopyrite + pyrite + gold (Fig. 3.3d)

5. Melnikovite pyrite + marcasite + pyrite  $\pm$  kaolinite (Fig. 3.30 and 3.3p).

Table 3.2 (following two pages): Electron microprobe analyses of sulfide minerals from northern Shoshone Range vein deposits. Data from Kelson et al. (2005).

|       | ру        | fah        | mia         | asp   | sph    | gal   | сру      | stib       | bn            | cst    | elec  |
|-------|-----------|------------|-------------|-------|--------|-------|----------|------------|---------------|--------|-------|
| Fe    | 44.84     | 3.88       | 0.00        | 34.10 | 7.94   | 0.21  | 29.22    | 0.04       | 0.04          | 3.09   |       |
| S     | 51.03     | 27.16      | 20.77       | 20.49 | 32.93  | 11.88 | 33.49    | 27.51      | 19.43         | 26.08  |       |
| Sb    | 0.04      | 17.58      | 40.38       | 0.46  | 0.02   | 0.21  | 0.03     | 70.83      | 24.29         | 25.85  |       |
| As    | 0.34      | 1.36       | 0.35        | 43.51 | 0.00   | 0.00  | 0.00     | 0.56       | 1.16          | 2.79   |       |
| Zn    | 0.08      | 13.30      | 0.06        | 0.05  | 55.56  | 0.31  | 0.21     | 0.02       | 0.26          | 5.26   |       |
| Pb    | 0.84      | 0.00       | 0.00        | 0.06  | 0.00   | 83.44 | 0.00     | 0.00       | 43.41         | 0.01   |       |
| Si    | 0.25      | 0.03       | 0.04        | 0.03  | 0.07   | 0.04  | 0.02     | 0.04       | 0.02          | 0.00   |       |
| Ag    | 0.01      | 1.14       | 39.26       | 0.01  | 0.03   | 0.42  | 0.02     | 0.05       | 0.03          | 1.58   | 13.40 |
| Cu    | 0.10      | 30.20      | 0.11        | 0.10  | 0.76   | 0.23  | 33.23    | 0.06       | 13.39         | 35.59  |       |
| Mn    | 0.02      | 0.07       | 0.03        | 0.04  | 0.78   | 0.03  | 0.01     | 0.02       | 0.02          | 0.04   |       |
| Au    | 0.02      | 0.03       | 0.00        | 0.03  | 0.03   | 0.01  | 0.01     | 0.02       | 0.00          | 0.00   | 85.07 |
| Sn    | 0.00      | 4.91       | 0.00        | 0.00  | 0.06   | 0.00  | 0.05     | 0.26       | 0.04          | 0.15   |       |
| Se    | 0.01      | 0.02       | 0.72        | 0.00  | 0.02   | 2.15  | 0.01     | 0.24       | 0.09          | 0.00   |       |
| Cd    | 0.01      | 0.12       | 0.01        | 0.02  | 1.21   | 0.04  | 0.01     | 0.00       | 0.00          | 0.00   |       |
| Ge    | 0.00      | 0.00       | 0.00        | 0.00  | 0.01   | 0.01  | 0.02     | 0.00       | 0.05          | 0.00   |       |
| CI    | 0.00      | 0.00       | 0.03        | 0.01  | 0.01   | 0.07  | 0.00     | 0.01       | 0.03          | 0.01   |       |
| Те    | 0.01      | 0.00       | 0.00        | 0.02  | 0.02   | 0.08  | 0.01     | 0.00       | 0.00          | 0.00   |       |
| Hg    | 0.01      | 0.11       |             | 0.00  | 0.01   | 0.01  | 0.04     | 0.01       | 0.00          |        |       |
| Total | 97.61     | 99.85      | 101.51      | 98.89 | 99.44  | 99.13 | 96.37    | 99.61      | 102.25        | 100.45 | 98.46 |
| n     | 22        | 9          | 3           | 13    | 11     | 14    | 7        | 5          | 3             | 1      | 10    |
|       | Lovie mi  | ne (Bullio | n district) |       |        |       | Kattenho | rn mine (F | lillton distr | ict)   |       |
|       | Lovie III |            | n uistrict) |       |        |       | Natienno | in nine (i | initop ulsti  | 101)   |       |
|       | ру        | fah        | asp         | sph   | gal    |       |          | ру         | fah           | gal    | chl   |
| Fe    | 45.61     | 4.48       | 36.23       | 7.80  | 0.23   |       | Fe       | 44.12      | 1.21          | 0.00   | 0.14  |
| S     | 52.59     | 23.36      | 21.11       | 33.27 | 13.46  |       | S        | 49.48      | 15.33         | 12.62  | 0.08  |
| Sb    | 0.01      | 21.45      | 0.03        | 0.01  | 0.24   |       | Sb       | 0.06       | 7.69          | 0.16   | 0.00  |
| As    | 0.09      | 0.48       | 44.95       | 0.00  | 0.00   |       | As       | 0.00       | 0.16          | 0.00   | 0.00  |
| Zn    | 0.06      | 11.60      | 0.11        | 56.69 | 0.09   |       | Zn       | 0.07       | 19.28         | 0.06   | 0.00  |
| Pb    | 0.00      | 0.00       | 0.14        | 0.00  | 85.96  |       | Pb       | 0.00       | 0.17          | 84.27  | 0.00  |
| Si    | 0.05      | 0.03       | 0.00        | 0.01  | 0.01   |       | Si       | 0.55       | 1.17          | 0.96   | 6.62  |
| Ag    | 0.01      | 19.33      | 0.02        | 0.02  | 0.22   |       | Ag       | 0.04       | 16.82         | 0.16   | 65.75 |
| Cu    | 0.02      | 17.78      | 0.03        | 0.14  | 0.15   |       | Cu       | 0.06       | 30.01         | 0.03   | 0.00  |
| Mn    | 0.02      | 0.10       | 0.02        | 1.59  | 0.02   |       | Mn       | 0.02       | 0.36          | 0.01   | 0.00  |
| Au    | 0.02      | 0.02       | 0.00        | 0.05  | 0.03   |       | Au       | 0.01       | 0.06          | 0.02   | 0.18  |
| Sn    | 0.00      | 0.93       | 0.00        | 0.00  | 0.01   |       | Sn       | 0.00       | 4.58          | 0.01   | 0.00  |
| Se    | 0.00      | 0.01       | 0.00        | 0.00  | 0.01   |       | Se       | 0.01       | 0.84          | 1.41   | 0.06  |
| Cd    | 0.04      | 0.11       | 0.02        | 1.01  | 0.03   |       | Cd       | 0.00       | 0.14          | 0.04   | 0.32  |
| Ge    | 0.00      | 0.01       | 0.00        | 0.00  | 0.01   |       | Ge       | 0.00       | 0.01          | 0.00   | 0.00  |
| CI    | 0.00      | 0.03       | 0.00        | 0.01  | 0.06   |       | CI       | 0.01       | 0.05          | 0.08   | 4.50  |
| Те    | 0.04      | 0.00       | 0.02        | 0.07  | 0.05   |       | Te       | 0.03       | 0.25          | 0.01   | 0.18  |
| Hg    | 0.01      | 0.00       | 0.10        |       | 0.01   |       | Hg       | 0.01       | 0.13          | 0.00   | 0.02  |
| Total | 98.56     | 99.69      | 102.73      | 99.84 | 100.55 |       | Total    | 94.47      | 98.26         | 99.86  | 77.84 |
| n     | 5         | 6          | 2           | 4     | 8      |       | n        | 2          | 5             | 2      | 1     |

Notes: Py, pyrite; fah, fahlore; mia, miargyrite; asp, arsenopyrite; sph, sphalerite; gal, galena; cpy, chalcopyrite; chl, chlorargyrite-bromargyrite; stib, stibnite; bn, bournonite; cst, chalcostibnite; ac, acanthite; elec, electrum; geo, geffroyite; hes, hessite

n = number of analyses

All data in average wt. %

-- = not analyzed

Minerals not listed in tables = not present in samples analyzed.

|                                                                                                                                             | Blue Dic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k mine (H                                                                                                                                                                      | e (Hilltop district) Betty O'Neal mine (Lewis district)                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                         |                                                                                  |                                                                                                                                                                  |       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             | ру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fah                                                                                                                                                                            | ac                                                                                                                                                            | mia                                                                                                                                                                                   | asp                                                                                                                                                   |                                                                                                                                         |                                                                                  |                                                                                                                                                                  | ру    | fah                                                                                                                                                                                                                                   | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sph                                                                                                                                               | gal                                                                                                                                                   | сру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chl                                                                                                                                                   | bn                                                                                                                                       |
| Fe                                                                                                                                          | 46.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.77                                                                                                                                                                           | 0.26                                                                                                                                                          | 0.01                                                                                                                                                                                  | 31.72                                                                                                                                                 |                                                                                                                                         |                                                                                  | Fe                                                                                                                                                               | 44.83 | 2.36                                                                                                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.21                                                                                                                                              | 0.20                                                                                                                                                  | 27.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                  | 0.08                                                                                                                                     |
| S                                                                                                                                           | 51.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.21                                                                                                                                                                          | 13.60                                                                                                                                                         | 18.59                                                                                                                                                                                 | 18.87                                                                                                                                                 |                                                                                                                                         |                                                                                  | S                                                                                                                                                                | 52.15 | 22.73                                                                                                                                                                                                                                 | 15.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.34                                                                                                                                             | 13.42                                                                                                                                                 | 33.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                  | 19.83                                                                                                                                    |
| Sb                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.85                                                                                                                                                                          | 0.56                                                                                                                                                          | 37.12                                                                                                                                                                                 | 0.77                                                                                                                                                  |                                                                                                                                         |                                                                                  | Sb                                                                                                                                                               | 0.01  | 25.54                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                              | 0.09                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                  | 25.31                                                                                                                                    |
| As                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.89                                                                                                                                                                           | 0.02                                                                                                                                                          | 0.40                                                                                                                                                                                  | 43.10                                                                                                                                                 |                                                                                                                                         |                                                                                  | As                                                                                                                                                               | 0.16  | 1.05                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.00                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                  | 0.53                                                                                                                                     |
| Zn                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.13                                                                                                                                                                           | 0.07                                                                                                                                                          | 0.02                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Zn                                                                                                                                                               | 0.06  | 4.68                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61.85                                                                                                                                             | 0.76                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                  | 0.02                                                                                                                                     |
| Pb                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                           | 0.02                                                                                                                                                          | 0.17                                                                                                                                                                                  | 0.11                                                                                                                                                  |                                                                                                                                         |                                                                                  | Pb                                                                                                                                                               | 0.00  | 0.01                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                              | 88.29                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                  | 41.69                                                                                                                                    |
| Si                                                                                                                                          | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                           | 0.24                                                                                                                                                          | 0.07                                                                                                                                                                                  | 3.84                                                                                                                                                  |                                                                                                                                         |                                                                                  | Si                                                                                                                                                               | 0.03  | 0.03                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10                                                                                                                                              | 0.04                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.19                                                                                                                                                  | 0.01                                                                                                                                     |
| Ag                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.23                                                                                                                                                                          | 84.45                                                                                                                                                         | 39.97                                                                                                                                                                                 | 0.04                                                                                                                                                  |                                                                                                                                         |                                                                                  | Ag                                                                                                                                                               | 0.04  | 21.91                                                                                                                                                                                                                                 | 86.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.57                                                                                                                                              | 0.07                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.23                                                                                                                                                 | 0.03                                                                                                                                     |
| Cu                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.94                                                                                                                                                                          | 0.06                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.09                                                                                                                                                  |                                                                                                                                         |                                                                                  | Cu                                                                                                                                                               | 0.06  | 22.52                                                                                                                                                                                                                                 | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                              | 0.31                                                                                                                                                  | 32.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                  | 13.12                                                                                                                                    |
| Mn                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                           | 0.04                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Mn                                                                                                                                                               | 0.05  | 0.05                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43                                                                                                                                              | 0.00                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.41                                                                                                                                                  | 0.00                                                                                                                                     |
| Au                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.00                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Au                                                                                                                                                               | 0.06  | 0.02                                                                                                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.02                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                  | 0.00                                                                                                                                     |
| Sn                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                                           | 0.00                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Sn                                                                                                                                                               | 0.00  | 0.03                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.01                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                  | 0.02                                                                                                                                     |
| Se                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                           | 0.10                                                                                                                                                          | 1.36                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Se                                                                                                                                                               | 0.01  | 0.00                                                                                                                                                                                                                                  | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.17                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                  | 0.18                                                                                                                                     |
| Cd                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10                                                                                                                                                                           | 0.43                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Cd                                                                                                                                                               | 0.02  | 0.20                                                                                                                                                                                                                                  | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.62                                                                                                                                              | 0.05                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.41                                                                                                                                                  | 0.00                                                                                                                                     |
| Ge                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.01                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Ge                                                                                                                                                               | 0.00  | 0.00                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                              | 0.02                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                  | 0.00                                                                                                                                     |
| CI                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                           | 0.08                                                                                                                                                          | 0.03                                                                                                                                                                                  | 0.01                                                                                                                                                  |                                                                                                                                         |                                                                                  | CI                                                                                                                                                               | 0.01  | 0.02                                                                                                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.05                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.41                                                                                                                                                  | 0.01                                                                                                                                     |
| le                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                           | 0.13                                                                                                                                                          | 0.00                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | le                                                                                                                                                               | 0.02  | 0.00                                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                              | 0.05                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                  | 0.00                                                                                                                                     |
| Hg                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                           | 0.04                                                                                                                                                          | 0.32                                                                                                                                                                                  | 0.00                                                                                                                                                  |                                                                                                                                         |                                                                                  | Hg                                                                                                                                                               | 0.00  | 0.02                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                              | 0.01                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                  | 0.03                                                                                                                                     |
| Iotai                                                                                                                                       | 98.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.43                                                                                                                                                                         | 100.10                                                                                                                                                        | 98.06                                                                                                                                                                                 | 98.56                                                                                                                                                 |                                                                                                                                         |                                                                                  | Iotal                                                                                                                                                            | 96.75 | 101.19                                                                                                                                                                                                                                | 106.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98.25                                                                                                                                             | 103.57                                                                                                                                                | 94.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.55                                                                                                                                                 | 100.87                                                                                                                                   |
| n                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                              | 3                                                                                                                                                             | I                                                                                                                                                                                     | I                                                                                                                                                     |                                                                                                                                         |                                                                                  | n                                                                                                                                                                | 0     | 10                                                                                                                                                                                                                                    | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Э                                                                                                                                                 | 10                                                                                                                                                    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                    | I                                                                                                                                        |
| Grey Eagle mine (Bullion district)                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                         |                                                                                  |                                                                                                                                                                  |       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                          |
|                                                                                                                                             | Grey Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (                                                                                                                                                                     | Bullion dis                                                                                                                                                   | trict)                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                         |                                                                                  |                                                                                                                                                                  |       |                                                                                                                                                                                                                                       | Unnamed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prospect                                                                                                                                          | (Bullion di                                                                                                                                           | strict)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                          |
|                                                                                                                                             | Grey Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (<br>fah                                                                                                                                                              | Bullion dis<br>asp                                                                                                                                            | strict)                                                                                                                                                                               | gal                                                                                                                                                   | сру                                                                                                                                     | hes                                                                              | elec                                                                                                                                                             |       |                                                                                                                                                                                                                                       | Unnamed<br>py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | prospect<br>fah                                                                                                                                   | (Bullion di<br>asp                                                                                                                                    | strict)<br>sph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gal                                                                                                                                                   | geo                                                                                                                                      |
| Fe                                                                                                                                          | Grey Ea<br>py<br>45.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gle mine (<br>fah<br>3.43                                                                                                                                                      | Bullion dis<br>asp<br>35.04                                                                                                                                   | sph<br>9.63                                                                                                                                                                           | gal<br>0.19                                                                                                                                           | сру<br>28.70                                                                                                                            | hes<br>                                                                          | elec<br>0.00                                                                                                                                                     |       | Fe                                                                                                                                                                                                                                    | Unnamed<br>py<br>45.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | prospect<br>fah<br>3.10                                                                                                                           | (Bullion di<br>asp<br>34.76                                                                                                                           | strict)<br>sph<br>6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gal<br>0.04                                                                                                                                           | geo<br>24.62                                                                                                                             |
| Fe<br>S                                                                                                                                     | Grey Ea<br>py<br>45.58<br>52.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gle mine (<br>fah<br>3.43<br>24.06                                                                                                                                             | Bullion dis<br>asp<br>35.04<br>21.92                                                                                                                          | sph<br>9.63<br>32.76                                                                                                                                                                  | gal<br>0.19<br>13.58                                                                                                                                  | сру<br>28.70<br>34.05                                                                                                                   | hes<br>                                                                          | elec<br>0.00<br>0.17                                                                                                                                             |       | Fe<br>S                                                                                                                                                                                                                               | Unnamed<br>py<br>45.25<br>53.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fah<br>3.10<br>25.84                                                                                                                              | (Bullion di<br>asp<br>34.76<br>21.80                                                                                                                  | strict)<br>sph<br>6.24<br>34.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gal<br>0.04<br>14.42                                                                                                                                  | geo<br>24.62<br>32.77                                                                                                                    |
| Fe<br>S<br>Sb                                                                                                                               | Grey Ea<br>py<br>45.58<br>52.35<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (<br>fah<br>3.43<br>24.06<br>28.10                                                                                                                                    | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17                                                                                                                  | sph<br>9.63<br>32.76<br>0.02                                                                                                                                                          | gal<br>0.19<br>13.58<br>0.02                                                                                                                          | cpy<br>28.70<br>34.05<br>0.04                                                                                                           | hes<br><br>                                                                      | elec<br>0.00<br>0.17<br>0.00                                                                                                                                     |       | Fe<br>S<br>Sb                                                                                                                                                                                                                         | Unnamed<br>py<br>45.25<br>53.84<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prospect<br>fah<br>3.10<br>25.84<br>27.33                                                                                                         | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04                                                                                                          | strict)<br>sph<br>6.24<br>34.18<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gal<br>0.04<br>14.42<br>0.19                                                                                                                          | geo<br>24.62<br>32.77<br>0.00                                                                                                            |
| Fe<br>S<br>Sb<br>As                                                                                                                         | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88                                                                                                                            | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54                                                                                                         | sph<br>9.63<br>32.76<br>0.02<br>0.00                                                                                                                                                  | gal<br>0.19<br>13.58<br>0.02<br>0.00                                                                                                                  | cpy<br>28.70<br>34.05<br>0.04<br>0.00                                                                                                   | hes<br><br><br>                                                                  | elec<br>0.00<br>0.17<br>0.00<br>0.00                                                                                                                             |       | Fe<br>S<br>Sb<br>As                                                                                                                                                                                                                   | Py<br>45.25<br>53.84<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06                                                                                                 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63                                                                                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gal<br>0.04<br>14.42<br>0.19<br>0.00                                                                                                                  | geo<br>24.62<br>32.77<br>0.00<br>0.00                                                                                                    |
| Fe<br>S<br>Sb<br>As<br>Zn                                                                                                                   | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09                                                                                                                    | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01                                                                                                 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99                                                                                                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10                                                                                                          | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04                                                                                           | hes<br><br><br><br>                                                              | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00                                                                                                                     |       | Fe<br>S<br>Sb<br>As<br>Zn                                                                                                                                                                                                             | Py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20                                                                                         | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00                                                                                         | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06                                                                                                          | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12                                                                                            |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb                                                                                                             | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01                                                                                                            | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00                                                                                         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00                                                                                                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44                                                                                                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00                                                                                   | hes<br><br><br><br><br>                                                          | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                             |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb                                                                                                                                                                                                       | Py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00                                                                                 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01                                                                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71                                                                                                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00                                                                                    |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si                                                                                                       | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04                                                                                                    | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01                                                                                 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04                                                                                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03                                                                                         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08                                                                           | hes<br><br><br><br><br>                                                          | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                     |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si                                                                                                                                                                                                 | Py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01                                                                         | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01                                                                         | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05                                                                                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00<br>0.00                                                                            |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag                                                                                                 | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22                                                                                            | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02                                                                         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01                                                                                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96                                                                                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02                                                                   | hes<br><br><br><br><br><br>60.39                                                 | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83                                                                                            |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag                                                                                                                                                                                           | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02                                                                 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01                                                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08                                                                                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00<br>0.00<br>12.79                                                                   |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu                                                                                           | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72                                                                                   | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04                                                                 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04                                                                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07                                                                         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66                                                          | hes<br><br><br><br><br><br>60.39<br>                                             | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12                                                                                    |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu                                                                                                                                                                                     | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50                                                        | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01                                                         | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07                                                                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00<br>0.00<br>12.79<br>27.26                                                          |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn                                                                                     | Grey Ea<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04                                                                           | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02                                                         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.02                                                                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02                                                                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66<br>0.01                                                  | hes<br><br><br><br><br>60.39<br><br>                                             | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12<br>0.04                                                                            |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn                                                                                                                                                                               | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00                                                | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.06<br>0.01                                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.01<br>0.09<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02                                                                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00                                                  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au                                                                               | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03                                                                   | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.02                                                 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.22<br>0.03                                                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00                                                         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66<br>0.01<br>0.02                                          | hes<br><br><br><br><br>60.39<br><br><br>                                         | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12<br>0.04<br>77.29                                                                   |       | Fe<br>S<br>Sb<br>Sb<br>Si<br>Si<br>Si<br>Cu<br>Mn<br>Au                                                                                                                                                                               | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00                                        | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.06<br>0.01<br>0.05                                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.01<br>0.09<br>0.21<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03                                                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.12<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07                                          |
| Fe<br>S<br>Sb<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si<br>Si                                                 | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.04<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.03<br>0.03                                                   | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00                                         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.22<br>0.03<br>0.00                                                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00                                                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66<br>0.01<br>0.02<br>0.00                                  | hes<br><br><br><br><br>60.39<br><br><br><br>                                     | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00                                                                   |       | Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn                                                                                                                                                                   | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.00<br>0.03                        | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.06<br>0.01<br>0.05<br>0.00                                         | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01                                                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00                                                  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Se                                                                   | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01                                                   | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00                         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.22<br>0.03<br>0.00<br>0.00                                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00                                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01                          | hes<br><br><br><br><br>60.39<br><br><br><br><br><br>                             | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02                                                   |       | Fe<br>S<br>Sb<br>Sb<br>Si<br>Si<br>Si<br>Gu<br>Mn<br>Sn<br>Se                                                                                                                                                                         | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.03<br>0.00<br>0.03<br>0.00        | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.06<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                         | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.21<br>0.00<br>0.00<br>0.00<br>0.21<br>0.00<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0. | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00                                                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.02                          |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>e<br>Cd                                                              | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06                                           | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.22<br>0.03<br>0.00<br>0.01<br>1.34                                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>0.08<br>0.02<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02                  | hes<br><br><br><br><br>60.39<br><br><br><br><br><br><br><br>                     | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>0.04<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10                                           |       | Fe<br>S<br>Sb<br>Ss<br>Zn<br>Pb<br>Si<br>g<br>Cu<br>Mn<br>Sn<br>e<br>Cu                                                                                                                                                               | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.02<br>0.00<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.0 | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.06<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>1.05<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.00                                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.00<br>0.00                  |
| Fe<br>S Sb<br>As<br>Zn<br>P Si<br>Ag<br>C Mn<br>Sn<br>E Cd<br>Ge                                                                            | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06<br>0.00<br>0.06                           | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.04<br>0.04<br>0.22<br>0.03<br>0.00<br>0.01<br>1.34<br>0.00                                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.05                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02<br>0.00                          | hes<br><br><br><br><br>60.39<br><br><br><br><br><br><br><br><br><br><br><br><br> | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10<br>0.02                                           |       | Fe<br>S b<br>S b<br>S b<br>S c<br>U<br>M<br>N<br>S c<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                   | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>0.00<br>1.05<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.08<br>0.00<br>0.08                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.05<br>0.05                  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Gu<br>Mn<br>Sn<br>Cd<br>Ge<br>Cl                                                                   | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06<br>0.00<br>0.00<br>0.00                   | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.04<br>0.04<br>0.02<br>0.03<br>0.00<br>0.01<br>1.34<br>0.00<br>0.01                                                 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.05<br>0.05                 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02<br>0.00<br>0.01                  | hes<br><br><br><br>60.39<br><br><br><br><br><br><br><br>                         | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10<br>0.00<br>0.03<br>0.03                           |       | Fe<br>S b<br>S b<br>S b<br>S i<br>g<br>C u<br>M<br>n<br>S e<br>C d<br>e<br>C l<br>C c                                                                                                                                                 | Py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>1.05<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.08<br>0.00<br>0.05                         | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.05<br>0.00<br>0.04  |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Gu<br>Mn<br>Sn<br>Cd<br>Cl<br>Cl<br>E<br>Cl<br>E<br>Cl<br>E<br>Cl<br>E<br>Cl<br>E<br>Cl<br>E<br>Cl | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06<br>0.00<br>0.01<br>0.00<br>0.00           | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.04<br>0.04<br>0.02<br>0.03<br>0.00<br>0.01<br>1.34<br>0.00<br>0.01<br>1.34                                         | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.05<br>0.05         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02          | hes<br><br><br><br><br>60.39<br><br><br><br><br><br><br>37.99                    | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10<br>0.02<br>0.10<br>0.03<br>0.03<br>0.03           |       | Fe<br>Sb<br>Sb<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh<br>Sh                                                                                                                                          | Py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>1.05<br>0.00<br>0.01<br>1.05<br>0.00<br>0.01<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.08<br>0.00<br>0.08<br>0.00<br>0.05 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.05<br>0.00<br>0.04          |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>Ag<br>Cu<br>Mn<br>Au<br>Sn<br>Cd<br>e<br>Cl<br>Te<br>Hg                                            | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.02<br>0.05<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.05<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.05<br>0.01<br>0.00<br>0.00<br>0.01<br>0.00<br>0.02<br>0.05<br>0.01<br>0.00<br>0.00<br>0.00<br>0.02<br>0.03<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06<br>0.00<br>0.01<br>0.00<br>0.00<br>100,72 | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.04<br>0.04<br>0.02<br>0.03<br>0.00<br>0.01<br>1.34<br>0.00<br>0.01<br>1.34<br>0.00<br>0.01<br>0.02<br>0.05<br>0.05 | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.05<br>0.05<br>0.12<br>0.03 | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02          | hes<br><br><br><br><br>60.39<br><br><br><br><br><br><br><br>37.99<br><br>08 28   | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10<br>0.02<br>0.10<br>0.03<br>0.03<br>0.03<br>0.00   |       | Fe<br>S b<br>S b<br>S b<br>S c<br>U<br>M<br>N<br>S c<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                   | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.00<br>1.05<br>0.00<br>0.01<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.08<br>0.00<br>0.05                 | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.07<br>0.00<br>0.05<br>0.00<br>0.04          |
| Fe<br>S<br>Sb<br>As<br>Zn<br>Pb<br>Si<br>G<br>U<br>Mn<br>Se<br>C<br>G<br>C<br>I<br>E<br>Hg<br>total                                         | Grey Eac<br>py<br>45.58<br>52.35<br>0.02<br>0.19<br>0.14<br>0.00<br>0.07<br>0.02<br>0.05<br>0.01<br>0.04<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.00<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.02<br>0.05<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.05<br>0.02<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | gle mine (<br>fah<br>3.43<br>24.06<br>28.10<br>0.88<br>4.09<br>0.01<br>0.04<br>5.22<br>34.72<br>0.04<br>0.03<br>0.08<br>0.01<br>0.06<br>0.00<br>0.01<br>0.00<br>100.78         | Bullion dis<br>asp<br>35.04<br>21.92<br>0.17<br>43.54<br>0.01<br>0.00<br>0.01<br>0.02<br>0.04<br>0.02<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | sph<br>9.63<br>32.76<br>0.02<br>0.00<br>54.99<br>0.00<br>0.04<br>0.01<br>0.04<br>0.02<br>0.03<br>0.00<br>0.01<br>1.34<br>0.00<br>0.01<br>1.34<br>0.00<br>9.9.16                       | gal<br>0.19<br>13.58<br>0.02<br>0.00<br>0.10<br>85.44<br>0.03<br>0.96<br>0.07<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.05<br>0.05         | cpy<br>28.70<br>34.05<br>0.04<br>0.00<br>0.04<br>0.00<br>34.66<br>0.01<br>0.02<br>0.00<br>0.01<br>0.02<br>0.00<br>0.01<br>0.00<br>97.66 | hes<br><br><br><br><br><br><br><br><br><br>-                                     | elec<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.00<br>22.83<br>0.12<br>0.04<br>77.29<br>0.00<br>0.02<br>0.10<br>0.00<br>0.03<br>0.03<br>0.03<br>0.00<br>100.67 |       | Fe<br>S b<br>S b<br>S b<br>S b<br>S b<br>S b<br>S c<br>M<br>N<br>S c<br>d<br>e<br>C l<br>E<br>G<br>e<br>G<br>l<br>T c<br>f<br>g<br>T c<br>f<br>c<br>f<br>c<br>f<br>s<br>f<br>s<br>f<br>s<br>f<br>s<br>f<br>s<br>f<br>s<br>f<br>s<br>f | Unnamed<br>py<br>45.25<br>53.84<br>0.01<br>0.00<br>0.01<br>0.03<br>0.04<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | prospect<br>fah<br>3.10<br>25.84<br>27.33<br>1.06<br>4.20<br>0.00<br>0.01<br>8.02<br>33.50<br>0.00<br>0.00<br>0.03<br>0.00<br>0.00<br>0.00<br>0.0 | (Bullion di<br>asp<br>34.76<br>21.80<br>0.04<br>43.63<br>0.00<br>0.01<br>0.01<br>0.01<br>0.05<br>0.00<br>0.00<br>0.00                                 | strict)<br>sph<br>6.24<br>34.18<br>0.03<br>0.00<br>58.01<br>0.02<br>0.01<br>0.09<br>0.21<br>0.00<br>0.00<br>0.01<br>1.05<br>0.00<br>0.01<br><br>99.85<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gal<br>0.04<br>14.42<br>0.19<br>0.00<br>0.06<br>87.71<br>0.05<br>0.08<br>0.07<br>0.02<br>0.03<br>0.01<br>0.00<br>0.08<br>0.00<br>0.05<br><br>102.80   | geo<br>24.62<br>32.77<br>0.00<br>0.00<br>0.00<br>12.79<br>27.26<br>0.00<br>0.07<br>0.00<br>0.05<br>0.00<br>0.05<br>0.00<br>0.04<br>97.72 |

Notes: Py, pyrite; fah, fahlore; mia, miargyrite; asp, arsenopyrite; sph, sphalerite; gal, galena; cpy, chalcopyrite;

chl, chlorargyrite-bromargyrite; stib, stibnite; bn, bournonite; cst, chalcostibnite; ac, acanthite; elec, electrum;

n = number of analyses

All data in average wt. %

-- = not analyzed

Minerals not listed in tables = not present in samples analyzed.

geo, geffroyite; hes, hessite

6. Sphalerite/wurtzite (youngest)

| Event No. | Betty O'Neal mine (Kelson et al., 2005):                                                        |
|-----------|-------------------------------------------------------------------------------------------------|
| 1.        | Quartz (oldest)                                                                                 |
| 2.        | Carbonate $\pm$ Ca-sulfate $+$ epidote $\pm$ sericite $\pm$ chlorite $\pm$ pyrite $\pm$ fahlore |
| 3.        | $Quartz + fahlore \pm carbonate + sphalerite + galena + chalcopyrite +$                         |
|           | bournonite (Fig. 3.3i and 3.3j).                                                                |
| 4.        | Quartz + barite                                                                                 |
| 5.        | Quartz $\pm$ pyrite $\pm$ sericite                                                              |
| 6.        | Sericite $\pm$ quartz $\pm$ pyrite $\pm$ clay                                                   |

7. Quartz (youngest)

Intergrown fahlore (the primary Ag-bearing phase), galena, and bournonite in Betty O'Neal mine ore (Event 3, Fig. 3.3j) is unique among northern Shoshone Range vein deposits, but is texturally and mineralogically similar to ore from the Coeur d'Alene and Julcani mining districts (Sack and Goodell, 2002; Sack et al., 2002). This texture may indicate retrograde Agenrichment in fahlore occurred during cooling of a miargyrite-bearing galena; since Sack and Goodell (2002) estimate fahlore compositions are unaffected below ~220°C via this method, a minimum temperature of Betty O'Neal mine Event 3 mineralization may be inferred.

#### Porphyry-type mineralization

Weak Cu+Mo±Au porphyry-type mineralization is associated with some of the Tertiary granitic intrusions emplaced throughout the northern Shoshone Range, but typical alteration

halos associated with porphyry-type mineralization are largely absent due to the chemically unreactive nature of the siliciclastic and siliceous host rocks. Molybdenite spatially associated with felsic intrusive igneous rocks at the Hilltop and Tenabo deposits and Park Saddle area occurs as vein material or is disseminated throughout the host rock. Molybdenite-bearing veins always contain quartz and commonly carbonate minerals. Other associated phases include chalcopyrite, pyrite, and an unidentified mineral (avg. wt. %: S = 4.6, Sb = 0.2, Pb = 5.4, Se =2.4, Bi = 56.5, Te = 28.2, O = 1.9, U = 1.1; total 100.3%, n = 44) commonly intergrown with Hilltop molybdenite (Kelson et al., 2005).

#### Methods

Samples of intrusive igneous rocks and vein ore from eight mineralized areas were collected throughout the northern Shoshone Range to investigate the mineralogy, geochemistry, and geochronology. Samples were collected in situ where possible (underground workings, surface outcrop, prospect pits, or drill holes) to note original field relationships; however, due to the inaccessibility of most underground workings, vein ore and gangue samples were collected from mine dumps and waste piles.

BSI Inspectorate Precious Metals and ALS Chemex provided thirty-one element analyses for each sample via fire assay (Au) and ICP (Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Tl, Th, V, W, Zn) (Appendix A). ALS Chemex also provided major- and rare earth- element analyses (via XRF and ICP, respectively) for intrusive igneous rocks (Table 3.3). Table 3.3 (following page): Major and trace element chemical data for northern Shoshone Range igneous rocks.

| No. on Fig. 5                  | 1              | 2            | 3              | 4            | 5                        | 6              | 7                | 8              | 9             | 10                   | 11             |
|--------------------------------|----------------|--------------|----------------|--------------|--------------------------|----------------|------------------|----------------|---------------|----------------------|----------------|
| Sample                         | HT02-5         | CK02-8       | CK02-14        | GM-3         | GM-4                     | GM-6           | GM-10            | GM-15          | T99413-570    | GRIT-53              | PH-156-260     |
| Rock type                      | granite        | aplite       | granite        | granodiorite | amphibolite<br>inclusion | granite        | rhyolite<br>dike | granite        | granodiorite  | basaltic<br>andesite | granite        |
| Sample                         | Hillton        | Granite      | Maysville      | Granite      | Granite                  | Granite        | Granite          | Granite        | Tenabo        | Betty                | Hillton        |
| Location                       | 70.40          | Mountain     | Summit         | Mountain     | Mountain                 | Mountain       | Mountain         | Mountain       | 00.07         | O'Neal               | 00.70          |
| 510 <sub>2</sub>               | 78.18          | 87.20        | 79.18          | 70.87        | 54.77                    | 78.25          | 74.75            | 79.95          | 66.07         | 54.19                | 86.70          |
|                                | 0.30           | 0.03         | 0.34           | 0.48         | 0.66                     | 0.25           | 0.49             | 0.26           | 0.58          | 0.58                 | 0.08           |
|                                | 9.06           | 7.84         | 9.16           | 8.73         | 14.59                    | 10.56          | 8.25             | 9.31           | 16.16         | 13.61                | 4.97           |
| Fe <sub>2</sub> O <sub>3</sub> | 0.58           | 0.07         | 0.50           | 1.50         | 1.57                     | 0.46           | 0.66             | 0.53           | 0.51          | 0.98                 | 0.45           |
| MnO                            | 0.01           | 0.01         | 0.05           | 0.26         | 0.32                     | 0.05           | 0.04             | 0.02           | 0.03          | 0.10                 | 0.05           |
| MgO                            | 1.67           | 0.07         | 1.55           | 3.73         | 5.12                     | 1.06           | 2.18             | 1.07           | 2.38          | 6.84                 | 3.17           |
| CaO                            | 1.33           | 0.02         | 1.45           | 2.71         | 7.78                     | 1.68           | 1.41             | 1.75           | 4.24          | 8.73                 | 1.21           |
| Na <sub>2</sub> O              | 1.58           | 1.54         | 2.34           | 2.35         | 3.22                     | 2.48           | 1.66             | 2.03           | 3.01          | 1.52                 | 0.03           |
| K <sub>2</sub> O               | 1.14           | 2.50         | 1.15           | 0.64         | 1.30                     | 1.38           | 0.90             | 1.15           | 1.83          | 1.95                 | 0.72           |
| P <sub>2</sub> O <sub>5</sub>  | 0.10           | 0.01         | 0.11           | 0.20         | 0.19                     | 0.09           | 0.17             | 0.07           | 0.16          | 0.13                 | 0.11           |
| LUI                            | 2.90           | 0.56         | 2.15<br>101 23 | 0.35         | 0.98<br>99.40            | 0.70<br>99.55  | 4.80<br>99.05    | 0.00<br>99 18  | 2.04<br>99 93 | 5.32<br>99.51        | 3.00<br>103.00 |
| Ag                             | 0.0            | 1.9          | 0.2            | 0.0          | 0.0                      | 0.0            | 0.0              | 0.1            | 0.1           | 12.1                 | 0.8            |
| As                             | 9.0            | 36.0         | 0.0            | 11.0         | NA                       | 5.0            | 12.0             | 0.0            | 66.5          | 2.0                  | 14.0           |
| Au ppb                         | 63.0           | 26.0         | 35.0           | 12.0         | NA                       | 11.0           | 2.0              | 16.0           | 68.5          | 20.0                 | 310.0          |
| B<br>Ba                        | 14.0<br>1520.0 | 5.0<br>341.0 | 10.0<br>1370.0 | 12.0         | NA<br>362.0              | 11.0<br>1085.0 | 17.0<br>1390.0   | 14.0<br>1120.0 | NA<br>1175.0  | 8.0                  | NA<br>260.0    |
| Be                             | 2.2            | 2.5          | 1.8            | 2.2          | 2.3                      | 2.5            | 1.7              | 2.1            | 2.0           | 1.3                  | NA             |
| Bi                             | 5.0            | 6.0          | 4.0            | 3.0          | NA                       | 4.0            | 10.0             | 2.0            | 0.1           | 3.0                  | 6.0            |
| Cd                             | 1.5            | 0.0          | 0.6            | 0.6          | NA                       | 0.5            | 1.0              | 0.0            | 0.1           | 1.1                  | 0.0            |
| Ce                             | 44.1<br>9.8    | 18.0<br>1.0  | 50.9<br>11 1   | 40.0<br>8.1  | 57.2<br>18.1             | 31.1<br>7.0    | 76.9<br>21.4     | 45.8<br>9.0    | 35.0          | 32.6                 | NA<br>10.0     |
| Cr                             | 90.0           | 120.0        | 110.0          | 140.0        | 320.0                    | 120.0          | 190.0            | 130.0          | 450.0         | 840.0                | 186.0          |
| Cs                             | 3.2            | 2.8          | 3.0            | 4.7          | 15.2                     | 4.7            | 6.0              | 3.8            | 3.4           | 3.6                  | NA             |
| Cu                             | 310.0          | 3.0          | 8.0            | 2.0          | 2.0                      | 3.0            | 16.0             | 1.0            | 9.0           | 37.0                 | 655.0          |
| Dy<br>Fr                       | 2.3<br>1.4     | 2.6          | 2.7            | 2.6          | 8.5<br>4.6               | 2.4<br>1.4     | 3.2<br>1.7       | 2.4<br>1.5     | 1.9           | 2.5                  | NA<br>NA       |
| Eu                             | 0.9            | 0.2          | 1.0            | 0.9          | 2.0                      | 0.9            | 1.5              | 1.0            | 0.8           | 0.9                  | NA             |
| Ga                             | 18.0           | 12.0         | 21.0           | 20.0         | 21.0                     | 20.0           | 19.0             | 20.0           | 18.0          | 17.0                 | NA             |
| Gd                             | 3.2            | 2.4          | 3.8            | 3.4          | 9.1                      | 2.9            | 5.7              | 3.4            | 2.6           | 3.0                  | NA             |
| Ge<br>Hf                       | 0.2            | 0.1          | 0.1<br>4.0     | 0.1          | 0.2                      | 0.1            | 0.2              | 0.2            | 0.1           | 0.2                  | NA<br>NA       |
| Hq ppb                         | 24.0           | 54.0         | 0.0            | 0.0          | 0.0                      | 0.0            | 27.0             | 39.0           | 0.0           | 0.0                  | 0.0            |
| Но                             | 0.5            | 0.6          | 0.5            | 0.5          | 1.6                      | 0.5            | 0.6              | 0.5            | 0.4           | 0.5                  | NA             |
| In                             | 0.1            | 0.0          | 0.0            | 0.0          | 0.2                      | 0.0            | 0.1              | 0.0            | 0.0           | 0.0                  | NA             |
| La<br>Li                       | 22.2           | 6.9<br>7.8   | 25.7<br>19.1   | 19.6         | 17.3<br>27.2             | 15.3<br>72.6   | 41.6             | 22.9<br>41.4   | 17.2          | 16.0                 | 10.0<br>NA     |
| Lu                             | 0.2            | 0.5          | 0.2            | 0.2          | 0.7                      | 0.2            | 0.2              | 0.2            | 0.2           | 0.2                  | NA             |
| Мо                             | 11.0           | 3.0          | 2.0            | 3.0          | 0.0                      | 2.0            | 2.0              | 0.0            | 3.0           | 0.0                  | 87.0           |
| Nb                             | 8.0            | 14.0         | 9.0            | 10.0         | 13.0                     | 10.0           | 16.0             | 10.0           | 7.0           | 6.0                  | NA             |
| Ni                             | 19.3           | 9.4<br>3.0   | 13.0           | 8.0          | 42.0<br>62.0             | 15.0           | 34.2<br>60.0     | 20.4           | 13.0          | 15.4                 | 52 0           |
| P                              | 353.0          | 64.0         | 480.1          | 437.0        | 829.2                    | 368.0          | 850.0            | 377.0          | 710.0         | 228.0                | 470.0          |
| Pb                             | 69.0           | 53.0         | 43.0           | 22.0         | 12.0                     | 20.0           | 23.0             | 18.0           | 11.0          | 14.0                 | 28.0           |
| Pr                             | 5.4            | 2.5          | 6.3            | 5.1          | 9.5                      | 4.1            | 9.6              | 5.5            | 4.0           | 4.1                  | NA             |
| Re                             | 91.8           | 0.0          | 0.0            | 0.0          | 47.3                     | 0.0            | 0.0              | 0.0            | 92.6          | 48.0                 | NA             |
| S                              | 177.3          | NA           | 139.5          | 100.0        | NA                       | 23.5           | NA               | 165.1          | 400.0         | NA                   | NA             |
| Sb                             | 0.0            | 0.0          | 34.0           | 0.0          | NA                       | 0.0            | 0.0              | 0.0            | 0.4           | 0.0                  | 0.0            |
| Se                             | 0.0            | 0.0          | 0.0            | 0.0          | NA<br>11.2               | 0.0            | 0.0              | 0.0            | 1.0           | 0.0                  | NA             |
| Sn                             | 2.0            | 2.0          | 0.0            | 3.9          | 5.0                      | 3.3<br>1.0     | 5.0              | 5.0            | 1.0           | 2.0                  | NA             |
| Sr                             | 425.0          | 80.8         | 677.0          | 521.0        | 420.0                    | 524.0          | 443.0            | 553.0          | 452.0         | 450.0                | 19.0           |
| Та                             | 0.7            | 4.2          | 0.7            | 0.9          | 0.8                      | 1.1            | 1.0              | 0.8            | 0.5           | 0.5                  | NA             |
| Tb<br>To                       | 0.4            | 0.4          | 0.5            | 0.4          | 1.5                      | 0.4            | 0.6              | 0.5            | 0.4           | 0.4                  | NA             |
| Th                             | 0.2<br>7.0     | 22.0         | 8.0            | 7.0          | 6.0                      | 6.0            | 11.0             | 9.0            | 7.0           | 5.0                  | NA             |
| TI                             | 0.6            | 0.0          | 0.0            | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0            | 0.0           | 0.0                  | NA             |
| Tm                             | 0.2            | 0.4          | 0.2            | 0.2          | 0.7                      | 0.2            | 0.2              | 0.2            | 0.1           | 0.2                  | NA             |
| U                              | 2.3            | 8.6          | 2.4            | 2.3          | 2.4                      | 3.6            | 2.7              | 2.4            | 2.5           | 2.7                  | 0.0            |
| Ŵ                              | 04.0<br>1.0    | 3.0          | 07.0<br>1.0    | 1.0          | 1/4.0                    | 2.0            | 4.0              | 2.0            | 30.U<br>3.0   | 141.0                | 0.0            |
| Y                              | 13.6           | 19.4         | 16.3           | 16.2         | 49.3                     | 15.4           | 19.2             | 15.9           | 11.2          | 15.4                 | 67.0           |
| Yb                             | 1.2            | 2.7          | 1.4            | 1.5          | 4.6                      | 1.5            | 1.3              | 1.4            | 1.1           | 1.4                  | NA             |
| Zn<br>Zr                       | 110.0          | 10.0         | 87.0           | 73.0         | 148.0                    | 66.0           | 112.0            | 73.0           | 43.0          | 78.0                 | 58.0           |
| ∠i<br>tr.tot (%)               | 121.5<br>0.4   | ວ3.4<br>0,1  | 0.3            | 129.0<br>0.3 | 99.9<br>0.3              | 94.1<br>0.3    | 0.4              | 0.3            | 0.4           | 94.1<br>0.3          | NA<br>0.2      |
| TOTAL                          | 100.5          | 100.3        | 101.6          | 100.6        | 99.7                     | 99.8           | 99.4             | 99.5           | 100.3         | 99.8                 | 103.2          |
|                                |                |              |                | -            |                          |                |                  |                |               |                      |                |

Notes: NA = not analyzed. All oxide data in wt. %; all trace element data in ppm unless noted otherwise.

The amount and stable isotopic signatures of organic carbon in carbonaceous fault gouge and unaltered and altered Ordovician Valmy Formation (upper plate) host rocks were determined at the Savannah River Ecology Laboratory (SREL). Each sample was powdered, weighed, and subjected to fuming HCl digestion for 24 hours at room temperature to remove all inorganic (carbonate) material. After rinsing and drying, the acid-insoluble residue was weighed again and sealed in clean tin capsules; the resulting  $\delta^{13}$ C isotopic analysis follows the procedure outlined by Graves et al. (2002). The amount and isotopic signature of organic carbon in pebble dike/breccia matrix were determined at the Stable Isotope/Soil Biology Laboratory, University of Georgia Institute of Ecology, utilizing a Carlo Erba NA1500, CHN, Elemental Analyzer coupled to a Finnigan Delta C Mass Spectrometer via a Finnigan Conflo II Interface following similar methods (outlined above) and described by Coleman and Fry (1991) (Table 3.4).

Vein ore and gangue mineral identification, homogeneity (for isotope analysis), and composition were verified using transmitted and reflected light microscopy and a JEOL 8600 Electron Microprobe (Department of Geology, University of Georgia).

Carbon, oxygen, and sulfur stable isotope analyses from carbonate rocks and vein carbonate, sulfide, and sulfate minerals were conducted using vacuum extraction lines and a dual inlet Finnigan MAT 252 mass spectrometer (Stable Isotope Laboratory, Department of Geology, University of Georgia). Electron microprobe software, standards, operating conditions, and routines and techniques and standards associated with the stable isotope analyses are described in Kelson et al. (2005). Oxygen from vein quartz samples was analyzed at the Department of Earth and Planetary Sciences, University of New Mexico, using the laser fluorination technique of Sharp (1995) with a 25W Merchatek laser and BrF<sub>5</sub> as the fluorinating agent. The liberated O<sub>2</sub>, frozen directly into a Finnigan MAT 251 mass spectrometer inlet system after passing through

# Table 3.4: $\delta^{13}$ C data for organic carbon-bearing rocks, breccias, and fault gouge, northern Shoshone Range.

| Deposit | Sample      | Description                                                         | % organic carbon | $\delta^{13}C_{PDB}$ |
|---------|-------------|---------------------------------------------------------------------|------------------|----------------------|
|         |             |                                                                     | in sample        |                      |
| HT      | CK98-01     | Unaltered Valmy Formation quartzite                                 | 0.07             | -27.3                |
| HT      | CK98-02     | Unaltered Valmy Formation argillite                                 | 0.49             | -28.0                |
| HT      | CK98-03     | Unaltered Valmy Formation chert                                     | 0.27             | -29.1                |
| HT      | CK98-05     | Bleached and recrystallized Valmy chert near contact with intrusion | 0.02             | -30.1                |
| HT      | CK98-13     | Partially bleached Valmy chert above Hilltop's Main Zone            | 0.06             | -22.9                |
| HT      | CK98-15     | Unaltered Valmy Formation siltstone                                 | 0.09             | -25.9                |
| HT      | CK98-16     | Unaltered Valmy Formation siltstone                                 | 0.4              | -28.7                |
| HT      | 97-15-590.5 | 2"-wide carbonaceous fault gouge                                    | 3.78             | -30.2                |
| HT      | 97-16-529.3 | 1"-wide carbonaceous fault gouge                                    | 0.76             | -28.7                |
| HT      | 97-16-550   | < 3"-wide carbonaceous "dike" / fault gouge                         | 3.91             | -29.8                |
| HT      | BURNS-01    | Unaltered Valmy Formation chert directly below Main Zone            | 0.08             | -29.4                |
| BON     | GRIT-08     | Black fault gouge                                                   | 0.25             | -28.7                |
| BON     | GRIT-12     | Black argillite with disseminated pyrite                            | 0.47             | -27.8                |
| BD      | BD-17*      | Black matrix in unmineralized pebble dike / breccia                 | 0.38             | -29.1                |
| BD      | BD-23*      | Black matrix in unmineralized pebble dike / breccia                 | 0.63             | -28.4                |
| BD      | BD-25*      | Black matrix in unmineralized pebble dike / breccia                 | 0.98             | -29.5                |

Notes:

HT = Hilltop mine; BON = Betty O'Neal mine; BD = Blue Dick mine.

For all carbon and oxygen isotope values  $\sigma$  = 0.19 per mil; samples analyzed at Savannah River Ecology Lab (SREL).

\* For all carbon isotope values  $\sigma = 0.09$  per mil; samples analyzed at The Stable Isotope/Soil Biology Lab,

University of Georgia Institute of Ecology.

NaCl to eliminate any remaining traces of  $F_2$  gas, was desorbed from 5A molecular sieve by heating to 90°C for 10 minutes.

Salinity and homogenization temperatures of primary fluid inclusions within vein quartz were measured with a Fluid Inc. gas-flow heating/freezing system attached to a Leitz Laborlux S transmitted light microscope. Homogenization temperature accuracy is better than 1% of the measured value, and freezing point depressions are accurate within 1°C.

Geochronology of intrusive igneous rocks and vein mineralization was established using <sup>40</sup>Ar/<sup>39</sup>Ar analyses of primary, unaltered (verified by transmitted light microscopy) biotite and/or amphibole separates handpicked from crushed rocks, and K-bearing gangue clay minerals separated from mineralized veins. Analyses were performed at the Radiogenic Isotope Laboratory (RIL, Department of Geological Sciences, The Ohio State University), the New Mexico Geochronological Research Laboratory (NMGRL, New Mexico Bureau of Geology and Mineral Resources), and the Pacific Centre for Isotopic and Geochemical Research (PCIGR, Department of Earth and Ocean Sciences, University of British Columbia). Sample GM-3 was used as an inter-laboratory standard. Ages for molybdenite were determined by the Re-Os method at AIRIE, Colorado State University.

 $^{40}$ Ar/ $^{39}$ Ar analyses of CK02-8 (potassium feldspar and muscovite), GM-10 (potassium feldspar), and GM-3 (biotite) were performed at PCIGR. Mineral separates were wrapped in aluminum foil and stacked in an irradiation capsule with similar-aged samples and neutron flux monitors (Fish Canyon Tuff sanidine, 28.02 Ma (Renne et al., 1998)). The samples were irradiated on October 20, 2005 at the McMaster Nuclear Reactor in Hamilton, Ontario, for 24 MWH, with a neutron flux of approximately  $3x10^{16}$  neutrons/cm<sup>2</sup>. Analyses (n=56) of 14 neutron flux monitor positions produced errors of <0.5% in the J value. The samples were baked

at ~120°C for four days prior to analysis on November 14 and 15 and December 7 and 8, 2005, at the Noble Gas Laboratory, PCIGR. The separates were step-heated at incrementally higher powers in the defocused beam of a 10W CO<sub>2</sub> laser (New Wave Research MIR10) until fused. The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier. All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, radioactive decay during and subsequent to irradiation, as well as interfering Ar from atmospheric contamination and the irradiation of Ca, Cl and K (isotope production ratios:  $({}^{40}\text{Ar}/{}^{39}\text{Ar})\text{K}=0.0302$ ,  $({}^{37}\text{Ar}/{}^{39}\text{Ar})\text{Ca}=1416.4306$ ,  $({}^{36}\text{Ar}/{}^{39}\text{Ar})\text{Ca}=0.3952$ , Ca/K=1.83 $({}^{37}\text{Ar}\text{Ca}/{}^{39}\text{Ar}\text{K})$ .

