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ABSTRACT 

Students often experience a lack of educational care suited to their particular needs and 

conditions. To address that issue, teachers need appropriate methods to understand what students 

know.  This dissertation claims that dynamic formative assessments of how learners are thinking 

about and responding to problem situations provide a viable approach. The studies of this 

dissertation thus focus on theories and methodologies applicable to formative assessment. The 

sequence of studies involves the following: (a) defining a cognitive model of learning progress in 

complex problem-solving contexts; (b) devising a robust concept map technology to elicit an 

individual’s understanding to a problem situation; and (c) developing diagnostic methodologies 

to assess and respond appropriately to individual cognitive changes. 

The theory of mental models explains that students understand a complex problem based 

on their own knowledge base that is likely a structure. Drawing on the theory of mental models 

this dissertation suggested two theoretical frameworks involving (a) the features of knowledge 

structure (3S: Surface, Structure, and Semantic) and (b) the five-stage model of learning progress. 

Learning progress was considered as a process of transitioning from one stage to another within 

a student’s knowledge base. 



It is necessary that assessment methods take into account the complex, dynamic structure 

of mental models so that diagnostic, formative information becomes precise. The concept map 

technique was assumed to represent descriptive and complex knowledge structures in instances 

in which semantic relations elicited from students’ natural language responses were used. A 

comparison study in this dissertation proved that the semantic relation approach could construct 

more meaningful concept maps. 

The results from Confirmatory Factor Analyses (CFAs) supported that knowledge 

structure is likely to consist of the three features (3S: Surface, Structure, and Semantic). Latent 

class modeling methods were used to validate the stages of learning progress. The results did not 

confirm that all the stages assumed in the model exist in the data. It was argued that missing 

stages can be theoretically and statistically justified. In short, the proposed stage-sequential 

model of learning progress is able to serve as a diagnostic model of learning progress in 

problem-solving situations. 

INDEX WORDS: Formative assessment, Learning progress, Mental models, 
Cognitive change, Problem solving, Concept map, Latent class model    
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Background of the Studies 

This dissertation is in concert with the claim that a critical and persistent issue in 

instructional design and technology is to provide students with learning environments suited to 

their individually different needs and characteristics (Cronbach, 1957; Park, 1996). However, it 

remains a challenge to implement personalized support on a large scale, primarily due to a lack 

of appropriate methods and the heavy burden placed on teachers. 

To address the issue, my professional research agenda centers on designing and 

developing adaptive learning environments. Adaptive learning environments can be defined as 

instructional conditions that involve diagnosing a student’s existing knowledge and providing 

tailored instructional supports to each individual (or a group having the same status) so that an 

individual student can progress toward the learning goals (Azevedo & Jacobson, 2008; Lee & 

Park, 2007; Shute & Zapata-Rivera, 2007).  

To plan and implement an adaptive environment, the emphasis should be on the 

individual and individual differences, especially in terms of learner preconceptions and cognitive 

progression over time.  Examples of adaptive learning environments are the intelligent tutoring 

systems (ITS) that aim at diagnosing a student’s learning needs and accommodating instruction 

to the student’s ongoing changes in learning (Lee & Park, 2007). There have been studies to 

advance ITS for the last two decades. Some ITS studies developed instructional tools and 

simulators to model human tutors and human cognition (Aleven, Popescu, & Koedinger, 2001; 
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Koedinger & Anderson, 1998; Seidel & Park, 1994). For example, knowledge representation 

methods such as semantic networks were included in some ITS to present knowledge based on 

students’ responses to the tasks (Akhras & Self, 2002; Shute & Psotka, 1996).  

Ohlsson (1987, 1993) criticized ITSs, asserting that they have limited adaptability for 

teaching so that ITSs are not intelligent when compared to human expert teachers. Although 

focusing on technologies such as AI (Artificial Intelligence), ITSs failed to employ rigorous 

learning principles and instructional strategies used for formative assessment and personalized 

instruction (Park, Perez, & Seidel, 1987). It is largely admitted that the challenge is to build a 

theoretical framework that accurately assesses an individual’s or a group of learners’ 

characteristics such as levels of knowledge and skills (Conati, 2002; Park & Lee, 2003; Snow, 

1994).  

This dissertation claims that dynamic formative assessments of how learners are thinking 

about and responding to problem situations provide a more viable approach. The studies of this 

dissertation focus on theories and methodologies applicable to formative assessment in terms of 

the recognition of the relevance of mental models in the development of knowledge and 

expertise, and technologies that now make it possible to elicit meaningful representations of 

mental models and assess those against productive mental models of experienced problem 

solvers.  

More specifically, Spector (2004) framed a central question pursued in the field of 

instructional technology as “how to assess progress of learning in a complex domain.” (p. 276).  

Learning progress can be defined as the changes in a learner’s understanding, which are 

gradually modified through instruction in the direction of expert-like knowledge and 

performance. It is assumed in this study that, in response to a problem situation, learners 
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experience qualitatively distinct cognitive stages representing diverse mental models. This 

dissertation work as an initial effort focuses on (a) defining a cognitive model of learning 

progress in complex problem-solving contexts, (b) devising a robust concept map technology to 

elicit an individual’s understanding of a problem situation, and (c) developing diagnostic 

methodologies to assess and respond appropriately to individual cognitive changes. 

Theoretical Orientation for the Studies 

Theory of Mental Models 

Drawing on the theory of mental models, developmental psychology, and studies of 

expertise development, this dissertation develops testable propositions that are applicable to the 

effective design of formative assessment. Mental models are defined as iconic cognitive artifacts 

resulting from perception and linguistic comprehension, representing certain aspects of external 

situations in specific domains (Johnson-Laird, 2005a, 2005b). Presumably, these cognitive 

artifacts are constructed by an individual based on his/her preconceptions, cognitive skills (e.g., 

critical thinking and meta-cognitive skills), and perceptions of the problem. The cognitive 

artifacts evolve and are gradually modified through experience and instruction (Carley & 

Palmquist, 1992; Collins & Gentner, 1987; Seel, 2001, 2003, 2004; Seel & Dinter, 1995; Shute 

& Zapata-Rivera, 2008; Smith, diSessa, & Roschelle, 1993).  

The theory of mental models describes both knowing and teaching in terms of how 

knowledge is represented in the human mind, how learning evolves, and how learning progress is 

conceptualized in the context of instruction. When a learner compares new information with his/ 

her existing model, the new situation can be perceived in terms of an existing structure. 

Otherwise, a learner can modify an entire model to fit a new experience when a learner fails to 

adjust (Johnson-Laird, 1983; Ifenthaler, 2010; Norman, 1983; Seel, 2003; Seel & Dinter, 1995). 
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The latter cognitive change results in qualitatively different mental models (Seel, 1983, 2006). 

Instruction for the purposes of the studies included in this dissertation can be characterized as an 

effort to facilitate productive cognitive changes in critical reasoning and the ability to solve ill-

structured problems. Spector (2004) argued that one could view learning progress in complex 

problem solving as cognitive changes in the direction of expert-like mental models.   

Learning progress is likely to be well-illustrated by the notion of mental models when 

learning progress is characterized as a set of directional changes in a learner’s mental 

representations (Schlomske & Pirnay-Dummer, 2008; Schvaneveldt, Durso, Goldsmith, Breen, 

& Cooke, 1985; Spector & Koszalka, 2004). Mental models can be hypothesized as progressing 

through different levels of structural knowledge. Jonassen, Beissner, and Yacci (1993) proposed 

structural knowledge as a distinctive type of awareness separated from and intermediating 

between declarative and procedural knowledge. Problem solving often relies on a structural 

knowledge base that requires the integration of ideas and concepts (Dochy, Segers, Van den 

Bossche, & Gijbels, 2003; Segars, 1997). In that sense, assessment of problem solving 

necessarily takes into account the organization of the knowledge base, which requires a 

theoretical framework of knowledge structures involved in problem solving so that different 

levels of problem solving can be illustrated (Gijbel, Dochy, Van den Bossche, & Segers, 2005).  

 One cannot see a mental model directly. Mental models are inferred entities. However, it 

is possible to elicit representations of these internal constructions and use them as the basis for 

judging how an individual’s ability to reason about complex problems is developing. Mental 

model representations are believed to consist of propositional representations as structured 

symbols and images as visualized icons (Johnson-Laird, 2005b; Newell, 1990). Concept 

maps−structural knowledge representations consisting of concepts and relations (Clariana, 2010; 
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Narayanan, 2005; Novak & Canãs, 2006; Spector & Koszalka, 2004)−are generally accepted as 

re-representations of a student’s mental models.  

In order to elicit structural knowledge, a number of technologies have been developed, 

including the following: DEEP (Dynamic Evaluation of Enhanced Problem-solving; see Spector 

& Koszalka, 2004); SMD (Surface, Matching, and Deep Structure; Ifenthaler, 2007); T-

MITOCAR (Text Model Inspection Trace of Concepts and Relations; Pirnay-Dummer, & 

Ifenthaler,  2010); CmapTools (Novak & Canãs, 2006); jMap (Jeong, 2008); ACSMM (Analysis 

Constructed Shared Mental Model; O’Connor & Johnson, 2004); KU-Mapper (Clarian & 

Wallace, 2009); ALA-Mapper (Analysis of Lexical Aggregates-Mapper; Taricani & Clariana, 

2006); ALA-Reader (Analysis of Lexical Aggregates-Reader; Clariana & Wallace, 2007, 

Clariana et al., 2009); and KNOT (Knowledge Network Orientation Tool; Schvaneveldt, 1990).   

Developmental Psychology and Expertise Development 

Developmental psychologists believe that both learning and development proceed 

through similar qualitative changes (Chen & Siegler, 2000; Opfer & Siegler, 2004; Siegler, 

Thompson, & Opfer, 2009; Werner, 1957; Vygotsky, 1934/1978). Learners may experience 

qualitatively different levels of knowledge structures when engaged in problem solving. Just as 

Piaget (1964) argued that children experience qualitatively-distinct sequential knowledge states, 

developmental psychologists have supported the idea that learning and development evolve as 

the learner constructs a qualitatively-distinct knowledge structure (Alexander, 2003, 2004; 

Flavell & Miller, 1998; Siegler, 2005; Siegler, Thompson, & Opfer, 2009; Werner, 1957; 

Vygotsky, 1934/1978).  According to Siegler (2005), although some findings still seem to be 

related to the age-dependent changes asserted by Piaget, more findings indicate that children, 
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even in a short-term period of learning, experience qualitative changes in mental model states 

(e.g., Chen & Siegler, 2000; Opfer & Siegler, 2004; Siegler et al., 2009). 

 It is argued in this dissertation that plausible stages applicable to the learning progress 

can be adopted from the studies of the development of expertise. In this view, moving toward 

higher levels of expertise involves “changes to different knowledge structures and complex 

acquired mechanisms” (Ericsson, 2003, p. 67). Considering the earlier discussion that people 

experience qualitatively distinct cognitive changes in the short- as well as long-term, changes in 

expertise development is likely to be applicable to describing the stages of learning progress. For 

example, current expertise studies tend to be interested in gaining expertise in domain specific 

learning and instruction (e.g., Alexander, 2003, 2004; Chi, 2006). 

Design of the Studies Comprising this Dissertation 

 

Figure 1.1. Research process. 

As Figure 1.1 illustrates, although this dissertation is composed of four independent 

manuscripts, the four individual studies were associated with one another and conducted in a 

sequential order. The first study as a conceptual paper aimed at building a theoretical framework 
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for diagnosing learning progress in problem-solving contexts.  In order to evaluate the suggested 

framework of qualitatively distinct stages of learning progress, it was necessary to have a 

concept map technology able to yield descriptive and precise data. Thus, the next step was to 

explore and validate current concept map technologies by comparing them to an alternative 

approach serving as a benchmark model. The third study, based on the findings of the second, 

proposed a new concept map technology and elaborated specific concept mapping algorithms. 

The new technology provided ways to gather the concept map information used in the last study. 

In this final study, the theoretical framework suggested in the first was tested based on 

quantitative validation methods using 143 written responses to a problem scenario gathered from 

136 students and seven experts. 

Manuscripts 

The following four papers included in this dissertation encapsulate the research 

conducted since August 2010. All papers were submitted to a professional journal. The first 

paper (chapter 2), Theoretically grounded guidelines for assessing learning progress: Cognitive 

changes in problem-solving contexts, provides a theoretical framework for learning progress in 

complex problem solving by drawing on the theory of mental models, the development of 

expertise, and the transfer of learning. The framework of learning progress consists of 

qualitatively distinctive sequential stages, each of which illustrates particular features of 

knowledge structure representing a problem situation. This paper was published in Educational 

Technology Research and Development DOI: 10.1007/s11423-012-9247-4.   

The second paper (chapter 3), Cross-validation study of methods and technologies to 

assess mental models in a complex problem-solving situation, investigates current methods and 

technologies that yield concept maps. Concept maps consisting of concepts (nodes) and relations 



8 

(links) are often used as representations of students’ mental models. The focus of this paper is to 

identify more reliable, valid methods and technologies, or their alignments when natural 

language (i.e., written text) is used as raw data. This paper was published in Computers in 

Human Behavior, 28 (2): 703-717.  

The third paper (chapter 4), Development of an assessment technology for measuring 

knowledge structures using natural language response to a complex problem scenario, aims at 

devising and validating a new concept map technology for drawing concept maps from students’ 

written responses to a complex problem-solving situation. The proposed concept map technology 

is labeled as the Semantic Relation Model. Semantic relations of paired concepts distilled from 

text play a key role in creating a concept map analogous to a student’s internal semantic structure. 

The journal to which this paper was submitted in April 2012 is Contemporary Educational 

Psychology.  

The fourth paper (chapter 5), Investigation of a model of stage-sequential learning 

progress in problem-solving, validates the theoretical framework suggested in the first paper, ‘a 

model of stage-sequential learning progress,’ based on empirical data. The concept map 

technology proposed in the third paper is used for analyzing students’ written responses to a 

problem scenario and eliciting their concept maps. In addition, in this study, diverse parameters 

describing the features of concepts maps are defined and explored; then, a set of parameters are 

determined as the best indicators of concept maps. Lastly, drawing on latent class modeling 

methods, the hypothesized model of learning progress is tested. This paper was submitted to 

Contemporary Educational Psychology in December 2011.  
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Abstract 

It is generally accepted that the cognitive development for a wide range of students can be 

improved through adaptive instruction - learning environments optimized to suit individual needs 

(e.g., Cronbach, 1957; Lee & Park, 2007; Shute & Zapata-Rivera, 2007). Designers of adaptive 

instruction, however, have been slow in responding to the needs of individual learners in 

complex problem solving situations. It is vital to diagnose an individual’s learning progress in 

terms of cognitive changes in complex problem-solving contexts. This paper reports the 

development of theoretically grounded guidelines to advance the research and implementation of 

an assessment of learning progress in complex problem solving domains. Drawing on the theory 

of mental models, the development of expertise, and the transfer of learning, I present a 

framework of learning progress applicable to the process of developing and implementing 

adaptive instruction that involves detecting and monitoring changes in mental models and then 

generating formative support, providing feedback, and assessing progress.  

Keywords: learning progress, mental models, cognitive change, problem solving 

  



19 

The purpose of this paper is to develop a theoretically grounded framework to guide and 

advance the assessment of learning progress. The discussion centers on instructional challenges 

related to cognitive changes in problem solving. The sequence of the challenges is compatible 

with the process of adaptive instruction that includes (a) assessing learner states (e.g., 

preconceptions), (b) monitoring learning progress, and (c) promoting transfer of learning to a 

larger group of problem situations. The focus is on promoting the development of expertise in 

solving complex and ill-structured problems (such as those that occur in many domains including 

engineering design, environmental planning, etc.) as it is already well established how to design 

instruction to support learning simple problem solving procedures. Drawing on the theory of 

mental models, studies of expertise development, and developmental psychology, testable 

propositions are developed that are applicable to the effective design of adaptive instruction. 

Learning necessarily involves change (Siegler, 2005; Spector, 2009). Instruction is an 

intentional effort to facilitate, verify, and elaborate desirable changes in the short-term and long-

term. Instruction can be characterized as an effort that includes assessing a person’s existing 

knowledge, determining appropriate learning methods and activities, and facilitating an 

individual learner’s progression toward an explicit learning goal, which is the desired change 

stated in general terms (Lee & Park, 2007; Shute & Zapata-Rivera, 2007).   

However, effecting cognitive change is not a simple task because learning is a complex 

process affected by many factors. For example, science competency goes beyond simply having 

specific factual knowledge and includes conceptual understanding of complex scientific 

phenomena, the capacity to engage in critical reasoning and the ability to solve ill-structured 

problems that typically have incomplete information at the outset and that lend themselves to 

multiple solutions and solution approaches (NRC, 2005). It is now widely acknowledged that 
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students should have more opportunities to be educated with authentic and complex problems in 

order to better develop their problem solving abilities (Herrington & Oliver, 2000; Jonassen, 

2000; Jonassen & Rohrer-Murphy, 1999; Spector, 2008b). 

Studies in the development of expertise focus on identifying, explaining, and utilizing 

expertise, including investigating the ways that people develop expertise in specific domains 

(Ericsson, 2006; Spector, 2008a, Sternberg, 1999). Spector (2004) argued that one could view 

learning progress in complex problem solving as changes in the direction of expert-like 

knowledge and performance. In an instructional situation, one may experience a couple of 

challenges with regard to assessing and monitoring learning progress and promoting 

improvements in problem solving.   

First, instruction that aims to develop a student’s expertise in problem-solving situations 

probably begins with the assessment of the student’s level of understanding and the identification 

of areas for improvement (van Gog, Ericsson, Rikers, & Paas, 2005). Accordingly, a method to 

elicit a learner’s problem conceptualization is required and determination of a learner’s progress 

necessitates having a reference model (Carver, 2006; Ifenthaler & Seel, 2005; Schlomske & 

Pirnay-Dummer, 2008; Spector, 2008a). However, in a complex problem-solving situation, it is 

difficult to establish standards or reference models.   

Second, a theoretically sound and systematic assessment model is required to determine 

levels of expertise, to explain learning progress, and to provide adaptive instruction that meets 

individual requirements in terms of differences in developmental stages of expertise, established 

problem space and meta-cognition (Spector, 2008a). 

Third, based on an assessment model likely composed of qualitatively distinct stages, the 

methodology to monitor transitions among different stages of learning progress is vital when 
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deciding a learner’s developmental position. In addition, it is anticipated that there is often a 

reversion to an earlier or less sophisticated stage of learning progress when confronted with a 

particularly challenging problem. These cognitive reversions to earlier stages of development 

need to be theoretically established (e.g., when they are likely to occur, to which prior stages a 

person is likely to revert, why reversion occurs, etc.) and then identified in particular cases so 

that appropriate interventions and support can be deployed. 

Fourth, the transfer of expertise from one problem situation to another, be it similar or 

dissimilar, is a critical goal of problem-solving instruction. Specifically, it is important to 

determine whether learners achieve particular levels of problem-solving knowledge and skills 

and are able to adapt their knowledge and problem-solving skills to new situations.  

In this paper, the theoretical foundations involved in learning progress and the 

development of problem solving knowledge and skills are explored so as to provide a framework 

for the assessment of learning progress in complex problem solving. Emphasis is placed on 

mental model theory as a promising basis for such an instructional framework. 

Assessment of Learner Understanding 

Re-represented Mental Models as Learner Models 

The theory of mental models describes both knowing and teaching in terms of how 

knowledge is represented in the human mind, how learning evolves and how learning progress is 

conceptualized in the context of instruction. Mental models are defined as iconic cognitive 

artifacts resulting from perception and linguistic comprehension, representing certain aspects of 

external situations in specific domains (Johnson-Laird, 2005a, 2005b).  

These cognitive artifacts are presumably constructed by an individual based on 

preconceptions, his/her cognitive skills (e.g., critical thinking, meta-cognitive skills), and a 
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perception of the problem itself. The cognitive artifacts evolve and are gradually modified 

through experience and instruction (Carley & Palmquist, 1992; Collins & Gentner, 1987; Seel, 

2001, 2003, 2004; Seel & Dinter, 1995; Shute & Zapata-Rivera, 2008; Smith, diSessa, & 

Roschelle, 1993). The theory of mental models provides a comprehensive perspective on 

knowledge building that includes both domain-general processes (i.e., those that transcend and 

contribute to cognitive development across domains; Kail, 2004; Sternberg, 2008) and domain-

specific knowledge (Chi, Glaser, & Farr, 1988; Vosniadou, Vamvakoussi, & Skopeliti, 2008). 

Fundamentally, mental models are considered to be domain-specific in that they mirror the 

structure of what they represent (Johnson-Laird, 2005b; Seel, 2001; Spector, 2008a). However, 

the process of model building is largely influenced by domain-general processes such as meta-

cognition, self-regulation, and cognitive flexibility (Collins & Gentner, 1987; Kail, 2004; 

Sternberg, 2008). According to cognitive psychologists, problem solving involves finding a 

reasonable course of action, often by making use of mental models (Johnson-Laird, 2005a; Seel, 

2001, 2004). Manipulation of mental models is accompanied or led by meta-cognition (e.g., 

reflection). For example, a law school student reading the testimony of an eyewitness in a 

criminal case might first construct an internal representation of the situation and then test that 

representation against other facts and testimony. The internal representations are typically quite 

specific to the situation. Afterwards, the student may reflect on the situation and reasoning about 

that testimony, deliberate on the implications and assumptions and possible alternatives, and then 

modify the representation to explain to him/ herself what probably happened. The interim 

deliberative process involves meta-cognitive processes that may lead to another domain-specific 

internal representation.           
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Second, the theory of mental models explains the process of building expertise. The 

process of building expertise can be explained as a way of constructing mental models. 

According to Piaget (1964), there are two different cognitive processes involved in mental model 

development − assimilation and accommodation. When encountering a new situation, a learner 

activates existing models analogous to the situation. By comparing the new information with the 

model, the new situation can be perceived in terms of the existing structure (assimilation). 

Accommodation involves the modification of an entire model to fit a new experience when a 

learner fails to adjust (Johnson-Laird, 1983; Ifenthaler, 2010; Norman, 1983; Seel, 2003; Seel & 

Dinter, 1995).  

One way to promote cognitive change is to provide appropriate cognitive conflict. This 

approach is grounded on a few well-known learning theories such as Piaget’s (1976) process of 

equilibration, Festinger’s (1962) notion of cognitive dissonance, and Vygotsky’s (1934/1978) 

zone of proximal development. Vygotsky (1934/1978) said that “the only good learning is that 

which is in advance of development” (p. 82).   

Third, the theory of mental models provides a measurable feature of existing knowledge. 

At first it might appear that mental models could not be the foundation for any kind of 

instructional planning or implementation since they are permanently hidden from view. That is to 

say that one cannot see a mental model directly. Mental models are inferred entities. However, it 

is possible to elicit representations of these internal constructions and use those as the basis of 

judging how an individual’s ability to reason about complex problems is developing. Mental 

model representations are believed to consist of propositional representations as structured 

symbols and images as visualized icons (Johnson-Laird, 2005b; Newell, 1990). A semantic 

network as the externally represented structural components of mental models implies that a 
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latent structure exists in the human brain. According to this theoretical perspective, detecting 

those latent structures and changes as they evolve is a way to assess the development of complex 

problem solving skills. 

Measurable Features of Mental Models as Structural Knowledge 

Learning progress is likely to be well-illustrated by the notion of mental models when 

learning progress is characterized as a set of directional changes in a learner’s mental 

representations. Many empirical studies utilizing concept map techniques have shown that 

students’ structural comprehension in a domain becomes more coherent and expert-like as they 

gain competence in a discipline (e.g., Schlomske & Pirnay-Dummer, 2008; Schvaneveldt, Durso, 

Goldsmith, Breen, & Cooke, 1985; Spector & Koszalka, 2004). 

