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ABSTRACT 

A challenge in tropical forest ecology has been integrating across tree life stages and 

spatial scales to understand the drivers of population and community dynamics.  Here I use data 

from satellite and aircraft remote sensing to quantify population dynamics and canopy height 

changes throughout two lowland Neotropical rain forest landscapes.  In the first section, develop 

an unbiased remote sensing approach to map and monitor rain forest canopy trees using high 

resolution satellite observations and Bayesian statistical modeling.  I show using time series 

observations from satellite remote sensing between 2002 and 2007 for the rain forest canopy tree 

Tabebuia guayacan throughout 15.4 km
2
 of tropical moist forest in Panama that precise 

estimation of survival, recruitment, and realized population growth is achievable using remote 

observations.  Patterns in adult population dynamics were associated with historical land use and 

the frequency of canopy disturbance, and mediated by changes to rates of adult recruitment.  

Temporal variability in recruitment throughout the landscape indicates that regional processes 

are influencing adult population dynamics in rain forest canopy trees.  The results demonstrate 

the feasibility of making remote measurements of canopy tree population dynamics throughout 

large areas, including measurement of demographic rates that are not obtainable in the field.   

In a separate study I combine LiDAR remote sensing with field measurements of canopy 

height to quantify the structure and dynamics of an old-growth Neotropical rain forest in the 



 

Atlantic lowlands of Costa Rica.  Persistent disturbance figures prominently in the dynamics of 

this forest.  Forty-one percent of the old-growth landscape had net canopy height changes ≥ 5 m 

during 8.5 years.  Most gaps in the forest canopy were small, and individual gap sizes and 

neighbor distances followed power-laws with slopes that were indistinguishable between years.  

Gap sizes were unbiased with respect to topographic slope and soil Phosphorus.  Despite 

substantial dynamics, the analysis demonstrates consistency in characteristics of forest 

disturbance at large spatial scales, and suggests that changes in canopy height were very close to 

the steady-state equilibrium expectation.  These findings challenge the view that Neotropical 

forests are undergoing structural degradation in response to global changes, and provide 

evidence of the necessary conditions for selection for long-distance dispersal.      
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 One of the major challenges in tropical forest ecology has been integrating across life 

stages and spatial scales to understand the physical and biotic drivers of population and 

community dynamics.  Inferences about the importance of life-history tradeoffs, and of seed to-

seedling density dependence ultimately depend on their ability to regulate populations of 

reproductive adult trees (Clark & Clark 1992; Harms et al. 2000; Blundell & Peart 2004; Gilbert 

et al. 2006).  And understanding the dynamics of tropical forest canopies throughout large areas 

is fundamental to understanding the diversity and evolution of forest tree species (Denslow 1980; 

Hubbell & Foster 1986b; Hubbell et al. 1999).  However, the dynamics of canopy trees, and 

mechanisms that influence which trees will eventually recruit to the canopy, remain poorly 

understood (Clark & Clark 2001; Landis & Peart 2005).  Ecologists have attempted to infer the 

dynamics of canopy tree populations from growth and mortality within earlier life stages, but 

recruitment to the canopy often takes at least decades, and sometimes centuries, to occur (Clark 

& Clark 1992, 2001).  Direct measurement of survival and recruitment within canopy or adult 

populations has also been problematic, because impractically large areas must be inventoried to 

obtain adequately sized samples for most species (Condit et al. 2000), and the demographic rates 

that need to be estimated are small numbers (Condit et al. 1995).  Consequently, although there 

have been many studies of dynamics of juvenile trees, it is still unclear to what extent those 

dynamics represent or influence adult populations on landscapes.   

 A fundamental premise of this dissertation is that understanding the dynamics of adult 

forest trees, and of individuals occupying positions in the canopy, will strengthen inferences in 

basic and applied tropical forest ecology.  Evidence that this premise is correct comes from 
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classical work in plant demography.  Harper (1977) showed through careful observation of 

complete life cycles that to understand the most important processes in the population biology of 

plants requires the perspective of the ‘plant’s-eye view’.  The plant’s-eye view is the world as 

perceived by interacting tree species.  It is influenced by the sizes and types of neighbors, and by 

changes to the determinants of establishment, growth and survival as individuals increase in size 

and become reproductive.  However, with respect to forest trees, our strongest inferences are 

from the earliest life stages alone, and we know little of the mechanisms that mark some 

individuals for successful recruitment to the canopy, while others fail to leave descendants.  It 

has been challenging to align the plant’s-eye view of Harper with tropical forest dynamics.  This 

limitation is a consequence of the difficulty of sampling rare and long-lived organisms with slow 

dynamics at relevant spatial scales. 

Remote observation of population and community dynamics 

 Remote sensing can facilitate mapping and monitoring of adult tree populations and 

canopy dynamics throughout large areas.  Work over the last few years has demonstrated the 

power of remote observations to obtain information on physiological condition of tree canopies 

(Chambers et al. 2007), including estimates of tree nutrient and water status (Asner & Vitousek 

2005; Porder et al. 2005; Asner 2008), measurement of the intensity of drought stress, and 

estimation of net primary production (Asner et al. 2004) and photosynthesis (Saleska et al. 

2007).  Separate studies have demonstrated the utility of spectroscopic measurements for tree 

species identification (Clark et al. 2005; Castro-Esau et al. 2006; Zhang 2006; Carlson et al. 

2007; Asner 2008), and of satellite observations to estimate forest-wide tree death rates (Clark et 

al. 2004a) and crown sizes (Clark et al. 2004b).  LiDAR observations can quantify canopy height 
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changes and the vertical and horizontal distribution of biomass (Drake et al. 2002a; Drake et al. 

2002b; Drake et al. 2003; Asner et al. 2008).  Combining these methods with demographic 

analyses could open new avenues in basic and applied research, but few studies have 

implemented remote species identification in practice, and none has used remote observations to 

quantify population and community dynamics throughout tropical rain forest landscapes. 

Overview of the thesis 

Landscape population dynamics for a rain forest canopy tree 

 In chapter two, I study adult population dynamics for a rain forest canopy tree using high-

resolution satellite observations.  Tabebuia guayacan (Bignoniaceae) is a model system for 

landscape population dynamics.  A model system is an organism with characteristics that 

facilitate understanding a process of general interest (Vitousek 2004).  Paramecium aurelia and 

P. caudatum are model systems in population biology, because these organisms can be cultured 

in large numbers under relatively simple conditions, and the dynamics of many generations can 

be observed on short time scales.  These characteristics allowed Gause to provide one of the 

earliest descriptions of competitive exclusion (Gause 1934).  In plant biology, Arabidopsis 

thaliana is a model system in developmental genomics and evolution, because it can be grown 

readily under a variety of conditions, matures large numbers of seeds rapidly, and has a relatively 

small genome.  Many examples of general processes in population and community dynamics are 

known best (or only) from model systems, including metapopulation dynamics (Hanski 1998), 

the keystone species concept (Paine 1969), and complex population dynamics (Turchin & Taylor 

1992), a point brought to my attention by Vitousek (2004).  It is not surprising that most of the 

examples in Harper’s classic text are from studies of small herbaceous perennials sown in 

greenhouses. 
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Model systems for landscape population dynamics 

 Tree species with conspicuous flowering, fruiting, or leaf phenology are model systems 

for landscape population monitoring, because large samples of canopy or adult individuals can 

be obtained efficiently using remote observations, overcoming sampling difficulties in the field.  

This is different from typical approaches to remote identification of tree species, where studies 

assume that an operational method must use high-performance spectroscopic measurements to 

discriminate between hundreds of species on the basis of optical properties of green vegetation.  

In my view, that approach is not always practical or necessary.  Although imaging spectroscopy 

will continue to be essential to many of the most important applications in biophysical remote 

sensing (Asner 2004, 2005; Porder et al. 2005; Asner 2008), its potential for regular monitoring 

throughout large areas of the continental tropics – where capacity for mapping and monitoring is 

most urgently needed – is restricted, because hyperspectral sensors with high spatial resolution 

are confined to aircraft, and access is expensive and difficult or impossible for all but the most 

well-studied sites.  The optical properties of green vegetation are very similar for most species, 

and most of the variation in spectral responses within the shortwave spectrum (400 – 2500 nm) 

occurs within species, not between them (Castro-Esau et al. 2006).  In addition, complete species 

inventories are not required to address many questions in population and community dynamics.  

At issue here is not the existence or importance of questions that do require complete species 

inventories, but to argue that the most fundamental drivers of population and community 

dynamics operating at large spatial scales can probably be identified and understood using a 

smaller number of model organisms that can be sampled using globally accessible remotely 

sensed data. 
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 Examples of tree species with model characteristics for landscape population monitoring 

include Bignoniaceous trees that have synchronous flowering (Janzen 1967), and species that 

undergo leaf senescence in response to seasonal variation.  For example, reflectance of leaf and 

floral pigments is expressed in the visible wavelengths (400 – 700 nm), a feature that has 

allowed me to observe flowering status of T. guayacan, Jacaranda copaia and Vochysia 

ferruginea on Barro Colorado Island, Panama (BCI) using multispectral satellite observations 

from the QuickBird sensor.  In Costa Rica, flowering Dipteryx panamensis is distinct using 

Ikonos satellite data at La Selva Biological Station, and T. ochracea is detectible within tropical 

dry forest in Guanacaste using observations from the QuickBird sensor.  Although flowering 

status can be a conspicuous feature of tropical forest canopies, leaf phenology of D. panamensis 

is observable as a rust-colored hue prior to senescence on BCI.  In leafless condition, individuals 

of any species are readily observed using hyperspectral observations, because reflectance of 

leafless crowns in the short-wavelength infrared (1300 – 2500 nm) is dominated by lignin, rather 

than water in floral tissue (Asner 1998).  Thus, there are likely to be many species with 

characteristics that facilitate remote detection and monitoring.  Studies that leverage these 

characteristics to define the distribution, abundance, and dynamics of canopy tree species can 

test novel hypotheses about population and community dynamics at large spatial scales.      

 

Remote estimation of demographic rates 

 The approach in chapter two takes advantage of natural variability in spectral reflectance 

during synchronous annual flowering of T. guayacan to detect carotenoid pigments within 

flowering adult canopies, and uses this information to delineate individual tree crowns and 

generate observations of individuals through time.  I analyze these observations in a Bayesian 
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state-space framework similar to classical capture-mark-recapture analysis (Cormack 1964; Jolly 

1965; Seber 1965; Pradel 1996; Royle 2008), which decouples the latent demographic process 

(survival and recruitment) from the observational process (detection based on carotenoid 

expression) to quantify survival, recruitment, and realized population growth.   

 

Canopy gaps and the dynamics of a Neotropical rain forest 

 In closed-canopy tropical rain forests, localized canopy openings occur that mediate 

access to light and space in the forest understory (Brokaw 1982, 1985; Hubbell & Foster 1986b).  

These ‘canopy gaps’ are caused by the death of, or damage to, a canopy-forming tree.  

Quantifying the sizes and spatial properties of gap distributions on landscapes is fundamental to 

understanding the diversity and evolution of forest tree species (Denslow 1980; Hubbell & 

Foster 1986b; Hubbell et al. 1999).  For many species, gaps are essential at some stage in 

ontogeny for individuals to recruit to the canopy. 

 

 In chapter three, I combine LiDAR remote sensing with field measurements of canopy 

height to characterize the size frequency distribution, spatial characteristics, and dynamics of 

canopy gaps in an old-growth Neotropical rain forest in the Atlantic lowlands of Costa Rica.  By 

recording the return-time of reflected laser pulses, LiDAR sensors acquire physically-based 

measurements of canopy height and ground elevation (m), and the vertical and horizontal 

distribution of biomass (Drake et al. 2002a; Drake et al. 2003; Clark et al. 2004c; Asner et al. 

2008).  They are ideal for quantifying the structure and dynamics of forest canopies, because 

they provide spatially referenced, extensive and finely grained vegetation height measurements 

that are objectively acquired.  LiDAR measurements facilitate access to characteristics of forest 
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canopies at multiple scales, and permit objective analyses of canopy structure and dynamics on 

landscapes.  

 

Potential and limitations of hyperspectral imaging to estimate upper-canopy foliar 

nitrogen in a lowland Neotropical rain forest 

 In the final data chapter, I summarize the status of an effort to estimate foliar N within 

tree canopies using airborne hyperspectral imaging over a tropical rain forest in the Atlantic 

lowlands of Costa Rica.  The objectives are to describe and interpret variation in canopy N 

throughout a tropical rain forest landscape, and to test whether the growth and performance of 

individuals can be predicted using their nutrient status relative to neighbors (the hypothesis of 

limiting similarity, MacArthur & Levins 1967; McGill et al. 2006).  The study encountered 

limitations that have thus far preempted useful estimates of canopy N to be made.  Because many 

of these limitations may emerge at other sites, I discuss and evaluate them in detail.  I conclude 

by arguing that the inability to obtain useful estimates of canopy N was probably caused by 

changes to the nutrient status and structure of the forest between the time of image acquisition 

and collection of field measurements, rather than inherent lack of information within the 

spectroscopic measurements.  I point to alternative methods that have been used to retrieve 

canopy N from spectroscopic data in the absence of field measurements, and suggest that useful 

estimates of canopy N may be possible.  
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CHAPTER 2 

LANDSCAPE POPULATION DYNAMICS IN A RAIN FOREST CANOPY TREE 

QUANTIFIED USING HIGH RESOLUTION SATELLITE OBSERVATIONS
 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

1
 Kellner, J.R. and S.P. Hubbell.  Submitted to Proceedings of the National Academy of Sciences on March 5, 2008. 
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Abstract 

Ecologists typically study the dynamics of tropical forests and individual tree species using 

mapped permanent plots of up to several tens of hectares in size, but whether these findings are 

representative of canopy populations on landscapes is largely unknown.  We developed an 

unbiased remote sensing approach to map and monitor rain forest canopy trees using high 

resolution satellite observations and Bayesian statistical modeling.  We show using time series 

observations from satellite remote sensing between 2002 and 2007 for the rain forest canopy tree 

Tabebuia guayacan throughout 15.4 km
2
 of tropical moist forest in Panama that precise 

estimation of survival, recruitment, and realized population growth is achievable using remote 

observations.  Patterns in adult population dynamics were associated with historical land use and 

the frequency of canopy disturbance, and mediated by changes to rates of adult recruitment.  