All other geochronology methodologies are detailed in Kelson et al. (2005).

### **Intrusive Igneous Rocks**

Northern Shoshone Range igneous rocks are part of the greater Tuscarora magmatic belt; a west-northwest-trending swath of 43-37 Ma, predominantly calc-alkalic, intermediate to felsic igneous rocks erupted or emplaced across northern and northeastern Nevada and west-central Utah (Armstrong, 1970; Stewart and McKee, 1977; Silberman, 1985; White, 1985; Christiansen and Yeats, 1992; Kelson et al., 2005; and this study). Coeval volcanic equivalents of northern Shoshone Range intrusive igneous rocks have not been identified (Gilluly and Gates, 1965).

# Petrography and mineralogy

Intrusive igneous rocks are emplaced along a west-northwest trend throughout the northern Shoshone Range (Gilluly and Gates, 1965; Kelson et al., 2000; Kelson et al, 2005) and underlie most of the area (Fig. 3.4). Samples of unaltered, subalkaline igneous rocks collected for this study include granite, granodiorite, and basaltic andesite (Fig. 3.5) (Le Maitre, 2002). These rocks occur as variably sized stocks, plugs, or dikes located both distal and proximal to (or host) base- and precious-metal bearing vein deposits; others are associated with molybdenite (porphyry)-type mineralization and others are completely barren.

The Granite Mountain stock is the largest (~10 km<sup>2</sup>) exposed intrusion in the northern Shoshone Range. It consists mostly of granodiorite (GM-3) with variably sized inclusions of amphibolite (GM-4) (oldest), quartz diorite porphyry, and granodiorite porphyry (youngest); granitic components (GM-6) are also present. Quartz diorite porphyry (GM-15) occurs peripherally to the stock, and aplite (CK02-8) and rhyolite dikes (GM-10) post-date all other phases. The granodiorite is light gray in color and is mineralogically similar to the intrusive rocks at Tenabo and Hilltop; major phases include equigranular quartz, hornblende, biotite, plagioclase, and K-feldspar. Accessory phases include magnetite, apatite, and sphene (Gilluly and Gates, 1965; and this study). Fragments of country rocks within the stock are rare, suggesting passive emplacement.

Aplite dikes are white-light tan, rarely more than 20 cm wide, and contain essentially no macroscopic minerals; electron microprobe analysis reveals  $\leq 1$  mm-long grains of mostly K-feldspar, muscovite, and quartz with minor amounts of hematite and thorite. Dark brown, fine-grained rocks originally described as lamprophyre dikes by Gilluly and Gates (1965) are in fact



Figure 3.4: Aeromagnetic map of the northern Shoshone Range study area and adjacent areas, band pass filtered to emphasize magnetic structures and bodies between the surface and 500 m. Red colors indicate magnetic "highs" (e.g. igneous rocks); blue colors indicate magnetic "lows" (e.g. limestone). Courtesy of Placer Dome U.S., Inc. See Fig. 3.2 for mineralized area (stars) legend.



Figure 3.5: Whole rock chemical data plot for least altered northern Shoshone Range igneous rocks compared to igneous rocks related to porphyry systems (modified from Le Maitre, 2002; Seedorff et al., 2005). See Table 3.3 for sample number identification.

rhyolites (GM-10), composed of quartz, ilmenite, K-feldspar (fresh cores with argillized rims), chlorite, barite, dolomite ( $\pm$  Fe), apatite, hematite, and rare fresh biotite. The abundance of chlorite (as groundmass and biotite replacement), carbonate, and argillized feldspars probably indicate pneumatolytic alteration of the rock's original minerals by volatile-rich fluids. Based on  $^{40}$ Ar/ $^{39}$ Ar data, the aplite and rhyolite dikes are essentially contemporaneous.

None of the phases within the Granite Mountain stock are mineralized or exhibit largescale, pervasive, hydrothermal alteration indicative of porphyry-type mineralization. Alteration halos between the granitic host rock and all other phases and inclusions are absent; only country rocks in contact with the stock exhibit minimal and limited alteration (bleaching, hornfels). However, the Granite Mountain stock hosts two base- and precious-metal-bearing veins (the Gray Eagle mine and an unnamed prospect) and several isolated groups of barren quartz + barite ± carbonate veins.

The Hobo Gulch intrusion, located 0.5 km south of the Hilltop gold deposit, is a small (< 0.5 km<sup>2</sup>) granitic stock and probably represents the westernmost extension of the larger, mostlyburied Park Saddle – Granite Mountain pluton (Fig. 3.4). The relationship of the Hobo Gulch intrusion to four coextensive, cospatial, and rootless felsic dikes (oldest to youngest, based on cross-cutting relationships: diorite, feldspar porphyry, quartz feldspar porphyry, granodiorite) within the Hilltop deposit (Kelson et al., 2000) is difficult to establish. These felsic dikes are locally fractured or sheared and mineralized.

Unlike the Granite Mountain stock, portions of the Hobo Gulch intrusion and all of Hilltop's felsic dikes exhibit varying degrees of phyllic, propylitic, and/or argillic alteration. Ordovician Valmy Formation rocks are frequently bleached and recrystallized adjacent to the

Hobo Gulch intrusion; organic carbon-rich chert and argillite beds are commonly recrystallized into a featureless, amorphous white rock near the contact (Kelson et al., 2000) (Table 4.4). Alteration of country rocks near the felsic dikes is minimal. The upper portion of the Hobo Gulch intrusion and Hilltop's felsic dikes contain fragments of altered (bleached) Valmy Formation rocks in varying amounts (up to 90% of the total igneous rock, locally), sizes ( $\leq$ 0.5m), and angularity. An unmineralized, rock flour-matrix breccia pipe containing clasts of altered Valmy Formation rocks and altered intrusive igneous rocks mantles the Hobo Gulch intrusion. Molybdenite + chalcopyrite-bearing quartz veins occur along the periphery and in the cupola of the Hobo Gulch intrusion, within adjacent country rocks, and within Hilltop's felsic dikes.

An unmineralized, dark gray basaltic andesite (GRIT-53) is exposed only on the northwest flank of the northern Shoshone Range near the Betty O'Neal mine, and is interpreted as a hypabyssal intrusion. This rock contains macroscopic phenocrysts of feldspar, biotite, clinopyroxene, pyrite, and abundant  $\leq 2$  cm, white/clear quartz xenocrysts in a groundmass of carbonate, clinopyroxene, feldspar, and minor pyrite/ilmenite/magnetite. Biotite phenocrysts are partially or completely altered to epidote  $\pm$  chlorite  $\pm$  pyrite; feldspars contain fresh cores surrounded by a thin argillized rim, and clinopyroxene phenocrysts are completely altered to carbonate  $\pm$  pyrite. The quartz xenocrysts have a sub-rounded to rounded morphology and exhibit evidence of chemical disequilibrium (embayments and rims altered to fine-grained pyroxene) with the surrounding groundmass. The quartz xenocrysts closely resemble pieces of Betty O'Neal mine quartz veins, suggesting the intrusion post-dates vein mineralization. Classification of this rock (basaltic andesite) based on whole-rock geochemistry is difficult due to the SiO<sub>2</sub> contributed by the quartz xenocrysts.

Eocene basaltic andesites are uncommon within the northern Carlin trend, and pre-date gold mineralization within the Carlin trend (Ressel and Henry, in review).

#### Major and trace element geochemistry

Although detailed geochemical analysis of northern Shoshone Range igneous rocks is not the main focus of this study, major and trace element data were collected to identify any geochemical differences between barren igneous rocks (CK02-8, CK02-14, GM-3, GM-4, GM-6, GM-10, GM-15, and GRIT-53) and igneous rocks more closely associated with mineralization (HT02-5, T99413-570, PH-156-260). Major element geochemical data show that igneous rocks collected throughout the northern Shoshone Range have variable alkali contents (Na<sub>2</sub>O + K<sub>2</sub>O range from 2.56% to 4.84%) and mostly plot as granodiorites and granites on a total alkali-silica diagram (Le Maitre, 2002) (Fig. 3.5). Two samples (CK02-8 and PH-156-260) are not plotted; each contains  $\sim$ 87 wt % SiO<sub>2</sub> representing late-stage, silica-rich aplite and altered (silicified) granite, respectively.

All least-altered igneous rocks are plotted on chondrite-normalized REE diagrams using values from Sun (1980) and Sun and McDonough (1989) and MORB-normalized spider diagrams using values from Pearce (1983). The five igneous phases present within the Granite Mountain stock are shown together (Figs. 3.6 and 3.7). Samples GM-3, GM-6, and GM–15 (granodiorite-granite) are enriched in LREE relative to the HREE, typical of felsic liquids containing feldspar, hornblende, apatite, and sphene; GM-10 (brown rhyolite dike) and the other igneous rocks exhibit similar LREE-enriched patterns. The negative Eu anomaly in GM-4 (amphibolite inclusion) supports the paucity of feldspar in the sample and/or an Eu-depleted (or

Figure 3.6 (following page): Chondrite-normalized REE diagrams for least altered igneous rocks, northern Shoshone Range, compared to other Eocene igneous rocks associated with mineralization in the Carlin trend (data from Ressel et al., in review). Normalization values from Sun (1980). See Table 3.3 for sample data.


Figure 3.7 (following page): MORB-normalized spider diagrams for least altered igneous rocks, northern Shoshone Range. Normalization values from Pearce (1983). See Table 3.3 for sample data.







Eu-retaining) magma source (Rollinson, 1995); the large negative Eu anomaly in the aplite dike (CK02-8) is probably due to the extensive removal of plagioclase or residual plagioclase in the source material. Rare earth element patterns for northern Shoshone Range igneous rocks are similar to Eocene porphyritic dikes and aphyric rhyolites (n = 39) associated with gold mineralization within the Carlin trend (Ressel and Henry, in review). The spider diagram patterns (Fig. 3.7) are typical of felsic igneous rocks, except for the exaggerated patterns of CK02-8 (aplite dike) and GM-4 (amphibolite inclusion). Elevated Cr concentrations in GRIT-53 and T99413-570 probably reflect contamination from the laboratories' sample preparation (e.g. crushing) equipment. Discrimination diagrams [Rb-(Y+Nb)] classify all igneous rocks studied here as volcanic arc granites (after Pearce et al., 1984) but do not delineate any major differences between mineralized and unmineralized samples.

## Geochronology

Kelson et al. (2005) and this study utilized <sup>40</sup>Ar/<sup>39</sup>Ar and Re-Os to determine the ages of northern Shoshone Range igneous rocks and mineralization. Previous workers (Silberman and McKee, 1971) obtained ages via K-Ar for some northern Shoshone Range igneous rocks; however, the <sup>40</sup>Ar/<sup>39</sup>Ar method offers more precise analyses and is more resistant to subsequent thermal disturbances than K-Ar. The Re-Os chronometer in molybdenite has been shown to endure thermal overprints (Stein et al., 1998; 2001; 2003; Selby and Creaser, 2001). Mineral separates analyzed include biotite, amphibole, muscovite, potassium feldspar, illite, and molybdenite; no whole rock analyses were performed. Fifteen of the seventeen samples analyzed via <sup>40</sup>Ar/<sup>39</sup>Ar from Kelson et al. (2005) and this study yielded plateau ages, each plateau represents more than 61% of the total <sup>39</sup>Ar released from similar-age adjacent portions of the release spectra. Two samples (DSC BXA, PH-156 260) yield no plateau, probably indicating sample disturbance and excess or loss of <sup>40</sup>Ar (Lanphyre and Dalrymple, 1976). Construction of <sup>36</sup>Ar/<sup>40</sup>Ar vs. <sup>40</sup>Ar/<sup>39</sup>Ar plots (utilizing all steps) and calculation of isochron ages were done for samples yielding no age plateau. Isochron ages are determined by the slope and intercept of a line drawn through points representing <sup>36</sup>Ar/<sup>40</sup>Ar and <sup>40</sup>Ar/<sup>39</sup>Ar ratios measured from each released gas fraction, and indicate sample age and excess or loss of radiogenic Ar relative to atmosphere (York, 1969; Steiger and Jäger, 1977). Previous age data for igneous rocks obtained via conventional K-Ar analysis are compiled with <sup>40</sup>Ar/<sup>39</sup>Ar and Re-Os age data from Kelson et al. (2005) and this study and summarized in Table 3.5 and Figure 3.8. All previous and present <sup>40</sup>Ar/<sup>39</sup>Ar ages reported in Table 3.5 and Figure 3.8 have been normalized relative to 28.02 Ma Fish Canyon sanidine (Renne et al., 1998).

# <sup>40</sup>Ar/<sup>39</sup>Ar age spectra; igneous rocks

Northern Shoshone Range igneous rocks yield ages between 39.7 and 38.5 Ma. Most sample ages are calculated from gas released from at least three contiguous steps (plateaus); total gas ages are used when no plateau is defined. Early heating steps of biotite and hornblende separates typically exhibit anomalous K/Ca values and low amounts of released radiogenic gas, probably indicating alteration or small amounts of contaminants in the minerals' rims (see Appendix B for all  $^{40}$ Ar/ $^{39}$ Ar age spectra and associated data). The spectrum for GRIT-53 biotite yields a plateau containing > 87% of the gas released, not including step H (inaccurate due to

Table 3.5 (following page): Summary of all K-Ar, Ar/Ar, and Re-Os geochronology data for northern Shoshone Range igneous rocks, molybdenite (porphyry) mineralization, and vein-hosted mineralization.

|                                             |                                           |                                     |                                               |                                         |           |                   |                    | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>40</sup> Ar/ <sup>39</sup> Ar |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------|-----------|-------------------|--------------------|------------------------------------|------------------------------------|------------------------------------|-------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample No.                                  | Sample                                    | Mineral                             | Re, ppm                                       | <sup>187</sup> Os, ppb                  | % K20     | Plateau           | Plateau            | Plateau                            | Isochron                           | Total Gas                          | K-Ar              | Re-Os             | Reference | Host Rock / Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (AIRIE #)                                   | Location                                  | Analyzed                            |                                               |                                         |           | Steps             | % <sup>39</sup> Ar | Age (Ma)                           | Age (Ma)                           | Age (Ma)                           | Age (Ma)          | Age (Ma)          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M-125                                       | Tenaho                                    | hiotite                             |                                               |                                         | 8 24      |                   |                    |                                    |                                    |                                    | 348+07            |                   | -         | Dikes that intrude the Tenaho stock and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | 10110000                                  | sanidine                            |                                               |                                         | 11 6      |                   |                    |                                    |                                    |                                    | 347+07            |                   |           | snatially associated with nold-nuartz veins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| M-124                                       | Tenabo                                    | biotite                             |                                               |                                         | 8.79      |                   |                    |                                    |                                    |                                    | 38.2 + 0.8        |                   | -         | Tenabo stock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M-123                                       | Tenabo                                    | biotite                             |                                               |                                         | 7.99      |                   |                    |                                    |                                    |                                    | 37.4 <u>+</u> 0.8 |                   | -         | Tenabo stock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                           | homblende                           |                                               |                                         | 1.08      |                   |                    |                                    |                                    |                                    | 38.2 ± 0.8        |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T99413-570                                  | Tenabo                                    | biotite                             |                                               |                                         | 8.04      | 8                 | 85.6               | 39.3 ± 0.1                         |                                    |                                    |                   |                   | 2         | Tenabo stock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T99413-560                                  | Tenabo                                    | molybdenite                         | 58 (2)                                        | 23.82 (7)                               |           |                   |                    | 1                                  |                                    |                                    |                   | 39.0 ± 1.4        | 2         | Quartz wein within the Tenabo stock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (MDID-49)                                   |                                           |                                     |                                               |                                         |           |                   |                    |                                    |                                    |                                    |                   | 1                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XCR-6 340-380                               | Park Sdle                                 | molybdenite                         | 0.5769 (2)                                    | 0.2432 (2)                              |           |                   |                    |                                    |                                    |                                    |                   | 40.2 ± 0.1        | 2         | Molybdenite + pyrite disseminated in feldspar porphyry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (MDID-291)                                  |                                           |                                     |                                               |                                         |           |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MB7                                         | Gr Mtn                                    | biotite                             |                                               |                                         | 7.66      |                   |                    |                                    |                                    |                                    | 38.0 ± 0.8        |                   | -         | Granodiorite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                           | homblende                           |                                               |                                         | 0.95      |                   |                    |                                    |                                    |                                    | 36.7 ± 0.7        |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M119                                        | Gr Mtn                                    | biotite                             |                                               |                                         | 7.25      |                   |                    |                                    |                                    |                                    | 37.0 ± 0.7        |                   | -         | Granodiorite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             |                                           | homblende                           |                                               |                                         | 0.89      |                   |                    |                                    |                                    |                                    | 36.0 ± 0.7        |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM-3 (R)                                    | Gr Mtn                                    | biotite                             |                                               |                                         | 7.9       | 19                | 96                 | 38.3 ± 0.4                         | 37.8 ± 0.2                         |                                    |                   |                   | 2         | Granodiorite. STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GM-3 (N)                                    | Gr Mtn                                    | biotite                             |                                               |                                         | 7.73      | 7                 | 97.1               | 38.6 ± 0.1                         |                                    |                                    |                   |                   | N         | Granodiorite. STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GM-3 (U)                                    | Gr Mtn                                    | biotite                             |                                               |                                         | NR        | თ                 | 90.8               | 39.5 ± 0.2                         | 39.5 ± 0.3                         |                                    |                   |                   | ω         | Granodiorite. STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CK02-08                                     | Gr Mtn                                    | muscovite                           |                                               |                                         | NR        | თ                 | 97.4               | 38.4 ± 0.5                         | 38.5 ± 0.6                         |                                    |                   |                   | ω         | Aplite dike hosted by Granite Mountain stock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             | Gr Mtn                                    | k-feldspar                          |                                               |                                         | i R       | 4                 | 84.1               | 38.8 ± 0.5                         | 38.9 ± 2.1                         |                                    |                   |                   | >         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GIVI-IO                                     | GIMUI                                     | K-Ieluspai                          |                                               |                                         | AN A      | n 0               | 3 3                | 39.0 1 0.3                         | 39.0 <u>+</u> 0.0                  |                                    |                   |                   | ى د       | Constant of the second of the |
| CIVI-C                                      | CI IVILI                                  | homblende                           |                                               |                                         | 1.29      | o (               | 61.3               | 39.2 + 0.2                         |                                    |                                    |                   |                   | r         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM-15                                       | Gr Mtn                                    | biotite                             |                                               |                                         | 8.31      | 7                 | 86.5               | 39.3 + 0.1                         |                                    |                                    |                   |                   | 2         | Granite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             |                                           | homblende                           |                                               |                                         | 1.09      | 7                 | 71.9               | 39.0 ± 0.1                         |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GE-02                                       | Gray Eagle                                | muscovite                           |                                               |                                         | 4.36      | 15                | 100                | 38.3 ± 0.1                         |                                    |                                    |                   |                   | ω         | Sulfide-bearing quartz vein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CK02-14                                     | May. Sum.                                 | homblende                           |                                               |                                         | 0.23      | 8                 | 95.4               | 39.0 ± 0.3                         |                                    |                                    |                   |                   | ω         | Granite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MB8                                         | Hilltop                                   | homblende                           |                                               |                                         | 1.02      |                   |                    |                                    |                                    |                                    | 38.1 ± 0.8        |                   |           | Hilltop stock (Hobo Gulch intrusion?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PH-156 260                                  | Hilltop                                   | biotite                             |                                               |                                         | 8.36      |                   |                    |                                    | (1)                                | 38.6 ± 0.1                         |                   |                   | ω         | Hobo Gulch intrusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HT02-5                                      | Hilltop                                   | biotite                             |                                               |                                         | 3.2       | თ                 | 84.4               | 39.3 ± 0.4                         |                                    |                                    |                   |                   | ω         | Hobo Gulch intrusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DSC BXA                                     | Hilltop                                   | muscovite                           |                                               |                                         | 3.3       |                   |                    |                                    | 35.9 ± 0.4 4                       | 42.4 <u>±</u> 0.4                  |                   |                   | 22        | Mixed muscovite/smectite clay from gold-bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 07 6 00                                     |                                           |                                     | 10 10 10                                      | 10/ 2/07                                |           |                   |                    |                                    |                                    |                                    |                   |                   | 3         | discordant quartz breccia pipe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (MDID-63)                                   | quille                                    | moybuente                           | 142.34 (3)                                    | 09.7 (Z)                                |           |                   |                    |                                    |                                    |                                    |                   | 40.1 <u>+</u> 0.2 | ~         | Quartz vent within Hobo Guich intrusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 97-10 106.1                                 | Hilltop                                   | molybdenite                         | 51 (2)                                        | 21.88 (3)                               |           |                   |                    |                                    |                                    |                                    |                   | 40.6 ± 1.2        | 2         | Quartz win hosted by Ordovician Valmy argillite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (MDID-51)                                   |                                           |                                     |                                               |                                         |           |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97-10 106.1                                 | Hilltop                                   | molybdenite                         | 49.59 (3)                                     | 21.06 (4)                               |           |                   |                    |                                    |                                    |                                    |                   | 40.5 ± 0.2        | 2         | Replicate analysis to improve spiking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (MDID-64)                                   |                                           |                                     |                                               |                                         |           |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (MDID-290)                                  | HIITOP                                    | molybdenite                         | 18.5 (Z)                                      | 7.79 (b)                                |           |                   |                    |                                    |                                    |                                    |                   | 40.2 ± 0.4        | N         | Molybdenite + chalcopyrite-bearing quartz vein in<br>brecciated Ordovician Valmy Formation rocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GRIT-53                                     | Betty O'Neal                              | biotite                             |                                               |                                         | 8.31      | 6                 | 87.7               | 38.6 ± 0.1                         |                                    |                                    |                   |                   | ω         | Hypabyssal basaltic andesite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Notoo:                                      |                                           |                                     |                                               |                                         |           |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Deferment 4) C                              | bosson and b                              | A-V->> /40741- 0                    | N Koloop of                                   | 000000000000000000000000000000000000000 | This of   |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (R) = Standard ar                           | nalyzed at the                            | Radiogenic Iso                      | <ol> <li>Kelson et<br/>tope Labora</li> </ol> | al. (2005); 3<br>tory, The Ohi          | o State L | dy.<br>Jniversity |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (N) = Standard at                           | nalyzed at the                            | New Mexico G                        | eochronolog                                   | jical Researc                           | h Labora  | tory, New         | Mexico             | Institute of N                     | Mining and Te                      | chnology.                          |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (U) = Standard a                            | nalyzed at the                            | Argon Geochro                       | nology Labo                                   | pratory, Pacif                          | IC Centre | for Isoto         | pic and C          | eochemical                         | Research, L                        | Jniversity of                      | British Colu      | mbia              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| For Re and ''' Os                           | concentration                             | i data, absolute                    | uncertaintie                                  | es shown, all                           | at two si | gma leve          | , for last         | digit indicate                     | d.                                 |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Uncertainties for                           | all <sup>40</sup> Ar/ <sup>39</sup> Ar ag | jes are listed in                   | Appendix E                                    | Ű                                       |           |                   |                    |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| All <sup>40</sup> Ar/ <sup>39</sup> Ar ages | for samples n                             | eported in Kels                     | on et al. (20                                 | 05) and in th                           | s study I | have beer         | normali            | zed relative t                     | o 28.02 Ma                         | Fish Canyor                        | Sanidine.         |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Park Sdle = Park<br>See Kelson et al.       | (2005) for all (                          | tn = Granite Mo<br>other informatio | n recardino                                   | y Sum = May<br>Re-Os analv              | ses and i | mmit<br>nethodol  | ogies              |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Contraction of Million                      | (maaa)                                    |                                     |                                               | 100 00 0100                             | 000       |                   | 00.001             |                                    |                                    |                                    |                   |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figure 3.8 (following page): Summary of all geochronology (K-Ar, Ar/Ar, Re-Os) data for igneous rocks and molybdenite mineralization and vein-associated minerals, northern Shoshone Range. See Table 3.5 for sample descriptions and references.



mass spectrometer problem during analysis). Plateaus comprised of at least 5-steps and 83% gas released define the ages of most samples. The age of PH-156 260 biotite is based on the total amount of gas released, as step heating did not yield a definable plateau.

Biotite and hornblende separates were analyzed from GM-6 and GM-15 and subsequent plateau ages calculated from at least 61% released gas over five to eight contiguous steps. Since the plateau ages represent the time of closure to Ar loss associated with magma cooling below 550°C (hornblende) and 350°C (biotite) (McDougall and Harrison, 1999), a maximum cooling rate of 200°C / 480 k years for GM-3 (northern tip of the Granite Mountain stock) may be estimated. However, due to the similar plateau ages of biotite and hornblende from both samples, the Granite Mountain stock probably cooled quickly implying a relatively shallow level of emplacement.

Potassium feldspar from GM-10 (rhyolite dike) yields an  ${}^{40}$ Ar/ ${}^{39}$ Ar age of 39.6 ± 0.3 Ma (older than the host granite) based on a hump-shaped release spectra with a 3-step plateau accounting for 75% of released  ${}^{39}$ Ar, and represents a maximum sample age.

## <sup>40</sup>Ar/<sup>39</sup>Ar age spectra; clay minerals

Two clay minerals were analyzed to constrain ages of base and precious-metal mineralization. DSC BXA (mixed-layered muscovite/smectite) required no separation and was identified via X-ray diffraction (XRD) prior to encapsulation and <sup>40</sup>Ar/<sup>39</sup>Ar analysis (Kelson et al., 2005). Sample GE-02 (muscovite) was identified via microscopy and did not require encapsulation after separation. DSC BXA (muscovite/smectite) was recovered from the gold-

bearing matrix of the Hilltop deposits' discordant quartz breccia pipe, and GE-02 (muscovite) was separated from an ore-bearing quartz vein from the Gray Eagle mine.

Sample DSC BXA did not yield a plateau age; however, corrected ages of  $35.9 \pm 0.4$  Ma (isochron) and  $42.4 \pm 0.4$  Ma (total gas) are calculated based on three heating steps. Although the data are poorly resolved, the isochron age is probably more accurate. The source of excess  $^{40}$ Ar (isochron intercept  $^{36}$ Ar/ $^{40}$ Ar = 0.0031; atmosphere = 0.0034) is unclear.

Sample GE-02 (muscovite) yielded a well-behaved, 15-step plateau age of  $38.3 \pm 0.1$  Ma. See Appendix B for all  $^{40}$ Ar/ $^{39}$ Ar data for igneous rocks and mineralized samples from the northern Shoshone Range.

### *Re-Os data; molybdenite (porphyry mineralization)*

Five molybdenites from four samples from the Hilltop district yield ages from  $40.1 \pm 0.2$ to  $40.6 \pm 1.2$  Ma with a weighted mean of  $40.2 \pm 1.7$  Ma (MSWD = 2.4, 95% CL). A single molybdenite sample from the Tenabo deposit yields a  $39.0 \pm 1.4$  Ma age (Kelson et al., 2005).

## **Relationship between Magmatism and Mineralization**

<sup>40</sup>Ar/<sup>39</sup>Ar and Re-Os data

Rhenium-osmium ages of molybdenite from the Hilltop district and Tenabo deposit are systematically slightly older than  $^{40}$ Ar/ $^{39}$ Ar ages for primary biotite and hornblende from nearby intrusive igneous rocks. The age difference is interpreted here as the delay in isotopic closure of

argon-based systematics in a thermally perturbed regime (e.g. Stein et al., 2001). Thus, the Re-Os and  ${}^{40}$ Ar/ ${}^{39}$ Ar ages both record an association between pluton emplacement and molybdenite mineralization (Table 3.5).

#### Fluid inclusion data from vein deposits

Primary fluid inclusion homogenization temperature and salinity measurements were made from fifteen quartz vein samples from six separate deposits (Table 3.6). Secondary and pseudosecondary fluid inclusions were not considered. Primary fluid inclusions were frozen before being subjected to heating tests; homogenization temperatures (i.e. *minimum* fluid trapping temperatures) range from  $109^{\circ}$ C to  $425^{\circ}$ C (n = 179) and salinities from six deposits range from 0 to 6.4 equiv wt % NaCl. Primary fluid inclusion homogenization temperatures and salinities also vary within the same vein, yielding a range of calculated vein quartz source fluid  $(\delta^{18}O)$  signatures. Primary fluid inclusion data are pressure corrected assuming quartz deposition at one km depth under lithostatic pressure (25 MPa; Potter, 1977; Ehlers and Blatt, 1980) as no evidence of boiling was observed. All measured inclusions homogenized by disappearance of the vapor bubble and contained no daughter salts. Variations in vein quartz opacity, color (clear to milky white), and morphology affected the number of measurable fluid inclusions. Earlier fluid inclusion measurements (Lisle and Desrochers, 1988) from Hilltop's discordant quartz breccia pipe generally agree with data presented here, although Lisle and Desrochers (1988) also noted vapor-dominated inclusions.

Table 3.6: Salinity and homogenization temperatures for primary fluid inclusion as well as oxygen isotope compositions of host vein quartz, northern Shoshone Range vein deposits.

|              |             | Number of  |          |           | Solipity    |                         | \$190          |
|--------------|-------------|------------|----------|-----------|-------------|-------------------------|----------------|
| <b>D</b>     | <b>•</b> •  |            |          |           | Saining     | 4031                    | 0100           |
| Deposit      | Sample      | Inclusions | Measured | Th (°C)   | Range       | $10^{\circ} \ln \alpha$ | source fluid   |
|              |             | Measured   | δ'°O     |           | eq.wt% Nacl | Quartz-Water            | (calculated)   |
|              |             |            |          |           |             |                         |                |
| Gray Eagle   | GE-X1-B     | 30         | 13.89    | 295 - 380 | 4.2 - 6.2   | 7.7 - 5                 | 6.2 - 8.9      |
| Gray Eagle   | GE-02       | 3          | 13.32    | 275 - 327 | 0 - 1.7     | 8.4 - 6.4               | 4.9 - 6.9      |
|              |             | 18         |          | 336 - 393 | 0 - 4.5     | 6.3 - 4.7               | 7.0 - 8.6      |
| Hilltop      | DSC BXA     | 13         | 6.99     | 109 - 175 | 0 - 0.2     | 18.8 - 13.8             | -11.8 to -6.8  |
|              |             | 3          |          | 270       | nm          | 8.6                     | -1.6           |
| Hilltop      | 97-10-106.1 | 15         | 14.66    | 306 - 350 | 1.9 - 2.9   | 7.3 - 6.7               | 7.4 - 8        |
| Hilltop      | CK02-4A     | 23         | 2.14     | 228 - 314 | 0 - 1.9     | 10.5 - 6.9              | -8.4 to -4.8   |
| Hilltop      | 97-10-841   | 4          | 11.1     | 195 - 259 | nm          | 12.5 - 12.2             | -1.4 - 2.1     |
| Betty O'Neal | GRIT-38B    | 4          | -0.26    | 270 - 280 | 0 - 3.4     | 8.6 - 8.2               | -8.9 to -8.5   |
| Betty O'Neal | GRIT-26B    | 8          | -0.97    | 156 - 206 | 1.6 - 2.2   | 15.2 - 11.9             | -16.2 to -12.9 |
| Blue Dick    | BD-21B lite | 0          | 5.46     | nm        | nm          | nm                      | nm             |
| Blue Dick    | BD-21B dark | 0          | 6.14     | nm        | nm          | nm                      | nm             |
| Kattenhorn   | KATT-1B     | 12         | 8.54     | 181 - 218 | 0.5 - 2.2   | 13.4 - 11               | -4.9 to -2.5   |
| Kattenhorn   | KATT-10     | 1          | 0.79     | 335       | nm          | 6.2                     | -5.4           |
| Lovie        | LOVIE-31    | 4          | 17.34    | 300 - 310 | nm          | 7.4 - 7                 | 9.9 - 10.3     |
|              |             | 11         |          | 325 - 383 | nm          | 6.6 - 4.9               | 10.7 - 12.4    |
|              |             | 2          |          | 425       | nm          | 4                       | 13.3           |
| Lovie        | LOVIE-22A   | 3          | 16.17    | 272       | 2.1         | 8.5                     | 7.67           |
|              |             | 4          |          | 205 - 230 | nm          | 11.9 - 10.4             | 4.27 - 5.77    |
| Lovie        | LOVIE-35B   | 21         | 16.7     | 300 - 377 | 4 - 6.4     | 7.4 - 5.1               | 9.3 - 11.6     |
|              |             |            |          |           |             |                         |                |

Notes:

1. Data only for primary fluid inclusions.

2. All oxygen isotope values relative to VSMOW.

3. nm = not measured.

4. All Th values pressure corrected (1 km depth, lithostatic conditions) using data from Potter (1977).

 $\delta^{18}$ O data indicate variable and mixed vein quartz source fluids. Source fluid signatures were calculated using the quartz-water fractionation equation of Clayton et al. (1972) with data from vein quartz  $\delta^{18}$ O (measured) and primary fluid inclusion homogenization temperatures. Calculated  $\delta^{18}$ O vein quartz source fluid compositions from six deposits range from nearly pure meteoric (e.g. Betty O'Neal mine) to nearly pure magmatic (e.g. Lovie mine); other deposits formed from variable mixtures of meteoric and magmatic fluids (Figs. 3.9, 3.10, and 3.11).  $\delta^{18}$ O reference values for primary granodioritic magmatic water and north-central Nevada meteoric water (ca. 40 Ma) are extrapolated from Beck (1992), Field and Fifarek (1985) and Ressel and Henry (in review).

 $\delta^{13}$ C and  $\delta^{18}$ O data from vein carbonate minerals and upper plate limestone range from – 11.7 to –0.2 per mil ( $\delta^{13}$ C) and –4.7 to 17.0 per mil ( $\delta^{18}$ O), indicating a mostly magmatic source ( $\delta^{13}$ C range –4 to –7 per mil;  $\delta^{18}$ O range –5 to 5 per mil) (Field and Fifarek, 1985). Relatively depleted  $\delta^{13}$ C values may indicate an organic carbon component ( $\delta^{13}$ C –27.8 per mil, average) from the upper plate host rocks (Table 3.7). Isotopically similar carbonaceous matter also occurs as unmineralized fault gouge ( $\delta^{13}$ C –29.3 per mil, average, Hilltop mine) and unmineralized pebble dike matrix ( $\delta^{13}$ C –29.0 per mil, average, Blue Dick mine). Upper plate carbonate lenses ( $\delta^{13}$ C –4.7 and  $\delta^{18}$ O 16.5 per mil, average) occur in the Lovie mine area and may have isotopically influenced Lovie mine vein carbonate minerals (Table 3.7, Fig. 3.12).

The  $\delta^{34}$ S values for vein sulfide minerals (n = 94) range from -19 to 22 per mil; vein barite (n = 25) values range from 5.9 to 21.9 per mil (Table 3.8). Most (95%) sulfide sulfur values coincide with other sulfide data from Cu-porphyry deposits (-3 to 9 per mil) and zoned



Figure 3.9: Salinity vs. homogenization temperature plot of primary fluid inclusion data from northern Shoshone Range ore-bearing quartz veins. KATT = Kattenhorn mine; HT = Hilltop deposit; LOVIE = Lovie mine; GE = Grey Eagle mine; BON = Betty O'Neal mine.



Figure 3.10: Plot of salinity vs. calculated  $\delta^{18}$ O for fluids associated with ore-bearing vein quartz. KATT = Kattenhorn mine; HT = Hilltop deposit; LOVIE = Lovie mine; GE = Grey Eagle mine; BON = Betty O'Neal mine.



Figure 3.11: Plot of primary fluid inclusion homogenization temperatures vs. calculated  $\delta^{18}$ O for fluids associated with vein quartz carrying epithermal – porphyry-type base- and precious metal mineralization. Figure 3.10: Plot of salinity vs. calculated  $\delta^{18}$ O for fluids associated with orebearing vein quartz. KATT = Kattenhorn mine; HT = Hilltop deposit; LOVIE = Lovie mine; GE = Grey Eagle mine; BON = Betty O'Neal mine.

Table 3.7:  $\delta^{13}$ C and  $\delta^{18}$ O data for carbonate gangue minerals and upper plate (?) limestone,

northern Shoshone Range vein deposits. Data from Kelson et al. (2005).

| Deposit | Sample       | Description                                                   | Host Rock               | $\delta^{13}C_{PDB}$ | $\delta^{18}O_{VSMOW}$ |
|---------|--------------|---------------------------------------------------------------|-------------------------|----------------------|------------------------|
| HT      | 97-8-106.8-1 | 1/2"-wide qtz vein with carb + py +cpy in center              | Phyl. altered Tgd       | -6.1                 | 2.9                    |
| HT      | 97-8-136-1   | F.g. carb in center of 3/4"-wide euhedral qtz vein            | Prop. altered Tgd       | -8.8                 | 3.3                    |
| HT      | 97-8-136-2   | 1/4"-wide envelope of euhedral carb bordering 97-8-136-1 vein | Prop. altered Tgd       | -11.7                | 6.0                    |
| HT      | 97-10-305.8  | 1/8"-wide envelope of carb+bar+kaol bordering qtz vein        | Prop. altered Tfp       | -2.5                 | 3.3                    |
| HT      | 97-11-168    | 1/2"-wide cal veinlet                                         | Valmy siliciclastics    | -8.7                 | 9.3                    |
| HT      | 97-11-700-2  | 1/8"-wide envelope of carb+bar bordering 97-11-700-3 vein     | Valmy siliciclastics    | -6.0                 | 12.8                   |
| HT      | 97-11-700-3  | 1/2" -wide carb+qtz+bar+rock frag vein                        | Valmy siliciclastics    | -5.2                 | 7.9                    |
| HT      | 97-13-221-1  | Euhedral cal xtals in f.g. groundmass (97-13-221-3)           | Phyl-prop alt Tgd       | -5.4                 | 2.4                    |
| HT      | 97-13-221-3  | F.g. carb+ser groundmass                                      | Phyl-prop alt Tgd       | -4.9                 | 2.7                    |
| HT      | 97-13-92.5   | < 1/2" -wide carb vein                                        | Phyl. altered Tfp       | -5.9                 | 14.4                   |
| HT      | 97-13-390-1  | Carb crystals along fracture                                  | GRDR                    | -3.2                 | 4.2                    |
| BON     | 1-8S-B-2     | < 3/4"-wide carb vein between massive qtz and wall rock       | Carb vein               | -3.4                 | 8.7                    |
| BON     | 05A-1        | Carb+qtz matrix between rock clasts                           | Breccia                 | -4.5                 | 7.3                    |
| BON     | 06A-1        | Carb matrix between rock clasts w/ gal+fah+sph                | Breccia                 | -3.4                 | 0.1                    |
| BON     | 29A-1        | 1/2"-wide cal vein (with rock clasts)                         | Massive qtz vein        | -3.7                 | -0.6                   |
| BON     | 32-1         | Massive carb                                                  | Massive carb vein       | -2.9                 | -1.3                   |
| BON     | 55-1         | Massive carb                                                  | Massive carb vein       | -3.4                 | 2.9                    |
| BON     | 10-1         | Piece of qtz+carb+bar with py+sph                             | Breccia                 | -7.4                 | 11.7                   |
| BON     | 64-1         | Massive carb                                                  | Massive carb vein       | -2.9                 | -4.7                   |
| BON     | 34-2         | qtz+carb matrix breccia with black siltstone(?) clasts        | Breccia                 | -2.4                 | -1.6                   |
| BON     | 07-2         | 1/2" -wide area of py+carb stockwork veinlets                 | Silicified siltstone(?) | -3.2                 | 3.2                    |
| Lovie   | 37-1         | Black and white carb breccia with silicified rock clasts      | Breccia                 | -1.6                 | 16.7                   |
| Lovie   | 42-2         | Massive cal cut by chl+ep veins                               | Massive cal vein        | -0.2                 | 17.0                   |
| Lovie   | 46-1         | Unaltered limestone float                                     | Limestone               | -4.7                 | 18.8                   |
| Lovie   | 46-2         | Unaltered limestone float                                     | Limestone               | -4.7                 | 14.1                   |
| UN      | CK02-13-1    | Piece of carb+py+cpy+sph <u>+</u> qtz vein (float)            | Vein                    | -3.8                 | -2.5                   |
| UN      | CK02-11-1    | Qtz+cal vein with ser+pv+gal+sph+fah+asp                      | Phyl-arg, altered Tod   | -2.3                 | 2.6                    |

Notes:

HT = Hilltop mine; BON = Betty O'Neal mine; Lovie = Lovie mine; UN = unnamed prospect.

Atleration: Phyl = phyllic; Prop = propylitic; Arg = argillic.

Tgd = Tertiary granodiorite; Tfp = Tertiary feldspar porphyry; GRDR = Granodiorite.

Carb = carbonate; py = pyrite; cpy = chalcopyrite; qtz = quartz; kaol = kaolinite; bar = barite; gal = galena; fah = fahlore; sph = sphalerite; asp = arsenopyrite; ser = sericite; chl = chlorite; cal = calcite; ep = epidote.

All data corrected using the fractionation factor of calcite at  $50^{\circ}C = 1.00922525$ 

Unless specified, "carb" refers to  $CaCO_3$  with small impurities of Fe, Mg, and/or Mn.

For all carbon and oxygen isotope values  $\sigma = 0.1$  per mil; analyses performed at the Stable Isotope Laboratory, University of Georgia.



Figure 3.12: Plot of carbon and oxygen isotope data from carbonate gangue minerals associated with mineralization. Cortez Range (lower plate) carbonate rocks (Field and Fifarek, 1985) are compared with Lovie (upper plate?) limestones and organic carbon (this study). Calcite in equilibrium with meteoric water (cmet) and primary granodioritic magmatic water (cmag) at 250°C (Kelson et al., 2005).

Table 3.8 (next page):  $\delta^{34}$ S data for sulfide and sulfate minerals from northern Shoshone Range vewin deposits. Data from Kelson et al. (2005).

| Deposit | Sample       | Mineral  | $\delta^{34}S_{CDT}$ | Deposit | Sample                           | Mineral   | δ <sup>34</sup> <b>S</b> <sub>CDT</sub> |
|---------|--------------|----------|----------------------|---------|----------------------------------|-----------|-----------------------------------------|
| BON     | 49-1         | bar      | 19.3                 | HT      | 97-6-80-1                        | moly      | 5.6                                     |
| BON     | 04B-1        | py       | 4.9                  | НТ      | 97-6-80-3                        | py        | 5.4                                     |
| BON     | 52           | bar      | 18.2                 | НТ      | 97-7-365-PY3                     | py        | 2                                       |
| BON     | 56A-1        | py       | 5.9                  | НТ      | 97-7-365-PY4                     | py        | 2.3                                     |
| BON     | 51SB-1       | bar      | 19.5                 | нт      | 97-7-365-PY2                     | DV        | -2.6                                    |
| BON     | 07-1         | DV       | 4.7                  | HT      | 97-8-436-1                       | DV        | -2.7                                    |
| BON     | 08-1         | DV       | 4.9                  | нт      | 97-8-380.6-B7                    | mel pv    | -0.4                                    |
| BON     | 35-4         | bar      | 18.2                 | нт      | 97-8-380.6-B6                    | mel pv    | -12.1                                   |
| BON     | 27-3         | fah      | 4.5                  | НТ      | 97-8-380.6-B4                    | mel pv    | -7.2                                    |
| BON     | 35-5         | fah      | 4.6                  | нт      | 97-8-380.6-B5                    | mel pv    | -7.6                                    |
| BON     | 27-3         | fah      | 4.4                  | нт      | 97-8-466                         | bar       | 15.2                                    |
| Lovie   | 22-2         | DV       | 7                    | нт      | 97-8-380.6-B8                    | mel pv    | 5.6                                     |
| Lovie   | 22-3         | dal      | 3.6                  | НТ      | 97-8-416                         | stib      | 5.5                                     |
| Lovie   | 29-2         | bv       | 6.3                  | НТ      | 97-8-106.8-2                     | DV        | 5.5                                     |
| Lovie   | 03B-2        | sph      | 6.2                  | нт      | 97-8-380.6-C                     | mel pv    | 2                                       |
| Lovie   | 05-1         | sph      | 5                    | НТ      | 97-8-380.6-B3                    | mel pv    | -5.4                                    |
| Lovie   | 35A-1        | gal      | 5.6                  | НТ      | 97-8-380.6-B1                    | mel pv    | 4.6                                     |
| Lovie   | 09-1         | bar      | 20.9                 | нт      | 97-8-380.6-B2                    | mel py    | 1.1                                     |
| Lovie   | 27-1         | DV       | 7 1                  | нт      | 97-9-358-1                       | pv/asp    | 5.8                                     |
| Lovie   | 03A-1        | py       | 5 1                  | нт      | 97-10-1084 5-2                   | py        | 5.1                                     |
| KATT    | 27A-1        | bar      | 13.6                 | нт      | 97-10-1084 5-1                   | sph       | 4 9                                     |
| KATT    | 31-1         | bar      | 11                   | нт      | 97-10-106 1-1                    | moly      | 4 3                                     |
| KATT    | 12-1         | bar      | 16.3                 | нт      | 97-10-1181 5-2                   | nv        | 6                                       |
| KATT    | 09-1         | bar      | 21 5                 | нт      | 97-10-1161 7                     | Py<br>DV  | 64                                      |
| KATT    | 3-4-5-8-1    | bar      | 11 3                 | нт      | 97-10-1160 6-2                   |           | 5.4                                     |
| GE      | 08-1         | DV       | 7 1                  | нт      | 97-10-1160.6-2<br>97-10-1160.6-1 | dal dal   | 3.4                                     |
| GE      | 05-1         | snh      | 67                   | нт      | 97-10-1134 2-1                   | gal       | 3.5                                     |
| GE      | 04-2         | by       | 6.6                  | нт      | 97-10-1206 4-1                   | gui<br>nv | 5.5                                     |
| GE      | X1-1         | py<br>py | 6.3                  | нт      | 97-11-665 3-1                    | bar       | 10 /                                    |
| GE      | 10-1         | py<br>py | 6.3                  | нт      | 97-11-700-1                      | bar       | 5 9                                     |
| GE      | 05-2         | Py<br>DV | 5.8                  | нт      | 97-11-665 3-4                    | DV        | 5.8                                     |
| GE      | 00-2         | ру<br>ру | 5.0                  | нт      | 97-11-1003.3-4                   | ру<br>ру  | 2.0                                     |
| GE      | 07-2         | py<br>py | 6.6                  | нт      | 97_11_1235 <i>I</i> _1           | py<br>bar | 16.3                                    |
| GE      | 04-4         | snh      | 7 1                  | нт      | 97-11-1106-1                     | bar       | 10.5                                    |
| GE      | 04-1         | aal      | 5.8                  | нт      | 97-11-665 3-3                    | snh       | 5.2                                     |
| GM      | 18           | bar      | 17 7                 | нт      | 97-11-1027 5-1                   | by        | 4 A                                     |
| GM      | 13-1         | bar      | 18.7                 | нт      | 97-11-991                        | Py<br>DV  | 6.2                                     |
| нт      | HT02-12-SITE | stib     | 3.8                  | нт      | 97-11-1235 4-2                   | py        | 14 4                                    |
| нт      | HT02-14-1    | nv       | 4 3                  | нт      | 97-11-1168-1                     | bar       | 13.9                                    |
| нт      | HT02-8-1     | stih     | 3.9                  | нт      | 97-13-221-2                      | DV        | 5.8                                     |
| нт      | CK02-4/5-1   | nv       | -2.1                 | нт      | 97-13-373-1                      | Py<br>DV  | 4.8                                     |
| нт      | CK02-4/5-2   | py       | 4 5                  | нт      | 97-14-212                        | stib      | 29                                      |
| нт      | CK02-4/5-3   | py/asp   | 3.5                  | нт      | 97-15-488.5-3                    | DV        | 5.3                                     |
| нт      | CK02-22      | bar      | 18                   | нт      | 97-15-488.5-1                    | pv        | -2.7                                    |
| нт      | CKO2-31      | gal      | 3 1                  | нт      | 97-15-488.5-2                    | pv        | 6.9                                     |
| нт      | CKO2-28      | pv.      | 4.1                  | нт      | 97-15-488.5-5                    | DV        | 7.1                                     |
| нт      | CKO2-29-1    |          | 4.4                  | нт      | 97-15-567-1                      | py        | -18.9                                   |
| нт      | CKO2-21      | bar      | 17.7                 | нт      | 97-16-484-1                      | pv        | -15.6                                   |
| UN      | CK02-11-3    | py       | 7                    | нт      | 97-16-484-2                      | pv        | 53                                      |
| UN      | CK02-11-2    | sph      | 6.2                  | нт      | 97-16-503 3-3                    | py        | -19                                     |
| UN      | CK02-11      | ov.      | 6.9                  | нт      | 97-16-503.3-1                    | py        | -15.9                                   |
| нт      | CK02-1-2     | asp      | 5.1                  | нт      | 97-16-339                        | py        | 4 1                                     |
| HT      | CK02-2-2     | asp/nv   | 4 9                  | HT      | 97-16-430 9-2                    | ניק<br>אמ | -1.0                                    |
| нт      | CK02-32      | asp, py  | 3.6                  | нт      | 97-16-503 3-2                    | ע<br>אמ   | -10.6                                   |
| нт      | Sh-P-1       | bar      | 14.8                 | HT      | 97-16-430 9-1                    | ע<br>אמ   | -2.1                                    |
| HT      | Sb-P-2-2     | bar      | 21.3                 | HT      | 97-16-430 9-3                    | ניק<br>אמ | 4.2                                     |
| нт      | Sh-P-2-1     | stib     | 3 3                  | HT      | BURNS-05                         | bar       | 16                                      |
| HT      | 97-1-497B-1  | bar      | 12.7                 | HT      | BURNS-05-3                       | DV        | -2.3                                    |
| HT      | 97-5-473 5-1 | bar      | 14.3                 | HT      | IND. N. ADIT-1                   | DV        | 4.9                                     |
| HT      | 97-6-434     | stib     | 3.3                  |         |                                  | r" J      |                                         |

BON = Betty O'Neal mine; Lovie = Lovie mine; KATT = Kattenhorn mine; GE = Grey Eagle mine; GM = Granite Mountain;

HT = Hilltop deposit / area; UN = Unnamed prospect.bar = barite; py = pyrite; sph = sphalerite; gal = galena; stib = stibnite; asp = arsenopyrite; moly = molybdenite; mel py = melnikovite pyrite (b=band; c=center band); fah = fahlore. For all sulfur isotope data  $\sigma$  = 0.1.

polymetallic veins (-6.3 to 4.9 per mil) (gray box, Fig. 3.13) – mineralization widely accepted as being magmatic in origin (Field and Fifarek, 1985; Hedenquist and Lowenstern, 1994). Sulfides with relatively depleted (<-6.3 per mil) sulfur isotope values probably derived their sulfur from a biogenic source; enriched (> 10 per mil) sulfur isotope values probably indicate fluid interaction with diagenetic pyrite or hydrothermal sulfate (Field and Fifarek, 1985).

Calculated depositional temperatures (Table 3.9) of nine co-existing sulfide mineral pair from four deposits using sulfur isotope fractionation equations of Kajiwara and Krouse (1971) (Kelson et al., 2005) mostly agree with primary fluid inclusion homogenization temperatures (this study).

#### **Discussion: Northern Shoshone Range Vein-Hosted Mineralization**

Mineralogical, fluid inclusion, and stable isotope data suggest ore-bearing veins within the northern Shoshone Range formed from fluids with a wide range of temperatures and compositions. Some veins (i.e. Betty O'Neal mine, Hilltop's discordant quartz breccia pipe) formed from relatively low temperature, low salinity, meteoric fluids (<300°C, <2 equiv wt % NaCl); others (i.e. Lovie mine, Gray Eagle mine) formed from higher temperature, more saline, magmatic fluids (300-425°C, 4-6.4 equiv wt % NaCl). Other veins formed under intermediate conditions.