Mental models can be hypothesized as progressing through different levels of structural 

knowledge. From this standpoint, knowledge appears to be a configuration of mental 

representations as a whole that contain symbols and their relationships corresponding to the 

properties of that which they represent (Johnson-Laird, 1983).  

Problem solving often relies on a structural knowledge base that requires the integration 

of ideas and concepts (Dochy, Segers, Van den Bossche, & Gijbels, 2003; Segars, 1997). In that 

sense, assessment of problem solving necessarily takes into account the organization of the 

knowledge base, which requires a theoretical framework of knowledge structures involved in 

problem solving so that different levels of problem solving can be illustrated (Gijbel, Dochy, 

Van den Bossche, & Segers, 2005). 
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Table 2.1 

Constructs Related to Knowledge Structure  

Features of Knowledge 
Structure (3S) 
(Ifenthaler, 2006, 2010; 
Pirnay-Dummer, 2006; 
Spector & Koszalka, 
2004) 

Elements of 
Knowledge Structure 
(Sugrue, 1995) 

Analogy Study 
(Gentner & Medina, 
1998; Holyoak & 
Koh, 1987; Judd, 
1908; Simon & 
Hayes, 1976) 

Linguistic 
Comprehension 
(Bransford & Franks, 
1971; Bransford, 
Barclay, & Franks, 
1972; Bransford & 
Johnson, 1972; Katz & 
Postal, 1964; Kintsch & 
van Dijk, 1978) 

Surface feature Concepts Surface  Surface structure  
Structural feature Links from concepts 

and principles to 
conditions and 
procedures for 
application 

Deep Deep structure 

Semantic feature Principles    
 

Spector and Koszalka (2004) first introduced three features (3S) of knowledge structure 

that likely describe mental models: (a) surface, (b) structure, and (c) semantic features (see Table 

2.1). Those features have been used as a framework for developing assessment measures for 

mental models (Ifenthaler, 2006; Pirnary-Dummer, 2006). The 3S features of knowledge 

structure were confirmed in this study, supported by studies in related areas: elements of 

knowledge structure, analogy study, and linguistic comprehension. 

First, the surface feature indicates the descriptive information about the components of a 

knowledge structure. According to Sugrue’s (1995) elements of a knowledge structure targeted 

by the assessment of problem solving, the surface feature relates to an understanding of concepts 

defined as “a category of objects, events, people, symbols or ideas that share common defining 

attributes or properties and are identified by the same name” (Sugrue, 1995, p. 9). Likewise, 

cognitive scientists account for the surface level of mental models as salient objects and aspects 
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of the context (Holyoak & Koh, 1987; Simon & Hayes, 1976), and according to linguists 

studying linguistic comprehension, the surface structure of linguistic representations characterize 

the shape of sentences in terms of concepts and their relations in a text (Katz & Postal, 1964).  

The second indicator of a knowledge structure is a structural feature that describes the 

levels of size, complexity, and cohesiveness of a mental model. In this feature, concepts and 

principles are situated in particular conditions and procedures for application (Sugrue, 1995). 

The focus in assessing problem solving ability is on the “extent to which the student’s 

knowledge structure is organized around key concepts and principles that are linked to 

conditions and procedures for application” (Gijbels et al., p. 35). That is, the structural feature 

indicates a deep level in terms of a well-organized knowledge structure within a particular 

context in which underlying causal principles, including key variables and their relations, are 

subsumed (Gentner & Medina, 1998; Judd, 1908). 

As the third indicator, the semantic feature shows the levels of understanding concepts 

and their relations in a knowledge structure, including principles that can be “a rule, law, formula, 

or if-then statement that characterizes the relationship between two or more concepts” (p. 9). 

Katz and Postal (1964) claimed that a substantial part of the meaning emerges from the semantic 

information of the deep structure. This idea is supported by studies of linguistic comprehension 

that argue that meaning stems from information integrated in the whole corpus (Bransford & 

Franks, 1971; Bransford, Barclay, & Franks, 1972; Bransford & Johnson, 1972; Kintsch & van 

Dijk, 1978).   

Problems in Building Reference Models of Complex Problems 

Problem solving is a goal-directed cognitive effort and requires appropriate and adequate 

understanding of the problem (Anderson, 1980). Diagnosis of the levels of problem-solving 



27 

knowledge and skills involves comparison between mental models representing a problem-

solver’s existing understanding in the form of learner models and a targeted expert’s model as a 

reference model. Likewise, learning progress involves a series of changes toward goals. For 

example, Snow (1990) claimed that the progress of mental models involves learning-dependent 

and developmental transitions between preconceptions and causal explanations. Both problem-

solving and learning require reference models to identify, monitor and promote levels of 

expertise in problem-solving situations. Particularly for instructional contexts, reference models 

may denote instructional goals, which have the critical functions of assessing individual learning 

status and providing adaptive feedback in problem-solving tasks. 

A possible argument against the need for a reference model is that people create their 

own understanding; it is not plausible or reasonable to build reference models in complex and ill-

structured problem situations because even experts’ models will vary depending on their 

experience. This study concedes that an understanding of a problem situation is ultimately 

achieved when an individual internally constructs his/ her own representations of a problem. It is 

also argued here that even personal representations are social artifacts partially or substantially 

constructed through the interactions of a group; this position is called social constructivism 

(Glasersfeld & von Ernst, 1995). For example, as Wittgenstein (1922) claimed, language as a 

social enterprise plays a critical role in building and mediating an individual’s internal 

representations of the external world. As a consequence, interacting with others via externalized 

representations, such as verbalized language expressions, allows experienced people to come to a 

shared understanding, at least in some problem cases. 

Theoretical discussions of problem-solving can provide a few plausible or pragmatic 

ways to reconcile the need for reference models with the impossibility of building references in 
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complex and ill-structured problem situations. Pretz and colleagues (2003) defined problem 

solving as a set of mental activities composed of: (a) recognizing the problem, (b) defining and 

representing the problem, (c) developing a solution strategy, (d) organizing one’s knowledge 

about the problem, (e) allocating mental resources for solving the problem, (f) monitoring one’s 

progress toward the goal, and (h) evaluating the solution. These problem-solving processes can 

be dichotomized into two phases: planning (which includes (a) and (b)) and development (which 

consists of (c) through (h)).  

Based on this theoretical background, it does seem possible to build reference models at 

least in the planning phase of problem solving. While solutions to ill-structured complex 

problems may be multiple and constructed through diverse paths, the planning phase can be 

somewhat invariant. The planning phase of problem solving is believed to end with the problem 

representation, which refers to “the manner in which the information known about a problem is 

mentally organized” (Pretz et al., 2003, p. 6). Newell and Simon (1972) claimed that a problem 

solver conceptualizes the problem space in which all of the possible conditions of a problem 

exist. Studies of expertise demonstrate a clear distinction among mentally represented problem 

spaces between experts and novices (e.g., Chi, Glaser, & Farr, 1988; Spector & Koszalka, 2004).  

Spector (2008a) argued that “experts would exhibit clearly recognizable patterns in their 

problem conceptualization, although experts did develop a variety of problem responses” (p. 31). 

That is, although levels of problem representations vary depending on an individual’s level of 

expertise, experts in the same discipline typically have a relatively similar understanding of the 

problem space.   

The problem space to a problem situation can be represented as a single canonical 

knowledge structure. Even more often, there are admittedly multiple acceptable representations 
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depending on the problem situation. In an instructional setting, a single or multiple reference 

models can be established to facilitate learners’ problem-solving development. For example, 

drawing on measurement methodologies to compare knowledge representations (Ifenthaler, 2006; 

Pirnay-Dummer, 2006; Spector & Koszalka, 2004), a variety of knowledge representations 

elicited from multiple experts can be compared so that a set of common entities to a problem are 

generated. In another way, a student representation can be analyzed against a variety of reference 

models so that his/ her understanding of a target knowledge structure can be assessed by multiple 

standards, providing diverse aspects of a problem situation. 

Stage-Sequential Learning Progress 

Insights from Developmental Psychology 

Behavioral learning theorists believed that human understanding grows continuously, 

without qualitatively distinct cognitive stages (e.g., Kendler & Kendler, 1962). In contrast, Piaget 

(1964) believed that children experience qualitatively distinct, sequential knowledge states (e.g., 

sensorimotor, preoperational, concrete operational and formal operational) while growing up. 

Although his notion of qualitative changes in a child’s thinking has continued in contemporary 

developmental theories (Flavell & Miller, 1998), there are several departures from Piaget’s 

conventional notion of developmental stages.   

First, cognitive development of a child is probably more learning-dependent and less age-

dependent than Piaget’s early studies suggest. Piaget’s (1964) main claim was that a child’s 

development is an age-dependent progress. He suggested that a child of a young age is not likely 

to perform tasks requiring higher level cognitive structure because his/her cognitive ability is still 

immature (Siegler & Klarh, 1982). In contrast to Piaget, Bruner (1961) agreed with the 

qualitative stages of cognitive development, but not with the age-dependent progress. Findings in 



30 

developmental studies support Bruner’s points. For example, many observations have discovered 

that some infants show precocious abilities (Flavell, 1992). In addition, unless adults have 

adequate and appropriate education or training, they may not be able to resolve Piaget’s formal 

operational tasks (Shaklee, 1979).  

Second, cognitive development is promoted by interactions between domain-general and 

domain-specific processes. There has been a longstanding debate whether development proceeds 

through a fixed sequence of stages across learning domains or through a specific fractionated 

manner within a particular subject area (Carlson, 2002; Case, 1992; Fischer & Silvern, 1985; 

Flavell, 1985). Piaget’s (1964) theory postulates static, invariant developmental stages, which are 

domain-independent. Contrarily, contemporary studies suggest that the development of the 

human mind is neither explained by totally general, domain-independent stages nor by only 

domain-specific, fractionated knowledge (Flavell, 1992; Sternberg, 2008). Accordingly, it is 

important to note that a general stage-like development can still account for changes of 

understanding. In contrast, domain-specific knowledge appears to be more critical to building 

expertise.  

Third, both learning and development proceed through similar qualitative changes. Piaget 

(1964) believed that learning and development are fundamentally dissimilar. Stage-sequential 

qualitative stages only occur in development (long-term change). Learning is viewed as short-

term changes aimed at obtaining and accumulating domain-specific content knowledge (Siegler, 

2005; Siegler, Thompson, & Opfer, 2009). In contrast, Werner (1957) and Vygotsky (1934/ 1978) 

believed that both learning and development basically evolve as the learner constructs 

qualitatively distinct knowledge structures. According to Siegler (2005), although some findings 

still seem to be related to the age-dependent changes asserted by Piaget, more findings indicate 
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that children, even in a short-term period of learning, experience qualitative changes in mental 

model states (e.g., Chen & Siegler, 2000; Opfer & Siegler, 2004; Siegler et al., 2009). It is 

notable that children proceed through a similar progression of qualitatively distinct stages in both 

the short term and the long term, which may occur based on quantitative changes in the 

frequency of existing approaches (Siegler et al., 2009; Vosniadou et al., 2008). 

Stages When Expertise Develops 

This study argues that plausible stages applicable to the learning progress can be adopted 

from the studies of the development of expertise. Ericsson (2003, 2005, 2006) suggested that 

expertise is developed by a deliberate practice in which learners engage in appropriate and 

challenging tasks carefully picked by masters, devote years of practice to improving their 

performance, and refine their cognitive mechanisms by self-monitoring efforts such as planning, 

reflection, and evaluation. In this view, moving toward higher levels of expertise involves 

“changes to different knowledge structures and complex acquired mechanisms” (Ericsson, 2003, 

p. 67). Ericsson and Simon (1980, 1993) used the think-aloud protocol method to understand 

how a highly superior performer is thinking in a given problem situation and explained that there 

might be qualitative changes in mental models when expertise develops. Nonetheless, Ericsson 

and colleagues have not yielded a model in which the developmental stages of expertise 

explicitly exist.  

Considering the earlier discussion that people experience qualitatively distinct cognitive 

changes in the short- as well as long-term, changes of expertise development is likely to be 

applicable to describing the stages of learning progress. For example, current expertise studies 

tend to be interested in gaining expertise in domain specific learning and instruction (e.g., 

Alexander, 2003, 2004; Chi, 2006).   
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A seminal work providing acceptable stages of the development of expertise is the scale 

Dreyfus and colleagues (1986) proposed (see Table 2-2). They suggested that expertise develops 

through five stages as a novice experiences a variety of situations. The novice is a beginner in a 

domain and learns detached rules and facts with little benefit of experience. When experiencing 

real situations or observing a number of examples, the learner becomes able to recognize 

situational knowledge as well as context-free features (the advanced learner). At this point, he or 

she still has difficulty in discriminating what is more important in any particular situation. The 

next stage is the competent learner who determines critical elements of the situation and then 

restricts their attention to the selected relevant features. With a sufficient number of experiences 

and competent perspective, a proficient learner has holistic understanding on a discipline. He or 

she immediately recognizes the important aspects of the current situation but still needs to 

deliberate about what to do. The most distinctive trait of the expert is her or his immediate 

response to a situation because she or he intuitively knows how to achieve the goal due to the 

vast amount of experienced situations classified in sub-classes.  

Table 2.2 

Stages in the Development of Expertise  

Level Dreyfus, Dreyfus, & 
Athanasiou (1986) 

Chi (2006), Hoffman 
(1998) 

Alexander (2003, 2004) 

1 Novice Novice Acclimation 
2 Advanced Beginner  Initiate Competence 
3 Competence Apprentice Proficiency-Expertise 
4 Proficiency Journeyman  
5 Expert Expert  
6  Master  

  

Many other models have been introduced since Dreyfus and colleagues’ work (see Table 

2.2). For example, Chi (2006) developed a proficiency scale of expertise development, which 
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was adapted from Hoffman (1998). She believed that the ultimate goal of studying for relative 

expertise is to enable less-skilled novices to become more knowledgeable by providing adaptive 

instruction based on their levels of understanding. The proficiency scale of expertise 

development is composed of six stages from novice to master as follows: (a) Novice (someone 

who is new), (b) Initiate (a novice who has begun introductory instruction), (c) Apprentice (one 

who is learning), (d) Journeyman (a person who can perform a task under guided orders), (e) 

Expert (one who is distinguished or a brilliant journeyman), and (f) Master (any journeyman or 

expert who is qualified to teach someone at a lower-level) (p. 22). These scales denote different 

levels of personal expertise in terms of roles and abilities that a learner can experience from 

learning and instruction.  

Alexander (2003, 2004) introduced an account of multiple stages of expertise 

development focusing on the nature of developing expertise in academic domains. The 

developmental phases are hypothesized as having three stages: acclimation, competence, and 

proficiency-expertise. The acclimation stage refers to the initial level in which learners become 

familiar with the given unfamiliar domain. Accordingly, it is typical in this stage for learners to 

only have limited and fragmented knowledge that is not cohesive or interconnected. In contrast, 

learners experience quantitative and qualitative changes in the competence stage. They construct 

sufficient, well-organized, domain-specific knowledge. An increased familiarity with the given 

domain leads learners to further delve into the domain. In the proficiency-expert stage, learners 

feed on new knowledge of the domain and markedly improve in higher levels of domain 

knowledge. Alexander’s model of domain learning provides an insight into the features of 

knowledge structure that a learner constructs at each stage.  
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A Framework of Stage-Sequential Learning Progress 

Based on the aforementioned theoretical review of mental models, expertise development, 

and developmental psychology, a model of stage-sequential learning progress as a potential 

framework for learning progress is presented below (see Table 2.3). This model draws on the 

five stages of expertise development (Dreyfus et al., 1986) and three types of  knowledge 

features (i.e., surface, structure, and semantic) (see Table 2.1), associating the two approaches 

according to the notion that knowledge appears to be a configuration of mental. 

Table 2.3  

A Framework of Qualitatively Distinct Stages of Learning Progress 

Stage Description 
Novice 

(Irrelevant structure) 
A beginner starts to learn context-free abstract knowledge 
and faces situations in a new domain; concepts and relations 
are low in quantity compared to the reference model. 

Advanced beginner 
(Surface structure) 

A learner recognizes situational knowledge as well as non-
situational knowledge but shows a lack of sense of what is 
important in a particular situation. 

Competent Learner 
(Deep structure) 

With increasing experience, a learner chooses a perspective 
and then determines which elements of a situation are 
critical; most key concepts are posed in a learner's mental 
model, but the propositional relations among concepts are 
somewhat different from the reference model.  

Proficient Learner 
  (Semantically deep 

structure) 

A learner approaches a problem holistically and immediately 
recognizes problem space; the expected concepts and 
relations among them are represented in a learner’s mental 
model including situational and non-situational concepts.  

Intuitive Expert 
(Advanced semantic 

structure) 

An expert intuitively makes a decision about what the 
problem is and how it is resolved. An expert has tacit 
knowledge based on a vast number of relevant experiences. 

 

Although the scale proposed by Dreyfus and Dreyfus (1986) anticipates many other 

models, the scale appears to be more informative in accounting for the qualitative features of 

mental models at each stage and the progress of problem-solving skills. The five levels of 

expertise are used to denote a learner’s stages of learning progress in a problem-solving 



35 

situation. Associating the features of knowledge structure and the development of expertise 

characterizes each stage of learning progress that a learner’s mental model falls into on a given 

occasion. A series of changes in the stages show a learner’s learning trajectory, or learning 

progress. 

Novice learner (Irrelevant structure). Novices are new to the domain, so they have 

difficulty linking their prior-knowledge to the new domain, thus rendering them as yet unable to 

represent new knowledge. This level represents a stage at which learners lack knowledge on both 

the contextual and principle levels, resulting in a poor representation of their thoughts and ideas. 

Two types of mental models are assumed at this stage: (a) all features (surface, structure, and 

semantic) of novices’ knowledge structures are quite dissimilar to those of experts, or (b) the 

structure feature could be understood as mastered because mental models consisting of a small 

number of concepts and relations are likely to look cohesive and connected. This idea is in 

accord with the claim that a structural graphical approach is insufficient for interpreting mental 

models (Forbus, Gentner, Markman, & Ferguson, 1998; Kubose, Holyoak, & Hummel, 2002). 

Advanced beginner (Surface structure). The advanced beginner stage represents a 

mental structure in which an adequate amount of contextual knowledge is recognized, but his or 

her knowledge lacks the building of a proper knowledge structure associated with principles. 

Otherwise, some instructed principles (key concepts/abstract knowledge) might exist but are not 

properly connected with one another. Accordingly, two types of mental structure are assumed: (a) 

mental modes in this stage have similar surface features with those of a reference model but not 

with structure and semantic features, or (b) there is a high similarity of semantic features but 

dissimilarity in surface and structure features between a student model and a reference model. 
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Competent learner (Deep structure). A competent learner comes to identify key 

concepts underpinning a situation and thus to organize the surface features. However, his or her 

mental structure still has missing relations among key variables. In other words, learners create 

either complex knowledge structures or an appropriate set of principles accompanied by a 

significant number of concepts and relations. There are likely two types of deep structure: (a) one 

has an adequate structural complexity along with a proper surface fit, which is not necessary to 

guarantee a semantic fit, however, and (b) the other consists of an appropriate number of 

contextual and principle concepts that are not yet well-structured. 

Proficient learner (Semantically deep structure). The next stage is the proficient 

learner stage, in which learners conceptualize a sufficient problem space. This study regards 

experts as persons at the level of proficient performance. Mental models in this stage are 

assumed to be well-featured at all levels (surface, structure, and semantic). In addition, there is 

possibly another type of knowledge structure in which a significant number of principles creates 

a cohesive structure but with a small total number of concepts (surface). This model is supported 

by the claim that experts sometimes create mental models having an ‘optimal’ rather than 

‘maximum’ number of concepts and relations that are very efficient (Glaser, Abelson, & 

Garrison, 1983; Glaser, 1992). 

Intuitive Expert (Advanced semantic structure). Dreyfus and Dreyfus (1986) regard 

the level of intuitive expert as somewhat mysterious ─neither well understood nor clearly 

supported. At this level, intuitive decision-making takes place based on an advanced semantic 

structure unlikely to theorize its measurable structure at this point (Dreyfus & Dreyfus, 2005). 

The difference between logical thinking (the proficient learner) and intuitive decision-making 

(the expert learner) toward problem-solving is not easily discerned by investigating a single set, 
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or a few sets, of mental observations, such as concept models, because the measurable features of 

intuitive experts’ mental models are still not well understood. Admittedly, experts might not be 

fostered solely by instruction in a domain, for experiences both before and after instruction could 

be more influential in the formation of an expert. For example, Ericsson (2003, 2005, 2006) 

claimed that becoming an expert in a domain on the whole takes 10 years of devotion to highly 

disciplined, focused, and reflective practice.  

Monitoring Learning Progress 

Detecting Stage Transitions 

Changes in the stages of learning progress can provide information about the effects of an 

instructional intervention as well as about an individual’s state of learning. Any instructional 

intervention in problem-solving learning may, to some extent, direct learners to improve their 

knowledge and skills. That is, interventions affect mental model changes. A learning 

environment in which teachers have diagnostic information about their students and provide 

formative feedback catered to each individual’s needs might be an ideal setting. No matter what 

intervention is designed to improve problem-solving knowledge and skills, it is important to see 

the learner’s progress in a longitudinal manner so that one can evaluate the effects of an 

instructional intervention. The proposed framework hypothesizing stage-sequential learning 

progress provides a diagnostic model; further validation and research using this model is of 

course required.  

Possible Regression of Learning Progress 

We can anticipate that most students proceed through positive learning progress from 

lower stages towards higher stages when they have appropriate instructional support, such as 

individualized feedback. In contrast, a couple of different patterns can appear as follows:      
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Expertise reversal effect. The expertise reversal effect actually denotes that integrated 

information (e.g., text with diagram), which is designed to be beneficial for learning, may 

provide redundant information to expert learners hindering their ability to learn new knowledge 

(Kalyuga, Chandler, & Sweller, 1998; van Gog, Ericsson, Rikers, & Paas, 2005). In this paper, 

the expertise reversal effect is used as a general term, indicating unexpected effect of increasing 

expertise in learning and instruction. For example, in the context of measurement of mental 

models, the expertise reversal effect may cause an assessment of mental models to be 

dysfunctional. Suppose that a reference model for a physics problem is developed only 

considering the classical physics theory (i.e., Newtonian mechanics). This is done based on the 

assumption that the target students are too immature to deal with more advanced theories, and 

the assessment will generate incorrect diagnostic information in the case of an advanced 

learner’s response based on the theory of relativity or quantum theory.  

Reversion to an earlier stage. Reversion to an earlier stage may be possible. For 

example, according to Vosniadou and Skopeliti (2005), children who believe the earth is a 

physical object being rectangular take slow and gradual process to obtain scientific 

understanding, that is, the earth as a solar object being sphere. It is possible that some students 

fail to accomplish a conceptual change toward a scientific model of earth and then revert to their 

naïve belief established from their everyday experiences reinforcing their model that the ground 

is flat and below and, in contrast, the sky and solar objects are above.   

Reversion by expertise discordance. We can assume another reversion affected by 

conflicting expertise even without degraded performance. For example, when a student in a 

South Korean high school whose family has defected from North Korea is solving an economic 

problem, the student may progress to some degree in conceptualizing a problem space based on 
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capitalistic economics. However, at a certain point, the student may return to his/ her former 

expertise about Marxist economics to understand economic problems. Therefore, the student’s 

response may appear backward. In that case, reverting to an earlier stage is not necessarily the 

same as degraded performance.  