Temporal variability in recruitment throughout the landscape indicates that regional processes 

are influencing adult population dynamics in rain forest canopy trees.  Our results demonstrate 

the feasibility of making remote measurements of canopy tree population dynamics throughout 

large areas, including measurement of demographic rates that are not obtainable in the field.  
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Introduction 

One of the major challenges in tropical forest ecology has been integrating across life stages and 

spatial scales to understand the physical and biotic drivers of population and community 

dynamics.  Inferences about the importance of life-history tradeoffs, and of seed to-seedling 

density dependence ultimately depend on their ability to regulate populations of reproductive 

adult trees (Clark & Clark 1992; Harms et al. 2000; Blundell & Peart 2004; Gilbert et al. 2006).  

And precisely estimating demographic rates in adult canopy tree populations is essential to 

making robust predictions of tropical forest change (Clark et al. 2003).  However, the dynamics 

of canopy trees, and mechanisms that influence which trees will eventually recruit to the canopy, 

remain poorly understood (Clark & Clark 2001; Landis & Peart 2005).  Ecologists have 

attempted to infer the dynamics of adult tree populations from growth and mortality within 

earlier life stages, but transitions from juvenile to adult often take at least decades, and 

sometimes centuries, to occur (Clark & Clark 1992, 2001).  Direct measurement of adult survival 

and recruitment is also problematic, because impractically large areas must be inventoried to 

obtain adequately sized samples for most species (Condit et al. 2000), and the demographic rates 

that need to be estimated are small numbers (Condit et al. 1995).  Consequently, although there 

have been many studies of dynamics of juvenile trees, it is still unclear to what extent those 

dynamics represent or influence adult populations on landscapes. 

Satellite remote sensing may facilitate mapping and monitoring of adult tree populations 

throughout large areas (Clark et al. 2004a; Clark et al. 2004b).  Previous work has demonstrated 

the utility of airborne spectroscopic measurements for tree species identification (Clark et al. 

2005; Carlson et al. 2007), and of satellite observations to estimate forest-wide tree death rates 
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(Clark et al. 2004a).  Although imaging spectroscopy is essential to many of the most important 

applications in biophysical remote sensing (Asner 2004, 2005; Porder et al. 2005), its potential 

for regular monitoring throughout large areas of the continental tropics is restricted, because 

sensors with high spatial resolution are confined to aircraft, and access is expensive and difficult 

for most regions.  Estimates of tree death rates have been made using visual interpretation, and 

thus our ability to implement species-level demographic analysis throughout tropical rain forest 

landscapes has been limited.  Development of capacity for widespread monitoring will require 

species that can be identified using globally available satellite observations, combined with 

automated tree-crown recognition and rigorous statistical analysis to estimate demographic rates.  

This will help to overcome sampling difficulties in the field, because most tropical rain forest 

canopy tree species occur at very low population densities (Condit et al. 2000), and will generate 

opportunities to address new questions about tropical forest dynamics at landscape to regional 

scales.   

We developed an unbiased remote sensing approach to map and monitor adult population 

dynamics for a rain forest canopy tree (Tabebuia guayacan Bignoniaceae) using spectral mixture 

analysis (Adams et al. 1993; Roberts et al. 1998) and high spatial resolution satellite 

observations from the QuickBird and Ikonos sensors.  The method takes advantage of natural 

variability in spectral reflectance during synchronous annual flowering to detect carotenoid 

pigments within flowering adult canopies, and uses this information to delineate individual tree 

crowns and generate observations of individuals through time (Fig. 2.1, and supporting Fig. 2.4).  

We analyze these observations in a Bayesian state-space framework similar to classical capture-

mark-recapture analysis (Cormack 1964; Jolly 1965; Seber 1965; Pradel 1996; Royle 2008).  

State-space modeling decouples the latent demographic process (survival and recruitment) from 



 

 12 

the observational process (detection based on carotenoid expression) to quantify population 

dynamics.  Integrating tree identification and demography into a single methodological 

framework enabled precise estimates of demographic rates to be made over a tropical rain forest 

landscape. 

Results and Discussion 

Remote estimation of demographic rates 

The population sample consisted of 690 adult trees observed on four occasions during five years 

throughout 15.4 km
2
 of tropical moist forest on Barro Colorado Island, Panama (BCI), a mean 

observed density of 0.45 individuals · ha
-1

 (Fig. 2.2).  Observed adult density was higher in 

second-growth forest (0.57 individuals · ha
-1

), than in old-growth (0.32 individuals · ha
-1

).  In the 

2005 field census of the 50 ha plot, mean density for T. guayacan ≥ 20 cm DBH was 0.45 

individuals · ha
-1

. 

Realized population growth was associated with historical land use, and mediated by differences 

in recruitment.  Adult abundance increased in old-growth forest, but was closer to replacement 

levels in second-growth (Fig. 2.3).  Annual survival for T. guayacan stems ≥ 20 cm diameter at 

breast height (DBH) in the mapped 50 ha plot was 0.991.  The median of the posterior 

distribution of annual survival obtained remotely for adult T. guayacan in old-growth forest was 

0.987 ± 0.011 S.E., a difference between field and remotely sensed estimates of less than half a 

percent (Fig. 2.3).  Throughout the landscape this rate was independent of historical land use 

(Fig. 2.3), and it varied minimally through time (Table 4).  Because field and remotely sensed 

survival estimates were derived from independent sources, their concordance provides evidence 
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that unbiased, precise estimation of demographic rates for forest tree populations is achievable 

using satellite observations.   

Although survival was relatively constant through time and varied minimally with historical land 

use, recruitment was more variable (Fig. 2.3).  The median of posterior annual recruitment across 

the old-growth landscape was 0.033 ± 0.019 S.E., which was more than double the rate observed 

within secondary forest on BCI (0.014 ± 0.012 S.E.).  Because realized population growth is 

influenced by the relative contributions of survival and recruitment, this indicates that variation 

throughout the landscape in adult population dynamics is being driven by changes in adult 

recruitment.  This finding is significant, because adult tree recruitment has been extremely 

difficult to estimate precisely in the field for most species, but can now be estimated using 

remote observations.  

Field validation carried out across BCI indicates that the sample of adult trees identified remotely 

is unbiased with respect to stem diameter and tree height.  Using a combination of field checks 

and high resolution aerial photography, we detected one misidentification error in all 1087 

observations for 690 unique individuals.  Errors in crown delineation occurred in 21 trees, and all 

errors were corrected manually prior to analysis.  Taken together, sources of error may influence 

up to 3.5% of trees in our sample (see supporting information, and Figs. 6 – 7). 

Validation 

We observed 690 unique T. guayacan in 380, 303, 331, and 75 individual detection events in 

2002, 2004, 2006 and 2007 respectively (Fig. 1).  There were 17, 3, 284, and 165 individuals that 

were censored by cloud cover in 2002, 2004, 2006 and 2007 respectively.  Thirty-six trees were 

censored in two different years, and 4 trees were censored in three years.  No trees checked in the 
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field that were identified using satellite observations belonged to other species.  However, one 

tree that was detected in 2006, but not checked in the field, appeared using 0.08 m aerial 

photographs to be the crown of a semi-deciduous Dipteryx panamensis Fabaceae, which we 

omitted from our sample.  Crowns of some D. panamensis experience a rust-colored hue prior to 

leaf drop (J. Kellner, personal observation).  We searched for additional misidentification errors 

in our data using 0.08 m aerial photography from 2005 and 2007 that was collected during T. 

guayacan flowering.  No additional misidentifications were detected.  We conclude that the rate 

of misidentification errors is ≈ 1 in 1087 (i.e. 1 / [380 + 303 + 331 + 75 + 1]). 

 

Field checks and visual examination of aerial photography and satellite images revealed four 

cases where two individual trees were segmented as a single object in 2002 and 2004, and two 

cases in 2006.  There was one case in 2006 where three individual trees were segmented as a 

single object.  No errors of this type occurred in 2007.  Because most adult T. guayacan do not 

have conspecific neighbors, the potential for this error to occur is minimized.  We manually 

corrected each error and updated encounter histories prior to statistical analysis.  Taken together, 

combined errors in species identification and crown delineation may influence up to 8 (trees in 

2002) + 8 (trees in 2004) + 4 (trees in 2006) + 3 (trees in 2006) + 1 (false positive in 2006) = 24 

trees.  This corresponds to 24 / 690  = 3.5% of the trees in our sample. 

 

We conducted field checks on 167 trees throughout the BCI forest, including 110 ground 

reference individuals, and 57 trees detected first by satellite.  Out of the 110 ground reference 

trees, 90 (82%) had also been detected at least one time using satellite observations.  Comparison 

of trees that were detected by satellite to trees in the ground reference sample indicates that the 
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sample obtained remotely is unbiased with respect to stem diameter and tree height (P = 0.576 

and P = 0.832, respectively, Fig. 7).  Indeed, the smallest stem observed was detected by satellite 

observations in 2002 and 2006 (a 24.3 cm diameter adult in old-growth forest). 

Potential drivers of landscape population dynamics  

Variability throughout the landscape in adult population dynamics is consistent with the life 

history of T. guayacan, which is a light-demanding species, and probably requires large forest 

gaps to regenerate (Kitajima & Hogan 2003).  We expected rates of adult recruitment and 

realized population growth to track variation in the gap disturbance regime.  Although secondary 

forests typically lack large numbers of light-gap disturbances, we used airborne waveform 

LiDAR observations to establish that our results were related to variation in the frequency of 

canopy disturbance (Drake et al. 2003).  Data from LiDAR were used to calculate the proportion 

of sites with canopy height < 10 m throughout the BCI forest.  This is approximately 20 m below 

the mean height of adult T. guayacan from field studies on BCI (Fig. 2.7), and is a quantitative 

index of the frequency of canopy disturbance.  Large disturbances were twice as common in old-

growth (0.21%) as in secondary forest on BCI (0.12%).  Thus, patterns in adult population 

dynamics are consistent with the hypothesis that gap-dependent adult recruitment is mediating 

population growth.  Because adult abundance increased in relatively low-density old-growth 

forest, but was closer to replacement in second-growth, our findings suggest that relatively high 

abundance throughout second-growth forest on BCI probably reflects historical colonization at 

the time of abandonment of agricultural land on the island. 

Annual recruitment was greater during 2004 – 2006 than during 2006 – 2007 (Table 4).  

Variation in recruitment of this magnitude could be expected in juvenile trees (Chesson & 
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Warner 1981; Wright et al. 2005) but to our knowledge no such spatially extensive recruitment 

among adult canopy trees has been documented.  A recent analysis showed that increases in the 

frequency of floral and fruit production for trees and lianas on BCI were associated with El Niño 

Southern Oscillation conditions (Wright & Calderon 2006).  In addition to operating directly on 

the floral production of adult individuals, regional conditions may induce recruitment to the adult 

life stage for T. guayacan.  Changing rates of adult recruitment may be partly responsible for 

long-term trends in flower production observed on BCI, at least for some species.  One 

mechanism that supports this speculation is increasing solar irradiance and relief of light 

limitation (Saleska et al. 2007; Zimmerman et al. 2007).  It has also been proposed to explain 

inter-annual variation in reproductive phenology (Wright & Calderon 2006), and rates of canopy 

photosynthesis throughout the Brazilian Amazon (Saleska et al. 2007).  

Conclusion 

The landscape perspective of canopy tree populations that is possible using remote observations 

should provide novel insights and better statistical power to test hypotheses about the drivers of 

population and community dynamics.  Although the spectral characteristics of flowering T. 

guayacan were useful in the remote identification of this species, the analytical approach 

developed here is general and will allow demographic analyses of other canopy tree species 

using satellite or airborne remote sensing.  Widespread monitoring for model species is 

achievable using contemporary satellite observations.  Studies should establish which canopy 

tree species can be reliably sampled by satellite by focusing on periods of spectral distinctness 

associated with phenological change (Frankie 1974).  Larger numbers of species can be 

monitored using airborne hyperspectral observations, even in the absence of conspicuous 
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phenology (Asner & Vitousek 2005; Clark et al. 2005; Castro-Esau et al. 2006; Carlson et al. 

2007).  Robust statistical tools, coupled with observational platforms that can distinguish greater 

numbers of species and obtain information on physiological condition (Asner et al. 2007), will 

generate new opportunities in basic and applied research, including causes and consequences of 

ongoing global change for forest tree populations. 

Materials and methods 

Study site   

We studied the dynamics of adult T. guayacan in 15.4 km
2
 of tropical moist forest on Barro 

Colorado Island, Panama using four satellite observations between 2002 and 2007 (Fig 4).  BCI 

is a mosaic of old-growth and second-growth forest (Foster & Brokaw 1996), and is the site of a 

50 ha forest dynamics plot in which all free standing woody plants ≥ 1.0 cm DBH have been 

identified, mapped, and monitored regularly since 1982 (Fig. 2.2).  The site receives 

approximately 2500 mm of rainfall annually, and has a strong dry season from December to 

April.  Mean canopy height is 32.9 m ± 6.4 m S.D. in old-growth forest, and 30.1 m ± 6.2 S. D. 

in second-growth (Fig. 2.5). 

Satellite observations   

The QuickBird and Ikonos sensors acquire measurements in four spectral bands over the visible 

and near-infrared regions of the electromagnetic spectrum at up to 2.44 and 4.0 m spatial 

resolution, respectively.  Image data were acquired on four occasions over 5 years (Table 1).  

Acquisition at each occasion was timed to coincide with the synchronous annual flowering of 

adult T. guayacan after early wet-season rains.  Image data were corrected to apparent surface 

reflectance using the MODTRAN4 radiative transfer model, implemented using the FLAASH 
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module of ENVI version 4.3 (ITT Industries Inc.).  Preliminary georeferencing was applied at 

the time of acquisition, and we corrected small distortions using non-linear rubbersheeting, with 

the most cloud-free (2004) image as a reference (Table 1). 