A shallow depositional depth (~ 1 km) is assumed for northern Shoshone Range vein deposits based on high vein densities and large vein widths (up to 3 m; Emmons, 1910, Guilbert and Park, 1986). Fractures within siliceous and siliciclastic host rocks served as both pathways



Figure 3.13: Sulfide and sulfate (barite) sulfur isotope data from northern Shoshone Range vein deposits (data from Kelson et al. (2005) and this study). Gray box incorporates range of sulfide sulfur values from Cu-porphyry deposits (-3 to 9 ‰; Hedenquist and Lowenstern, 1994), magmatic sulfur (-3 to 3 ‰) and sulfide sulfur values from zoned polymetallic vein deposits (-6.3 to 4.9 ‰) (Field and Fifarek, 1985).

Table 3.9: Calculated depositional temperatures based on sulfur isotope fractionation between two co-existing mineral phases using fractionation equations of Kajiwara and Krause (1971). Data from Kelson et al. (2005).

| Deposit | Sample Pair      | Mineral pair | ∆ per mil | Temp <sup>o</sup> C |
|---------|------------------|--------------|-----------|---------------------|
| Lovie   | 03A, B           | sph-py       | 1.1       | 249                 |
| GE      | 05-1,2           | sph-py       | 0.9       | 304                 |
| GE      | 04-1,2           | gal-py       | 0.8       | 900                 |
| GE      | 04-1,4           | gal-sph      | 1.3       | 511                 |
| GE      | 04-2,4           | py-sph       | 0.5       | 502                 |
| UN      | CK02-11-2,3      | sph-py       | 0.8       | 339                 |
| Hilltop | 97-10-1084.5-1,2 | sph-py       | 0.2       | 952                 |
| Hilltop | 97-10-1160.6-1,2 | gal-py       | 2.2       | 434                 |
| Hilltop | 97-11-665.3-3,4  | sph-py       | 0.6       | 434                 |
| Hilltop | 97-6-80-1,3      | mo-py        | 0.2       | 653                 |

and depositional sites for ore-bearing fluids as the siliciclastic host rocks' poor primary permeability limited fluid flow to the open fracture spaces.

Changes in fluid temperature and/or pH probably initiated ore mineral precipitation within the vein deposits. The lack of alteration halos around veins and the presence of unaltered wall rock clasts within vein material testify to the inability of ore-bearing fluid to chemically react with the host rocks and preclude a change in fluid pH via this method (Kelson et al., 2000). The paucity of vapor-dominated fluid inclusions in vein quartz suggests fluid boiling was probably not a significant ore-depositing mechanism. However, the presence of multiple generations of quartz veins within most deposits support repeated fracturing and healing (throttling) of the individual hydrothermal systems, and very few base- or precious-metal deposits actually exhibit uncontested evidence supporting fluid boiling coincident with metal deposition (Hayba et al., 1985).

Nearly coincident <sup>40</sup>Ar/<sup>39</sup>Ar and Re-Os ages support a relationship between intrusive igneous rocks and molybdenite mineralization, and stable isotope data support a magmatic source for most vein ore and gangue minerals. The emplacement of numerous Eocene stocks, plugs, and dikes probably supplied the heat necessary to generate and maintain meteoric and/or magmatic fluid convection through the adjacent fractured upper plate host rocks. Since no single intrusion centrally underlies the entire northern Shoshone Range (Fig. 3.4), most vein deposits probably represent individual hydrothermal systems that operated adjacent to separate intrusive igneous stocks. The age discrepancies between base- and precious-metal-bearing veins and nearby intrusive igneous rocks may suggest active individual hydrothermal systems of variable duration subsequent to pluton emplacement; sulfide-bearing quartz veins from the Gray Eagle mine are at least 0.5 m.y. younger than the Granite Mountain host rock, and the gold-bearing

discordant quartz breccia pipe (Hilltop deposit) may be about 3 m.y. younger than the nearby Hobo Gulch intrusion. These data coincide with hydrothermal system lifetimes calculated by previous workers (Whalen et al., 1982; Silberman et al., 1979; Silberman, 1985), who describe hydrothermal convection cells associated with porphyry copper, epithermal Au-Ag, hot spring, and polymetallic vein deposits which operate up to 3 m.y. after initial igneous stock emplacement, with hydrothermal activity and ore-deposition occurring in episodic pulses (Silberman, 1983). However, it is doubtful if the northern Shoshone Ranges' relatively small, individual intrusive igneous plugs and stocks, emplaced at shallow depth and cooling rapidly within relatively impermeable siliciclastic host rocks, could generate enough heat to maintain such long-lived hydrothermal systems subsequent to emplacement. Hydrothermal convection resulting from the cooling and crystallization of these small (<2 km-wide) individual plutons would cease after 100,000 yrs (Norton and Cathles, 1979). However, subsequent, younger pulses of magmatism could provide the heat necessary to maintain an already active, ore-forming hydrothermal system (Silberman, 1983). This scenario may have occurred at Tenabo, as K-Ar ages for dikes "spatially associated with gold-quartz veins" are at least 1.1 m.y. younger than the K-Ar age of the Tenabo stock (Silberman and McKee, 1971). Similarly aged, younger intrusive igneous rocks have not been recognized elsewhere in the northern Shoshone Range.

The variable fluid sources, depositional temperatures, and salinities of each northern Shoshone Range vein deposit may indicate its formation relative to a cooling and crystallizing pluton and associated hydrothermal system (Hedenquist and Lowenstern, 1994). Early, high temperature (~500-600°C), magmatic, and relatively saline fluids emanating from a pluton could have formed the Lovie and Grey Eagle vein deposits and Hilltop's porphyry veins. In contrast, the Betty O'Neal mine could have formed from the lower temperature (~200°C), less saline

meteoric fluids that would have been more abundant further away from a cooling pluton. Variable vein quartz source fluid salinities within each deposit and even within the same vein (Table 6) may also result from fluid boiling, evaporation, and/or mixing (Simmons et al., 2005).

Considering the extent of base- and precious-metal mineralization hosted by the chemically-inert siliciclastic upper plate rocks of the northern Shoshone Range, the depth of the Roberts Mountains thrust and the underlying lower plate carbonate assemblage is of considerable exploration interest. Did the ore-bearing fluids interact with the lower plate carbonate rocks as they ascended toward the surface? Were the ore-bearing fluids localized or channeled along the Roberts Mountains thrust? Insight to these questions may be provided by comparing carbon and oxygen isotope signatures between carbonate gangue minerals from four vein deposits, upper plate limestones (Lovie mine area), and lower plate carbonate rocks (Cortez area; Field and Fifarek, 1985). Although the oxygen isotope data are inconclusive, carbon isotope data from the unnamed prospect, Lovie mine, and some Hilltop vein carbonate minerals suggest carbon was at least partially derived from a source isotopically similar to Cortez (lower plate) limestone (Fig. 3.12).

#### Classification of northern Shoshone Range vein deposits

It is problematic to categorize northern Shoshone Range vein deposits as solely low or high sulfidation epithermal- or porphyry-type. Essential identification and classification criteria, i.e. coeval volcanic host rocks and traditional alteration types and mineral assemblages (White and Hedenquist, 1990; Simmons et al., 2005) associated with epithermal and porphyry deposit types are almost or wholly lacking. Additionally, fluid inclusion, stable isotope, and

geothermometry data support a range of fluid sources and depositional temperatures spanning the continuum between low temperature (epithermal) and higher-temperature (porphyry) regimes (Kelson et al., 2005; and this study).

Based on Ag:Au ratios (range from 10 to 161), ore minerals (base metal sulfide- and Agrich), gangue minerals (quartz, carbonate, barite), sulfide sulfur isotope ratios (mostly between +2 and +8 per mil), and vein quartz salinities (0-6.4 equiv wt % NaCl), most northern Shoshone Range vein deposits share similarities with Cordilleran vein-type deposits, porphyry-related base metal veins, and/or higher-temperature analogues of intermediate-sulfidation epithermal deposits.

Cordilleran vein-type deposits (e.g. Magma Vein, Casapalca, Coeur d'Alene; Guilbert and Park, 1986) form in compressive margin settings and may not be obviously related to nearby igneous activity. Features of Cordilleran vein deposits include: 1) spatial and temporal association with calc-alkaline igneous rocks; 2) hydrothermally-transported ore elements deposited from solutions in separate stages; 3) ore minerals occur as open-space or fracture fill material in siliceous/siliciclastic host rocks or as replacements in carbonate host rocks; 4) shallow (<1 km) deposition of the surface; 5) metal zonation in veins; Sn-W-Mo (high temperature) through Cu-Zn to Zn-Pb-Mn-Ag (low temperature); and 6) sulfide sulfur isotope ratios close to zero per mil (Sawkins, 1972; Guilbert and Park, 1986). Northern Shoshone Range vein deposits share most of these features, differing only by the lack of W-bearing minerals and an average sulfide sulfur isotope ratio of 3.5 per mil.

Porphyry-related base metal veins are similar to Cordilleran veins, but possess a stronger spatial and genetic link to intrusive igneous rocks associated with porphyry-type deposits (Guilbert and Park, 1986). The common association with underlying bulk-tonnage ore bodies (in

addition to their own mineable potential) make base-metal veins attractive exploration targets (Seedorff et al., 2005). The oldest, highest-temperature stage (Event 1) of the Hilltop deposit's main zone mineralization may represent a porphyry-related base metal vein assemblage; Event 1 minerals (galena + sphalerite + fahlore + pyrite + stannite + chalcopyrite + jamesonite; Kelson et al., 2000) derived their sulfur from a magmatic source ( $\delta^{34}S_{CDT}=3.2$  to 5.4 per mil) and were probably deposited during the waning stages of granitic pluton emplacement responsible for Hilltop's Mo-bearing, Au-poor porphyry-type mineralization (Kelson et al., 2005). An association between Cu, Zn, Pb, and Ag-rich mineral suites and Mo-bearing, Au-poor porphyries is typical of porphyry-related base metal veins (Einaudi et al., 2003).

Northern Shoshone Range vein deposits also share similarities with intermediate sulfidation deposits (e.g. Creede, Comstock; John, 2001) which are associated with calc-alkaline intermediate to felsic igneous rocks and form in neutral stress to mildly extensional arcs and compressive back arcs during arc volcanism. Intermediate sulfidation deposits commonly contain carbonate and barite gangue minerals and Ag-Au, Zn, Pb, Cu  $\pm$  Mo, As, and Sb-bearing ore minerals (especially fahlore, which is ubiquitous in all northern Shoshone Range vein deposits and is the dominant ore mineral) within quartz veins (Einaudi et al., 2003; Sillitoe and Hedenquist, 2003; Simmons et al., 2005). Vein quartz salinities range from 0 to 12 equiv wt % NaCl (see compilation by Sillitoe and Hedenquist, 2003), similar to the northern Shoshone Range vein deposits studied here. At the Hilltop deposit, younger, lower-temperature (and Aubearing) episodes of main zone mineralization (Events 2-4) most closely resemble intermediate-sulfidation mineral assemblages (Kelson et al., 2000).

#### **Summary and Conclusions**

Northern Shoshone Range vein deposits, part of the greater Battle Mountain-Eureka trend, are historic producers of copper, lead, silver, and gold. Collectively, these veins most closely resemble Cordilleran vein-type, porphyry related base metal vein-type, or hightemperature analogues of intermediate sulfidation epithermal deposits. We conclude that:

- 1. All igneous rocks within the study area are Eocene age;
- Molybdenite mineralization is essentially contemporaneous with Eocene granitic intrusive rocks;
- 3. No definitive geochemical difference exists between barren intrusive igneous rocks and those associated with porphyry (molybdenite) mineralization;
- 4. Vein-hosted mineralization is younger than the oldest igneous rocks within the study area based on samples from the Gray Eagle mine (at least 0.5 m.y. younger than the Granite Mountain host rock) and the discordant quartz breccia pipe at Hilltop (at least 2.8 m.y. younger than the nearby Hobo Gulch intrusion). The age differences may reflect active hydrothermal systems associated with individual igneous intrusions or a secondary pulse of heat and/or fluids associated with slightly younger magmatism (e.g. Tenabo);
- 5. A magmatic source for most vein-hosted sulfide minerals and variable sources (mostly meteoric and/or magmatic, with lesser organic carbon and carbonate rock sources) for carbonate minerals' carbon and oxygen. Oxygen isotope data support variably-mixed meteoric and/or magmatic source fluids for vein quartz;
- 6. Vein quartz source fluids possessed variable salinities, even within the same deposit;

7. Ore mineral and ore-bearing vein quartz deposition occurred over a wide temperature range (based on geothermometry data from fluid inclusions and stable isotope partitioning) spanning the epithermal-porphyry continuum, probably representing the transitional zone between the two regimes.

## Acknowledgements

This paper represents part of a Ph.D. dissertation completed at the University of Georgia in Athens, Georgia. This research would not have been possible without the generous support of the Cortez Joint Venture, and very special thanks to Mr. Robert C. Hays, Jr., Technical Services Superintendent, Cortez Joint Venture. This research was also funded by the Society of Economic Geologists (Hugh E. McKinstry Grant), the Geological Society of America (Grant No. 7180-02), the Department of Geology, University of Georgia, and the Graduate School (Dissertation Completion Award), University of Georgia. Permission of the Cortez Joint Venture to publish this investigation is gratefully acknowledged. Thanks to: Dr. Kenneth A. Foland (RIL), Dr. Matthew T. Heizler (NMGRL), and Mr. Thomas D. Ullrich (UBC) for their assistance and insight with the <sup>40</sup>Ar/<sup>39</sup>Ar data. Dr. Chris Romanek (SREL) and Mr. Tom Maddux (UGA) assisted with the carbon isotope data. Dr. Zachary D. Sharp (UNM) provided the silicate oxygen isotope analyses. Richard Markey and Aaron Zimmerman (AIRIE, Colorado State University) provided the Re-Os analyses. Ms. Julia Cox and Mr. Chris Fleisher (UGA) assisted with stable isotope and electron microprobe analyses, respectively.

## References

- Armin, R.A., and Mayer, L., 1983, Subsidence analysis of the Cordilleran miogeocline: Implications for timing of late Proterozoic rifting and amount of extension: Geology, v. 11, p. 702-705.
- Armstrong, R.L., 1970, Geochronology of Tertiary igneous rocks, eastern Basin and Range Province, western Utah, eastern Nevada, and vicinity, U.S.A.: Geochemica et Cosmochimica Acta, v. 34, p. 203-232.
- Beck, Jr., M.E., 1992, Tectonic significance of paleomagnetic results for the western conterminous United States, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 683-697.
- Burchfiel, B.C, and Davis, G.A., 1972, Structural framework and evolution of the southern part of the Cordilleran orogen, western United States: American Journal of Science, v. 275-A, p. 363-396.
- Burchfiel, B.C, and Royden, L.H., 1991, Antler orogeny: A Mediterranean-type orogeny: Geology, v. 19, p. 66-69.
- Burchfiel, B.C., Cowan, D.S., and Davis, G.A., 1992, Tectonic overview of the Cordilleran orogen in the western United States, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 407-480.
- Carpenter, J.A., Carpenter, D.G., and Dobbs, S.W., 1994, Antler orogeny: Paleostructural analysis and constraints on plate tectonic models with a global analogue in southeast Asia, *in* Dobbs, S.W., and Taylor, W.J., eds., Structural and stratigraphic investigations and petroleum potential of Nevada, with special emphasis south of the Railroad Valley Producing Trend: Nevada Petroleum Society Conference Volume II, p. 187-240.
- Christiansen, R.L., and Yeats, R.S., 1992, Post-Laramide geology of the U.S. Cordilleran region, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 261-406.

- Clayton, R.N., O'Neil., J.R., and Mayeda, T.K., 1972, Oxygen isotope exchange between quartz and water: Journal of Geophysical Research, v. 77, no. 17, p. 3057-3067.
- Cook, H.E., and Taylor, M.E., 1991, Paleozoic carbonate passive-margin evolution and resulting petroleum reservoirs – Great Basin, western United States, *in* Raines, G.L., Lisle, R.E., Schafer, R. W., and Wilkenson, W.H., eds., Geology and ore deposits of the Great Basin: Geological Society of Nevada, p. 927-939.
- Coleman, D., and Fry, B., 1991, Carbon Isotope Techniques. Academic Press/Harcourt Brace Jovanovich, New York.
- Desrochers, G.J., 1984, Geology of part of the Hilltop district, Lander County, Nevada: M.S. thesis, University of Nevada, Reno, 97 p.
- Dickenson, W.R., 1992, Cordilleran sedimentary assemblages, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 539-552.
- Ehlers, E.G., and Blatt, H., 1982, Petrology: Igneous, sedimentary and metamorphic: W.H. Freeman and Company, San Francisco, 732 p.
- Einaudi, M.T., Hedenquist, J.W., and Inan, E.E., 2003, Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments: Society of Economic Geologists Special Publication 10, p. 285-313.
- Emmons, W.H., 1910, A reconnaissance of some mining camps in Elko, Lander, and Eureka Counties, Nevada: U. S. Geological Survey Bulletin 408, 130 p.
- Field, C.W., and Fifarek, R.H., 1985, Light stable-isotope systematics in the epithermal environment, *in* Berger, B.R., and Bethke, P.M., eds., Geology and geochemistry of epithermal systems: Chelsea, MI, Society of Economic Geologists, Reviews in Economic Geology, v. 2, p. 99-128.
- Foo, S.T., Hays, Jr., R.C., and McCormack, J.K., 1996, Geology and mineralization of the South Pipeline Gold Deposit, Lander County, Nevada, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and Ore Deposits of the American Cordillera: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, p. 111-121.

- Gilluly, J., 1977, Cauldron subsidence near Mount Lewis, Nevada; a misconception: Journal of Research of the U.S. Geological Survey, vol. 5, no. 3, p. 325-329.
- Gilluly, J., and Gates, O., 1965, Tectonic and igneous geology of the northern Shoshone Range, Nevada: U.S. Geological Survey Professional Paper 465, 153 p.
- Grauch, V.J.S., Rodriguez, B.D., and Wooden, J.L., 2003, Geophysical and isotopic constraints on crustal structure related to mineral trends in north-central Nevada and implications for tectonic history: Economic Geology, v. 98, p. 269-286.
- Graves, G.R., Romanek, C.S., and Navarro, A.R., 2002, Stable isotope signature of philopatry and dispersal in a migratory songbird: Proceedings of the National Academy of Sciences USA, vol. 99, no. 12, p. 8096-8100.
- Guilbert, J.M., and Park, C.F. Jr., 1986, The geology of ore deposits: W.H. Freeman and Company, New York, 985 p.
- Hayba, D.O., Bethke, P.M., Heald, P., and Foley, N.K., 1985, Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits, *in* Berger, B.R., and Bethke, P.M., eds., Geology and geochemistry of epithermal systems: Chelsea, MI, Society of Economic Geologists, Reviews in Economic Geology, v. 2, p. 129-169.
- Hedenquist, J.W., and Lowenstern, J.B., 1994, The role of magmas in the formation of hydrothermal ore deposits: Nature, v. 370, no. 6490, p. 519-527.
- Howard, K.A., 2003, Crustal structure in the Elko-Carlin region, Nevada during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust: Economic Geology, v. 98, p. 249-268.
- John, D.A., 2001, Miocene and Early Pliocene Epithermal Gold-Silver Deposits in the Northern Great Basin, Western United States: Characteristics, Distribution, and Relationship to Magmatism: Economic Geology, v. 96, p. 1827-1854.

- John, D.A., Wallace, A.R., Ponce, D.A, Fleck, R.B., and Conrad, J.E., 2000, New perspectives on the geology and origin of the northern Nevada rift, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, May 2000, p. 127-154.
- John, D.A., Hofstra, A.H., and Theodore, T.G., 2003, Preface, *in* A Special Issue Devoted to Gold Deposits in Northern Nevada: Part 1. Regional Studies and Epithermal Deposits: Economic Geology, v. 98, p. 225-234.
- Johnson, J.G., and Pendergast, A., 1981, Timing and mode of emplacement of the Roberts Mountains allochthon, Antler orogeny: Geological Society of America Bulletin, Part 1, v. 92, p. 648-658.
- Kajiwara, Y., and Krause, H.R., 1971, Sulfur isotope partitioning in metallic sulfide systems: Canadian Journal of Earth Science, v. 8, no. 11, p. 1397-1408.
- Kelson, C.R., Keith, J.D., Christiansen, E.H., and Meyer, P.E., 2000, Mineral paragenesis and depositional model of the Hilltop gold deposit, Lander County, NV, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, May 2000, p. 1107-1132.
- Kelson, C.R., Crowe, D.E., and Stein, H.J., 2005, Geochronology and geochemistry of the Hilltop, Lewis, and Bullion mining districts and surrounding area, Battle Mountain-Eureka trend, Nevada, *in* Rhoden, H.N., Steininger, R.C., and Vikre, P.G., eds., Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada, May 2005.
- Ketner, B.K., 1977, Late Paleozoic orogeny and sedimentation, southern California, Nevada, Idaho, and Montana, *in* Stewart, J.H., Stevens, C.H., and Fritsche, A.E., eds., Paleozoic paleogeography of the western United States, Pacific Coast Paleogeography Symposium I: Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 363-364.
- King, C., 1876, Geological and topographical atlas accompanying the report of the Geological Exploration of the Fortieth Parallel.

- Kistler, R.W. and Peterman, Z.E., 1978, Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granite rocks: U.S. Geological Survey Professional Paper 1071, 17p.
- Lanphere, M.A., and Dalrymple, G.B., 1976, Identification of excess <sup>40</sup>Ar by the <sup>40</sup>Ar/<sup>39</sup>Ar age spectrum technique: Earth and Planetary Science Letters, v. 32, p. 141-148.
- Le Maitre, R.M., 2002, Igneous rocks: A classification and glossary of terms recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks: Cambridge, United Kingdom, Cambridge University Press, 236 p.
- Lee, W.T., Stone, R.W., Gale, H.S., and others, 1916, The Overland Route, with a side trip to Yellowstone Park, Pt. B *of* Guidebook of the western United States: U.S. Geological Survey Bulletin 612.
- Lisle, R.E., and Desrochers, G.J., 1988, Geology of the Hilltop gold deposit, Lander County, Nevada, *in* Schafer, R.W., Cooper, J.J., and Vikre, P.G., eds., Bulk mineable precious metal deposits of the western United States, p. 101-117.
- Madrid, R.J., and Roberts, R.J., 1991, Origin of gold belts in north-central Nevada, *in* Raines, G.L., Lisle, R.E., Schafer, R. W., and Wilkenson, W.H., eds., Geology and ore deposits of the Great Basin: Geological Society of Nevada, p. 927-939.
- Maher, B.J., and Browne, Q.J., 1993, Constraints on the age of gold mineralization and metallogenesis in the Battle Mountain-Eureka mineral belt, Nevada: Economic Geology, v. 88, p. 409-478.
- McCusker, R.T., 2004, Geological report on the Robertson property, Lander County, Nevada, U.S.A.: Coral Gold Corporation unpublished in-house report.
- McDougall, I., and Harrison, T.M., 1999, Geochronology and thermochronology by the <sup>40</sup>Ar/<sup>39</sup>Ar method, 2<sup>nd</sup> ed., Oxford University Press, New York, 269p.
- Miller, E.L., Miller, M.M., Stevens, C.H., Wright, J.E., and Madrid, R., 1992, Late Paleozoic paleographic and tectonic evolution of the western U.S. Cordillera, *in* Burchfiel, B.C., Lipman, P.W., and Zoback, M.L. eds., The Cordilleran Orogen: Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-3, p. 57-106.
- Nilson, T.H., and Stewart, J.H., 1980, The Antler Orogeny Mid-Paleozoic tectonsim in western North America: Geology, v. 8, p. 298-302.
- Norton, D., and Cathles, L.M., 1979, Thermal aspects of ore deposition, *in* Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 2<sup>nd</sup> ed.: New York, John Wiley and Sons, p. 611-683.
- Pearce, J.A., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, *in* Hawkesworth, C.J., and Norry, M.J., eds., Continental basalts and mantle xenoliths. Shiva, Nantwich, p. 230-249.
- Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, vol. 25, p. 956-983.
- Poole, F.G., 1974, Flysch deposits of Antler foreland basin, western United States: Society of Economic Paleontologists and Mineralogists Special Publication 22, p. 58-82.
- Potter, II, R.W., 1977, Pressure-correction for fluid inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H<sub>2</sub>O: U.S. Geological Survey Journal of Research, v. 5, p. 603-607.
- Price, J.G., and Meeuwig, R.O., 2002, Overview, *in* The Nevada Mineral Industry 2001: Nevada Bureau of Mines and Geology Special Publication MI-2001, p. 3-12.
- Renne, P.R., Swisher, C.C., Dieno, A.L., Karner, D.B., Owens, T.L., and DePaulo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in <sup>40</sup>Ar/<sup>39</sup>Ar dating: Chemical Geology, 145, p. 117-152.
- Ressel, M.W., and Henry, C.D., in review, Igneous geology of the Carlin trend, Nevada: Evolution of the Eocene plutonic complex and significance for Carlin-type gold deposits.

- Roberts, R.J., Hotz, P.E., Gilluly, J., and Furgusan, H,G., 1958, Paleozoic rocks of north central Nevada: American Association of Petroleum Geologists Bulletin, v. 42, p. 2813-2857.
- Roberts, R.J., 1960, Alinement of mining districts in north-central Nevada: U.S. Geological Survey Professional Paper 400-B, p. B17-B19.
- Roberts, R.J., 1966, Metallogenic provinces and mineral belts in Nevada: Nevada Bureau of Mines and Geology Report 13, part A, p. 47-72.
- Rollinson, H., 1995, Using geochemical data: Evaluation, presentation, interpretation. Singapore, Longman Group UK Limited, 352 p.
- Sack, R.O., and Goodell, P.C., 2002, Retrograde reactions involving galena and Ag-sulfosalts in a zoned ore deposit, Julcani, Peru: Mineralogical Magazine, v. 66, no. 6, p. 1043-1062.
- Sack, R.O., Kuehner, S.M., and Hardy, L.S., 2002, Retrograde Ag-enrichment in fahlores from the Coeur d'Alene mining district, Idaho, USA: Mineralogical Magazine, v. 66, no. 1, p. 215-229.
- Sack, R.O., Lynch, J.V.G., and Foit, Jr., F., 2003, Fahlore as a petrogenetic indicator: Keno Hill Ag-Pb-Zn district, Yukon, Canada: Mineralogical Magazine, v. 67, no. 5, p. 1023-1038.
- Sawkins, F.J., 1972, Sulfide ore deposits in relation to plate tectonics: Journal of Geology, vol. 80, p. 377-396.
- Seedorff, E., Dilles, J.H., Proffett, Jr., J.M., Einaudi, M.T., and four others, 2005, Porphyry Deposits: Characteristics and origin of hypogene features, *in* Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Society of Economic Geologists, Economic Geology 100<sup>th</sup> Anniversary Volume, p. 485-522.
- Selby, D., and Creaser, R.A., 2001, Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, vol 96, p. 197-204.
- Sharp, Z. D., 1995, Oxygen isotope geochemistry of the Al2SiO5 polymorphs: American Journal of Science, v. 295, p. 1058-1076.

- Shawe, D.R., 1991, Structurally controlled gold trends imply large gold resources in Nevada: In Raines, G.L., Lisle, R.E., Schafer, R. W., and Wilkenson, W.H. (eds.), Geology and ore deposits of the Great Basin: Geological Society of Nevada, p. 199-212.
- Silberling, N.J., 1973, Geologic events during Permian-Triassic time along the Pacific margin of the United States, *in* Logan, A., and Hills, L.V., eds., The Permian and Triassic systems and their mutual boundary: Alberta Society of Petroleum Geology, Calgary, Alberta, Canada, p. 345-362.
- Silberman, M.L., 1983, Geochronology of hydrothermal alteration and mineralization: Tertiary epithermal precious metal deposits in the Great Basin: Geothermal Resources Council Special Report No. 13, p. 287-303.
- Silberman, M.L., 1985, Geochronology of hydrothermal alteration and mineralization: Tertiary epithermal precious-metal deposits in the Great Basin, *in* Tooker, E.W., ed., Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits Search for an occurrence model: U.S. Geological Survey Bulletin 1646, p. 55-71.
- Silberman, M.L., and McKee, E.H., 1971, K-Ar ages of granitic plutons in north-central Nevada: Isochron/West, no. 71-1, p. 15-32.
- Silberman, M.L., White, D.E., Keith, T.E.C., and Docktor, R.D., 1979, Duration of hydrothermal activity at Steamboat Springs, Nevada, from ages of spatially associated volcanic rocks: U.S. Geological Survey Professional Paper 458-D, p. D1-D14,
- Sillitoe, R.H., and Hedenquist, J.W., 2003, Linkages between volcanogenic settings, ore-fluid compositions, and epithermal precious metal deposits: Society of Economic Geologists Special Publication 10, p. 315-343.
- Simmons, S.F., White, N.C., and John, D.A., 2005, Geological characteristics of epithermal precious and base metal deposits, *in* Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Society of Economic Geologists, Economic Geology 100<sup>th</sup> Anniversary Volume, p. 485-522.
- Snyder, W.S., Brueckner, H.K., 1983, Tectonic evolution of the Golconda allochthon, Nevada: Problems and perspectives, *in* Stevens, C.H., ed., Pre-Jurassic rocks in western North American suspect terranes: Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 103-123.

- Snyder, W.S., Spinosa, C., and Gallegos, D.M., 1991, Pennsylvanian-Permian tectonism on the western U.S. continental margin, *in* Raines, G.L., Lisle, R.E., Schafer, R. W., and Wilkenson, W.H., eds., Geology and ore deposits of the Great Basin: Geological Society of Nevada, p. 5-19.
- Speed, R.C., 1971, Golconda thrust, western Nevada Regional extent: Geological Society of America Abstracts with Programs, v. 3, no. 2, p. 199-200.

, 1979, Collided Paleozoic microplate in the western United States: Jour. Geology, v. 87, no. 2, p. 279-292.

- Spurr, J.E., 1903, Descriptive geology of Nevada south of the 40<sup>th</sup> Parallel and adjacent portions of California: U.S. Geological Survey Bulletin 208.
- Stager, H.K., 1977, Geology and Mineral Deposits of Lander County, Nevada: Nevada Bureau of Mines and Geology Bulletin 88, 106 p.
- Stewart, J.H., 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 104 p.
- Stewart, J.H., and Poole, F.G., 1974, Lower Paleozoic and uppermost Precambrian Cordilleran miogeocline, Great Basin, western United States, *in* Dickenson W.R., ed., Tectonics and sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 22, p. 28-57.
- Stewart, J.H., and McKee, E.H., 1977, Geology and Mineral Deposits of Lander County, Nevada: Nevada Bureau of Mines and Geology Bulletin 88, 106 p.
- Steiger, R.H., and Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology: Earth and Planetary Science Letters, v. 36, p. 359-362.
- Stein, H.J., Morgan, J.W., Markey, R.J., and Hannah, J.L., 1998, An introduction to Re-Os: What's in it for the mineral industry?: Society of Economic Geologists Newsletter, no. 32, p. 1, 8-15.

- Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L., and Scherstén, A., 2001, The remarkable Re-Os chronometer in molybdenite: how and why it works: Terra Nova, v. 13, no. 6, p. 479-486.
- Stein, H., Scherstén, A., Hannah, J., and Markey, R., 2003, Sub-grain scale decoupling of Re and <sup>187</sup>Os and assessment of laser ablation ICP-MS spot dating in molybdenite: Geochimica et Cosmochimica Acta, v. 67, no. 19, p. 3673-3686.
- Stewart, J.H., 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 136 p.
- Sun, S.S., 1980, Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs: Philosophical Transactions Royal Society, A297, 409-445.
- Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, *in* Saunders, A.D., and Norry, M.J., eds., Magmatism in ocean basins. Geological Society of London Special Publication 42, p. 313-345.
- Thompson, G.A., and Burke, D.B., 1974, Regional geophysics of the Basin and Range Province: Annual Reviews of Earth and Planetary Sciences, v. 2, p. 213-238.
- Tosdal, R.M., Wooden, J.L., and Kistler, R.W., 2000, Geometry of the Neoproterozoic continental break-up, and implications for location of Nevadan mineral belts, *in* Cluer, J.K., Price, J.G., Struhsacker, E.M., Hardyman, R.F., and Morris, C.L., eds., Geology and ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings, Reno/Sparks, May 2000, p. 451-466.
- Turner, R.J.W., Madrid, R.J., and Miller, E.L., 1989, Roberts Mountains allochthon: Stratigraphic comparison with lower Paleozoic outer continental margin strata of the northern Canadian Cordillera: Geology, v. 17, p. 341-344.
- Vanderburg, W.O., 1939, Reconnaissance of some mining districts in Lander County, Nevada: U.S. Bureau of Mines Information Circular 7043, p. 47-50.

- Whalen, J.B., Britten, R.M., and McDougall, I., 1982, Geochronology and geochemistry of the Frieda River prospect area, Papua New Guinea: Economic Geology, v. 77, no. 3, p.592-616.
- White, D.E., 1985, Vein and disseminated gold-silver deposits of the Great Basin through space and time, *in* Tooker, E.W., ed., Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits – Search for an occurrence model: U.S. Geological Survey Bulletin 1646, p. 5-34.
- White, N.C., and Hedenquist, J.W., 1990, Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration: Journal of Geochemical Exploration, vol. 36, p. 445-474.
- Wrucke, C.T. and Silberman, M.L., 1975, Cauldron subsidence of Oligocene age at Mount Lewis, Shoshone Range, Nevada: U.S. Geological Survey Professional Paper 876, 20p.

, 1977, Cauldron subsidence of Oligocene age at Mount Lewis, Shoshone Range, Nevada – A reasonable interpretation: Jour. Research U.S. Geological Survey, v. 5, no.3, p. 331-335.

- Wu, I., and Petersen, U., 1977, Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru: Economic Geology, v. 72, p. 993-1016.
- York, D., 1969, Least squares fitting of a straight line with correlated errors: Earth and Planetary Science Letters, v. 5, p. 320-324.
- Zamudio, J.A., and Atkinson, Jr., W.W., 1991, Igneous rocks of the northeastern Great Basin and their relation to tectonic activity and ore deposits, *in* Buffa, R.H., and Coyner, A.R., eds., Geology and ore deposits of the Great Basin, Field Trip Guidebook Compendium, v. 1: Geological Society of Nevada, p. 229-242.
- Zoback, M.L., and Thompson, G.A., 1978, Basin and Range rifting in northern Nevada; Clues from a mid-Miocene rift and its subsequent offsets: Geology, v. 6, p. 111-116.

## **CHAPTER 4**

## CONCLUSION

The vein deposits of the northern Shoshone Range, part of the greater Battle Mountain-Eureka trend, have collectively produced almost 70 million ounces (Moz) of copper, lead, silver, and gold mostly between the 1860s and 1930s. The vein deposits are hosted within Paleozoic siliciclastic and siliceous upper plate rocks and/or Tertiary intrusive igneous rocks, and mostly felsic intrusive igneous rocks are emplaced along a west-northwest trend through the northern Shoshone Range and located both proximal and distal to mineralized areas.

Analysis of vein-hosted ore and gangue minerals and intrusive igneous rocks via various geochronological and geochemical methods, this study has established:

- 1. All radiogenically dated igneous rocks within the study area are Eocene in age;
- Molybdenite mineralization is essentially contemporaneous with Eocene granitic intrusive rocks;
- 3. No definitive geochemical difference exists between barren intrusive igneous rocks and those associated with porphyry (molybdenite) mineralization;
- 4. Vein-hosted mineralization is younger than the youngest igneous rocks within the study area based on samples from the Gray Eagle mine (at least 0.5 m.y. younger than the Granite Mountain host rock) and the discordant quartz breccia pipe at Hilltop (at least 2.8 m.y. younger than the nearby Hobo Gulch intrusion). The age differences may reflect active hydrothermal systems associated with individual igneous intrusions or a secondary pulse of heat and/or fluids associated with slightly younger magmatism (e.g. Tenabo);

137

- 5. A magmatic source for most vein-hosted sulfide minerals and variable sources (mostly meteoric and/or magmatic, with lesser organic carbon and carbonate rock sources) for carbonate minerals' carbon and oxygen. Oxygen isotope data support variably-mixed meteoric and/or magmatic source fluids for vein quartz;
- 6. Vein quartz source fluids possessed variable salinities, even within the same deposit;
- 7. Ore mineral and ore-bearing vein quartz deposition occurred over a wide temperature range (based on geothermometry data from fluid inclusions and stable isotope partitioning) spanning the epithermal-porphyry continuum, probably representing the transitional zone between the two regimes.

Based on data from this study, it is problematic to classify the northern Shoshone Range vein deposits as strictly one deposit type, as they collectively exhibit characteristics indicative of low- and intermediate sulfidation epithermal deposits, Cordilleran vein-type deposits, and base metal veins associated with Cu-Mo porphyry deposits.

## APPENDIX A

Geochemical (assay) data and location information for northern Shoshone Range study area samples.

N = Not present in concentrations above detection limits.

| Sample  | Mine / Area      | UTMX      | UTMY       |
|---------|------------------|-----------|------------|
|         |                  |           |            |
| HT02-1  | Hilltop          | 516562    | 4473457    |
| HT02-2  | Hilltop          | 516554    | 4473454    |
| HT02-3  | Hilltop          | 515558    | 4473801    |
| HT02-4  | Hilltop          | 516812    | 4473231    |
| HT02-5  | Hilltop          | 516823    | 4473350    |
| HT02-6  | Hilltop          | 516200    | 4472989    |
| HT02-7  | Hilltop          | 516200    | 4472989    |
| HT02-8  | Hilltop          | 516200    | 4472989    |
| HT02-9  | Hilltop          | 516200    | 4472989    |
| HT02-10 | Hilltop          | 516174    | 4473000    |
| HT02-11 | Hilltop          | 516174    | 4473000    |
| HT02-12 | Hilltop          | 516087    | 4473065    |
| HT02-13 | Hilltop          | 516174    | 4473000    |
| HT02-14 | Hilltop          | 516478    | 4473264    |
| HT02-15 | Hilltop          | 515888.55 | 4474810.82 |
| HT02-16 | Hilltop          | 516127.3  | 4474328.2  |
| HT02-17 | Hilltop          | 516127.4  | 4474328.3  |
| CK02-1  | Hilltop          | 516707    | 4473757    |
| CK02-2  | Hilltop          | 516707    | 4473757    |
| CK02-3  | Granite Mountain | 521621.37 | 4471992.81 |
| CK02-4  | Hilltop          | 516707    | 4473757    |
| CK02-5  | Hilltop          | 516707    | 4473757    |
| CK02-6  | Granite Mountain | 521664.51 | 4471529.61 |
| CK02-7  | Granite Mountain | 521416.55 | 4471527.27 |
| CK02-8  | Granite Mountain | 521409.69 | 4471383.19 |
| CK02-9  | Granite Mountain | 521433.22 | 4471406.16 |
| CK02-10 | Granite Mountain | 522187.14 | 4469888.68 |
| CK02-11 | Granite Mountain | 522187.14 | 4469888.68 |
| CK02-12 | Granite Mountain | 522002.33 | 4469815.75 |
| CK02-13 | Granite Mountain | 521956.41 | 4469819.19 |
| CK02-14 | Hilltop          | 515389.75 | 4473038.91 |
| CK02-15 | Hilltop          | 515417.43 | 4473220.11 |
| CK02-16 | Hilltop          | 515151.91 | 4473429.52 |
| CK02-17 | Hilltop          | 515586.75 | 4472859.76 |
| CK02-18 | Hilltop          | 515586.75 | 4472859.76 |
| CK02-19 | Hilltop          | 515586.75 | 4472859.76 |
| CK02-20 | Hilltop          | 515563.49 | 4473253.03 |
| CK02-21 | Hilltop          | 517446.67 | 4473878.91 |

|         | Au      | Ηα      | Aa    | AI  | As      |
|---------|---------|---------|-------|-----|---------|
| Sample  | daa     | daa     | maa   | %   | maa     |
|         |         |         |       |     | 1.1     |
| HT02-1  | 66.0    | 89.0    | 0.9   | 0.1 | 22.0    |
| HT02-2  | 191.0   | 14.0    | 0.8   | 0.1 | 729.0   |
| HT02-3  | 1987.0  | 13.0    | 25.5  | 0.2 | 186.0   |
| HT02-4  | 143.0   | 14.0    | 0.5   | 2.7 | 24.0    |
| HT02-5  | 63.0    | 24.0    | Ν     | 2.2 | 9.0     |
| HT02-6  | 704.0   | 87.0    | 13.9  | 0.2 | 221.0   |
| HT02-7  | 41.0    | 45.0    | 0.3   | 0.2 | 6.0     |
| HT02-8  | 778.0   | Ν       | 326.8 | 0.1 | 432.0   |
| HT02-9  | 282.0   | 26.0    | 10.6  | 0.1 | 113.0   |
| HT02-10 | 53.0    | 374.0   | 2.7   | 0.1 | 22.0    |
| HT02-11 | 13.0    | 1030.0  | 0.2   | 0.2 | 16.0    |
| HT02-12 | 929.0   | 35.0    | 135.0 | 0.1 | 523.0   |
| HT02-13 | 49.0    | 680.0   | 2.5   | 0.2 | 21.0    |
| HT02-14 | 1826.0  | 12.0    | 24.4  | 0.1 | 2321.0  |
| HT02-15 | 75.0    | 283.0   | 3.0   | 0.0 | 21.0    |
| HT02-16 | 32390.0 | 910.0   | 85.3  | 0.1 | 7669.9  |
| HT02-17 | 5.0     | 200.0   | 0.0   | 0.1 | 0.2     |
| CK02-1  | 13836.0 | 1770.0  | 35.3  | 0.2 | 10000.0 |
| CK02-2  | 26173.0 | 15000.0 | 48.0  | 0.0 | 10000.0 |
| CK02-3  | 596.0   | 2160.0  | 1.1   | 0.5 | 2501.0  |
| CK02-4  | 3011.0  | 760.0   | 5.1   | 0.2 | 1037.0  |
| CK02-5  | 11233.0 | 570.0   | 18.4  | 0.1 | 6132.0  |
| CK02-6  | 743.0   | 204.0   | 36.4  | 0.3 | 2324.0  |
| CK02-7  | 69.0    | 3160.0  | 0.3   | 0.5 | 104.0   |
| CK02-8  | 26.0    | 54.0    | 1.9   | 0.2 | 36.0    |
| CK02-9  | 33.0    | 126.0   | 0.1   | 0.3 | 33.0    |
| CK02-10 | 81.0    | 17.0    | 3.8   | 1.1 | 354.0   |
| CK02-11 | 2532.0  | 390.0   | 38.6  | 0.1 | 10000.0 |
| CK02-12 | 2544.0  | 187.0   | 27.2  | 0.2 | 10000.0 |
| CK02-13 | 1160.0  | 11.0    | 4.3   | 0.0 | 6928.0  |
| CK02-14 | 35.0    | N       | 0.2   | 1.2 | N       |
| CK02-15 | 19.0    | 18.0    | Ν     | 3.2 | Ν       |
| CK02-16 | 34.0    | 275.0   | 1.3   | 0.2 | 49.0    |
| CK02-17 | 8.0     | 16.0    | 0.1   | 5.4 | N       |
| CK02-18 | 10.0    | 13.0    | 0.1   | 0.9 | 4.0     |
| CK02-19 | 10.0    | Ν       | Ν     | 0.8 | 4.0     |
| CK02-20 | 8.0     | Ν       | Ν     | 0.2 | 5.0     |
| CK02-21 | 336.0   | 188.0   | 54.0  | 0.1 | 6599.0  |

|         | В    | Ва     | Bi    | Ca   | Cd       | Со      | Cr          |
|---------|------|--------|-------|------|----------|---------|-------------|
| Sample  | ppm  | ppm    | ppm   | %    | ppm      | ppm     | ppm         |
|         | 4.0  | 01.0   | 10.0  | 0.4  | NI       | NI      | <b>FF O</b> |
| HT02-1  | 4.0  | 21.0   | 10.0  | 0.1  | IN<br>NI | IN<br>N | 55.0        |
| HT02-2  | 6.0  | 28.0   | 5.0   | 0.1  |          |         | 44.0        |
| HT02-3  | 8.0  | 64.0   | 50.0  | 1.1  | 114.4    | 10.0    | 73.0        |
| H102-4  | 15.0 | 230.0  | 6.0   | 0.8  | 1.5      | 7.0     | 31.0        |
| H102-5  | 14.0 | 57.0   | 5.0   | 1.0  | 1.5      | 9.0     | 41.0        |
| H102-6  | 8.0  | 106.0  | 5.0   | 0.2  | 1.5      | N       | 5.0         |
| HT02-7  | 4.0  | 797.0  | 2.0   | 0.2  | N        | N       | 6.0         |
| HT02-8  | 3.0  | 22.0   | Ν     | 0.0  | Ν        | Ν       | 7.0         |
| HT02-9  | 3.0  | 519.0  | 8.0   | 0.1  | Ν        | Ν       | 16.0        |
| HT02-10 | 3.0  | 806.0  | Ν     | 0.0  | N        | Ν       | 14.0        |
| HT02-11 | 3.0  | 785.0  | Ν     | 0.1  | Ν        | Ν       | 10.0        |
| HT02-12 | 4.0  | 55.0   | 2.0   | 0.0  | Ν        | Ν       | 28.0        |
| HT02-13 | 3.0  | 1080.0 | 1.0   | 0.0  | Ν        | Ν       | 13.0        |
| HT02-14 | 65.0 | 12.0   | 42.0  | 0.0  | 61.5     | 8.0     | 17.0        |
| HT02-15 | 4.0  | 166.0  | 1.0   | 0.0  | Ν        | Ν       | 33.0        |
| HT02-16 | 35.0 | 39.2   | 143.0 | 0.0  | 85.1     | 20.5    | 18.3        |
| HT02-17 | 3.0  | 0.0    | 0.0   | 0.0  | 0.0      | 0.1     | 0.2         |
| CK02-1  | 17.0 | 19.0   | 39.0  | 0.0  | 40.6     | 11.0    | 82.0        |
| CK02-2  | 42.0 | 10.0   | 65.0  | 0.0  | 3.6      | 33.0    | 36.0        |
| CK02-3  | 7.0  | 147.0  | 3.0   | 0.1  | Ν        | 6.0     | 52.0        |
| CK02-4  | 10.0 | 44.0   | 6.0   | 0.0  | 6.7      | 8.0     | 91.0        |
| CK02-5  | 11.0 | 36.0   | 25.0  | 0.0  | 24.5     | 10.0    | 85.0        |
| CK02-6  | 34.0 | 60.0   | 47.0  | 0.1  | 8.9      | 1.0     | 35.0        |
| CK02-7  | 10.0 | 459.0  | 3.0   | 0.1  | 0.6      | 6.0     | 36.0        |
| CK02-8  | 5.0  | 44.0   | 6.0   | 0.1  | Ν        | Ν       | 46.0        |
| CK02-9  | 5.0  | 68.0   | Ν     | 0.0  | Ν        | 1.0     | 114.0       |
| CK02-10 | 11.0 | 81.0   | 4.0   | 0.5  | 2.5      | 6.0     | 32.0        |
| CK02-11 | 23.0 | 12.0   | 43.0  | 1.8  | 132.4    | 4.0     | 27.0        |
| CK02-12 | 16.0 | 26.0   | 20.0  | 0.3  | 22.9     | 3.0     | 61.0        |
| CK02-13 | 10.0 | 16.0   | 10.0  | 10.0 | 1.6      | 1.0     | 15.0        |
| CK02-14 | 10.0 | 58.0   | 4.0   | 0.5  | 0.6      | 8.0     | 37.0        |
| CK02-15 | 36.0 | 239.0  | 18.0  | 0.3  | 2.4      | 7.0     | 29.0        |
| CK02-16 | 4.0  | 755.0  | 3.0   | 0.0  | N        | N       | 16.0        |
| CK02-17 | 40.0 | 211.0  | 18.0  | 2.9  | 3.0      | 8.0     | 48.0        |
| CK02-18 | 6.0  | 128.0  | 1.0   | 1.4  | N        | 7.0     | 45.0        |
| CK02-19 | 7.0  | 58.0   | 3.0   | 0.9  | N        | 5.0     | 27.0        |
| CK02-20 | 4.0  | 442.0  | N     | 0.1  | N        | N       | 7.0         |
| CK02-21 | 9.0  | 417.0  | 8.0   | 0.1  | 1.1      | N       | 22.0        |

|         | Cu     | Fe   | Κ   | La   | Mg  | Mn     | Мо   | Na  |
|---------|--------|------|-----|------|-----|--------|------|-----|
| Sample  | ppm    | %    | %   | ppm  | %   | ppm    | ppm  | %   |
| -       | ••     |      |     |      |     |        |      |     |
| HT02-1  | 13.0   | 0.1  | 0.1 | Ν    | 0.0 | 18.0   | 6.0  | 0.0 |
| HT02-2  | 12.0   | 0.2  | 0.1 | Ν    | 0.0 | 24.0   | 7.0  | 0.0 |
| HT02-3  | 436.0  | 1.1  | 0.1 | 4.0  | 0.4 | 537.0  | 4.0  | 0.0 |
| HT02-4  | 697.0  | 3.2  | 0.2 | 10.0 | 1.2 | 206.0  | 2.0  | 0.0 |
| HT02-5  | 342.0  | 2.9  | 0.1 | 6.0  | 1.3 | 205.0  | 9.0  | 0.2 |
| HT02-6  | 23.0   | 1.1  | 0.2 | 4.0  | 0.0 | 6.0    | 2.0  | 0.0 |
| HT02-7  | 5.0    | 0.2  | 0.2 | Ν    | 0.0 | 9.0    | Ν    | 0.0 |
| HT02-8  | 96.0   | 0.3  | 0.1 | Ν    | 0.0 | 5.0    | Ν    | 0.0 |
| HT02-9  | 3.0    | 0.2  | 0.1 | Ν    | 0.0 | 5.0    | 3.0  | 0.0 |
| HT02-10 | 5.0    | 0.2  | 0.1 | Ν    | 0.0 | 3.0    | 1.0  | 0.0 |
| HT02-11 | 1.0    | 0.2  | 0.2 | 4.0  | 0.0 | 4.0    | Ν    | 0.0 |
| HT02-12 | 16.0   | 0.4  | 0.0 | Ν    | 0.0 | 4.0    | 1.0  | 0.0 |
| HT02-13 | 6.0    | 0.2  | 0.1 | Ν    | 0.0 | 4.0    | 1.0  | 0.0 |
| HT02-14 | 207.0  | 16.3 | 0.0 | Ν    | 0.0 | Ν      | Ν    | 0.0 |
| HT02-15 | 6.0    | 0.3  | 0.0 | Ν    | 0.0 | 7.0    | 3.0  | 0.0 |
| HT02-16 | 1082.6 | 6.8  | 0.0 | 0.8  | 0.0 | 139.8  | 34.3 | 0.0 |
| HT02-17 | 0.1    | 2.0  | 0.0 | 0.1  | 0.0 | 0.1    | 0.9  | 0.0 |
| CK02-1  | 1439.0 | 3.3  | 0.0 | Ν    | 0.0 | 63.0   | 37.0 | 0.0 |
| CK02-2  | 249.0  | 10.2 | 0.0 | Ν    | 0.0 | 123.0  | 1.0  | 0.0 |
| CK02-3  | 17.0   | 0.9  | 0.1 | 10.0 | 0.0 | 132.0  | 8.0  | 0.0 |
| CK02-4  | 199.0  | 1.4  | 0.1 | 3.0  | 0.0 | 38.0   | 29.0 | 0.0 |
| CK02-5  | 545.0  | 1.6  | 0.0 | 2.0  | 0.0 | 58.0   | 24.0 | 0.0 |
| CK02-6  | 70.0   | 8.0  | 0.0 | 5.0  | 0.0 | 141.0  | 3.0  | 0.0 |
| CK02-7  | 5.0    | 1.7  | 0.1 | 16.0 | 0.0 | 221.0  | 5.0  | 0.0 |
| CK02-8  | 3.0    | 0.2  | 0.2 | 6.0  | 0.0 | 41.0   | 2.0  | 0.1 |
| CK02-9  | 4.0    | 0.3  | 0.1 | 4.0  | 0.0 | 47.0   | 5.0  | 0.1 |
| CK02-10 | 34.0   | 2.1  | 0.2 | 9.0  | 0.4 | 137.0  | 1.0  | 0.1 |
| CK02-11 | 337.0  | 5.7  | 0.1 | 2.0  | 0.2 | 580.0  | Ν    | 0.0 |
| CK02-12 | 76.0   | 3.5  | 0.2 | 3.0  | 0.0 | 222.0  | 1.0  | 0.0 |
| CK02-13 | 8.0    | 2.7  | 0.1 | 4.0  | 0.3 | 5138.0 | Ν    | 0.0 |
| CK02-14 | 7.0    | 1.8  | 0.1 | 7.0  | 0.9 | 367.0  | Ν    | 0.1 |
| CK02-15 | 3.0    | 9.9  | 0.0 | 7.0  | 0.4 | 3128.0 | Ν    | 0.0 |
| CK02-16 | 9.0    | 0.3  | 0.1 | 4.0  | 0.0 | 22.0   | 5.0  | 0.0 |
| CK02-17 | 2.0    | 11.4 | 0.0 | 9.0  | 1.1 | 2588.0 | Ν    | 0.0 |
| CK02-18 | 6.0    | 1.0  | 0.1 | 7.0  | 0.3 | 381.0  | Ν    | 0.1 |
| CK02-19 | 5.0    | 1.0  | 0.1 | 5.0  | 0.2 | 253.0  | Ν    | 0.0 |
| CK02-20 | 3.0    | 0.3  | 0.2 | 15.0 | 0.0 | 11.0   | 2.0  | 0.0 |
| CK02-21 | 139.0  | 1.5  | 0.0 | Ν    | 0.0 | 76.0   | 8.0  | 0.0 |