Stay at a stage. In some cases we may see no movement among stages. Although 

learners are given instructions and feedback, they may stagnate without more progress in 

problem solving. A couple of situations can be envisioned. Problem solving in a learning context 

is a goal-oriented activity that progresses toward learner acquisition of a reference model. These 

goals are external. A student may decide to ignore goals or reject the given feedback on his or 

her prior performance (e.g., prior problem conceptualization) (Sadler, 1989). In addition, low 

performing, self-efficacious students may experience a negative affect such as decreased 

motivation when they continuously receive negative feedback due to a lack of proper concepts in 

their understanding (Kernis, Broker, & Frankel, 1989). In these cases, progressing forward 

through stages may not take place.  

Promoting the Transfer of Problem-solving Knowledge and Skills 

Learning Transfer as a Learning Progress 

The framework of stage-sequential learning progress ends with the expert stage. The 

expert stage is characterized as not only obtaining expertise in a particular domain, but also 

including the ability to transfer what an expert knows in one domain to solve problems in other 

contexts (Gentner, Loewenstein, & Thompson, 2003).  

Although it is a common belief that people adapt their prior knowledge to solve new 

problems, the studies of transfer have taken diverse perspectives which seem to locate in a 

continuum with two polarized ends (e.g., Barnett & Ceci, 2002; Bransford & Schwartz, 1999; 
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Gentner, Holyoak, & Kokinov, 2001; Gentner et al., 2003; Lave, 1988; Lobato, 2006; Reeves & 

Weissberg, 1994; Salomon & Perkins, 1989; Singley & Anderson, 1989). On one end, there is 

the notion of identical elements that are shared components between original learning and 

transfer situations. The extent of shared features determines the occurrence of transfer (That is 

the foundation of classical perspective; Thorndike, 1906; Cox, 1997). On the other end, 

according to situated cognition standpoint, Lave (1988) asserted that knowledge cannot be 

detached from a specific situation in which it is acquired, so that situation-specific knowledge 

cannot transfer. The framework of the learning progress associated with the theory of mental 

models possibly reconciles this classical view with alternative approaches.                   

Mental models for new situations may be created through an analogical thinking process 

which consists of selecting analogous models, comparing the original models with new situations, 

and modifying and simulating current mental models (Johnson-Laird, 1983; Norman, 1983; Seel, 

2003). In that sense, the theory of mental models admits the notion of analogical transfer 

(Bransford, Brown, & Cocking, 2000; Gentner et al., 2001; Sternberg & Frensch, 1993).  

In addition, mental models are domain-specific and situation-sensitive (Garnham, 1987, 

2001). That is, key principles in mental models can be best interpreted in the relation with 

surface features. In that sense, when transfer occurs, de-contextualized abstract knowledge might 

not be merely transferred. Rather, the original mental models as a whole might affect a new 

model in a new context. This view cannot only admit the role of key principles in transfer, but 

can also be reconciled with critique such as how the classical transfer approach separates 

knowledge from the situations (Lobato, 2006).  

Supposing that assessment technologies, which can detect learner progress by embedding 

a tool visualizing mental models, are invented based on the suggested framework, it is possible 
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to investigate transfer with more accurate and rapid measures frequently used in a longitudinal 

study of cognitive change (e.g., Lemaire & Siegler, 1995). For example, a technique visualizing 

mental models shows the structural accuracy of learners’ understanding (accuracy) and 

diagnosing learning stages in multiple occasions enable researchers to determine when learners 

reach the expected stage (speed).    

A Scenario 

A set of problem situations is carefully selected and developed to teach ecological 

relationships in a biology class. These complex problems have differing contexts but encompass 

the same key variables (i.e., population, nutrients, and predators). It is assumed that the problem 

scenarios have their own reference models and are the same in their levels of difficulty and 

complexity. For each problem situation, learners encounter multiple tests to measure their 

problem conceptualization. The problems are entitled as follows:  

• Crown-of-thorns starfish 

• Habu (a viper) and mongoose in Okinawa 

• Sharp drop of deer population in Georgia  

• Disappearing iguana in the Galapagos Islands  

• The attack of bass at the lakes in South Korea 

In problem-solving situations, acquired knowledge and problem-solving skills are 

expected to be transferred from one situation to the next. The expectation is that learners build 

their mental models representing the three key variables (i.e., population, nutrients, and predators) 

and their relationships across problem contexts.  

The generalizability of specific problem-solving abilities can be anticipated based upon 

the continuous success in obtaining reference models of a set of similar problem situations and 
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the speed of reaching the highest stage of learning progress. For example, in the given 

experimental scenario, most learners will likely have more difficulty in, and spend more time, 

solving the first problem. Their stage transition may proceed systematically. In the second 

problem, although they progress without skipping stages, they may reach the target stage faster. 

In the third and fourth scenarios, some students may present a first response that begins at a 

higher point and skips the lower stages.  

Finally, proficient students may solve the last problem very quickly. The series of 

examinations provide meaningful evidence: as students successively build a target-understanding 

of diverse problem situations, the speed to reach the target stage increases through solving 

subsequent problems. Based on this evidence, one can conclude that students acquire the 

expected problem-solving knowledge and skills that are transferred across the given problems. 

Namely, the application of particular problem-solving knowledge and skills towards a larger 

class of problems is also likely to be successful. 

Empirical Studies of the Theoretical Suggestions 

This study discussed ways of assessing learning progress. Theoretical suggestions in 

specific include (a) ways of building a student and reference model, (b) three features of 

knowledge structure, and (c) a framework of learning progress. There have been three studies as 

initial efforts to validate the suggestions (Author, 2011a, 2011b, and 2011c). Some findings of 

the studies are introduced here, accompanied by related comments. 

The Problem-Solving Task 

The author (Author, 2011a, 2011b, and 2011c) gathered data from 136 undergraduate 

students enrolled in a course at a university in the southern United States and seven professors 

teaching at a major university in the United States. All participants made written responses to a 
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specific complex problem. The task provided a simulated situation in which students were 

assumed to be participating in an evaluation project, the purpose of which was to investigate an 

unsuccessful project that had as its goal adapting a technology (i.e., a tablet PC) for classroom 

teaching. The task the author used provides an example of problem cases that could be used in 

assessment and instruction.  

Reference Modeling 

The author (2011a, 2011b) included a reference model building procedure with which an 

expert model was successfully created in accordance with the suggestion of this study. In 

particular the author employed the Delphi survey procedure (Goodman, 1987; Hsu & Sandford, 

2007; Okoli & Pawlowski, 2004). The panel composed of seven professors agreed with a 

reference model through three iterations of the Delphi survey to develop a refined model. 

All panel members in the first round created their own response to the problem. 

Admittedly, diverse perspectives were observed in their initial responses that seemed not 

convergent but contrasting, even though there were some points on which they agreed. That 

observation was congruent with the claim that even experts elicit multiple representations of an 

ill-structured problem according to their own experiences (e.g., Jonassen, 1997). However, the 

Delphi procedure helped the panel to learn from each other and to achieve a consensus on the 

best understanding to the problem. That result proved that a reference model of an ill-structured 

problem can be created with proper methodological supports such as the Delphi procedure 

(Goldsmith & Kraiger, 1997; Spector, 2008a). 

Three Features of Knowledge Structure 

This study proposes three features of knowledge structure (3S): Surface, structure, and 

semantic. The author (2011c) validated the three features of knowledge structure using the 
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Confirmatory Factor Analysis (CFA). The author defined 10 parameters of concept maps 

obtained from the maps’ structure and then associated the parameters with three features of 

knowledge structure that are assumed to be latent factors in the CFA models. The validation 

procedure includes sequential evaluation of a single factor model with a correlated group factor 

model. A single factor model was poor (CFI<0.90, NNFI<0.90). In contrast, the results of the 

CFA demonstrated that there is a three-dimensional feature of knowledge structure with good-fit 

indices (e.g., CFI>0.90, NNFI>0.90) (see Table 2.4).  

Table 2.4 

Summary of Fit Indices 

Models χ2(df) χ2/(df) CFI NNFI RMSEA SRMR AIC ABIC 
Single factor 699(35) 19.90 0.49 0.34 0.36 0.14 -2518 -2430 
Three factor 96(26) 3.69 0.94 0.90 0.14 0.18 -3157 -3042 
Note. Indices (their expected values) are: χ2(df) =Chi-square statistics and degrees of freedom for test of model fit 
(equal to 0); χ2/(df) =the ratio of Chi-square statistic to the degrees of freedom (equal to 1), CFI=comparative fit 
index(>0.90), NNFI=non-normal fit index (a.k.a., Tucker-Lewis index)(>0.90), RMSEA=root square error of 
approximation (<0.05), SRMR=standardized root mean square residual (<0.05), AIC(Akaike Information Criterion 
(close to 0, smaller the better), ABIC(Adjusted Bayesian Information Criterion) (close to zero, smaller the better) 

 

Stages of Learning Progress 

The conceptualized model of learning progress was investigated in the author’s (2011c) 

study. The author defined a set of measures indicating the levels of the features of knowledge 

structure. Relations between the measures and the features of knowledge structures were 

determined based on theoretical assumptions as well as empirical evidence obtained from the 

aforementioned CFAs.     

Stages in the learning progress are inferred rather than directly observed. Thus, 

qualitative stages of learning progress are labeled latent classes because of their psychometric 

characteristics. Accordingly, latent class model (LCM) methods were employed. In particular, 

the study employed Log-linear Classification Diagnostic Model (LCDM). LCDMs are restricted 
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latent class models that allow latent class models to place linear restrictions on the log-linear 

parameters (Rupp, Templin, & Henson, 2010). It is important to note that LDCM requires a 

substantive theoretical model so that researchers can interpret statistical classifications as 

meaningful latent classes. The hypothetical relations between the three features of knowledge 

structure and a set of measures in the study provided a theoretical model for LCDM analysis. 

Table 2.5  

Posterior Probabilities of Class Membership for the Stages of Learning Progress 

Stage Final Class Counts Posterior Probability 
Novice 99.680 0.696 

Advanced beginner 11.224 0.078 
Competent Learner 0.001 0.00001 
Proficient Learner 32.092 0.224 

Expert - - 
   

Good-fit indices proved that the students proceed toward an expert-like knowledge 

structure through the suggested levels of learning progress (e.g., χ2 = 48.435, p > .05).As shown 

in Table 2.5, all stages were present. For example, the novice stage had an estimate of 0.69. This 

means that approximately 69% of respondents are classified as novices having not mastered any 

of the three features of knowledge structure. A large number of respondents were classified as 

novices or proficient learners, which resulted from positively correlated attributes (i.e., the three 

features of knowledge structure) similar with most assessment situations (Rupp, Templin, & 

Henson, 2010).   

Implications for Research and Practice 

Since Cronbach (1957) claimed that the cognitive development of a wide-range of 

students requires optimal learning environments suited to their needs. Engineering personalized 

learning has been studied in reference to adaptive instruction, (e.g., Lee & Park, 2007) which is 
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an attempt to provide an individualized or group (when students share similar characteristics) 

learning environment. Creating adaptive learning environments necessitates knowing the extent 

to which students understand the given problem situations and the changes in their levels of 

understanding. In this paper, theories for learning progress are explored in reference to problem 

conceptualization, a framework of cognitive changes in expertise development, and in the 

learning-transfer in problem-solving situations. The study reveals some implications and 

remaining questions.      

The theory of mental models accounts for how people conceptualize problem situations. 

Considering that mental models are symbolic (Johnson-Laird, 2005a, 2005b), symbol systems 

such as language and diagrams are deemed to be substantial in representing learners’ mental 

models. Drawing upon symbol systems, current concept mapping tools elicit learners’ 

understanding and can be sorted into two categories: (a) direct drawing tools such as Cmaptools 

(see http://cmap.ihmc.us/ ) and DEEP(see http://himatt.ezw.uni-freiburg.de/cgi-

bin/hrun/himatt.pl) where learners directly draw their concept models, and (b) tools parsing 

natural language such as T-MITOCAR (http://himatt.ezw.uni-freiburg.de/cgi-bin/hrun/himatt.pl) 

and ALA Reader (http://www.personal.psu.edu/rbc4/ala.htm) in which learners’ texts written in 

response to a given problem are parsed and represented as concept maps.  

While the former type of tools seems to be more informative since it can describe 

directional and qualitative relationships (e.g., causal relationship) among concepts including 

annotation, they require extraneous cognitive load such as learning how to use a tool and 

possibly losing some contextual features of a problem due to its abstract approach. On the other 

hand, the latter type of tools use students’ responses as written text that may represent students’ 

natural thinking processes, but their representation of a concept map is still limited to describing 

http://cmap.ihmc.us/�
http://himatt.ezw.uni-freiburg.de/cgi-bin/hrun/himatt.pl�
http://himatt.ezw.uni-freiburg.de/cgi-bin/hrun/himatt.pl�
http://himatt.ezw.uni-freiburg.de/cgi-bin/hrun/himatt.pl�
http://www.personal.psu.edu/rbc4/ala.htm�
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simple propositional relationships without directional and qualitative information. According to 

the theory of mental models, mentally represented problem space is a structure including diverse 

relationships. Thus, assessment tools need to be adapted for the complex, dynamic structure of 

mental models so that diagnostic, formative information becomes more precise.  

Second, the measureable features of the expert’s mental structure need to be identified. In 

this study, for two reasons we restrict the functions of adaptive instruction to supporting students 

in their progress toward expert level rather than on helping them to be experts. The first reason is 

our lack of a means to assess and determine the expert level; the second is the limited number of 

problem cases available in an educational context. Nonetheless, in educational contexts, it is 

significant to identify expert learners, who may possibly bring many experiences into a class or 

who become experts during instruction, because they also require educational support pertinent 

to their states. Thus, theoretical suggestions that include some measurable attributes for 

determination of expert level mental models are requested. 

Third, it is required to study longitudinal stage changes of mental models based on the 

given framework so that we can apply the model of learning progress to evaluating effectiveness 

of instruction and determine proper educational supports to an individual. Collins and Wugalter 

(1992) pointed out that psychological research and theory is increasingly turning to longitudinal 

studies, where development is monitored by following individuals over time. They introduced a 

measurement theory named dynamic latent variables, which are continuous quantitative variables 

that change systematically over time. Although these variables can be seen as continuous, many 

latent variables are best interpreted as a sequence of qualitative stages. Their assumptions are in 

congruence with the standpoint of developmental psychology (e.g., Bruner, 1961; Flavell, 1992; 

Piaget, 1964; Siegler, 2005; Siegler et al., 2009; Werner, 1957; Vygotsky, 1934/1976). A 
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statistical test on the methodology can be illustrated in the experimental scenario in which 

multiple measurements of mental models are taken in reference to the crown-of-thorns starfish 

problem. In the investigational setting, we can suppose that researchers find a set of patterns in 

stage transition, their proportion, and transition probabilities among measurement points from 

the statistical analyses. These results can inform researchers of students’ dynamic changes of 

learning progress and the effects of a given instructional intervention in a longitudinal manner. In 

short, statistical tests that detect, analyze a variety of transition patterns are required and then the 

detected patterns need to be validated by a qualitative review of student models.   

 Finally, we describe a couple of assessment situations in which conjectural assessment 

technologies, embedding the proposed framework of learning progress, are used. Although 

assessment tools are anticipated, the stage-sequential learning progress model provides possible 

qualitative classification by which learners’ states are characterized and the learning stage 

changes are monitored in a longitudinal assessment setting. Based on these assumptions, we also 

envision reversion to an earlier or less sophisticated stage of learning progress. Regression in 

learning progress raises a few implications and further questions. For example, considering the 

expertise reversal effect, an advanced learner’s unpredicted response may have dysfunctional 

assessment methodologies, designers should take into account advanced responses, which exceed 

their expectations, when designing problem cases and reference models.  

Reverse progress implies that the learning progress is not explained purely by cognitive 

factors, but influenced by intertwined effects which include non-cognitive factors (e.g., interest 

and self-efficacy). As mentioned earlier, low interest, self-efficacious students may remain stuck 

in a stage or move backward to lower stages due to their ignorance of learning goals or given 

feedback (Kernis et al., 1989; Sadler, 1989). In order to understand the learning progress and 
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provide better formative support, answers need to be provided regarding the relationships among 

cognitive and non-cognitive factors in learning progress. Following are some possible questions. 

What non-cognitive factors are related to developing expertise? To what extent is each non-

cognitive factor associated with the change of learning stages? Like mental models as indicators 

of cognitive changes, can non-cognitive factors be classified in sequential stages? Can the five 

stage model of learning progress be a shared model that classifies non-cognitive factors? Can we 

establish an integrated model of learning progress including cognitive and non-cognitive factors? 

How can we determine a learner’s stage based on an integrated perspective? What instructional 

and feedback strategies can be elaborated based on the framework of learning progress 

considering both cognitive and non-cognitive factors?                

Closing Thoughts 

If we wish to make an instructional program aimed at developing expertise in particular 

domains, we need to understand students’ levels of understanding, monitor their progress, and 

provide personalized feedback. Students in different stages may have different needs because of 

the diverse states in their mental representations. In other words, instruction needs to be adaptive 

to individual differences. 

This focused literature review and conceptual development paper provides theoretically 

grounded guidelines to address some issues of assessing learning progress based on the theory of 

mental models, the development of expertise, and learning transfer. For example, the theory of 

mental models provides practical suggestions on how to elicit learner models and how to build 

reference models for both structured and ill-structured problem-solving tasks. The research about 

expertise development presents plausible frameworks for qualitatively distinct developmental 

stages through which learners proceed. These theoretical findings leave significant practical 
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questions, and theory has more value when it contributes to improving learning. For instance, 

devising the methodologies to estimate learners’ stages and monitor their learning trajectories 

will be one area and the task to generate instructional strategies that adapt to a learner’s 

developmental stages will be another. 
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CROSS-VALIDATION STUDY OF METHODS AND TECHNOLOGIES TO ASSESS 

MENTAL MODELS IN A COMPLEX PROBLEM SOLVING SITUATION2

  

 

                                                 
2 Kim, M. 2012, Computers in Human Behavior, 28 (2): 703-717. 
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Abstract 

This paper reports a cross-validation study aimed at identifying reliable and valid methods and 

technologies for natural language (i.e., written text) responses to complex problem-solving 

scenarios. In order to investigate current assessment technologies for text-based responses to 

problem-solving scenarios (i.e., ALA-Reader and T-MITOCAR), this study compared the two 

best developed technologies to an alternative methodology. Comparisons amongst the three 

models (benchmark, ALA-Reader, and T-MITOCAR) provided two findings: (a) the benchmark 

model created the most descriptive concept maps; and (b) the ALA-Reader model had higher 

correlation with the benchmark model than did T-MITOCAR. The results imply that the 

benchmark model is a viable alternative to two existing technologies and is worth exploring in a 

larger scale study.    

Keywords: assessment technology, concept map, mental models, problem solving, 

validation study 

  



66 

This study investigated current methods and technologies that yield concept maps 

−structural knowledge representations consisting of concepts and relations (Clariana, 2010; 

Narayanan, 2005; Novak & Canãs, 2006; Spector & Koszalka, 2004)−as re-representations of a 

student’s mental models. This study is a kind of cross-validation3

There is a common belief that problem solving includes conceptualizing the problem 

space, which involves creating a knowledge structure that integrates ideas and concepts that a 

problem solver associates with the problem situation (Dochy, Segers, Van den Bossche, & 

Gijbels, 2003; Jonassen, Beissner, & Yacci, 1993; Newell & Simon, 1972; Segars, 1997). As a 

consequence, assessing problem solving should naturally take into account the constructed 

knowledge structure (Gijbel, Dochy, Van den Bossche, & Segers, 2005); simple knowledge tests 

are somewhat weak measures of problem-solving ability (Grotzer & Perkins, 2000; Thomas, 

2005).  

 aimed at identifying which 

methods work best in terms as forming the basis for dynamic formative feedback. It is assumed 

that using natural language (written text) responses as a basis for  concept map representations of 

student thinking is likely to provide a reliable foundation for use in providing formative feedback 

and assessment (Pirnay-Dummer, Ifenthaler, & Spector, 2010).  

In order to capture structural knowledge, a number of technologies have been developed, 

including: DEEP (Dynamic Evaluation of Enhanced Problem-solving; see Spector & Koszalka, 

2004); SMD (Surface, Matching, and Deep Structure; Ifenthaler, 2009); T-MITOCAR (Text 

Model Inspection Trace of Concepts and Relations; Pirnay-Dummer, Ifenthaler, & Spector 2010); 

CmapTools (Novak & Canãs, 2006); jMap (Jeong, 2008); ACSMM (Analysis Constructed 

Shared Mental Model; O’Connor & Johnson, 2004); KU-Mapper (Clarian & Wallace, 2009); 

                                                 
3 Cross-validation in this study denotes the practice of identifying the most reliable concept map technology 

by comparing concept maps elicited from multiple technologies using the same data. 
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ALA-Mapper (Analysis of Lexical Aggregates-Mapper; Taricani & Clariana, 2006; Clariana, 

Wallace, & Godshalk, 2009); ALA-Reader (Analysis of Lexical Aggregates-Reader; Clariana & 

Wallace, 2007, Clariana et al., 2009); and KNOT (Knowledge Network Orientation Tool; 

Schvaneveldt, 1990).  

Current technologies either require learners to create an annotated concept map with rich 

descriptions of links and nodes (DEEP) or else they use text responses as an interim step in 

generating a concept map (T-MITOCAR and ALA-Reader) that can then be assessed with tools 

such as SMD or KNOT.  All of these technologies have limitations in terms of their suitability, 

reliability, and validity (Kalyuga, 2006; Seel, 1999; Spector, Dennen, & Koszalka, 2006).   

This paper addresses focuses on methods that use text responses to generate a concept 

map that can then be assessed and explores an alternative approach that attempts to restore rich 

descriptions of links between nodes. Prominent methods and technologies are classified and 

analyzed in terms of their merits and deficiencies. Next, alternative methods and technologies to 

analyze student responses in the form of written text are selected. Finally, cross-validation 

among the selected technologies is performed, analyzed and reported. Based on the results, an 

alternative approach to consider in automatically constructing and assessing concept maps based 

on open-ended text responses to a problem situation is then described.  

Concept Maps as Re-represented Mental Models through Language Inputs 

Mental Models as Inferred Entities 

Mental models are cognitive artifacts resulting from perception and linguistic 

comprehension, representing certain aspects of external situations (Johnson-Laird, 2005a, 2005b). 

In this perspective, knowledge appears to be a configuration of holistic mental representations. 

Mental model representations consist of propositional representations as structured symbols and 
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images (Johnson-Laird, 2005b; Newell, 1990). A concept map, such as the externally-

represented structural component of mental models, implies that a latent structure exists in the 

human mind. In other words, a concept map is a first or second order representation of a primary 

representation – a mental model, which is an inferred entity. The primary representations (mental 

models) drive actions and decisions, which are external indicators of learning. In order to provide 

formative feedback, however, it is necessary to make inferences about the mental models that are 

behind decision making and problem-solving activities. Many empirical studies utilizing concept 

map techniques have shown that as students gain competence in a discipline, their structural 

comprehension becomes more coherent and expert-like (e.g., Schlomske & Pirnay-Dummer, 

2008; Schvaneveldt, Durso, Goldsmith, Breen, & Cooke, 1985; Spector & Koszalka, 2004). 