 

Spectral mixture analysis   

We used multiple endmember spectral mixture analysis (MESMA) to map the distribution and 

abundance of adult T. guayacan throughout the BCI forest.  MESMA is conceptually similar to 

traditional SMA, except that it allows the number of endmembers to vary between pixels, and 

chooses from a set of candidate endmember spectra by minimizing residual variation (Roberts et 

al. 1998; Dennison & Roberts 2003).  The model is 

 

λλλ ρρ i

N

k

kkii ef +×=∑
=1

,                              [1] 

 

where ρiλ is the observed reflectance for pixel i within multispectral band λ, fki is the fractional 

abundance of endmember k within pixel i, ρkλ is the endmember reflectance at band λ, and eiλ is a 

residual term.  In practice, ρkλ are estimated from laboratory or image sources, and a constraint is 

imposed on the model so that  

 

∑
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We collected endmembers from each image using a pixel purity index by iteratively projecting 

pixel values onto a randomly oriented vector in multispectral space (Boardman et al. 1995).   
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Pixels that are repeatedly identified as extreme are spectrally pure endmembers.  We 

implemented the PPI for each image using 10,000 iterations, and manually classified extreme 

pixels into one of four classes: photosynthetic vegetation, cloud, T. guayacan floral tissue, or 

Jacaranda copaia (Bignoniaceae) floral tissue.  J. copaia is a rain forest canopy tree that 

produces flowers of a blue-purple hue (Fig. 2.1).  For images acquired when J. copaia adults 

were flowering, failure to include a J. copaia floral endmember would produce errors of 

commission for T. guayacan.  This set of candidate endmembers was reduced to 2 – 4 

endmembers for each class using standard methods (Dennison & Roberts 2003).   The reduced 

set of image endmembers was used to model the spectrum of each pixel using a combination of 

two, three, or four endmember models.  The best model for each pixel was identified as the 

model producing the lowest root mean squared error (Roberts et al. 1998; Dennison & Roberts 

2003).  

 

Due to changes in canopy phenology and cloud cover between image samples, we used 

endmembers for T. guayacan, J. copaia, photosynthetic vegetation, and photometric shade (zero 

reflectance in all bands) in 2002, 2004 and 2007.  Patchy cloud cover could not be completely 

masked from the 2006 image, and J. copaia was not flowering at the time of image acquisition.  

For 2006, we used endmembers for T. guayacan, cloud, photosynthetic vegetation, and 

photometric shade. 

 

Image segmentation   

SMA fractional images indicate whether a given pixel is likely to be within a flowering T. 

guayacan crown.  However, demographic analyses require mapping individual trees, each of 
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which may contain one to many image pixels (Fig. 2.1).  Segmentation is the process of 

organizing image data into contiguous thematic objects.  We designed a simple algorithm to 

segment individual rain forest canopy trees for demographic inventory and analysis.  The 

algorithm is implemented in three steps for each image sample.  First, the most extreme pixel 

observation ≥ an estimated threshold is identified within the T. guayacan endmember image 

produced by SMA.  Next, values of cardinal neighbors are evaluated.  If they are ≥ a stopping 

threshold, and therefore likely to occur within a flowering T. guayacan crown, they are merged 

with the single-pixel object.  Evaluation of neighbors continues until all neighboring pixels are < 

the stopping threshold.  Finally, this procedure is repeated until no pixels ≥ the entry threshold 

remain unassigned to an object in the endmember image. 

 

Determining the value of the entry threshold is important, because it dictates whether a particular 

tree will be included in the sample (analogous to a stem diameter threshold in ground-based 

surveys).  Although a complete census is not necessary, if the threshold were too high, sampling 

would be unnecessarily restrictive.  A threshold that is too low will produce errors of 

commission.  

 

We used logistic regression to determine values of entry thresholds to be applied to each image 

during segmentation (Table 3).  Logistic regression models a binary response (presence or 

absence of T. guayacan) as a function of continuous covariates (T. guayacan endmember value).  

The entry threshold for each image is the endmember value associated with probability of 0.5.  

To fit logistic regression models and estimate entry thresholds, we randomly sampled 100 pixels 

with the constraint that ten pixels were required from each bin of 0.1 endmember units (i.e. ten 
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pixels from 0 – 0.1, ten pixels from > 0.1 – 0.2 etc.).  Some bins did not contain 10 pixels, 

because very high endmember values are uncommon, in which case all pixels within the given 

bin were included in the sample.  Each pixel was visually classified as T. guayacan floral tissue 

[1] or not [0] based on apparent presence or absence of flowering T. guayacan using a 

geographic information system (GIS).  Stopping thresholds were determined empirically by 

examining endmember image values near the edges of flowering T. guayacan crowns (Fig. 2.1). 

Presence of clouds in each satellite image censored some individuals from detection, and 

produced shadows on the forest canopy (Table 1).  Because shadowed areas have reduced 

brightness, thresholds identified for illuminated canopies are not appropriate.  In regions of cloud 

shadow, we normalized each fractional image pixel by the sum of the non-shade endmember 

images for that pixel (Adams et al. 1993; Powell et al. 2007).  In shaded areas, we applied the 

segmentation algorithm to the shade-normalized endmember image. 

 

Upon completion of image segmentation for the entire image time series, we overlaid image 

segments in a GIS to generate an encounter history for each individual.  An encounter history is a 

series of zeros and ones that indicates whether an individual was observed or not at each 

sampling occasion.  For example, encounter history 1100 is a tree that was observed for the first 

time in 2002, observed in 2004, and not observed after 2004.  We excluded segments along the 

shore of the island that clearly did not belong to adult T. guayacan, and segments caused by poor 

image quality in deeply shaded areas (i.e. where shade normalizing produced spurious bright 

values).    
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Remote estimation of demographic rates   

We analyzed encounter histories generated using satellite observations for adult T. guayacan in a 

Bayesian state-space framework to estimate survival, recruitment, and realized population 

growth (Royle 2008).  State-space modeling decomposes observations into two independent 

components.  One component models the underlying but latent demographic process (survival or 

recruitment).  A second component models the observations, conditional on the demographic 

process (Royle 2008).  Let z[i, t] be a vector of Bernoulli random variables that indicates whether 

individual i was alive (1) or not (0) at time t.  On the first occasion that an individual is observed, 

f, it is assumed to be alive with probability 1.  Subsequent states are predicted as independent 

Bernoulli trials with time-specific probabilities of survival.  That is, z[i, t] | z[i, t – 1]  ~ 

Bernoulli(φt × z[i, t – 1]) for all t from f + 1 to s, where s is the total number of sampling 

occasions.  Thus, if an individual is alive at t – 1, it remains in the living state with time-specific 

probability of survival, φt.  If it is dead at t – 1, it remains dead with probability 1. 

 

The observational process is modeled as independent Bernoulli outcomes conditional on the 

demographic process.  Let x[i, t] be a vector of Bernoulli random variables that describe whether 

individual i was observed (1) or not (0) at time t, conditional on the true state: x[i, t] ~ 

Bernoulli(pt × z[i, t]).  That is, if the individual is alive at t, it is observed with probability pt.  If 

it is dead, it is not observed with probability 1.  This state-space formulation is equivalent to the 

Cormack-Jolly-Seber capture-mark-recapture model that has been used for decades in animal 

ecology (Cormack 1964; Jolly 1965; Seber 1965; Royle 2008).   
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Recruitment estimates are made by analyzing observations in reverse time.  This approach is 

mathematically identical to the formulation above, except that conditioning is applied to the last 

observation l, instead of the first, f, and the interpretation of state transitions no longer applies to 

the survival process.  Let g[i, t] be a vector of Bernoulli outcomes that indicate whether 

individual i was a member of the adult population at time t.  In the reverse-time analysis, γt + 1 is 

the seniority probability, which is the likelihood that an adult at t + 1 was also an adult at t.  

Because adults at t + 1 that were not adults at t must have recruited, 1 – γt + 1 is the probability of 

adult recruitment (Pradel 1996).  On the last occasion that an individual is observed, l, it is 

assumed to be an adult with probability 1.  Previous states are predicted using time-specific 

probabilities of seniority.  That is, g[i, t] | g[i, t + 1]  ~ Bernoulli(γt + 1 × g[i, t + 1]) for all t from l 

- 1 to 1.   

 

In the recruitment analysis, observations are again modeled as independent Bernoulli outcomes 

conditional on the demographic process.  Let h[i, t] be a vector of Bernoulli random variables 

that describe whether individual i was observed (1) or not (0) at time t, conditional on the true 

state: h[i, t] ~ Bernoulli(pt × g[i, t]).  That is, if the individual is a member of the adult population 

at t, it is observed with probability pt.  If it is not yet recruited, it is not observed with probability 

1.  This is equivalent to the reverse-time approach to recruitment estimation originally developed 

by Pradel (Pradel 1996).  Over all possible encounters, φt, pt, and γt+1 characterize the 

demographic and sampling process that generates observations of individual trees using remotely 

sensed data (Table 2).  
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In practice, the state-space formulations condition on the first detection in the forward-time 

analysis, and the last detection in the reverse-time analysis.  Individuals observed for the first 

time at the last sampling occasion (2007) therefore cannot contribute information on survival.  In 

the recruitment analysis, individuals observed for the first time on the first occasion (2002), and 

never observed again, contain no information on recruitment.  Thus, sample sizes in the survival 

and recruitment analyses are not equivalent, and estimated probabilities of detection will 

correspondingly differ.  Out of the 690 trees observed in our study, 6 were observed for the first 

time in 2007, and 149 were observed in 2002 and never observed again.  Therefore, survival 

estimates are from 1080 observations for 684 individuals, and recruitment estimates are from 937 

observations for 541 individuals. 

 

Derivation of the realized population growth rate   

With estimates of survival and recruitment, it is straightforward to derive the realized population 

growth rate (Pradel 1996).  Consider a population of N individuals at time t.  At the following 

occasion, t + 1, the size of the population is 

RNN ttt +=+ φ1                                       [3] 

where R is the number of individuals that recruited between t and t + 1, and were therefore not 

members of the adult population at t.  By definition, R / Nt + 1 is the probability of recruitment; its 

complement, 1 – R / Nt + 1 is estimated by γt + 1,  

1

1 1
+

+ −=
t

t
N

R
γ .                                   [4] 

Rearranging equation [3] to solve for R and substituting into [4] yields, 
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The right–hand side of [6] is equal to 1 / λ.  Therefore, 
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φ
λ                         [7] 

Thus, remote observations of rain forest canopy trees provide a convenient framework for 

estimating the essential components of population dynamics, even when detection is imperfect. 

 

Parameter estimation   

We obtained parameter estimates from Markov-chain Monte Carlo simulations using Metropolis-

Hastings sampling (Lunn et al. 2000).  The first 10,000 samples were discarded as burn-in, and 

10,000 subsequent samples were retained by storing every 20th iteration from each of three 

Markov chains that were independently initialized.  Convergence was assessed using the 

Gelman-Rubin statistic (Gelman & Rubin 1992), which produces values of 1 if sampling from 

the target posterior density has been achieved .  For all parameters in our analysis, Gelman-

Rubin statistics were equal to 1.00. 

 

We specified uninformative prior distributions for all parameters.  Survival, detection, and 

seniority probabilities were drawn from Uniform (0, 1) priors.  Additive effects of land use and 
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individual heterogeneity were Normal (0, σ), where σ was drawn from a Uniform (0, 30) and 

Uniform (0, 10) in the case of land use and heterogeneity respectively.  This approach follows 

the recommendation of Gelman (Gelman 2006) in the assignment of priors to standard deviation 

parameters in hierarchical models. 

 

Missing observations   

A general framework for remote estimation of demographic rates in rain forest canopy trees must 

be able to formally deal with missing observations.  Persistent cloud cover ensures that some 

individuals will be censored from observation on each sampling occasion (see supporting 

information).  It is straightforward to incorporate missing observations into a Bayesian analysis.  

We predicted the unknown observed states for censored individuals by imputing observations 

using McMC simulation.  We are assuming that the observable and unobservable components of 

our data are generated by the same underlying process, and that censored individuals are 

unbiased with respect to demographic rates. 

 

Model specification   

A priori, we expect survival probabilities to vary minimally through time, and between areas of 

historical land use on BCI, whereas in the recruitment analysis, we anticipate greater potential 

for unmeasured variation to influence demographic rates.  Although adult recruitment in forest 

trees is poorly understood, T. guayacan probably recruits to the canopy and adult life stage when 

access to light resources is sufficient (Kitajima & Hogan 2003).  This should produce variation in 

adult recruitment to the extent that heterogeneity in access to light resources exists throughout 
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BCI.  We expect such heterogeneity to be structured by canopy height variability that occurs 

between areas of historical land use. 

 

Detection probabilities are mediated directly by the expression of carotenoid pigments within 

flowering canopies, and atmospheric conditions at the time of image acquisition.  Indirectly, 

detection may be influenced by local canopy height, tree size, and access to light resources that 

dictate reproductive output.  Long-term field records indicate that reproductive output varies 

substantially through time for adult T. guayacan (Wright & Calderon 2006).  Because it is a light 

demanding species (Kitajima & Hogan 2003), we expected heterogeneity in detection to occur 

between individuals associated with unmeasured covariates such as tree height and crown 

exposure.   

 

We estimated demographic and detection probabilities in the survival and recruitment analysis 

using hierarchical logit-linear models:  

 

Pr{z[i, t]} = βz, time + βz, land use                     [M1] 

 

Pr{x[i, t]} = βx, time + ηx,i                  [M2] 

 

Pr{g[i, t]} = βg, time + βg, land use                  [M3] 

 

Pr{h[i, t]} = βh, time + ηh,i                  [M4] 
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where the response is a binomial probability that predicts the true or observed state for individual 

i at time t.  The β coefficients describe additive effects of time and land use history on the 

binomial outcome, and η are random effects that allow probabilities of detection to vary for each 

individual.  Thus, we are allowing survival and recruitment parameters to vary through time and 

between areas of historical land use.  Detection probabilities vary through time, and incorporate 

individual heterogeneity.   