|         | Ni    | Ρ     | Pb      | Sb      | Se    |
|---------|-------|-------|---------|---------|-------|
| Sample  | ppm   | ppm   | ppm     | ppm     | ppm   |
|         |       |       |         |         |       |
| HT02-1  | 4.0   | 226.0 | 3.0     | N       | Ν     |
| HT02-2  | 4.0   | 208.0 | 6.0     | 7.0     | 4.0   |
| HT02-3  | 26.0  | 415.0 | 3981.0  | 64.0    | 84.0  |
| HT02-4  | 7.0   | 491.0 | 34.0    | N       | Ν     |
| HT02-5  | 8.0   | 353.0 | 60.0    | N       | Ν     |
| HT02-6  | 2.0   | Ν     | 714.0   | 352.0   | 22.0  |
| HT02-7  | 1.0   | Ν     | 8.0     | 7.0     | Ν     |
| HT02-8  | Ν     | Ν     | 59.0    | 10000.0 | 856.0 |
| HT02-9  | Ν     | Ν     | 42.0    | 1395.0  | 5.0   |
| HT02-10 | 2.0   | Ν     | 14.0    | 595.0   | 4.0   |
| HT02-11 | Ν     | Ν     | 8.0     | 154.0   | Ν     |
| HT02-12 | Ν     | Ν     | 11.0    | 10000.0 | 99.0  |
| HT02-13 | 2.0   | Ν     | 15.0    | 217.0   | Ν     |
| HT02-14 | 15.0  | Ν     | 6599.0  | 133.0   | 311.0 |
| HT02-15 | 4.0   | Ν     | 22.0    | 180.0   | 2.0   |
| HT02-16 | 127.9 | 185.8 | 2665.8  | 232.4   | 97.1  |
| HT02-17 | 0.1   | 0.5   | 0.1     | 0.1     | 0.3   |
| CK02-1  | 16.0  | 49.0  | 1356.0  | 335.0   | 38.0  |
| CK02-2  | 25.0  | 90.0  | 42.0    | 375.0   | Ν     |
| CK02-3  | 8.0   | 246.0 | 16.0    | 10.0    | Ν     |
| CK02-4  | 19.0  | 45.0  | 242.0   | 69.0    | 5.0   |
| CK02-5  | 16.0  | 122.0 | 2276.0  | 706.0   | 22.0  |
| CK02-6  | 3.0   | 385.0 | 5249.0  | 16.0    | Ν     |
| CK02-7  | 5.0   | 255.0 | 59.0    | 8.0     | Ν     |
| CK02-8  | 3.0   | 64.0  | 45.0    | Ν       | Ν     |
| CK02-9  | 6.0   | 30.0  | 12.0    | Ν       | Ν     |
| CK02-10 | 3.0   | 362.0 | 515.0   | Ν       | Ν     |
| CK02-11 | 3.0   | 180.0 | 5943.0  | 121.0   | Ν     |
| CK02-12 | 4.0   | 196.0 | 1895.0  | 45.0    | Ν     |
| CK02-13 | 1.0   | 34.0  | 157.0   | 5.0     | Ν     |
| CK02-14 | 7.0   | Ν     | 30.0    | 34.0    | Ν     |
| CK02-15 | 11.0  | Ν     | 17.0    | 10.0    | Ν     |
| CK02-16 | 1.0   | Ν     | 21.0    | 13.0    | Ν     |
| CK02-17 | 12.0  | Ν     | 11.0    | 6.0     | Ν     |
| CK02-18 | 13.0  | Ν     | 12.0    | 11.0    | Ν     |
| CK02-19 | 8.0   | Ν     | 11.0    | 3.0     | Ν     |
| CK02-20 | Ν     | Ν     | 14.0    | 6.0     | Ν     |
| CK02-21 | 1.0   | Ν     | 10000.0 | 319.0   | 9.0   |

|         | Sr    | Ti  | Th   | V    | W   | Zn     |
|---------|-------|-----|------|------|-----|--------|
| Sample  | ppm   | %   | ppm  | ppm  | ppm | ppm    |
|         |       |     |      |      |     |        |
| HT02-1  | 3.0   | 0.0 | Ν    | 4.0  | Ν   | 6.0    |
| HT02-2  | 9.0   | 0.0 | Ν    | 3.0  | Ν   | 2.0    |
| HT02-3  | 21.0  | 0.0 | Ν    | 6.0  | Ν   | 4559.0 |
| HT02-4  | 38.0  | 0.0 | Ν    | 61.0 | Ν   | 75.0   |
| HT02-5  | 23.0  | 0.1 | Ν    | 49.0 | Ν   | 88.0   |
| HT02-6  | 8.0   | 0.0 | Ν    | 5.0  | Ν   | 152.0  |
| HT02-7  | 18.0  | 0.0 | Ν    | 5.0  | Ν   | 5.0    |
| HT02-8  | Ν     | 0.0 | Ν    | Ν    | 9.0 | 20.0   |
| HT02-9  | Ν     | 0.0 | Ν    | 3.0  | Ν   | 2.0    |
| HT02-10 | Ν     | 0.0 | Ν    | 5.0  | Ν   | 2.0    |
| HT02-11 | Ν     | 0.0 | Ν    | Ν    | Ν   | 2.0    |
| HT02-12 | Ν     | 0.0 | Ν    | Ν    | Ν   | 11.0   |
| HT02-13 | Ν     | 0.0 | Ν    | 5.0  | Ν   | 2.0    |
| HT02-14 | Ν     | 0.0 | 1.1  | 5.0  | Ν   | 3494.0 |
| HT02-15 | Ν     | 0.0 | Ν    | 3.0  | Ν   | 15.0   |
| HT02-16 | 17.2  | 0.0 | Ν    | 5.3  | 3.5 | 2197.7 |
| HT02-17 | 1.0   | 0.0 | 0.1  | 0.1  | 0.1 | 0.1    |
| CK02-1  | 9.0   | 0.0 | 5.4  | 4.0  | Ν   | 2053.0 |
| CK02-2  | 22.0  | 0.0 | 19.7 | 3.0  | Ν   | 59.0   |
| CK02-3  | 11.0  | 0.0 | 0.7  | 13.0 | Ν   | 23.0   |
| CK02-4  | 11.0  | 0.0 | Ν    | 6.0  | Ν   | 350.0  |
| CK02-5  | 11.0  | 0.0 | 1.5  | 4.0  | Ν   | 1126.0 |
| CK02-6  | 22.0  | 0.0 | 1.2  | 16.0 | Ν   | 347.0  |
| CK02-7  | 10.0  | 0.0 | Ν    | 11.0 | Ν   | 25.0   |
| CK02-8  | 4.0   | 0.0 | Ν    | Ν    | Ν   | 6.0    |
| CK02-9  | 2.0   | 0.0 | Ν    | 2.0  | Ν   | 5.0    |
| CK02-10 | 28.0  | 0.0 | Ν    | 29.0 | Ν   | 583.0  |
| CK02-11 | 84.0  | 0.0 | 0.9  | Ν    | Ν   | 8097.0 |
| CK02-12 | 14.0  | 0.0 | Ν    | 2.0  | Ν   | 1249.0 |
| CK02-13 | 999.0 | 0.0 | 1.8  | Ν    | Ν   | 71.0   |
| CK02-14 | 12.0  | 0.1 | Ν    | 26.0 | Ν   | 47.0   |
| CK02-15 | 21.0  | 0.0 | 1.3  | 39.0 | Ν   | 38.0   |
| CK02-16 | 2.0   | 0.0 | Ν    | 5.0  | Ν   | 2.0    |
| CK02-17 | 66.0  | 0.0 | 1.4  | 52.0 | Ν   | 99.0   |
| CK02-18 | 49.0  | 0.1 | Ν    | 18.0 | Ν   | 25.0   |
| CK02-19 | 22.0  | 0.1 | Ν    | 17.0 | Ν   | 36.0   |
| CK02-20 | 8.0   | 0.0 | Ν    | Ν    | Ν   | 2.0    |
| CK02-21 | 17.0  | 0.0 | Ν    | 5.0  | Ν   | 10.0   |

| Sample  | Mine / Area      | UTMX      | UTMY       |
|---------|------------------|-----------|------------|
|         |                  |           |            |
| CK02-22 | Hilltop          | 517446.67 | 4473878.91 |
| CK02-23 | Hilltop          | 517642.09 | 4473891.46 |
| CK02-24 | Hilltop          | 517650.34 | 4473961.63 |
| CK02-25 | Hilltop          | 517650.34 | 4473961.63 |
| CK02-26 | Hilltop          | 517650.34 | 4473961.63 |
| CK02-27 | Hilltop          | 517690.66 | 4473966.95 |
| CK02-28 | Hilltop          | 517832.73 | 4473656.17 |
| CK02-29 | Hilltop          | 517832.73 | 4473656.17 |
| CK02-30 | Hilltop          | 517832.73 | 4473656.17 |
| CK02-31 | Hilltop          | 517987.24 | 4474212.26 |
| CK02-32 | Hilltop          | 517987.24 | 4474212.26 |
| CK02-33 | Hilltop          | 517987.24 | 4474212.26 |
| CK02-34 | Hilltop          | 518042.78 | 4474207.13 |
| CK02-35 | Hilltop          | 518144.16 | 4474351.36 |
| CK02-36 | Hilltop          | 518144.16 | 4474351.36 |
| CK02-37 | Hilltop          | 517942.78 | 4474235.05 |
| CK02-38 | Hilltop          | 517942.78 | 4474235.05 |
| CK02-39 | Hilltop          | 517942.78 | 4474235.05 |
| CK02-40 | Hilltop          | 519159.83 | 4473622.13 |
| CK02-41 | Hilltop          | 519159.83 | 4473622.13 |
| CK02-42 | Hilltop          | 519118.96 | 4473222.43 |
| CK02-43 | Hilltop          | 519124.19 | 4473163.19 |
| CK02-44 | Hilltop          | 518468.73 | 4473350.5  |
| CK02-45 | Hilltop          | 518468.73 | 4473350.5  |
| CK02-46 | Hilltop          | 518468.73 | 4473350.5  |
| CK02-47 | Hilltop          | 518451.38 | 4473291.97 |
| CK02-48 | Hilltop          | 517804.2  | 4473555.56 |
| CK02-49 | Hilltop          | 517804.2  | 4473555.56 |
| CK02-50 | Hilltop          | 517845.29 | 4473053.54 |
| CK02-51 | Hilltop          | 517845.29 | 4473053.54 |
| CK02-52 | Hilltop          | 517856.04 | 4473135.3  |
| CK02-53 | Hilltop          | 517571.07 | 4473302.03 |
| CK02-54 | Hilltop          | 517493.76 | 4473216.29 |
| CK02-55 | Hilltop          | 517493.76 | 4473216.29 |
| CK02-56 | Hilltop          | 517553.38 | 4473577.45 |
| GM-1    | Granite Mountain | 521468.05 | 4472356.11 |
| GM-2    | Granite Mountain | 521476.09 | 4472334.3  |
| GM-3    | Granite Mountain | 521484.13 | 4472313.64 |

=

\_

|         | Au      | На     | Αα    | AI  | As      |
|---------|---------|--------|-------|-----|---------|
| Sample  | dqq     | dqq    | ppm   | %   | ppm     |
| ··      |         |        |       |     |         |
| CK02-22 | 5205.0  | 1660.0 | 106.0 | 0.3 | 10000.0 |
| CK02-23 | 479.0   | 192.0  | 54.0  | 0.6 | 1840.0  |
| CK02-24 | 183.0   | 14.0   | 62.0  | 0.3 | 3314.0  |
| CK02-25 | 30.0    | 10.0   | 1.0   | 0.4 | 113.0   |
| CK02-26 | 43.0    | 28.0   | 56.0  | 0.1 | 146.0   |
| CK02-27 | 7.0     | Ν      | 0.2   | 1.6 | 20.0    |
| CK02-28 | 3425.0  | 38.0   | 21.8  | 0.0 | 10000.0 |
| CK02-29 | 27960.0 | 20.0   | 99.0  | 0.2 | 10000.0 |
| CK02-30 | 7382.0  | 39.0   | 6.9   | 0.8 | 10000.0 |
| CK02-31 | 3219.0  | 56.0   | 146.0 | 0.2 | 10000.0 |
| CK02-32 | 764.0   | 112.0  | 41.7  | 0.2 | 9138.0  |
| CK02-33 | 72.0    | 55.0   | 1.4   | 0.3 | 488.0   |
| CK02-34 | 1986.0  | 352.0  | 147.0 | 0.2 | 10000.0 |
| CK02-35 | 334.0   | 101.0  | 41.1  | 0.3 | 1635.0  |
| CK02-36 | 603.0   | 35.0   | 38.4  | 0.4 | 4292.0  |
| CK02-37 | 359.0   | 3730.0 | 90.0  | 0.1 | 1513.0  |
| CK02-38 | 25.0    | 25.0   | 1.3   | 1.2 | 129.0   |
| CK02-39 | 21.0    | 18.0   | 0.5   | 2.7 | 53.0    |
| CK02-40 | 27.0    | Ν      | Ν     | 0.7 | 50.0    |
| CK02-41 | 14.0    | Ν      | Ν     | 1.0 | 35.0    |
| CK02-42 | 28.0    | Ν      | 0.2   | 1.2 | 32.0    |
| CK02-43 | 544.0   | 10.0   | 0.4   | 4.3 | 13.0    |
| CK02-44 | 2283.0  | Ν      | 4.8   | 0.5 | 43.0    |
| CK02-45 | 136.0   | 14.0   | 2.1   | 5.6 | 21.0    |
| CK02-46 | 14178.0 | 11.0   | 10.3  | 0.9 | 49.0    |
| CK02-47 | 158.0   | 145.0  | 2.8   | 0.5 | 454.0   |
| CK02-48 | 462.0   | 15.0   | 0.8   | 0.6 | 584.0   |
| CK02-49 | 4420.0  | 4060.0 | 82.0  | 0.3 | 5663.0  |
| CK02-50 | 123.0   | 65.0   | 0.6   | 0.3 | 131.0   |
| CK02-51 | 980.0   | 182.0  | 0.7   | 0.3 | 473.0   |
| CK02-52 | 55.0    | 35.0   | 4.9   | 0.2 | 166.0   |
| CK02-53 | 46.0    | 25.0   | 0.6   | 0.7 | 253.0   |
| CK02-54 | 96.0    | Ν      | 0.2   | 0.1 | 29.0    |
| CK02-55 | 84.0    | 10.0   | 20.2  | 1.6 | 1651.0  |
| CK02-56 | 216.0   | 14.0   | 0.5   | 1.1 | 105.0   |
| GM-1    | 20.0    | 14.0   | 0.2   | 1.0 | 55.0    |
| GM-2    | 15.0    | Ν      | Ν     | 2.0 | 56.0    |
| GM-3    | 12.0    | Ν      | Ν     | 1.4 | 11.0    |

|         | В    | Ва    | Bi   | Са  | Cd    | Со   | Cr    |
|---------|------|-------|------|-----|-------|------|-------|
| Sample  | ppm  | ppm   | ppm  | %   | ppm   | ppm  | ppm   |
|         |      |       |      |     |       |      |       |
| CK02-22 | 23.0 | 62.0  | 42.0 | 0.2 | 4.5   | 1.0  | 24.0  |
| CK02-23 | 53.0 | 138.0 | 63.0 | 0.0 | 10.5  | 1.0  | 21.0  |
| CK02-24 | 9.0  | 92.0  | 14.0 | 0.0 | 3.7   | Ν    | 25.0  |
| CK02-25 | 7.0  | 66.0  | 4.0  | 0.1 | 1.0   | Ν    | 34.0  |
| CK02-26 | 12.0 | 47.0  | 6.0  | 0.0 | 10.0  | 16.0 | 68.0  |
| CK02-27 | 6.0  | 105.0 | 1.0  | 0.5 | 0.5   | 3.0  | 50.0  |
| CK02-28 | 22.0 | 14.0  | 35.0 | 0.0 | 1.6   | Ν    | 33.0  |
| CK02-29 | 67.0 | 3.0   | 84.0 | 0.0 | 5.2   | Ν    | 9.0   |
| CK02-30 | 40.0 | 153.0 | 98.0 | 0.2 | 6.5   | 1.0  | 129.0 |
| CK02-31 | 40.0 | 60.0  | 39.0 | 0.3 | 62.5  | Ν    | 18.0  |
| CK02-32 | 18.0 | 239.0 | 13.0 | 0.2 | 22.3  | 1.0  | 66.0  |
| CK02-33 | 7.0  | 425.0 | 3.0  | 2.8 | 0.8   | 13.0 | 29.0  |
| CK02-34 | 39.0 | 317.0 | 31.0 | 0.4 | 43.4  | Ν    | 32.0  |
| CK02-35 | 15.0 | 60.0  | 7.0  | 0.1 | 2.7   | 1.0  | 34.0  |
| CK02-36 | 58.0 | 47.0  | 31.0 | 0.1 | 11.2  | 1.0  | 22.0  |
| CK02-37 | 25.0 | 30.0  | 16.0 | 0.3 | 448.7 | 3.0  | 26.0  |
| CK02-38 | 4.0  | 27.0  | Ν    | 0.9 | 1.5   | Ν    | 26.0  |
| CK02-39 | 3.0  | 123.0 | Ν    | 1.6 | 1.3   | 1.0  | 23.0  |
| CK02-40 | 5.0  | 41.0  | Ν    | 0.7 | Ν     | 2.0  | 24.0  |
| CK02-41 | 9.0  | 41.0  | 2.0  | 0.5 | Ν     | 7.0  | 55.0  |
| CK02-42 | 7.0  | 75.0  | 2.0  | 0.7 | 0.8   | 3.0  | 28.0  |
| CK02-43 | 15.0 | 32.0  | 7.0  | 2.0 | 1.8   | 7.0  | 52.0  |
| CK02-44 | 12.0 | 23.0  | 6.0  | 0.1 | 0.8   | Ν    | 53.0  |
| CK02-45 | 11.0 | 74.0  | 5.0  | 2.3 | 2.7   | 7.0  | 49.0  |
| CK02-46 | 11.0 | 14.0  | 5.0  | 0.1 | 0.8   | 2.0  | 50.0  |
| CK02-47 | 13.0 | 72.0  | 12.0 | 1.2 | 1.7   | 5.0  | 22.0  |
| CK02-48 | 11.0 | 186.0 | 9.0  | 0.1 | 0.6   | Ν    | 40.0  |
| CK02-49 | 41.0 | 118.0 | 90.0 | 0.1 | 4.7   | Ν    | 30.0  |
| CK02-50 | 5.0  | 125.0 | 2.0  | 0.1 | Ν     | Ν    | 36.0  |
| CK02-51 | 9.0  | 105.0 | 7.0  | 0.1 | Ν     | Ν    | 29.0  |
| CK02-52 | 9.0  | 106.0 | 41.0 | 0.1 | Ν     | Ν    | 42.0  |
| CK02-53 | 10.0 | 262.0 | 4.0  | 2.0 | 3.9   | 5.0  | 25.0  |
| CK02-54 | 5.0  | 29.0  | 2.0  | 0.0 | Ν     | Ν    | 67.0  |
| CK02-55 | 43.0 | 275.0 | 29.0 | 0.2 | 4.4   | Ν    | 27.0  |
| CK02-56 | 9.0  | 43.0  | 5.0  | 0.1 | 2.4   | 2.0  | 36.0  |
| GM-1    | 11.0 | 120.0 | 4.0  | 0.8 | 0.7   | 7.0  | 91.0  |
| GM-2    | 15.0 | 244.0 | 5.0  | 0.7 | 0.8   | 15.0 | 41.0  |
| GM-3    | 12.0 | 265.0 | 3.0  | 0.4 | 0.6   | 10.0 | 50.0  |

|         | Cu     | Fe   | Κ   | La   | Mg  | Mn     | Мо    | Na  |
|---------|--------|------|-----|------|-----|--------|-------|-----|
| Sample  | ppm    | %    | %   | ppm  | %   | ppm    | ppm   | %   |
|         |        |      |     |      |     |        |       |     |
| CK02-22 | 611.0  | 5.4  | 0.2 | Ν    | 0.0 | 25.0   | 13.0  | 0.0 |
| CK02-23 | 266.0  | 13.7 | 0.0 | Ν    | 0.0 | 169.0  | 4.0   | 0.0 |
| CK02-24 | 426.0  | 1.3  | 0.0 | Ν    | 0.0 | 42.0   | 1.0   | 0.0 |
| CK02-25 | 8.0    | 0.5  | 0.0 | Ν    | 0.2 | 187.0  | 1.0   | 0.0 |
| CK02-26 | 221.0  | 2.1  | 0.0 | Ν    | 0.0 | 5663.0 | 4.0   | 0.0 |
| CK02-27 | 14.0   | 0.9  | 0.0 | 2.0  | 0.9 | 201.0  | Ν     | 0.0 |
| CK02-28 | 90.0   | 4.5  | 0.0 | Ν    | 0.0 | 12.0   | 2.0   | 0.0 |
| CK02-29 | 292.0  | 17.4 | 0.0 | Ν    | 0.0 | Ν      | Ν     | 0.0 |
| CK02-30 | 540.0  | 10.1 | 0.0 | 3.0  | 0.0 | 50.0   | 28.0  | 0.0 |
| CK02-31 | 470.0  | 10.2 | 0.0 | 2.0  | 0.0 | 142.0  | 15.0  | 0.1 |
| CK02-32 | 190.0  | 4.1  | 0.0 | Ν    | 0.0 | 290.0  | 21.0  | 0.0 |
| CK02-33 | 46.0   | 1.3  | 0.1 | 13.0 | 0.1 | 955.0  | Ν     | 0.0 |
| CK02-34 | 433.0  | 9.5  | 0.0 | Ν    | 0.0 | 547.0  | 184.0 | 0.0 |
| CK02-35 | 123.0  | 2.8  | 0.0 | 4.0  | 0.0 | 773.0  | 106.0 | 0.0 |
| CK02-36 | 633.0  | 14.7 | 0.0 | Ν    | 0.1 | 731.0  | 195.0 | 0.0 |
| CK02-37 | 1295.0 | 5.8  | 0.0 | 3.0  | 0.1 | 7159.0 | 8.0   | 0.0 |
| CK02-38 | 16.0   | 0.4  | 0.0 | Ν    | 0.4 | 237.0  | 5.0   | 0.0 |
| CK02-39 | 6.0    | 0.1  | 0.1 | 2.0  | 0.1 | 71.0   | 1.0   | 0.0 |
| CK02-40 | 2.0    | 0.2  | 0.0 | 5.0  | 0.2 | 33.0   | 1.0   | 0.0 |
| CK02-41 | 4.0    | 1.1  | 0.1 | 7.0  | 0.5 | 69.0   | 1.0   | 0.2 |
| CK02-42 | 31.0   | 0.6  | 0.1 | 7.0  | 0.2 | 229.0  | 2.0   | 0.0 |
| CK02-43 | 110.0  | 3.1  | 0.0 | 5.0  | 1.2 | 777.0  | 2.0   | 0.0 |
| CK02-44 | 475.0  | 2.0  | 0.0 | Ν    | 0.1 | 100.0  | 378.0 | 0.0 |
| CK02-45 | 394.0  | 2.0  | 0.0 | 2.0  | 1.1 | 742.0  | 18.0  | 0.0 |
| CK02-46 | 1520.0 | 1.7  | 0.0 | Ν    | 0.5 | 346.0  | 141.0 | 0.0 |
| CK02-47 | 456.0  | 2.5  | 0.2 | 11.0 | 0.1 | 492.0  | 4.0   | 0.1 |
| CK02-48 | 182.0  | 1.8  | 0.2 | 11.0 | 0.1 | 33.0   | 4.0   | 0.1 |
| CK02-49 | 240.0  | 9.9  | 0.0 | 3.0  | 0.0 | 21.0   | 121.0 | 0.0 |
| CK02-50 | 15.0   | 0.3  | 0.2 | 4.0  | 0.0 | 14.0   | 21.0  | 0.0 |
| CK02-51 | 77.0   | 1.2  | 0.1 | 5.0  | 0.0 | 14.0   | 46.0  | 0.0 |
| CK02-52 | 64.0   | 1.0  | 0.1 | 5.0  | 0.0 | 24.0   | 28.0  | 0.0 |
| CK02-53 | 309.0  | 1.5  | 0.1 | 12.0 | 0.1 | 2125.0 | 26.0  | 0.0 |
| CK02-54 | 30.0   | 0.3  | 0.0 | Ν    | 0.0 | 92.0   | 4.0   | 0.0 |
| CK02-55 | 667.0  | 10.2 | 0.0 | 11.0 | 0.1 | 182.0  | 255.0 | 0.0 |
| CK02-56 | 557.0  | 1.2  | 0.2 | 7.0  | 0.6 | 474.0  | 6.0   | 0.0 |
| GM-1    | 6.0    | 2.2  | 0.1 | 3.0  | 0.6 | 550.0  | N     | 0.0 |
| GM-2    | 7.0    | 3.1  | 1.0 | 4.0  | 1.0 | 644.0  | N     | 0.0 |
| GM-3    | 2.0    | 2.3  | 1.0 | 4.0  | 0.7 | 439.0  | 1.0   | 0.0 |

|         | Ni   | Р     | Pb      | Sb    | Se    |
|---------|------|-------|---------|-------|-------|
| Sample  | ppm  | ppm   | ppm     | ppm   | ppm   |
|         |      |       | ••      |       |       |
| CK02-22 | Ν    | Ν     | 10000.0 | 500.0 | 69.0  |
| CK02-23 | 23.0 | Ν     | 7952.0  | 42.0  | Ν     |
| CK02-24 | 2.0  | Ν     | 10000.0 | 36.0  | 30.0  |
| CK02-25 | 4.0  | Ν     | 215.0   | 4.0   | Ν     |
| CK02-26 | 14.0 | Ν     | 2324.0  | 4.0   | Ν     |
| CK02-27 | 8.0  | Ν     | 26.0    | 3.0   | Ν     |
| CK02-28 | 2.0  | Ν     | 863.0   | 53.0  | 14.0  |
| CK02-29 | Ν    | Ν     | 10000.0 | 434.0 | 94.0  |
| CK02-30 | Ν    | Ν     | 5003.0  | 409.0 | Ν     |
| CK02-31 | 4.0  | Ν     | 10000.0 | 111.0 | 23.0  |
| CK02-32 | 5.0  | Ν     | 10000.0 | 47.0  | 17.0  |
| CK02-33 | 19.0 | Ν     | 241.0   | 5.0   | Ν     |
| CK02-34 | 26.0 | Ν     | 10000.0 | 157.0 | 16.0  |
| CK02-35 | 7.0  | Ν     | 8471.0  | 21.0  | 109.0 |
| CK02-36 | 12.0 | Ν     | 10000.0 | 43.0  | 195.0 |
| CK02-37 | 11.0 | Ν     | 10000.0 | 117.0 | 30.0  |
| CK02-38 | 4.0  | Ν     | 414.0   | 2.0   | 4.0   |
| CK02-39 | 2.0  | Ν     | 105.0   | Ν     | Ν     |
| CK02-40 | 3.0  | Ν     | 38.0    | Ν     | Ν     |
| CK02-41 | 14.0 | Ν     | 20.0    | Ν     | Ν     |
| CK02-42 | 4.0  | Ν     | 41.0    | Ν     | Ν     |
| CK02-43 | 8.0  | Ν     | 38.0    | Ν     | Ν     |
| CK02-44 | 3.0  | Ν     | 33.0    | Ν     | Ν     |
| CK02-45 | 8.0  | Ν     | 184.0   | Ν     | Ν     |
| CK02-46 | 6.0  | Ν     | 49.0    | Ν     | Ν     |
| CK02-47 | 10.0 | Ν     | 69.0    | 125.0 | Ν     |
| CK02-48 | 3.0  | Ν     | 139.0   | 7.0   | 21.0  |
| CK02-49 | 1.0  | Ν     | 4071.0  | 179.0 | 114.0 |
| CK02-50 | 2.0  | Ν     | 59.0    | 10.0  | Ν     |
| CK02-51 | 4.0  | Ν     | 53.0    | 43.0  | Ν     |
| CK02-52 | 4.0  | Ν     | 179.0   | 25.0  | Ν     |
| CK02-53 | 14.0 | Ν     | 157.0   | 26.0  | Ν     |
| CK02-54 | 3.0  | Ν     | 42.0    | 2.0   | Ν     |
| CK02-55 | 6.0  | Ν     | 2866.0  | 18.0  | 13.0  |
| CK02-56 | 6.0  | Ν     | 332.0   | 2.0   | Ν     |
| GM-1    | 7.0  | 590.0 | 14.0    | Ν     | Ν     |
| GM-2    | 10.0 | 611.0 | 13.0    | Ν     | Ν     |
| GM-3    | 5.0  | 437.0 | 6.0     | Ν     | Ν     |

|         | Sr    | Ti  | Th  | V    | W   | Zn      |
|---------|-------|-----|-----|------|-----|---------|
| Sample  | ppm   | %   | ppm | ppm  | ppm | ppm     |
|         |       |     |     |      |     |         |
| CK02-22 | 45.0  | 0.0 | Ν   | 13.0 | Ν   | 58.0    |
| CK02-23 | Ν     | 0.0 | Ν   | 85.0 | Ν   | 1721.0  |
| CK02-24 | Ν     | 0.0 | Ν   | 5.0  | Ν   | 261.0   |
| CK02-25 | Ν     | 0.0 | Ν   | 6.0  | Ν   | 78.0    |
| CK02-26 | Ν     | 0.0 | 3.2 | 5.0  | Ν   | 2225.0  |
| CK02-27 | 52.0  | 0.0 | Ν   | 16.0 | Ν   | 37.0    |
| CK02-28 | Ν     | 0.0 | Ν   | 3.0  | Ν   | 49.0    |
| CK02-29 | Ν     | 0.0 | 0.8 | 6.0  | Ν   | 64.0    |
| CK02-30 | 28.0  | 0.0 | 1.0 | 48.0 | Ν   | 176.0   |
| CK02-31 | 35.0  | 0.0 | Ν   | 73.0 | Ν   | 2323.0  |
| CK02-32 | 58.0  | 0.0 | 0.5 | 41.0 | Ν   | 908.0   |
| CK02-33 | 13.0  | 0.0 | 0.6 | 33.0 | Ν   | 79.0    |
| CK02-34 | 20.0  | 0.0 | Ν   | 90.0 | Ν   | 2755.0  |
| CK02-35 | Ν     | 0.0 | Ν   | 35.0 | Ν   | 518.0   |
| CK02-36 | Ν     | 0.0 | Ν   | 68.0 | Ν   | 2548.0  |
| CK02-37 | Ν     | 0.0 | 3.9 | 25.0 | Ν   | 10000.0 |
| CK02-38 | 56.0  | 0.0 | Ν   | 10.0 | Ν   | 245.0   |
| CK02-39 | 274.0 | 0.1 | Ν   | 3.0  | Ν   | 163.0   |
| CK02-40 | 57.0  | 0.0 | Ν   | 6.0  | Ν   | 14.0    |
| CK02-41 | 30.0  | 0.1 | Ν   | 19.0 | Ν   | 12.0    |
| CK02-42 | 88.0  | 0.1 | Ν   | 17.0 | Ν   | 57.0    |
| CK02-43 | 104.0 | 0.1 | Ν   | 52.0 | Ν   | 89.0    |
| CK02-44 | Ν     | 0.0 | Ν   | 11.0 | Ν   | 37.0    |
| CK02-45 | 322.0 | 0.1 | Ν   | 27.0 | Ν   | 154.0   |
| CK02-46 | Ν     | 0.0 | Ν   | 13.0 | Ν   | 49.0    |
| CK02-47 | 52.0  | 0.0 | 0.8 | 15.0 | Ν   | 94.0    |
| CK02-48 | 24.0  | 0.0 | Ν   | 27.0 | Ν   | 9.0     |
| CK02-49 | 39.0  | 0.0 | 5.3 | 15.0 | Ν   | 33.0    |
| CK02-50 | Ν     | 0.0 | Ν   | 7.0  | Ν   | 5.0     |
| CK02-51 | 6.0   | 0.0 | 1.1 | 10.0 | Ν   | 27.0    |
| CK02-52 | Ν     | 0.0 | Ν   | 11.0 | Ν   | 21.0    |
| CK02-53 | 21.0  | 0.0 | 0.6 | 25.0 | Ν   | 243.0   |
| CK02-54 | Ν     | 0.0 | Ν   | 4.0  | Ν   | 22.0    |
| CK02-55 | 7.0   | 0.0 | Ν   | 66.0 | Ν   | 232.0   |
| CK02-56 | Ν     | 0.0 | Ν   | 25.0 | Ν   | 94.0    |
| GM-1    | 18.0  | 0.1 | Ν   | 44.0 | Ν   | 46.0    |
| GM-2    | 27.0  | 0.2 | Ν   | 67.0 | Ν   | 66.0    |
| GM-3    | 19.0  | 0.2 | Ν   | 42.0 | Ν   | 43.0    |

| Sample  | Mine / Area      | UTMX      | UTMY       |
|---------|------------------|-----------|------------|
|         |                  |           |            |
| GM-4    | Granite Mountain | 521449.14 | 4472187.93 |
| GM-5    | Granite Mountain | 521469.83 | 4472039.27 |
| GM-6    | Granite Mountain | 522909.23 | 4469785.5  |
| GM-7    | Granite Mountain | 521740.26 | 4471599.07 |
| GM-8    | Granite Mountain | 521344.81 | 4471461.82 |
| GM-9    | Granite Mountain | 521829.38 | 4470763.37 |
| GM-10   | Granite Mountain | 521829.38 | 4470763.37 |
| GM-11   | Granite Mountain | 520791    | 4471059    |
| GM-12   | Granite Mountain | 520791    | 4471059    |
| GM-13   | Granite Mountain | 520833    | 4471046    |
| GM-14   | Granite Mountain | 520965    | 4471129    |
| GM-15   | Granite Mountain | 520672    | 4470270    |
| GM-16   | Granite Mountain | 520965    | 4471129    |
| GM-17   | Granite Mountain | 520965    | 4471129    |
| GM-18   | Granite Mountain | 520965    | 4471129    |
| KATT-1  | Kattenhorn       | 514657.12 | 4473852.35 |
| KATT-2  | Kattenhorn       | 514657.12 | 4473852.35 |
| KATT-3  | Kattenhorn       | 514529.86 | 4473791.26 |
| KATT-4  | Kattenhorn       | 514529.86 | 4473791.26 |
| KATT-5  | Kattenhorn       | 514529.86 | 4473791.26 |
| KATT-6  | Kattenhorn       | 514486.87 | 4473734.67 |
| KATT-7  | Kattenhorn       | 514183.13 | 4474071.21 |
| KATT-8  | Kattenhorn       | 514183.13 | 4474071.21 |
| KATT-9  | Kattenhorn       | 514183.13 | 4474071.21 |
| KATT-10 | Kattenhorn       | 514183.13 | 4474071.21 |
| KATT-11 | Kattenhorn       | 514211.66 | 4474172.42 |
| KATT-12 | Kattenhorn       | 514211.66 | 4474172.42 |
| KATT-13 | Kattenhorn       | 514211.66 | 4474172.42 |
| KATT-14 | Kattenhorn       | 514211.66 | 4474172.42 |
| KATT-15 | Kattenhorn       | 514211.66 | 4474172.42 |
| KATT-16 | Kattenhorn       | 514350.54 | 4473963.62 |
| KATT-17 | Kattenhorn       | 514335.45 | 4474002.15 |
| KATT-18 | Kattenhorn       | 514335.45 | 4474002.15 |
| KATT-19 | Kattenhorn       | 514335.45 | 4474002.15 |
| KATT-20 | Kattenhorn       | 514440.39 | 4473852.71 |
| KATT-21 | Kattenhorn       | 514313.9  | 4474098.09 |
| KATT-22 | Kattenhorn       | 514472.41 | 4474049.15 |
| KATT-23 | Kattenhorn       | 514472.41 | 4474049.15 |

|         | Au     | На     | Αα                     | AI  | As     |
|---------|--------|--------|------------------------|-----|--------|
| Sample  | daa    | daa    | maa                    | %   | maa    |
|         |        | 1.1    | <b>PP-------------</b> |     | PP     |
| GM-4    | 10.0   | Ν      | Ν                      | 1.0 | 9.0    |
| GM-5    | 5.0    | Ν      | Ν                      | 1.4 | 8.0    |
| GM-6    | 11.0   | Ν      | Ν                      | 1.0 | 5.0    |
| GM-7    | 8.0    | Ν      | Ν                      | 0.7 | 8.0    |
| GM-8    | 6.0    | Ν      | Ν                      | 1.3 | 7.0    |
| GM-9    | 6.0    | 30.0   | Ν                      | 2.0 | 18.0   |
| GM-10   | 2.0    | 27.0   | Ν                      | 2.5 | 12.0   |
| GM-11   | 12.0   | 1320.0 | 0.1                    | 0.3 | 80.0   |
| GM-12   | 14.0   | 1050.0 | Ν                      | 0.2 | 6.0    |
| GM-13   | 4.0    | 65.0   | 0.1                    | 0.0 | Ν      |
| GM-14   | 55.0   | 1010.0 | 2.4                    | 0.2 | 259.0  |
| GM-15   | 16.0   | 39.0   | 0.1                    | 1.0 | Ν      |
| GM-16   | 10.0   | 236.0  | 0.3                    | 0.1 | 13.0   |
| GM-17   | 5.0    | 23.0   | 0.1                    | 0.0 | Ν      |
| GM-18   | 8.0    | 305.0  | 0.1                    | 0.2 | 25.0   |
| KATT-1  | 252.0  | 249.0  | 307.9                  | 0.1 | 34.0   |
| KATT-2  | 251.0  | 620.0  | 93.0                   | 0.2 | 72.0   |
| KATT-3  | 1918.0 | 4170.0 | 807.8                  | 0.1 | 861.0  |
| KATT-4  | 178.0  | 1050.0 | 297.3                  | 0.0 | 96.0   |
| KATT-5  | 1548.0 | 1220.0 | 343.3                  | 0.1 | 2275.0 |
| KATT-6  | 18.0   | 82.0   | 1.1                    | 0.5 | 87.0   |
| KATT-7  | 233.0  | 500.0  | 56.0                   | 0.1 | 100.0  |
| KATT-8  | 182.0  | 610.0  | 75.0                   | 0.2 | 96.0   |
| KATT-9  | 355.0  | 226.0  | 118.0                  | 0.0 | 86.0   |
| KATT-10 | 160.0  | 710.0  | 115.0                  | 0.1 | 101.0  |
| KATT-11 | 209.0  | 80.0   | 67.0                   | 0.1 | 83.0   |
| KATT-12 | 208.0  | 149.0  | 47.0                   | 0.0 | 101.0  |
| KATT-13 | 57.0   | 2750.0 | 12.3                   | 0.1 | 47.0   |
| KATT-14 | 145.0  | 296.0  | 23.3                   | 0.1 | 58.0   |
| KATT-15 | 108.0  | 205.0  | 16.2                   | 0.2 | 78.0   |
| KATT-16 | 628.0  | 1320.0 | 713.7                  | 0.3 | 362.0  |
| KATT-17 | 147.0  | 1390.0 | 22.7                   | 0.1 | 61.0   |
| KATT-18 | 44.0   | 850.0  | 49.0                   | 0.1 | 37.0   |
| KATT-19 | 263.0  | 1080.0 | 27.3                   | 0.1 | 156.0  |
| KATT-20 | 99.0   | 261.0  | 26.1                   | 0.2 | 61.0   |
| KATT-21 | 193.0  | 8360.0 | 39.3                   | 0.2 | 40.0   |
| KATT-22 | 31.0   | 502.0  | 7.5                    | 0.2 | 277.0  |
| KATT-23 | 137.0  | 610.0  | 74.0                   | 0.2 | 65.0   |

|         | R    | Ra       | Ri       | Ca  | Cd  | Co   | Cr      |
|---------|------|----------|----------|-----|-----|------|---------|
| Sample  | nnm  | nnm      | nnm      | 0/2 | nnm | nnm  | nnm     |
|         | РЫШ  | <u> </u> | <u> </u> | 70  | РРШ | РЫШ  | <u></u> |
| GM-4    | 11.0 | 136.0    | 2.0      | 0.5 | Ν   | 7.0  | 76.0    |
| GM-5    | 12.0 | 246.0    | 3.0      | 0.0 | 0.6 | 9.0  | 34.0    |
| GM-6    | 11.0 | 129.0    | 4.0      | 0.3 | 0.5 | 8.0  | 44.0    |
| GM-7    | 9.0  | 129.0    | 2.0      | 0.2 | N   | 5.0  | 59.0    |
| GM-8    | 12.0 | 47.0     | 4.0      | 0.6 | 0.6 | 9.0  | 99.0    |
| GM-9    | 17.0 | 363.0    | 6.0      | 1.0 | 1.1 | 16.0 | 92.0    |
| GM-10   | 17.0 | 414.0    | 10.0     | 2.3 | 1.0 | 17.0 | 97.0    |
| GM-11   | 37.0 | 104.0    | 9.0      | 0.1 | 1.3 | 6.0  | 17.0    |
| GM-12   | 6.0  | 28.0     | N        | 0.1 | N   | N    | 29.0    |
| GM-13   | 4.0  | 2418.0   | Ν        | 0.0 | Ν   | Ν    | 4.0     |
| GM-14   | 18.0 | 1810.0   | 7.0      | 0.1 | 0.8 | 2.0  | 15.0    |
| GM-15   | 14.0 | 1154.0   | 2.0      | 0.4 | Ν   | 8.0  | 32.0    |
| GM-16   | 4.0  | 2619.0   | Ν        | 0.0 | Ν   | Ν    | 7.0     |
| GM-17   | 4.0  | 2702.0   | Ν        | 0.0 | Ν   | Ν    | 3.0     |
| GM-18   | 5.0  | 2657.0   | Ν        | 0.1 | Ν   | Ν    | 20.0    |
| KATT-1  | 5.0  | 372.0    | 1.0      | 0.0 | 8.0 | Ν    | 65.0    |
| KATT-2  | 6.0  | 697.0    | 2.0      | 0.0 | Ν   | Ν    | 56.0    |
| KATT-3  | 6.0  | 2591.0   | 3.0      | 0.0 | Ν   | Ν    | 51.0    |
| KATT-4  | 5.0  | 1581.0   | 1.0      | 0.0 | Ν   | Ν    | 17.0    |
| KATT-5  | 6.0  | 483.0    | 3.0      | 0.0 | Ν   | Ν    | 41.0    |
| KATT-6  | 5.0  | 437.0    | 2.0      | 0.0 | Ν   | Ν    | 16.0    |
| KATT-7  | 7.0  | 117.0    | 4.0      | 0.0 | Ν   | 2.0  | 51.0    |
| KATT-8  | 7.0  | 90.0     | 4.0      | 0.0 | 0.7 | 2.0  | 79.0    |
| KATT-9  | 5.0  | 725.0    | 3.0      | 0.0 | 1.4 | Ν    | 34.0    |
| KATT-10 | 6.0  | 1301.0   | 2.0      | 0.0 | Ν   | Ν    | 69.0    |
| KATT-11 | 6.0  | 2179.0   | 1.0      | 0.0 | Ν   | Ν    | 63.0    |
| KATT-12 | 6.0  | 1915.0   | 2.0      | 0.0 | Ν   | Ν    | 12.0    |
| KATT-13 | 6.0  | 500.0    | 2.0      | 0.0 | Ν   | 1.0  | 48.0    |
| KATT-14 | 6.0  | 430.0    | 3.0      | 0.0 | Ν   | 1.0  | 31.0    |
| KATT-15 | 7.0  | 66.0     | 6.0      | 0.0 | Ν   | 3.0  | 35.0    |
| KATT-16 | 6.0  | 87.0     | 5.0      | 0.6 | 1.3 | 3.0  | 26.0    |
| KATT-17 | 6.0  | 221.0    | Ν        | 0.0 | Ν   | Ν    | 71.0    |
| KATT-18 | 5.0  | 137.0    | Ν        | 0.1 | Ν   | Ν    | 69.0    |
| KATT-19 | 6.0  | 108.0    | 2.0      | 0.0 | Ν   | Ν    | 65.0    |
| KATT-20 | 7.0  | 76.0     | 2.0      | 0.0 | Ν   | 1.0  | 54.0    |
| KATT-21 | 5.0  | 105.0    | 3.0      | 0.0 | Ν   | Ν    | 48.0    |
| KATT-22 | 12.0 | 87.0     | 5.0      | 0.0 | 0.6 | Ν    | 48.0    |
| KATT-23 | 50.0 | 7.0      | 27.0     | 0.0 | 3.0 | 45.0 | 44.0    |

|         | Cu    | Fe   | K   | La   | Mg  | Mn    | Mo   | Na  |
|---------|-------|------|-----|------|-----|-------|------|-----|
| Sample  | ppm   | %    | %   | ppm  | %   | ppm   | ppm  | %   |
| GM-4    | 3.0   | 1.8  | 0.6 | 3.0  | 0.6 | 399.0 | N    | 0.2 |
| GM-5    | 2.0   | 2.2  | 0.9 | 4.0  | 0.7 | 434.0 | 1.0  | 0.0 |
| GM-6    | 3.0   | 1.9  | 0.7 | 4.0  | 0.6 | 377.0 | N    | 0.2 |
| GM-7    | 10.0  | 1.2  | 0.4 | 5.0  | 0.3 | 203.0 | 3.0  | 0.2 |
| GM-8    | 6.0   | 2.1  | 0.1 | 4.0  | 0.8 | 561.0 | N    | 0.2 |
| GM-9    | 10.0  | 3.8  | 0.7 | 31.0 | 1.0 | 623.0 | Ν    | 0.1 |
| GM-10   | 17.0  | 4.1  | 0.5 | 31.0 | 1.8 | 515.0 | Ν    | 0.2 |
| GM-11   | N     | 5.4  | 0.0 | 13.0 | 0.0 | 432.0 | 8.0  | 0.0 |
| GM-12   | 1.0   | 0.4  | 0.1 | 19.0 | 0.0 | 23.0  | 1.0  | 0.1 |
| GM-13   | N     | 0.1  | 0.0 | N    | 0.0 | 24.0  | N    | 0.0 |
| GM-14   | 6.0   | 2.4  | 0.1 | 5.0  | 0.0 | 427.0 | Ν    | 0.0 |
| GM-15   | 1.0   | 1.8  | 0.6 | 6.0  | 0.5 | 335.0 | Ν    | 0.2 |
| GM-16   | N     | 0.1  | 0.0 | N    | 0.0 | 16.0  | Ν    | 0.0 |
| GM-17   | Ν     | 0.0  | 0.0 | Ν    | 0.0 | 5.0   | Ν    | 0.0 |
| GM-18   | 2.0   | 0.2  | 0.1 | 7.0  | 0.0 | 50.0  | 3.0  | 0.0 |
| KATT-1  | 56.0  | 0.2  | 0.0 | N    | 0.0 | 157.0 | 4.0  | 0.0 |
| KATT-2  | 33.0  | 0.4  | 0.0 | Ν    | 0.0 | 30.0  | 4.0  | 0.0 |
| KATT-3  | 34.0  | 0.4  | 0.0 | Ν    | 0.0 | 12.0  | 5.0  | 0.0 |
| KATT-4  | 168.0 | 0.1  | 0.0 | Ν    | 0.0 | 3.0   | 7.0  | 0.0 |
| KATT-5  | 127.0 | 0.6  | 0.0 | 2.0  | 0.0 | 11.0  | 3.0  | 0.0 |
| KATT-6  | 6.0   | 0.4  | 0.3 | 21.0 | 0.0 | 6.0   | 2.0  | 0.0 |
| KATT-7  | 44.0  | 0.6  | 0.0 | Ν    | 0.0 | 10.0  | 5.0  | 0.0 |
| KATT-8  | 40.0  | 0.7  | 0.1 | Ν    | 0.0 | 19.0  | 7.0  | 0.0 |
| KATT-9  | 78.0  | 0.3  | 0.0 | Ν    | 0.0 | 76.0  | 2.0  | 0.0 |
| KATT-10 | 131.0 | 0.3  | 0.0 | Ν    | 0.0 | 23.0  | 4.0  | 0.0 |
| KATT-11 | 11.0  | 0.4  | 0.1 | 4.0  | 0.0 | 18.0  | 7.0  | 0.0 |
| KATT-12 | 5.0   | 0.3  | 0.0 | Ν    | 0.0 | 3.0   | 2.0  | 0.0 |
| KATT-13 | 10.0  | 0.4  | 0.1 | Ν    | 0.0 | 14.0  | 5.0  | 0.0 |
| KATT-14 | 16.0  | 0.4  | 0.1 | Ν    | 0.0 | 6.0   | 9.0  | 0.0 |
| KATT-15 | 16.0  | 0.8  | 0.1 | Ν    | 0.0 | 6.0   | 10.0 | 0.0 |
| KATT-16 | 75.0  | 0.6  | 0.1 | 2.0  | 0.3 | 201.0 | 21.0 | 0.0 |
| KATT-17 | 4.0   | 0.3  | 0.1 | 5.0  | 0.0 | 19.0  | 4.0  | 0.0 |
| KATT-18 | 5.0   | 0.2  | 0.0 | Ν    | 0.0 | 41.0  | 3.0  | 0.0 |
| KATT-19 | 15.0  | 0.3  | 0.0 | Ν    | 0.0 | 16.0  | 4.0  | 0.0 |
| KATT-20 | 23.0  | 0.6  | 0.0 | Ν    | 0.0 | 8.0   | 5.0  | 0.0 |
| KATT-21 | 19.0  | 0.2  | 0.1 | Ν    | 0.0 | 14.0  | 4.0  | 0.0 |
| KATT-22 | 92.0  | 2.0  | 0.0 | Ν    | 0.0 | 5.0   | 55.0 | 0.0 |
| KATT-23 | 49.0  | 11.8 | 0.0 | Ν    | 0.0 | Ν     | 80.0 | 0.0 |

|         | Ni    | Р     | Pb     | Sb     | Se       |
|---------|-------|-------|--------|--------|----------|
| Sample  | ppm   | ppm   | ppm    | ppm    | ppm      |
| · · · · | ••    |       |        |        | <u> </u> |
| GM-4    | 17.0  | 466.0 | 5.0    | Ν      | Ν        |
| GM-5    | 4.0   | 386.0 | 5.0    | Ν      | Ν        |
| GM-6    | 5.0   | 368.0 | 5.0    | Ν      | Ν        |
| GM-7    | 4.0   | 184.0 | 10.0   | Ν      | Ν        |
| GM-8    | 26.0  | 528.0 | 6.0    | Ν      | Ν        |
| GM-9    | 45.0  | 865.0 | 8.0    | Ν      | Ν        |
| GM-10   | 47.0  | 850.0 | 6.0    | Ν      | Ν        |
| GM-11   | 7.0   | 335.0 | 16.0   | Ν      | Ν        |
| GM-12   | 3.0   | 332.0 | 12.0   | Ν      | Ν        |
| GM-13   | Ν     | 10.0  | 2.0    | Ν      | Ν        |
| GM-14   | 3.0   | 158.0 | 36.0   | Ν      | Ν        |
| GM-15   | 6.0   | 377.0 | 4.0    | Ν      | Ν        |
| GM-16   | 1.0   | 24.0  | 9.0    | Ν      | Ν        |
| GM-17   | Ν     | 5.0   | 3.0    | Ν      | Ν        |
| GM-18   | 3.0   | 103.0 | 21.0   | 4.0    | Ν        |
| KATT-1  | 3.0   | Ν     | 1797.0 | 98.0   | 26.0     |
| KATT-2  | 5.0   | Ν     | 207.0  | 65.0   | 3.0      |
| KATT-3  | 2.0   | Ν     | 61.0   | 311.0  | 2.0      |
| KATT-4  | 1.0   | Ν     | 22.0   | 241.0  | 4.0      |
| KATT-5  | 3.0   | Ν     | 16.0   | 266.0  | 8.0      |
| KATT-6  | 1.0   | Ν     | 19.0   | 5.0    | Ν        |
| KATT-7  | 6.0   | Ν     | 92.0   | 76.0   | Ν        |
| KATT-8  | 11.0  | Ν     | 85.0   | 101.0  | Ν        |
| KATT-9  | 2.0   | Ν     | 242.0  | 232.0  | 8.0      |
| KATT-10 | 4.0   | Ν     | 657.0  | 291.0  | Ν        |
| KATT-11 | 3.0   | Ν     | 36.0   | 27.0   | Ν        |
| KATT-12 | 1.0   | Ν     | 54.0   | 43.0   | 2.0      |
| KATT-13 | 6.0   | Ν     | 21.0   | 9.0    | Ν        |
| KATT-14 | 5.0   | Ν     | 227.0  | 64.0   | Ν        |
| KATT-15 | 9.0   | Ν     | 278.0  | 52.0   | Ν        |
| KATT-16 | 29.0  | Ν     | 22.0   | 1485.0 | 81.0     |
| KATT-17 | 3.0   | Ν     | 22.0   | 38.0   | Ν        |
| KATT-18 | 3.0   | Ν     | 8.0    | 26.0   | Ν        |
| KATT-19 | 3.0   | Ν     | 8.0    | 22.0   | Ν        |
| KATT-20 | 9.0   | Ν     | 22.0   | 27.0   | Ν        |
| KATT-21 | 2.0   | Ν     | 20.0   | 23.0   | Ν        |
| KATT-22 | 3.0   | Ν     | 13.0   | 43.0   | Ν        |
| KATT-23 | 301.0 | Ν     | 57.0   | 41.0   | Ν        |