Concept Maps as Analogues of Mental Models 

Concept mapping is a method that elicits cognitive representations of an individual’s 

structural knowledge involving interrelated concepts (Axelrod, 1976; Carley & Palmquist, 1992; 

Narayanan, 2005). In concept maps as representations of semantic networks (Quillian, 1968; 

Collins & Loftus, 1975; Jonassen et al., 1993), the strength of links may be interpreted as the 

strength of belief in a given semantic relationship, which is reflected by link weights (Shute, 

Jeong, Spector, Seel, & Johnson, 2009; Shute & Zapata-Rivera, 2008). 

Language plays a key role in creating a concept map. Concept maps can represent pairs 

of related words, such as a noun (concept)-verb (relation)-noun (concept) relationship. The data 

used for concept mapping is generally collected from interviews or texts (Carley & Palmquist, 

1992; Narayanan, 2005). Text-based data collection is economical in terms of time and effort 

(Brown, 1992), and is based on techniques that avoid recall bias and potentially leading or 

misleading questions (Axelrod, 1976). 
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Mental models are formulated symbolically (Seel, 2001); that is, symbols play a central 

role in representing ideas and thoughts. Meaning is constructed with cognitive effort (thinking 

and reasoning) often utilizing symbolic notations which help individuals to re-represent their 

thoughts (Greeno, 1989). According to Garnham (1987, 2001), the theory of mental models 

provides a unified account of language processing, thinking, and reasoning. A mental model is 

constructed based on situational inputs and can be re-represented in text or discourse. In order to 

visually represent concept maps from text, technological support in terms of natural language 

processing and network analysis technology are required. 

State-of-the-Art Concept Map Technologies 

Concept maps are generally visually represented through network analysis using a set of 

techniques to portray patterns of relations among nodes (Coronges, Stacy, & Valente, 2007; 

Hutchison, 2003; Wasserman & Faust, 1994). Most of the techniques involve mathematical 

algorithms derived from graph theory (Rupp, Sweet, & Choi, 2010b; Schvaneveldt, Durso, 

Goldsmith, Breen, & Cooke, 1989; Wasserman & Faust, 1994). In these techniques, proximity 

data between and among concepts is defined as “judgments of similarity, relatedness, or 

association between entities frequently used in the study of human cognition” (Schvaneveldt et 

al., 1989, p. 249). Drawing on graph theory and proximity data, specific statistical methods have 

been used. Pathfinder techniques (Jonassen et al., 1993, Schvaneveldt, 1990; Schvaneveldt et al., 

1985) to analyze simple association networks using multi-dimensional scaling is an early 

statistical technique used to assess concept maps. More recently, social network analysis has 

been used (Rupp, Gushta, Mislevy, & Shaffer, 2010a; Shaffer, Hatfield, Svarovsky, Nash, Nulty, 

& Bagley et al., 2009; Wasserman & Faust, 1994).  
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Figure 3.1 illustrates relationships amongst methods and technologies in a network 

analysis procedure. In general, network analysis employs a three-step procedure (Curtis & Davis, 

2003; Taricani & Clariana, 2006): (1) elicit judgments about concept relationships; (2) construct 

concept maps; and (3) compare the concept maps to the reference model.    

   

Figure 3.1. Procedure, methods, and technologies applied to network analysis.  
 
Step 1: Elicit Judgments about Concept Relationships  

The first step, eliciting judgments about concept relationships, is the essential phase 

because it yields data that contains all captured concepts and their relationships in a student’s 

response. There are two kinds of concept map approaches involving natural language processing: 

the ‘closed-ended concepts approach’ and the ‘open-ended concepts approach’ (see Figure 3.1). 

The closed-ended provides the student with a predefined list of concepts and links (Taricani and 

Clariana, 2006). The open-ended approach allows students to use whatever concepts and linking 
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terms they desire. In Figure 3.1, the class of closed-ended approaches includes KU-Mapper, 

ALA-Mapper, and ALA-Reader; the class of open-ended approaches includes T-MITOCAR, 

CmapTools, and DEEP. CmapTools and DEEP allow students to draw concept maps based on 

either predefined concepts or free use of any concepts. ALA-Reader accepts text input with no 

limitation (Clariana et al, 2009; Taricani & Clariana, 2006), but that tool is classified as closed-

ended concepts because the technology only retrieves a predefined list of words from the open-

ended text. Many researchers consider open-ended concept mapping as the gold standard for 

capturing students’ mental models (McClure, Sonak, & Suen, 1999; Ruiz-Primo, Schultz, Li, & 

Shavelson, 1999; Spector & Koszalka, 2004; Taricani & Clariana, 2006). This study also centers 

on open-ended concept mapping as a way to elicit a natural and descriptive knowledge structure. 

 The aforementioned technologies generate two types of proximity data (i.e., an n by n 

matrix where n is the number of terms−concepts), representing distance or adjacency, depending 

on the technologies. Distance data generated by such tools (KU-Mapper and ALA-Mapper) 

include all of the pair-wised distances between terms that are calculated by the location of the 

terms in a space (e.g., computer screen) or directly judged by students with ordinal scale (e.g., 1 

to 9) (Clariana et al., 2009; Taricani & Clariana, 2006). In the case of adjacency data, the 

relatedness of paired terms is represented in a matrix, the n by n matrix with ‘1’ (that is entered 

when two terms are connected) or ‘0’ (that is entered when two terms are not associated) 

(Clariana et al., 2009; Rupp et al., 2010b; Schvaneveldt, 1990; Schvaneveldt et al., 1989; 

Wasserman & Faust, 1994). Distance data have mathematical foundations in geometry whereas 

adjacency data are directly derived from graph theory (Schvaneveldt, 1990; Schvaneveldt et al., 

1989). Adjacency data is an alternative to distance data due to their benefit in describing a 

directional relation where the connection between a pair of concepts has an origin and a 
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destination (Wasserman & Faust, 1994). In the sense that directional adjacency data can describe 

detailed structural information such as a causal relation between concepts, this study takes 

account of adjacency data that is more descriptive and complex. 

In addition, Clariana and colleagues (2007, 2009) proposed that editing pronouns to 

nouns the pronouns point out in text is likely to help better capture relevant information about the 

knowledge structure than does simply ignoring all pronouns. Although their experiment 

concluded that there was little difference between editing and ignoring pronouns, this study 

included a comparison between two types of data when determining a better benchmark model.  

In regard to the classifications discussed here, we can make a set of combinations of 

concept mapping approaches that are listed from more complex and descriptive to simple and 

economic. Again, all listed combinations below can be divided into two (i.e., noun-only and 

pronoun-edited) according to the data handling subroutine: 

• Natural language + open-ended concepts + directional adjacency data 

• Natural language + open-ended concepts + non-directional adjacency data 

• Natural language + closed-ended concepts + directional adjacency data 

• Natural language + closed-ended concepts + non-directional adjacency data 

Step 2: Construct Concept Maps 

The technologies process proximity data (either distance or adjacency data) and then 

construct concept maps. Constructing concept maps is based on two network analysis methods: 

Pathfinder network analysis and social network analysis. Pathfinder network analysis (PFA) is “a 

data reduction approach that emphasizes the main pair-wise associations in proximity data” 

(Taricani & Clariana, 2006, p. 730) by constraining the data with r and q parameters. r parameter 

works as a function of the weights of links in the path and q parameter places an upper limit on 
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the number of links in paths (See Schvaneveldt, 1990; Schvaneveldt et al., 1989). In short, 

pathfinder algorithms with particular r and q parameters yield the minimum number of links in 

an n by n array. Considering the function of PFA, it seems that PFA is a heuristic method to find 

meaningful relations among many of the concepts (Goldsmith, Johnson, & Acton, 1991). 

However, it is often observed that many studies with a small set of concepts utilize PFA. 

Likewise, in the case that key terms are pre-defined from the referent network, the use of PFA 

would be less effective. Otherwise, the approach to identifying key terms and relations in a large 

number of concepts appears to be more pertinent to PFA. For example, Coronges and colleagues 

(2007) conducted more descriptive analysis (i.e., social network analysis) and then ran PFA.  

Social network analysis (SNA) is useful in the study of knowledge structure although it 

was developed to study social relationships (Coronges et al., 2007; Knoke & Kuklinski, 1982; 

Hage & Harary, 1983; Wasserman & Faust, 1994). Coronges and colleagues (2007) used SNA to 

analyze a cognitive network labeled Cognitive Associative Network (CAN). Another example is 

the Epistemic Network Analysis (ENA) by Rupp and colleagues (2010a, 2010b) in which they 

created knowledge networks (concept maps) and compared the networks using measures 

resulting from SNA. Network measures computed by SNA include global-level measures that 

describe the overall entire network (e.g., centralization, size, density, clustering, and path length) 

and local-level measures, such as centrality of each concept, which can be used to determine the 

salience of concepts (Coronges et al., 2007; Wasserman & Faust, 1994).  

As a result, when we use adjacency data (either directional or non-directional), 

employing SNA provides more benefits for research in that it generates diverse network 

parameters that are compared to a reference network or other networks (e.g., a previously elicited 

network). SMD, a set of analysis functions using adjacency data (Ifenthaler, 2007; Ifenthaler et 
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al., 2009), is consistent with SNA. Table 3.1 shows that the measures used in SMD are directly 

adapted to the analysis techniques specified in SNA.  

Table 3.1 

Measures for Analyzing the Organization of Cognitive Structure   

SMD Measure Operationalization Social Network Measurea 

Surface 
structure 

The overall number of propositions  The number of edges 
(links) 

Graphical 
structure 

The complexity of a cognitive structure indicates 
how broad the understanding of the underlying 
subject matter is 

Geodesics distance and 
diameter of a network 

Connectedness A connected cognitive structure indicates a deeper 
understanding of the underlying subject matter 

Connectedness 

Ruggedness Non-linked vertices of a cognitive structure point to 
a lesser understanding of the phenomenon in 
question 

Non-linked nodes 

Average 
degree of 
vertices 

As the number of incoming and outgoing edges 
grows, the complexity of the cognitive structure is 
taken as more complex 

Average degree 

Cyclic A non-cyclic cognitive structure is considered less 
sophisticated  

Cycle (closed walk) or 
acycle  

Number of 
cycles 

A cognitive structure with many cycles is an 
indicator for a close association of the vertices and 
edges used  

Cohesive subgroups 

Vertices  A simple indicator for the size of the underlying 
cognitive structure 

The number of nodes 

Vertex 
matching 

The use of semantically correct concepts (vertices) is 
a general indicator of an accurate understanding of 
the given subject domain 

Shared number of nodes 

Propositional 
matching 

The use of semantically correct propositions (vertex-
edge-vertex) indicates a correct and deeper 
understanding of the given subject domain 

Configural similarity 
(KNOT; Taricani & 
Clariana, 2006) 

Note. It was modified from Ifenthaler et al., (2009). a. It referred to Wasserman and Faust (1994). 

Step 3: Compare the Concept Maps to the Reference Model 

Evaluation of the derived concept maps is often done by comparison with a reference 

model, which is often elicited from an expert (Curtis & Davis, 2003; Goldsmith & Kraiger, 1997; 

Coronges et al., 2007; Taricani & Clariana, 2006). Comparison between concept maps is 

indicated by similarity measures assessed by overlaying network patterns with the concept map 
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information (Coronges et al., 2007; Monge & Contractor, 2003). KNOT (i.e., a PFA tool mostly 

employed in studies) software includes the function to gauge two similarity parameters: common 

and configural similarity. The common similarity is simply the total number of links shared by 

two concept maps. The configural similarity is calculated by dividing the total number of shared 

propositions by the total number of unique links in the student’s and the expert’s concept maps 

ranging from 0 (no similarity) to 1 (perfect similarity). These similarity values are used as 

concept map scores (Clariana et al., 2009; Taricani & Clariana, 2006). Similarity measures can 

be extended including diverse network parameters.  

Table 3.2 

 Seven Similarity Measures of T-MITOCAR 

Note: It refers to Pirnay-Dummer and Ifenthaler (2010). 

Spector and Koszalka (2004) first introduced the surface, structure, and semantic 

similarity features in conceptual form. In accordance with those three features, many cognitive 

scientists have proposed similarity measures for investigating the achievement of complex 

problem-solving knowledge and skills (Clariana et al., 2009; Ifenthaler, 2006; Pirnary-Dummer, 

Surface Compares the number of concepts between two models (graphs). 
 

Graphical Matching Compares the diameters of the spanning trees of the graphical 
mental models as an indicator for the range of conceptual 
knowledge. 

Structural Matching Compares the complete structures of two graphs regardless of their 
contents. 

Gamma Compares the two graphs’ gammas that indicate each graph’s 
average percentage of the links that are actually present for a node.  

Concept Matching Compares the sets of concepts within a graph to determine the use 
of terms. 

Propositional 
Matching 

Compares only fully identical propositions between two graphs, 
which are used for quantifying semantic similarity between two 
graphs. 

Balanced Semantic 
Matching 

Uses both concepts and propositions to match the semantic 
potential between two model representations.  
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2006; Taricani & Clariana, 2006). For example, T-MITOCAR (Pirnay-Dummer and Ifenthaler, 

2010) provides six similarity measures as comparison results based on multiple network 

measures from SMD (see Table 3.2).  

Method 

This study has two aims: (1) identify the methods that consistently yield the most 

descriptive and accurate concept maps; (2) validate these methods and technologies using a 

reference method. The most complex condition can be expressed in this combination: natural 

language + open-ended + directional adjacency data + pronoun-edited. As to the network 

analysis method, the social network analysis (SNA) is considered as an alternative in terms of 

obtaining a more descriptive concept map and diverse network information. However, 

considering that a complex approach is only required when it offers a greater benefit over a less 

complex one, more complex approaches were compared to less complex approaches. In addition, 

this comparison process serves to validate applied technologies as well.   

Participants 

Participants included 20 students and seven experts. The original student data were 

gathered from 136 undergraduate students enrolled in a course at a university in the southern 

United States. The course aimed to educate students on knowledge and skills for integrating 

technology in teaching and learning. In the class, students made written responses to a specific 

complex problem. For this study, from the original group of students whose responses contained 

more than 350 words, a random selection of 20 students was made; the reason for restricting the 

selection to responses with more than 350 words is that one of the selected technologies, T-

MITOCAR, requires at least 350 words for an analysis. Fifteen students were female and five 

were male. Of the 20, 10 were in their junior year, five were sophomores, and five were at the 
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senior level. Seven expert responses were gathered from seven professors teaching at six major 

universities in the United States. It was assumed that using expert responses would enable us to 

investigate the technologies’ ability to detect higher-level responses.  

The Problem-solving Task 

All participants were asked for responses to a complex problem situation using natural 

language. The task provided a simulated situation in which students were assumed to be 

participating in an evaluation project, the purpose of which was to investigate an unsuccessful 

project that had as its goal adapting a technology (i.e., a tablet PC) for classroom teaching.  In 

order to elicit students’ knowledge in detail, the questions asked them to explicitly describe the 

concepts, issues, factors, and variables likely to have contributed to the result that the 

introduction of tablet PCs had very little effect on the instructional practices employed in the 

classes. 

Reference Modeling via a Delphi Survey  

This study included a reference model for the problem situation. The model was created 

using a Delphi survey procedure (Goodman, 1987; Hsu & Sandford, 2007; Okoli & Pawlowski, 

2004). The Delphi survey involved three iterations to develop a refined reference model that the 

seven experts accepted. In the first round, the participating professors created their own 

responses to the problem; then, all the panel’s responses were consolidated. Next, a document 

including all statements from the professors and a list of concepts identified from the panel’s 

responses was sent to the panel again. The professors were asked to add their comments 

regarding the listed statements and concepts and rank them. After gathering the second round of 

surveys, the researcher created a final list of ranked statements and concepts. Based on this 

summary, a draft of a reference model was created. In the final round, the results of the second 
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survey were sent to the panel and revised according to their comments as necessary. Through this 

procedure, a reference model containing 23 key concepts was developed. 

Benchmarks 

Initially, four types of benchmarks were prepared according to the combinations of noun-

only vs. pronoun-edited and directional vs. non-directional. To prepare for pronoun-edited 

responses, all responses were reviewed. Directional relations were determined when retrieving 

paired concepts from text. 

To distill concepts and relations from text responses, according to the author’s (2011) 

semantic relation approach, the researcher manually distilled the semantic relations that are the 

underlying relations between two concepts expressed by words or phrases. The approach 

involves diverse types of relations of concepts beyond the typical noun-verb-noun relation form 

including genitives (e.g., teachers’ participation), prepositional phrases attached to nouns 

(e.g., technology in school classrooms), or sentence (e.g., Emerging new media has always led 

to instructional changes.). Thereafter, all distilled concepts and relations were summarized in 

adjacency data. The distilled concepts and relations were cross-checked by a doctoral student. 

There were no significant issues regarding the data. All concepts and relations were retained 

without changes; potential issues would have had no significant impact on the results considering 

the number of concepts and relations in each concept map. The adjacency data were processed 

via the selected network analysis package, NetMiner (http://www.netminer.com/), which 

provides the capability for creating concept maps and generating a variety of concept map 

information.  

Finally, in order to obtain a list of similarity measures in the form of concept map scores, 

student models were compared to the reference model.  The similarity measures were calculated 

http://www.netminer.com/NetMiner/home_01.jsp�
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using the similarity tool developed for this study. The tool was developed using C++ and 

validated by comparisons between randomly selected tool-generated and manually calculated 

sample data.    

 

Figure 3.2. Cross-validation procedure. 

Cross-Validation Procedure  

Along with multiple benchmarks, two natural language technologies, T-MITOCAR and 

ALA-Reader, were selected and validated against the benchmark model. Figure 3.2 illustrates the 

cross-validation procedure. The concept mapping approach in which each method is embedded is 

matched as follows: 

• Benchmark 1: open-ended + directional (adjacency data) 

• Benchmark 2: open-ended + non-directional (adjacency data) 

• T-MITOCAR: open-ended + non-directional (distance data) 

• ALA-Reader: close-ended + non-directional (adjacency data) 
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Regarding the benchmarks, there are two types of models; noun-only and pronoun-edited.   

Each model can be reclassified as directional or non-directional. In the Figure 3.2, only the 

second-level classification was included. At the beginning of the analysis, the competing models 

of the benchmarks such as noun-only versus pronoun-edited and directional versus non-

directional were compared so that a benchmark model could be determined for comparisons 

amongst different methods and technologies.  

As Figure 2 shows, there were four comparisons made across the outcomes of each 

selected method through the concept mapping procedures (steps 1 through 3). The cross-

validation includes two comparisons of outcomes from different sets. In the first review, the 

correlation and similarity were analyzed for comparisons amongst the proximity data. In the 

second review, visual inspections of the concept maps were conducted as a qualitative analysis. 

The third review involved a second correlation and similarity study among concept map 

parameters obtained from each method: (a) number of relations; (b) diameter; (c) gamma (cluster 

coefficient; see Table 3.2); and (d) the number of cycles (cohesive subgroups; see Table 3.1).  

The last review was a comparison across various concept map scores, which are 

computed similarities between the student model and the reference model (see Pirnay-Dummer 

& Ifenthaler, 2010): (a) surface matching; (b) graphical matching; (c) concept matching; (d) 

gamma matching; (e) propositional matching; and (f) balanced semantic matching. 

Data Analyses 

Data comparison. This study validated the outcomes from the competing concept map 

methods such as proximity data, concept map parameters, and concept map scores. The 

validation methods included the numerical and pattern reviews. In the following, a numerical 

similarity measure was applied to see how far or near the numbers of the two models are: 
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where f1 and f2 denote the numerical frequency of each method compared. The similarity ranges 

from 0 to 1, 0 ≤ s ≤ 1. To review associated patterns, Pearson correlation-coefficients were 

calculated between the benchmark and competing methods.  

Modification of similarity measures (concept map scores). This study modified and 

adjusted the formulas that calculated the concept map scores. The modified formulas used for 

obtaining concept map scores of the benchmark and ALA-Reader.  

On the whole, a similarity formula assumes each part of a pair is equally significant. In 

the case of a concept model comparison, the reference model and student model are not equal in 

terms of maturity. A reference model acts as criteria and a student model is expected to progress 

toward the reference model. It is assumed that a reference model is likely to contain a greater 

number of concepts and relations and to build a larger knowledge structure than a novice model 

(Chi, Glaser, & Farr, 1988; Spector & Koszalka, 2004).  

As for numerical similarity, a modified algorithm was applied except for the gamma 

similarity (refer to Table 3.2). In case f1 is smaller than f2, f1 < f2, the original numerical similarity 

formula was used so that 

 

where the frequency of a student model is f1 and that of a reference model is f2. Otherwise, if f1 is 

not less than f2, f1 ≥ f2, the similarity value was set as ‘1’ because the student value is greater than 

that of the reference. That is, it indicates that the student model exceeds the reference model 

according to the relevant criteria. 

 

s =1−
f1 − f2

max f1, f2( )

 

s =1−
f1 − f2

max f1, f2( )
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Similarly, concerning the conceptual similarity as applied to the concept and propositional 

matching score, two adjustments were made. Just as a picture resembles an object rather than an 

object resembling a picture of it, a student model to some degree resembles the reference model 

that is more salient. In this asymmetric relation, the features of the student model are weighted 

more heavily than those of the reference (Colman &Shafir, 2008; Tversky & Shafir, 2004). 

When the conceptual similarities of the benchmark were calculated by Tversky’s (1977) formula,    

s =
𝑓(A ∩ B)

𝑓(A ∩ B) + α ∙ 𝑓(A − B) + β ∙ 𝑓(B − A) 

α was weighted more heavily than β (α = 0.7 and β = 0.3). However, in the case of the ALA-

Reader, since it has a predefined set of concepts and relations, the reference mode, f (B), always 

includes a student model, f (A). Therefore, α was set as ‘0,’ whereas β was set as ‘1.’  

Results 

Determining a Benchmark 

Two comparisons amongst the methods (the noun-only versus pronoun-edited and the 

directional versus non-directional) for creating benchmark models were implemented so that we 

could decide a reliable and economical way to establish a benchmark. The first review was of the 

noun-only and pronoun-edited using the numerical similarity between the two approaches.   

As Table 3.3 summarizes, very high average numerical similarities (s > 0.93) were 

observed between the noun-only and pronoun-edited data of concepts and relations in both the 

directional and non-directional models. Similar to Clariana and colleagues’ (2007, 2009) 

conclusion, there was such little difference that it was determined that the noun-only model was 

more economical. 
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Table 3.3 

Numerical Similarities of Concepts and Relations between the Noun-Only and Pronoun-Edited  

 Noun-Only vs. Pronoun-Edited 
(Directional) 

 Noun-Only vs. Pronoun-Edited 
 (Non-Directional) 

Concept Relation  Concept Relation 
Min 0.74 0.70  0.74 0.70 
Max 1.00 1.00  1.00 1.00 
Average 0.97 0.93  0.97 0.93 
Note. Sample size N = 28. 

Next, the similarities between the directional and non-directional data were investigated 

(see Table 3.4). The directional and non-directional data have the same set of concepts in a given 

setting, either the noun-only or pronoun-edited. Only the numerical similarities of relations were 

calculated. The very high average numerical similarities (s = 0.98) demonstrated that there was 

little difference between the directional and non-directional data of relations in both noun-only 

and pronoun-edited models.  

In order to certify the aforementioned findings, matrix correlations amongst the four 

types of benchmarks were reviewed for the selected four samples, including two randomly 

selected samples (students 78 and 83), the reference model, and an extreme case (student 20).  

As an outlier, student 20 frequently used pronouns resulting in a relatively greater difference 

between noun-only and pronoun-edited analyses. 