 

Sample validation    

To define the scope of our sample and evaluate potential for bias, we conducted field searches 

throughout > 28 km of forest during March and April, 2007 (Fig. 2.6).  Because this period 

included the synchronous flowering of adult T. guayacan, we opportunistically sampled adult 

individuals that were in flower.  This sample was obtained blindly with respect to satellite 

observations, and is a benchmark against which to compare individuals detected remotely.  We 

refer to this ground-based sample as the ‘ground reference.’  We also located trees in the field 

that had been identified first using satellite observations, using compass orienteering, and maps 

of adult T. guayacan produced by image segmentation.  For all trees, stem diameter (cm) was 

measured at breast height, or above basal irregularities such as buttresses in most cases, to the 

nearest mm using a diameter tape.  Tree height was measured to the nearest m using a hand-held 

laser range finder.  If the sample of trees obtained remotely is representative of adult T. 

guayacan, the ground reference sample and sample of trees identified remotely should contain 

many of the same individuals, and comparison should not be qualitatively or statistically 

different. 
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Fig. 2.1.  Demographic inventory using satellite observations.  A, Flowering adult Tabebuia 

guayacan (left arrows) are conspicuous yellow objects in QuickBird satellite observations from 

March 21, 2004, for a 14 ha sample of old-growth forest on Barro Colorado Island, Panama.  B, 

Spectral mixture analysis predicted fractional abundance of T. guayacan floral tissue within 

every image pixel, and facilitated objective, unbiased sampling of adult trees.  Yellow contour 

intervals at 0.314 are based on logistic regression, and distinguish pixels that are likely to occur 

within a flowering T. guayacan crown.  C, Fractional images were processed using an automated 

crown segmentation algorithm to sample individuals throughout a tropical rain forest landscape 

(red segments).  The vertical scale bar is 20 m.  Flowering crowns of the rain forest canopy tree 

Jacaranda copaia (right arrows) are also apparent in the upper right portion of the image.  The 

status of one T. guayacan is visually ambiguous in this image (upward arrow), demonstrating the 

necessity of objective sampling criteria.  It was detected in 2006. 
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Fig. 2.2.  Barro Colorado Island, Panama.  Locations of 690 adult canopy trees (Tabebuia 

guayacan) sampled on four occasions during five years using satellite observations.  Colors 

indicate forest classes: dark green (old-growth forest), light green (second-growth forest), white 

(cut since 1914), yellow (cleared or developed area).  The 50-ha forest dynamics plot is shown 

for scale (1000 × 500 m).  The 14-ha box north of the plot depicts the area shown in Fig. 2.1. 
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Fig. 2.3.  Demographic rates for adult canopy trees.  Annualized posterior probability densities 

for survival, recruitment and realized population growth for adult Tabebuia guayacan in old-

growth (solid line) and second-growth (dashed line) forest.  Estimates are from satellite 

observations and McMC methods.  Dotted vertical line at survival 0.991 is annual survival for T. 

guayacan ≥ 20 cm DBH from an independent field sample.  Rates of survival are independent of 

historical land use, but recruitment and realized population growth were higher in old-growth 

forest. 
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Survival
0.94 0.97 1.00

Recruitment
0.00 0.04 0.08 0.12

Realized λ
1.00 1.10 1.20

 

 

 

 

 

 

 



 

 36 

Fig. 2.4. Overview of the analytical approach.  Demographic inventory and analysis of rain 

forest canopy trees includes three major components: (i), spectral mixture analysis to identify 

pixels likely to occur within a flowering T. guayacan crown, (ii), image segmentation to generate 

demographic samples of adult trees, and (iii), modeling observations of individuals through time 

to estimate demographic rates. 
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Fig. 2.5.  Canopy height distribution on Barro Colorado Island, Panama.  a, old-growth forest, b, 

second-growth forest.  Mean canopy height is 32.9 m ± 6.43 SD, and 30.1 m ± 6.2 SD, based on 

n = 47,415, n = 46,076 LiDAR observations respectively. 
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Fig. 2.6.  Location of 167 adult canopy trees (T. guayacan) checked in the field on Barro 

Colorado Island, Panama during March and April, 2007.  The samples from satellite observations 

are unbiased with respect to field data (P for stem diameter = 0.576, P for height = 0.832).  

Colors indicate forest classes: dark green (old-growth forest), light green (second-growth forest), 

white (cut since 1914), yellow (cleared or developed area).  The 50-ha forest dynamics plot is 

shown for scale (1000 × 500 m). 
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Fig. 2.7.  Stem diameter and height distribution for adult canopy trees (T. guayacan) on Barro 

Colorado Island, Panama. a, diameter of stems detected by satellite, b, height of trees detected by 

satellite, c, diameter of stems from an independent ground reference sample, d, height of trees 

from the ground reference sample.  Eighty-two percent of the trees in the ground reference 

sample were also detected by satellite at least one time.  The samples from satellite observations 

are unbiased with respect to field data (P for stem diameter = 0.576, P for height = 0.832). 
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Table 2.1. Summary of satellite observations for Barro Colorado Island, Panama.  Satellite data 

were acquired on four occasions from the QuickBird and Ikonos sensors.  Values are the number 

of trees detected on each sampling occasion, and the area of the island obscured by cloud cover. 

     Date 3/29/2002 3/21/2004 4/1/2006 3/20/2007 
          Satellite QuickBird QuickBird QuickBird Ikonos 
     

No. trees 380 303 331 75 
     

Cloud (ha) 39.3 7.4 630.4 290.4 
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Table 2.2. State combinations for individual trees observed using remotely sensed data.  A given 

tree may be observed (1) or not (0) if it is present (P) or absent (A) in the adult population, and 

detected remotely.  True states are dictated by survival and recruitment (left two columns).  

Inference using observed states alone is not robust, because > 1 true state can produce most 

observations.   

         Death Recruit TRUE Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 
                  No No PPPP 1111 1110 1101 1011 0111 1100 
         

Yes No PPPA NA 1110 NA NA NA 1100 
         

Yes No PPAA NA NA NA NA NA 1100 
         

Yes No PAAA NA NA NA NA NA NA 
         

Yes Yes APPA NA NA NA NA NA NA 
         

Yes Yes APAA NA NA NA NA NA NA 
         

Yes Yes AAPA NA NA NA NA NA NA 
         

No Yes APPP NA NA NA NA 0111 NA 
         

No Yes AAPP NA NA NA NA NA NA 
         

No Yes AAAP NA NA NA NA NA NA 
 

Table 2 continued 

 
Obs7 Obs8 Obs9 Obs10 Obs11 Obs12 Obs13 Obs14 Obs15 

                  1010 0110 1001 0101 0011 1000 0100 0010 0001 
         

1010 0110 NA NA NA 1000 1000 1000 NA 
         

NA NA NA NA NA 1000 100 NA NA 
         

NA NA NA NA NA 1000 NA NA NA 
         

NA 0110 NA NA NA NA 0100 0010 NA 
         

NA NA NA NA NA NA 0100 NA NA 
         

NA NA NA NA NA NA NA 0010 NA 
         

NA 0110 NA 0101 0011 NA 0100 0010 0001 
         

NA NA NA NA 0011 NA NA 0010 0001 
         

NA NA NA NA NA NA NA NA 0001 
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Table 2.3. Logistic regression parameter estimates for presence (1) or absence (0) of apparent T. 

guayacan floral tissue.  Estimates are from up to 100 randomly selected pixel observations from 

spectral mixture analysis (SMA) using QuickBird or Ikonos satellite data.  Values in parentheses 

are P values testing the hypothesis that the coefficient is equal to zero.  P(50) is the SMA value 

associated with probability 0.5, and was used as a minimum threshold for detection in 

demographic samples obtained using satellite data.  ‘Stop’ is an empirically defined stopping 

threshold that was applied to an automated tree-crown segmentation algorithm.  Sample size (n) 

is the number of pixel observations included in the logistic regression.     

     Date 3/29/2002 3/21/2004 4/1/2006 3/20/2007 
          Satellite QuickBird QuickBird QuickBird Ikonos 
     
Intercept -11.406 (0.008) -11.825 (0.004) -8.949 (0.001) -7.768 (< 0.001) 
     
Slope 42.079 (0.007) 37.627 (0.004) 29.843 (< 0.001) 23.796 (< 0.001) 
     
P(50) 0.271 0.314 0.298 0.326 
     
Stop 0.220 0.220 0.220 0.190 
     
n 100 99 100 81 
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Table 2.4.  Demographic rates for adult T. guayacan.  Numbers are median estimates from the 

annualized posterior distribution, with Bayesian credible interval in parentheses.  In the survival 

and recruitment analyses, state transition and detection probabilities over the final interval are 

not independently estimable (NE).   This corresponds to the 2006 – 2007 interval in the survival 

analysis, and the 2002 – 2004 interval in the recruitment analysis.  

      02 – 04 (Annualized) 04 – 06 (Annualized) 06 – 07 (Annualized) 02 – 06 (Annualized) 

          Survival     
          
Old 0.985 (0.935 – 0.999) 0.991 (0.959 – 0.999) Not estimable 0.987 (0.958 – 
Second 0.986 (0.939 – 0.999) 0.992 (0.960 – 0.999) Not estimable 0.987 (0.961 – 
     
     Recruit    04 – 07 (Annualized) 
          
Old Not estimable 0.051 (0.003 – 0.134) 0.020 (0.000 – 0.106) 0.033 (0.005 – 
Second Not estimable 0.022 (0.001 – 0.076) 0.009 (0.000 – 0.048) 0.014 (0.002 – 
     
     λ    04 – 06 (Annualized) 
          
Old Not estimable 1.041 (0.983 – 1.142) Not estimable Same 
Second Not estimable 1.012 (0.975 – 1.072) Not estimable Same 
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CHAPTER 3 

CANOPY GAPS AND THE DYNAMICS OF A TROPICAL WET FOREST
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

2
 Kellner, J.R., Clark, D.B. and S.P. Hubbell.  To be submitted to Ecology Letters. 
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Abstract 

 

We combined LiDAR remote sensing with field measurements of canopy height to quantify the 

structure and dynamics of an old-growth Neotropical rain forest in the Atlantic lowlands of Costa 

Rica.  Persistent disturbance figures prominently in the dynamics of this forest.  Forty-one 

percent of the old-growth landscape had net canopy height changes ≥ 5 m during 8.5 years.  

Most gaps in the forest canopy were small, and individual gap sizes and neighbor distances 

followed power-laws with slopes that were indistinguishable between years.  Gap sizes were 

unbiased with respect to topographic slope and soil Phosphorus.  Despite substantial dynamics, 

our results demonstrate consistency in characteristics of forest disturbance at large spatial scales, 

and suggest that changes in canopy height were very close to the steady-state equilibrium 

expectation.  These findings challenge the view that Neotropical forests are undergoing structural 

degradation in response to global changes, and provide evidence of the necessary conditions for 

selection for long-distance dispersal. 
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Introduction 

 

In closed-canopy tropical rain forests, localized canopy openings occur that mediate access to 

light and space in the forest understory (Brokaw 1982, 1985; Hubbell & Foster 1986b).  These 

‘canopy gaps’ are caused by the death of, or damage to, a canopy-forming tree.  Quantifying the 

sizes and spatial properties of gap distributions on landscapes is fundamental to understanding 

the diversity and evolution of forest tree species (Denslow 1980; Hubbell & Foster 1986b; 

Hubbell et al. 1999).  For many species, gaps are essential at some stage in ontogeny for 

individuals to recruit to the canopy. 

 

There is evidence that gap areas follow power-law size distributions, as most gaps in the forest 

canopy are small and extremely large gaps are rare (Hubbell & Foster 1986b; Sanford et al. 

1986; Nelson et al. 1994).  Work from tropical moist forest on Barro Colorado Island, Panama 

(BCI) has shown that probabilities of gap occurrence are higher near the edges of existing gaps, 

and that filling can occur through both upward and lateral growth from adjacent canopy trees 

(Young & Hubbell 1991).  Gaps tend to occur more frequently on slopes than on flat terrain 

(Clark et al. 1996), and may be more abundant on fertile sites.  However, sources of variation in 

gap distributions on landscapes are poorly understood.  By landscapes we are referring to the 

areas at which forests are perceived by interacting tree species.  For individuals, this area is 

arguably determined by the density of seed dispersal.  Molecular analyses have shown that 

dispersal is occurring over distances of hundreds of meters, and sometimes much greater (Jones 

et al. 2005; Hardesty et al. 2006; Sezen et al. 2007).  This distance is farther than those sampled 

within most field inventory plots.  Over their evolutionary lifetimes, species perceive forested 
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landscapes throughout vastly larger areas that are dictated by range sizes.  Range sizes for most 

tropical tree species have not yet been mapped empirically, but are very large, as individuals of 

the same species can be observed in plots separated by great distances, and species turnover 

occurs very slowly over thousands of kilometers (Condit 2002; ter Steege 2006; Hubbell et al. 

2008).    

 

Limitations to observing the structure and dynamics of tropical forest canopies throughout large 

areas have two main causes.  It is difficult to sample ephemeral, rare events, and challenging to 

consistently define gap versus non-gap areas.  Recently-disturbed gap sites represent a small 

fraction of a forested landscape, typically on the order of a few percent by area (Hubbell & 

Foster 1986b; Sanford et al. 1986).  A secondary issue is inconsistent application of minimum-

area and maximum-height thresholds for defining gap versus non-gap areas, and difficulty 

estimating canopy height under demanding field conditions (reviewed in Clark & Clark 1992). 

 

In this study, we combine LiDAR remote sensing with field measurements of canopy height to 

characterize the size frequency distribution, spatial characteristics, and dynamics of canopy gaps 

in an old-growth Neotropical rain forest in the Atlantic lowlands of Costa Rica.  By recording the 

return-time of reflected laser pulses, LiDAR sensors acquire physically-based measurements of 

canopy height and ground elevation (m), and the vertical and horizontal distribution of biomass 

(Drake et al. 2002a; Drake et al. 2003; Clark et al. 2004c; Asner et al. 2008).  They are ideal for 

quantifying the structure and dynamics of forest canopies, because they provide spatially 

referenced, extensive and finely grained vegetation height measurements that are objectively 
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acquired.  LiDAR measurements facilitate access to characteristics of forest canopies at multiple 

scales, and permit objective analyses of canopy structure and dynamics on landscapes. 