|         | Sr    | Ti  | Th  | V    | W    | Zn     |
|---------|-------|-----|-----|------|------|--------|
| Sample  | ppm   | %   | ppm | ppm  | ppm  | ppm    |
|         |       |     |     |      |      |        |
| GM-4    | 15.0  | 0.1 | Ν   | 33.0 | Ν    | 35.0   |
| GM-5    | 27.0  | 0.2 | Ν   | 38.0 | Ν    | 42.0   |
| GM-6    | 15.0  | 0.1 | Ν   | 38.0 | Ν    | 35.0   |
| GM-7    | 13.0  | 0.1 | Ν   | 17.0 | Ν    | 21.0   |
| GM-8    | 12.0  | 0.1 | Ν   | 32.0 | Ν    | 45.0   |
| GM-9    | 36.0  | 0.1 | Ν   | 60.0 | Ν    | 60.0   |
| GM-10   | 157.0 | 0.1 | Ν   | 62.0 | Ν    | 63.0   |
| GM-11   | 8.0   | 0.0 | Ν   | 35.0 | Ν    | 109.0  |
| GM-12   | 3.0   | 0.0 | Ν   | 20.0 | Ν    | 7.0    |
| GM-13   | 65.0  | 0.0 | Ν   | Ν    | Ν    | 2.0    |
| GM-14   | 22.0  | 0.0 | Ν   | 8.0  | Ν    | 46.0   |
| GM-15   | 18.0  | 0.2 | Ν   | 37.0 | Ν    | 34.0   |
| GM-16   | 48.0  | 0.0 | Ν   | Ν    | Ν    | 4.0    |
| GM-17   | 60.0  | 0.0 | Ν   | Ν    | Ν    | Ν      |
| GM-18   | 53.0  | 0.0 | Ν   | 4.0  | Ν    | 11.0   |
| KATT-1  | Ν     | 0.0 | Ν   | 2.0  | 12.0 | 1867.0 |
| KATT-2  | 11.0  | 0.0 | 0.7 | 6.0  | Ν    | 54.0   |
| KATT-3  | 23.0  | 0.0 | Ν   | Ν    | 24.0 | 6.0    |
| KATT-4  | 60.0  | 0.0 | Ν   | Ν    | 17.0 | 23.0   |
| KATT-5  | 20.0  | 0.0 | 0.6 | Ν    | 10.0 | 19.0   |
| KATT-6  | 3.0   | 0.0 | Ν   | 4.0  | Ν    | 3.0    |
| KATT-7  | Ν     | 0.0 | 0.5 | 5.0  | Ν    | 10.0   |
| KATT-8  | Ν     | 0.0 | Ν   | 12.0 | Ν    | 78.0   |
| KATT-9  | 68.0  | 0.0 | Ν   | Ν    | 3.0  | 251.0  |
| KATT-10 | Ν     | 0.0 | Ν   | 5.0  | 4.0  | 46.0   |
| KATT-11 | 61.0  | 0.0 | Ν   | 5.0  | Ν    | 3.0    |
| KATT-12 | 46.0  | 0.0 | Ν   | 6.0  | Ν    | Ν      |
| KATT-13 | Ν     | 0.0 | Ν   | 4.0  | Ν    | 4.0    |
| KATT-14 | Ν     | 0.0 | Ν   | 4.0  | Ν    | 9.0    |
| KATT-15 | Ν     | 0.0 | 0.5 | 5.0  | Ν    | 20.0   |
| KATT-16 | 12.0  | 0.0 | 0.9 | 14.0 | 23.0 | 193.0  |
| KATT-17 | 115.0 | 0.0 | N   | 5.0  | N    | 7.0    |
| KATT-18 | 103.0 | 0.0 | Ν   | 5.0  | Ν    | 5.0    |
| KATT-19 | 65.0  | 0.0 | N   | 4.0  | N    | 3.0    |
| KATT-20 | 2.0   | 0.0 | N   | 5.0  | N    | 25.0   |
| KATT-21 | 4.0   | 0.0 | Ν   | 3.0  | Ν    | 4.0    |
| KATT-22 | N     | 0.0 | Ν   | 71.0 | Ν    | 6.0    |
| KATT-23 | N     | 0.0 | 0.9 | 21.0 | Ν    | 38.0   |

| Sample  | Mine / Area | UTMX      | UTMY       |
|---------|-------------|-----------|------------|
| · · · · |             |           |            |
| KATT-24 | Kattenhorn  | 514183.13 | 4474071.21 |
| KATT-25 | Kattenhorn  | 513920.75 | 4474103.52 |
| KATT-26 | Kattenhorn  | 513920.75 | 4474103.52 |
| KATT-27 | Kattenhorn  | 513920.75 | 4474103.52 |
| KATT-28 | Kattenhorn  | 513920.75 | 4474103.52 |
| KATT-29 | Kattenhorn  | 513920.75 | 4474103.52 |
| KATT-30 | Kattenhorn  | 513926.05 | 4474059.54 |
| KATT-31 | Kattenhorn  | 513804.69 | 4474224.31 |
| KATT-32 | Kattenhorn  | 513804.69 | 4474224.31 |
| KATT-33 | Kattenhorn  | 513715.08 | 4474391.99 |
| KATT-34 | Kattenhorn  | 513715.08 | 4474391.99 |
| KATT-35 | Kattenhorn  | 513715.08 | 4474391.99 |
| KATT-36 | Kattenhorn  | 513737.51 | 4474355.87 |
| KATT-37 | Kattenhorn  | 513632.16 | 4474278.81 |
| KATT-38 | Kattenhorn  | 513632.16 | 4474278.81 |
| KATT-39 | Kattenhorn  | 513653.43 | 4474257.96 |
| KATT-40 | Kattenhorn  | 513685.76 | 4474251.71 |
| KATT-41 | Kattenhorn  | 513685.76 | 4474251.71 |
| KATT-42 | Kattenhorn  | 513632.16 | 4474278.81 |
| KATT-43 | Kattenhorn  | 513632.16 | 4474278.81 |
| BD-1    | Blue Dick   | 514072.5  | 4473771.94 |
| BD-2    | Blue Dick   | 514072.5  | 4473771.94 |
| BD-3    | Blue Dick   | 514072.5  | 4473771.94 |
| BD-4    | Blue Dick   | 514013.4  | 4473797.85 |
| BD-5    | Blue Dick   | 514013.4  | 4473797.85 |
| BD-6    | Blue Dick   | 513929.24 | 4473817.15 |
| BD-7    | Blue Dick   | 513864.2  | 4473881.55 |
| BD-8    | Blue Dick   | 513864.2  | 4473881.55 |
| BD-9    | Blue Dick   | 513864.2  | 4473881.55 |
| BD-10   | Blue Dick   | 513729.38 | 4473964    |
| BD-11   | Blue Dick   | 513729.38 | 4473964    |
| BD-12   | Blue Dick   | 513729.38 | 4473964    |
| BD-13   | Blue Dick   | 513729.38 | 4473964    |
| BD-14   | Blue Dick   | 513729.38 | 4473964    |
| BD-15   | Blue Dick   | 513963.81 | 4473902.47 |
| BD-16   | Blue Dick   | 513963.81 | 4473902.47 |
| BD-17   | Blue Dick   | 513985.13 | 4473891.38 |
| BD-18   | Blue Dick   | 513985.13 | 4473891.38 |

|         | Au      | Ηα      | Aa    | Al  | As                                   |
|---------|---------|---------|-------|-----|--------------------------------------|
| Sample  | daa     | daa     | maa   | %   | maa                                  |
|         |         | 1.1.    |       |     | <b>I</b> <sup>-</sup> I <sup>-</sup> |
| KATT-24 | 148.0   | 1320.0  | 246.0 | 0.1 | 72.0                                 |
| KATT-25 | 108.0   | 77.0    | 9.7   | 0.2 | 37.0                                 |
| KATT-26 | 147.0   | 1440.0  | 6.0   | 0.1 | 27.0                                 |
| KATT-27 | 380.0   | 15100.0 | 127.0 | 0.0 | 33.0                                 |
| KATT-28 | 15137.0 | 5640.0  | 16.0  | 0.1 | 1234.0                               |
| KATT-29 | 107.0   | 610.0   | 14.3  | 0.1 | 45.0                                 |
| KATT-30 | 696.0   | 104.0   | 1.1   | 0.1 | 105.0                                |
| KATT-31 | 93.0    | 2480.0  | 3.5   | 0.0 | 89.0                                 |
| KATT-32 | 63.0    | 1420.0  | 11.3  | 0.1 | 287.0                                |
| KATT-33 | 167.0   | 6440.0  | 64.0  | 0.1 | 37.0                                 |
| KATT-34 | 42.0    | 200.0   | 28.0  | 0.1 | 42.0                                 |
| KATT-35 | 605.0   | 5680.0  | 97.0  | 0.5 | 1111.0                               |
| KATT-36 | 40.0    | 116.0   | 10.9  | 0.1 | 60.0                                 |
| KATT-37 | 271.0   | 11200.0 | 15.4  | 0.2 | 119.0                                |
| KATT-38 | 2849.0  | 215.0   | 27.2  | 0.1 | 1493.0                               |
| KATT-39 | 81.0    | 940.0   | 43.0  | 0.1 | 80.0                                 |
| KATT-40 | 207.0   | 352.0   | 102.0 | 0.1 | 37.0                                 |
| KATT-41 | 102.0   | 294.0   | 3.6   | 0.1 | 15.0                                 |
| KATT-42 | 288.0   | 3160.0  | 121.0 | 0.1 | 55.0                                 |
| KATT-43 | 203.0   | 11800.0 | 600.0 | 0.1 | 71.0                                 |
| BD-1    | 144.0   | 52.0    | 16.5  | 0.0 | 46.0                                 |
| BD-2    | 2466.0  | 3120.0  | 20.1  | 0.5 | 912.0                                |
| BD-3    | 403.0   | 102.0   | 5.7   | 0.1 | 221.0                                |
| BD-4    | 603.0   | 197.0   | 8.4   | 0.3 | 109.0                                |
| BD-5    | 327.0   | 102.0   | 5.5   | 0.1 | 166.0                                |
| BD-6    | 537.0   | 339.0   | 312.6 | 0.1 | 67.0                                 |
| BD-7    | 208.0   | 14.0    | 0.8   | 2.0 | 12.0                                 |
| BD-8    | 444.0   | 670.0   | 70.0  | 0.1 | 76.0                                 |
| BD-9    | 142.0   | 1000.0  | 8.5   | 0.1 | 35.0                                 |
| BD-10   | 115.0   | 1780.0  | 296.5 | 0.1 | 24.0                                 |
| BD-11   | 733.0   | 1560.0  | 179.0 | 0.1 | 21.0                                 |
| BD-12   | 7386.0  | 2770.0  | 418.8 | 0.1 | 74.0                                 |
| BD-13   | 236.0   | 206.0   | 64.0  | 0.1 | 45.0                                 |
| BD-14   | 76.0    | 680.0   | 48.0  | 0.1 | 63.0                                 |
| BD-15   | 3108.0  | 33.0    | 8.4   | 0.2 | 1037.0                               |
| BD-16   | 1987.0  | 100.0   | 4.6   | 0.3 | 66.0                                 |
| BD-17   | 6438.0  | 270.0   | 8.9   | 0.2 | 3921.0                               |
| BD-18   | 2221.0  | 335.0   | 3.7   | 0.2 | 946.0                                |

|         | В    | Ва     | Bi   | Ca  | Cd  | Со  | Cr    |
|---------|------|--------|------|-----|-----|-----|-------|
| Sample  | ppm  | ppm    | ppm  | %   | ppm | ppm | ppm   |
|         |      |        |      |     |     |     |       |
| KATT-24 | 6.0  | 1077.0 | 2.0  | 0.0 | 0.8 | Ν   | 56.0  |
| KATT-25 | 16.0 | 86.0   | 7.0  | 0.1 | 0.6 | 4.0 | 22.0  |
| KATT-26 | 6.0  | 322.0  | 4.0  | 0.0 | Ν   | Ν   | 34.0  |
| KATT-27 | 4.0  | 1454.0 | 3.0  | 0.0 | Ν   | Ν   | 17.0  |
| KATT-28 | 30.0 | 11.0   | 16.0 | 0.0 | 1.3 | 8.0 | 23.0  |
| KATT-29 | 9.0  | 414.0  | 5.0  | 0.1 | Ν   | Ν   | 61.0  |
| KATT-30 | 12.0 | 103.0  | 5.0  | 0.0 | Ν   | 4.0 | 44.0  |
| KATT-31 | 7.0  | 556.0  | 2.0  | 0.0 | Ν   | Ν   | 32.0  |
| KATT-32 | 33.0 | 260.0  | 15.0 | 0.0 | 1.4 | Ν   | 40.0  |
| KATT-33 | 5.0  | 1451.0 | 3.0  | 0.1 | Ν   | Ν   | 69.0  |
| KATT-34 | 4.0  | 955.0  | 2.0  | 0.1 | Ν   | Ν   | 46.0  |
| KATT-35 | 40.0 | 632.0  | 15.0 | 0.2 | 1.9 | 3.0 | 165.0 |
| KATT-36 | 5.0  | 173.0  | Ν    | 0.1 | Ν   | Ν   | 78.0  |
| KATT-37 | 16.0 | 50.0   | 30.0 | 0.0 | 0.6 | 8.0 | 21.0  |
| KATT-38 | 6.0  | 540.0  | 3.0  | 0.0 | Ν   | 2.0 | 72.0  |
| KATT-39 | 7.0  | 85.0   | 72.0 | 0.0 | Ν   | 2.0 | 26.0  |
| KATT-40 | 5.0  | 204.0  | 3.0  | 0.0 | Ν   | Ν   | 76.0  |
| KATT-41 | 5.0  | 65.0   | 2.0  | 0.0 | Ν   | Ν   | 36.0  |
| KATT-42 | 7.0  | 99.0   | 9.0  | 0.0 | Ν   | 2.0 | 50.0  |
| KATT-43 | 5.0  | 1382.0 | 2.0  | 0.1 | Ν   | Ν   | 38.0  |
| BD-1    | 5.0  | 126.0  | 2.0  | 0.0 | Ν   | Ν   | 74.0  |
| BD-2    | 14.0 | 99.0   | 7.0  | 0.0 | 0.8 | Ν   | 19.0  |
| BD-3    | 7.0  | 32.0   | 2.0  | 0.0 | Ν   | Ν   | 59.0  |
| BD-4    | 5.0  | 114.0  | 2.0  | 0.1 | Ν   | Ν   | 36.0  |
| BD-5    | 6.0  | 102.0  | 3.0  | 0.0 | Ν   | Ν   | 69.0  |
| BD-6    | 6.0  | 492.0  | 4.0  | 0.0 | Ν   | Ν   | 47.0  |
| BD-7    | 9.0  | 154.0  | 2.0  | 8.3 | Ν   | 5.0 | 30.0  |
| BD-8    | 8.0  | 72.0   | 5.0  | 0.0 | Ν   | 1.0 | 49.0  |
| BD-9    | 6.0  | 60.0   | 1.0  | 0.1 | Ν   | Ν   | 39.0  |
| BD-10   | 7.0  | 51.0   | 4.0  | 0.0 | 1.0 | 2.0 | 36.0  |
| BD-11   | 7.0  | 62.0   | 3.0  | 0.0 | Ν   | 2.0 | 35.0  |
| BD-12   | 11.0 | 69.0   | 5.0  | 0.0 | 0.5 | Ν   | 78.0  |
| BD-13   | 8.0  | 93.0   | 4.0  | 0.0 | Ν   | 1.0 | 71.0  |
| BD-14   | 11.0 | 67.0   | 4.0  | 0.0 | Ν   | 4.0 | 42.0  |
| BD-15   | 42.0 | 113.0  | 21.0 | 0.1 | 1.8 | Ν   | 9.0   |
| BD-16   | 5.0  | 109.0  | 4.0  | 0.1 | Ν   | Ν   | 23.0  |
| BD-17   | 10.0 | 106.0  | 6.0  | 0.1 | Ν   | Ν   | 39.0  |
| BD-18   | 10.0 | 426.0  | 9.0  | 0.1 | Ν   | Ν   | 30.0  |

|         | Cu    | Fe  | K   | La   | Mg  | Mn    | Mo    | Na  |
|---------|-------|-----|-----|------|-----|-------|-------|-----|
| Sample  | ppm   | %   | %   | ppm  | %   | ppm   | ppm   | %   |
| KATT-24 | 187 0 | 0.3 | 0.0 | N    | 0.0 | 21.0  | 4 0   | 0.0 |
| KATT-25 | 8.0   | 2.9 | 0.2 | N    | 0.0 | 29.0  | 4.0   | 0.0 |
| KATT-26 | 7.0   | 0.6 | 0.0 | N    | 0.0 | 15.0  | 32.0  | 0.0 |
| KATT-27 | 125.0 | 0.3 | 0.0 | N    | 0.0 | 7 0   | 38.0  | 0.0 |
| KATT-28 | 32.0  | 57  | 0.0 | N    | 0.0 | 42.0  | 28.0  | 0.0 |
| KATT-29 | 10.0  | 1.3 | 0.0 | N    | 0.0 | 22.0  | 68.0  | 0.0 |
| KATT-30 | 9.0   | 1.0 | 0.0 | 4.0  | 0.0 | 25.0  | 11 0  | 0.0 |
| KATT-31 | 6.0   | 0.9 | 0.0 | N    | 0.0 | 21.0  | 4 0   | 0.0 |
| KATT-32 | 69.0  | 6.3 | 0.2 | N    | 0.0 | 56.0  | 9.0   | 0.0 |
| KATT-33 | 9.0   | 0.3 | 0.0 | N    | 0.1 | 135.0 | 11.0  | 0.0 |
| KATT-34 | 7.0   | 0.3 | 0.0 | N    | 0.0 | 36.0  | 5.0   | 0.0 |
| KATT-35 | 542.0 | 7.9 | 0.0 | N    | 0.1 | 199.0 | 24.0  | 0.1 |
| KATT-36 | 6.0   | 0.4 | 0.0 | N    | 0.0 | 77.0  | 4.0   | 0.0 |
| KATT-37 | 6.0   | 2.7 | 0.1 | N    | 0.0 | 26.0  | 2.0   | 0.0 |
| KATT-38 | 58.0  | 0.6 | 0.0 | Ν    | 0.0 | 26.0  | 3.0   | 0.0 |
| KATT-39 | 13.0  | 1.0 | 0.1 | 2.0  | 0.0 | 20.0  | 3.0   | 0.0 |
| KATT-40 | 8.0   | 0.4 | 0.0 | Ν    | 0.0 | 15.0  | 3.0   | 0.0 |
| KATT-41 | 6.0   | 0.3 | 0.0 | Ν    | 0.0 | 12.0  | 2.0   | 0.0 |
| KATT-42 | 109.0 | 0.9 | 0.1 | 3.0  | 0.0 | 18.0  | 3.0   | 0.0 |
| KATT-43 | 69.0  | 0.4 | 0.0 | Ν    | 0.0 | 17.0  | 1.0   | 0.0 |
| BD-1    | 17.0  | 0.2 | 0.0 | Ν    | 0.0 | 9.0   | 4.0   | 0.0 |
| BD-2    | 142.0 | 2.5 | 0.0 | 7.0  | 0.0 | Ν     | 55.0  | 0.0 |
| BD-3    | 21.0  | 0.6 | 0.0 | Ν    | 0.0 | 6.0   | 17.0  | 0.0 |
| BD-4    | 5.0   | 0.2 | 0.1 | 3.0  | 0.0 | 10.0  | 5.0   | 0.0 |
| BD-5    | 7.0   | 0.6 | 0.1 | 2.0  | 0.0 | 13.0  | 10.0  | 0.0 |
| BD-6    | 22.0  | 0.5 | 0.0 | Ν    | 0.0 | 7.0   | 7.0   | 0.0 |
| BD-7    | 8.0   | 1.5 | 0.3 | 12.0 | 0.4 | 665.0 | Ν     | 0.1 |
| BD-8    | 56.0  | 1.0 | 0.1 | 2.0  | 0.0 | 15.0  | 9.0   | 0.0 |
| BD-9    | 13.0  | 0.4 | 0.0 | Ν    | 0.0 | 9.0   | 3.0   | 0.0 |
| BD-10   | 267.0 | 0.7 | 0.1 | 8.0  | 0.0 | 5.0   | 8.0   | 0.0 |
| BD-11   | 65.0  | 0.7 | 0.0 | Ν    | 0.0 | 6.0   | 16.0  | 0.0 |
| BD-12   | 70.0  | 1.6 | 0.1 | Ν    | 0.0 | 6.0   | 178.0 | 0.0 |
| BD-13   | 40.0  | 0.9 | 0.0 | Ν    | 0.0 | 9.0   | 7.0   | 0.0 |
| BD-14   | 29.0  | 1.7 | 0.0 | Ν    | 0.0 | 17.0  | 44.0  | 0.0 |
| BD-15   | 58.0  | 7.8 | 0.5 | Ν    | 0.0 | 55.0  | 20.0  | 0.1 |
| BD-16   | 5.0   | 0.6 | 0.2 | Ν    | 0.0 | 12.0  | 2.0   | 0.0 |
| BD-17   | 36.0  | 1.4 | 0.2 | Ν    | 0.0 | 21.0  | 9.0   | 0.0 |
| BD-18   | 17.0  | 1.4 | 0.1 | Ν    | 0.0 | 15.0  | 10.0  | 0.0 |

|         | Ni   | Р      | Pb    | Sb     | Se    |
|---------|------|--------|-------|--------|-------|
| Sample  | ppm  | ppm    | ppm   | ppm    | ppm   |
|         |      |        |       |        |       |
| KATT-24 | 5.0  | Ν      | 451.0 | 311.0  | 3.0   |
| KATT-25 | 3.0  | 45.0   | 12.0  | 16.0   | Ν     |
| KATT-26 | 3.0  | 23.0   | 6.0   | 60.0   | 5.0   |
| KATT-27 | Ν    | 12.0   | 23.0  | 7920.0 | 152.0 |
| KATT-28 | 59.0 | 46.0   | 21.0  | 119.0  | 23.0  |
| KATT-29 | 10.0 | 26.0   | 18.0  | 63.0   | 25.0  |
| KATT-30 | 18.0 | 18.0   | 7.0   | 9.0    | Ν     |
| KATT-31 | 4.0  | 404.0  | 53.0  | 21.0   | Ν     |
| KATT-32 | 3.0  | 678.0  | 174.0 | 54.0   | Ν     |
| KATT-33 | 4.0  | 66.0   | 149.0 | 50.0   | Ν     |
| KATT-34 | 4.0  | 128.0  | 302.0 | 43.0   | 2.0   |
| KATT-35 | 15.0 | 1350.0 | 220.0 | 165.0  | Ν     |
| KATT-36 | 6.0  | 215.0  | 42.0  | 5.0    | Ν     |
| KATT-37 | 20.0 | 57.0   | 81.0  | 12.0   | 3.0   |
| KATT-38 | 16.0 | 56.0   | 15.0  | 60.0   | Ν     |
| KATT-39 | 8.0  | 86.0   | 105.0 | 56.0   | 3.0   |
| KATT-40 | 6.0  | 118.0  | 25.0  | 35.0   | Ν     |
| KATT-41 | 4.0  | 14.0   | 9.0   | 5.0    | Ν     |
| KATT-42 | 9.0  | 23.0   | 22.0  | 101.0  | Ν     |
| KATT-43 | 5.0  | 59.0   | 20.0  | 422.0  | Ν     |
| BD-1    | 4.0  | Ν      | 10.0  | 7.0    | Ν     |
| BD-2    | 2.0  | Ν      | 29.0  | 68.0   | 16.0  |
| BD-3    | 3.0  | Ν      | 6.0   | 12.0   | 2.0   |
| BD-4    | 4.0  | Ν      | 7.0   | 12.0   | Ν     |
| BD-5    | 4.0  | Ν      | 7.0   | 13.0   | Ν     |
| BD-6    | 5.0  | Ν      | 31.0  | 168.0  | 20.0  |
| BD-7    | 12.0 | Ν      | 8.0   | N      | Ν     |
| BD-8    | 8.0  | Ν      | 16.0  | 49.0   | 4.0   |
| BD-9    | 4.0  | Ν      | 7.0   | 21.0   | 7.0   |
| BD-10   | 10.0 | Ν      | 29.0  | 205.0  | 6.0   |
| BD-11   | 8.0  | Ν      | 11.0  | 65.0   | 7.0   |
| BD-12   | 3.0  | Ν      | 64.0  | 255.0  | 2.0   |
| BD-13   | 8.0  | Ν      | 31.0  | 32.0   | 4.0   |
| BD-14   | 15.0 | Ν      | 24.0  | 31.0   | 3.0   |
| BD-15   | Ν    | 303.0  | 46.0  | 1388.0 | 2.0   |
| BD-16   | 2.0  | 36.0   | 20.0  | 18.0   | Ν     |
| BD-17   | 3.0  | 42.0   | 33.0  | 53.0   | Ν     |
| BD-18   | 3.0  | 42.0   | 22.0  | 34.0   | Ν     |

|         | Sr    | Ti  | Th  | V     | W    | Zn    |
|---------|-------|-----|-----|-------|------|-------|
| Sample  | ppm   | %   | ppm | ppm   | ppm  | ppm   |
|         |       |     |     |       |      |       |
| KATT-24 | Ν     | 0.0 | Ν   | 2.0   | 9.0  | 80.0  |
| KATT-25 | 7.0   | 0.0 | Ν   | 7.0   | Ν    | 3.0   |
| KATT-26 | Ν     | 0.0 | Ν   | 3.0   | Ν    | 3.0   |
| KATT-27 | 40.0  | 0.0 | 1.9 | Ν     | 3.0  | 4.0   |
| KATT-28 | Ν     | 0.0 | 1.8 | 6.0   | Ν    | 5.0   |
| KATT-29 | 3.0   | 0.0 | 0.9 | 6.0   | Ν    | 1.0   |
| KATT-30 | Ν     | 0.0 | 0.6 | 4.0   | Ν    | 8.0   |
| KATT-31 | 29.0  | 0.0 | 0.6 | 10.0  | Ν    | 2.0   |
| KATT-32 | 93.0  | 0.0 | 0.8 | 153.0 | Ν    | 4.0   |
| KATT-33 | 22.0  | 0.0 | Ν   | 8.0   | Ν    | 11.0  |
| KATT-34 | 25.0  | 0.0 | Ν   | 8.0   | Ν    | 5.0   |
| KATT-35 | 26.0  | 0.0 | 3.8 | 241.0 | Ν    | 152.0 |
| KATT-36 | 10.0  | 0.0 | Ν   | 7.0   | Ν    | 4.0   |
| KATT-37 | 4.0   | 0.0 | Ν   | 3.0   | Ν    | 8.0   |
| KATT-38 | 8.0   | 0.0 | 0.7 | Ν     | Ν    | 15.0  |
| KATT-39 | Ν     | 0.0 | Ν   | 3.0   | Ν    | 6.0   |
| KATT-40 | 6.0   | 0.0 | Ν   | Ν     | Ν    | 3.0   |
| KATT-41 | Ν     | 0.0 | Ν   | Ν     | Ν    | 3.0   |
| KATT-42 | 16.0  | 0.0 | Ν   | 2.0   | Ν    | 25.0  |
| KATT-43 | 13.0  | 0.0 | Ν   | 3.0   | 23.0 | 13.0  |
| BD-1    | Ν     | 0.0 | Ν   | Ν     | Ν    | 3.0   |
| BD-2    | 75.0  | 0.0 | Ν   | 49.0  | Ν    | 10.0  |
| BD-3    | 16.0  | 0.0 | 0.6 | 14.0  | Ν    | 4.0   |
| BD-4    | 14.0  | 0.0 | Ν   | 8.0   | Ν    | 3.0   |
| BD-5    | 4.0   | 0.0 | Ν   | 21.0  | Ν    | 3.0   |
| BD-6    | 6.0   | 0.0 | Ν   | 6.0   | 9.0  | 4.0   |
| BD-7    | 277.0 | 0.0 | Ν   | 27.0  | Ν    | 25.0  |
| BD-8    | Ν     | 0.0 | 0.7 | 8.0   | Ν    | 10.0  |
| BD-9    | Ν     | 0.0 | Ν   | Ν     | Ν    | 5.0   |
| BD-10   | Ν     | 0.0 | Ν   | 6.0   | 7.0  | 40.0  |
| BD-11   | Ν     | 0.0 | Ν   | 3.0   | Ν    | 15.0  |
| BD-12   | 10.0  | 0.0 | Ν   | 35.0  | Ν    | 13.0  |
| BD-13   | Ν     | 0.0 | Ν   | 4.0   | Ν    | 3.0   |
| BD-14   | Ν     | 0.0 | 0.7 | 7.0   | Ν    | 11.0  |
| BD-15   | 27.0  | 0.0 | 0.5 | 84.0  | Ν    | 4.0   |
| BD-16   | 7.0   | 0.0 | Ν   | 5.0   | Ν    | 3.0   |
| BD-17   | 6.0   | 0.0 | Ν   | 7.0   | Ν    | 6.0   |
| BD-18   | 16.0  | 0.0 | Ν   | 8.0   | Ν    | 3.0   |

| Sample        | Mine / Area  | UTMX      | UTMY       |  |  |
|---------------|--------------|-----------|------------|--|--|
|               |              |           |            |  |  |
| BD-19         | Blue Dick    | 513985.13 | 4473891.38 |  |  |
| BD-20         | Blue Dick    | 513985.13 | 4473891.38 |  |  |
| BD-21         | Blue Dick    | 513685.75 | 4473977.59 |  |  |
| BD-22         | Blue Dick    | 513927.99 | 4473540.6  |  |  |
| BD-23         | Blue Dick    | 513985.13 | 4473891.38 |  |  |
| BD-24         | Blue Dick    | 513985.13 | 4473891.38 |  |  |
| BD-25         | Blue Dick    | 513985.13 | 4473891.38 |  |  |
| TEN-1         | Tenabo       | 526858    | 4461408    |  |  |
| TEN-2         | Tenabo       | 527168    | 4461285    |  |  |
| TEN-3         | Tenabo       | 527184    | 4461111    |  |  |
| TEN-4         | Tenabo       | 527174    | 4461070    |  |  |
| TEN-5         | Tenabo       | 527174    | 4461070    |  |  |
| TEN-6         | Tenabo       | 527051    | 4461242    |  |  |
| TEN-7         | Tenabo       | 526722    | 4461319    |  |  |
| TEN-8         | Tenabo       | 526543    | 4461280    |  |  |
| TEN-9         | Tenabo       | 526543    | 4461280    |  |  |
| <b>TEN-10</b> | Tenabo       | 524854    | 4463093    |  |  |
| <b>TEN-11</b> | Tenabo       | 527051    | 4461242    |  |  |
| GRIT-01       | Betty O'Neal | 509478.0  | 4478062.5  |  |  |
| GRIT-02       | Betty O'Neal | 509482.5  | 4478053.1  |  |  |
| GRIT-03       | Betty O'Neal | 509482.7  | 4478053.1  |  |  |
| GRIT-04       | Betty O'Neal | 509477.8  | 4478049.1  |  |  |
| GRIT-05       | Betty O'Neal | 509476.8  | 4478049.3  |  |  |
| GRIT-06       | Betty O'Neal | 509480.0  | 4478042.1  |  |  |
| GRIT-07       | Betty O'Neal | 509480.4  | 4478042.4  |  |  |
| GRIT-08       | Betty O'Neal | 509476.2  | 4478041.7  |  |  |
| GRIT-09       | Betty O'Neal | 509487.3  | 4478035.2  |  |  |
| GRIT-10       | Betty O'Neal | 509483.4  | 4478027.7  |  |  |
| GRIT-11       | Betty O'Neal | 509476.6  | 4478037.6  |  |  |
| GRIT-12       | Betty O'Neal | 509507.0  | 4478039.2  |  |  |
| GRIT-13       | Betty O'Neal | 509541.4  | 4477959.3  |  |  |
| GRIT-14       | Betty O'Neal | 509541.8  | 4477956.7  |  |  |
| GRIT-15       | Betty O'Neal | 509542.7  | 4477955.3  |  |  |
| GRIT-16       | Betty O'Neal | 509542.7  | 4477952.7  |  |  |
| GRIT-17       | Betty O'Neal | 509543.2  | 4477953.2  |  |  |
| GRIT-18       | Betty O'Neal | 509548.6  | 4477953.3  |  |  |
| GRIT-19       | Betty O'Neal | 509535.5  | 4477964.7  |  |  |
| GRIT-20       | Betty O'Neal | 509535.4  | 4477964.8  |  |  |
|               |              |           |            |  |  |

|               | Au     | Hg         | Ag     | AI  | As     |  |
|---------------|--------|------------|--------|-----|--------|--|
| Sample        | ppb    | ppb        | ppm    | %   | ppm    |  |
|               |        |            |        |     |        |  |
| BD-19         | 288.0  | 288.0 46.0 |        | 0.1 | 237.0  |  |
| BD-20         | 864.0  | 55.0       | 6.5    | 0.2 | 521.0  |  |
| BD-21         | 809.0  | 4000.0     | 1036.7 | 0.1 | 193.0  |  |
| BD-22         | 44.0   | 120.0      | 16.9   | 0.6 | 36.0   |  |
| BD-23         | 8767.0 | 323.0      | 13.1   | 0.2 | 1451.0 |  |
| BD-24         | 1152.0 | 110.0      | 2.0    | 0.2 | 450.9  |  |
| BD-25         | 1068.0 | 140.0      | 4.8    | 0.1 | 2309.9 |  |
| TEN-1         | 14.0   | 34.0       | 0.2    | 2.9 | Ν      |  |
| TEN-2         | 407.0  | 26.0       | 3.6    | 0.1 | 61.0   |  |
| TEN-3         | 16.0   | Ν          | 0.8    | 2.1 | Ν      |  |
| TEN-4         | 39.0   | 18.0       | 0.3    | 0.2 | Ν      |  |
| TEN-5         | 120.0  | 18.0       | 1.4    | 0.3 | 17.0   |  |
| TEN-6         | 1722.0 | 20.0       | 0.4    | 0.7 | Ν      |  |
| TEN-7         | 29.0   | 11.0       | 3.4    | 4.1 | Ν      |  |
| TEN-8         | 90.0   | 25.0       | 2.5    | 1.7 | Ν      |  |
| TEN-9         | 41.0   | 13.0       | 0.2    | 0.7 | Ν      |  |
| <b>TEN-10</b> | 319.0  | 151.0      | 10.9   | 0.6 | 1479.0 |  |
| <b>TEN-11</b> | 176.0  | Ν          | 1.2    | 0.4 | 4.0    |  |
| GRIT-01       | 57.0   | 12.0       | 1.5    | 0.0 | Ν      |  |
| GRIT-02       | 113.0  | 16.0       | 0.5    | 0.0 | 4.0    |  |
| GRIT-03       | 7.0    | Ν          | Ν      | 0.0 | Ν      |  |
| GRIT-04       | 115.0  | 24.0       | 9.1    | 0.1 | 203.0  |  |
| GRIT-05       | 44.0   | 153.0      | 273.1  | 0.0 | 21.0   |  |
| GRIT-06       | 548.0  | 1100.0     | 2389.6 | 0.0 | 78.0   |  |
| GRIT-07       | 25.0   | 31.0       | 13.9   | 0.3 | 59.0   |  |
| GRIT-08       | 778.0  | 15.0       | 17.4   | 0.0 | 698.0  |  |
| GRIT-09       | 32.0   | 14.0       | Ν      | 0.7 | 17.0   |  |
| GRIT-10       | 44.0   | 312.0      | 2.2    | 0.0 | 33.0   |  |
| GRIT-11       | 34.0   | 304.0      | 112.5  | 0.1 | 16.0   |  |
| GRIT-12       | 29.0   | 39.0       | 0.5    | 0.2 | 34.0   |  |
| GRIT-13       | 59.0   | 30.0       | 25.0   | 0.2 | 79.0   |  |
| GRIT-14       | 42.0   | 21.0       | 12.4   | 0.2 | 75.0   |  |
| GRIT-15       | 77.0   | 23.0       | 7.1    | 0.3 | 122.0  |  |
| GRIT-16       | 42.0   | 20.0       | Ν      | 0.8 | 48.0   |  |
| GRIT-17       | 33.0   | 58.0       | Ν      | 0.4 | 109.0  |  |
| GRIT-18       | 25.0   | 44.0       | 0.4    | 0.2 | 29.0   |  |
| GRIT-19       | 62.0   | 30.0       | 9.4    | 0.2 | 65.0   |  |
| GRIT-20       | 68.0   | 22.0       | Ν      | 0.3 | 157.0  |  |

|               | В    | Ва     | Bi   | Ca   | Cd   | Со   | Cr    |
|---------------|------|--------|------|------|------|------|-------|
| Sample        | ppm  | ppm    | ppm  | %    | ppm  | ppm  | ppm   |
|               |      |        |      |      |      |      |       |
| BD-19         | 7.0  | 74.0   | 4.0  | 0.0  | Ν    | 3.0  | 37.0  |
| BD-20         | 4.0  | 50.0   | 3.0  | 0.1  | Ν    | Ν    | 25.0  |
| BD-21         | 13.0 | 44.0   | 14.0 | 0.1  | 1.9  | 4.0  | 54.0  |
| BD-22         | 60.0 | 177.0  | 23.0 | 0.1  | 2.9  | 3.0  | 30.0  |
| BD-23         | 7.0  | 95.0   | 6.0  | 0.1  | Ν    | Ν    | 51.0  |
| BD-24         | 33.3 | 126.2  | 1.2  | 0.0  | 0.4  | 4.7  | 7.5   |
| BD-25         | 35.7 | 416.2  | 1.1  | 0.0  | 0.1  | 1.3  | 15.0  |
| TEN-1         | 9.0  | 1351.0 | Ν    | 1.2  | Ν    | 3.0  | 30.0  |
| TEN-2         | 6.0  | 472.0  | 24.0 | 0.0  | 1.2  | Ν    | 42.0  |
| TEN-3         | 14.0 | 254.0  | 4.0  | 0.6  | 0.9  | 6.0  | 24.0  |
| TEN-4         | 5.0  | 94.0   | Ν    | 0.0  | Ν    | 2.0  | 40.0  |
| TEN-5         | 5.0  | 112.0  | 4.0  | 0.1  | Ν    | Ν    | 37.0  |
| TEN-6         | 5.0  | 123.0  | 1.0  | 1.3  | Ν    | Ν    | 37.0  |
| TEN-7         | 11.0 | 243.0  | 2.0  | 1.4  | 1.0  | 4.0  | 35.0  |
| TEN-8         | 10.0 | 1022.0 | 2.0  | 0.7  | 0.7  | 7.0  | 30.0  |
| TEN-9         | 6.0  | 85.0   | Ν    | 0.2  | Ν    | Ν    | 11.0  |
| <b>TEN-10</b> | 80.0 | 119.0  | 35.0 | 0.1  | 57.6 | 7.0  | 51.0  |
| <b>TEN-11</b> | 4.0  | 81.0   | Ν    | 1.1  | Ν    | Ν    | 33.0  |
| GRIT-01       | Ν    | 3.0    | 3.0  | 0.0  | Ν    | Ν    | 4.0   |
| GRIT-02       | Ν    | 9.0    | Ν    | 2.8  | Ν    | Ν    | 78.0  |
| GRIT-03       | Ν    | 1343.0 | 3.0  | 10.0 | Ν    | Ν    | 3.0   |
| GRIT-04       | 16.0 | 12.0   | 2.0  | 0.7  | 3.0  | 8.0  | 77.0  |
| GRIT-05       | 2.0  | 39.0   | Ν    | 10.0 | 1.9  | Ν    | 71.0  |
| GRIT-06       | 2.0  | 42.0   | 4.0  | 10.0 | 62.6 | Ν    | 63.0  |
| GRIT-07       | 5.0  | 55.0   | Ν    | 2.1  | 1.0  | 3.0  | 54.0  |
| GRIT-08       | 39.0 | Ν      | 17.0 | 0.5  | 3.0  | 14.0 | 22.0  |
| GRIT-09       | 4.0  | 48.0   | Ν    | 2.3  | Ν    | 3.0  | 21.0  |
| GRIT-10       | 3.0  | 19.0   | Ν    | 10.0 | 22.3 | Ν    | 53.0  |
| GRIT-11       | 2.0  | 44.0   | Ν    | 2.8  | 22.1 | Ν    | 115.0 |
| GRIT-12       | 5.0  | 113.0  | Ν    | 3.8  | 1.0  | 2.0  | 46.0  |
| GRIT-13       | 4.0  | 85.0   | Ν    | 0.1  | 0.8  | 1.0  | 77.0  |
| GRIT-14       | 4.0  | 115.0  | Ν    | 0.1  | Ν    | 1.0  | 50.0  |
| GRIT-15       | 3.0  | 98.0   | Ν    | 0.2  | Ν    | 1.0  | 51.0  |
| GRIT-16       | 5.0  | 73.0   | 1.0  | 0.3  | 0.9  | 2.0  | 21.0  |
| GRIT-17       | 6.0  | 247.0  | Ν    | 0.1  | 1.1  | 4.0  | 47.0  |
| GRIT-18       | 2.0  | 78.0   | Ν    | 0.1  | 1.2  | 1.0  | 57.0  |
| GRIT-19       | 2.0  | 90.0   | Ν    | 0.1  | Ν    | Ν    | 72.0  |
| GRIT-20       | 4.0  | 37.0   | Ν    | 0.4  | 0.5  | 2.0  | 18.0  |
|                            | Cu     | Fe   | Κ   | La   | Mg  | Mn      | Мо   | Na  |
|----------------------------|--------|------|-----|------|-----|---------|------|-----|
| Sample                     | ppm    | %    | %   | ppm  | %   | ppm     | ppm  | %   |
|                            |        |      |     |      |     |         |      |     |
| BD-19                      | 16.0   | 0.9  | 0.1 | Ν    | 0.0 | 13.0    | 6.0  | 0.0 |
| BD-20                      | 8.0    | 0.4  | 0.1 | Ν    | 0.0 | 8.0     | 4.0  | 0.0 |
| BD-21                      | 320.0  | 2.0  | 0.0 | Ν    | 0.0 | 75.0    | 4.0  | 0.0 |
| BD-22                      | 49.0   | 10.0 | 0.0 | Ν    | 0.0 | 128.0   | Ν    | 0.0 |
| BD-23                      | 48.0   | 1.0  | 0.1 | Ν    | 0.0 | 15.0    | 11.0 | 0.0 |
| BD-24                      | 13.6   | 2.8  | 0.2 | 1.3  | 0.0 | 57.3    | 10.9 | 0.0 |
| BD-25                      | 35.2   | 2.7  | 0.2 | 1.6  | 0.0 | 108.2   | 27.2 | 0.0 |
| TEN-1                      | 8.0    | 1.0  | 0.4 | 3.0  | 0.6 | 130.0   | 2.0  | 0.0 |
| TEN-2                      | 94.0   | 0.5  | 0.0 | Ν    | 0.0 | 41.0    | 2.0  | 0.0 |
| TEN-3                      | 7.0    | 2.0  | 0.5 | 5.0  | 0.6 | 201.0   | Ν    | 0.0 |
| TEN-4                      | 8.0    | 0.2  | 0.0 | Ν    | 0.1 | 34.0    | 1.0  | 0.0 |
| TEN-5                      | 23.0   | 0.3  | 0.1 | Ν    | 0.1 | 43.0    | 2.0  | 0.0 |
| TEN-6                      | 61.0   | 0.4  | 0.3 | 17.0 | 0.3 | 66.0    | 2.0  | 0.1 |
| TEN-7                      | 114.0  | 1.5  | 0.4 | 5.0  | 0.6 | 161.0   | 2.0  | 0.0 |
| TEN-8                      | 348.0  | 1.3  | 0.5 | 4.0  | 0.5 | 141.0   | 26.0 | 0.0 |
| TEN-9                      | 4.0    | 0.5  | 0.2 | 8.0  | 0.1 | 196.0   | 1.0  | 0.1 |
| TEN-10                     | 307.0  | 13.3 | 0.0 | 6.0  | 0.1 | 132.0   | 40.0 | 0.1 |
| TEN-11                     | 31.0   | 0.2  | 0.2 | 5.0  | 0.1 | 33.0    | 5.0  | 0.1 |
| GRIT-01                    | Ν      | 0.0  | 0.0 | Ν    | 0.3 | 5437.0  | Ν    | 0.0 |
| GRIT-02                    | 3.0    | 0.2  | 0.0 | Ν    | 0.0 | 1114.0  | 8.0  | 0.0 |
| GRIT-03                    | Ν      | 0.1  | 0.0 | 3.0  | 0.2 | 5987.0  | Ν    | 0.0 |
| GRIT-04                    | 89.0   | 4.8  | 0.0 | Ν    | 0.2 | 187.0   | 9.0  | 0.0 |
| GRIT-05                    | 389.0  | 0.4  | 0.0 | 3.0  | 1.1 | 10316.0 | 7.0  | 0.0 |
| GRIT-06                    | 2170.0 | 0.4  | 0.0 | Ν    | 0.5 | 7903.0  | 15.0 | 0.0 |
| GRIT-07                    | 42.0   | 1.4  | 0.1 | 6.0  | 0.9 | 1005.0  | 4.0  | 0.0 |
| GRIT-08                    | 200.0  | 10.0 | 0.0 | Ν    | 0.1 | 610.0   | Ν    | 0.0 |
| GRIT-09                    | 22.0   | 1.2  | 0.2 | 5.0  | 1.3 | 627.0   | 2.0  | 0.0 |
| GRIT-10                    | 8.0    | 0.6  | 0.0 | Ν    | 1.4 | 8654.0  | Ν    | 0.0 |
| GRIT-11                    | 163.0  | 0.4  | 0.0 | Ν    | 0.4 | 7243.0  | 8.0  | 0.0 |
| GRIT-12                    | 50.0   | 1.4  | 0.1 | 4.0  | 1.8 | 1679.0  | 8.0  | 0.0 |
| GRIT-13                    | 22.0   | 0.8  | 0.1 | 4.0  | 0.1 | 233.0   | 6.0  | 0.0 |
| GRIT-14                    | 15.0   | 0.7  | 0.1 | 5.0  | 0.0 | 86.0    | 6.0  | 0.0 |
| GRIT-15                    | 6.0    | 0.9  | 0.2 | 7.0  | 0.0 | 665.0   | 4.0  | 0.0 |
| GRIT-16                    | 3.0    | 1.3  | 0.3 | 11.0 | 0.3 | 786.0   | 3.0  | 0.0 |
| GRIT-17                    | 28.0   | 1.6  | 0.2 | 7.0  | 0.1 | 199.0   | 4.0  | 0.0 |
| GRIT-18                    | 11.0   | 0.4  | 0.1 | 7.0  | 0.0 | 898.0   | 7.0  | 0.0 |
| <b>U U U U U U U U U U</b> | 1 1    |      |     |      |     |         |      |     |
| GRIT-19                    | 7.0    | 0.5  | 0.1 | 3.0  | 0.0 | 129.0   | 5.0  | 0.0 |

|         | Ni    | Р      | Pb     | Sb     | Se   |
|---------|-------|--------|--------|--------|------|
| Sample  | ppm   | ppm    | ppm    | ppm    | ppm  |
|         |       |        |        |        |      |
| BD-19   | 7.0   | 13.0   | 14.0   | 11.0   | Ν    |
| BD-20   | 4.0   | 29.0   | 14.0   | 17.0   | Ν    |
| BD-21   | 26.0  | 12.0   | 122.0  | 588.0  | 10.0 |
| BD-22   | 14.0  | 855.0  | 19.0   | 59.0   | Ν    |
| BD-23   | 6.0   | 19.0   | 22.0   | 59.0   | 5.0  |
| BD-24   | 52.8  | 20.3   | 41.3   | 21.5   | 4.3  |
| BD-25   | 107.5 | 30.4   | 24.6   | 64.8   | 4.2  |
| TEN-1   | 7.0   | 330.0  | 11.0   | Ν      | Ν    |
| TEN-2   | 5.0   | 69.0   | 58.0   | Ν      | Ν    |
| TEN-3   | 4.0   | 364.0  | 7.0    | Ν      | Ν    |
| TEN-4   | 4.0   | 17.0   | 4.0    | Ν      | Ν    |
| TEN-5   | 4.0   | 295.0  | 16.0   | Ν      | Ν    |
| TEN-6   | 24.0  | 5250.0 | 2.0    | Ν      | Ν    |
| TEN-7   | 6.0   | 264.0  | 5.0    | Ν      | Ν    |
| TEN-8   | 14.0  | 375.0  | 10.0   | Ν      | Ν    |
| TEN-9   | Ν     | 30.0   | 3.0    | Ν      | Ν    |
| TEN-10  | 51.0  | 1575.0 | 511.0  | 25.0   | Ν    |
| TEN-11  | 4.0   | 4373.0 | 5.0    | Ν      | Ν    |
| GRIT-01 | Ν     | 7.0    | 73.0   | Ν      | Ν    |
| GRIT-02 | 4.0   | 8.0    | 54.0   | Ν      | Ν    |
| GRIT-03 | Ν     | 4.0    | 22.0   | Ν      | Ν    |
| GRIT-04 | 60.0  | 51.0   | 200.0  | 38.0   | 15.0 |
| GRIT-05 | 6.0   | 299.0  | 544.0  | 259.0  | Ν    |
| GRIT-06 | 15.0  | 250.0  | 8915.0 | 1412.0 | 21.0 |
| GRIT-07 | 10.0  | 196.0  | 123.0  | 12.0   | Ν    |
| GRIT-08 | 61.0  | 44.0   | 192.0  | 93.0   | 47.0 |
| GRIT-09 | 10.0  | 207.0  | 35.0   | Ν      | Ν    |
| GRIT-10 | 7.0   | 51.0   | 42.0   | 3.0    | 3.0  |
| GRIT-11 | 12.0  | 68.0   | 311.0  | 87.0   | Ν    |
| GRIT-12 | 23.0  | 409.0  | 23.0   | 14.0   | Ν    |
| GRIT-13 | 9.0   | 149.0  | 61.0   | 14.0   | Ν    |
| GRIT-14 | 4.0   | 191.0  | 20.0   | 8.0    | Ν    |
| GRIT-15 | 3.0   | 254.0  | 32.0   | 2.0    | Ν    |
| GRIT-16 | 13.0  | 438.0  | 21.0   | Ν      | Ν    |
| GRIT-17 | 12.0  | 240.0  | 87.0   | 12.0   | Ν    |
| GRIT-18 | 13.0  | 135.0  | 69.0   | 4.0    | Ν    |
| GRIT-19 | 3.0   | 67.0   | 31.0   | 2.0    | Ν    |
| GRIT-20 | 2.0   | 358.0  | 16.0   | Ν      | Ν    |