Table 3.4 

Numerical Similarities of Relations between the Directional and Non-Directional  

 Directional vs. Non-Directional 
(Noun-Only) 

Directional vs. Non-Directional 
(Pronoun-Edited) 

Min 0.92 0.92 
Max 1.00 1.00 
Average 0.98 0.98 
Note. Sample size N = 28. 
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For all samples, matrix correlations between the directional and non-directional were 

around 0.5 because the relation Rij is the same as Rji in non-directional data, Rij  = Rji, whereas Rij  

is different from Rji, in directional data. In a specified directional or non-directional condition, 

even student 20 had a higher correlation of 0.703 between the noun-only and pronoun-edited 

data (see Table 3.5). It was concluded that a noun-only and non-directional data model is 

sufficient to describe a useful concept map. Next, the proximity data (adjacency data) of the 

benchmark was created. 

Table 3.5 

Correlations Matrix among the Four Types of Data of the Selected Samples 

 Reference Model 
ND NN PD PN 

ND 0 0 0 0 
NN 0.516 0 0 0 
PD 0.985 0.512 0 0 
PN 0.508 0.985 0.515 0 

 Student 20 
ND NN PD PN 

ND 0 0 0 0 
NN 0.5 0 0 0 
PD 0.703 0.413 0 0 
PN 0.351 0.703 0.5 0 

 Student 78 
ND NN PD PN 

ND 0 0 0 0 
NN 0.52 0 0 0 
PD 0.895 0.49 0 0 
PN 0.464 0.891 0.518 0 

 Student 83 
ND NN PD PN 

ND 0 0 0 0 
NN 0.531 0 0 0 
PD 0.895 0.522 0 0 
PN 0.486 0.914 0.543 0 
Note. The ND denotes the Noun-Only & Directional data; the NN is the Noun-Only & Non-Directional 
data; the PD indicates the Pronoun-Edited & Directional data; and the PN means the Pronoun-Edited & 
Non-Directional data.    
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1st Review: the Proximity Data 

The proximity data obtained from the benchmark, ALA-Reader, and T-MITOCAR were 

compared. As Table 3.6 shows, the benchmark model had the greatest number of concepts and 

relations followed by those of T-MITOCAR and ALA-Reader.  Interestingly, in the case of 

ALA-Reader, one and three cases both of which are expert’ responses, deviated from the range 

of the concept and relation, respectively (see Figure 3.3). This result implied that ALA-Reader is 

more sensitive to the assessment context in terms of shared terms.  

Table 3.6 

The Numbers of Concepts and Relations of the Benchmark Model, ALA-Reader, and T-

MITOCAR 

 Concept  Relation 
B A T  B A T 

Min 16 0 8  18 0 7 
Max 54 23 19  64 35 46 
Average 33 5 13  39 6 23 
Note. Note. Sample size N = 28. The B denotes the benchmark model; the A is the ALA-Reader; and the 
T means the T-MITOCAR  
 

 

Figure 3.3. Boxplots of the numbers of concepts and relations. 
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As can be seen, the numerical similarities of concepts and relations revealed that ALA-

Reader and T-MITOCAR provided less information in terms of the number of concepts and 

relations (see Table 3.7). 

Table 3.7 

Similarities of the Numbers of Concepts and Relations of ALA-Reader or T-MITOCAR with those 

of the Benchmark  

 ALA-Reader  T-MITOCAR 
Concept Relation  Concept Relation 

Min 0.000 0.000  0.200 0.179 
Max 0.426 0.547  0.773 0.969 
Average 0.126 0.117  0.432 0.584 
Note. Sample size N = 28.  

Table 3.8 

Correlations among Concepts and Relations in the Benchmark, ALA-Reader, and T-MITOCAR 

and Word Count of Each Sample   

 WC BC BR AC AR TC TR 
WC -       
BC 0.526** -      
BR 0.572** 0.949** -     
AC 0.224 0.730** 0.735** -    
AR 0.365 0.701** 0.746** 0.966** -   
TC -0.044 0.174 0.206 0.099 0.051 -  
TR -0.014 0.033 0.130 -0.033 -0.009 0.876** - 
Note. Sample size N = 28. ** p < .01. 
WC (Word Count); BC (Benchmark Concept); BR (Benchmark Relation); AC (ALA-Reader Concept); 
AR (ALA-Reader Relation); TC (T-MITOCAR Concept); and TR (T-MITOCAR Relation).  
 

To examine the associations among the methods, correlation-coefficient analyses were 

conducted using word count, concepts, and relations. The benchmark and ALA-Reader had high 

correlations in their concepts and relations, r = 0.730 and 0.746, p < .01, respectively (see Table 

3.8). In spite of a large difference in the numbers of concepts and relations, the ALA-Reader 

model was highly associated with the benchmark.  
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It was assumed that the larger volume of text response in general represents more 

concepts and relations. A reliable tool should be sensitive to the volume of text representation. 

Although the ALA-Reader and T-MITOCAR limit the number of concepts to no more than 30, it 

was expected that the numbers of distilled concepts and relations of the tools are to some extent 

associated with the volume of words in responses. Therefore, correlations with word count were 

investigated. The results showed that only the benchmark model had associations with word 

count in terms of concepts and relations, r = 0.526 and 0.572, p < .01, respectively (see Table 

3.8). Subsequent regression analyses demonstrated that word count explained a significant 

proportion of the variance in the number of concepts and relations in the benchmark model, R2 = 

0.25, F(1, 26) = 9.92, p < .01 and R2 = 0.30, F(1, 26) = 12.62, p < .01, respectively (see Tables 

3.9 and 3.10).  

Table 3.9 

Simple Regression Analyses Investigating Linear Associations between Word Count and Concept 

 Benchmark ALA-Reader T-MITOCAR 
B SE B β B SE B β B SE B β 

Word Count 4.77 1.52 .53* 4.55 3.89 .22 -1.27 5.64 -.04 
R2  .25   .05   .00  
F  9.92*   1.37   .051  
* p < .05. ** p < .01. 
 

Table 3.10 

Simple Regression Analyses Investigating Linear Associations between Word Count and Relation 

 Benchmark ALA-Reader T-MITOCAR 
B SE B β B SE B β B SE B β 

Word Count 4.20 1.18 .57* 4.36 2.18 .37 -.13 1.75 -.01 
R2  .30   .13   .00  
F  12.62**   3.99   .00  
* p < .05. ** p < .01. 
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Figure 3.4a. Concept maps of the reference model created by the benchmark  

 

Figure 3.4b. Concept maps of the reference model created by T-MITOCAR  
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Figure 3.4c. Concept maps of the reference model created by ALA-Reader 

 

Figure 3.5a. Concept maps of the student 83 created by the benchmark 



90 

  

Figure 3.5b. Concept maps of the student 83 created by T-MITOCAR 

 

 

Figure 3.5c. Concept maps of the student 83 created by ALA-Reader 
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2nd Review: the Concept Maps 

For the reference model and student 83, concept maps drawn from the competing 

methods were visually investigated. Regarding the reference, although the benchmark created a 

more cohesive and informative concept map (see Figure 3.4a), for two reasons, all other concept 

maps were highly connected (see Figure 3.4b and 3.4c): (a) the reference response was written 

carefully in a cohesive manner; and (b) T-MITOCAR and ALA-Reader let all elements of the 

concept maps connect technically, assuming all concepts are linked in the mind.   

In contrast, the concept maps of student 83 substantially differed from one another. The 

benchmark differentiated the reference model from the concept map of student 83 (see Figure 

3.5a). In contrast, T-MITOCAR yielded a concept map (see Figure 3.5b) more complex than that 

of the reference model, while the concept map produced by ALA-Reader was simple, capturing 

only two concepts (see Figure 3.5c).  

3rd Review: Concept Map Parameters 

Another numerical similarity and correlation study was performed regarding the 

structural parameters of concept maps: (a) diameter; (b) gamma (cluster coefficient); and (c) 

cohesive subgroups. In reference to Table 3.11, the benchmark model produced the largest and 

the most complex structure (average diameter = 7.04 and subgroup = 14.82). The T-MICOCAR 

model had an average diameter and subgroup value similar to those of the benchmark (average 

diameter = 6.00 and subgroup = 13.07). In contrast, the highest average gamma was identified in 

the ALA-Reader model, which was probably affected by the smaller structure (gamma = 0.34 

and subgroup = 1.61).  According to Table 3.12, parameter values of the T-MITOCAR model 

were much closer to those of the benchmark than those of the ALA-Reader model.   
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Table 3.11 

Descriptive Statistics of Structural Parameters of Concept Maps 

 Min Max Mean SD 
Benchmark      

Gamma 0.00 0.32 0.18 0.09 
Diameter 5.00 12.00 7.04 1.60 
Subgroup 6.00 29.00 14.82 5.70 

ALA-Reader     
Gamma 0.00 1.0 0.34 0.43 
Diameter 0.00 7.00 2.04 0.10 
Subgroup 0.00 10.00 1.61 2.20 

T-MITOCAR     
Gamma 0.12 0.59 0.25 0.10 
Diameter 3.00 9.00 6.00 1.44 
Subgroup 8.00 19.00 13.07 3.21 

Note. Sample size N = 28. 

Table 3.12 

Numerical Similarities of Structural Parameters with those of the Benchmark Model 

 ALA-Reader  T-MITOCAR 
Min Max Average  Min Max Average 

Gamma 0.00 0.80 0.15  0.00 0.98 0.58 
Diameter 0.00 0.86 0.28  0.33 1.00 0.81 
Subgroups 0.00 0.39 0.09  0.50 1.00 0.73 
Note. Sample size N = 28. 

Correlation analyses were conducted (see Table 3.13). In contrast to concepts and 

relations, most structural parameters had no relation with the word count. This result implied that 

the structure of a concept map has features distinctive from the frequencies of concepts and 

relations. The gamma score was in a negative relationship with the diameter and subgroup scores 

across all models. The gamma score did not appear simple to interpret in an assessment situation. 

The diameter and subgroup parameters were closely correlated across the benchmark, ALA-

Reader, and T-MITOCAR. 
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Similar to concepts and relations, in spite of the ALA-Reader model’s lower numerical 

similarity values, its structural parameters correlated more highly with the benchmark than did 

those of the T-MITOCAR. For example, BC was correlated with AC, r = 0.630, p < .01, while 

the r-value of TS was 0.419, with a p < .01.  

Table 3.13 

Correlations among Structural Parameters of the Benchmark, ALA-Reader, and T-MITOCAR 

Including Word Count    

 WC BG  BM BC AG AM AC TG TM TS 
WC -          
BG .020 -         
BM -.026 -.300 -        
BC .363 -.126 .648** -       
AG .386* .442* -.215 .065 -      
AM .054 -.079 .493** .626** -.026 -     
AC .076 .005 .331 .630** .092 .864** -    
TG .003 -.041 .078 -.034 .147 -.020 -.022 -   
TM .074 -.029 .209 .334 -.165 .063 .094 -.623** -  
TS -.044 -.317 .375* .410* -.397* .210 .072 -.445* .617** - 
Note. Sample size N = 28. * p < .05. ** p < .01. 
WC (Word Count); BG (Benchmark Gamma); BM (Benchmark Diameter); BC (Benchmark Cohesive subgroups); 
AG (ALA-Reader Gamma); AM (ALA-Reader Diameter); AC (ALA-Reader Cohesive subgroups); TG (T-
MITOCAR Gamma); TM (T-MITOCAR Diameter); and TS (T-MITOCAR Structure Measure). 
 
4th Review: Concept Map Scores (Similarity Measures) 

The final review was of six concept map scores obtained by measuring similarities 

between the student model and the reference model. Table 3.14 summarized the descriptive 

statistics of six measures. The average surface, graphical, and gamma scores were above 0.5 in 

the benchmark and T-MITOCAR, while the other three (concept, proposition, and balance) had 

low similarities, ranging from 0.061 to 0.284. That is, overall, the samples were above the half 

levels of the reference in terms of surface, graphical, and gamma scores but were not in concept, 

proposition, and balance score.  All scores of the ALA-Reader were very low except for the 
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balance measure (m = 0.635). Those scores resulted from the very small concept map sizes, in 

particular many of the student concept maps, affected by the constraint on analyzed concepts.  

Table 3.14 

Descriptive Statistics of Similarity Measures of Concept Maps 

 Min Max Mean SD 
Benchmark      

Surface 0.281 0.984 0.590 0.184 
Graphical 0.714 1.000 0.921 0.107 
Gamma 0.000 0.942 0.644 0.245 
Concept 0.119 0.570 0.284 0.100 
Proposition 0.000 0.277 0.073 0.067 
Balance 0.000 0.529 0.222 0.151 

ALA-Reader     
Surface 0.029 0.629 0.142 0.151 
Graphical 0.167 1.000 0.347 0.208 
Gamma 0.000 0.777 0.234 0.286 
Concept 0.087 0.435 0.190 0.112 
Proposition 0.000 0.425 0.127 0.116 
Balance 0.000 1.292 0.635 0.466 

T-MITOCAR     
Surface 0.318 1.000 0.707 0.188 
Graphical 0.500 1.000 0.835 0.138 
Gamma 0.440 0.965 0.751 0.155 
Concept 0.000 0.519 0.197 0.118 
Proposition 0.000 0.360 0.061 0.087 
Balance 0.000 0.697 0.223 0.214 

Note. Sample size N = 28. 

Similar to the earlier investigations, the scores of T-MITOCAR had a high numerical 

similarity of at least more than 0.7 with those of the benchmark in terms of surface, graphical, 

and gamma (see Table 3.15). As for the concept, proposition, and balance scores, their numerical 

similarities were moderate, ranging from 0.409 and 0.626. In contrast, the scores of the ALA-

Reader had a low similarity, ranging from 0.018 to 0.332, with the exception of concept, which 
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was 0.571. When the ranges of distributions were reviewed, the ALA-Reader and T-MITOCAR 

models appeared similar. A majority of the samples yielded relatively small-sized concept maps 

when processed via the ALA-Reader.  

Table 3.15 

Numerical Similarities of the Similarity Measures between the Benchmark and ALA-Reader or T-

MITOCAR 

 ALA-Reader  T-MITOCAR 
Min Max Average  Min Max Average 

Surface 0.004 0.639 0.018  0.345 0.973 0.721 
Graphical 0.009 1.000 0.332  0.500 1.000 0.840 
Gamma 0.000 0.967 0.293  0.000 0.994 0.738 
Concept 0.003 0.991 0.571  0.000 0.993 0.626 
Proposition 0.000 0.903 0.286  0.000 0.900 0.409 
Balance 0.000 0.937 0.218  0.000 0.990 0.443 
Note. Sample size N = 28. 

Table 3.16 

Ranks of the seven experts in the Benchmark Data   

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 
Surface 8 (5, 8) 4 (2, 4) 5 (2, 1) 18 (7,20) 3 (6,21) 2 (4,16) 1 (1,2) 
Graphical 1 (1, 1) 1 (3, 8) 1 (3, 8) 1 (3,26) 1 (3,21) 1 (2,21) 1 (3,1) 
Gamma 21 (12, 9) 3 (3, 23) 17 (2, 6) 8 (12,16) 25(12,17) 6 (1,13) 11 (4,10) 
Concept 3 (4, 17) 2 (1, 6) 1 (3, 1) 8 (7,14) 4 (6,12) 6 (5,21) 4 (1,1) 
Proposition 5 (11, 10) 7 (3, 6) 1 (2, 1) 2 (4,8) 2 (19,16) 6 (12,18) 2 (1,2) 
Balance 5 (18, 8) 11 (11, 5) 2 (9, 2) 1 (7,6) 3 (19,16) 7 (17,18) 3 (8,3) 
Note. Sample size N = 28. In the parentheses, the first is the rank in the ALA-Reader data and the second 
is the rank in the T-MITOCAR. 

 

To investigate the measurement accuracy of the three approaches, all 27 samples were 

ranked according to a single concept map score for the individual samples. Expert responses 

were expected to be ranked at the top. Overall, in the benchmark model, expert responses fell 
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into the upper ranks of the list. The ranks of the ALA-Reader and T-MITOCAR varied but the 

ALA-Reader provided rankings closer to those of the benchmark than T-MITOCAR. There was 

no pattern in the gamma ranks of all three models. 

Table 3.17 

Correlations of the Concept Map Scores between the Benchmark and ALA-Reader or between 

the Benchmark and T-MITOCAR 

 ALA-Reader T-MITOCAR ALA-Reader and T-
MITOCARa  

Benchmark     
Surface .724** .093 .416* 
Graphical .412* -.222 .057 
Gamma .277 -.145 -.096 
Concept .815** .696** .520** 
Proposition .555** .654** .634** 
Balance -.048 .489** .025 

Note. Sample size N = 28. * p < .05. ** p < .01. Pearson r was applied to the similarity measures  
a. The correlations of each measure between ALA-Reader and T-MITOCAR. 

Despite the lack of numerical similarity, the surface and graphical scores had a significant 

correlation only between the benchmark and ALA-Reader, r = 0.724 and 0.412, p < .05 (see 

Table 3.17). The correlations of concept and propositional scores were significant overall across 

the three approaches. The balance score had only a moderate association between the benchmark 

and T-MITOCAR, r = 0.489, p < .01. On the whole, the ALA-Reader generated concept map 

scores better associated with those of the benchmark than the T-MITOCAR, while the T-

MITOCAR had a better association in terms of proposition and balance scores (see Table 3.17).  

Lastly, in regard to the benchmark, correlations of its concept map scores were examined 

(see Table 3.18). The surface score was moderately correlated with the concept and proposition 

score, r = 0.583 and 0.512, p < .05, respectively. In contrast, no significant correlation was 

identified with structural parameters such as the graphical and gamma scores. The balance score 
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was highly associated with the propositional score, r = 0.924, p < .01. Those results 

demonstrated that concept map scores account for different features of concept maps. 

Table 3.18 

Correlations of the Similarity Measures of Concept Maps in the Benchmark   

 1 2 3 4 5 6 
1. Surface -      
2. Graphical .338 -     
3. Gamma -.233 -.278 -    
4. Concept .583** .093 -.034 -   
5. Proposition .512* .272 -.013 .870** -  
6. Balance .400* .264 -.027 .723** .924** - 
Note. Sample size N = 28. * p < .05. ** p < .01. Pearson Correlation Coefficients in the lower 
diagonal.  

 

Conclusion 

Research Findings  

This study assumed that an individual student’s understanding is meaningfully elicited 

via a natural language approach. Two state-of-the-art technologies, ALA-Reader and T-

MITOCAR, were selected because they were consistent with the initial assumption. In order to 

validate the technologies, an alternative method was established as a benchmark.  

It was believed that linguistic knowledge representation should be open-ended in terms of 

concepts and should be directional in terms of relations. In addition, it was assumed that editing 

pronouns in text responses helps obtain more accurate and descriptive concept maps. Creating a 

benchmark drew on distilling semantic relations from responses because eliciting linguistic 

semantic structure was assumed to be a better way to visually represent concept maps. 

The noun-only data was not significantly different from the pronoun-edited data, which 

was aligned with Clariana and colleagues’ (2007, 2009) suggestion. In addition, there was little 
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difference between the directional and non-directional approaches Thus, it was concluded that a 

simple noun-only and non-directional approach was sufficient for creating a benchmark. 

Two findings are summarized through the numerical similarity and correlation analyses 

amongst the benchmark, ALA-Reader, and T-MITOCAR:   

• The benchmark model created the most descriptive concept maps in terms of the number 

of concepts and relations, followed by the T-MITOCAR and ALA-Reader. 

• The ALA-Reader model had smaller numerical similarities, although it yielded higher 

correlations with the benchmark model than the T-MITOCAR model in terms of 

proximity data, concept map parameters, and concept map scores.   

Those results are probably affected by the constraints introduced by each technology. The 

ALA-Reader and T-MITOCAR can only analyze at most 30 concepts in a concept map. 

Moreover, ALA-Reader pre-defines a particular set of terms to be used in text analyses. 

Accordingly, the ALA-Reader yielded the smallest concept maps. The higher correlation 

between the ALA-Reader and benchmark model is in part explained by their methodological 

similarity. That is, both use adjacency rather than distance data. 

When considering the sharp drop in the numbers of concepts in student samples,  ALA-

Reader will be more appropriately applied in a setting in which a set of key terms are 

intentionally introduced or adequately exposed before and during assessment activities, which 

may yield a closer association with the benchmark model than occurred in this study. T-

MITOCAR is only applicable to cases having more than 350 words. Accordingly, the technology 

seems on the whole adaptable to data reduction utilizing a large volume of text. Although T-

MITOCAR yielded data numerically more similar to those of the benchmark, their associations 

with the benchmark were somewhat lower than the ALA-Reader. This result requires further 
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studies in regard to the association between adjacency data (the benchmark) and distance data 

(T-MITOCAR).  

New Opportunities 

The benchmark model was explored initially, and concept maps were processed manually. 

In spite of those limitations, the benchmark model provided some opportunities: First, the 

concept maps were much more descriptive than those of the other two models. When the purpose 

of assessment is to provide formative feedback and instructional supports, descriptive 

information of students’ status is essential.  

Second, the benchmark model was able to more capably distinguish better concept maps 

from maps of lesser quality. For example, expert responses were accurately identified and ranked 

at the top, which to a large degree resulted from the modified similarity formula suggested in this 

study. 

Third, the benchmark model has no constraints on the number of words and used terms. 

Thus, this approach can deal with diverse assessment contexts.  For example, when gathering 

data, the instructor clearly asked the students to write responses of more than 350 words. 

However, only one third of the students met the requirement. It is natural that diverse levels of 

students in a classroom provide diverse volume of responses. Accordingly, an assessment 

technology should cover all responses.     

Suggestions  

In regard to further development of the benchmark model, there are two suggestions for 

future studies: First, the methods for drawing semantic relations from written responses need to 

be more specific and algorithmic. Second, a set of combined rules is required to assess the 

progress of student learning based on multiple concept map scores. For example, the six concept 
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map scores were not often at the same level. They were not correlated in some of the pairs 

because concept map scores account for the different features of concept maps. Lastly, 

developing an automated assessment technology embedding the benchmark model is required. 

That technology would enable a teacher to have a better sense of students’ learning and provide 

them with elaborated feedback and support.   
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Abstract 

There is strong interest in and emphasis on learner preconceptions in learning and instruction 

(Bransford, Brown, & Cocking, 2000; Spector, 2004). This paper reports an exploratory study 

using natural language responses to a complex problem scenario as the basis for generating and 

analyzing problem conceptualizations. In particular, this study focused on the potential uses of 

descriptive concept maps for formative assessment and feedback. Based on a review of research 

and theory on cognition and linguistic comprehension, this study proposed the semantic relation 

(SR) approach to explore the salient role of the semantic relations among concepts extracted 

from natural language responses to problem scenarios. A set of methodologies was introduced to 

distill concepts and relations and to quantify the attributes in the form of concept maps for both 

learner and expert responses. A comparison with other approaches suggests that the SR approach 

is consistent with theories of cognition and provides an effective basis for formative feedback.  

Keywords: assessment technology, concept map, knowledge structure, natural language 

processing, semantic relation 
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Teachers need a way to precisely but efficiently assess student application of 

understanding and complex problem solving. A simple knowledge-based (e.g., multiple choice, 

short answer, etc.) test is not sufficient to test a learner’s ability to solve complex problems 

(Champagne, Kouba & Hurley, 2000; Duschl, 2003; Quellmalz & Haertel, 2004), yet it is 

challenging to assess cognitive models of complex problem solving knowledge and skills such as 

scientific inquiry. The goal of this study was to (a) explore concept map technologies used to 

assess complex problem solving and (b) propose a new approach aimed at developing a real-time 

representation of a student’s understanding that can serve as the basis for meaningful formative 

feedback.    

Concept map techniques have been used to represent a student’s understanding, and a 

commonly used technique is to portray the propositional relations among concepts found in a 

body of text such as a student essay or response to a problem situation (Clariana, 2010; Jonassen, 

Beissner, & Yacci, 1993; Narayanan, 2005; Novak & Canãs, 2006; Spector & Koszalka, 2004). 