 

Methods 

 

Site description 

This study was conducted in old-growth rain forest at the La Selva Biological Station, in the 

Atlantic lowlands of Costa Rica (Fig. 3.1).  The site is classified as Tropical Wet Forest in the 

Holdridge life-zone system (Hartshorn & Hammel 1994) and receives approximately 4000 mm 

of rainfall annually (Sanford et al. 1994).  Mean monthly temperature is 26° C and relief ranges 

from 39 to 153 m on highly weathered Oxisols (Kleber et al. 2007).  Mean canopy height is 20.4 

m ± 6.9 m S.D. (this study).  The density of stems ≥ 10 cm diameter at breast height (DBH) is 

504 ± 22 · ha
-1 

and estimated aboveground biomass is 160.5 ± 4.2 Mg · ha
-1 

(Clark & Clark 

2000).  Leaf area index (LAI) is 6.00 ± 0.32 (S.E.), and increases linearly with canopy height up 

to 21 m (Clark et al. 2008).  Most of the study site is on undulating upland plateaus for which 

there is no evidence of extensive historical human land use (Kennedy & Horn 2008).  

 

Light Detection and Ranging 

We used data collected 8.5 years apart from two LiDAR systems to quantify canopy height 

changes.  The FLI-MAP system and Leica ALS50 are discrete pulse, scanning laser altimeters.  

Data from the FLI-MAP sensor were acquired for 445 ha of old-growth rain forest on September 

12 – 13, 1997 (John E. Chance and Associates, Lafayette, Louisiana, USA, Fig. 3.1).  Scan angle 

was 33 º, and beam divergence 2 milliradians.  The data were collected by helicopter from 70 m 
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aboveground, producing 0.14 m pulse diameters at ground elevation, and were provided as a 0.33 

m raster digital surface model (DSM) that had been generated by the data provider using 

proprietary methods.  Each 0.33 m DSM pixel contained a single elevation value in meters 

(ground elevation + vegetation height).  Clark et al. (2004c) identified pixels that were likely to 

represent ground elevation within the DSM (i.e. where vegetation height = 0) and interpolated a 

1 m raster ground surface (digital terrain model, DTM).  Subtraction of the DTM from the DSM 

produced a 0.33 m raster of canopy height above ground (digital canopy model, DCM, Fig. 3.2).  

Comparison of vegetation height and ground elevation from field and FLI-MAP sources 

indicates that relationships are precise and accurate when tree height can be measured reliably in 

the field (Clark et al. 2004c).  

 

The Leica ALS50 collected LiDAR observations for 64 km
2
 of tropical wet forest on March 13 – 

14 2006.  Beam divergence was 33 milliradians, which produced 0.33 m pulse diameters at 

ground elevation from the 1000 m collection altitude aboard a fixed-wing aircraft (Cognocarta 

GIS LLC, San Jose, Costa Rica).  Mean sampling density was 1 pulse · m
-2

 in old-growth forest.  

The complete data set is publicly available (Kellner et al. unpublished manuscript), and contains 

115,058,607 LiDAR measurements for the La Selva property and lower flanks of Parque 

Nacional Braulio Carillo, spanning gradients in mixed agro-natural land use and soil fertility.  

We focus here on the 445 ha of old-growth forest for which data were collected by the Leica 

ALS50 and the FLI-MAP system (Fig. 3.1). 
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Height models and canopy dynamics 

We processed the FLI-MAP DSM and point elevation estimates from the Leica ALS50 to 

generate 5 m DSMs.  Each 5 m pixel contains the mean of all elevation measurements within the 

given pixel.  For data from the FLI-MAP system, most 5 m pixels contained 225 pixels of 0.33 

m.  Elevation estimates for some 5 m pixels were based on smaller samples, because we 

excluded areas that were near edges or between flight lines, for which no LiDAR data were 

collected.  For the data from the Leica ALS50, the sample size for each 5 m pixel was the 

number of LiDAR pulse observations within the given pixel, which ranged from 1 to 94, with 

mean and standard deviation equal to 25.9 and 7.9 respectively. 

 

To estimate canopy height above ground, we generated 5 m DTMs from FLI-MAP and Leica 

ALS50 data, and subtracted the respective DTM elevation from DSMs to produce digital canopy 

models.  For the FLI-MAP system, we resampled the 1 m DTM generated by Clark et al. (2004c) 

to 5 m using nearest-neighbor resampling.  For the Leica ALS50 we generated a 5 m DTM by 

applying a natural neighbor interpolation to point elevation estimates that were classified as 

ground elevation by the data provider using proprietary methods (Cognocarta GIS LLC, San 

Jose, Costa Rica).  Based on a data set of 4184 ground-surveyed control points, the relationship 

between field and Leica ALS50 LiDAR estimates of ground elevation is accurate throughout the 

range of topographic and structural conditions within old-growth forest at La Selva: field 

measured elevation (m) = 0.999 × LiDAR predicted elevation (m) – 0.423 m, P < 0.001, r
2
 = 

0.994, RMSE = 1.84 m (Kellner et al. unpublished manuscript).   
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To examine changes in canopy height between 1997 and 2006, we first coregistered the 2006 

Leica DSM to the 1997 FLI-MAP DSM using a geographic information system to correct a 

small offset between data sources.  The correction was an affine transformation applied to six 

control points that were well-distributed throughout the old-growth study area.  Overall RMSE 

was 1.24 m, which is smaller than side length of a single DSM pixel.  We then subtracted the 

1997 FLI-MAP DSM from the 2006 Leica ALS50 DSM to produce a model of canopy height 

change.     

 

Each height-change pixel contained a single value that was the net change in canopy height (m) 

between 1997 and 2006, where positive values indicated height gain, and negative values 

indicated height loss.  Although subtraction of canopy height or elevation estimates should 

produce equivalent results, in practice changes calculated using DCMs incorporate errors 

associated with estimation of ground elevation.  We therefore calculated height changes using 

canopy elevation to avoid propagating these errors into the estimates of canopy height change.  

We assumed that DSMs are accurate, and that ground elevation has not changed significantly 

between the LiDAR surveys, so that differences between DSMs characterize vegetation 

dynamics, rather than changes to underlying topography or LiDAR error.  This assumption is 

likely to be correct, given that old-growth forest at La Selva is on stable terrain, DTM estimates 

throughout the old-growth landscape from 1997 and 2006 are highly correlated (r = 0.997), and 

LiDAR elevation measurements can be proven highly precise and accurate when high-quality 

validation data are available.  Indeed, a major challenge in demonstrating the accuracy of LiDAR 

measurements is obtaining sufficiently better data for validation. 
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Gap definition 

We quantified the size frequency distribution of gaps in the forest canopy by applying Brokaw’s 

definition to the 5 m DCMs.  A gap is “a ‘hole’ in the forest extending through all levels down to 

an average height of two m above ground” (Brokaw 1982).  LiDAR remote sensing is ideal for 

distinguishing gap versus non-gap areas, because it minimizes the potential for subjective 

assessments to influence conclusions (see discussion in Clark & Clark 1992), and allows gap 

definitions to be applied consistently throughout large areas.  The smallest gap observable in this 

study was a single 5 m × 5 m pixel of 25 m
2
, and any of the eight neighbors with vegetation 

height ≤ 2 m were part of the same Brokaw gap (i.e. if three pixels shared at least one side or 

corner and had vegetation height ≤ 2 m, they were classified as a single Brokaw gap that was 75 

m
2
 in area).   

 

Height transitions 

We quantified canopy height transitions by examining properties of the transition matrix, A, for 

1 m height classes between 0 and 40 m throughout old-growth forest at La Selva.  The A matrix 

integrates growth and lateral filling, mortality and branch loss that characterize canopy 

dynamics.  It is similar to a Lefkovitch population projection matrix, except that transition 

probabilities apply to height changes at a given location rather than survival and reproduction, 

and the first row of the matrix does not contain fertilities.  Instead, element A[i, j] contains the 

probability that the height class at column j will enter the height class at row i during the 8.5 year 

transition interval.  Thus, rows one and two contain the probabilities that column j will produce a 

gap < 2 m in height, and the A matrix contains 1,600 empirically estimated transition 

probabilities.   We calculated the steady-state distribution of canopy height by solving for the 
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dominant eigenvector of the height transition matrix (Caswell 2000).  A subset of the A matrix is 

in Table 3.1, and the full transition matrix is in Appendix A.   

 

Structure and dynamics  

We examined spatial properties of the distribution of Brokaw gaps by quantifying the mean 

distance to the nth nearest neighbor gap for all gaps in 1997 and 2006.  To test whether there was 

clumping or overdispersion, we randomized the locations of all n gaps in 1997 and 2006 within 

the old-growth study area, and recalculated the mean distance to the nth nearest neighbor gap.  

This procedure was repeated 1,000 times to predict the expected value under the null hypothesis 

of complete spatial randomness.    

 

Independent of patterns of occurrence in gap locations, gap sizes could also show non-random 

spatial distributions.  For example, stem density at La Selva is highest on slopes, and lowest on 

alluvial terraces (Clark & Clark 2000).  Gradients in soil fertility at La Selva are influenced by 

substrate aging and erosion.  Although most of the landscape is low in soil P, Porder et al. (2006) 

demonstrated using Strontium isotopes that the fraction of rock-derived nutrients increases on 

slopes, suggesting that erosion rejuvenates nutrient supply on deeply weathered soils at La Selva.  

Espeleta & Clark (2007) showed that plant investment in fine root biomass was higher in low-

fertility upland plateaus than in relatively fertile alluvial terraces.  We therefore expected 

elevated rates of canopy turnover and smaller gaps to occur in the most fertile sites, where 

nutrient limitation could be reduced, and on slopes where stem density is higher.  We tested this 

prediction by examining correlation coefficients between gap size and topographic slope or 

predicted soil P.  Slope was calculated in degrees using the 5 m Leica DTM.  Soil P was 
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predicted on a 30 m × 30 m raster throughout old-growth forest using ordinary kriging.  

Predictions were based on 2123 field measurements of soil P that were collected on a 50 × 100 m 

sampling grid (J. Powers, unpublished manuscript).  

 

Field measurements 

Our conclusions depend on the ability of LiDAR height measurements to quantify forest 

structure and dynamics.  We obtained field measurements of canopy height within 18 0.5 ha 

plots (the CARBONO project, Clark & Clark 2000, Fig. 3.1).  Each plot is 100 × 50 m, and was 

randomly sited within old-growth forest at La Selva and stratified by dominant topographic and 

fertility gradients (Clark & Clark 2000).  Within each plot, all stems ≥ 10 cm diameter at breast 

height or above irregularities such as buttresses (DBH) have been identified, mapped and 

monitored annually since 1998.  Measurements of vegetation height between 1.50 m and 15.00 

m were made on a 5 m × 5 m sampling grid within each plot to the nearest cm using a Hastings 

measuring pole between June and August 2006.  Thus, we compared field measurements of 

canopy height to LiDAR data from the Leica ALS50, but not the FLI-MAP system, for which we 

rely on the validation of Clark et al. (2004c).  At each site, the height measurement was the 

maximum vegetation height directly above the point of measurement on the 5 m sampling grid.  

Because of the difficulty of precisely establishing which branch or leaf is directly over a given 

point of measurement, field technicians visualized a 2 m × 2 m quadrat projected upward to the 

canopy using a hand-held clinometer.  Holes in the forest canopy that were smaller than 2 m × 2 

m were treated as closed canopy.  Sites with vegetation height outside the measurable range were 

given discrete classifications (i.e. ‘< 1.50 m’ or ‘> 15.00 m’).  There were 231 height 
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measurements made in the field within each 0.5 ha plot, and a total of 4158 vegetation height 

measurements were compared to LiDAR data. 

 

To compare the size frequency distributions of Brokaw gaps identified using field and LiDAR 

data, we identified gaps in the forest canopy within each plot using the same criteria used for the 

LiDAR data.  Each site on the 5 m × 5 m field sampling grid was classified as ‘gap’ or ‘non-gap’ 

based on the point estimate of vegetation height.  Sites with field measured vegetation height < 2 

m were in Brokaw gaps, and adjacent gap sites were part of the same gap object. 

 

We anticipated that the largest forest gaps might not be represented using field-based sampling 

(Fearnside 2000; Clark 2004).  Such an outcome is expected based on the smaller area sampled 

in plots (9 ha) compared to the landscape (445 ha), but could also occur if there is systematic 

bias between field and LiDAR data.  To determine whether the size frequency distributions of 

Brokaw gaps are similar between field and LiDAR sources, we used bootstrap simulations.  Each 

simulation selected a random sample of n Brokaw gaps from the larger number observed using 

LiDAR in 2006, and calculated the size frequency distribution, where n is the number of Brokaw 

gaps identified within plots using field methods.  This process was repeated 1,000 times to 

generate confidence intervals for the expected size frequency distribution under the null 

hypothesis of no systematic difference between field and LiDAR data.  This analysis allowed us 

to test the hypothesis that the absence of the largest gaps within plots is a sampling artifact.  
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Results 

 

Canopy dynamics 

Old-growth forest at La Selva was dynamic (Fig. 3.3, Table 3.1).  Forty-one percent (182 ha) of 

the old-growth landscape had net height changes ≥ 5 m.  Low canopy sites were likely to 

increase in height during our 8.5-year study, and most sites in the upper canopy had height loss: 

change in canopy height (m) = 10.13 – 0.51 × canopy height in 1997, Pintercept < 0.001 Pslope < 

0.001, r
2
 = 0.281, RMSE = 5.96, n = 177,855 (Fig. 3.4).  The dominant eigenvector from the 

height transition matrix indicates that the distribution of canopy height was close to the steady-

state expectation in 1997 and 2006 (Fig. 3.5).  Although substantial dynamics occurred during 

the 8.5 year study (Figs. 3.3, 3.4), the distribution of canopy height remained similar between 

years (Fig. 3.5). 

 

Canopy gap locations and sizes  

Sizes and neighbor distances of canopy gaps followed power laws (Fig. 3.6).  In both 1997 and 

2006, the expected number of gaps of a given size decreased linearly on a log-log plot: frequency 

in 1997 = 5.45 – 2.26 × gap area (m
2
), Pintercept < 0.001 Pslope < 0.001, r

2
 = 0.914, RMSE = 0.23, n 

= 9; frequency in 2006 = 5.51 – 2.36 × gap area (m
2
), Pintercept < 0.001 Pslope < 0.001, r

2
 = 0.979, 

RMSE = 0.112, n = 8.  The expected distance to the nth nearest gap increased as a power-law 

function of rank n in both 1997 and 2006: distance in 1997 (m) = 1.58 + 0.72 × neighbor rank, 

Pintercept < 0.001 Pslope < 0.001, r
2
 = 0.989, RMSE = 0.02, n = 275; distance in 2006 (m) = 1.56 + 

0.76 × neighbor rank, Pintercept < 0.001 Pslope < 0.001, r
2
 = 0.990, RMSE = 0.03, n = 239.  