|               | Sr    | Ti  | Th   | V     | W    | Zn     |
|---------------|-------|-----|------|-------|------|--------|
| Sample        | ppm   | %   | ppm  | ppm   | ppm  | ppm    |
|               |       |     |      |       |      |        |
| BD-19         | Ν     | 0.0 | Ν    | 2.0   | Ν    | 5.0    |
| BD-20         | 4.0   | 0.0 | Ν    | 3.0   | Ν    | 3.0    |
| BD-21         | Ν     | 0.0 | Ν    | 3.0   | 24.0 | 257.0  |
| BD-22         | Ν     | 0.0 | Ν    | 114.0 | Ν    | 154.0  |
| BD-23         | Ν     | 0.0 | Ν    | 9.0   | Ν    | 10.0   |
| BD-24         | 7.1   | 0.0 | Ν    | 4.8   | 0.1  | 14.0   |
| BD-25         | 8.6   | 0.0 | Ν    | 9.7   | 0.1  | 7.4    |
| TEN-1         | 204.0 | 0.1 | Ν    | 30.0  | Ν    | 30.0   |
| TEN-2         | Ν     | 0.0 | Ν    | 13.0  | Ν    | 35.0   |
| TEN-3         | 75.0  | 0.1 | Ν    | 31.0  | Ν    | 43.0   |
| TEN-4         | Ν     | 0.0 | Ν    | 2.0   | Ν    | 9.0    |
| TEN-5         | Ν     | 0.0 | Ν    | 7.0   | Ν    | 62.0   |
| TEN-6         | 9.0   | 0.0 | Ν    | 97.0  | Ν    | 14.0   |
| TEN-7         | 240.0 | 0.1 | Ν    | 34.0  | Ν    | 33.0   |
| TEN-8         | 55.0  | 0.1 | Ν    | 35.0  | Ν    | 36.0   |
| TEN-9         | 40.0  | 0.0 | Ν    | Ν     | Ν    | 21.0   |
| <b>TEN-10</b> | 7.0   | 0.0 | Ν    | 169.0 | Ν    | 678.0  |
| <b>TEN-11</b> | 9.0   | 0.0 | Ν    | 43.0  | Ν    | 22.0   |
| GRIT-01       | 296.0 | 0.0 | 9.1  | Ν     | Ν    | 9.0    |
| GRIT-02       | 43.0  | 0.0 | 1.9  | Ν     | Ν    | 7.0    |
| GRIT-03       | 501.0 | 0.0 | 9.5  | Ν     | Ν    | 8.0    |
| GRIT-04       | 8.0   | 0.0 | 1.7  | 10.0  | Ν    | 167.0  |
| GRIT-05       | 58.0  | 0.0 | 12.9 | 17.0  | 7.0  | 114.0  |
| GRIT-06       | 131.0 | 0.0 | 11.7 | 18.0  | 77.0 | 5894.0 |
| GRIT-07       | 51.0  | 0.0 | 1.8  | 3.0   | Ν    | 110.0  |
| GRIT-08       | Ν     | 0.0 | 2.2  | 3.0   | Ν    | 20.0   |
| GRIT-09       | 31.0  | 0.0 | Ν    | 5.0   | Ν    | 22.0   |
| GRIT-10       | 29.0  | 0.0 | 76.7 | 4.0   | Ν    | 3396.0 |
| GRIT-11       | 36.0  | 0.0 | 10.4 | 13.0  | Ν    | 2436.0 |
| GRIT-12       | 55.0  | 0.0 | 3.0  | 21.0  | Ν    | 141.0  |
| GRIT-13       | 6.0   | 0.0 | Ν    | 6.0   | Ν    | 99.0   |
| GRIT-14       | 7.0   | 0.0 | Ν    | 3.0   | Ν    | 30.0   |
| GRIT-15       | 7.0   | 0.0 | 1.0  | Ν     | Ν    | 47.0   |
| GRIT-16       | 12.0  | 0.0 | 1.0  | 2.0   | Ν    | 180.0  |
| GRIT-17       | 14.0  | 0.0 | Ν    | 5.0   | Ν    | 148.0  |
| GRIT-18       | 17.0  | 0.0 | 0.5  | 3.0   | Ν    | 93.0   |
| GRIT-19       | 4.0   | 0.0 | Ν    | Ν     | Ν    | 34.0   |
| GRIT-20       | 9.0   | 0.0 | 1.5  | Ν     | Ν    | 47.0   |

| Sample  | Mine / Area  | υтмх     | UTMY      |
|---------|--------------|----------|-----------|
| ·       |              |          |           |
| GRIT-21 | Betty O'Neal | 509539.6 | 4477959.8 |
| GRIT-22 | Betty O'Neal | 509539.5 | 4477959.9 |
| GRIT-23 | Betty O'Neal | 509539.2 | 4477959.9 |
| GRIT-24 | Betty O'Neal | 509542.5 | 4477962.2 |
| GRIT-25 | Betty O'Neal | 509725.5 | 4477762.1 |
| GRIT-26 | Betty O'Neal | 509725.5 | 4477762.7 |
| GRIT-27 | Betty O'Neal | 509725.5 | 4477762.9 |
| GRIT-28 | Betty O'Neal | 509790.2 | 4477934.4 |
| GRIT-29 | Betty O'Neal | 509789.2 | 4477935.6 |
| GRIT-30 | Betty O'Neal | 509536.4 | 4478004.3 |
| GRIT-31 | Betty O'Neal | 509530.0 | 4477641.2 |
| GRIT-32 | Betty O'Neal | 509557.9 | 4477625.4 |
| GRIT-33 | Betty O'Neal | 509557.7 | 4477625.5 |
| GRIT-34 | Betty O'Neal | 509557.8 | 4477625.4 |
| GRIT-35 | Betty O'Neal | 509715.7 | 4477784.5 |
| GRIT-36 | Betty O'Neal | 509718.6 | 4477787.4 |
| GRIT-37 | Betty O'Neal | 509718.2 | 4477788.3 |
| GRIT-38 | Betty O'Neal | 509806.2 | 4477788.4 |
| GRIT-39 | Betty O'Neal | 509806.1 | 4477788.4 |
| GRIT-40 | Betty O'Neal | 509815.6 | 4477814.2 |
| GRIT-41 | Betty O'Neal | 509588.6 | 4477961.4 |
| GRIT-42 | Betty O'Neal | 509585.7 | 4477956.4 |
| GRIT-43 | Betty O'Neal | 509718.5 | 4477997.4 |
| GRIT-44 | Betty O'Neal | 509765.5 | 4478102.4 |
| GRIT-45 | Betty O'Neal | 509931.1 | 4477990.7 |
| GRIT-46 | Betty O'Neal | 510054.2 | 4478083.5 |
| GRIT-47 | Betty O'Neal | 510013.2 | 4478011.7 |
| GRIT-48 | Betty O'Neal | 509961.4 | 4477687.2 |
| GRIT-49 | Betty O'Neal | 509920.3 | 4477672.0 |
| GRIT-50 | Betty O'Neal | 509918.4 | 4477672.2 |
| GRIT-51 | Betty O'Neal | 509922.8 | 4477668.7 |
| GRIT-52 | Betty O'Neal | 509729.2 | 4477780.7 |
| GRIT-53 | Betty O'Neal | 509425.8 | 4477751.1 |
| GRIT-54 | Betty O'Neal | 509427.0 | 4477751.0 |
| GRIT-55 | Betty O'Neal | 509251.1 | 4478277.1 |
| GRIT-56 | Betty O'Neal | 507924.2 | 4476626.8 |
| GRIT-57 | Betty O'Neal | 507924.5 | 4476625.9 |
| GRIT-58 | Betty O'Neal | 507926.2 | 4476626.1 |

|         | Au    | На     | Aa                                          | AI  | As       |
|---------|-------|--------|---------------------------------------------|-----|----------|
| Sample  | daa   | daa    | maa                                         | %   | maa      |
|         |       |        | <b>I</b> <sup>2</sup> <b>I</b> <sup>2</sup> |     | <u> </u> |
| GRIT-21 | 28.0  | Ν      | Ν                                           | 0.7 | 9.0      |
| GRIT-22 | 19.0  | Ν      | Ν                                           | 1.3 | 6.0      |
| GRIT-23 | 23.0  | 41.0   | Ν                                           | 0.3 | 68.0     |
| GRIT-24 | 21.0  | 39.0   | Ν                                           | 0.1 | 17.0     |
| GRIT-25 | 12.0  | 44.0   | 112.8                                       | 0.0 | Ν        |
| GRIT-26 | 20.0  | 133.0  | 535.0                                       | 0.0 | 16.0     |
| GRIT-27 | 23.0  | 116.0  | 479.7                                       | 0.0 | 12.0     |
| GRIT-28 | 29.0  | 42.0   | 20.3                                        | 0.1 | 51.0     |
| GRIT-29 | 40.0  | 51.0   | 6.6                                         | 0.0 | 23.0     |
| GRIT-30 | 874.0 | 880.0  | 41.6                                        | 0.1 | 1578.0   |
| GRIT-31 | 24.0  | 181.0  | 2.1                                         | 0.3 | 94.0     |
| GRIT-32 | 16.0  | 32.0   | Ν                                           | 0.0 | 22.0     |
| GRIT-33 | 23.0  | 54.0   | 4.5                                         | 0.1 | 58.0     |
| GRIT-34 | 19.0  | 33.0   | 3.2                                         | 0.1 | 11.0     |
| GRIT-35 | 21.0  | 135.0  | 601.9                                       | 0.0 | 13.0     |
| GRIT-36 | 30.0  | 25.0   | 0.3                                         | 0.3 | 133.0    |
| GRIT-37 | 80.0  | 351.0  | 1388.9                                      | 0.1 | 92.0     |
| GRIT-38 | 172.0 | 1960.0 | 2891.7                                      | 0.0 | 169.0    |
| GRIT-39 | 53.0  | 370.0  | 450.0                                       | 0.0 | 56.0     |
| GRIT-40 | 8.0   | 40.0   | 13.1                                        | 0.3 | 4.0      |
| GRIT-41 | 7.0   | 32.0   | 2.2                                         | 0.1 | 13.0     |
| GRIT-42 | 120.0 | 221.0  | 7.7                                         | 0.2 | 371.0    |
| GRIT-43 | 892.0 | 37.0   | 20.0                                        | 0.1 | 648.0    |
| GRIT-44 | 20.0  | 15.0   | 0.7                                         | 0.2 | 37.0     |
| GRIT-45 | 116.0 | 18.0   | Ν                                           | 0.4 | 121.0    |
| GRIT-46 | 22.0  | 26.0   | 2.8                                         | 0.2 | 48.0     |
| GRIT-47 | 61.0  | 30.0   | Ν                                           | 1.7 | 241.0    |
| GRIT-48 | 256.0 | 90.0   | 334.1                                       | 0.4 | 1069.0   |
| GRIT-49 | 44.0  | 26.0   | 30.6                                        | 0.1 | 95.0     |
| GRIT-50 | 10.0  | 27.0   | Ν                                           | 2.2 | N        |
| GRIT-51 | 52.0  | 502.0  | 1145.0                                      | 0.0 | 337.0    |
| GRIT-52 | 16.0  | 28.0   | 11.5                                        | 0.0 | 9.0      |
| GRIT-53 | 20.0  | 48.0   | 12.1                                        | 3.1 | 2.0      |
| GRIT-54 | 8.0   | 20.0   | Ν                                           | 2.6 | N        |
| GRIT-55 | 155.0 | 126.0  | 0.8                                         | 0.0 | 131.0    |
| GRIT-56 | 15.0  | 18.0   | 0.5                                         | 1.2 | Ν        |
| GRIT-57 | 13.0  | 29.0   | Ν                                           | 1.0 | 3.0      |
| GRIT-58 | 50.0  | 12.0   | Ν                                           | 0.9 | 7.0      |

|                    | В           | Ва              | Bi        | Ca         | Cd         | Со         | Cr                |
|--------------------|-------------|-----------------|-----------|------------|------------|------------|-------------------|
| Sample             | ppm         | ppm             | ppm       | %          | ppm        | ppm        | ppm               |
| GRIT-21            | 3.0         | <i>4</i> 5 0    | N         | 03         | 0.5        | 3.0        | 24.0              |
| GRIT-21            | 5.0         |                 | 20        | 0.3        | 0.5<br>N   | 2.0        | 2 <del>4</del> .0 |
| GRIT-22<br>GRIT-23 | 3.0<br>4.0  | 1/6 0           | 2.0<br>N  | 0.2        | 21         | 2.0<br>5.0 | 18.0              |
| GRIT-23            | 4.0<br>N    | 140.0<br>15 0   | N         | 0.1        | 2.1<br>N   | 5.0<br>N   | 10.0<br>45.0      |
| GRIT-24<br>GRIT-25 | N           | 40.0<br>10/0 0  | N         | 0.0        | N          | N          | 43.0<br>87.0      |
| GRIT-25<br>GRIT-26 | N           | 76.0            | N         | 0.0        | 5 1        | N          | 07.0<br>02.0      |
| GRIT-20<br>GRIT-27 | N           | 203.0           | N         | 10.0       | 3.0        | N          | 92.0<br>104.0     |
|                    | 3.0         | 203.0<br>1/08.0 | N         | 0.0        | 5.0<br>N   | N          | 135.0             |
| GRIT-20            | 2.0         | 67.0            | N         | 10.0       | 0.8        | N          | 60 0              |
| GRIT-29<br>GRIT-30 | 2.0         | 28/ 0           |           | 3.5        | 10.6       | 14.0       | 28.0              |
| GRIT-30<br>GRIT-31 | 30.0<br>4 0 | 204.0           | 9.0<br>N  | 0.2        | 19.0<br>N  | N          | 20.0              |
| GRIT-31            | 4.0<br>N    | 207.0           | N         | 10.2       | 2.0        | N          | 23.0              |
| GRIT-32            | 3 0         | 20.0            | N         | 0.7        | 2.0        | 2 0        | 70.0              |
| GRIT-33            | 3.0<br>N    | 20.0            | N         | 3.0        | 0.0<br>N   | 2.0<br>N   | 75.0              |
| GRIT-34<br>CDIT 25 | IN<br>NI    | 20.0<br>790.0   | IN<br>NI  | 0.0        | 1N<br>2 1  | IN<br>NI   | 102.0             |
| GRIT-35<br>CPIT-26 | 1 N         | 700.0<br>52.0   | IN<br>NI  | 0.0        | Z. 1<br>NI | 2.0        | 21.0              |
| GRIT-30<br>CPIT-27 | 4.0         | 52.0<br>64.0    | IN<br>NI  | 0.0        | 22.6       | 2.0        | 106.0             |
| CDIT 29            | 4.0         | 7140            | IN<br>NI  | 0.1        | 23.0       | 1.U<br>NI  | 02.0              |
| GRIT-30            | 2.0         | 1910            | IN<br>NI  | 0.2        | 17.6       | IN<br>NI   | 93.0<br>120.0     |
| GRIT-39<br>CRIT 40 | 2.0         | 104.0           | IN<br>NI  | 0.1        | 0.9        | 1.0        | 100.0             |
| GRIT-40<br>CDIT 41 | 3.0<br>N    | 20.0            | IN<br>NI  | 0.1        | 0.0<br>NI  | 1.U<br>NI  | 06.0              |
| CDIT 42            |             | 20.0            | 2.0       | 0.1        |            | 2.0        | 90.0<br>20.0      |
|                    | 0.0         | 91.0            | 2.0       | 0.2        | 0.9        | 3.U<br>NI  | 59.0<br>54.0      |
| CDIT 43            | 9.0<br>N    | 90.0            | 0.0<br>NI | 0.1        | 1.4<br>NI  | IN<br>NI   | 0.0               |
| CDIT 45            | IN<br>11.0  | 64.0            | IN<br>NI  | 0.4        |            |            | 9.0               |
| GRIT-45<br>CDIT 46 | 2.0         | 04.0<br>1241 0  | IN<br>NI  | 0.1        | U.O<br>NI  | 5.0<br>NI  | 34.U<br>20 0      |
| GRIT-40<br>CDIT 47 | 3.0         | 1241.0          | 2.0       | 0.0        | 1 O        | IN<br>10.0 | 20.0              |
|                    | 12.0        | 150.0           | 2.0<br>NI | 0.5        | 1.0        | 10.0       | 10.0<br>50.0      |
|                    | 2.0         | 1000.0          | IN<br>NI  | 0.0        | 0.0<br>NI  | 15.U<br>N  | 50.0<br>15.0      |
| GRIT-49            | 3.0         | 1200.0          | IN<br>4.0 | 0.0        |            | IN<br>16.0 | 15.0              |
|                    | 0.0         | 100.0           | 4.0<br>N  | 0.7        | 0.0        | 10.U       | 02.U<br>75.0      |
|                    | 3.U<br>NI   | 4000.0          | IN<br>NI  | 0.0        | 19.0<br>N  |            | 15.0              |
|                    |             | 1217.U          |           | 0.0        |            |            | ∠5.U              |
|                    | 0.U         | 090.U           | 3.0       | 2.3<br>1 A | 1.1        | 14.0       | 32.U              |
| GRIT-54            | ٥.U         | 1073.0          | 4.U       | 1.4        | 0.9        | 14.0       | 10.0              |
|                    | 9.0         | 11.0            |           | U.U<br>1 F | 10.8<br>NI | 2.U<br>E 0 |                   |
|                    | 0.0         | 40.U            | 1.U<br>NI | C.I        |            | 5.0        | ∠3.U              |
|                    | 4.0         | 00.U            |           | Z.4        |            | 4.0        | 40.0              |
| GRIT-58            | 8.0         | 65.0            | 1.0       | 1.1        | N          | 9.0        | 40.0              |

|         | Cu     | Fe   | Κ   | La   | Mg  | Mn      | Мо   | Na  |
|---------|--------|------|-----|------|-----|---------|------|-----|
| Sample  | ppm    | %    | %   | ppm  | %   | ppm     | ppm  | %   |
|         |        |      |     |      |     |         |      |     |
| GRIT-21 | Ν      | 1.0  | 0.2 | 14.0 | 0.2 | 351.0   | 2.0  | 0.0 |
| GRIT-22 | Ν      | 1.6  | 0.2 | 10.0 | 0.4 | 119.0   | 1.0  | 0.0 |
| GRIT-23 | 24.0   | 1.4  | 0.1 | 8.0  | 0.1 | 1123.0  | 3.0  | 0.0 |
| GRIT-24 | 3.0    | 0.3  | 0.1 | 3.0  | 0.0 | 66.0    | 5.0  | 0.0 |
| GRIT-25 | 120.0  | 0.2  | 0.0 | Ν    | 0.0 | 27.0    | 5.0  | 0.0 |
| GRIT-26 | 496.0  | 0.2  | 0.0 | Ν    | 0.0 | 78.0    | 9.0  | 0.0 |
| GRIT-27 | 234.0  | 0.2  | 0.0 | Ν    | 0.0 | 21.0    | 7.0  | 0.0 |
| GRIT-28 | 34.0   | 0.6  | 0.0 | Ν    | 0.0 | 85.0    | 14.0 | 0.0 |
| GRIT-29 | 10.0   | 0.5  | 0.0 | Ν    | 0.2 | 2032.0  | 5.0  | 0.0 |
| GRIT-30 | 186.0  | 10.0 | 0.0 | 2.0  | 0.2 | 8490.0  | 18.0 | 0.0 |
| GRIT-31 | 17.0   | 1.2  | 0.2 | Ν    | 0.1 | 91.0    | 2.0  | 0.1 |
| GRIT-32 | 4.0    | 0.3  | 0.0 | Ν    | 0.1 | 1805.0  | Ν    | 0.0 |
| GRIT-33 | 19.0   | 0.6  | 0.0 | Ν    | 0.0 | 627.0   | 9.0  | 0.0 |
| GRIT-34 | 13.0   | 0.2  | 0.0 | Ν    | 0.0 | 473.0   | 5.0  | 0.0 |
| GRIT-35 | 465.0  | 0.2  | 0.0 | Ν    | 0.0 | 52.0    | 11.0 | 0.0 |
| GRIT-36 | 5.0    | 1.2  | 0.2 | 4.0  | 0.2 | 2864.0  | 2.0  | 0.0 |
| GRIT-37 | 893.0  | 1.0  | 0.0 | Ν    | 0.0 | 382.0   | 11.0 | 0.0 |
| GRIT-38 | 2542.0 | 0.7  | 0.0 | 2.0  | 0.0 | 10000.0 | 22.0 | 0.0 |
| GRIT-39 | 183.0  | 0.4  | 0.0 | 2.0  | 0.0 | 10000.0 | 13.0 | 0.0 |
| GRIT-40 | 38.0   | 0.5  | 0.0 | Ν    | 0.1 | 855.0   | 10.0 | 0.0 |
| GRIT-41 | 8.0    | 0.3  | 0.0 | Ν    | 0.0 | 469.0   | 10.0 | 0.0 |
| GRIT-42 | 242.0  | 1.8  | 0.1 | 2.0  | 0.0 | 89.0    | 5.0  | 0.0 |
| GRIT-43 | 17.0   | 2.9  | 0.0 | Ν    | 0.0 | 104.0   | 38.0 | 0.0 |
| GRIT-44 | 22.0   | 0.3  | 0.1 | 3.0  | 0.0 | 115.0   | 2.0  | 0.0 |
| GRIT-45 | 93.0   | 3.6  | 0.0 | 3.0  | 0.1 | 826.0   | 7.0  | 0.0 |
| GRIT-46 | 40.0   | 0.7  | 0.0 | 3.0  | 0.0 | 24.0    | 1.0  | 0.0 |
| GRIT-47 | 24.0   | 4.9  | 0.0 | 8.0  | 0.7 | 3035.0  | Ν    | 0.0 |
| GRIT-48 | 222.0  | 3.9  | 0.0 | 7.0  | 0.2 | 10000.0 | Ν    | 0.0 |
| GRIT-49 | 47.0   | 0.4  | 0.0 | Ν    | 0.1 | 605.0   | Ν    | 0.0 |
| GRIT-50 | 38.0   | 2.6  | 0.0 | 4.0  | 2.4 | 478.0   | Ν    | 0.0 |
| GRIT-51 | 1039.0 | 0.6  | 0.0 | 6.0  | 0.3 | 10000.0 | 11.0 | 0.1 |
| GRIT-52 | 105.0  | 0.1  | 0.0 | Ν    | 0.0 | 1411.0  | Ν    | 0.0 |
| GRIT-53 | 41.0   | 3.0  | 0.1 | 6.0  | 2.1 | 2949.0  | Ν    | 0.3 |
| GRIT-54 | 22.0   | 3.2  | 0.1 | 6.0  | 2.7 | 567.0   | Ν    | 0.0 |
| GRIT-55 | 55.0   | 3.2  | 0.0 | 4.0  | 3.7 | 10000.0 | Ν    | 0.0 |
| GRIT-56 | 123.0  | 1.9  | 0.0 | 4.0  | 0.6 | 990.0   | 7.0  | 0.1 |
| GRIT-57 | 45.0   | 1.2  | 0.0 | 5.0  | 0.7 | 2007.0  | 3.0  | 0.0 |
| GRIT-58 | 71.0   | 2.6  | 0.1 | 4.0  | 0.7 | 1967.0  | 19.0 | 0.0 |

|         | Ni   | Р      | Pb      | Sb     | Se   |
|---------|------|--------|---------|--------|------|
| Sample  | ppm  | ppm    | ppm     | ppm    | ppm  |
|         |      |        |         |        |      |
| GRIT-21 | 10.0 | 405.0  | 9.0     | Ν      | Ν    |
| GRIT-22 | 7.0  | 361.0  | 10.0    | Ν      | Ν    |
| GRIT-23 | 26.0 | 220.0  | 25.0    | 12.0   | Ν    |
| GRIT-24 | 3.0  | 74.0   | 15.0    | Ν      | Ν    |
| GRIT-25 | 4.0  | 5.0    | 52.0    | 44.0   | Ν    |
| GRIT-26 | 3.0  | 8.0    | 589.0   | 264.0  | Ν    |
| GRIT-27 | 4.0  | 5.0    | 395.0   | 447.0  | Ν    |
| GRIT-28 | 7.0  | 12.0   | 25.0    | 21.0   | Ν    |
| GRIT-29 | 4.0  | 26.0   | 116.0   | 8.0    | Ν    |
| GRIT-30 | 70.0 | 1075.0 | 2902.0  | 190.0  | Ν    |
| GRIT-31 | 7.0  | 52.0   | 28.0    | 6.0    | Ν    |
| GRIT-32 | 3.0  | 11.0   | 10.0    | 3.0    | Ν    |
| GRIT-33 | 7.0  | 33.0   | 68.0    | 12.0   | Ν    |
| GRIT-34 | 3.0  | 7.0    | 47.0    | 8.0    | Ν    |
| GRIT-35 | 3.0  | 3.0    | 248.0   | 264.0  | Ν    |
| GRIT-36 | 2.0  | 296.0  | 12.0    | Ν      | Ν    |
| GRIT-37 | 9.0  | 43.0   | 7330.0  | 1118.0 | 7.0  |
| GRIT-38 | 22.0 | 116.0  | 10000.0 | 1782.0 | 10.0 |
| GRIT-39 | 5.0  | 20.0   | 1688.0  | 419.0  | Ν    |
| GRIT-40 | 7.0  | 27.0   | 157.0   | 12.0   | Ν    |
| GRIT-41 | 7.0  | 39.0   | 19.0    | 3.0    | Ν    |
| GRIT-42 | 25.0 | 412.0  | 835.0   | 24.0   | Ν    |
| GRIT-43 | 11.0 | 600.0  | 6401.0  | 14.0   | 5.0  |
| GRIT-44 | 2.0  | 15.0   | 115.0   | 2.0    | Ν    |
| GRIT-45 | 28.0 | 292.0  | 27.0    | 22.0   | 14.0 |
| GRIT-46 | 2.0  | 98.0   | 48.0    | 11.0   | Ν    |
| GRIT-47 | 12.0 | 823.0  | 11.0    | Ν      | Ν    |
| GRIT-48 | 15.0 | 480.0  | 658.0   | 102.0  | Ν    |
| GRIT-49 | 2.0  | 24.0   | 27.0    | 19.0   | Ν    |
| GRIT-50 | 85.0 | 267.0  | 21.0    | Ν      | Ν    |
| GRIT-51 | 3.0  | 113.0  | 1610.0  | 414.0  | 11.0 |
| GRIT-52 | 2.0  | 24.0   | 263.0   | 49.0   | Ν    |
| GRIT-53 | 74.0 | 228.0  | 37.0    | Ν      | Ν    |
| GRIT-54 | 72.0 | 239.0  | 8.0     | Ν      | Ν    |
| GRIT-55 | Ν    | 12.0   | 107.0   | 4.0    | Ν    |
| GRIT-56 | 40.0 | 740.0  | 13.0    | Ν      | Ν    |
| GRIT-57 | 26.0 | 992.0  | 11.0    | Ν      | Ν    |
| GRIT-58 | 43.0 | 760.0  | 11.0    | 2.0    | Ν    |

|         | Sr    | Ti  | Th    | V    | W    | Zn     |
|---------|-------|-----|-------|------|------|--------|
| Sample  | ppm   | %   | ppm   | ppm  | ppm  | ppm    |
|         |       |     |       |      |      |        |
| GRIT-21 | 11.0  | 0.0 | Ν     | Ν    | Ν    | 141.0  |
| GRIT-22 | 7.0   | 0.0 | 0.6   | 2.0  | Ν    | 102.0  |
| GRIT-23 | 6.0   | 0.0 | 1.0   | 4.0  | Ν    | 192.0  |
| GRIT-24 | 9.0   | 0.0 | Ν     | 2.0  | Ν    | 22.0   |
| GRIT-25 | 11.0  | 0.0 | Ν     | Ν    | 1.0  | 50.0   |
| GRIT-26 | Ν     | 0.0 | Ν     | Ν    | 49.0 | 341.0  |
| GRIT-27 | Ν     | 0.0 | Ν     | Ν    | 14.0 | 53.0   |
| GRIT-28 | 4.0   | 0.0 | Ν     | 3.0  | Ν    | 95.0   |
| GRIT-29 | 101.0 | 0.0 | 3.2   | 2.0  | Ν    | 70.0   |
| GRIT-30 | 209.0 | 0.0 | 12.2  | 67.0 | Ν    | 2561.0 |
| GRIT-31 | 15.0  | 0.0 | 1.1   | 6.0  | Ν    | 33.0   |
| GRIT-32 | 380.0 | 0.0 | 3.0   | Ν    | Ν    | 52.0   |
| GRIT-33 | 13.0  | 0.0 | 1.0   | 3.0  | Ν    | 99.0   |
| GRIT-34 | 49.0  | 0.0 | 1.1   | Ν    | Ν    | 20.0   |
| GRIT-35 | 7.0   | 0.0 | Ν     | Ν    | 18.0 | 88.0   |
| GRIT-36 | 11.0  | 0.0 | 4.5   | Ν    | Ν    | 28.0   |
| GRIT-37 | 3.0   | 0.0 | 0.5   | 4.0  | 42.0 | 2450.0 |
| GRIT-38 | 93.0  | 0.0 | 83.7  | 6.0  | 71.0 | 4585.0 |
| GRIT-39 | 69.0  | 0.0 | 34.7  | 2.0  | 11.0 | 1491.0 |
| GRIT-40 | 5.0   | 0.0 | 0.7   | 4.0  | Ν    | 71.0   |
| GRIT-41 | 2.0   | 0.0 | Ν     | 6.0  | Ν    | 53.0   |
| GRIT-42 | 67.0  | 0.0 | Ν     | 23.0 | Ν    | 108.0  |
| GRIT-43 | 12.0  | 0.0 | 0.5   | 5.0  | Ν    | 200.0  |
| GRIT-44 | 8.0   | 0.0 | Ν     | Ν    | Ν    | 28.0   |
| GRIT-45 | 4.0   | 0.0 | 1.1   | 14.0 | Ν    | 141.0  |
| GRIT-46 | 18.0  | 0.0 | Ν     | 4.0  | Ν    | 28.0   |
| GRIT-47 | 16.0  | 0.0 | 2.7   | 52.0 | Ν    | 143.0  |
| GRIT-48 | 38.0  | 0.0 | 14.9  | 9.0  | Ν    | 956.0  |
| GRIT-49 | 15.0  | 0.0 | 0.8   | Ν    | Ν    | 83.0   |
| GRIT-50 | 16.0  | 0.1 | Ν     | 31.0 | Ν    | 61.0   |
| GRIT-51 | 284.0 | 0.0 | 188.2 | Ν    | 33.0 | 3004.0 |
| GRIT-52 | 24.0  | 0.0 | 1.5   | Ν    | Ν    | 89.0   |
| GRIT-53 | 112.0 | 0.1 | Ν     | 47.0 | Ν    | 92.0   |
| GRIT-54 | 38.0  | 0.0 | Ν     | 48.0 | Ν    | 39.0   |
| GRIT-55 | 96.0  | 0.0 | 26.7  | Ν    | Ν    | 386.0  |
| GRIT-56 | 39.0  | 0.0 | Ν     | 40.0 | Ν    | 25.0   |
| GRIT-57 | 68.0  | 0.0 | Ν     | 31.0 | Ν    | 27.0   |
| GRIT-58 | 32.0  | 0.0 | Ν     | 82.0 | Ν    | 30.0   |

| Sample   | Mine / Area  | UTMX     | UTMY      |
|----------|--------------|----------|-----------|
|          |              |          |           |
| GRIT-59  | Betty O'Neal | 507903.6 | 4476624.3 |
| GRIT-60  | Betty O'Neal | 507877.4 | 4476640.5 |
| GRIT-61  | Betty O'Neal | 507894.9 | 4476601.4 |
| GRIT-62  | Betty O'Neal | 508035.0 | 4476587.1 |
| GRIT-63  | Betty O'Neal | 508034.6 | 4476586.6 |
| GRIT-64  | Betty O'Neal | 508133.0 | 4476638.3 |
| GRIT-65  | Betty O'Neal | 508133.6 | 4476639.8 |
| GRIT-66  | Betty O'Neal | 508191.4 | 4476637.1 |
| GRIT-67  | Betty O'Neal | 508195.1 | 4476679.2 |
| GRIT-68  | Betty O'Neal | 508081.1 | 4476702.5 |
| GRIT-69  | Betty O'Neal | 508080.6 | 4476702.9 |
| GRIT-70  | Betty O'Neal | 508078.2 | 4476703.8 |
| GRIT-71  | Betty O'Neal | 508074.9 | 4476695.5 |
| GRIT-72  | Betty O'Neal | 507749.6 | 4476731.0 |
| LOVIE-01 | Lovie        | 523146.7 | 4467226.7 |
| LOVIE-02 | Lovie        | 523146.7 | 4467226.7 |
| LOVIE-03 | Lovie        | 523146.5 | 4467226.6 |
| LOVIE-04 | Lovie        | 523146.5 | 4467226.6 |
| LOVIE-05 | Lovie        | 523146.5 | 4467226.5 |
| LOVIE-06 | Lovie        | 523146.5 | 4467226.4 |
| LOVIE-07 | Lovie        | 523146.4 | 4467226.3 |
| LOVIE-08 | Lovie        | 523146.3 | 4467226.4 |
| LOVIE-09 | Lovie        | 523144.3 | 4467216.6 |
| LOVIE-10 | Lovie        | 523060.2 | 4467103.0 |
| LOVIE-11 | Lovie        | 523061.2 | 4467102.6 |
| LOVIE-12 | Lovie        | 523048   | 4467098   |
| LOVIE-13 | Lovie        | 523048   | 4467098   |
| LOVIE-14 | Lovie        | 523048   | 4467098   |
| LOVIE-15 | Lovie        | 523112.6 | 4467100.8 |
| LOVIE-16 | Lovie        | 523142.9 | 4467075.2 |
| LOVIE-17 | Lovie        | 523141.4 | 4467072.0 |
| LOVIE-18 | Lovie        | 523242.7 | 4467023.4 |
| LOVIE-19 | Lovie        | 523243.0 | 4467023.1 |
| LOVIE-20 | Lovie        | 523243.7 | 4467015.8 |
| LOVIE-21 | Lovie        | 523299.1 | 4467000.6 |
| LOVIE-22 | Lovie        | 523298.1 | 4467114.5 |
| LOVIE-23 | Lovie        | 523298.1 | 4467114.3 |
| LOVIE-24 | Lovie        | 523424.5 | 4467260.5 |

|          | Au     | На      | Aa    | Al  | As     |
|----------|--------|---------|-------|-----|--------|
| Sample   | ppb    | dqq     | ppm   | %   | ppm    |
| •        |        |         |       |     |        |
| GRIT-59  | 19.0   | 21.0    | 0.5   | 0.8 | Ν      |
| GRIT-60  | 11.0   | 30.0    | 0.3   | 0.1 | 3.0    |
| GRIT-61  | 93.0   | 21.0    | Ν     | 0.1 | Ν      |
| GRIT-62  | 1854.0 | 26.0    | 67.6  | 0.8 | 712.0  |
| GRIT-63  | 6093.0 | 25.0    | 96.8  | 1.4 | 448.0  |
| GRIT-64  | 9.0    | 31.0    | Ν     | 0.1 | 3.0    |
| GRIT-65  | 472.0  | 22.0    | Ν     | 0.9 | 132.0  |
| GRIT-66  | 91.0   | 29.0    | 0.2   | 0.7 | 4.0    |
| GRIT-67  | 899.0  | 21.0    | 6.5   | 0.7 | 782.0  |
| GRIT-68  | 374.0  | 23.0    | 0.2   | 0.9 | 46.0   |
| GRIT-69  | 12.0   | 15.0    | Ν     | 1.2 | 5.0    |
| GRIT-70  | 15.0   | Ν       | Ν     | 0.9 | 13.0   |
| GRIT-71  | 1048.0 | Ν       | 2.0   | 0.4 | 45.0   |
| GRIT-72  | 41.0   | Ν       | Ν     | 0.9 | 36.0   |
| LOVIE-01 | 2583.0 | 4560.0  | 462.9 | 0.1 | 4255.0 |
| LOVIE-02 | 940.0  | 4860.0  | 538.7 | 0.2 | 5332.0 |
| LOVIE-03 | 747.0  | 11200.0 | 30.0  | 0.0 | 1661.0 |
| LOVIE-04 | 250.0  | 150.0   | 13.5  | 0.5 | 778.0  |
| LOVIE-05 | 198.0  | 7200.0  | 30.2  | 0.0 | 628.0  |
| LOVIE-06 | 214.0  | 303.0   | 17.6  | 0.7 | 1463.0 |
| LOVIE-07 | 593.0  | 113.0   | 13.3  | 0.1 | 854.0  |
| LOVIE-08 | 99.0   | 7300.0  | 24.3  | 0.0 | 203.0  |
| LOVIE-09 | 8151.0 | 2090.0  | 172.7 | 0.2 | 7797.0 |
| LOVIE-10 | 2014.0 | 5000.0  | 143.1 | 1.4 | 5351.0 |
| LOVIE-11 | 974.0  | 540.0   | 16.9  | 0.5 | 1044.0 |
| LOVIE-12 | 29.0   | 910.0   | 1.2   | 1.2 | 1040.0 |
| LOVIE-13 | 907.0  | 1430.0  | 11.4  | 0.7 | 2169.0 |
| LOVIE-14 | 341.0  | 622.0   | 23.8  | 0.2 | 1041.0 |
| LOVIE-15 | 2145.0 | 6060.0  | 31.9  | 0.3 | 2203.0 |
| LOVIE-16 | 2238.0 | 5540.0  | 847.8 | 0.3 | 3450.0 |
| LOVIE-17 | 550.0  | 254.0   | 8.9   | 0.3 | 840.0  |
| LOVIE-18 | 24.0   | 124.0   | 2.0   | 1.1 | 104.0  |
| LOVIE-19 | 250.0  | 212.0   | 7.4   | 0.6 | 269.0  |
| LOVIE-20 | 1433.0 | 4600.0  | 344.2 | 0.6 | 2327.0 |
| LOVIE-21 | 1922.0 | 267.0   | 14.1  | 0.4 | 1424.0 |
| LOVIE-22 | 1052.0 | 590.0   | 131.8 | 0.1 | 1863.0 |
| LOVIE-23 | 42.0   | 142.0   | 6.6   | 0.8 | 106.0  |
| LOVIE-24 | 363.0  | 760.0   | 89.9  | 0.5 | 1058.0 |

|          | В     | Ва    | Bi   | Ca  | Cd     | Со   | Cr    |
|----------|-------|-------|------|-----|--------|------|-------|
| Sample   | ppm   | ppm   | ppm  | %   | ppm    | ppm  | ppm   |
|          |       |       |      |     |        |      |       |
| GRIT-59  | 7.0   | 29.0  | Ν    | 1.6 | 0.6    | 3.0  | 28.0  |
| GRIT-60  | Ν     | 21.0  | Ν    | 0.0 | Ν      | Ν    | 18.0  |
| GRIT-61  | Ν     | 18.0  | Ν    | 0.3 | Ν      | Ν    | 14.0  |
| GRIT-62  | 26.0  | 88.0  | 16.0 | 0.2 | 2.3    | 6.0  | 13.0  |
| GRIT-63  | 12.0  | 26.0  | 48.0 | 0.4 | 2.1    | 13.0 | 42.0  |
| GRIT-64  | Ν     | 22.0  | Ν    | 0.0 | Ν      | Ν    | 1.0   |
| GRIT-65  | 11.0  | 85.0  | 15.0 | 1.8 | 0.7    | 3.0  | 12.0  |
| GRIT-66  | 2.0   | 79.0  | Ν    | 0.6 | Ν      | 2.0  | 28.0  |
| GRIT-67  | 12.0  | 179.0 | 16.0 | 0.7 | 1.3    | 7.0  | 24.0  |
| GRIT-68  | 15.0  | 100.0 | 8.0  | 0.3 | 1.3    | 12.0 | 16.0  |
| GRIT-69  | 4.0   | 404.0 | Ν    | 0.3 | Ν      | 3.0  | 40.0  |
| GRIT-70  | 5.0   | 35.0  | Ν    | 1.1 | Ν      | 2.0  | 7.0   |
| GRIT-71  | 13.0  | 87.0  | 15.0 | 0.4 | 0.9    | 4.0  | 15.0  |
| GRIT-72  | 5.0   | 67.0  | Ν    | 0.4 | Ν      | 4.0  | 32.0  |
| LOVIE-01 | 69.0  | 14.0  | 19.0 | 0.0 | 270.6  | 5.0  | 63.0  |
| LOVIE-02 | 36.0  | 34.0  | 12.0 | 0.0 | 474.8  | 9.0  | 36.0  |
| LOVIE-03 | 62.0  | 3.0   | 19.0 | 0.0 | 1686.9 | 27.0 | 18.0  |
| LOVIE-04 | 28.0  | 57.0  | 7.0  | 0.0 | 20.9   | 7.0  | 31.0  |
| LOVIE-05 | 69.0  | 2.0   | 20.0 | 0.0 | 1984.1 | 30.0 | 11.0  |
| LOVIE-06 | 21.0  | 76.0  | 6.0  | 0.0 | 8.7    | 3.0  | 18.0  |
| LOVIE-07 | 36.0  | 28.0  | 10.0 | 0.0 | 17.7   | 8.0  | 103.0 |
| LOVIE-08 | 55.0  | 4.0   | 17.0 | 0.0 | 2038.4 | 44.0 | 13.0  |
| LOVIE-09 | 30.0  | 21.0  | 10.0 | 0.0 | 48.7   | 4.0  | 80.0  |
| LOVIE-10 | 93.0  | 493.0 | 27.0 | 0.1 | 62.2   | 27.0 | 14.0  |
| LOVIE-11 | 39.0  | 519.0 | 10.0 | 0.1 | 4.6    | 5.0  | 21.0  |
| LOVIE-12 | 50.0  | 474.0 | 13.0 | 0.1 | 9.9    | 12.0 | 86.0  |
| LOVIE-13 | 37.0  | 241.0 | 10.0 | 0.3 | 7.5    | 2.0  | 25.0  |
| LOVIE-14 | 33.0  | 185.0 | 9.0  | 0.1 | 1.8    | 2.0  | 122.0 |
| LOVIE-15 | 21.0  | 145.0 | 6.0  | 0.0 | 4.7    | 2.0  | 30.0  |
| LOVIE-16 | 40.0  | 522.0 | 13.0 | 0.2 | 245.9  | 26.0 | 52.0  |
| LOVIE-17 | 43.0  | 221.0 | 12.0 | 0.1 | 5.2    | 5.0  | 22.0  |
| LOVIE-18 | 22.0  | 370.0 | 4.0  | 0.2 | 9.7    | 17.0 | 18.0  |
| LOVIE-19 | 31.0  | 418.0 | 6.0  | 0.0 | 5.4    | 8.0  | 9.0   |
| LOVIE-20 | 69.0  | 225.0 | 20.0 | 0.3 | 17.8   | 13.0 | 56.0  |
| LOVIE-21 | 53.0  | 260.0 | 14.0 | 0.1 | 2.7    | 6.0  | 17.0  |
| LOVIE-22 | 44.0  | 31.0  | 12.0 | 0.2 | 102.0  | 26.0 | 63.0  |
| LOVIE-23 | 49.0  | 97.0  | 12.0 | 0.6 | 4.4    | 21.0 | 45.0  |
| LOVIE-24 | 163.0 | 41.0  | 80.0 | 0.1 | 16.1   | 12.0 | 15.0  |

|          | Cu      | Fe  | Κ   | La   | Mg  | Mn      | Мо   | Na  |
|----------|---------|-----|-----|------|-----|---------|------|-----|
| Sample   | ppm     | %   | %   | ppm  | %   | ppm     | ppm  | %   |
|          |         |     |     |      |     |         |      |     |
| GRIT-59  | 334.0   | 2.2 | 0.0 | Ν    | 0.8 | 922.0   | 2.0  | 0.0 |
| GRIT-60  | 8.0     | 0.1 | 0.0 | Ν    | 0.0 | 97.0    | 1.0  | 0.0 |
| GRIT-61  | 3.0     | 0.2 | 0.1 | 2.0  | 0.0 | 200.0   | 1.0  | 0.0 |
| GRIT-62  | 6793.0  | 9.5 | 0.0 | 3.0  | 0.3 | 236.0   | 6.0  | 0.0 |
| GRIT-63  | 10000.0 | 4.0 | 0.0 | 4.0  | 0.9 | 810.0   | 2.0  | 0.0 |
| GRIT-64  | 39.0    | 0.3 | 0.0 | 5.0  | 0.1 | 2314.0  | Ν    | 0.0 |
| GRIT-65  | 628.0   | 3.8 | 0.0 | 4.0  | 0.5 | 398.0   | Ν    | 0.0 |
| GRIT-66  | 89.0    | 0.4 | 0.1 | 2.0  | 0.4 | 100.0   | 7.0  | 0.0 |
| GRIT-67  | 1957.0  | 4.3 | 0.2 | 5.0  | 0.4 | 409.0   | Ν    | 0.0 |
| GRIT-68  | 1107.0  | 5.1 | 0.0 | 4.0  | 0.6 | 656.0   | Ν    | 0.0 |
| GRIT-69  | 43.0    | 0.8 | 0.2 | 3.0  | 0.7 | 88.0    | 1.0  | 0.1 |
| GRIT-70  | 14.0    | 1.3 | 0.1 | 6.0  | 0.4 | 191.0   | Ν    | 0.0 |
| GRIT-71  | 1175.0  | 4.1 | 0.0 | Ν    | 0.2 | 212.0   | Ν    | 0.1 |
| GRIT-72  | 50.0    | 1.2 | 0.0 | Ν    | 0.5 | 229.0   | 1.0  | 0.1 |
| LOVIE-01 | 440.0   | 5.4 | 0.0 | 8.0  | 0.0 | 574.0   | 6.0  | 0.0 |
| LOVIE-02 | 437.0   | 3.3 | 0.3 | 31.0 | 0.0 | 1106.0  | 5.0  | 0.0 |
| LOVIE-03 | 1131.0  | 4.8 | 0.0 | 3.0  | 0.0 | 5283.0  | Ν    | 0.0 |
| LOVIE-04 | 18.0    | 2.6 | 0.3 | 8.0  | 0.0 | 81.0    | Ν    | 0.1 |
| LOVIE-05 | 706.0   | 5.2 | 0.0 | 2.0  | 0.0 | 10000.0 | Ν    | 0.0 |
| LOVIE-06 | 37.0    | 1.9 | 0.5 | 14.0 | 0.1 | 87.0    | 4.0  | 0.1 |
| LOVIE-07 | 22.0    | 3.2 | 0.0 | Ν    | 0.0 | 155.0   | Ν    | 0.0 |
| LOVIE-08 | 268.0   | 4.5 | 0.0 | 6.0  | 0.0 | 10000.0 | Ν    | 0.0 |
| LOVIE-09 | 144.0   | 2.8 | 0.2 | 9.0  | 0.0 | 181.0   | 50.0 | 0.0 |
| LOVIE-10 | 275.0   | 6.0 | 0.0 | 14.0 | 0.1 | 880.0   | 28.0 | 0.2 |
| LOVIE-11 | 31.0    | 3.6 | 0.0 | 17.0 | 0.1 | 234.0   | 9.0  | 0.2 |
| LOVIE-12 | 55.0    | 4.2 | 0.0 | 23.0 | 0.0 | 249.0   | Ν    | 0.0 |
| LOVIE-13 | 50.0    | 3.3 | 0.0 | 20.0 | 0.1 | 160.0   | Ν    | 0.0 |
| LOVIE-14 | 32.0    | 3.0 | 0.4 | 9.0  | 0.1 | 101.0   | 3.0  | 0.0 |
| LOVIE-15 | 19.0    | 1.9 | 0.3 | 10.0 | 0.0 | 110.0   | 1.0  | 0.1 |
| LOVIE-16 | 871.0   | 3.6 | 0.0 | 10.0 | 0.0 | 10000.0 | 15.0 | 0.0 |
| LOVIE-17 | 16.0    | 3.8 | 0.0 | 6.0  | 0.0 | 262.0   | Ν    | 0.0 |
| LOVIE-18 | 33.0    | 2.1 | 0.5 | 39.0 | 0.2 | 681.0   | Ν    | 0.0 |
| LOVIE-19 | 15.0    | 2.8 | 0.6 | 29.0 | 0.0 | 147.0   | Ν    | 0.0 |
| LOVIE-20 | 309.0   | 5.2 | 0.0 | 17.0 | 0.1 | 10000.0 | 43.0 | 0.1 |
| LOVIE-21 | 18.0    | 4.3 | 0.0 | 7.0  | 0.1 | 318.0   | 2.0  | 0.0 |
| LOVIE-22 | 518.0   | 3.7 | 0.0 | N    | 0.2 | 1054.0  | N    | 0.0 |
| LOVIE-23 | 159.0   | 4.1 | 0.0 | 8.0  | 0.8 | 2131.0  | 3.0  | 0.0 |
| LOVIE-24 | 274.0   | 7.2 | 0.0 | 5.0  | 0.1 | 578.0   | 16.0 | 0.1 |

|          | Ni   | Р      | Pb      | Sb    | Se   |
|----------|------|--------|---------|-------|------|
| Sample   | ppm  | ppm    | ppm     | ppm   | ppm  |
|          |      |        |         |       |      |
| GRIT-59  | 12.0 | 496.0  | 6.0     | Ν     | Ν    |
| GRIT-60  | 2.0  | 11.0   | 7.0     | Ν     | Ν    |
| GRIT-61  | Ν    | 17.0   | 20.0    | Ν     | Ν    |
| GRIT-62  | 22.0 | 347.0  | 46.0    | 47.0  | Ν    |
| GRIT-63  | 33.0 | 339.0  | 75.0    | 29.0  | Ν    |
| GRIT-64  | Ν    | 3.0    | 2.0     | Ν     | Ν    |
| GRIT-65  | 6.0  | 335.0  | 11.0    | Ν     | Ν    |
| GRIT-66  | 14.0 | 252.0  | 8.0     | Ν     | Ν    |
| GRIT-67  | 7.0  | 192.0  | 30.0    | 7.0   | Ν    |
| GRIT-68  | 13.0 | 220.0  | 24.0    | 3.0   | Ν    |
| GRIT-69  | 13.0 | 121.0  | 5.0     | Ν     | Ν    |
| GRIT-70  | Ν    | 357.0  | 7.0     | Ν     | Ν    |
| GRIT-71  | 4.0  | 105.0  | 14.0    | 5.0   | 5.0  |
| GRIT-72  | 6.0  | 180.0  | 10.0    | Ν     | Ν    |
| LOVIE-01 | 15.0 | 163.0  | 39842.0 | 502.0 | 76.0 |
| LOVIE-02 | 10.0 | 252.0  | 10000.0 | 299.0 | 24.0 |
| LOVIE-03 | 29.0 | 117.0  | 2678.0  | 37.0  | Ν    |
| LOVIE-04 | 12.0 | 567.0  | 2027.0  | 17.0  | Ν    |
| LOVIE-05 | 89.0 | 32.0   | 850.0   | 30.0  | Ν    |
| LOVIE-06 | 7.0  | 462.0  | 3681.0  | 66.0  | Ν    |
| LOVIE-07 | 23.0 | 86.0   | 1637.0  | 170.0 | Ν    |
| LOVIE-08 | 68.0 | 34.0   | 2371.0  | 16.0  | Ν    |
| LOVIE-09 | 17.0 | 365.0  | 10000.0 | 237.0 | 24.0 |
| LOVIE-10 | 40.0 | 3031.0 | 10000.0 | 173.0 | Ν    |
| LOVIE-11 | 14.0 | 896.0  | 777.0   | 29.0  | Ν    |
| LOVIE-12 | 40.0 | 1655.0 | 125.0   | 25.0  | Ν    |
| LOVIE-13 | 11.0 | 2417.0 | 604.0   | 20.0  | 7.0  |
| LOVIE-14 | 8.0  | 845.0  | 1643.0  | 58.0  | Ν    |
| LOVIE-15 | 6.0  | 391.0  | 5769.0  | 43.0  | 5.0  |
| LOVIE-16 | 54.0 | 1224.0 | 10000.0 | 342.0 | Ν    |
| LOVIE-17 | 18.0 | 702.0  | 317.0   | 27.0  | Ν    |
| LOVIE-18 | 27.0 | 2210.0 | 116.0   | 4.0   | Ν    |
| LOVIE-19 | 12.0 | 1014.0 | 175.0   | 13.0  | Ν    |
| LOVIE-20 | 24.0 | 4193.0 | 10000.0 | 195.0 | Ν    |
| LOVIE-21 | 19.0 | 827.0  | 1130.0  | 14.0  | Ν    |
| LOVIE-22 | 51.0 | 168.0  | 10000.0 | 86.0  | Ν    |
| LOVIE-23 | 64.0 | 876.0  | 132.0   | 6.0   | Ν    |
| LOVIE-24 | 34.0 | 1514.0 | 7578.0  | 61.0  | Ν    |