This study is based on the assumption that a concept map re-representing a student’s cognitive 

processes can reflect different states in a student’s learning progress. 

Language plays a critical role in building and mediating an individual’s internal 

representations of the external world (Wittgenstein, 1922). As a consequence, a second 

assumption is that using natural language as the basis for constructing concept maps is likely to 

be closer in meaning and structure to the targeted internal mental models (Pirnay-Dummer, 

Ifenthaler, & Spector, 2010). Detecting the qualities of internal mental models as accurately as 

possible should help to provide more meaningful and productive instructional feedback suited to 

individual learning needs (Phelan, Kang, Niemi, Vendlinski, & Choi, 2009; Shute & Zapata-

Rivera, 2007; Yorke, 2003). 
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This exploratory study involved comparing a new approach utilizing natural language 

responses with two recognized technologies for assessing students’ written responses to a 

problem: T-MITOCAR (Text Model Inspection Trace of Concepts and Relations; Pirnay-

Dummer & Ifenthaler, 2010) and ALA-Reader (Analysis of Lexical Aggregates-Reader; 

Clariana & Wallace, 2007, Clariana, Wallace, & Godshalk, 2009).  

First, this study began with classifying state-of-the-art technologies. Based on an analysis 

of the state-of-the-art in concept map assessments, a new methodology was developed. Some 

concept map technologies do elicit natural language input, but it is rare to come across a study 

that illustrates and compares their underlying linguistic assumptions and analytical methods - in 

fact no such studies were found. Typically, a study focuses on just one methodology and 

describes the linguistic assumptions and analytical methods of that particular methodology. The 

lack of comparative studies makes progress in this area problematic.  

Second, this study explored a new concept map methodology that can use any concepts 

and relations in a text elicited in response to a problem scenario. The methodology then can 

contrast the result with two other promising concept map assessment technologies that constrain 

the analytic process in various ways. More specifically, T-MITOCAR requires no fewer than 350 

words and limits the number of analyzable concepts to 30 or fewer. ALA-Reader has an equal 

limitation on the number of concepts that are pre-defined by expert judgment. Those constraints 

on assessment methods probably have an impact on the resulting analysis, although whether the 

effect is significant has yet to be determined. 

Lastly, this study assumes that concept maps believed to represent a student’s mental 

models or cognitive process should closely reflect a student’s linguistic responses to a problem 

situation. It is, consequently, imperative to assure cognitive fidelity between a concept map and a 
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student’s linguistic representation in order to obtain adequate descriptive and formative 

information about a student’s mental model. In short, this study introduces a new technology to 

elicit a student’s conceptual model through natural language (i.e., written text) used by a student 

in response to a problem scenario. The text is an initial re-representation of a student’s beliefs 

and thinking about a problem, and the constructed concept map is a second representation of that 

mental model (see Figure 4.1). The reason to construct concept maps is that they can be more 

effectively and efficiently analyzed for purposes of diagnosing a student’s cognitive model to a 

problem scenario. 

 

Figure 4.1. The Relations of Mental models, natural language responses, and concept maps. 
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Backgrounds 

Mental Models, Natural Language Representations, and Concept Maps 

 The theory of mental models explains that a person builds his/her understanding by 

mentally representing certain aspects of external situations corresponding to his/her 

preconceptions (Johnson-Laird, 2005a, 2005b; Seel, 2001, 2003). There is a common belief that 

mental models are structural cognitive artifacts that contain symbols and their relations (Newell, 

1990; Johnson-Laird, 2005a, 2005b). In that sense, the progress of mental models within an 

individual can be considered as the changing of knowledge structures toward an expected or 

desired state (Anzai & Yokoyama, 1984; Collins & Gentner, 1987; Johnson-Laird, 1983; Seel, 

2001, 2003, 2004; Seel & Dinter, 1995; Smith, diSessa, & Roschelle, 1993; Snow, 1990). 

Problem solving includes conceptualizing a problem space as a more structured 

understanding and integration of many ideas and concepts related to a problem (Dochy, Segers, 

Van den Bossche, & Gijbels, 2003; Jonassen et al., 1993; Newell & Simon, 1972; Segars, 1997; 

Spector & Koszalka, 2004). It is reasonable to say that a conceptualizaiton of a problem space is 

a kind of mental model of a certain problem situation. 

A concept map as a structural knowledge representation consisting of concepts and 

relations (Clariana, 2010; Narayanan, 2005; Novak & Canãs, 2006; Spector & Koszalka, 2004), 

can be an effective tool to use in assessing a student’s conceptualization of a problem space as a 

structural mental representation to a given problem. Concept maps have been used to elicit 

cognitive representations of an individual’s knowledge of a domain in which concepts are 

interrelated (Funke, 1985; Narayanan, 2005; Novak & Canãs, 2006; Schvaneveldt, 1990). The 

data used for concept maps are generally collected from interviews or texts. Text-based data 

collection is economical in terms of time and effort (Brown, 1992), and is based on techniques 
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that avoid recall bias and potentially leading or misleading questions (Axelrod, 1976). 

Language is a symbol system, and mental models result from both perceptual and 

linguistic comprehension (Johnson-Laird, 2005a, 2005b; Seel, 2001). Symbols play a central role 

in representing ideas and thoughts (Seel, 1999); model building is essentially a process of 

symbolic notation and representation (Greeno, 1989). That is, mental models are partially or 

completely construed by situational inputs described in text, discourse, diagrams, and so on 

(Garnham, 1987, 2001). In contrast, a student’s linguistic representations (external re-

representations) reflect that student’s mental models (internal primary representations). Since it 

is the internal representation that is directly linked to learning and understanding, it is important 

that any external representation used to make inferences about learning be as closely linked to 

internal representations as possible.  

According to Miller and Johnson-Laird's (1976) study, the world people talk about is the 

world they perceive. In other words, expressions in language denote elements of a model, and the 

relations between those elements decide whether sentences are true or false (Garnham, 1987). 

Those elements and relations of a model in linguistic representations constitute concept maps 

representing a part of mental models. It is arguable that using natural language responses as the 

basis for concept maps are descriptive and likely to resemble the underlying mental model 

(Pirnay-Dummer et al., 2010). 

A central issue is to explain how elements and relations of a model are identified from the 

linguistic expressions of a problem situation. Until the middle of the previous century, it was a 

common belief that thoughts represented logical pictures of facts (Wittgenstein, 1922).  

Accordingly, a mental model is represented by a sentence which adheres to the grammatical and 

syntactical rules of the relevant language (Chomsky, 1957; Wittgenstein, 1922). More recently, 
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linguists have come to recognize that a sentence includes both surface and an underlying deep 

structure, and that denotation and connation are relevant to semantic analysis. According to Katz 

and Postal (1964), the surface structure (syntax) characterizes the shape of the sentence, while 

the semantic information of the deep structure account for a substantial part of the meaning 

(Bransford & Franks, 1971; Bransford, Barclay, & Franks, 1972; Bransford & Johnson, 1972; 

Fodor, Bever, & Garrett, 1974).  This study assumes that mental models are effectively depicted 

in integrated semantic networks − deep structures − constituted by semantic relations − surface 

structures − that are presumed to be mostly nested within the syntactic structure of sentences.  

Approaches to Elicit Concept Maps from Natural Language Expressions 

Approaches to construct concept maps can be characterized by the ways to identify 

concepts and determine the associatedness of the relations among concepts. This study centers 

on the notion of propositions as units of meaning - the semantic contents of sentences that 

typically include two or more concepts with relations indicated by verbs (Cañas, 2009; McGrath, 

2011). The following questions can serve as guides for classification of concept mapping 

approaches:  

• What are the ways to distill concepts from a written response?  

• How can key concepts be identified from a list of concept in a response?  

• What are the ways to identify relations between concepts?  

• How do we judge the strengths of the relations? 

To address the above questions, this study groups concept-mapping methods into three 

classifications based on how propositional relations are treated. The three approaches are labeled 

Adjacent Relation (AR), Proximity Relation (PR), and Semantic Relation (SR). In particular, the 
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SR approach was designed as an alternative way to create more descriptive and complex concept 

models when natural language is used for learner input.  

Table 4.1 

Classification of Concept Mapping Approaches  

 Adjacent Relation 
(AR) 

Proximity Relation 
(PR) 

Semantic Relation  
(SR) 

Approach Abstractive Abstractive Descriptive 

Origin of Relation Spatial Model Spatial Model Discrete Model 

Relation Judgment Adjacency  Distance Syntactic/Semantic 

Direction of 
Relation 

Non-directional only Non-directional only Directional/Non-
directional 

Tool ALA-Reader T-MITOCAR - 

 

Adjacent Relation (AR). Adjacent Relation (AR) is a spatial model because AR takes a 

position on the associated nature of concepts (words), which is that concepts that are closely 

connected tend to be presented as physically closer within a text (see Table 4.1). This perspective 

believes verbs do not matter in a knowledge structure. Certainly, identifying concept-concept 

within a text is far easier than counting concept-verb-concept structures. Compared to the other 

two methods, AR employs the simplest method in which any two concepts adjacent to each other 

are regarded as associated (i.e., adjacency in Table 4.1).    

ALA-Reader (Analysis of Lexical Aggregates-Reader) (Clariana & Koul, 2008) is a tool 

designed to capture knowledge structure according to the adjacent relations of concepts (nouns) 

in text. This technology identifies a predefined set of concepts (nouns) in a student’s written 

response. In an AR analysis, it does not matter whether two concepts are located in the same 

sentence; two concepts adjacent to each other are considered to be associated. Consequently, the 

whole text is treated as one corpus without separations between sentences. Two adjacent 
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concepts in a text are regarded as strongly associated with each other, while two concepts farther 

from each other are considered not to be directly associated. The former relationship has the 

strength value 1 and the latter is coded as 0 in the data (Clariana et al., 2009). Accordingly, 

although AR stems from the spatial model, its data take the form of a discrete model. AR defines 

the strengths of nodes and relations based on the whole structure. However, AR cannot have 

directional information of relations because it is not concerned with linking words (e.g., verbs).     

 ALA-Reader uses no more than 30 key terms for analysis. The restriction on the number 

of terms is partly affected by prior research arguing that more meaningful concept map structures 

are found when a smaller number of terms are used in knowledge structure analysis (Clariana & 

Taricani, 2010). ALA-Reader does not include a function to create a concept map. To construct a 

concept map, one must employ a network graph tool. In this study, NetMiner tool 

(http://www.netminer.com/) was used when creating the concept map. 

Proximity Relation (PR). Although proximity is commonly used as a general term 

representing similarity, relatedness, and distance between concepts (Schvaneveldt, 1990), a 

proximity relation (PR) is an approach to measure the strength of relations according to the 

distance between concepts in a text (see Table 4.1). In the sense that relations are weighted by 

geometric distance between a pair of concepts, the PR approach is grounded on the spatial model 

(Schvanevldt et al, 1989). It is assumed in the spatial model that the more two concepts are 

associated with each other, the closer the concepts present within or across sentences (Pirnay-

Dummer & Ifenthaler, 2010). PR measures the distance of each paired concepts from a text 

response and then creates a whole network using distance data. The spatial model assumes that 

all concepts in a written artifact are basically associated with one another and have different 

levels of distances. Since all possible pairs of concepts can occur in a network, it is necessary 

http://www.netminer.com/�
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that a PR approach include a procedure to reduce information of a network in order to project 

meaningful networks. That is, PR is abstractive due to its selection of concepts and relations. In 

addition, due to the relations determined by spatial distance rather than semantic relation, PR 

lacks the directional information of relations.   

T-MITOCAR (Text-Model Inspection Trace of Concepts and Relations) (Pirnay-

Dummer & Ifenthaler, 2010) is chosen as a technology representing the Proximity Relation (PR) 

approach because it generates distance data to create concept maps using students’ natural 

language responses. The algorithms of T-MITOCAR generate distance data constituted with 

proximity vectors. Detailed information of T-MITOCAR can be found in Pirnary-Dummer and 

Ifenthaler (2010). A brief introduction to the analytic methods of T-MITOCAR follows:   

• Sentences in a text response are parsed into syntactic components. Among 

tokenized components, only nouns and names are distilled and listed. The current version 

of T-MITOCAR can deal with no more than 30 nouns in a text, and a text response 

requires more than 350 words. 

• The frequency of each noun in a written response is calculated and the most 

frequent concepts (nouns), up to 30 nouns, are selected.  

• The selected n concepts results in n(n-1)/2 pairs. All pairs of concepts are 

considered possible. When a pair of concepts exists in a sentence, the distance of the pair 

is calculated with the minimum number of words between two concepts. 

• The sum of distances of each pair determines the strength of association. Now T-

MITOCAR obtains a distance data. Drawing on the distance data, a set of algorithms 

transforms the distance values into relative weights. Lastly, a concept map is created with 

weights for each pair of concepts.     
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Semantic Relation (SR). This study proposes a new Semantic Relation approach to 

distill concepts and relations from written responses so that one can obtain more detailed 

descriptive features of concept models. In this Semantic Relation (SR) approach, the atomic units 

of meaning in sentences are clearly indicated. According to Beamer and colleagues (2008), 

semantic relations are the underlying relations between two concepts expressed by words or 

phrases. SR is similar to the general meaning of proposition in the sense of focusing on the 

meaning of words, but SR involves diverse types of relations of concepts beyond the typical 

noun-verb-noun relation form (Adrian, Moldovan, Badulescu, Tatu, Antohe, & Girju, 2004; 

Cañas, 2009; Girju, Nakov, Nastase, Szpakowicz, Turney, & Yuret, 2009). The types of SR can 

include complex noun compounds (e.g., ‘knowledge analysis’), genitives (e.g., ‘teachers’ 

participation’), prepositional phrases attached to nouns (e.g., ‘community of practice’), or 

sentences (e.g., ‘Emerging new media has always led to instructional changes.’).  

For instance, a proposition is generally considered as similar to a sentence or statement 

that is often used instead of a proposition (McGrath, 2011; “Proposition,” n.d.). In a sentence, the 

relation between concepts is defined by the verb (e.g., ‘Success of a community of practice is 

determined by individuals’ active engagement and contributions.’). This example consists of two 

concepts (i.e., ‘success of a community of practice’ and ‘individuals’ active engagement and 

contributions’) and a verb connection (i.e., ‘is determined by’). 

When a constrained notion is applied to a proposition as ‘the relations of paired nouns’ 

(Girju et al., 2009), the example sentence is decomposed into a greater number of units of 

meaning (semantic relations). The following relations in the former example can be identified: 

(a) success of a community; (b) community of practice; (c) individual’s active engagement; and 

(d) engagement and contributions. 
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The SR approach allows concept maps to use whatever concepts and linking terms 

students use in domain learning without constraints on the number of concepts. The elaborated 

semantic relations help create descriptive and complex concept maps involving delays and 

feedback loops that would be represented in a causal influence diagram. As Table 4.1 

summarizes, SR is descriptive in the sense that it includes all semantic relations found in student 

responses using both syntactic and semantic analysis. A discrete model accounts for SR relations 

since semantic relations are represented by binary values indicating whether there is an 

association between concepts. In addition, the meaning of relations is a core feature in the SR 

approach, which makes it possible to define the direction of each relation. For example, in a 

phrase, ‘learning progression toward expert level,’ the first concept (i.e., learning progression) is 

in the direction to the second concept (i.e., expert level). In the following sections, guidelines for 

extracting semantic relations from a text response are described and applied to the analysis of a 

few representative responses to a complex problem.  

Introduction to the Semantic Relation (SR) Approach 

What Should Be Measured Or Inferred?  

This study agrees that a cognitive model is a possible configuration of the underlying 

structure (Norman, 1986). It is believed in this study that a mental model (conceptual structure) 

is probably not the same as the semantic structure of lexicons but embeds the properties of 

semantic representations (Bierwisch & Schreuder, 1992; Kamp, 1981). An appropriate 

theoretical account of the relations between the conceptual structure and semantic structure of 

natural language can lead to assessing students’ mental models based on written responses. This 

study begins with modeling the relations of internal and external structures of representations on 

the grounds of Bierwisch and Schreuder (1992) (see Figure 4.2).  
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Figure 4.2. The relations of structures of internal and external lexical representations. 

a. Conceptual structure (CS): CS indicates the student’s actual mental model in which a 

problem situation is specified. It is assumed that CS is highly associated with but not 

dependent on the system of language.  

b. Internal Semantic structure (ISS): ISS is the internally represented linguistic semantic 

structure that is determined by a “representational system of lexical meaning and their 

combination” (Bierwisch & Schreuder, 1992, p. 26). It is assumed that ISS belongs to 

a different mental domain from that of CS, so ISS is not necessarily identical to CS.  

c. Underlying structure of lexical representation (US): US, as labeled in this study, 

indicates the underlying structure of external lexical representation (LR). US is 

represented as a deep structure constituted by the surface structure (i.e., individual 

concepts and relations) (Bransford & Johnson, 1972; Katz & Postal, 1964; Kintsch & 

van Dijk, 1978).        

d. Lexical representation (LR): LR is a linguistic expression such as a student’s verbal 

or written response to a problem situation.   
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Externalization process. Bierwisch and Schreuder (1992) explained that CS is the level 

of pre-verbal message structure. CS becomes the linguistic structure when a student chooses 

lexical items in accordance with his/her CS and then establishes an ISS that is determined by the 

representational system of a language. Finally the internal SS (ISS) is externalized when a 

student writes (or verbalizes) his/her response (LR). 

CS inferred via ISS. Conceptual structure (CS) and Internal semantic structure (ISS) are 

internal representations that are not directly observable but can only be inferred based on 

observable representations. CS is believed to be substantially associated with representations of 

ISS (Bierwisch & Schreuder, 1992; Kintsch, 1974, 1994; Kintch & von Dijk, 1978). ISS is 

interpreted as a cognitive artifact of the mental lexical systems of a language (Levelt, 1989). 

Thus, it is presumed that ISS is directly inferred from the visually represented underlying 

structure (US) of a natural language representation (LR).     

This study argues that the assessment efforts using concept map techniques conceptually 

aim at investigating CS but actually elicit ISS as a partial substructure of CS from externalized 

students’ natural language writing. ISS is considered very similar to the visually represented 

underlying structure (US) of a lexical expression. In particular, this study underscores a 

technique for obtaining a coherent and descriptive concept map: that is, to extract meaningful 

concepts and relations from text according to the rules and meanings of the language. The 

described approach is called semantic relation (SR).     

What Algorithms Can Be Applied to Distill Semantic Relations? 

Although natural language researchers have tried to set algorithms and classifications for 

analyzing semantic relations (Beamer et al., 2008), it is rare to find concept map technologies 
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that employ an analysis of semantic relations. This study suggests procedures and principles for 

distilling semantic relations including concepts from text responses. 

Step 1. Process the sentences. The first step is to analyze the syntax of sentences, which 

includes three sub-steps: tokenizer, tagger, and syntactic parser.  

• Step 1-1. The tokenizer is to break a document into lexical items called tokens 

(e.g., Sunlight/ melted/ a/ cake/ down/./). 

• Step 1-2. The Tagger is a step to label each word with its corresponding part of 

speech in context (e.g., technology/ NN). 

• Step 1-3. The syntactic parser is to group words into phrases using tagging names 

(e.g., A veterinarian investigated the cat:  DT – NNP – VBZ – DT – NN).   

Step 2. Distill concepts. Basically a noun is characterized as a concept in a discourse. In 

order to identify and distill concepts from a written response, a set of rules are established.   

• Rule 1. A concept takes diverse forms of noun (Girju, 2011; Girju, Beamer, 

Rozovskaya, Fister, & Bhat, 2010; Girju et al., 2009; Moldovan & Girju, 2001, Murphy, 

2003; Rijkhoff, 2002): (a) one-word noun, (b) noun compounds, and (c) noun and 

adjective pre-modifier.  

• Rule 2. Distilled concepts (nouns) are primarily stored as singular. 

• Rule 3. Pronouns are not replaced with the nouns they represent.  

The distilled concepts include three types of nouns (Girju, 2008): one-word nouns (e.g., practice, 

technology, and classroom); noun compounds that consist of the head noun and noun modifier(s) 

(e.g., ‘bus station’ and ‘technology implementation'); and noun and adjectives pre-modifiers 

(e.g., technological intervention).  
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Step 3. Build sets of synonyms. Once concepts are distilled from the text, the concepts 

are grouped in synonym sets. Although each concept is basically regarded as having a unique 

meaning, concepts sharing a same or very similar meaning in the domain belong to a single 

category (Moldovan & Girju, 2001). For example, ‘chalkboard’ is synonymous with ‘blackboard’ 

and ‘whiteboard.’ This study aims to view those three concepts as one.   

Step 4. Identify semantic relations (the pairs of concepts). Identifying semantic 

relations is the most important step because it provides information used for creating concept 

maps. This step is to select pairs of concepts, Ci and Cj, linked by a particular semantic relation. 

The principles determining the pairs of concepts are established according to linguistics studies 

(Downing, 1978; Girju, 2008; Hearst, 1998; Levi, 1978; Moldovan & Girju, 2004). The semantic 

relations determined by syntactic patterns that are classified as phrase-level patterns and 

sentence-level patterns (Girju, 2008; Hearst, 1998).   
First, phrase-level patterns include prepositional phrases attached to nouns (noun phrases) 

or s-genitives. For example, ‘the library of the school’ is interpreted as having a semantic 

relation of ‘part–whole.’ A list of eight prepositions (of, for, in, at, on, from, with, and about), as 

defined by Lauer (1995), plays a critical role in determining the semantic relations based on 

algorithmic patterns.  

Second, the semantic relation is also determined by the sentence. For example, in the 

sentence (the school has a new technology.), the relation of ‘school’ and ‘technology’ is 

categorized as ‘possession’.  Twenty-two types of semantic relations are defined by Moldovan 

and Girju (2004). However, a natural language expression is not a simple sentence, and multiple 

patterns can exist in a sentence. Thus, 14 rules to determine semantic relations were specified in 

this study (see Table 4.2).  
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Table 4.2 

Rules to Determine the Pairs of Concepts from Complex Lexico-Syntactic Patterns 

Complex Lexico-Syntactic Patterns Pairs of Concepts–R(Ci , Cj ) 
N0 is N1 and N2 
(e.g. technology is hardware and software.) 

(N0, N1); (N0, N2); (N1, N2) 

N0 of N1 and N2 verb N3 
(e.g., The use of technology and access to internet allow 
student to…) 

(N0, N1); (N0, N2): (N0, N3); (N2, 
N3) 

N0 such as N1, N2,…, Nn 
(e.g, classroom technologies such as laptops, Internet, 
and electric whiteboard) 

(N0, N1); (N0, N2);…; (N0, Nn) 

Such N0 as N1, N2,…, Nn 
(e.g., such new technologies as Web 2.0, cloud 
computing, and mobile internet) 

(N0, N1); (N0, N2);…; (N0, Nn) 

Np are N1, N2,…, Nn or other N0 
(e.g., Magnetism is the positive or negative.) 

(Np, N1); (Np, N2);…; (Np, Nn); or 
(Np, N0) 

N0 include N2 and N3 
(e.g., internal representation includes conceptual 
structure and linguistic semantic structure) 

(N0, N1); (N0, N2) 

N0, especially N1, verb… 
(e.g., supportive environments, especially leadership 
support is the most important.) 

(N0, N1) 

N1 of N2 in N3 of N4 
(e.g, the use of technology in the classrooms of 
participating schools) 

(N1, N2); (N3, N4); (N1, N3) 

By –ing N1 and N2, Np verb N3a  
(e.g., By using the Internet and Smartphone, students 
can access learning materials any time, any where.) 