Distances to the nearest gap were 60 and 57 m in 1997 and 2006, respectively.  These 
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relationships are linear over most ranks, but were slightly curvilinear for very large ranks (Fig. 

3.6).  This is due to edge effects and the irregular shape of old-growth forest at La Selva (Fig. 

3.1), which requires farther distances to observe the nth nearest gap than would be expected in a 

region of contiguous forest.  Randomization tests demonstrate that the mean distance to the nth 

nearest gap was shorter than expected for a randomly distributed sample over distances of a few 

hundred meters, but not different from spatial randomness at larger distances and most of the 

study area up to the maximum observed distances of 2.7 km (dashed lines, Fig. 3.6). 

  

A larger fraction of the landscape occupied sites < 2 m in 1997 than in 2006 (Table 3.2), but the 

normalized distribution of gap sizes identified using LiDAR was similar between years (Fig. 

3.6).  There were 250 gaps within 445 ha of old-growth forest in 1997 and 222 gaps in 2006 

(mean densities of 0.56 and 0.49 gaps · ha
-1

 respectively).  The size distributions of gaps 

identified using LiDAR had means of 43.5 m
2
 and 37.8 m

2
, in 1997 and 2006 respectively.  

Correlation coefficients relating gap size to topographic slope and predicted soil P were not 

significantly different from zero in 1997 or 2006 (Table 3.3).   

 

Validation 

There was a strong positive relationship between the proportion of vegetation height < 15.00 m 

identified using LiDAR and field measurements: proportion from LiDAR = 0.134 + 0.736 × 

proportion from field measurements, Pintercept < 0.001 Pslope < 0.001, r
2
 = 0.856, RMSE = 0.029, n 

= 18 (Fig. 3.7).  For gaps identified using field measurements, mean area was 36.7 m
2
 (Table 

3.4).  This is similar to the mean gap size identified using 2006 LiDAR data (37.8 m
2
).  There 

were 30 gaps identified within 18 0.5 ha plots using field methods.  Comparison of size 
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frequency distributions of Brokaw gaps from field and 2006 LiDAR data showed that the 

proportions of gaps of smaller sizes within plots was representative of their abundance 

throughout the landscape, although gaps > 125 m
2
 were not represented within field data.  

Simulations demonstrate that the absence of gaps > 125 m
2
 within plots is a consequence of the 

smaller area sampled (9 ha versus 445 ha), not systematic bias, because confidence intervals 

overlap the values observed within plots and large gaps are rare (Figs. 3.6, 3.7).   

 

Discussion 

 

Persistent disturbance figures prominently in the dynamics of this forest (Fig. 3.3).  Although we 

expected to observe canopy height changes from upward height growth and mortality, substantial 

dynamics occurred throughout all heights in the canopy.  Most gaps were produced by vegetation 

below the main canopy height, and not by tall canopy trees.  Many height losses were not severe 

enough to form gaps < 2 m.  Despite this high frequency of height loss and regeneration, our 

analysis demonstrates consistency in the sizes and spatial properties of forest disturbance (Fig. 

3.6), and suggests that changes in canopy height during 8.5 years were very close to the steady-

state equilibrium expectation (Fig. 3.5). 

 

Gap sizes and neighbor distances followed power-laws at La Selva, with slopes that were 

statistically indistinguishable between years (Fig. 3.6).  If species are adapted to the prevailing 

disturbance regime (Denslow 1980; Hubbell & Foster 1986a), there should be selection for long-

distance dispersal.  Ecologists have studied seed dispersal many times.  One of the most 

consistent observations is that most seeds fall beneath the crown or near the parent tree.  Only a 



 

 63 

small fraction of seeds disperses longer distances (Jones et al. 2005; Hardesty et al. 2006).  

However, locations and frequencies of gaps at La Selva demonstrate that dispersal must occur 

over at least several hundred meters just to encounter a small number of canopy gaps (Fig. 3.6).  

This indicates that selection could favor individuals traveling long distances from their maternal 

parent, because these individuals would be more likely to encounter conditions favorable to 

establishment and regeneration.  This hypothesis generates predictions for the spatial distribution 

of seedlings.  If selection for long-distance dispersal is occurring, seedlings should establish at 

farther distances from the maternal parent than expected, given the density of seed dispersal.  

Evidence of selection for long-distance dispersal will require demonstrating that Janzen-Connell 

mechanisms are not responsible for patterns of seedling establishment, as similar patterns could 

be produced under the Janzen-Connell hypothesis, albeit due to a fundamentally different 

process (Janzen 1970).  

 

We can use the power-law gap-size relationships to predict the abundance very small openings in 

the forest canopy.  Small canopy openings, such as interstitial spaces between branches or tree 

crowns, are an important source of photosynthetically active radiation to seedlings in deep shade 

(Chazdon 1988, 1991).  Photosynthetic machinery of understory species and tree seedlings may 

be adapted to harvest light that is available in localized brief periods of intense radiation created 

by small openings in the canopy (Chazdon 1991).  The sizes and frequency of these openings 

will determine the quality of understory light environments and the density of sunflecks available 

to understory plants.  If the assumption of self similarity holds over ecologically relevant sizes of 

canopy openings, it would facilitate prediction of understory light environments using LiDAR 

measurements of canopy structure.  
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Structure and dynamics 

Gap spatial distributions were aggregated over distances of a few hundred meters, but not 

different from random at larger distances up to 2.7 km (Fig. 3.6).  Sizes of canopy gaps were 

unbiased with respect to topographic slope and predicted soil Phosphorus.  These results were 

surprising, because there are clearly defined responses in forest structure to topography and 

apparent nutrient limitation (Clark & Clark 2000; Espeleta & Clark 2007), and we expected the 

smallest gaps to occur on the most fertile sites. 

 

Soil fertility at La Selva is influenced by substrate aging and erosion.  Most of the upland 

landscape is on highly weathered Oxisols and is low in soil P (Kleber et al. 2007).  Alluvial 

terraces are of similar origin, but support higher fertility though alluvial deposition (Kleber et al. 

2007).  There is evidence of nutrient rejuvenation on steep slopes within upland landscapes 

(Porder et al. 2006).  Plant investment in fine root biomass was higher on low-fertility upland 

plateaus than on relatively fertile alluvial terraces (Espeleta & Clark 2007).  Taken together, 

these findings indicate that there are plant responses to variability in soil P throughout the 

landscape, and suggest that Phosphorus availability could limit net primary production.  

Nonetheless, these effects did not generate detectible patterns in the sizes of disturbance patches 

< 2 m in height.  One mechanism that may explain gap clustering is persistent redisturbance near 

existing gaps.  In tropical moist forest on BCI, gap-edge trees were more likely to fall into 

existing gaps because of asymmetric crown growth, and newly formed canopy openings 

occurred closer to existing gaps than expected by chance (Hubbell & Foster 1986b; Young & 

Hubbell 1991).   
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The distribution of canopy height was close to the steady-state expectation.  This conclusion is 

based on the dominant eigenvector of the height transition matrix (Appendix A), and comparison 

of observed and expected height distributions (Fig. 3.5).  Differences between the observed and 

equilibrium conditions were small, and necessarily decreased through time.  Equilibrium canopy 

height under the recent 8.5-year disturbance regime is 20.0 m ± 6.6 m S.D., a height loss of 0.75 

m from the observed distribution of canopy height in 1997, and 0.40 m from 2006.  However, the 

steady-state distribution is not simply a shift of a few tens of cm from recent conditions.  Height 

variance was greater in 1997 (7.3 m S.D.) than the equilibrium expectation, a finding that is 

consistent with increased rates of tree mortality observed during the 1997-98 ENSO (D. B. 

Clark, pers. comm.), which was five months underway at the time of LiDAR data collection in 

1997 (US National Weather Service Climate Protection Center).  Subcanopy sites will increase 

in frequency through gap filling, and mean canopy height will decrease at the expense of the 

tallest forest trees under the recent disturbance regime (Fig. 3.5).  This indicates that the tallest 

forest trees lost height or died during the 8.5-year study, and have not yet been replaced. 

 

Sources of sampling bias 

There was a strong relationship between the proportion of canopy height < 15 m identified using 

field and LiDAR measurements (Fig. 3.7).  However, relative to field measurements, LiDAR 

over-estimated the frequency of low-canopy sites.  Reconciling this discrepancy would build 

confidence in the ability of LiDAR to provide unbiased measurements of canopy height.   

 

The Leica ALS50 collected irregularly-spaced estimates of vegetation height within circular 

laser pulses of 0.33 m in diameter.  Field measurements of canopy height were collected on a 
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regular 5 m sampling grid by projecting an imaginary 2 × 2 m quadrat on the vegetation directly 

above each point of measurement.  Because of the difficulty of determining exactly which 

branch or leaf is directly above the point of measurement in the field, holes in the forest canopy 

that were smaller than the 2 × 2 m quadrat were treated as closed canopy.  Thus, field 

measurements were not capable of detecting canopy openings smaller than 4 m
2
 in area, whereas 

LiDAR observations could penetrate through openings as small as 0.33 m across.  In relatively 

undisturbed plots, canopy gaps were small, whereas plots occupied by large fractions of low 

canopy contained large disturbance patches (e.g., one or a few large gaps).  If differences in 

sampling account for the discrepancy between LiDAR and field measurements, the magnitude of 

bias should be most severe in plots that are relatively undisturbed, and should decrease as the 

magnitude of disturbance increases.  This is precisely the pattern observed in our data, and the 

regression line approaches the one-to-one relationship as the magnitude of disturbance increases 

(Fig. 3.7).  It indicates that differences between field and LiDAR measurements of canopy height 

can probably be attributed to difficulties obtaining height measurements in the field, rather than 

LiDAR error.    

 

Conclusion 

LiDAR remote sensing is a powerful tool for quantifying the structure and dynamics of tropical 

forest canopies.  Here we have demonstrated this potential by using observations from two points 

in time to characterize the sizes and spatial properties of canopy gaps, and the dynamics of 

height loss and regeneration in an old-growth Neotropical rain forest in the Atlantic lowlands of 

Costa Rica.  The results demonstrate that persistent disturbance is a prominent feature of the 

dynamics of this forest, a finding that is consistent with ground based studies of upward height 
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growth in regenerating trees (Clark & Clark 2001).  Although there were substantial dynamics, 

the analysis demonstrates consistency in the sizes and spatial properties of Brokaw gaps at large 

spatial scales, and suggests that height changes were close to the steady-state equilibrium 

expectation during 8.5 years.  Taken together, these findings challenge the view that Neotropical 

forests are undergoing directional structural changes in response to global change.  The rarity 

and diffuse coverage of Brokaw gaps provides evidence of the necessary conditions for selection 

for long-distance dispersal.  Integrating LiDAR measurements of forest structure and dynamics 

with other types of remotely sensed data that can provide information on canopy nutrient and 

water status, and physiological condition of individual trees, promises to open new avenues in 

basic and applied research. 
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Fig. 3.1.  La Selva, Costa Rica.  Land use history and locations of field plots and LiDAR 

coverage.  The site has a mixed history of historical landuse, including cleared or developed 

areas, selectively logged forest, old-growth forest, current and abandoned plantations or pastures, 

an ecological reserve that is mostly old-growth, second-growth forests, and swamps.  LiDAR 

observations were collected by the FLI-MAP system in 1997 (rectangular area) and by the Leica 

ALS50 in 2006 (entire area).  Analyses here are from the 445 ha of old-growth forest for which 

LiDAR data from 1997 and 2006 are available.  Locations of 18 0.5 ha field-inventory plots are 

shown as black rectangles. 
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Fig. 3.2.  Canopy height model from LiDAR.  The sample is for 9 ha of old-growth forest at La 

Selva, Costa Rica in 1997.  Data are from the FLI-MAP system, and each pixel is 0.33 × 0.33 m.  

Canopy height models in 1997 and 2006 were resampled to 5 × 5 m for analysis of gap locations 

and canopy dynamics.  Pixels ≤ 2 m in height (Brokaw gaps) are distinguished in red.   
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Fig. 3.3.  Canopy height transitions in an old-growth tropical rain forest.  Data are probabilities 

of entering (left column) or exiting (right column) a given 1 m height class, denoted by text label 

and vertical dashed line.  Probabilities were estimated using 177,855 canopy height changes on a 

5 m sampling grid during 8.5 years using LiDAR remote sensing.  Many disturbances did not 

produce gaps in the forest canopy, and most gaps were produced by vegetation below the height 

of the main canopy. 
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Fig. 3.4.  Canopy dynamics in an old-growth rain forest.  Change in height (m) between 1997 

and 2006 was associated with canopy height in 1997 (P < 0.001, r
2
 = 0.281).  Low-canopy sites 

increased and tall sites had height loss.  The figure shows a random sample of 2,000 points, but 

the relationship was estimated using 177,855 observations made using LiDAR.  The vertical and 

horizontal dashed lines indicate the mean canopy height in 2006 (20.4 m) and zero net change, 

respectively. 
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Fig. 3.5.  Distribution of canopy height at La Selva, Costa Rica.  The distribution of canopy 

height in 1997 (left panel) was close to the steady-state expectation (dots in both panels) 

projected using height changes over 8.5 years.  By 2006 (right panel), subcanopy sites increased 

in frequency through gap filling, and mean canopy height decreased at the expense of the tallest 

forest trees. 
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Fig. 3.6.  Power law scaling relationships in canopy gap disturbance.  The expected number of 

gaps decreases linearly as a function of gap size on log-log axes (top panels).  The distance to the 

nth nearest gap increases linearly as a function of rank n on log-log axes (bottom panels).  Slopes 

of relationships were statistically indistinguishable between data from 1997 and 2006.  Dashed 

line in bottom panels is the expected distance to the nth nearest gap under complete spatial 

randomness and indicates that gaps are aggregated over distances of a few hundred meters.  