|          | Sr    | Ti  | Th   | V     | W    | Zn      |
|----------|-------|-----|------|-------|------|---------|
| Sample   | ppm   | %   | ppm  | ppm   | ppm  | ppm     |
|          |       |     |      |       |      |         |
| GRIT-59  | 26.0  | 0.0 | Ν    | 27.0  | Ν    | 43.0    |
| GRIT-60  | Ν     | 0.0 | Ν    | Ν     | Ν    | 11.0    |
| GRIT-61  | 10.0  | 0.0 | Ν    | Ν     | Ν    | 25.0    |
| GRIT-62  | 9.0   | 0.0 | Ν    | 47.0  | Ν    | 92.0    |
| GRIT-63  | 8.0   | 0.0 | 0.7  | 38.0  | 9.0  | 125.0   |
| GRIT-64  | 836.0 | 0.0 | 2.1  | Ν     | Ν    | 5.0     |
| GRIT-65  | 64.0  | 0.0 | Ν    | 15.0  | Ν    | 36.0    |
| GRIT-66  | 19.0  | 0.0 | Ν    | 32.0  | 8.0  | 21.0    |
| GRIT-67  | 21.0  | 0.0 | Ν    | 13.0  | Ν    | 78.0    |
| GRIT-68  | 16.0  | 0.0 | Ν    | 24.0  | 24.0 | 109.0   |
| GRIT-69  | 16.0  | 0.0 | Ν    | 24.0  | Ν    | 13.0    |
| GRIT-70  | 17.0  | 0.0 | Ν    | 11.0  | Ν    | 29.0    |
| GRIT-71  | 23.0  | 0.0 | Ν    | 11.0  | Ν    | 64.0    |
| GRIT-72  | 13.0  | 0.0 | Ν    | 17.0  | Ν    | 23.0    |
| LOVIE-01 | 10.0  | 0.0 | 0.7  | 4.0   | Ν    | 12681.0 |
| LOVIE-02 | 3.0   | 0.0 | Ν    | 4.0   | Ν    | 10000.0 |
| LOVIE-03 | Ν     | 0.0 | 4.7  | Ν     | Ν    | 10000.0 |
| LOVIE-04 | 8.0   | 0.0 | Ν    | 11.0  | Ν    | 1928.0  |
| LOVIE-05 | Ν     | 0.0 | 10.2 | Ν     | Ν    | 10000.0 |
| LOVIE-06 | 6.0   | 0.0 | Ν    | 10.0  | Ν    | 1397.0  |
| LOVIE-07 | 4.0   | 0.0 | 0.7  | 2.0   | Ν    | 2315.0  |
| LOVIE-08 | Ν     | 0.0 | 22.3 | Ν     | Ν    | 10000.0 |
| LOVIE-09 | 13.0  | 0.0 | Ν    | 6.0   | Ν    | 4097.0  |
| LOVIE-10 | 123.0 | 0.0 | 1.7  | 20.0  | Ν    | 6143.0  |
| LOVIE-11 | 121.0 | 0.0 | Ν    | 18.0  | Ν    | 196.0   |
| LOVIE-12 | 75.0  | 0.0 | Ν    | 151.0 | Ν    | 586.0   |
| LOVIE-13 | 152.0 | 0.0 | Ν    | 33.0  | Ν    | 551.0   |
| LOVIE-14 | 120.0 | 0.0 | Ν    | 21.0  | Ν    | 199.0   |
| LOVIE-15 | 15.0  | 0.0 | 1.9  | 5.0   | Ν    | 532.0   |
| LOVIE-16 | 36.0  | 0.0 | 11.6 | 9.0   | Ν    | 10000.0 |
| LOVIE-17 | 42.0  | 0.0 | Ν    | 37.0  | Ν    | 959.0   |
| LOVIE-18 | 34.0  | 0.0 | Ν    | 13.0  | Ν    | 500.0   |
| LOVIE-19 | 147.0 | 0.0 | Ν    | 8.0   | Ν    | 516.0   |
| LOVIE-20 | 51.0  | 0.0 | 8.0  | 26.0  | Ν    | 6074.0  |
| LOVIE-21 | 35.0  | 0.0 | Ν    | 38.0  | Ν    | 572.0   |
| LOVIE-22 | 13.0  | 0.0 | 1.0  | 4.0   | Ν    | 10000.0 |
| LOVIE-23 | 19.0  | 0.0 | 1.4  | 53.0  | Ν    | 482.0   |
| LOVIE-24 | 32.0  | 0.0 | 2.2  | 63.0  | Ν    | 5048.0  |

| Sample   | Mine / Area | UTMX     | UTMY      |
|----------|-------------|----------|-----------|
|          |             |          |           |
| LOVIE-25 | Lovie       | 523317.1 | 4466795.4 |
| LOVIE-26 | Lovie       | 523317.1 | 4466795.4 |
| LOVIE-27 | Lovie       | 523321.7 | 4466792.7 |
| LOVIE-28 | Lovie       | 523321.5 | 4466792.4 |
| LOVIE-29 | Lovie       | 523328.7 | 4466794.3 |
| LOVIE-30 | Lovie       | 523342.3 | 4466805.2 |
| LOVIE-31 | Lovie       | 523293.4 | 4466787.0 |
| LOVIE-32 | Lovie       | 523293.9 | 4466787.4 |
| LOVIE-33 | Lovie       | 523174.2 | 4466794.7 |
| LOVIE-34 | Lovie       | 523174.2 | 4466794.5 |
| LOVIE-35 | Lovie       | 523173.4 | 4466785.0 |
| LOVIE-36 | Lovie       | 523229.6 | 4466708.1 |
| LOVIE-37 | Lovie       | 523398.5 | 4466692.4 |
| LOVIE-38 | Lovie       | 523397.3 | 4466693.7 |
| LOVIE-39 | Lovie       | 523374.2 | 4466732.0 |
| LOVIE-40 | Lovie       | 523374.3 | 4466731.9 |
| LOVIE-41 | Lovie       | 523374.3 | 4466731.8 |
| LOVIE-42 | Lovie       | 523374.2 | 4466731.4 |
| LOVIE-43 | Lovie       | 523258.2 | 4466941.6 |
| LOVIE-44 | Lovie       | 523325.1 | 4466897.7 |
| LOVIE-45 | Lovie       | 523325.7 | 4466897.5 |
| GE-01    | Grey Eagle  | 520590.3 | 4469560   |
| GE-02    | Grey Eagle  | 520589.7 | 4469559.5 |
| GE-03    | Grey Eagle  | 520589.6 | 4469559.3 |
| GE-04    | Grey Eagle  | 520589.5 | 4469559.1 |
| GE-05    | Grey Eagle  | 520589.6 | 4469559   |
| GE-06    | Grey Eagle  | 520589.5 | 4469559   |
| GE-07    | Grey Eagle  | 520589.5 | 4469558.9 |
| GE-08    | Grey Eagle  | 520589.4 | 4469558.7 |
| GE-09    | Grey Eagle  | 520589.4 | 4469558.7 |
| GE-10    | Grey Eagle  | 520589.4 | 4469558.7 |

| Sampleppbppbppm%ppmLOVIE-2582.0770.0125.70.3302.0LOVIE-2617.0530.097.70.149.0LOVIE-2720.01760.070.10.1272.0LOVIE-2827.01720.0389.00.1361.0LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3912.015.01.03.5NLOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0 </th <th></th> <th>Au</th> <th>Hg</th> <th>Ag</th> <th>AI</th> <th>As</th>                                                                                                                                                                                                                                                          |          | Au      | Hg     | Ag     | AI  | As      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|--------|-----|---------|
| LOVIE-2582.0770.0125.70.3302.0LOVIE-2617.0530.097.70.149.0LOVIE-2720.01760.070.10.1272.0LOVIE-2827.01720.0389.00.1361.0LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4363.0441.0758.90.4259.0LOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02 <td< th=""><th>Sample</th><th>ppb</th><th>ppb</th><th>ppm</th><th>%</th><th>ppm</th></td<>                                                                                                                                                                                                                              | Sample   | ppb     | ppb    | ppm    | %   | ppm     |
| LOVIE-2582.0770.0125.70.3302.0LOVIE-2617.0530.097.70.149.0LOVIE-2720.01760.070.10.1272.0LOVIE-2827.01720.0389.00.1361.0LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.0<                                                                                                                                                                                                                                                                                                                          |          |         |        |        |     |         |
| LOVIE-2617.0530.097.70.149.0LOVIE-2720.01760.070.10.1272.0LOVIE-2827.01720.0389.00.1361.0LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0<                                                                                                                                                                                                                                                                                                                           | LOVIE-25 | 82.0    | 770.0  | 125.7  | 0.3 | 302.0   |
| LOVIE-2720.01760.070.10.1272.0LOVIE-2827.01720.0 $389.0$ 0.1 $361.0$ LOVIE-2929.0 $460.0$ $15.2$ 0.0 $133.0$ LOVIE-30 $148.0$ 2160.0 $150.9$ 0.7 $368.0$ LOVIE-3198.01090.0 $1003.1$ $1.1$ $524.0$ LOVIE-32 $68.0$ $442.0$ $30.0$ $0.8$ $302.0$ LOVIE-3321.0 $580.0$ $120.8$ $0.0$ $125.0$ LOVIE-34 $114.0$ $1000.0$ $98.7$ $0.0$ $2097.0$ LOVIE-35218.0 $9300.0$ $6494.4$ $0.0$ $2136.0$ LOVIE-3627.0 $74.0$ $15.1$ $0.7$ $22.0$ LOVIE-37 $37.0$ $11.0$ $2.6$ $0.5$ $3.0$ LOVIE-38 $23.0$ $177.0$ $11.4$ $0.5$ $61.0$ LOVIE-39 $12.0$ $15.0$ $1.0$ $3.5$ NLOVIE-40 $3.0$ $10.0$ N $3.4$ NLOVIE-41 $64.0$ $14.0$ $1.7$ $2.6$ $86.0$ LOVIE-42 $11.0$ $17.0$ $0.7$ $4.1$ NLOVIE-43 $63.0$ $441.0$ $758.9$ $0.4$ $259.0$ LOVIE-44 $21.0$ $176.0$ $51.3$ $0.2$ $15.0$ LOVIE-45 $22.0$ $110.0$ $4.1$ $0.8$ $30.0$ GE-01 $1064.0$ $455.0$ $176.0$ $0.0$ $1509.9$ GE-03 $394.0$ $400.0$ <td< td=""><td>LOVIE-26</td><td>17.0</td><td>530.0</td><td>97.7</td><td>0.1</td><td>49.0</td></td<> | LOVIE-26 | 17.0    | 530.0  | 97.7   | 0.1 | 49.0    |
| LOVIE-2827.01720.0389.00.1361.0LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-0420.0165.024.00.1819.6GE-052560.0 <td>LOVIE-27</td> <td>20.0</td> <td>1760.0</td> <td>70.1</td> <td>0.1</td> <td>272.0</td>                                                                                                                                                                                                                                    | LOVIE-27 | 20.0    | 1760.0 | 70.1   | 0.1 | 272.0   |
| LOVIE-2929.0460.015.20.0133.0LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.0 <td>LOVIE-28</td> <td>27.0</td> <td>1720.0</td> <td>389.0</td> <td>0.1</td> <td>361.0</td>                                                                                                                                                                                                                                   | LOVIE-28 | 27.0    | 1720.0 | 389.0  | 0.1 | 361.0   |
| LOVIE-30148.02160.0150.90.7368.0LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0                                                                                                                                                                                                                                                                                                                           | LOVIE-29 | 29.0    | 460.0  | 15.2   | 0.0 | 133.0   |
| LOVIE-3198.01090.01003.11.1524.0LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4363.0441.0758.90.4259.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.                                                                                                                                                                                                                                                                                                                          | LOVIE-30 | 148.0   | 2160.0 | 150.9  | 0.7 | 368.0   |
| LOVIE-3268.0442.030.00.8302.0LOVIE-3321.0580.0120.80.0125.0LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4363.0441.0758.90.4259.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0                                                                                                                                                                                                                                                                                                                          | LOVIE-31 | 98.0    | 1090.0 | 1003.1 | 1.1 | 524.0   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOVIE-32 | 68.0    | 442.0  | 30.0   | 0.8 | 302.0   |
| LOVIE-34114.01000.098.70.02097.0LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                    | LOVIE-33 | 21.0    | 580.0  | 120.8  | 0.0 | 125.0   |
| LOVIE-35218.09300.06494.40.02136.0LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                    | LOVIE-34 | 114.0   | 1000.0 | 98.7   | 0.0 | 2097.0  |
| LOVIE-3627.074.015.10.722.0LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOVIE-35 | 218.0   | 9300.0 | 6494.4 | 0.0 | 2136.0  |
| LOVIE-3737.011.02.60.53.0LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOVIE-36 | 27.0    | 74.0   | 15.1   | 0.7 | 22.0    |
| LOVIE-3823.0177.011.40.561.0LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOVIE-37 | 37.0    | 11.0   | 2.6    | 0.5 | 3.0     |
| LOVIE-3912.015.01.03.5NLOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOVIE-38 | 23.0    | 177.0  | 11.4   | 0.5 | 61.0    |
| LOVIE-403.010.0N3.4NLOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOVIE-39 | 12.0    | 15.0   | 1.0    | 3.5 | N       |
| LOVIE-4164.014.01.72.686.0LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOVIE-40 | 3.0     | 10.0   | Ν      | 3.4 | N       |
| LOVIE-4211.017.00.74.1NLOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOVIE-41 | 64.0    | 14.0   | 1.7    | 2.6 | 86.0    |
| LOVIE-4363.0441.0758.90.4259.0LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOVIE-42 | 11.0    | 17.0   | 0.7    | 4.1 | N       |
| LOVIE-4421.0176.051.30.215.0LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOVIE-43 | 63.0    | 441.0  | 758.9  | 0.4 | 259.0   |
| LOVIE-4522.0110.04.10.830.0GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOVIE-44 | 21.0    | 176.0  | 51.3   | 0.2 | 15.0    |
| GE-011064.0455.0176.00.01509.9GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOVIE-45 | 22.0    | 110.0  | 4.1    | 0.8 | 30.0    |
| GE-02456.01205.029.50.15279.7GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GE-01    | 1064.0  | 455.0  | 176.0  | 0.0 | 1509.9  |
| GE-03394.0400.0199.00.02580.0GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE-02    | 456.0   | 1205.0 | 29.5   | 0.1 | 5279.7  |
| GE-04200.0165.024.00.1819.6GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GE-03    | 394.0   | 400.0  | 199.0  | 0.0 | 2580.0  |
| GE-052560.0500.0145.00.03119.9GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GE-04    | 200.0   | 165.0  | 24.0   | 0.1 | 819.6   |
| GE-061706.01000.0393.00.02200.0GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GE-05    | 2560.0  | 500.0  | 145.0  | 0.0 | 3119.9  |
| GE-0713750.0410.0204.90.017000.0GE-0812250.01200.0529.90.02810.0GE-093528.0360.0357.90.03060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GE-06    | 1706.0  | 1000.0 | 393.0  | 0.0 | 2200.0  |
| GE-08 12250.0 1200.0 529.9 0.0 2810.0<br>GE-09 3528.0 360.0 357.9 0.0 3060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GE-07    | 13750.0 | 410.0  | 204.9  | 0.0 | 17000.0 |
| GE-09 3528.0 360.0 357.9 0.0 3060.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE-08    | 12250.0 | 1200.0 | 529.9  | 0.0 | 2810.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GE-09    | 3528.0  | 360.0  | 357.9  | 0.0 | 3060.0  |
| GE-10 1342.0 240.0 159.0 0.0 4999.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE-10    | 1342.0  | 240.0  | 159.0  | 0.0 | 4999.9  |

|          | В     | Ва    | Bi    | Са   | Cd    | Со    | Cr    |
|----------|-------|-------|-------|------|-------|-------|-------|
| Sample   | ppm   | ppm   | ppm   | %    | ppm   | ppm   | ppm   |
|          |       |       |       |      |       |       |       |
| LOVIE-25 | 17.0  | 43.0  | 4.0   | 0.0  | 3.1   | 2.0   | 36.0  |
| LOVIE-26 | 10.0  | 10.0  | 2.0   | 0.0  | 2.5   | Ν     | 91.0  |
| LOVIE-27 | 10.0  | 39.0  | 2.0   | 0.0  | 2.9   | Ν     | 79.0  |
| LOVIE-28 | 10.0  | 17.0  | 2.0   | 0.0  | 1.7   | Ν     | 99.0  |
| LOVIE-29 | 11.0  | 301.0 | 3.0   | 0.0  | 0.8   | 2.0   | 57.0  |
| LOVIE-30 | 35.0  | 384.0 | 9.0   | 0.1  | 8.0   | 25.0  | 30.0  |
| LOVIE-31 | 15.0  | 61.0  | 2.0   | 0.1  | 9.9   | 3.0   | 64.0  |
| LOVIE-32 | 63.0  | 285.0 | 15.0  | 0.6  | 16.2  | 39.0  | 30.0  |
| LOVIE-33 | 14.0  | 377.0 | 3.0   | 0.0  | 6.4   | 8.0   | 52.0  |
| LOVIE-34 | 141.0 | 725.0 | 41.0  | 0.1  | 98.2  | 156.0 | 28.0  |
| LOVIE-35 | 19.0  | 26.0  | 4.0   | 0.1  | 62.0  | 4.0   | 3.0   |
| LOVIE-36 | 13.0  | 71.0  | 2.0   | 0.5  | 1.0   | 1.0   | 55.0  |
| LOVIE-37 | 9.0   | 28.0  | 1.0   | 10.0 | Ν     | 7.0   | 17.0  |
| LOVIE-38 | 30.0  | 62.0  | 7.0   | 0.6  | 4.7   | 9.0   | 40.0  |
| LOVIE-39 | 35.0  | 22.0  | 10.0  | 10.0 | 1.5   | 18.0  | 42.0  |
| LOVIE-40 | 33.0  | 82.0  | 8.0   | 10.0 | 1.4   | 25.0  | 76.0  |
| LOVIE-41 | 34.0  | 111.0 | 9.0   | 10.0 | 1.5   | 20.0  | 64.0  |
| LOVIE-42 | 40.0  | 9.0   | 11.0  | 10.0 | 1.9   | 19.0  | 17.0  |
| LOVIE-43 | 13.0  | 66.0  | 2.0   | 0.1  | 2.9   | 3.0   | 96.0  |
| LOVIE-44 | 9.0   | 43.0  | 1.0   | 0.0  | 1.3   | 1.0   | 122.0 |
| LOVIE-45 | 27.0  | 186.0 | 6.0   | 0.1  | 8.2   | 7.0   | 39.0  |
| GE-01    | 1.5   | 8.5   | 163.0 | 0.0  | 33.5  | 16.0  | 5.3   |
| GE-02    | 1.5   | 13.0  | 8.5   | 1.8  | 823.2 | 7.7   | 4.9   |
| GE-03    | 1.5   | 2.2   | 184.9 | 0.0  | 25.3  | 23.6  | 4.6   |
| GE-04    | 1.5   | 56.3  | 16.1  | 1.9  | 14.9  | 4.5   | 6.8   |
| GE-05    | 1.5   | 18.0  | 23.7  | 0.7  | 305.3 | 6.7   | 8.4   |
| GE-06    | 1.5   | 1.0   | 225.9 | 0.0  | 124.4 | 39.2  | 7.0   |
| GE-07    | 1.5   | 0.0   | 31.4  | 0.0  | 8.0   | 12.6  | 6.1   |
| GE-08    | 1.5   | 0.0   | 253.9 | 0.0  | 18.9  | 33.9  | 8.0   |
| GE-09    | 1.5   | 0.0   | 232.9 | 0.0  | 18.7  | 36.1  | 3.7   |
| GE-10    | 1.5   | 0.4   | 248.9 | 1.2  | 8.6   | 28.3  | 6.1   |

|          | Cu      | Fe   | Κ   | La   | Mg  | Mn      | Мо    | Na  |
|----------|---------|------|-----|------|-----|---------|-------|-----|
| Sample   | ppm     | %    | %   | ppm  | %   | ppm     | ppm   | %   |
|          |         |      |     |      |     |         |       |     |
| LOVIE-25 | 450.0   | 1.4  | 0.1 | 6.0  | 0.0 | 249.0   | 3.0   | 0.0 |
| LOVIE-26 | 181.0   | 0.7  | 0.0 | Ν    | 0.0 | 51.0    | Ν     | 0.0 |
| LOVIE-27 | 230.0   | 0.6  | 0.0 | Ν    | 0.0 | 36.0    | 1.0   | 0.0 |
| LOVIE-28 | 215.0   | 0.7  | 0.0 | Ν    | 0.0 | 58.0    | Ν     | 0.0 |
| LOVIE-29 | 171.0   | 0.8  | 0.0 | Ν    | 0.0 | 77.0    | 2.0   | 0.0 |
| LOVIE-30 | 1538.0  | 3.2  | 0.3 | 11.0 | 0.1 | 2173.0  | 20.0  | 0.0 |
| LOVIE-31 | 10000.0 | 1.2  | 0.1 | 10.0 | 0.0 | 64.0    | 121.0 | 0.0 |
| LOVIE-32 | 578.0   | 4.8  | 0.0 | 13.0 | 0.1 | 2888.0  | 2.0   | 0.1 |
| LOVIE-33 | 334.0   | 1.1  | 0.0 | Ν    | 0.0 | 1753.0  | 11.0  | 0.0 |
| LOVIE-34 | 2158.0  | 6.8  | 0.0 | 11.0 | 0.1 | 10000.0 | 62.0  | 0.1 |
| LOVIE-35 | 9690.0  | 1.7  | 0.0 | 2.0  | 0.0 | 1306.0  | 225.0 | 0.0 |
| LOVIE-36 | 60.0    | 0.9  | 0.3 | 7.0  | 0.1 | 53.0    | 11.0  | 0.0 |
| LOVIE-37 | 5.0     | 0.6  | 0.2 | 4.0  | 0.2 | 1733.0  | Ν     | 0.1 |
| LOVIE-38 | 187.0   | 2.5  | 0.2 | 6.0  | 0.6 | 912.0   | 7.0   | 0.1 |
| LOVIE-39 | N       | 3.1  | 0.0 | 13.0 | 1.8 | 1171.0  | Ν     | 0.1 |
| LOVIE-40 | 6.0     | 3.1  | 0.0 | 9.0  | 1.7 | 716.0   | Ν     | 0.1 |
| LOVIE-41 | 18.0    | 3.1  | 0.0 | 8.0  | 1.5 | 2511.0  | Ν     | 0.1 |
| LOVIE-42 | N       | 3.5  | 0.0 | 3.0  | 2.2 | 1365.0  | Ν     | 0.0 |
| LOVIE-43 | 1540.0  | 1.0  | 0.0 | 3.0  | 0.0 | 62.0    | 173.0 | 0.0 |
| LOVIE-44 | 217.0   | 0.4  | 0.0 | Ν    | 0.0 | 88.0    | 36.0  | 0.0 |
| LOVIE-45 | 179.0   | 2.4  | 0.1 | 6.0  | 0.1 | 316.0   | 19.0  | 0.0 |
| GE-01    | 316.3   | 8.9  | 0.0 | 1.3  | 0.0 | 48.4    | 7.7   | 0.0 |
| GE-02    | 670.6   | 6.3  | 0.1 | 3.1  | 0.5 | 799.7   | 5.8   | 0.0 |
| GE-03    | 466.2   | 14.2 | 0.0 | 0.8  | 0.0 | 39.3    | 6.2   | 0.0 |
| GE-04    | 123.1   | 2.7  | 0.1 | 4.8  | 0.5 | 431.4   | 7.3   | 0.0 |
| GE-05    | 662.1   | 6.2  | 0.0 | 1.6  | 0.2 | 232.9   | 11.1  | 0.0 |
| GE-06    | 588.1   | 13.7 | 0.0 | 0.6  | 0.0 | 65.8    | 9.2   | 0.0 |
| GE-07    | 842.1   | 19.7 | 0.0 | 0.6  | 0.0 | 37.6    | 8.0   | 0.0 |
| GE-08    | 844.3   | 20.4 | 0.0 | 0.6  | 0.0 | 59.3    | 10.1  | 0.0 |
| GE-09    | 479.0   | 23.5 | 0.0 | 0.7  | 0.0 | 25.9    | 4.9   | 0.0 |
| GE-10    | 181.5   | 13.6 | 0.0 | 1.8  | 0.4 | 153.8   | 12.8  | 0.0 |
|          |         |      |     |      |     |         |       |     |

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ppm   | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | o / 1 <del></del> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.0   | 2147.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 294.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.0   | 124.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1184.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.0   | 130.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1233.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 195.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.0   | 174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2513.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 586.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12.0  | 69.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 423.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 68.0  | 1539.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3882.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 302.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13.0  | 3199.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 274.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 170.0 | 2324.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1493.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33.0  | 511.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 377.0 | 1196.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7447.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 224.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7.0   | 4449.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7418.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9.0   | 3987.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1146.0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18.0  | 455.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33.0  | 1955.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 488.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36.0  | 3967.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58.0  | 755.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58.0  | 975.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26.0  | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8.0   | 2818.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 308.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.0  | 179.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 978.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95.0  | 906.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36.9  | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4414.6                                                                                                                                                                                                                                                                                                                                                                                                                                  | 252.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30.9  | 213.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 238.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30.9  | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4561.4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 304.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38.3  | 254.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2148.3                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 58.2  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3296.2                                                                                                                                                                                                                                                                                                                                                                                                                                  | 623.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 50.0  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6831.7                                                                                                                                                                                                                                                                                                                                                                                                                                  | 954.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 38.0  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1358.1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 868.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 52.4  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5797.7                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2013.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21.6  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2895.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 402.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40.8  | 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1471.8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 234.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 7.0<br>5.0<br>4.0<br>12.0<br>68.0<br>13.0<br>170.0<br>33.0<br>377.0<br>7.0<br>9.0<br>18.0<br>377.0<br>7.0<br>9.0<br>18.0<br>33.0<br>36.0<br>58.0<br>26.0<br>8.0<br>13.0<br>95.0<br>36.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.9<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>30.0<br>3 | 7.0 $2147.0$ $5.0$ $124.0$ $5.0$ $130.0$ $4.0$ $174.0$ $12.0$ $69.0$ $68.0$ $1539.0$ $13.0$ $3199.0$ $170.0$ $2324.0$ $33.0$ $511.0$ $377.0$ $1196.0$ $7.0$ $4449.0$ $9.0$ $3987.0$ $18.0$ $455.0$ $33.0$ $1955.0$ $58.0$ $755.0$ $58.0$ $755.0$ $58.0$ $975.0$ $26.0$ $50.0$ $8.0$ $2818.0$ $13.0$ $179.0$ $95.0$ $906.0$ $36.9$ $24.1$ $30.9$ $25.3$ $38.3$ $254.2$ $58.2$ $0.3$ $50.0$ $0.3$ $38.0$ $3.2$ $52.4$ $0.3$ $40.8$ $39.4$ | 7.0 $2147.0$ $10000.0$ $5.0$ $124.0$ $1184.0$ $5.0$ $130.0$ $1233.0$ $4.0$ $174.0$ $2513.0$ $12.0$ $69.0$ $423.0$ $68.0$ $1539.0$ $3882.0$ $13.0$ $3199.0$ $10000.0$ $170.0$ $2324.0$ $1493.0$ $33.0$ $511.0$ $10000.0$ $377.0$ $1196.0$ $7447.0$ $7.0$ $4449.0$ $10000.0$ $9.0$ $3987.0$ $1146.0$ $18.0$ $455.0$ $42.0$ $33.0$ $1955.0$ $488.0$ $36.0$ $3967.0$ $22.0$ $58.0$ $755.0$ $20.0$ $58.0$ $755.0$ $20.0$ $58.0$ $975.0$ $90.0$ $26.0$ $50.0$ $10.0$ $8.0$ $2818.0$ $10000.0$ $13.0$ $179.0$ $978.0$ $95.0$ $906.0$ $131.0$ $36.9$ $24.1$ $4414.6$ $30.9$ $213.9$ $238.0$ $30.9$ $25.3$ $4561.4$ $38.3$ $254.2$ $2148.3$ $58.2$ $0.3$ $3296.2$ $50.0$ $0.3$ $6831.7$ $38.0$ $3.2$ $1358.1$ $52.4$ $0.3$ $5797.7$ $21.6$ $0.3$ $2895.8$ $40.8$ $39.4$ $1471.8$ | 7.0 $2147.0$ $10000.0$ $294.0$ $5.0$ $124.0$ $1184.0$ $103.0$ $5.0$ $130.0$ $1233.0$ $195.0$ $4.0$ $174.0$ $2513.0$ $586.0$ $12.0$ $69.0$ $423.0$ $41.0$ $68.0$ $1539.0$ $3882.0$ $302.0$ $13.0$ $3199.0$ $10000.0$ $274.0$ $170.0$ $2324.0$ $1493.0$ $47.0$ $33.0$ $511.0$ $10000.0$ $133.0$ $377.0$ $1196.0$ $7447.0$ $224.0$ $7.0$ $4449.0$ $10000.0$ $7418.0$ $9.0$ $3987.0$ $1146.0$ $34.0$ $18.0$ $455.0$ $42.0$ $3.0$ $33.0$ $1955.0$ $488.0$ $5.0$ $36.0$ $3967.0$ $22.0$ N $58.0$ $755.0$ $20.0$ N $58.0$ $975.0$ $90.0$ N $8.0$ $2818.0$ $10000.0$ $308.0$ $13.0$ $179.0$ $978.0$ $14.0$ $95.0$ $906.0$ $131.0$ $5.0$ $36.9$ $24.1$ $4414.6$ $252.9$ $30.9$ $213.9$ $238.0$ $128.8$ $30.9$ $25.3$ $4561.4$ $304.1$ $38.3$ $254.2$ $2148.3$ $29.4$ $58.2$ $0.3$ $3296.2$ $623.8$ $50.0$ $0.3$ $6831.7$ $954.3$ $38.0$ $3.2$ $1358.1$ $868.2$ $52.4$ $0.3$ $5797.7$ $2013.0$ $21.6$ $0.3$ < |

|          | Sr    | Ti  | Th   | V    | W     | Zn     |
|----------|-------|-----|------|------|-------|--------|
| Sample   | ppm   | %   | ppm  | ppm  | ppm   | ppm    |
|          |       |     |      |      |       |        |
| LOVIE-25 | 15.0  | 0.0 | Ν    | 16.0 | Ν     | 411.0  |
| LOVIE-26 | Ν     | 0.0 | Ν    | 3.0  | Ν     | 376.0  |
| LOVIE-27 | 3.0   | 0.0 | Ν    | 3.0  | Ν     | 502.0  |
| LOVIE-28 | 2.0   | 0.0 | Ν    | 4.0  | 13.0  | 154.0  |
| LOVIE-29 | Ν     | 0.0 | Ν    | 7.0  | Ν     | 184.0  |
| LOVIE-30 | 23.0  | 0.0 | 1.2  | 24.0 | Ν     | 1383.0 |
| LOVIE-31 | 30.0  | 0.0 | Ν    | 76.0 | 37.0  | 899.0  |
| LOVIE-32 | 117.0 | 0.0 | 1.3  | 74.0 | Ν     | 1613.0 |
| LOVIE-33 | 8.0   | 0.0 | 1.0  | 4.0  | Ν     | 421.0  |
| LOVIE-34 | 170.0 | 0.0 | 23.6 | 15.0 | Ν     | 5669.0 |
| LOVIE-35 | 58.0  | 0.0 | 0.9  | Ν    | 134.0 | 564.0  |
| LOVIE-36 | 64.0  | 0.0 | Ν    | 70.0 | Ν     | 61.0   |
| LOVIE-37 | 156.0 | 0.0 | Ν    | 21.0 | Ν     | 26.0   |
| LOVIE-38 | 23.0  | 0.0 | Ν    | 35.0 | Ν     | 326.0  |
| LOVIE-39 | 169.0 | 0.0 | Ν    | 66.0 | Ν     | 58.0   |
| LOVIE-40 | 68.0  | 0.1 | Ν    | 89.0 | Ν     | 59.0   |
| LOVIE-41 | 128.0 | 0.0 | Ν    | 65.0 | Ν     | 81.0   |
| LOVIE-42 | 142.0 | 0.0 | Ν    | 50.0 | Ν     | 87.0   |
| LOVIE-43 | 28.0  | 0.0 | Ν    | 8.0  | 27.0  | 260.0  |
| LOVIE-44 | 4.0   | 0.0 | Ν    | 6.0  | Ν     | 169.0  |
| LOVIE-45 | 38.0  | 0.0 | Ν    | 43.0 | Ν     | 545.0  |
| GE-01    | 2.8   | 0.0 | Ν    | 0.7  | 0.0   | 1066.3 |
| GE-02    | 27.3  | 0.0 | Ν    | 2.2  | 297.0 | 3249.6 |
| GE-03    | 1.7   | 0.0 | Ν    | 0.1  | 0.0   | 947.4  |
| GE-04    | 66.8  | 0.0 | Ν    | 3.6  | 0.0   | 611.6  |
| GE-05    | 14.5  | 0.0 | Ν    | 2.1  | 68.4  | 2419.6 |
| GE-06    | 7.4   | 0.0 | Ν    | 0.5  | 19.3  | 2108.8 |
| GE-07    | 0.5   | 0.0 | Ν    | 0.1  | 7.6   | 389.8  |
| GE-08    | 11.0  | 0.0 | Ν    | 0.2  | 0.0   | 774.6  |
| GE-09    | 0.6   | 0.0 | Ν    | 0.1  | 0.0   | 739.8  |
| GE-10    | 22.9  | 0.0 | Ν    | 0.7  | 0.0   | 437.6  |
|          |       |     |      |      |       |        |

# APPENDIX B

 $^{40}\mathrm{Ar}$  /  $^{39}\mathrm{Ar}$  data

|   | ID                                                | Temp      | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | <sup>39</sup> Ar <sub>K</sub> | K/Ca     | <sup>40</sup> Ar* | <sup>39</sup> Ar | Age    | ±1σ   |
|---|---------------------------------------------------|-----------|------------------------------------|------------------------------------|------------------------------------|-------------------------------|----------|-------------------|------------------|--------|-------|
|   |                                                   | (°C)      |                                    |                                    | (x 10 <sup>-3</sup> )              | (x 10 <sup>-15</sup> mol)     |          | (%)               | (%)              | (Ma)   | (Ma)  |
| - |                                                   | ( )       |                                    |                                    | (,                                 | (                             |          | . ,               | ( )              | , ,    | . ,   |
| G | RIT-53                                            | , biotite | , 2.60 mg                          | , J=0.0016                         | 165, D=1.003                       | 7±0.0005, N                   | M-1810   | C, Lab#=          | =55055-          | 01     |       |
| # | А                                                 | 650       | 139.4                              | 2.707                              | 462.0                              | 0.273                         | 0.19     | 2.3               | 0.3              | 9.5    | 5.9   |
| # | В                                                 | 700       | 60.50                              | 4.890                              | 184.6                              | 0.269                         | 0.10     | 10.5              | 0.6              | 18.4   | 5.9   |
| # | С                                                 | 750       | 37.70                              | 2.211                              | 90.40                              | 0.434                         | 0.23     | 29.6              | 1.1              | 32.3   | 3.5   |
|   | D                                                 | 800       | 19.56                              | 0.5480                             | 22.13                              | 2.18                          | 0.93     | 66.8              | 3.5              | 37.72  | 0.73  |
|   | Е                                                 | 850       | 14.84                              | 0.0689                             | 4.870                              | 5.38                          | 7.4      | 90.3              | 9.4              | 38.69  | 0.29  |
|   | F                                                 | 900       | 14.21                              | 0.0400                             | 2.540                              | 6.31                          | 12.7     | 94.7              | 16.3             | 38.84  | 0.24  |
|   | G                                                 | 950       | 14.15                              | 0.0379                             | 1.990                              | 8.32                          | 13.5     | 95.9              | 25.5             | 39.13  | 0.18  |
| # | Н                                                 | 1000      | 23.02                              | 0.0409                             | 33.81                              | 9.8                           | 12.5     | 56.6              | 36.3             | 37.61  | 0.22  |
|   | I                                                 | 1100      | 15.18                              | 0.0382                             | 5.643                              | 24.8                          | 13.4     | 89.0              | 63.6             | 38.981 | 0.080 |
|   | J                                                 | 1250      | 14.23                              | 0.0993                             | 2.443                              | 32.7                          | 5.1      | 95.0              | 99.6             | 38.991 | 0.062 |
| # | Κ                                                 | 1300      | 19.14                              | 0.0878                             | 18.30                              | 0.366                         | 5.8      | 71.8              | 100.0            | 39.6   | 3.9   |
|   | Total                                             | gas age   | e ± 1σ                             | n=11                               |                                    | 90.9                          | K        | 20=8.31           | %                | 38.616 | 0.079 |
|   | Plate                                             | au ± 1σ   | steps D-J                          | n=6                                | MSWD=1.01                          | 79.8                          | 9.2      |                   | 87.7             | 38.979 | 0.060 |
|   |                                                   |           |                                    |                                    |                                    |                               |          |                   |                  |        |       |
| Ρ | H-156                                             | 260, bio  | tite, 6.96 r                       | ng, J=0.00                         | 16139, D=1.0                       | 037±0.0005                    | 5, NM-18 | B1C, Lal          | o#=5505          | 52-01  |       |
|   | А                                                 | 650       | 144.0                              | 0.9132                             | 465.2                              | 1.28                          | 0.56     | 4.6               | 0.5              | 19.1   | 2.0   |
|   | В                                                 | 700       | 56.77                              | 2.242                              | 157.3                              | 1.08                          | 0.23     | 18.5              | 1.0              | 30.3   | 1.5   |
|   | С                                                 | 750       | 53.68                              | 1.366                              | 136.6                              | 1.02                          | 0.37     | 25.0              | 1.4              | 38.7   | 1.7   |
|   | D                                                 | 800       | 27.68                              | 0.3357                             | 51.35                              | 5.34                          | 1.5      | 45.3              | 3.6              | 36.13  | 0.38  |
|   | Е                                                 | 850       | 15.80                              | 0.0332                             | 8.190                              | 12.4                          | 15.4     | 84.7              | 8.6              | 38.55  | 0.15  |
|   | F                                                 | 900       | 14.64                              | 0.0264                             | 2.993                              | 15.8                          | 19.3     | 94.0              | 15.1             | 39.60  | 0.11  |
|   | G                                                 | 950       | 14.43                              | 0.0359                             | 2.370                              | 12.4                          | 14.2     | 95.2              | 20.2             | 39.54  | 0.13  |
|   | Н                                                 | 1000      | 14.90                              | 0.0445                             | 3.890                              | 9.68                          | 11.5     | 92.3              | 24.1             | 39.60  | 0.17  |
|   | Ι                                                 | 1100      | 14.74                              | 0.0441                             | 3.307                              | 34.9                          | 11.6     | 93.4              | 38.4             | 39.640 | 0.062 |
|   | J                                                 | 1250      | 14.22                              | 0.0793                             | 2.326                              | 89.4                          | 6.4      | 95.2              | 75.0             | 38.985 | 0.042 |
|   | K                                                 | 1300      | 14.30                              | 0.0739                             | 4.150                              | 61.2                          | 6.9      | 91.5              | 100.0            | 38.62  | 0.06  |
|   | Total                                             | gas age   | e ± 1σ                             | n=11                               |                                    | 244.5                         | K        | 20=8.36           | %                | 38.619 | 0.064 |
|   |                                                   |           |                                    |                                    |                                    |                               |          |                   |                  |        |       |
| H | T02-5,                                            | biotite,  | 1.86 mg,                           | J=0.00161                          | 2, D=1.0037±                       | 0.0005, NM                    | -181C,   | Lab#=5            | 5050-02          |        |       |
| # | A                                                 | 650       | 428.8                              | 1.227                              | 1441.0                             | 0.575                         | 0.42     | 0.7               | 2.3              | 9.0    | 5.7   |
| # | В                                                 | 700       | 49.61                              | 2.182                              | 143.7                              | 0.440                         | 0.23     | 14.8              | 4.1              | 21.3   | 3.1   |
| # | С                                                 | 750       | 25.95                              | 1.063                              | 62.70                              | 0.474                         | 0.48     | 29.0              | 6.0              | 21.8   | 2.7   |
| # | D                                                 | 800       | 18.99                              | 0.7621                             | 25.90                              | 0.697                         | 0.67     | 60.0              | 8.7              | 32.9   | 1.8   |
| # | Е                                                 | 850       | 15.74                              | 0.0774                             | 10.58                              | 1.70                          | 6.6      | 80.2              | 15.6             | 36.34  | 0.73  |
|   | F                                                 | 900       | 16.73                              | 0.0600                             | 8.620                              | 2.38                          | 8.5      | 84.8              | 25.1             | 40.79  | 0.53  |
|   | G                                                 | 950       | 15.35                              | 0.0736                             | 6.460                              | 2.41                          | 6.9      | 87.6              | 34.7             | 38.70  | 0.51  |
|   | Н                                                 | 1000      | 16.46                              | 0.1203                             | 7.200                              | 1.91                          | 4.2      | 87.1              | 42.4             | 41.23  | 0.66  |
|   | I                                                 | 1100      | 15.77                              | 0.1650                             | 5.730                              | 5.25                          | 3.1      | 89.3              | 63.3             | 40.52  | 0.25  |
|   | J                                                 | 1250      | 14.71                              | 0.1279                             | 4.149                              | 9.10                          | 4.0      | 91.7              | 99.7             | 38.81  | 0.14  |
|   | K                                                 | 1300      | 17.50                              | 0.1780                             | -20.3000                           | 0.064                         | 2.9      | 134.0             | 100.0            | 67.0   | 18.0  |
|   | Total                                             | gas age   | e±1σ                               | n=11                               |                                    | 25.0                          | K        | 20=3.20           | %                | 37.97  | 0.22  |
|   | <b>Plateau <math>\pm 1\sigma</math></b> steps F-K |           | n=6                                | MSWD=11.24                         | 21.1                               | 4.6                           |          | 84.4              | 39.33            | 0.38   |       |

## GM-3, biotite, 6.75 mg, J=0.0016112, D=1.0037±0.0005, NM-181C, Lab#=55049-01

| #                            | А       | 650     | 175.5     | 0.3495 | 573.0     | 0.702 | 1.5      | 3.5  | 0.3    | 17.8   | 6.4   |
|------------------------------|---------|---------|-----------|--------|-----------|-------|----------|------|--------|--------|-------|
| #                            | В       | 700     | 55.79     | 0.0813 | 154.3     | 1.61  | 6.3      | 18.3 | 1.1    | 29.4   | 2.7   |
| #                            | С       | 750     | 19.38     | 0.0283 | 23.60     | 3.95  | 18.0     | 64.0 | 2.9    | 35.7   | 1.1   |
|                              | D       | 800     | 14.34     | 0.0151 | 3.720     | 16.3  | 33.8     | 92.4 | 10.3   | 38.10  | 0.26  |
|                              | E       | 850     | 13.86     | 0.0160 | 1.640     | 20.2  | 31.9     | 96.5 | 19.6   | 38.45  | 0.21  |
|                              | F       | 900     | 13.78     | 0.0151 | 1.210     | 20.8  | 33.9     | 97.4 | 29.1   | 38.61  | 0.21  |
|                              | G       | 950     | 13.93     | 0.0209 | 1.870     | 17.1  | 24.4     | 96.0 | 36.9   | 38.48  | 0.25  |
|                              | Н       | 1000    | 14.32     | 0.0390 | 3.120     | 19.8  | 13.1     | 93.6 | 45.9   | 38.53  | 0.23  |
|                              | I       | 1100    | 14.08     | 0.0341 | 2.220     | 61.1  | 15.0     | 95.4 | 73.9   | 38.614 | 0.082 |
|                              | J       | 1250    | 13.87     | 0.0882 | 1.459     | 57.2  | 5.8      | 96.9 | 100.0  | 38.670 | 0.088 |
| Integrated age $\pm 1\sigma$ |         | je ± 1σ | n=10      |        | 218.9     | I     | K2O=7.73 | %    | 38.370 | 0.080  |       |
|                              | Plateau | ±1σ     | steps D-J | n=7    | MSWD=0.86 | 212.6 | 18.0     |      | 97.1   | 38.593 | 0.064 |
|                              |         |         |           |        |           |       |          |      |        |        |       |

## CK02-14, amphibole, 24.95 mg, J=0.0016165, D=1.0064±0.0005, NM-181C, Lab#=55056-02

| # B | 800                    | -3.1100   | 0.0540 | -36.8000  | 0.130 | 9.4    | -250.0 | 0.5   | 22.5  | 4.5  |
|-----|------------------------|-----------|--------|-----------|-------|--------|--------|-------|-------|------|
| # C | 1000                   | 60.28     | 1.472  | 171.3     | 0.97  | 0.35   | 16.2   | 4.6   | 28.3  | 1.6  |
| D   | 1030                   | 30.05     | 3.303  | 59.60     | 0.590 | 0.15   | 42.3   | 7.1   | 36.7  | 1.5  |
| Е   | 1060                   | 19.39     | 4.728  | 21.84     | 2.85  | 0.11   | 68.7   | 19.0  | 38.57 | 0.35 |
| F   | 1090                   | 17.15     | 5.017  | 12.88     | 7.15  | 0.10   | 80.2   | 49.0  | 39.82 | 0.21 |
| G   | 1120                   | 16.51     | 4.935  | 11.85     | 6.41  | 0.10   | 81.3   | 75.9  | 38.86 | 0.25 |
| Н   | 1170                   | 22.43     | 4.773  | 32.71     | 1.80  | 0.11   | 58.7   | 83.4  | 38.10 | 0.69 |
| Ι   | 1200                   | 21.99     | 4.911  | 31.77     | 2.11  | 0.10   | 59.1   | 92.3  | 37.66 | 0.48 |
| J   | 1250                   | 23.24     | 5.190  | 35.27     | 1.79  | 0.098  | 57.0   | 99.8  | 38.37 | 0.56 |
| K   | 1300                   | 107.1     | 6.050  | 350.0     | 0.058 | 0.084  | 3.9    | 100.0 | 12.0  | 15.0 |
| To  | otal gas age ± 1σ n=10 |           |        | 23.8      | K2    | 0=0.23 | %      | 38.34 | 0.17  |      |
| Pla | teau ± 1σ s            | steps D-K | n=8    | MSWD=4.76 | 22.7  | 0.105  |        | 95.4  | 39.03 | 0.29 |

## GE-02, muscovite, 1.98 mg, J=0.0016233, D=1.0037±0.0005, NM-181F, Lab#=55084-01

| А     | 600                         | 113.3     | -0.0038 | 343.4     | 0.494 | -     | 10.5     | 1.4   | 34.4  | 3.5  |
|-------|-----------------------------|-----------|---------|-----------|-------|-------|----------|-------|-------|------|
| В     | 680                         | 17.04     | 0.0015  | 11.90     | 1.63  | 340.1 | 79.4     | 5.8   | 39.17 | 0.93 |
| С     | 700                         | 14.47     | -0.0006 | 1.600     | 0.594 | -     | 96.7     | 7.5   | 40.5  | 2.4  |
| D     | 750                         | 14.78     | 0.0015  | 4.510     | 1.79  | 340.1 | 91.0     | 12.4  | 38.94 | 0.82 |
| Н     | 920                         | 13.37     | 0.0005  | 1.270     | 5.99  | 981.2 | 97.2     | 28.8  | 37.65 | 0.37 |
| Ι     | 960                         | 13.56     | 0.0008  | 1.230     | 9.62  | 622.2 | 97.3     | 55.2  | 38.23 | 0.16 |
| J     | 1000                        | 13.65     | 0.0015  | 1.620     | 5.17  | 342.4 | 96.5     | 69.4  | 38.18 | 0.29 |
| K     | 1040                        | 13.68     | 0.0028  | 1.370     | 3.76  | 185.5 | 97.0     | 79.7  | 38.47 | 0.40 |
| L     | 1080                        | 13.77     | 0.0026  | 1.750     | 4.18  | 194.7 | 96.2     | 91.1  | 38.39 | 0.36 |
| М     | 1120                        | 14.64     | 0.0087  | 3.640     | 1.20  | 58.6  | 92.7     | 94.4  | 39.3  | 1.2  |
| Ν     | 1160                        | 12.90     | 0.0291  | -4.5000   | 0.401 | 17.5  | 110.0    | 95.5  | 41.2  | 3.5  |
| 0     | 1200                        | 12.40     | 0.0457  | -2.3000   | 0.306 | 11.2  | 106.0    | 96.4  | 38.0  | 4.6  |
| Ρ     | 1250                        | 17.40     | 0.0550  | 10.30     | 0.246 | 9.3   | 82.0     | 97.1  | 41.5  | 5.8  |
| Q     | 1350                        | 15.32     | 0.0551  | 5.600     | 0.677 | 9.3   | 89.2     | 98.9  | 39.6  | 2.1  |
| R     | 1700                        | 24.22     | 0.1814  | 34.70     | 0.394 | 2.8   | 57.7     | 100.0 | 40.5  | 3.7  |
| Tota  | Total gas age $\pm 1\sigma$ |           | n=15    |           | 36.5  | I     | K2O=4.36 | %     | 38.37 | 0.17 |
| Plate | eau ± 1σ                    | steps A-R | n=15    | MSWD=0.68 | 36.5  | 463.4 |          | 100.0 | 38.25 | 0.12 |

| GM-6 H | ornblende, A10:17 | 70, 20.08 mg | , <b>J=0.000</b> 81 | 03, NM-170 | ), Lab#= | 54259-0 | 2   |      |     |
|--------|-------------------|--------------|---------------------|------------|----------|---------|-----|------|-----|
| # A    | 800 238.9         | 0.7910       | 750.9               | 3.04       | 0.64     | 7.1     | 5.6 | 24.8 | 1.8 |

| #                                                                  | В                      | 900     | 45.13     | 0.1515   | 61.83       | 5.78    | 3.4      | 59.5   | 16.3       | 38.88 | 0.29 |
|--------------------------------------------------------------------|------------------------|---------|-----------|----------|-------------|---------|----------|--------|------------|-------|------|
| #                                                                  | С                      | 1000    | 42.63     | 0.3824   | 53.87       | 6.00    | 1.3      | 62.7   | 27.3       | 38.69 | 0.31 |
| #                                                                  | D                      | 1030    | 43.39     | 1.209    | 55.14       | 3.31    | 0.42     | 62.7   | 33.4       | 39.36 | 0.35 |
| #                                                                  | Е                      | 1060    | 44.13     | 3.393    | 61.55       | 2.83    | 0.15     | 59.4   | 38.7       | 38.02 | 0.41 |
|                                                                    | F                      | 1090    | 42.05     | 4.765    | 51.70       | 4.66    | 0.11     | 64.6   | 47.3       | 39.42 | 0.28 |
|                                                                    | G                      | 1120    | 34.39     | 4.791    | 25.97       | 10.3    | 0.11     | 78.8   | 66.2       | 39.35 | 0.18 |
|                                                                    | н                      | 1170    | 32.38     | 4.020    | 19.58       | 8.2     | 0.13     | 83.2   | 81.3       | 39.04 | 0.19 |
|                                                                    | I                      | 1200    | 35.72     | 2.359    | 28.93       | 3.13    | 0.22     | 76.6   | 87.1       | 39.64 | 0.25 |
|                                                                    | J                      | 1250    | 40.77     | 4.353    | 49.40       | 5.50    | 0.12     | 65.1   | 97.3       | 38.49 | 0.25 |
|                                                                    | K                      | 1300    | 38.88     | 6.244    | 40.59       | 1.48    | 0.082    | 70.5   | 100.0      | 39.79 | 0.36 |
|                                                                    | Integra                | ated ag | e ± 1σ    | n=11     |             | 54.2    | K20      | D=1.29 | %          | 38.24 | 0.20 |
|                                                                    | Platea                 | u ± 1σ  | steps F-K | n=6      | MSWD=3.13   | 33.3    | 0.12     |        | 61.3       | 39.23 | 0.17 |
|                                                                    |                        |         |           |          |             |         |          |        |            |       |      |
| GM-6 Biotite, A9:170, 5.17 mg, J=0.00080803, NM-170, Lab#=54258-01 |                        |         |           |          |             |         |          |        |            |       |      |
| #                                                                  | A                      | 650     | 703.6     | 0.0956   | 2359.3      | 0.93    | 5.3      | 0.9    | 1.1        | 9.3   | 6.2  |
| #                                                                  | В                      | 750     | 71.88     | 0.0426   | 165.9       | 2.58    | 12.0     | 31.8   | 4.1        | 33.01 | 0.72 |
| #                                                                  | С                      | 850     | 30.69     | 0.0145   | 14.13       | 10.5    | 35.2     | 86.4   | 16.2       | 38.25 | 0.13 |
| #                                                                  | D                      | 920     | 28.77     | 0.0095   | 6.381       | 13.3    | 53.7     | 93.4   | 31.7       | 38.78 | 0.11 |
|                                                                    | E                      | 1000    | 28.95     | 0.0132   | 5.962       | 11.9    | 38.5     | 93.9   | 45.6       | 39.21 | 0.10 |
|                                                                    | F                      | 1075    | 28.86     | 0.0185   | 6.352       | 11.7    | 27.5     | 93.5   | 59.2       | 38.92 | 0.12 |
|                                                                    | G                      | 1110    | 28.41     | 0.0182   | 3.875       | 6.34    | 28.1     | 96.0   | 66.5       | 39.32 | 0.15 |
|                                                                    | H                      | 1180    | 28.11     | 0.0210   | 3.943       | 14.5    | 24.3     | 95.9   | 83.3       | 38.86 | 0.12 |
|                                                                    | I                      | 1210    | 27.78     | 0.0536   | 2.844       | 9.8     | 9.5      | 97.0   | 94.7       | 38.86 | 0.11 |
| #                                                                  | J                      | 1250    | 27.79     | 0.1693   | 1.496       | 4.58    | 3.0      | 98.5   | 100.0      | 39.45 | 0.18 |
|                                                                    | Integra                | ated ag | e ± 1σ    | n=10     |             | 86.1    | K20      | )=7.97 | %          | 38.40 | 0.12 |
|                                                                    | Platea                 | u ± 1σ  | steps E-I | n=5      | MSWD=3.03   | 54.2    | 25.9     |        | 63.0       | 39.02 | 0.10 |
| G                                                                  | М_15 Ц                 | ornblor | do 12.17  | 70 22 62 | ma I-0 0008 | 1307 NM | _170 lab | #-5120 | s1_01      |       |      |
| #                                                                  |                        | 800     | 203 6     | 5 484    | 608 7       | 2 12    | 0 093    | 11 Q   | <u>4</u> 1 | 35.4  | 17   |
| #                                                                  | B                      | 900     | 37.37     | 0 4616   | 35.81       | 4 40    | 1 1      | 71.8   | 12.6       | 38.98 | 0.27 |
| #                                                                  | C                      | 1000    | 33 53     | 0 7134   | 22 23       | 5.09    | 0.72     | 80.6   | 22.4       | 39.26 | 0.24 |
| #                                                                  | D                      | 1030    | 33.42     | 2.235    | 23.95       | 2.95    | 0.23     | 79.4   | 28.1       | 38.60 | 0.34 |
|                                                                    | E                      | 1060    | 33.18     | 4.340    | 23.56       | 2.83    | 0.12     | 80.1   | 33.6       | 38.72 | 0.36 |
|                                                                    | F                      | 1090    | 31.48     | 5.135    | 17.62       | 6.08    | 0.099    | 84.8   | 45.3       | 38.92 | 0.22 |
|                                                                    | G                      | 1120    | 29.65     | 4.757    | 10.93       | 9.9     | 0.11     | 90.4   | 64.4       | 39.09 | 0.14 |
|                                                                    | н                      | 1170    | 29.85     | 3.587    | 11.92       | 4.51    | 0.14     | 89.2   | 73.1       | 38.78 | 0.24 |
|                                                                    | I                      | 1200    | 31.13     | 4.328    | 15.81       | 3.16    | 0.12     | 86.1   | 79.2       | 39.08 | 0.36 |
|                                                                    | J                      | 1250    | 31.56     | 5.070    | 17.19       | 9.5     | 0.10     | 85.2   | 97.6       | 39.22 | 0.16 |
|                                                                    | K                      | 1300    | 34.29     | 7.255    | 28.64       | 1.27    | 0.070    | 77.1   | 100.0      | 38.59 | 0.64 |
|                                                                    | Integra                | ated ag | e ± 1σ    | n=11     |             | 51.8    | K20      | D=1.09 | %          | 38.86 | 0.14 |
|                                                                    | Plateau ± 1  steps E-K |         | steps E-K | n=7      | MSWD=0.70   | 37.3    | 0.11     |        | 71.9       | 39.03 | 0.09 |