(Np, N1); (Np, N2); (Np, N3) 

N1 provide N2 with N3 
(e.g., the Internet provides us with  

(N1, N2); (N1, N3) 

N1 and N2 verb N3 
(e.g, Teachers and students are not used to using a 
computer.) 

(N1, N2); (N1, N3); (N2, N3) 

N1 verb that-clause 
(e.g., A witness hated that the boy attacked the victim.) 

(N1, the first N in that-clause) b 

N1 between N2 and N3 
(e.g., discrepancy between boys and girls) 

(N1, N2); (N1, N3) 

N1 that N2 verb N3 c  
(e.g, Teachers maintain the belief that these efforts will 
have positive results.) 

(N1, N2); (N2, N3)  

Note. a. Subordinate clause in which subject is omitted. b. It is to make a connection between N1 
and that-clause. c. Conjunction clause. 
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Step 5. Determine the direction of relations. The last step is to determine the 

directional relations between two paired concepts. The relation in which the direction begins 

from the first concept and ends to the second concept is classified as follows: subject to object; 

source to target; from A to B; cause to effect; mutual relation (the first to the second); A belongs 

to B or B includes A; superior to inferior; A exists for B; A serves for B; tool to object; people to 

object; nouns linked with eight prepositional modifiers (the first to the second).   

Finally, in order to construct a concept map, all concepts distilled from a text response 

are listed and paired with one another in a matrix. The paired concepts having semantic relations 

are given the vector value of 1 in an n by n concept array where n is the number of concepts; 

otherwise, the vector value is 0. In addition, to include directional information, the first concept 

(Ci) is considered as the source and the second concept (Cj) becomes the target in a pair. 

Methods for Comparisons of SR, PR, and AR Approaches 

The semantic relation (SR) is assumed as a way to elicit a descriptive and complex 

concept map from a text response. In order to test that assumption this study involves a 

comparison study amongst concept maps constructed by semantic relation (SR), proximity 

approach (PR) and adjacency (AR) approaches.  

Participants 

Participants included seven professors teaching at six major universities in the United 

States. The professors participated in a Delphi survey to obtain a reference model for a complex 

problem in terms of a technology implementation problem in K-12 schools. It was assumed that 

using expert responses would enable us to investigate the technologies’ ability to detect higher-

level responses. 
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The Problem-solving Task 

As part of the Delphi survey, the panel was asked for responses to a complex problem 

situation using natural language. The task provided a simulated situation in which professors 

were assumed to be participating in an evaluation project, the purpose of which was to 

investigate an unsuccessful project that had as its goal adapting a technology (i.e., a tablet PC) 

for classroom teaching. In order to elicit professors’ knowledge in detail, the questions asked 

them to explicitly describe the concepts, issues, factors, and variables likely to have contributed 

to the result that the introduction of tablet PCs had very little effect on the instructional practices 

employed in the classes.   

Reference Modeling via Delphi Survey  

This study included a reference model for the problem situation. The model was created 

using a Delphi survey procedure (Goodman, 1987; Hsu & Sandford, 2007; Okoli & Pawlowski, 

2004). The Delphi survey involved three iterations to develop a refined reference model that the 

seven experts accepted. In the first round, the participating professors created their own 

responses to the problem; then, all the panel’s responses were consolidated. Next, a document 

including all statements from the professors and a list of concepts identified from the panel’s 

responses was sent to the panel again. The professors were asked to add their comments 

regarding the listed statements and concepts and rank them. After gathering the second round of 

surveys, the researcher created a final list of ranked statements and concepts. Based on this 

summary, a draft of a reference model was created. In the final round, the results of the second 

survey were sent to the panel and revised according to their comments as necessary. Through this 

procedure, a reference model containing 23 key concepts was developed. 
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Analysis Procedure 

Data manipulation. A total of eight responses involving seven professors’ initial 

responses and the reference model were used for the study. Concepts and relations in SR 

approach were manually distilled in accord with the procedure described earlier. In PR approach, 

T-MITOCAR tool was used to process the data. As to AR, ALA-Reader tool, as a representative 

tool of AR approach, requires predefined key concepts so as to distill relations of the concepts 

from the text. The 23 terms (concepts) defined by the expert panel were used in the analysis.      

Construct concept maps. Two kinds of tools were used for constructing concept maps. 

Netminer software was used for creating concept maps of SR and AR because the software 

processes adjacent matrices with 0 or 1 values.  Concept maps of PR were created by T-

MITOCAR software that has an embedded function to generate concept maps using proximity 

data.  

Data comparison. Comparisons of the three approaches (SR, PR, and AR) included 

quantitative and qualitative reviews. Concepts and relations were distilled from eight natural 

language responses based on the three approaches. The descriptive statistics of the results were 

first compared in terms of the number of concepts and relations.  

 PR and AR include only key concepts determined by the frequencies of occurrence of 

concepts or expert judgments, while  SR contends that key concepts emerge from the concept 

map as a whole. This study uses the centrality measure based on Affected by Anthonisse (1971) 

and Freeman’s (1977) assertion that a concept can exert control over the interaction between 

other pairs of concepts in a network.  

 

 

CB (ni) = g jk(ni) /g jk
j 〈k
∑



131 

where  is the number of geodesics that are the shortest path between two concepts  in 

the network,  indicates  that contains a certain concept i, and  is the 

probability that a concept i is included in the geodesics between concept j and k. By using the 

equation above one can obtain the centrality value of concept i, , and then the value is 

standardized as a measure of 0 ≤ C ≤ 1. This study suggests that concepts having values larger 

than 0 were considered as key concepts in the concept maps.      

Key concepts identified by centrality values in SR were compared to the 23 terms experts 

determined for AR and the terms used in PR.  For those comparisons, two types of similarity 

measures were applied: (a) numerical similarity and (b) conceptual similarity. The comparisons 

of the number of key concepts are derived from the equation: 

 

  Conceptual similarity indicating the extent to which the paired models share the same 

concepts and relations is calculated by the Tversky’s (1977) formula:    

s =
𝑓(A ∩ B)

𝑓(A ∩ B) + α ∙ 𝑓(A − B) + β ∙ 𝑓(B − A) 

where α and β are weights for differentiating the quantities between A and B. This study 

assumes that there is no difference in weights because of the two reasons: (a) the three 

approaches derived key concepts from the same data; (b) each part of a pair is assumed to be 

equally significant. Thus, the weights of α and β were set as equal to 0.5 (α = β = 0.5). As for 

the qualitative review, a visual inspection of the elicited concept maps was conducted.  
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Comparisons of Concept Maps 

Judgments of Concept Relations 

 

Figure 4.3. Extracted concepts and relations in a sample text. 

Figure 4.3 describes how differently the three approaches distill relations of paired 

concepts from the same text. The bold words are the concepts used for SR, and the underlined 

words used for AR are key concepts determined by the seven experts. The words in square 

brackets denote key concepts determined by PR.  Every semantic relation including concepts in 

the SR approach is regarded as a necessary component (i.e., surface structure) that constitutes an 

individual’s current knowledge structure (i.e., deep structure). For example, in the first sentence, 

SR distilled five concepts (i.e., instructional need, study, instructional practice, classroom, and 

technology) and built four semantic relations (instructional need & study, study & instructional 

practice, instructional practice & classroom, and instructional practice & technology).  

Judgment of relations in PR and AR depends on the distance between the two concepts. 

In the same sentence, T-MITOCAR as a PR tool identified four terms (i.e., need, practice, 
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classroom, and technology), and all pair-wised relations were calculated valued with the number 

of words between each pair of concepts in a sentence, while other pairs that are not seen in the 

sentence get maximum distance value.  The T-MITOCAR detected only the single noun type of 

concepts, which is likely problematic when interpreting a concept map due to ontological 

differences (e.g., difference of meaning between ‘instructional need’ and ‘need’).    

ALA-Reader as an AR tool suggests the linear aggregation method in which word 

relations are identified across sentences. For instance, in Figure 4.3, the term ‘instructional 

practice’ in the first sentence is considered to be associated with the term ‘integration’ in the 

second sentence. Linear aggregation renders concepts associated across sentences. However, it is 

possible to link two key terms with little or no semantic relations. 

Table 4.3  

Descriptive Statistics: the Number of Concepts and Relations in SR, PR, and AR  

Model Word 
count 

Concepts (Nouns)   Relations (Links) 
SR PR AR   SR PR AR 

Reference 397 54 14 (26%) 23 (43%)  64 22 (34%) 35 (55%) 
Expert 1 319 41 13 (32%) 8 (20%)  43 18 (42%) 7 (16%) 
Expert 2 411 42 11 (26%) 10 (24%)  54 24 (44%) 15 (28%) 
Expert 3 331 37 13 (35%) 9 (24%)  50 22 (44%) 15 (30%) 
Expert 4 297 29 10 (34%) 5 (17%)  30 12 (40%) 5 (17%) 
Expert 5 436 48 19 (40%) 6 (13%)  55 41 (75%) 6 (11%) 
Expert 6 481 52 17 (33%) 7 (13%)  62 33 (53%) 8 (13%) 
Expert 7 751 50 13 (26%) 10 (20%)   63 23 (37%) 22 (35%) 
Note. The values in the parentheses indicate the proportions of the numbers in PR or AR to those 
in SR. 

 

Distilled Concepts and Relations 

The descriptive statistics obtained from the three approaches were investigated in terms 

of the numbers of concepts and relations (see Table 4.3). The numbers of concepts and relations 

in SR are much greater than those in PR and SR. For example, compared to SR, the proportion of 



134 

PR ranged from 26 % to 40%, while the proportion of AR fell between 13% and 43%. As for the 

proportion of relations, PR reached the number of SR ranging from 34% to 75% and AR ranged 

from 11% to 55%. Overall, the numbers of concepts and relations in PR were greater than those 

of AR.  The strict function of ALA-Reader that extracts only concepts exactly matched with the 

predefined concepts, on the whole, resulted in the smallest numbers of concepts and relations. 

However, a reverse result was observed in the reference model. The numbers in AR were closer 

to those of SR than those of PR. The reason is because the reference model included all 23 key 

concepts and was written in a cohesive manner.  

 

Figure 4.4. Association of word counts with the numbers of concepts or relations in SR, PR, and 
AR. The left represents the associations between the number of concepts and the word counts of 
responses and the right represents those between the number of relations and the word counts of 
responses. 

 

Graphical investigations were conducted on the association of word counts and the 

numbers of concepts or relations. As Figure 4.4 depicts, high variations were observed in all 

three approaches. Nonetheless, SR showed a moderate positive line with word count. In contrast, 

for PR and AR (i.e., T-MITOCAR and ALA-Reader), there was little relation with word count. 

Those results implied that PR and AR approaches tend to be abstractive in ways that describe 

knowledge structure and are likely losing the semantic information constituting a whole structure. 

In particular for AR, some sharp drops were observed, even in responses having a higher word 
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count. That implied AR is more sensitive to writing in terms of respondents’ background 

knowledge, selection of words, and writing style (e.g., frequent use of pronouns). 

Key Concepts Derived from the Deep Structure  

 This study proposed the SR approach on the basis of two assumptions: (a) SR provides 

descriptive information such as adequate concepts and relations to create complex concept maps; 

and (b) a substantial part of the meaning can be derived from the complex concept maps as deep 

structure (Fodor, Bever, & Garrett, 1974; Katz & Postal, 1964). The latter assumption was 

investigated using the reference response.  

Table 4.4 

The number of Key Concepts Similar or Dissimilar among the Three Approaches in the 

Reference Model    

Pair (A with B) ƒ (A−B) ƒ (B−A) ƒ (A∩B) 
SR with AR  7 6 17 
SR with PR 13 3 11 
AR with PR 14 5 9 
Note. The numbers of key concepts of SR, AR, and PR are 24, 23, and 14 respectively. 

The concept map of the reference response drawn from SR involved 24 key concepts that 

had a centrality value no less than zero calculated with the aforementioned Freeman’s (1977) 

formula. T-MITOCAR (as a PR tool) selected 14 nouns based on frequencies of the nouns, and 

23 key concepts determined by experts were used for ALA-Reader (as an AR tool). The concepts 

used for AR were considered the standards. Key concepts for the three approaches were 

compared using the numerical and conceptual similarities between the pairs of approaches (see 

Table 4.4). As for the nouns of PR, due to the limitation of T-MITOCAR that distills only a 

single-noun type of concepts, the nouns of PR similar to the complex nominals used in the other 

two approaches were regarded as the same. For example, ‘need’ is considered similar to 
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‘instructional need.’ The results showed that a substantial part of key concepts of SR were 

overlapped with those of AR and PR, 17 and 11 among 24 respectively.    

Table 4.5 

Similarities of Key Concepts in the Reference Model among SR, AR, and PR  

 1 2 3 
SR - 0.96 0.58 
AR 0.72 - 0.61 
PR 0.68 0.64 - 
Note. Numerical similarities are in the upper diagonal, and conceptual similarities are located in 
the lower diagonal.  

 

Similarity measures showed clear functionality of centrality measures in SR (See Table 

4.5). The numerical similarity between SR and AR was very high, 0. 96. The conceptual 

similarity of SR was high across AR and PR, 0.72 and 0.68 respectively, whereas the similarity 

between PR and AR was somewhat lower than that of SR and AR. Those results proved that (a) 

SR is a descriptive and informative approach because it includes all possible semantic relations 

in a concept map; (b) in addition, SR can provide abstractive information in terms of key 

concepts and relations using centrality measures; and (c) thus, SR accommodates the theory of 

semantic structure including both surface structure and deep structure.  

Visual Inspection 

A visual inspection of the concept maps was conducted. Figures 4.5a, 4.5b, and 4.5c 

illustrate the diverse features of concept maps drawn from the three approaches. The concept 

maps of SR were much more complex and descriptive in terms of the numbers of concepts and 

relations than those of T-MITOCAR and ALA-Reader, across the samples. As for the reference 

model, the concept maps of the three approaches were highly cohesive and connected due to two 

facts: (a) the reference response was written very carefully to make it cohesive, with the writing 
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connecting key concepts as much as possible; and (b) T-MITOCAR and ALA-Reader technically 

let all elements of the concept maps connect, assuming all concepts are linked in mind.   

In contrast, the concept maps of the expert 06 differed substantially from one another. 

The concept map of SR contains two components that are subsets of a network having no 

connection with the other subsets. This study claims that this feature of the concept map attests 

to the fact that SR elicits concept maps akin to mental models because it is hard to believe that 

all concepts are always represented as connected without exception. 

The concept maps of PR and AR looked insufficient to be used for an instructional 

purpose such as providing formative feedback and instructional remedy. In the concept maps, all 

concepts are connected without information about their relations, which make it hard to interpret 

the meaning of the concept maps. Moreover, the data reduction process contained by PR and AR 

possibly causes problems in interpreting concept maps. As to PR, the expert 06 concept map was 

more complex than the reference model in terms of the numbers of concepts and relations (see 

Figure 4.5b), while the expert 06 model of AR is too simple compared to that of the other two 

approaches (see Figure 4.5c).       
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Figure 4.5a. Concept map of the reference model and expert 06 drawn from SR.  

 

Figure 4.5b. Concept map of the reference model and expert 06 drawn from T-MITOCAR (PR).  
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Figure 4.5c. Concept map of the reference model and expert 06 drawn from AR (ALA-Reader).  

 

Conclusion 

This study is an initial effort to devise new methodologies and technologies for eliciting 

concept maps from students’ written responses that reflect their internal representations to a 

problem situation(s). In particular, it is based on the argument that semantic relations together 

with  concepts (as in an SR approach) obtained from a written response so that a concept map are 

more likely to represent a student’s internal mental representation and thinking than approaches 

based primarily on spatial and surface features of the written response (as in PR and AR 

approaches).  

Underlying theories and assumptions of relations between language and cognition were 

intensively reviewed in terms of internal and external representations via the lexical systems of a 

language. It was argued that the internal semantic structure is externalized as the linguistic 

semantic structure of a linguistic expression. Eliciting the semantic structure was assumed to be a 
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better way to visually represent concept maps. That approach was termed ‘Semantic Relation’ in 

contrast with the current approaches, ‘Proximity Relation (adopted in T-MITOCAR)’ and 

‘Adjacent Relation (employed in ALA-Reader).’    

Just as the belief that a semantic structure is represented as a whole, that the 

macrostructure (deep structure) is constituted by the microstructure (surface structure), the data 

investigation proved that SR is an alternative way of enabling concept maps to be more 

descriptive and authentic. In particular, centrality measures showed that key concepts can be 

detected by the authentic microstructure. Moreover, SR was more robust against variations in 

contexts and writing styles.    

The primary conclusion of this study is that the SR approach can be an effective approach 

when the goal of the concept map is to obtain more meaningful (and thus formative) information 

about students’ cognitive changes. In contrast, this study does not intend to argue that the 

proposed SR approach is always superior to other methods and technologies. PR and AR 

represented by T-MITOCAR and ALA-Reader tool, respectively, can be ways to provide 

information about cognitive status, succinctly and economically focusing on key concepts and 

relations. For example, when key concepts are explicitly defined in conjunction with learning 

goals, and the goal of instruction is to help students correctly internalize them along with their 

prior knowledge, the ALA-Reader tool can be a good method for monitoring students’ cognitive 

changes on the condition that the concepts are introduced and explained to some extent or at least 

sufficiently.  

As a matter of course, there are many issues for future development and study. For 

example, although SR is proposed as possibly automated, it is true that complex structured 

sentences are not easily interpreted in a concept map in terms of distilling correctly paired 
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concepts. Thus, in order to elicit concept models from multiple quantified language inputs, 

technological supports in terms of natural language processing are required. Some suggestions 

include the following: 

• Elaborate the algorithm to identify semantic relations from a text, including 

developing automated natural language processing. 

• Build diverse measures that capture the attributes of the knowledge structure. 

• Elaborate the methodology to compare concept maps to the reference model(s) 

and to monitor structural changes as learning trajectories.  

The SR approach embedded in automated technologies could be an effective tool to cut 

across disciplinary boundaries such as traditional language comprehension study in linguistics. In 

learning and instruction, SR is applicable to a wide range of areas: automated essay evaluation; 

expertise modeling; competency diagnosis in adult learning; technology-enhanced adaptive 

learning systems (e.g., intelligent tutoring system); longitudinal study of learning progress; and 

formative assessment and feedback.  For example, the SR technology will enable teachers to 

identify individual student progression on a complex problem solving based on the whole 

structure of the concept map and to provide personalized feedback in terms of missing key areas 

and relations.  
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INVESTIGATION OF A MODEL OF STAGE-SEQUENTIAL LEARNING PROGRESS IN 

PROBLEM SOLVING5
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Abstract 

It is generally accepted that students understand a complex problem based on their own personal 

knowledge base in which concepts and relations are embedded (Chi, 2008; Johnson-Laird, 1983; 

Seel, 2003; Vosniadou, Vamvakoussi, & Skopeliti, 2008). This study argues that learning is a 

process of transitioning from one stage to another stage within this knowledge base. The 

theoretical framework of learning progress, titled a model of stage-sequential learning progress, 

provided a diagnostic framework of learning progress in a problem-solving situation. In addition, 

this study involved the development of diagnostic methodologies that include: (a) devising 

parameters to quantify knowledge structure; (b) defining multidimensional constructs of 

knowledge structure; (c) creating measures to capture cognitive changes; and (d) constructing a 

diagnostic model adaptable to the theoretical framework. Drawing on these methods, a validation 

study was conducted with empirical data. The analysis demonstrated only two stages have a 

probability of presence in the data rather than the four stages assumed in the framework. It is 

argued that either two stages or four stages would be theoretically acceptable. Although further 

studies are required, this study as an initial effort can provide a diagnostic model of learning 

progress and research methods for future studies of cognitive change in complex problem 

solving. 

 Keywords: learning progress, cognitive change, problem solving, assessment, latent class 

model, mental models 
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This study aimed at validating6

Many current assessment methods that tend to focus on knowledge outcomes only reflect 

partial aspects of knowledge (Grotzer & Perkins, 2000; Thomas, 2005), but problem-solving 

assessments have received less attention in national testing systems (NRC, 2001, 2003, 2005). 

Learning problem solving is not a simple task because problem solving mostly includes higher-

order thinking (e.g., critical thinking, abstract reasoning, meta-cognition etc.) (de Vries, Lund & 

Baker, 2002; Glassner, Weinstock, & Neuman, 2005; Hammer, 2000; Karoly & Panis, 2004; 

Kuhn , Black, Keselman, & Kaplan, 2000; NRC, 2005; Sandoval, 2003) as well as ample domain 

knowledge (Bransford, Brown, & Cocking, 2000; Chi, Glaser, & Farr, 1988; Newell & Simon, 

1972; Ericsson, 2006). Therefore, assessing problem solving must investigate problem-solving 

knowledge and skills as a whole. 

 a model of learning progress in a complex problem-

solving situation so as to utilize that model for assessment and instructional support in 

classrooms. The discussions are on (a) conceptualizing, (b) parameterizing, and (c) validating a 

model of learning progress. More specifically, a theoretical model of stage-sequential learning 

progress was posited. To parameterize that model, this study draws on concept maps as re-

represented learners’ knowledge structures through which measures possibly able to describe 

students’ cognitive states in learning were explored. Afterward, the assumptions suggested by the 

model were investigated. 

Cognitive change takes place when people confront unfamiliar, challenging situations 

(diSesa, 2006; Festinger, 1962; Piaget, 1964). When striving to resolve problem situations, 

learners experience changes in their mental representations by which these problem situations are 

recognized, defined, and organized (Seel, 2003, 2004). The theory of mental models explains 

                                                 
6 Validation in this study indicates the practice of confirming a predictive model by estimating model-

fitness to the empirical data; this study involves two validation practices for (a) a multi-dimensional model of 
knowledge structure and (b) a model of learning progress.  
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that problem solving involves a process of building mental representations to a problem situation 

(Johnson-Laird, 1983). It is believed that mental models are structurally represented as a whole 

including facts, concepts, variables, objects, and their relations involved in a problem situation 

(Dochy, Segers, Van den Bossche, & Gijbels, 2003; Jonassen, Beissner, & Yacci, 1993; Segars, 

1997).  

Learners possibly experience qualitatively different levels of knowledge structure when 

engaged in problem solving. Just as Piaget (1964) argued that children experience qualitatively-

distinct sequential knowledge states, developmental psychologists have supported the idea that 

learning and development evolve as the learner constructs a qualitatively-distinct knowledge 

structure (Alexander, 2003, 2004; Flavell & Miller, 1998; Siegler, 2005; Siegler, Thompson, & 

Opfer, 2009; Werner, 1957; Vygotsky, 1934/1978). A number of experimental studies proved 

that qualitatively different cognitive changes take place when learners respond to problems (e.g., 

Alexander & Murphy, 1998; Chen & Siegler, 2000; Opfer & Siegler, 2004; Siegler et al., 2009). 

 So far, there are accounts of the existence of qualitatively distinct states of learning 

progress, yet there are few specific models of qualitative levels of learning progress along with 

assessment methodologies applicable to problem-solving situations. The purpose of this study is 

to identify the theoretical foundations of cognitive changes, to build a diagnostic model of 

learning progress in problem solving, called a model of stage-sequential learning progress, and 

to explore particular parameters and statistical methods pertinent to testing hypothesized learning 

stages. This study ultimately proposes ways to diagnose cognitive development in problem-

solving situations, which are essential to provide a best-fit learning experience to students with 

precision and confidence (Grow-Maienza, Hahn, & Joo, 2001; Hattie, 2009; Stigler and 

Stevenson, 1991).  
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Stage-Sequential Learning Progress 

Theoretical Foundation 

Learning progress can be defined as a series of qualitatively distinct stages in a learner’s 

understanding which experiences both gradual and sudden changes through instruction. That is, 

learning progress is stage-sequential. The theory of mental models provides a conceptual 

foundation accounting for these cognitive changes. 