Curvilinearity associated with very large ranks in the bottom panels is due to edge effects. 
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Fig. 3.7.  Estimates of tropical forest structure from LiDAR.  The proportion of canopy height 

measurements < 15.00 m identified using field sampling and LiDAR data is highly correlated 

within 18 permanent inventory plots (left panel).  The size frequency distributions of gaps in the 

forest canopy identified using LiDAR or field measurements are statistically indistinguishable, 

but gaps > 125 m
2
 were not represented in plots (right panel). 
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Table 3.1.  A subset of the canopy height transition matrix.  Numbers are transition probabilities 

from the column to row height class over 8.5 years.  Estimates are from 177,855 canopy height 

changes observed in 445 ha using LiDAR remote sensing.     

           Canopy height class in 1997 (m) 
                    2006 < 2 2 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 
                    < 2 0.046 0.010 0.004 0.003 0.002 0.001 0.001 0.000 0.000 
          
2 – 5 0.121 0.053 0.023 0.014 0.013 0.010 0.007 0.005 0.003 
          
5 – 10 0.183 0.163 0.114 0.080 0.060 0.045 0.032 0.024 0.021 
          
10 – 15 0.320 0.321 0.298 0.251 0.179 0.115 0.076 0.047 0.039 
          
15 – 20 0.217 0.279 0.336 0.373 0.344 0.240 0.147 0.082 0.060 
          
20 – 25 0.077 0.125 0.166 0.209 0.291 0.350 0.274 0.170 0.105 
          
25 – 30 0.031 0.039 0.051 0.059 0.094 0.199 0.327 0.304 0.191 
          
30 – 35 0.005 0.008 0.008 0.010 0.014 0.035 0.122 0.294 0.334 
          
35 – 40 0.000 0.001 0.000 0.001 0.001 0.003 0.013 0.072 0.247 
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Table 3.2.  Canopy height dynamics in an old-growth tropical rain forest.  Numbers are the 

proportion of 177,855 canopy height estimates on a 5 m grid within each height class in 1997 

and 2006.  

           Canopy height class (m) 
                    Year < 2 2 – 5 5 – 10 10 – 15 15 – 20 20 – 25 25 – 30 30 – 35 35 – 40 

                    
1997 0.007 0.018 0.056 0.125 0.237 0.276 0.187 0.071 0.019 

          
2006 0.002 0.013 0.055 0.149 0.254 0.269 0.175 0.066 0.015 
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Table 3.3.  Correlation coefficients between gap size and slope or soil P. 

      Pearson’s r 
           1997 P (1-tailed) 2006 P (1-tailed) 

          
slope 0.017 0.609 -0.099 0.069 
     
Phosphorus -0.058 0.190 0.092 0.909 
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Table 3.4.  Cumulative percent of the number of gaps and area in gaps. 

        Gap area (m
2
) 

               50 100 150 200 250 300 
              cumulative percent of gaps (1997) 84 96 99 99 100 100 
       cumulative percent of area (1997) 66 83 91 94 100 100 
       cumulative percent of gaps (2006) 89 96 99 99 100 100 
       cumulative percent of area (2006) 76 90 97 98 100 100 
       cumulative percent of area (field) 83 97 100 100 100 100 
       cumulative percent of area (field) 69 92 100 100 100 100 
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CHAPTER 4 

POTENTIAL AND LIMITATIONS OF HYPERSPECTRAL IMAGING TO ESTIMATE 

UPPER-CANOPY FOLIAR NITROGEN IN A LOWLAND NEOTROPICAL RAIN FOREST
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

3
 Kellner, J.R.  Unpublished manuscript. 
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Introduction 

 

Nitrogen is a fundamentally important component of ecosystems.  In plant leaves it mediates 

rates of mass-specific photosynthesis (Amax), and is thus a central determinant of global net 

primary production (NPP).  Differences in the content of foliar N among tropical rain forest 

canopy tree species define the familiar life-history axis from ‘shade tolerance’ to ‘gap 

dependence’, and because light is the most limiting essential resource to regeneration in the 

forest understory, the content of N within plant leaves should determine rates of survival and 

growth, with implications for competition among neighbors and the likelihood of canopy 

recruitment. 

 

In this chapter, I summarize the status of an effort to estimate foliar N within tree canopies using 

airborne hyperspectral imaging over a tropical rain forest in the Atlantic lowlands of Costa Rica.  

The objectives are to describe and interpret variation in canopy N throughout a tropical rain 

forest landscape, and to test whether the growth and performance of individuals can be predicted 

using their nutrient status relative to neighbors.  The study encountered several limitations that 

have preempted useful estimates of canopy N to be made.  However, before describing the 

approach and concluding with a way forward, it is useful to document the observations that 

motivated the original proposal. 

 

Background 

The tropical wet forest at La Selva Biological Station contains > 300 species of trees, most of 

which occur at very low population densities (<<1 individual · ha
-1

).  This observation is a 
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hallmark of tropical biodiversity (Wallace 1878; Hubbell 1979), and has been the subject of 

long-term speculation.  How such diversity is generated, structured and maintained, and why 

differences occur between temperate and tropical biomes is, on the one hand, one of the most 

obvious natural history observations to anyone who has visited tropical and temperate biomes.  

One the other hand, we lack definitive answers to these questions, which remain at the forefront 

of debate in ecology and evolutionary biology (Hubbell 2001; Jablonski et al. 2006). 

 

Classical work has demonstrated the difficulty with which > 1 species can be made to coexist 

when the number of resources is limiting (Gause 1934; Tilman 1980).  It has also been shown 

that natural selection can  produce divergence of characters, such that strong competition 

between species is preempted (Darwin 1859).  Evidence for character displacement in plant 

population has been difficult to obtain.  Unlike most animals, plants live their lives rooted to the 

spot, and do not move.  All plants compete for the same relatively small set of essential 

macronutrients, water, light, and space, and it is challenging to think of ways in which these 

resources could be uniquely partitioned among hundreds of coexisting species.  Nonetheless, the 

idea that niche differences ultimately determine the distribution and abundance of species has 

remained prominent.  Under this view, traits of importance to the way a species acquires 

resources (i.e. functional traits, McGill et al. 2006) should differ to a corresponding degree, a 

process known as limiting similarity (Hutchinson 1961, MacArthur and Levins 1967, Shipley et 

al. 2006).  In plant communities, where interactions between individuals occur in a spatial 

setting, this hypothesis generates predictions for the spatial distribution of plant performance 

with respect to neighboring individuals.  Plants with traits that are similar to their neighbors 
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should perform relatively poorly, while individuals whose traits are distinct, and thus facilitate a 

different strategy of resource acquisition, should perform relatively well. 

 

The hypothesis of limiting similarity does not deny the existence of other processes, some of 

which may generate alternative predictions.  Habitat filtering occurs when resources are patchily 

distributed in space, and individuals adapted to particular resources are clustered within suitable 

habitat patches.  Familiar examples in tropical rain forest trees are species with topographic or 

edaphic biases (Clark et al. 1998; Webb & Peart 2000; Harms et al. 2001).  Although habitat 

filtering would produce spatial clustering of species traits to the extent that individuals are 

tracking physiochemical gradients in the environment, performance within habitat patches 

should still be influenced by the intensity of competition with neighbors, and the hypothesis of 

limiting similarity should still operate.  Testing the hypothesis of limiting similarity is an 

exercise in calculating the strength of evidence in support of the hypothesis, rather than 

attempting to reject all hypotheses but one. 

 

The hypothesis of limiting similarity has been an important contributor to ecological thought for 

more than 40 years, but its ability to explain patterns of abundance in tropical tree communities 

has been equivocal.  There are two reasons for this.  First, a rigorous test in plant communities 

requires information on which characters dictate growth and performance of individuals, and 

identifying the differences in those characters that permit individuals to have fitness advantages.  

Such information may sometimes be available in animal communities, but in plants it is far from 

obvious.  For example, no one would dispute that the long and decurved bill of the Hawaiian 

honeycreeper, I’iwi, (Vestiaria coccinea) facilitates better access to sources of nectar deep within 
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Lobeliod flowers, and it cannot be disputed that the stout and pointed bill of the ‘Akiapola’au 

(Hemignathus munroi), or Hawaiian Woodpecker, allows that species to obtain insects and 

nectar that are not available to the I’iwi.  Because Hawaiian honeycreepers are related by 

common decent to a finch-like ancestor, and co-occur within Hawaiian forests, bill morphologies 

are strong evidence that character displacement has occurred, and that it operated on strategies of 

food acquisition, and possibly mate attraction (Freed et al. 1987).  Yet, all plants are green.  To 

be sure, co-occurring plant species differ in traits that should have fitness consequences, and 

there is clear evidence that plants can respond to underlying gradients in resources or toxins in 

ways that are advantageous to growth and survival (e.g., Schat et al. 1996; Treseder & Vitousek 

2001).  However, we know but little of the mechanisms through which such adaptation occurs, 

and next to nothing of whether these mechanisms are responsible for patterns of community 

assembly in nature. 

 

Second, strong inferences in population and community dynamics of tropical rain forest trees are 

restricted to the earliest life stages (seeds, seedlings, saplings, and sub-adult trees for some 

relatively ‘common’ species).  Recruitment to the canopy can take decades or centuries to occur 

(Clark & Clark 2001), and because adults for most species are rare, direct observation of adult 

dynamics has not been possible (but see chapter two).  This is a striking difference from animal 

ecology, where researchers sometimes ignore juveniles entirely, and consider only on the 

dynamics of individuals of reproductive age, or even reproductive females.  There are important 

differences between plants and animals, and reasons to suspect that the juvenile life stages may 

be more relevant to understanding population dynamics and coexistence in plant populations 

(Janzen 1970).  However, our inability to observe directly the dynamics of the component of tree 
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populations with positive fitness, or to identify characteristics that determine whether a given 

juvenile will recruit to the adult life stage, is a profound limitation that cannot be overstated.  

Thus, inferences about the importance of processes that occur early in growth and development, 

such as regeneration niches, life history tradeoffs, and seed to seedling density dependence 

ultimately depend on their ability to influence the composition of canopies, but our capacity to 

demonstrate that such processes actually do influence the composition of canopies has been 

critically limited.  If life-history differences, regeneration niches, or density dependence do not 

determine which individuals will recruit to the canopy, their role in structuring tropical tree 

communities would be in doubt. 

 

Remote sensing of community dynamics 

 

I take a different approach to evaluating the consequences of trait differences on species 

interactions.  By using airborne imaging spectroscopy (also called ‘hyperspectral remote 

sensing’) it is possible to quantify the biophysical and chemical properties of vegetation 

throughout very large areas (Asner et al. 2004; Asner & Vitousek 2005).  These estimates can be 

integrated with LiDAR observations (chapter three), which provide finely grained measurements 

of canopy height and ground elevation, to interpret patterns in the structure and dynamics of 

vegetation.  With estimates of the concentrations of chemical constituents made using remote 

sensing, it becomes possible to directly observe dynamics within forest canopies.  Because foliar 

N is a strong determinant of Amax, and is likely to define a primary axis of life-history variation, 

it should provide a strong test of the hypothesis of limiting similarity throughout a tropical rain 

forest landscape.   
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Imaging spectroscopy 

Imaging spectroscopy is the measurement of reflected solar radiation within contiguous, narrow 

channels of the electromagnetic spectrum between 450 and 2500 nm (Ustin et al. 2004; Asner 

2008).  When radiation is reflected by plant tissues, known properties of the spectral response to 

physiological processes, structure, and biochemistry can be used to identify species (Clark et al. 

2005; Carlson et al. 2007), to estimate differences in canopy water and NPP associated with 

drought stress (Asner et al. 2004) and to quantify concentrations of canopy nutrients and 

pigments within foliar tissue (Smith 2002; Asner & Vitousek 2005; Ollinger 2005; Asner 2008).  

Throughout the visible wavelengths (VIS, 400 – 700 nm), reflectance is dominated by 

chlorophyll and other leaf pigments (Asner 2008).  Chlorophyll-a has fundamental absorptions 

centered at 430 and 660 nm, and chlorophyll-b has fundamental absorptions at 460 and 640 nm 

(Curran 1989; Asner 2008).  There is an abrupt increase in reflectance of green vegetation at 

approximately 700 nm (the ‘red edge’, Fig. 4.1) and radiation is strongly reflected throughout the 

NIR (700 – 1300 nm).  Water has absorption features centered at 970, 1140, and 1940 nm.  Leaf 

morphology and structure are important contributors to reflectance throughout the NIR and 

short-wave infrared (SWIR, 1300 – 2500) regions, including leaf hairiness, thickness, presence 

of air spaces, lignin and cellulose contents (Curran 1989; Asner 2008).  

 

Although features of the spectral response can be associated with biomechanical properties of 

vegetation, it is important to note that there is no particular wavelength or spectral feature of 

foliar tissue that relates directly to the content of foliar N, or any other biomechanical property 

(Asner 2008).  Direct relationships can be established using pure substances under laboratory 

conditions, but in practice, the reflectance of different components of vegetation combine with 
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geometric properties of canopies to generate the observed spectral response.  Most N in plant 

leaves is bound in the enzyme Rubisco, which is strongly correlated with the abundance of 

chlorophyll, and therefore N content in leaves can be correlated with absorption features in the 

visible wavelengths.  Nitrogen in protein has absorption features centered at 1510, 1940, 2180, 

and 2350 nm (Curran 1989).   Other sources of N are not expressed directly in the spectral 

response, but covary with traits that do produce characteristic features (Reich et al. 1997), such 

as SLA and leaf water content.  Thus, the sensing of N or other properties of foliar vegetation 

using remotely sensed data characterizes a suite of physical and biological variables that can be 

very highly correlated with the quantity of N from field measurements (Asner 2008). 

  

Hyperspectral data 

The HYperspectral Digital Imaging Collection Experiment (HYDICE) is an airborne imaging 

spectrometer that collected data over La Selva Biological Station on March 30, 1998.  The 

HYDICE sensor measured radiance within 210 channels covering the 400 to 2500 nm region of 

the electromagnetic spectrum (Basedow et al. 1995; Clark et al. 2005).  La Selva data were 

collected from 3.17 - 3.20 km altitude, producing a pixel resolution of 1.6 m at ground elevation, 

in which individual tree crowns are clearly resolved (Clark et al. 2005).  The data were 

georeferenced and orthorectified using a 0.33 m LiDAR canopy height model (described in 

chapter three and in CLARK ET AL 2005), and atmospherically corrected to surface reflectance 

using ACORN (ImSpec LLC).  Noisy bands < 437 nm, and bands in the 1313 – 1466 nm and 

1771 – 1994 nm regions were removed from the analysis.  A full description of image processing 

and calibration is in Clark et al. (Clark et al. 2005)  
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Estimation of canopy N 

I used partial least squares regression (PLS) to predict the abundance of upper-canopy N using 

observations from HYDICE.  PLS collapses high-dimensional data into a smaller number of 

independent variables, and finds the least-squares estimates of parameters that relate a vector of 

observations to a matrix of predictors with the highest explanatory power (normally based on r
2
).  