#### GM-15 Biotite, A11:170, 7.26 mg, J=0.00081246, NM-170, Lab#=54260-01

| # | А                            | 650       | 217.0     | 0.2931 | 699.9     | 0.485 | 1.7      | 4.7  | 0.4   | 14.9  | 2.7  |
|---|------------------------------|-----------|-----------|--------|-----------|-------|----------|------|-------|-------|------|
| # | В                            | 750       | 75.11     | 0.0621 | 163.0     | 2.13  | 8.2      | 35.9 | 2.1   | 39.09 | 0.89 |
| # | С                            | 850       | 29.47     | 0.0093 | 10.36     | 14.4  | 54.6     | 89.6 | 13.5  | 38.30 | 0.11 |
|   | D                            | 920       | 27.98     | 0.0055 | 2.481     | 16.2  | 93.4     | 97.4 | 26.3  | 39.50 | 0.10 |
|   | Е                            | 1000      | 27.87     | 0.0088 | 2.430     | 16.0  | 58.1     | 97.4 | 38.9  | 39.36 | 0.08 |
|   | F                            | 1075      | 27.89     | 0.0164 | 2.201     | 15.7  | 31.2     | 97.7 | 51.3  | 39.49 | 0.09 |
|   | G                            | 1110      | 27.67     | 0.0220 | 2.337     | 9.4   | 23.2     | 97.5 | 58.7  | 39.12 | 0.11 |
|   | Н                            | 1180      | 27.66     | 0.0188 | 2.135     | 25.7  | 27.1     | 97.7 | 79.0  | 39.19 | 0.09 |
|   | I                            | 1210      | 27.49     | 0.0522 | 1.596     | 17.4  | 9.8      | 98.3 | 92.7  | 39.18 | 0.08 |
|   | J                            | 1250      | 27.33     | 0.1207 | 1.209     | 9.3   | 4.2      | 98.7 | 100.0 | 39.12 | 0.13 |
|   | Integrated age $\pm 1\sigma$ |           | n=10      |        | 126.8     | ĸ     | (20=8.31 | %    | 39.08 | 0.07  |      |
|   | Pla                          | teau ± 1σ | steps D-J | n=7    | MSWD=2.96 | 109.7 | 37.0     |      | 86.5  | 39.29 | 0.07 |

#### T99413-570 Biotite, A15:170, 7.96 mg, J=0.00081488, NM-170, Lab#=54262-01

| # | А       | 650     | 246.4          | 0.6033 | 817.4     | 0.391 | 0.85 | 2.0     | 0.3   | 7.2   | 3.4  |
|---|---------|---------|----------------|--------|-----------|-------|------|---------|-------|-------|------|
| # | В       | 750     | 87.89          | 0.4013 | 208.7     | 2.02  | 1.3  | 29.9    | 1.8   | 38.18 | 0.92 |
| # | С       | 850     | 29.52          | 0.0127 | 9.914     | 14.9  | 40.3 | 90.1    | 12.9  | 38.67 | 0.11 |
|   | D       | 920     | 27.47          | 0.0083 | 1.670     | 17.6  | 61.1 | 98.2    | 25.9  | 39.23 | 0.08 |
|   | Е       | 1000    | 27.46          | 0.0098 | 1.486     | 15.3  | 52.1 | 98.4    | 37.3  | 39.30 | 0.09 |
|   | F       | 1075    | 27.71          | 0.0143 | 1.510     | 15.0  | 35.8 | 98.4    | 48.4  | 39.65 | 0.08 |
|   | G       | 1110    | 27.34          | 0.0153 | 1.077     | 10.7  | 33.4 | 98.8    | 56.3  | 39.30 | 0.11 |
|   | Н       | 1180    | 27.47          | 0.0260 | 1.447     | 13.5  | 19.6 | 98.5    | 66.3  | 39.32 | 0.08 |
|   | I       | 1210    | 27.30          | 0.0323 | 1.179     | 13.2  | 15.8 | 98.7    | 76.1  | 39.20 | 0.11 |
|   | J       | 1250    | 27.12          | 0.0551 | 0.8330    | 20.3  | 9.3  | 99.1    | 91.1  | 39.09 | 0.08 |
|   | K       | 1300    | 27.40          | 0.0522 | 0.9500    | 9.9   | 9.8  | 99.0    | 98.5  | 39.44 | 0.11 |
| # | L       | 1700    | 32.12          | 0.1089 | 20.71     | 2.06  | 4.7  | 81.0    | 100.0 | 37.84 | 0.38 |
|   | Integra | ated ag | <b>je</b> ± 1σ | n=12   |           | 134.9 | K    | 20=8.04 | %     | 39.10 | 0.07 |
|   | Platea  | u ± 1σ  | steps D-K      | n=8    | MSWD=4.12 | 115.4 | 30.5 |         | 85.6  | 39.32 | 0.07 |
|   |         |         |                |        |           |       |      |         |       |       |      |

Notes:

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.

Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.

Total gas age calculated by combining isotopic measurements of all steps.

Total gas age error calculated by combining errors of isotopic measurements of all steps.

Plateau age is inverse-variance-weighted mean of selected steps.

Plateau age error is inverse-variance-weighted mean error (Taylor, 1982) times square root MSWD where MSWD>1.

Decay constants and isotopic abundance after Steiger and Jager (1977).

# symbol preceding sample ID denotes analyses excluded from plateau age calculations.

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at 28.02 Ma (cf. Renne et al., 1998) Decay Constant (LambdaK (total)) = 5.543e-10/a

D= 1 AMU mass discrimination in favor of light isotopes

K20 estimated from <sup>39</sup>Ar, sample weight, J-factor and mass spectrometer sensitivity.

Correction factors: N

| Sample                             | Step         |                | Laser<br>Power<br>(%)    | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | Ca/K | CI/K |
|------------------------------------|--------------|----------------|--------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------|------|
|                                    |              |                |                          |                                    |                                    |                                    |                                    |      |      |
| GM-3 (U)                           | 1            |                | 2                        | 30.56                              | 0.14                               | 0.35                               | 0.10                               | 1.50 | 0.02 |
| Biotite                            | 2            |                | 2.3                      | 10.30                              | 0.08                               | 0.30                               | 0.03                               | 1.35 | 0.01 |
|                                    | 3            |                | 2.6                      | 10.81                              | 0.08                               | 0.07                               | 0.02                               | 0.29 | 0.01 |
|                                    | 4            |                | 2.9                      | 8.94                               | 0.08                               | 0.02                               | 0.01                               | 0.06 | 0.02 |
|                                    | 5            | #              | 3.2                      | 7.28                               | 0.08                               | 0.01                               | 0.00                               | 0.04 | 0.02 |
|                                    | 6            | #              | 3.5                      | 7.26                               | 0.08                               | 0.01                               | 0.00                               | 0.03 | 0.02 |
|                                    | 7            | #              | 3.8                      | 7.53                               | 0.08                               | 0.02                               | 0.00                               | 0.08 | 0.02 |
|                                    | 8            | #              | 4                        | 7.32                               | 0.08                               | 0.02                               | 0.00                               | 0.10 | 0.02 |
|                                    | 9            | #              | 4.3                      | 7.28                               | 0.08                               | 0.03                               | 0.00                               | 0.12 | 0.02 |
| Total das a                        | ue           |                |                          | n = 9                              | .l = 0 00313                       | 2                                  |                                    |      |      |
| Plateau ste                        | 9°<br>ns 5-9 |                |                          | n = 5                              | MSWD = 0.00010                     | ,<br>46                            |                                    |      |      |
| i latoad oto                       | pe e e       |                |                          |                                    |                                    |                                    |                                    |      |      |
| CK02-08                            | 1            | #              | 2                        | 24.03                              | 0.03                               | 0.01                               | 0.06                               | 0.04 | 0.00 |
| Potassium                          | 2            | #              | 2.4                      | 8.77                               | 0.01                               | 0.01                               | 0.01                               | 0.04 | 0.00 |
| Feldspar                           | 3            | #              | 2.7                      | 9.05                               | 0.02                               | 0.01                               | 0.01                               | 0.02 | 0.00 |
|                                    | 4            | #              | 2.9                      | 11.40                              | 0.02                               | 0.01                               | 0.02                               | 0.04 | 0.00 |
|                                    | 5            |                | 3.2                      | 18.97                              | 0.02                               | 0.03                               | 0.04                               | 0.11 | 0.00 |
|                                    | 6            |                | 3.6                      | 36.58                              | 0.04                               | 0.04                               | 0.10                               | 0.16 | 0.00 |
| Total gas age<br>Plateau steps 5-9 |              | n = 6<br>n = 4 | J = 0.00315<br>MSWD = 2. | ;<br>2                             |                                    |                                    |                                    |      |      |

| Sample            | <sup>40</sup> Ar atm | <sup>39</sup> Ar | <sup>40</sup> Ar*/ <sup>39</sup> Ar <sub>K</sub> | Age   | <u>+</u> 2σ |
|-------------------|----------------------|------------------|--------------------------------------------------|-------|-------------|
|                   | (%)                  | (%)              |                                                  | (Ma)  | (Ma)        |
|                   |                      |                  |                                                  |       |             |
| GM-3              | 92.33                | 0.27             | 1.90                                             | 10.67 | 11.02       |
| Biotite           | 73.01                | 0.77             | 2.23                                             | 12.54 | 2.01        |
|                   | 52.35                | 1.88             | 4.75                                             | 26.65 | 2.69        |
|                   | 23.20                | 6.24             | 6.67                                             | 37.28 | 0.82        |
|                   | 1.82                 | 14.67            | 7.04                                             | 39.30 | 0.32        |
|                   | 1.50                 | 19.72            | 7.07                                             | 39.46 | 0.24        |
|                   | 5.25                 | 23.07            | 7.07                                             | 39.49 | 0.26        |
|                   | 1.94                 | 16.32            | 7.08                                             | 39.56 | 0.31        |
|                   | 1.40                 | 17.05            | 7.08                                             | 39.56 | 0.31        |
|                   |                      |                  |                                                  |       |             |
| Total gas a       | ige                  | 99.99            |                                                  | 31.61 | 2.00        |
| Plateau ste       | eps 5-9              | 90.83            |                                                  | 39.47 | 0.29        |
| CK02-08           | 71.28                | 5.13             | 6.49                                             | 36.53 | 3.60        |
| Potassium         | 18.83                | 24.15            | 6.87                                             | 38.61 | 0.87        |
| Feldspar          | 22.21                | 39.23            | 6.89                                             | 38.76 | 0.50        |
| ·                 | 35.17                | 15.58            | 7.08                                             | 39.81 | 1.22        |
|                   | 57.37                | 9.08             | 7.75                                             | 43.50 | 2.07        |
|                   | 77.02                | 6.83             | 8.16                                             | 45.81 | 2.99        |
| Total gas a       | ae                   | 100              |                                                  | 40.50 | 1.88        |
| Plateau steps 5-9 |                      | 84.09            |                                                  | 38.43 | 1.55        |

| Sample                             | Step   |   | Laser<br>Power<br>(%) | <sup>40</sup> Ar/ <sup>39</sup> Ar    | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar | <sup>36</sup> Ar/ <sup>39</sup> Ar | Ca/K | CI/K |
|------------------------------------|--------|---|-----------------------|---------------------------------------|------------------------------------|------------------------------------|------------------------------------|------|------|
| CK02-08                            |        |   |                       |                                       |                                    |                                    |                                    |      |      |
| Muscovite                          | 1      | # | 2                     | 8.46                                  | 0.01                               | 0.01                               | 0.01                               | 0.01 | 0.00 |
|                                    | 2      | # | 2.2                   | 7.29                                  | 0.01                               | 0.00                               | 0.00                               | 0.01 | 0.00 |
|                                    | 3      | # | 2.4                   | 7.40                                  | 0.01                               | 0.00                               | 0.00                               | 0.00 | 0.00 |
|                                    | 4      | # | 2.6                   | 7.30                                  | 0.01                               | 0.00                               | 0.00                               | 0.01 | 0.00 |
|                                    | 5      | # | 2.8                   | 7.51                                  | 0.01                               | 0.00                               | 0.00                               | 0.01 | 0.00 |
|                                    | 6      |   | 3                     | 10.04                                 | 0.01                               | 0.01                               | 0.02                               | 0.00 | 0.00 |
| Total gas age                      |        |   | n = 6<br>n = 5        | J = 0.00315 <sup>7</sup><br>MSWD - 14 | 1                                  |                                    |                                    |      |      |
| T lateau Ste                       | p3 0-0 |   |                       | II = 5                                |                                    | •                                  |                                    |      |      |
| GM-10                              | 1      |   | 2                     | 27.17                                 | 0.03                               | 0.01                               | 0.06                               | 0.00 | 0.00 |
| Potassium                          | 2      |   | 2.2                   | 17.43                                 | 0.02                               | 0.01                               | 0.03                               | 0.01 | 0.00 |
| Feldspar                           | 3      |   | 2.4                   | 11.40                                 | 0.01                               | 0.01                               | 0.01                               | 0.01 | 0.00 |
|                                    | 4      | # | 2.6                   | 10.35                                 | 0.02                               | 0.00                               | 0.01                               | 0.01 | 0.00 |
|                                    | 5      | # | 2.8                   | 12.84                                 | 0.02                               | 0.00                               | 0.02                               | 0.01 | 0.00 |
|                                    | 6      | # | 3                     | 9.52                                  | 0.01                               | 0.01                               | 0.01                               | 0.02 | 0.00 |
|                                    | 7      |   | 3.2                   | 15.75                                 | 0.02                               | 0.00                               | 0.03                               | 0.01 | 0.00 |
|                                    | 8      |   | 3.5                   | 63.21                                 | 0.05                               | 0.02                               | 0.19                               | 0.03 | 0.00 |
| Total gas age<br>Plateau steps 5-9 |        |   | n = 8<br>n = 3        | J = 0.003140<br>MSWD = 1.7            | 6<br>7                             |                                    |                                    |      |      |

Volumes are 1E-13 cm<sup>3</sup> NPT

Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998) Isotope production ratios:  $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{\text{K}}=0.0302, ({}^{37}\text{Ar}/{}^{39}\text{Ar})_{\text{Ca}}=1416.4306,$ 

(36Ar/39Ar)Ca=0.3952, Ca/K=1.83(37ArCa/39ArK).

# = steps used in plateau calculations.

| Sample            | <sup>40</sup> Ar atm | <sup>39</sup> Ar | <sup>40</sup> Ar*/ <sup>39</sup> Ar <sub>K</sub> | Age            | <u>+</u> 2σ |
|-------------------|----------------------|------------------|--------------------------------------------------|----------------|-------------|
|                   | (%)                  | (%)              |                                                  | (Ma)           | (Ma)        |
|                   |                      |                  |                                                  |                |             |
| CK02-08           |                      |                  |                                                  |                |             |
| Muscovite         | 11.56                | 10.36            | 6.72                                             | 37.81          | 2.29        |
|                   | 0.74                 | 23.07            | 6.85                                             | 38.52          | 0.94        |
|                   | 0.84                 | 22.96            | 6.95                                             | 39.10          | 0.98        |
|                   | 1.02                 | 24.55            | 6.86                                             | 38.61          | 0.91        |
|                   | 3.32                 | 16.50            | 6.74                                             | 37.92          | 0.65        |
|                   | 4.16                 | 2.55             | 6.30                                             | 35.46          | 6.79        |
|                   |                      |                  |                                                  |                |             |
| Total gas a       | ge                   | 99.99            |                                                  | 37.90          | 2.09        |
| Plateau ste       | ps 5-9               | 97.44            |                                                  | 38.39          | 1.15        |
| GM 10             | 56 54                | 1 02             | 10.02                                            | 60.00          | 1 20        |
| Botaccium         | 52.25                | 1.93<br>5.09     | 7 00                                             | 00.99<br>44 77 | 0.50        |
| Foldspar          | 30.01                | 0.90<br>8.58     | 7.99                                             | 44.77          | 0.59        |
| reiuspai          | 20.91                | 0.00<br>15.97    | 7.55                                             | 42.00          | 0.41        |
|                   | 29.90                | 20.62            | 7.07                                             | 20 52          | 0.20        |
|                   | 44.00<br>24.07       | 20.03            | 7.04                                             | 20 47          | 0.50        |
|                   | 24.91<br>17 07       | 20.40<br>6 20    | 7.03                                             | 39.47<br>11 15 | 0.33        |
|                   | 41.01<br>02.17       | 0.20             | 7.00                                             | 44.10<br>56.04 | 0.35        |
|                   | 03.47                | 2.20             | 10.19                                            | 30.94          | 4. IZ       |
| Total das a       | ae                   | 99.99            |                                                  | 45.98          | 0.99        |
| Plateau steps 5-9 |                      | 74.96            |                                                  | 39.56          | 0.34        |
|                   |                      |                  |                                                  |                |             |

| T <sup>a</sup>             | <sup>40</sup> Ar <sup>b</sup> / <sup>39</sup> Ar | <sup>38</sup> Ar <sup>b</sup> / <sup>39</sup> Ar | <sup>37</sup> Ar <sup>b</sup> / <sup>39</sup> Ar | <sup>36</sup> Ar <sup>b</sup> / <sup>39</sup> Ar<br>(x100) |
|----------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Sample GM-3 (biotite)      |                                                  |                                                  |                                                  |                                                            |
| Run $\#72B8$ (J = 0.007030 | wt. = 5.4070mg                                   | g, 2 Grains 7.                                   | 9 wt% K)                                         |                                                            |
| 600                        | 135.7                                            | 0.1844                                           | 0.188                                            | 44.8                                                       |
| 650                        | 24.2                                             | 0.1058                                           | 0.0735                                           | 7.405                                                      |
| 675                        | 10.63                                            | 0.0977                                           | 0.0265                                           | 2.559                                                      |
| 700                        | 10.37                                            | 0.0991                                           | 0.0185                                           | 2.47                                                       |
| 725                        | 5.197                                            | 0.0946                                           | 0.0076                                           | 0.7245                                                     |
| 750                        | 3.787                                            | 0.0955                                           | 0.0068                                           | 0.2566                                                     |
| 770                        | 3.438                                            | 0.0945                                           | 0.0059                                           | 0.1277                                                     |
| 790                        | 3.282                                            | 0.0953                                           | 0.0064                                           | 0.079                                                      |
| 810                        | 3.246                                            | 0.0956                                           | 0.0081                                           | 0.0645                                                     |
| 830                        | 3.196                                            | 0.096                                            | 0.0087                                           | 0.04                                                       |
| 850                        | 3.196                                            | 0.0957                                           | 0.0108                                           | 0.0409                                                     |
| 880                        | 3.195                                            | 0.0949                                           | 0.0112                                           | 0.0469                                                     |
| 910                        | 3.223                                            | 0.0951                                           | 0.01                                             | 0.0536                                                     |
| 930                        | 3.251                                            | 0.0943                                           | 0.0174                                           | 0.0634                                                     |
| 950                        | 3.238                                            | 0.0932                                           | 0.0189                                           | 0.0604                                                     |
| 970                        | 3.17                                             | 0.0938                                           | 0.0187                                           | 0.0375                                                     |
| 990                        | 3.168                                            | 0.0929                                           | 0.0159                                           | 0.0358                                                     |
| 1000                       | 3.142                                            | 0.094                                            | 0.0163                                           | 0.0232                                                     |
| 1010                       | 3.147                                            | 0.0953                                           | 0.0171                                           | 0.0303                                                     |
| 1020                       | 3.132                                            | 0.0958                                           | 0.0218                                           | 0.0265                                                     |
| 1030                       | 3.188                                            | 0.0956                                           | 0.0442                                           | 0.042                                                      |
| 1040                       | 3.636                                            | 0.0966                                           | 0.1947                                           | 0.1687                                                     |
| 1050                       | 5.504                                            | 0.098                                            | 0.0889                                           | 0.7467                                                     |
| 1065                       | 16.6                                             | 0.1196                                           | 1.259                                            | 4.518                                                      |
| 1080                       | 20.98                                            | 0.1507                                           | 1.522                                            | 6.12                                                       |
| Integrated                 | 4.322                                            | 0.0956                                           | 0.0209                                           | 0.4277                                                     |

Spectrum analysis:

fractions  $700 - 1030^{\circ}$ C (96% of <sup>39</sup>Ar)

| Isotope Co | orrelation analysis: | inter  | rcept ${}^{40}$ Ar/ ${}^{36}$ Ar = 293 ± 3 |
|------------|----------------------|--------|--------------------------------------------|
| fractions  | 600 – 1080°C         | N = 25 | MSWD = 1.7                                 |

| F <sup>c</sup> | <sup>39</sup> Ar <sup>d</sup><br>(%) | <sup>40</sup> Ar* <sup>e</sup><br>(%) | Ca/K <sup>f</sup> | CI/K <sup>g</sup> | Apparent Ag | ge (Ma) |
|----------------|--------------------------------------|---------------------------------------|-------------------|-------------------|-------------|---------|
| Sample G       | M-3 (biotite)                        |                                       |                   |                   |             |         |
| Run #72B       | 8 $(J = 0.007030)$                   | wt. = 5                               | .4070ma. (        | 2 Grains          | 7.9 wt% K)  |         |
| 3.318          | 0.49                                 | 2.44                                  | 0.359             | 0.0169            | 41.60 ±     | 13.3    |
| 2.3            | 0.7                                  | 9.51                                  | 0.14              | 0.0153            | 28.90 ±     | 2.8     |
| 3.039          | 1.01                                 | 28.68                                 | 0.051             | 0.0155            | 38.10 ±     | 1.2     |
| 3.044          | 1.84                                 | 29.44                                 | 0.035             | 0.0158            | 38.20 ±     | 0.7     |
| 3.03           | 2.88                                 | 58.66                                 | 0.014             | 0.0156            | 38.00 ±     | 0.4     |
| 3.003          | 4.7                                  | 79.95                                 | 0.013             | 0.0159            | 37.70 ±     | 0.2     |
| 3.036          | 5.4                                  | 89.07                                 | 0.011             | 0.0158            | 38.10 ±     | 0.2     |
| 3.023          | 5.63                                 | 92.97                                 | 0.012             | 0.016             | 37.90 ±     | 0.1     |
| 3.03           | 5.5                                  | 94.23                                 | 0.015             | 0.016             | 38.00 ±     | 0.2     |
| 3.053          | 4.89                                 | 96.43                                 | 0.017             | 0.0161            | 38.30 ±     | 0.2     |
| 3.05           | 4.49                                 | 96.36                                 | 0.021             | 0.0161            | 38.30 ±     | 0.2     |
| 3.032          | 4.57                                 | 95.79                                 | 0.021             | 0.0159            | $38.00 \pm$ | 0.2     |
| 3.039          | 4.49                                 | 95.21                                 | 0.019             | 0.0159            | 38.10 ±     | 0.2     |
| 3.04           | 3.41                                 | 94.37                                 | 0.033             | 0.0158            | 38.10 ±     | 0.2     |
| 3.035          | 3.61                                 | 94.62                                 | 0.036             | 0.0156            | 38.10 ±     | 0.2     |
| 3.035          | 4.95                                 | 96.66                                 | 0.036             | 0.0157            | 38.10 ±     | 0.2     |
| 3.037          | 6.33                                 | 96.81                                 | 0.03              | 0.0155            | 38.10 ±     | 0.1     |
| 3.049          | 7.5                                  | 97.99                                 | 0.031             | 0.0157            | 38.30 ±     | 0.1     |
| 3.033          | 8.96                                 | 97.32                                 | 0.033             | 0.016             | 38.10 ±     | 0.1     |
| 3.03           | 10.36                                | 97.68                                 | 0.042             | 0.0161            | $38.00 \pm$ | 0.1     |
| 3.041          | 6.39                                 | 96.33                                 | 0.085             | 0.016             | 38.20 ±     | 0.1     |
| 3.127          | 1.42                                 | 86.73                                 | 0.372             | 0.0162            | 39.20 ±     | 0.4     |
| 3.264          | 0.35                                 | 59.64                                 | 0.17              | 0.0162            | 40.90 ±     | 1.4     |
| 3.329          | 0.09                                 | 20.07                                 | 2.41              | 0.019             | 41.70 ±     | 5.2     |
| 2.994          | 0.04                                 | 14.28                                 | 2.91              | 0.0244            | 37.60 ±     | 14.3    |
| 3.034          | 100                                  | 70.7                                  | 0.04              | 0.0159            | 38.10 ±     | 0.1     |
|                |                                      |                                       |                   |                   | *** ±       | 0.4     |
| Spectrum       | analysis:                            |                                       |                   |                   |             |         |
| fractions      | 700 –1030°C                          | (96% of                               | <sup>39</sup> Ar) |                   | 38.1 ±      | 0.1     |
|                |                                      |                                       |                   |                   | *** ±       | 0.4     |
| Isotope Co     | orrelation analys                    | is:                                   |                   |                   |             |         |
| fractions      | 600 – 1080°C                         | N = 25                                | MSWD =            | 1.7               | 38.1 ±      | 0.1     |
|                |                                      |                                       |                   |                   | *** ±       | 0.4     |

|               | T (C)                | <sup>40</sup> Ar/ <sup>39</sup> Ar | <sup>38</sup> Ar/ <sup>39</sup> Ar | <sup>37</sup> Ar/ <sup>39</sup> Ar   | <sup>36</sup> Ar/ <sup>39</sup> Ar<br>(x100) |
|---------------|----------------------|------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------|
| Sample DS     | C BXA (clay)         |                                    |                                    |                                      |                                              |
| Run #727C     | ; (J = 0.007006 w    | /t. = 0.6442mg                     | g)                                 |                                      |                                              |
| uncorrected   | d for Ar recoil loss | s (2.2 wt% K)                      |                                    |                                      |                                              |
|               | 550                  | 15.58                              | 0.0345                             | 0.048                                | 3.549                                        |
|               | 725                  | 5.947                              | 0.0174                             | 0.2513                               | 0.5475                                       |
|               | 1050                 | 83.45                              | 0.0677                             | 0.5435                               | 24.61                                        |
|               | Integrated           | 13.56                              | 0.0259                             | 0.202                                | 2.916                                        |
| Isotope Co    | rrelation analysis:  |                                    |                                    |                                      |                                              |
| fractions     | 550 – 1050°C         | N = 3                              | MSWD = 0.16                        | <sup>40</sup> Ar/ <sup>36</sup> Ar = | : 321 ± 1                                    |
| corrected for | or Ar recoil loss of | f 31.6% 39Ar a                     | and 13.4% 37Ar                     | (3.3 wt% K)                          | )                                            |
|               | 550                  | 10.65                              | 0.0236                             | 0.0379                               | 2.427                                        |
|               | 725                  | 4.068                              | 0.0119                             | 0.1981                               | 0.3747                                       |
|               | 1050                 | 57.08                              | 0.0463                             | 0.429                                | 16.83                                        |
|               | Integrated           | 9.278                              | 0.0177                             | 0.1593                               | 1.995                                        |
| Isotope Co    | rrelation analysis:  |                                    |                                    |                                      |                                              |
| fractions     | 550 – 1050°C         | N = 3                              | MSWD = 0.17                        | $^{40}$ Ar/ $^{36}$ Ar =             | 321 ± 1                                      |

| F                                                          | <sup>39</sup> Ar<br>(%) | <sup>40</sup> Ar*<br>(%) | Ca/K  | CI/K   | Apparent Ag | ge (Ma) |  |  |
|------------------------------------------------------------|-------------------------|--------------------------|-------|--------|-------------|---------|--|--|
| Sample D                                                   | SC BXA (clay)           |                          |       |        |             |         |  |  |
| Run $\#727C (J = 0.007006 \text{ wt.} = 0.6442 \text{mg})$ |                         |                          |       |        |             |         |  |  |
| uncorrected for Ar recoil loss (2.2 wt% K)                 |                         |                          |       |        |             |         |  |  |
| 5.065                                                      | 32.57                   | 32.58                    | 0.092 | 0.0031 | 62.9 ±      | 1.2     |  |  |
| 4.32                                                       | 61.65                   | 73                       | 0.481 | 0.0009 | 53.8 ±      | 0.4     |  |  |
| 10.75                                                      | 5.78                    | 12.88                    | 1.04  | 0.0018 | 130.9 ±     | 9.2     |  |  |
| 4.934                                                      | 100                     | 36.45                    | 0.386 | 0.0016 | 61.3 ±      | 0.7     |  |  |
|                                                            |                         |                          |       |        | *** ±       | 0.9     |  |  |
| Isotope C                                                  | orrelation analys       | is:                      |       |        |             |         |  |  |
| fractions                                                  | 550 – 1050°C            |                          |       |        | 52.1 ±      | 0.4     |  |  |
|                                                            |                         |                          |       | / /    |             |         |  |  |
| 3.455                                                      | 32.57                   | 32.52                    | 0.072 | 0.0014 | 43.1 ±      | 1.2     |  |  |
| 2.946                                                      | 61.65                   | 72.97                    | 0.379 | 0.0003 | 36.9 ±      | 0.4     |  |  |
| 7.344                                                      | 5.78                    | 12.87                    | 0.821 | 0.0005 | 90.5 ±      | 9.2     |  |  |
| 3.366                                                      | 100                     | 36.4                     | 0.305 | 0.0004 | 42.1 ±      | 0.7     |  |  |
| *** ± 0                                                    |                         |                          |       |        |             |         |  |  |
| Isotope Correlation analysis:                              |                         |                          |       |        |             |         |  |  |
| fractions                                                  | 550 – 1050°C            |                          |       |        | 35.7 ±      | 0.4     |  |  |

Notes on data from RIL:

These data are shown as initially reported relative to 27.84 Ma Fish Canyon sanidine.

Sample ages relative to 28.02 Ma Fish Canyon sanidine are reported in Table 3.5 and shown in Figure 3.8 and in the accompanying age spectra.

For DSC BXA, the sample amount was severely limited so that only a single aliquot was feasible for the step-heating analysis using sample removed from the #72C7 ampoule after measuring the recoiled Ar. The "uncorrected" data are the step-heating results. For the "corrected" entries, the measured values are corrected for 39Ar and 37Ar recoil losses as measured for the ampoules. All fractions were corrected uniformly using the recoil % for 39Ar and for 37Ar measured independently for each sample.

a Temperature °C measured via thermocouple outside of the Ta crucible. b The isotope ratios given are not corrected for Ca, K and Cl derived Ar isotopic interference but, 37Ar is corrected for decay using a half-life of 35.1

days. The ratios are corrected for line blanks.

c F is the ratio of radiogenic 40Ar to K-derived 39Ar. It is corrected for atmospheric argon and other nuclear reactions using the following factors:

| (40Ar/36Ar)air | = | 295.5                        |
|----------------|---|------------------------------|
| (38Ar/39Ar)K   | = | 0.01185                      |
| (38Ar/37Ar)Ca  | = | 3.5 * 10-5                   |
| (36Ar/38Ar)Cl  | = | -6 per day after irradiation |
| (39Ar/37Ar)Ca  | = | 7.524 * 10-4                 |
| (36Ar/37Ar)Ca  | = | 2.678 * 10-4                 |
| (40Ar/39Ar)K   | = | 0.0305298                    |

d Relative percent of the total 39Ar released in the fraction.

e Percent of the total 40Ar in the fraction that is radiogenic.

f Weight ratio calculated using the relationship: K/Ca = 0.523 \* (39ArK/37ArCa

g Weight ratio calculated using the relationship: K/CI = 5.220 \* (39ArK/38ArCI). h Ages calculated with a total decay constant of 5.543 \* 10-10 y-1. Uncertainties are given at the one-sigma level. For individual fractions they do not include an uncertainty in J value; these uncertainties are appropriate for comparing fractions of a run. For integrated, plateau, and correlation ages, an uncertainty in J of 0.20% is used; this is appropriate for comparison with analogous ages for other samples and aliquots analyzed. An overall systematic uncertainty of  $\pm 1\%$  is assigned to all ages. The monitor used was a intralaboratory muscovite with a 40Ar/39Ar age of 165.3 Ma that is assigned an uncertainty of  $\pm 1\%$ . Uncertainties for integrated, plateau, and correlation ages noted by \*\*\* apply this  $\pm 1\%$  uncertainty quadradically; these uncertainties are appropriate for comparison to other data sets. Uncertainties for recoil-corrected ages do not taken into account any recoil uncertainties.


GM-3 Biotite



Cumulative <sup>39</sup>Ar Percent



CK-02-8 Potassium Feldspar





GM-10 Potassium Feldspar





## APPENDIX C

Quartz vein-hosted mineral species delineated by sample and deposit.

| Sample  | Ру | Sph | Gal | Stib | Elec | Fah | Bour | Сру | Мо | Asp |
|---------|----|-----|-----|------|------|-----|------|-----|----|-----|
| GRIT 01 |    |     |     |      |      |     |      |     |    |     |
| 02      |    |     |     |      |      |     |      |     |    |     |
| 03      |    | V   | V   |      |      |     |      |     |    |     |
| 04      |    | Χ   |     |      |      |     |      |     |    |     |
| 06      | ×  | X   | X   |      |      | X   |      |     |    |     |
| 07      | X  | Λ   | Λ   |      |      | Λ   |      |     |    |     |
| 08      | X  |     | Х   |      |      |     |      | Х   |    |     |
| 09      |    |     |     |      |      |     |      |     |    |     |
| 10      | X  |     |     |      |      | Х   |      |     |    |     |
| 12      |    |     |     |      |      |     |      |     |    |     |
| 24      |    |     |     |      |      |     |      |     |    |     |
| 26      | X  |     |     |      |      | Х   |      |     |    |     |
| 27      | X  |     |     | Х    |      | Х   |      |     |    |     |
| 28      | X  |     |     |      |      |     |      |     |    |     |
| 29      |    |     |     |      |      |     |      |     |    |     |
| 33      | ×  |     |     |      |      |     |      |     |    |     |
| 34      | X  |     |     |      |      |     |      |     |    |     |
| 35      |    |     | Х   |      |      | Х   | Х    | Х   |    |     |
| 38      | X  |     |     |      |      | Х   |      |     |    |     |
| 49      |    |     |     |      |      |     |      |     |    |     |
| 51S     | X  |     |     |      |      | Х   |      |     |    |     |
| 52      |    |     |     |      |      |     |      |     |    |     |
| 55      |    |     |     |      |      |     |      |     |    |     |
| 56      |    |     |     |      |      |     |      |     |    |     |
| 57      |    |     |     |      |      |     |      |     |    |     |
| 63      |    |     |     |      |      |     |      |     |    |     |
| 64      |    |     |     |      |      |     |      |     |    |     |

| s    | Sample               | Ac | Clr <u>±</u> Bro <u>+</u> Em | Cor | Cu-ox | Bar | Arg | Carb | Ser | ChI ± Ep | Clay | oc |
|------|----------------------|----|------------------------------|-----|-------|-----|-----|------|-----|----------|------|----|
| GRIT | 01                   |    |                              |     |       |     |     | Х    |     | Х        |      |    |
|      | 02                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 03                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 04                   |    |                              |     |       |     |     |      |     |          |      |    |
|      | 05                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 06                   |    |                              |     |       |     | Х   | Х    |     |          |      |    |
|      | 07                   |    |                              |     |       |     |     | Х    | Х   |          |      |    |
|      | 80                   |    |                              |     |       |     |     |      |     | V        |      |    |
|      | 09<br>10             |    |                              |     |       |     |     | V    |     | Х        |      |    |
|      | 10<br>10             |    |                              |     |       |     |     |      |     |          |      | V  |
|      | 12<br>24             |    |                              |     |       |     |     | ^    | Y   |          | Y    | ~  |
|      | 2 <del>4</del><br>26 |    | х                            |     |       |     |     |      | Λ   |          | Λ    |    |
|      | 27                   | x  | ~                            |     |       |     |     |      |     |          |      |    |
|      | 28                   |    |                              |     |       |     |     |      |     |          |      |    |
|      | 29                   |    |                              |     |       |     |     | Х    |     |          | Х    |    |
|      | 32                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 33                   |    |                              |     |       |     |     |      |     |          |      |    |
|      | 34                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 35                   |    |                              |     | Х     | Х   |     |      |     |          |      |    |
|      | 38                   | Х  | Х                            | Х   |       |     |     |      |     |          |      |    |
|      | 49                   |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 51S                  |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 52                   |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 55                   |    |                              |     |       |     |     | Х    |     |          |      |    |
|      | 56                   |    |                              |     |       |     |     | Ň    | Х   |          | Х    |    |
|      | 57                   |    |                              |     |       | Х   |     | X    |     | V        |      |    |
|      | 63                   |    |                              |     |       |     |     | X    |     | Х        |      |    |
|      | 64                   |    |                              |     |       |     |     | Х    |     |          |      |    |

| Sa    | imple                                                                | Ру                              | Sph | Gal | Stib | Elec | Fah | Bour | Сру | Мо | Asp |
|-------|----------------------------------------------------------------------|---------------------------------|-----|-----|------|------|-----|------|-----|----|-----|
| BD    | 01<br>06<br>09<br>11<br>12<br>13<br>14<br>17<br>19<br>21<br>23<br>25 | ×<br>×<br>×<br>×<br>×<br>×<br>× | x   | x   |      |      | x   |      | x   |    | x   |
| LOVIE | 01<br>02                                                             | Х                               | Х   | Х   |      |      | Х   |      | Х   |    | Х   |
|       | 03                                                                   | Х                               | Х   | Х   | Х    |      |     |      |     |    |     |
|       | 05                                                                   | Х                               | Х   |     |      |      |     |      | Х   |    | Х   |
|       | 06                                                                   | Х                               |     |     |      |      | Х   |      |     |    |     |
|       | 08                                                                   | X                               | X   | X   |      |      |     |      | V   |    | V   |
|       | 09                                                                   | Х                               | Х   | Х   |      |      |     |      | Х   |    | Х   |
|       | 15<br>17<br>21S                                                      | Х                               |     |     |      |      |     |      |     |    |     |
|       | 22<br>25<br>26<br>27                                                 | Х                               | Х   | Х   |      |      | Х   |      | Х   |    |     |
|       | 28                                                                   | Х                               |     |     |      |      |     |      |     |    |     |
|       | 29<br>31                                                             |                                 | х   |     |      |      |     |      |     |    |     |
|       | 35                                                                   | Х                               | X   | Х   |      |      | Х   |      | Х   |    |     |
|       | 36<br>37<br>39<br>40                                                 | Х                               |     |     |      |      |     |      |     |    |     |
|       | 41<br>42                                                             | Х                               |     |     |      |      |     |      |     |    |     |

| Sa    | mple     | Ac | Clr <u>+</u> Bro <u>+</u> Em | Cor | Cu-ox | Bar    | Arg | Carb   | Ser | Chl <u>+</u> Ep | Clay   | OC |
|-------|----------|----|------------------------------|-----|-------|--------|-----|--------|-----|-----------------|--------|----|
| BD    | 01<br>06 |    |                              |     |       | X<br>X |     |        |     |                 | X<br>X |    |
|       | 09       |    |                              |     |       |        |     |        |     |                 |        |    |
|       | 11       |    |                              |     |       |        |     |        |     |                 | X      |    |
|       | 12<br>13 |    |                              |     |       |        |     |        |     |                 | Х      |    |
|       | 13<br>14 |    |                              |     |       |        |     |        |     | х               | х      |    |
|       | 17       | Х  |                              |     |       |        |     |        |     |                 | X      |    |
|       | 19       |    |                              |     |       |        |     |        | Х   |                 | Х      |    |
|       | 21       | Х  |                              |     |       |        |     |        |     |                 |        |    |
|       | 23<br>25 |    |                              |     |       |        |     |        |     |                 | Х      | х  |
| LOVIE | 01       |    |                              |     |       |        |     |        | Х   |                 |        |    |
|       | 02       |    |                              |     |       |        | Х   |        |     |                 |        |    |
|       | 03       |    |                              |     |       |        |     | Х      |     |                 |        |    |
|       | 05       |    |                              |     |       |        |     |        |     |                 |        |    |
|       | 00       |    |                              |     |       |        |     |        |     |                 |        |    |
|       | 09       |    |                              |     |       | Х      |     |        |     |                 | Х      |    |
|       | 12       |    |                              |     |       |        |     |        |     | Х               | Х      |    |
|       | 15       |    |                              |     |       |        |     |        |     |                 | Х      |    |
|       | 17       |    |                              |     |       |        |     |        |     |                 | X      |    |
|       | 215      |    |                              |     |       |        |     | v      | v   |                 | X      |    |
|       | 25       |    |                              |     |       |        |     | ~      | X   |                 | ~      |    |
|       | 26       |    |                              |     |       |        |     |        |     |                 | Х      |    |
|       | 27       |    |                              |     |       |        |     |        | Х   |                 |        |    |
|       | 28       |    |                              |     |       |        |     |        |     |                 |        |    |
|       | 29       |    |                              |     |       |        |     |        |     |                 | Х      |    |
|       | 35       | х  |                              |     |       |        |     |        |     |                 |        |    |
|       | 36       |    |                              |     |       |        |     |        |     |                 |        |    |
|       | 37       |    |                              |     |       |        |     | Х      |     |                 |        |    |
|       | 39       |    |                              |     |       |        |     | Х      |     | Х               | Х      |    |
|       | 40       |    |                              |     |       |        |     | X      |     | X               | Х      |    |
|       | 41<br>42 |    |                              |     |       |        |     | X<br>X |     | X<br>X          |        |    |

| s    | ample   | Ру | Sph | Gal | Stib | Elec | Fah | Bour | Сру | Mo | Asp |
|------|---------|----|-----|-----|------|------|-----|------|-----|----|-----|
| UN   | CK02-11 | X  | Х   | Х   |      |      | Х   |      |     |    | Х   |
|      | CK02-13 | X  | X   |     |      |      | X   |      |     |    | X   |
| GE   | X1-B    | X  |     | Х   |      |      | Х   |      |     |    |     |
|      | 02      | X  | Х   | Х   |      |      | Х   |      | Х   |    | Х   |
|      | 04      | X  |     | Х   |      |      | Х   |      | Х   |    | Х   |
|      | 05      | Х  | X   | Х   |      | X    |     |      | X   |    | X   |
| KATT | 01      | Х  | Х   | Х   |      |      | Х   |      |     |    |     |
|      | 03      |    |     |     |      |      |     |      |     |    |     |
|      | 06      |    | Х   | Х   |      |      | Х   |      |     |    |     |
|      | 07      | Х  |     |     |      |      |     |      |     |    |     |
|      | 08      | Х  |     |     |      |      |     |      |     |    |     |
|      | 09      | Х  |     |     |      |      |     |      |     |    |     |
|      | 10      | Х  | Х   | Х   |      |      | Х   |      |     |    |     |
|      | 12      |    |     |     |      |      |     |      |     |    |     |
|      | 13      | Х  |     |     |      |      |     |      |     |    |     |
|      | 14      | Х  |     |     |      |      |     |      |     |    |     |
|      | 15      | Х  |     |     |      |      |     |      |     |    |     |
|      | 17      |    |     |     |      |      |     |      |     |    |     |
|      | 24      |    |     |     |      |      |     |      |     |    |     |
|      | 27      |    |     |     |      |      |     |      |     |    |     |
|      | 30      | Х  |     |     |      |      |     |      |     |    |     |
|      | 31      | Х  |     |     |      |      |     |      |     |    |     |
|      | 37      | Х  |     |     |      |      |     |      |     |    |     |
|      | 41      |    |     |     |      |      |     |      |     |    |     |

|      | Sample  | Ac | Clr <u>+</u> Bro <u>+</u> Em | Cor | Cu-ox | Bar | Arg | Carb | Ser | ChI ± Ep | Clay | OC |
|------|---------|----|------------------------------|-----|-------|-----|-----|------|-----|----------|------|----|
| UN   | CK02-11 |    |                              |     |       |     |     |      |     |          |      |    |
|      | CK02-13 |    |                              |     |       |     |     |      |     |          |      |    |
| GE   | X1-B    |    |                              |     |       |     |     |      |     |          |      |    |
|      | 02      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 04      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 05      |    |                              |     |       |     |     |      |     |          |      |    |
| KATT | 01      |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 03      |    | Х                            |     |       | Х   |     |      |     |          |      |    |
|      | 06      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 07      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 08      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 09      |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 10      |    | Х                            |     |       | Х   |     |      |     |          |      |    |
|      | 12      |    |                              |     |       | Х   |     |      |     |          | Х    |    |
|      | 13      |    |                              |     |       |     |     |      | Х   |          |      |    |
|      | 14      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 15      |    |                              |     |       |     |     |      |     |          |      |    |
|      | 17      |    |                              |     |       | Х   |     |      |     |          | Х    | Х  |
|      | 24      |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 27      |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 30      |    |                              |     |       |     |     |      | Х   |          | Х    |    |
|      | 31      |    |                              |     |       | Х   |     |      |     |          |      |    |
|      | 37      |    |                              |     |       |     |     |      | Х   |          | Х    |    |
|      | 41      |    |                              |     |       |     |     |      |     |          | Х    |    |

|    | Sample       | Ру | Sph | Gal | Stib | Elec | Fah | Bour | Сру | Mo | Asp |
|----|--------------|----|-----|-----|------|------|-----|------|-----|----|-----|
| НТ | BURNS 05     | Х  |     | Х   |      |      | Х   |      | Х   |    |     |
|    | CK02-4       | Х  | Х   | Х   |      |      | Х   |      |     |    |     |
|    | CK02-5       | Х  |     |     |      |      |     |      |     |    | Х   |
|    | DSC BXA      |    |     |     |      | Х    |     |      |     |    |     |
|    | HT02-12      | Х  |     |     | Х    |      |     |      |     |    |     |
|    | HT02-14      | Х  | Х   | Х   |      | Х    |     |      |     |    |     |
|    | IND N ADIT   |    | Х   | Х   |      |      | Х   |      | Х   |    | Х   |
|    | 97-2 172     |    | Х   | Х   |      |      |     |      | Х   |    |     |
|    | 97-8 107     | Х  | Х   | Х   |      |      |     |      | Х   |    |     |
|    | 97-10 106.1  | Х  |     |     |      |      |     |      |     | Х  |     |
|    | 97-10 1084.5 | Х  | Х   | Х   |      |      | Х   |      |     |    |     |
|    | 97-10 1161.7 | Х  | Х   | Х   |      |      | Х   | Х    |     |    | Х   |
|    | 97-10 1168   | Х  | Х   | Х   |      |      | Х   | Х    |     |    | Х   |
|    | 97-10 1181.5 | Х  | Х   | Х   |      |      | Х   |      |     |    |     |
|    | 97-11 665.3  | Х  | Х   |     |      |      | Х   |      | Х   |    | Х   |
|    | 97-12-330.3  | Х  |     |     |      |      |     |      | Х   |    |     |
|    | 97-13 221    | Х  | Х   | Х   |      | Х    | Х   |      | Х   |    |     |

|         | Sample             | Ac      | Clr ± Bro ± Em | Cor     | Cu-ox     | Bar       | Arg     | Carb      | Ser       | ChI ± Ep | Clay | OC |
|---------|--------------------|---------|----------------|---------|-----------|-----------|---------|-----------|-----------|----------|------|----|
| нт      | BURNS 05           |         |                |         |           |           |         |           |           |          |      |    |
|         | CK02-4             |         |                |         |           |           |         |           |           |          |      |    |
|         | CK02-5             |         |                |         |           |           |         |           |           |          | Х    |    |
|         | DSC BXA            |         |                |         |           |           |         |           |           |          | Х    |    |
|         | HT02-12            |         |                |         |           | Х         |         |           |           |          |      |    |
|         | HT02-14            |         |                |         |           |           |         |           |           |          |      |    |
|         | IND N ADIT         |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-2 172           |         |                |         |           |           |         | Х         |           |          |      |    |
|         | 97-8 107           |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-10 106.1        |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-10 1084.5       |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-10 1161.7       |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-10 1168         |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-10 1181.5       |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-11 665.3        |         |                |         |           |           |         | Х         |           |          | Х    |    |
|         | 97-12-330.3        |         |                |         |           |           |         |           |           |          |      |    |
|         | 97-13 221          |         |                |         |           |           |         |           |           |          |      |    |
| Notes:  | Py, pyrite; sph, s | phaleri | te; gal,       | galena  | ; stib, s | tibnite;  | elec, e | ectrun    | n; fah, t | fahlore; |      |    |
| bour, b | oumonite; cpy, d   | halcopy | /rite; m       | o, moly | bdenite   | e; asp, a | arsenop | oyrite; a | ac, aca   | nthite;  | dr,  |    |

Notes: Py, pyrite; spn, spnaiente; gai, galena; stib, stibrite; elec, electrum; ran, raniore; bour, bournonite; cpy, chalcopyrite; mo, molybdenite; asp, arsenopyrite; ac, acanthite; clr, chlorargyrite; bro, bromargyrite; em, embolite; cor, coronadite; Cu-ox, copper oxide; bar, barite; arg, argentite; carb, carbonate; ser, sericite; chl, chlorite; ep, epidote; clay, clay (unidentified); OC, organic carbon. GRIT = Betty O'Neal mine; BD = Blue Dick mine; Lovie = Love mine; UN = Unnamed prospect; GE = Gray Eagle mine; KATT = Kattenhorn mine; HT = Hilltop deposit