It has been used extensively for estimation of leaf N from spectroscopic data (e.g., Smith 2002; 

Ollinger 2005).  A limitation to the use of PLS is that it is necessarily site and data-set specific.  

Like other forms of eigen analysis, the most important factors in a PLS model may lack 

generality or physical interpretation, and the method is therefore prone to over fitting.   

 

To evaluate the ability of PLS regression to predict upper canopy foliar N using HYDICE, I 

employed a ‘leave-one-out’ cross-validation.  In this approach, one field estimate of canopy N is 

deleted from the data, and the empirical relationship is estimated using the remaining n – 1 

observations.  The model is then used to predict the value of the omitted observation.  This 

process is repeated for all field observations and the relationship between observed and predicted 

field N is assessed. 

 

The PLS model was parameterized using field measurements of upper canopy foliar % N that 

were collected between June 2003 and June 2005.  Leaf samples were obtained from 22 sites by 

collecting upper-canopy vegetation using a mobile scaffolding tower.  The location of each tower 

was established a priori using stratified random sampling within old-growth forest to account for 

underlying gradients in soil Phosphorous (P) and topographic slope.  Previous work has 

demonstrated that soil P probably limits productivity at La Selva (Espeleta & Clark 2007), and 
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that nutrient rejuvenation occurs on steep slopes (Porder et al. 2006).  Thus, the sampling regime 

accounted for the dominant sources of variation in nutrient limitation throughout the landscape.  

At each sampling location, a scaffolding tower was constructed in sections of 2.45 m × 1.86 m × 

1.86 m (L × W × H).  The number of sections at each site varied depending on the maximum 

vegetation height at the particular site (from one to twenty-four sections).  Within each tower 

section, all vegetation was harvested and processed.  Clark et al. (2008) described the vertical 

and horizontal distribution of LAI, and Cavaleri et al.(2006) provide an analysis of woody CO2 

efflux.  Cavaleri et al. (2008) quantified foliar and ecosystem respiration, and demonstrated that 

small temperature fluctuations can dictate changes in carbon balance for the forest at La Selva.  

For the purposes of this study, foliar N was estimated from randomly selected leaves within the 

top section of each tower sample using a LECO TruSpec CN Determinator at Colorado State 

University (LECO Corporation, St. Joseph, MI, USA).  The location of each tower was 

established using differentially-corrected GPS.  To associate field measurements of canopy N 

with reflectance, I extracted the 161 reflectance measurements at the location of each tower 

using a geographic information system. 

 

PLS regression was applied to the estimates of foliar N from the top section of each tower, as 

opposed to the entire column of vegetation sampled.  This is appropriate because the effective 

photon penetration depth (EPPD) of radiation in the 400 - 2500 nm range is strongly wavelength 

dependent (Asner 2008).  Knowing precisely the canopy volume to which estimates of N from 

remote sensing apply will depend on the specific absorption features that most strongly predict 

field measurements.  In general, N is expressed directly by features with shallow EPPD (< 2 LAI 
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units).  At La Selva, this corresponds to the upper-most portion of the vertical tower section and 

canopy (Clark et al. 2008).     

 

Results and Discussion 

 

Field samples of upper canopy foliar N ranged from 1.22 – 3.00 %, with a mean of 2.21 ± 0.09 

S.E.  PLS regression failed to predict field measurements of foliar N at La Selva with reasonable 

explanatory power (Fig. 4.2).  I considered regression models with up to 10 factors.  Although 

the relationship became statistically significant using ≥ nine factors, the highest coefficient of 

determination was 0.15 (ten factors), and I conclude that the ability of 1998 HYDICE 

observations to predict field measurements of upper canopy % N collected between 2003 and 

2005 is poor. 

 

There are at least three non-independent reasons why 1998 HYDICE observations could have 

been unable to predict field measurements of leaf N at La Selva.  (1) The HYDICE sensor lacks 

the sensitivity of other imaging spectrometers that have been used to predict N with high 

accuracy.  (2) Geolocation errors may have prevented correct association between reflectance 

spectra and field measurements.  (3) The dynamics of the forest canopy and foliar N changed 

through time, and too much time had passed (5 – 7 years) between collection of image data and 

field measurements for any relation that existed to remain strong. 
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Precision of HYDICE 

The HYDICE system does not achieve the high precision of current-generation imaging 

spectrometers such as NASA’s Airborne Visible and Infrared Imaging Spectrometer (AVIRIS), 

which has demonstrated capacity to predict field measurements of upper canopy foliar N with 

high accuracy (e.g., Asner & Vitousek 2005; Martin et al. 2008).  However, this is unlikely to 

account for the inability of HYDICE to predict field measurements at La Selva.  I examined 

spectral responses using HYDICE reflectance observations within crowns of four species of trees 

in the upper canopy, and one standing dead individual of unknown species identity in a tree-fall 

gap (Fig. 4.1).  Three of the four living trees were mapped in the field as part of a long-term 

demographic study (the TREES project, Clark & Clark 1992), and field work has been conducted 

to associate observable crowns using remotely sensed data with known stems on the ground 

(Clark et al. 2005, J. Kellner, unpublished data).  The four species are Balizia elegans, Dipteryx 

panamensis, Lecythis ampla, and Ceiba pentandra.  I haphazardly selected a single pixel within 

the crown of each tree for the purposes of illustration (Fig. 4.1).  The standing dead tree is a 

conspicuous feature that I first observed within LiDAR imagery from the FLI-MAP system, and 

subsequently visited in the field in 2005 because I wondered what it was.   

 

This simple analysis demonstrates that there are clear differences in spectral responses between 

the species, and between dead woody tissue and living foliar tissue (Fig. 4.1).  The red-edge at 

700 nm and water absorption features at 970 and 1140 nm are clearly resolved in each vegetation 

sample, but are absent from the standing-dead tree.  Reflectance in the SWIR is also higher for 

the standing-dead sample than in any of the living trees, which is consistent with the dominance 

of wood reflectance by lignin. 
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Examination of the spectral responses in Fig. 4.2 is instructive, because it demonstrates that 

features correlated with biomechanical properties of vegetation, and foliar N in particular, appear 

to be well resolved by the HYDICE data.  One way to determine which regions of the 

electromagnetic spectrum are associated with foliar N in a given sample is to examine a plot of 

the factor weights from PLS regression as a function of wavelength.  Regions of the spectrum 

associated with absolutely large coefficients contain information on the content of foliar N.  

Martin et al. (2008) used data from AVIRIS to estimate upper canopy foliar N at five sites in 

eastern North America.  The coefficient of determination relating remote predictions to field 

measurements for all sites combined was 0.83.  Their plot of factor weights as a function of 

wavelength shows that the highest weights were associated with features that are present in the 

HYDICE data.  Namely, the most important determinants of foliar N from AVIRIS were a 

negative relationship near the red edge (700 nm), and strong positive relationships between foliar 

N and water absorption features in the NIR.   

 

Geolocation accuracy 

Geolocation accuracy is also unlikely to account for the poor ability of HYDICE to predict upper 

canopy leaf N at La Selva.  Locations of field sampling within towers were established using 

differentially corrected GPS with sub-meter accuracy, and HYDICE image data were 

orthorectified using a 0.33 m LIDAR canopy height model.  Evidence that the LiDAR canopy 

height model is referenced precisely comes from comparison to an independently acquired 

sample of LiDAR data from the Leica ALS50 (chapter three).  The mean absolute difference 

between horizontal locations of conspicuous features that were observed in FLI-MAP and Leica 

digital canopy models was 1.43 m ± 0.86 m S.D., which is less than the side length of a HYDICE 
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pixel.  Even if the specific HYDICE pixel from which field measurements were collected had 

been shifted by several meters, values of N in the upper canopy should be correlated over small 

distances, at least within individual crowns. 

 

Canopy dynamics   

The most plausible explanation for the inability of HYDICE to predict field measurements of 

foliar N is that the forest at La Selva is dynamic, and contents of foliar N within vegetation are 

likely to change through time.  In chapter three, I used LiDAR observations from 1997 and 2006 

to quantify height changes throughout old-growth forest.  I found that most sites throughout the 

old-growth landscape experienced large increases or decreases in height; changes in height of > 5 

m occurred throughout 43% of the old-growth landscape during an 8.5 year interval.  The high 

frequency of disturbance in the canopy indicates that many features of the canopy that were 

present when the HYDICE data were acquired in 1998 no longer remain, so that field 

measurements from 2003 - 2005 may not be associated with the same canopy objects that were 

present in 1998.  Even if structural changes do not occur, the dynamics of foliar N within 

individual crowns could weaken a relationship between spectroscopic and field measurements 

that are collected at different points in time.  Wood et al. (2005) monitored contents of N and P 

in leaf litter within old-growth forest at La Selva between 1998 and 2001.  They documented 

significant changes in absolute foliar % N.  At the beginning of their study mean % N in leaf 

litter was about 2%.  It then trended downward to ~ 1.4% by 2001.  Though small in magnitude, 

a change of even 0.5 % in the content of foliar N is approximately 25 % of the mean value 

observed using towers samples.  
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A way forward 

The finding that spectral responses from HYDICE contain absorption features that were 

associated with foliar nitrogen in a separate study is cause for optimism.  It is likely that foliar N 

can be retrieved from the 1998 HYDICE data using a different approach.  One method would be 

to assign values of N to pixels in the HYDICE image by associating the reflectance spectrum of 

each pixel to the closest match in a reference library of vegetation spectra with known properties. 

For example, if the least-squares match for a pixel within the crown of a D. panamensis had 1.5 

% foliar N, that value could be assigned to the given D. panamensis pixel.  Validation could be 

accomplished by establishing independent training and testing sets, or by using a leave-one-out 

cross validation.  A similar procedure was implemented by Asner and Vitousek (2005) to predict 

upper canopy foliar N in a Hawaiian montane rain forest.  The coefficient of determination 

between field and remote measurements was 0.91 (Asner & Vitousek 2005). 

 

Summary   

Quantifying biochemical properties of rain forest canopies is possible using hyperspectral 

imaging, and can help to test hypotheses about forest dynamics through direct observation of 

canopy trees throughout large areas.  However, using observations from the airborne HYDICE 

sensor and field measurements, PLS regression models were unable to predict upper canopy 

foliar N with precision or accuracy for tropical wet forest at La Selva, Costa Rica.  This probably 

reflects underlying changes in the dynamics of vegetation and contents of foliar N between the 

time of collection of image and field data, rather than inadequate information contained within 

spectroscopic measurements.  Absorption features associated with biomechanical properties of 

plants are clearly resolved in spectroscopic measurements using HYDICE, including features 
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that have been associated with foliar N using AVIRIS at other sites.  A sampling procedure that 

associates vegetation spectra from large databases of tropical plants with HYDICE observations 

may provide robust estimates of upper canopy foliar N at La Selva.  
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Fig. 4.1.  Optical reflectance for rain forest canopy trees.  Plots show spectral responses for four 

species and a standing dead individual of unknown identity.  Each sample is the spectral 

response within a single haphazardly selected pixel representing green vegetation or standing 

dead wood.  The data are from hyperspectral imaging collected using the HYDICE sensor over 

La Selva Biological Station during March, 1998.  Biophysical properties of plant wood and leaf 

tissues are clearly resolved. 
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Fig. 4.2.  Upper canopy foliar N from 22 vertical tower samples of vegetation within old-growth 

rain forest.  Data are from the top 1.86 m of the canopy at each tower location.  PLS regression 

was unable to predict field measurements of upper canopy foliar N (P = 0.306, r
2
 = 0.005).  The 

line denotes a 1:1 relationship. 
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CHAPTER 5 

CONCLUDING REMARKS 

 The landscape perspective of canopy tree populations that is possible using remote 

observations should provide novel insights and better statistical power to test hypotheses about 

the drivers of population and community dynamics.  This dissertation has demonstrated novel 

capacity to quantify the essential components of population dynamics for rain forest canopy trees 

using readily available remotely sensed data, even when detection is imperfect, and without 

estimating abundance.  Although the spectral characteristics of flowering T. guayacan were 

useful in the remote identification of this species, the analytical approach developed here is 

general and will allow demographic analyses of other canopy tree species using satellite or 

airborne remote sensing.  Widespread monitoring for model organisms is achievable using 

contemporary satellite observations.  Studies should establish which canopy tree species can be 

reliably sampled by satellite by focusing on periods of spectral distinctness associated with 

phenological change (Frankie 1974).  Larger numbers of species can be monitored using airborne 

hyperspectral observations, even in the absence of conspicuous phenology (Asner & Vitousek 

2005; Clark et al. 2005; Castro-Esau et al. 2006; Carlson et al. 2007).   

 

 LiDAR remote sensing is a powerful tool for quantifying the structure and dynamics of 

tropical forest canopies.  Here I have demonstrated this potential by using observations from two 

points in time to characterize the sizes and spatial properties of canopy gaps, and the dynamics of 

height loss and regeneration in an old-growth Neotropical rain forest in the Atlantic lowlands of 

Costa Rica.  The results demonstrate that persistent disturbance is a prominent feature of the 

dynamics of this forest, a finding that is consistent with ground based studies of upward height 
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growth in regenerating trees (Clark & Clark 2001).  Although there were substantial dynamics, 

the analysis demonstrates consistency in the sizes and spatial properties of Brokaw gaps at large 

spatial scales, and suggests that height changes were close to the steady-state equilibrium 

expectation during 8.5 years.  Taken together, these findings challenge the view that Neotropical 

forests are undergoing directional structural changes in response to global change.  The rarity 

and diffuse coverage of Brokaw gaps provides evidence of the necessary conditions for selection 

for long-distance dispersal.  Integrating LiDAR measurements of forest structure and dynamics 

with other types of remotely sensed data that can provide information on canopy nutrient and 

water status, and physiological condition of individual trees, promises to open new avenues in 

basic and applied research. 
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