Mental models are cognitive artifacts which a learner constructs in order to understand a 

given problem situation (Anzai & Yokoyama, 1984; Kieras & Bovair, 1984; Mayer, 1989). A 

problem situation is mentally represented in a learner’s mind when a learner is involved in a 

problem-solving process. Mental models depend primarily on a learner’s prior knowledge (that is, 

prior mental models) and change over time (Seel, 1999, 2001). Mental model changes in a 

learning situation are not simple shifts without any directional goal, but transformations toward 

goals; therefore, such changes can be considered progress. Thus, the progress of mental models 

involves learning-dependent and developmental transitions between preconceptions and causal 

explanations (Anzai & Yokoyama, 1984; Carley & Palmquist, 1992; Collins & Gentner, 1987; 

Johnson-Laird, 1983; Mayer, 1989; Seel, 2001, 2003, 2004; Seel & Dinter, 1995; Shute & 

Zapata-Rivera, 2008; Smith, diSessa, & Roschelle, 1993; Snow, 1990). 

Mental models change over time while developing mastery in problem situations 

(Johnson-Laird, 2005a, 2005b; Seel, 2003, 2004). The progress of mental models involves 

qualitative change as well as quantitative trends in the frequency of existing models. While 

intellectual growth goes on in a learning context, mental models may also evolve through a 

variety of qualitative stages. For instance, mental models may be enlarged when a learner adopts 
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new concepts into an existing model (quantitative increase), or a mental model may experience 

fundamental changes to adapt to a new situation (qualitative change).  

A Model of Stage-Sequential Learning Progress 

A conceptual model of stage-sequential learning progress can be derived from the studies 

of knowledge structure and the development of expertise. Mental models can be hypothesized as 

progressing through different levels of structural knowledge representing certain aspects of 

external situations in specific domains (Johnson-Laird, 2005a, 2005b). When problem solving is 

defined as a process of mental activity relying on structurally represented mental models (Dochy 

et al., 2003; Segars, 1997), it is necessary that the assessment of problem-solving knowledge and 

skills is sensitive to the structural characteristics of the knowledge base (Gijbel, Dochy, Van den 

Bossche, & Segers, 2005). 

The 3S knowledge structure. Author (2011a) argued that structural characteristics of 

mental models can be illustrated with three features of knowledge structure (labeled “3S”) 

involving (a) surface, (b) structure, and (c) semantic features. First, the surface feature denotes 

the descriptive information of knowledge components in terms of the numbers of concepts and 

their relations. The surface feature is compatible with the surface level of mental models 

explained as relevant objects and aspects of the context (Holyoak & Koh, 1987; Simon & Hayes, 

1976). In linguistics comprehension studies, the surface feature including semantic relations with 

concepts (e.g., nouns) in text is also argued to characterize the shape of linguistic representations 

as re-represented mental models (Fodor, Bever, & Garrett, 1974; Katz & Postal, 1964). 

Second, the structural feature describes the levels of size, complexity, and cohesiveness 

of mental models as a whole. That is, the structural feature indicates a deep level in terms of a 

well-organized knowledge structure within a particular context in which underlying causal 
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principles, including key variables and their relations, are subsumed (Bransford & Johnson, 

1972; Gentner & Medina, 1998; Katz & Postal, 1964; Kintch & von Dijk, 1978).  

The third indicator is the semantic feature that shows the levels of understanding of 

concepts and their relations in a knowledge structure. While the surface and structure feature 

inform us of generic information of a whole structure (e.g., the number of concepts, the 

complexity of a knowledge structure), the semantic feature is related to individual concepts and 

propositional relations of a particular pair of concepts. In particular, the semantic feature 

includes principle variables that are believed to emerge from information integrated from the 

whole structure (Katz & Postal, 1964; Kintch & von Dijk, 1978).   

Stages of learning progress. Stages of learning progress in problem-solving situations 

can be explained by studies of the development of expertise. In addition, the three features of 

knowledge structures (3S) are able to characterize the knowledge structure of each stage of 

learning progress. 

Learners proceed through a similar progression of qualitatively distinct stages in both the 

short term and the long term (Siegler et al., 2009; Vosniadou et al., 2008; Vygotsky, 1934, 1978; 

Werner, 1957). In accord with that argument, current studies of the development of expertise 

focus more on expertise evolving through learning and instruction in academic domains (e.g., 

Alexander, 2003, 2004; Chi, 2006). In that perspective, Author (2011a) characterized the stages 

of learning progress as drawing on five stages of expertise development (Dreyfus & Dreyfus, 

1986). The stages of learning progress in this model can also be defined by the characteristics of 

knowledge structures, the 3S features of knowledge structure (see Table 5.1). 
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Table 5.1  

Knowledge Structures of the Stages of Learning Progress 

Stage Three Features of Knowledge Structure (3S) 

Novice 
 

(a) All features (surface, structure, and semantic) are quite 
dissimilar to those of experts; or (b) the structure feature 
could be seen to be mastered because mental models 
consisting of a small number of concepts and relations are 
likely to look cohesive and connected. 

Advanced beginner 

 
(a) Knowledge structures have similar surface features with 
those of expert models but not with structure and semantic 
features; or (b) there is a high similarity of semantic features 
but dissimilarity in surface and structure features between a 
student model and an expert model. 

Competent Learner 

 
(a) Structure feature shows enough complexity along with a 
proper surface feature, which is not necessary to guarantee a 
semantic fit, however; and (b) the other consists of an 
appropriate number of contextual and principle concepts 
(surface and semantic), but that are not well-structured in a 
proper manner (structure). 

Proficient Learner 
 

(a) Knowledge structures are well-featured at all levels 
(surface, structure, and semantic); or (b) significant number 
of principles (semantic) creates a cohesive structure 
(structure) but with a small total number of concepts 
(surface).  

Intuitive Expert 
 

Intuitive decision-making takes place as an advanced 
semantic structure; unlikely to theorize its measurable 
structure at this point. 

Note. Summarized based on Author (2011a). 

The novice is a stage in which a learner is new to a domain and has little prior knowledge. 

A beginner starts to learn context-free abstract knowledge and face situations in a new domain. 

Knowledge structures at this stage are assumed to show the following characteristics: (a) the lack 

of all three features of knowledge structure characterizes his or her mental model; or (b) due to a 

small number of concepts and relations, the mental models looks highly structured (high 

structure feature with low surface and semantic feature).   
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The advanced beginner stage indicates a mental structure in which a learner recognizes 

an adequate amount of situational and non-situational knowledge, but the knowledge is still 

compartmentalized. Ill-structured knowledge results in a lack of sense of what is important in a 

particular situation. It is anticipated that there are two types of knowledge structure: (a) a 

common observation would be an adequate number of concepts and relations (i.e., surface 

feature) but with a lack of structure and semantic features; or (b) affected by instruction in key 

concepts, the learners internalize a number of key concepts (good-fit in semantic feature) but not 

well-organized with a proper number of contextual concepts (poor-fit in surface and structure 

feature).  

In the competent learner stage, the learners become familiar with given problem 

situations and then identify concepts underpinning the situations. However, the mental structure 

is not fully organized, so the mental state may be inadequate in helping him or her to develop a 

proper solution. With increasing experience, (a) a learner develops complex knowledge structure 

in which they are likely to determine which elements of a situation are critical (good-fit in 

surface and structure feature but not sure of good semantic feature); or (b) most key concepts are 

set in a learner's mental model, but the propositional relations among concepts are somewhat 

different from the expert model (good-fit in surface and semantic feature but poor-fit in structure 

feature). 

The next stage is the proficient learner stage. Learners in this stage conceptualize a best-

fit problem space which meets the real traits of the given problem situation. The probability of 

resolving a problem may markedly increase in the proficient learner stage. A learner approaches 

a problem holistically and immediately recognizes a problem situation. Two types of knowledge 

structures are assumed: (a) the expected concepts and relations are represented as organized 
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properly (good-fit in all features); or (b) the learners represent relatively a small size of but 

efficient knowledge structure in which sufficient key concepts are well-structured (good-fit in 

structure and semantic feature but not in surface fit). That knowledge structure is accordant with 

the claim that sometimes experts create mental models having an ‘optimal’ rather than 

‘maximum’ number of concepts and relations that are very efficient (Glaser, Abelson, & 

Garrison, 1983; Glaser, 1992). 

The final stage is the intuitive expert level. Using a vast repertoire of situational cases, a 

problem solver is able to make a more subtle discrimination and then intuitively decide how to 

act while solving a problem. That is, intuitive decision-making characterizes the stage. However, 

a set of measureable features of a knowledge structure in the expert level are not identified yet, 

which render diagnosis of the intuitive expert level challenging. In addition, formal instruction 

may help novices at most become a proficient learner because intuitive experts may be fostered 

more by experiences both before and after instruction.  

Exploring Measures for Cognitive Changes in Learning Progress 

A theoretical framework of learning progress has been discussed based on the theory of 

mental models as structural knowledge. Admittedly, the human mind is not easily observable but 

may be indirectly inferred from externalized representations such as written responses to a 

problem situation. The study in this section explores a list of possible measures derived from 

external representations such as concept maps so as to use those measures for diagnosing 

cognitive changes.     

Parameters for the 3S Knowledge Structure 

The three features (3S: Surface, Structure, and Semantic) of a knowledge structure can be 

quantified by parameters obtained from a concept map that reflect an individual’s mental model 
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(see Table 5.2). Concept mapping is a method that elicits cognitive representations of an 

individual’s structural knowledge in a domain which is constituted with concepts and relations 

(Axelrod, 1976; Clariana, 2010; Narayanan, 2005; Novak & Canãs, 2006; Spector & Koszalka, 

2004).  

Table 5.2 

Parameters of the 3S Feature of Knowledge Structure 

Measure 3S Technical Definitiona Operationalization 
M1. 
Concept 

Surface The total number of nodes (vertices)  The overall number of conceptsb 

M2. 
Relation 

Surface The total number of links (edges) The overall number of relations of 
paired conceptsb  

M3. 
Average Degree 

Structure The average number of links of a 
node ranging from 0 and g-1 (g is the 
total number of nodes) 

As the number of incoming and 
outgoing relations grows, the 
complexity of the cognitive structure is 
taken as more increasesb. 

M4. 
Density  

Structure The density of a graph is the 
proportion of possible lines that are 
actually present in the graph. 

The density of a concept map indicates 
how cohesive a concept map is.  

M5. 
Mean Distance 

Structure The average geodesicc distance 
between any pair of nodes in a 
network 

An indicator represents how close the 
concepts are to one another.  

M6. 
Diameter 

Structure The length of the largest geodesic 
between any pair of nodes (1 to g-1)  

It represents how broad the 
understanding of a domain isb. 

M7. 
Clustering 
Coefficient 

Structure The clustering coefficientd of the 
entire network is the average of 
the clustering coefficients for all 
the nodes. 

This parameter indicates the extent to 
which a cognitive structure is clustered. 

M8. 
Connectedness 

Structure This measure is to calculate ratio 
of pairs; it can be reached 
mutually each other in the graph.  

This parameter describes the extent to 
which the concepts are connectedb. 

M9. 
Cohesive 
subgroups 
(= n-clan) 

Structure Cohesive subgroups are subsets 
of actors among whom there are 
relatively strong, direct, intense, 
frequent, or positive ties. 

It is assumed that more complex 
cognitive structure has more numerous 
subgroups that intermediate the whole 
connectionb.   

M10. 
Centrality 

Semantic A particular node might be able to 
control interactions between pairs of 
other nodes in the network.  

Principle concepts might be able to 
control connections between pairs of 
other concepts in the network.  

Note. a. Wasserman and Faust (1994) 
b. Those parameters were also introduced by Ifenthaler (2010). 
c. A shortest path between two nodes is referred to as a geodesic. 
d. This is a ratio of (the number of connections observed) to (the number of the maximum possible connections) 
between its neighbor nodes. 
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Concept maps are visually represented through a set of network analysis techniques 

mostly involved in graph theory (Rupp, Sweet, & Choi, 2010; Schvaneveldt, Durso, Goldsmith, 

Breen, & Cooke, 1989; Wasserman & Faust, 1994). Ifenthaler (2010) introduced parameters of 

graph theory applicable to educational diagnostics of knowledge representation. This study 

extended the number of potential parameters derived from network analysis methods (Coronges, 

Stacy, & Valente, 2007; Wasserman & Faust, 1994) and then related the parameters to the 3S 

knowledge structure. 10 parameters are assumed to portray a knowledge structure. Table 5.2 

describes the measures listed below: 

• M1 (Concept) indicates the overall number of concepts involved in a concept map. 

• M2 (Relation) indicates the overall number of relations of paired concepts. 

• M3 (Average Degree) means the average number of relations incoming to or outgoing 

from a concept that ranges from 0 to g-1 (g is the total number of nodes); As average 

degree grows, the knowledge structure is taken as more complex.  

• M4 (Density) is the proportion of possible links in a graph that indicates how much a 

concept map is cohesive.  

• M5 (Mean Distance) is an indicator representing how close the concepts are to one 

another in a concept map. 

• M6 (Diameter) indicates how broad the understanding of a knowledge structure is. 

• M7 (Clustering Coefficient) indicates the extent to which a cognitive structure is 

clustered. 

• M8 (Connectedness) describes the extent to which the concepts are connected in a 

network. 

• M9 (Cohesive Subgroups) subgroups are subsets of actors among whom there are 
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relatively strong, direct, intense, frequent, or positive ties; it is assumed that more 

complex cognitive structure has a more number of subgroups that intermediate the whole 

connection. 

• M10 (Centrality) is used to identify key concepts in a concept map based on an 

assumption that a particular node might be able to control interactions between pairs of 

other nodes in the network.     

Amongst 10 parameters, two parameters (M1. Concept and M2. Relation) are related to 

the surface feature, seven parameters (M3. Average Degree, M4. Density, M5. Mean Distance, 

M6. Diameter, M7. Clustering Coefficient─Gamma, M8. Connectedness, and M9. Cohesive 

subgroups) are associated with the structure feature, and one parameter (M10. Centrality) is 

connected to the semantic feature. 

Similarity Measures as Indicators of Cognitive Change 

Similarity measures. Evaluation of a student’s concept map is often done by comparison 

with a reference model, which is usually elicited from an expert (Curtis & Davis, 2003; 

Goldsmith & Kraiger, 1997; Coronges et al., 2007; Taricani & Clariana, 2006). Comparison 

between concept maps is indicated by similarity measures assessed by overlaying network 

patterns with the concept map information (Coronges et al., 2007; Monge & Contractor, 2003). 

Similarity measures at each measurement occasion can indicate a level of closeness of a learner 

model to a reference model. It is assumed that an individual’s learning trajectory can be 

monitored by similarity measures implemented multiple times in a longitudinal manner. This 

study proposes 13 similarity measures applicable to the study of cognitive change (see Table 5.3). 
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Table 5.3 

Similarity Measures  

Similarity Measure  Definition 
3S Feature a 

T-MITOCARb 
S1 S2 S3 

1. Number of 
concepts 

Compare the number of concepts (nodes) 
between two models  

○    

2. Number of 
relations   

Compare the number of links (edges)  ○   Surface 

3. Average Degree Compare the average number of degrees  ○   

4. Density of graphs Compare the density of two models  ○   

5. Mean Distance Compare the mean distances of two models  ○   

6. Diameter Compare the largest geodesics of two 
models 

 ○  Graphical 
matching 

7. Clustering 
coefficient 

Compare the clustering coefficient (%) of 
the two entire networks  

 ○  Gamma 

8. Connectedness Compare the ratios of pairs that reach each 
other in each graph 

 ○   

9. Subgroups Compare the number of cohesive subgroups 
in each graph 

 ○   

10. Concept matching Compare semantically same concepts 
including both contextual and principle 
variables 

  ○ Concept Matching 

11. Principle 
Matching 

Compare fully identical principle concepts     ○  

12. Propositional 
Matching 

Compare fully identical propositions 
(edges) between two concept maps 

  ○ Propositional 
Matching 

13. Balanced 
Semantic Matching 

Compare the balances calculated by 
dividing Propositional Similarity with 
Concept Similarity 

  ○ Balanced Semantic 
Matching 

Note. a. It is assumed that each observed similarity is explained by some of three latent attributes of the 
concept map, such as Surface fit (S1), Structural fit (S2), and Semantic fit (S3). 
b. Some similarity measures were matched with or cited from T-MITOCAR similarity measures (Pirnay-
Dummer & Ifenthaler, 2010). 

 

As described in Table 5.3, the similarity measures suggested in this study involve those 

obtained by comparisons of the 10 parameters introduced as indicators of 3S features of a 

knowledge structure as well as three measures used in the Text Model Inspection Trace of 
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Concepts and Relations (T-MITOCAR) (Pirnay-Dummer & Ifenthaler, 2010). The measures 

adopted from T-MITOCAR are: concept matching (that compares semantically same concepts 

including both contextual and principle variables), propositional matching (that compare fully 

identical propositions—edges—between two concept maps), and balanced semantic matching 

(compares the balances calculated by dividing Propositional Similarity with Concept Similarity).    

Each of the similarity measures is considered indicating at least one of the 3S of 

knowledge structure. Amongst 13 similarity measures, on the whole two (number of concepts; 

and number of relations) belong to the surface, seven (average degree; density; mean distance; 

diameter; clustering coefficient; connectedness; and subgroups) pertain to the structure, and four 

(concept matching; principle matching; propositional matching; and balanced semantic 

matching) are related to the semantic. This association implies that gaining a high value of a 

similarity measure requires a good match with feature(s) of the knowledge structure associated 

with the measure.     

Modification of similarity measures. This study modified and adjusted the formulas 

that calculated the similarity measures. As to numerical similarity, amongst the similarity 

measures, density, mean distance, and clustering coefficient measures used the original formula 

because an optimal value indicates a good condition for those three measures rather than a 

greater value (refer to Table 5.2):  

 

where f1 and f2 denote the numerical frequency of each method compared. The similarity ranges 

from 0 to 1, 0 ≤ s ≤ 1.  

On the whole, a similarity formula assumes each part of a pair is equally significant. In 

the case of a concept model comparison, the reference model and student model are not equal in 

 

s =1−
f1 − f2

max f1, f2( )
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terms of maturity. A reference model acts as criteria and a student model is expected to progress 

toward the reference model. It is assumed that a reference model is likely to contain a greater 

number of concepts and relations and is comprised of a larger knowledge structure than a novice 

model (Chi, Glaser, & Farr, 1988; Spector & Koszalka, 2004). Thus, a modified algorithm was 

applied except for the density, mean distance, and clustering coefficient similarity. In case f1 is 

smaller than f2, f1 < f2, the original numerical similarity formula was used so that: 

 

where the frequency of a student model is f1 and that of a reference model is f2. Otherwise, if f1 is 

not less than f2, f1 ≥ f2, the similarity value was set as ‘1’ because the student value is greater than 

that of the reference. That is, it indicates that the student model exceeds the reference model 

according to the relevant criteria.    

Similarly, concerning the conceptual similarity as applied to the four similarity measures 

(concept, principle, propositional, and balanced semantic matching score), an adjustment was 

made. Just as a picture resembles an object rather than an object resembles a picture of it, a 

student model to some degree resembles the reference model that is more salient. In this 

asymmetric relation, the features of the student model are weighted more heavily than those of 

the reference (Colman &Shafir, 2008; Tversky & Shafir, 2004). When the conceptual similarities 

were calculated by Tversky’s (1977) formula, α was weighted more heavily than β (α = 0.7 and 

β = 0.3).     

s =
𝑓(A ∩ B)

𝑓(A ∩ B) + α ∙ 𝑓(A − B) + β ∙ 𝑓(B − A) 

 

 

 

s =1−
f1 − f2

max f1, f2( )
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Validation Methods 

Participants 

Participants included 136 undergraduate students and seven experts. The students were 

enrolled in a course at a university in the southern United States. The course aimed to educate 

students on knowledge and skills for integrating technology in teaching and learning. In the class, 

students made written responses to a specific complex problem. Female students formed 83% of 

the study participants, while 17% were male. 7% were freshman, 39% were in their junior year, 

and sophomore and senior levels occupied 27% each.  

Seven experts were professors teaching at a major university in the United States. They 

participated in a Delphi survey to obtain a reference model. The panel members were selected 

based on pre-set criteria: (a) professors in Instructional Technology or related fields; (b) 

professors teaching a course titled Instructional Design or Technology Integration in Learning; (c) 

professors who research technology-integration in classroom learning; and (d) professors whose 

doctorates were received at least three years ago. 

The Problem-solving Task 

All participants were asked for responses to a complex problem situation using natural 

language. The task provided a simulated situation in which students were assumed to be 

participating in an evaluation project, the purpose of which was to investigate an unsuccessful 

project that had as its goal adapting a technology (i.e., a tablet PC) for classroom teaching. In 

order to elicit students’ knowledge in detail, the questions asked them to explicitly describe the 

concepts, issues, factors, and variables likely to have contributed to the result that the 

introduction of tablet PCs had very little effect on the instructional practices employed in the 

classes. 
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Reference Model 

This study includes a reference model to obtain similarity measures for student concept 

maps. The reference model was created according to the Delphi survey procedures (Goodman, 

1987; Hsu & Sandford, 2007; Okoli & Pawlowski, 2004). The Delphi survey included three 

rounds to refine the reference model. In the first round, the participating experts created their 

own responses to the problem and all responses from the panel were consolidated. After that, a 

document including all statements and a list of identified concepts was sent to the panel again. 

The experts were asked to add their comments on the listed statements and concepts and rank 

them. After gathering the second surveys, the researcher created a final list of ranked statements 

and concepts. Based on the summary, a draft of a reference model was created. In the final round, 

the results of the second survey were sent to the panel and revised according to their comments, 

if needed. Throughout these procedures, a written reference model containing the 23 key 

concepts identified by the panel was developed. 

Data Collection 

This study gathered manifest indicators resulting from a network analysis approach that 

consists of a three-step procedure (Curtis & Davis, 2003; Taricani & Clariana, 2006): (a) elicit 

judgments about concept relationships; (b) construct concept maps; and (c) compare the concept 

maps to a reference model.   

The first step is to elicit judgments about concept relations in students’ written responses 

to the problem. This study made judgments in compliance with Author’s (2011a) Semantic 

Relation (SR) approach which argues that semantic relations together with concepts obtained 

from a written response create a concept map which is more likely to represent a student’s 

internal mental representation.  
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The second step is to construct concept maps. This study employed the network analysis 

software, NetMiner (http://www.netminer.com/) in order to visualize concept maps and generate 

concept map parameters. This tool automatically rendered the parameters of a concept map 

suggested as indicators for educational diagnostics.     

The final step is to compare student concept maps to a reference model so that we can 

obtain similarity measures that are eventually used for the validation study. The aforementioned 

13 similarity measures were calculated using the similarity tool developed by Author (2011b). 

The author (2011b) developed the tool using C++ programming language, and the tool was 

validated by random comparisons between tool-generated and manually calculated data.  

Similarity measures are continuous variables ranging from 0 to 1. For the following 

validation analyses, the similarity measures were transformed to discrete variables (exactly to the 

dichotomous variables). The transformation of similarity variables can involve two conditions: 

one is a generous condition, where a value over 0.5 is transformed to a dummy value ("1" 

indicates that the subject’s parameter is similar to that of the reference model), and the other is a 

rigorous condition, where similarity is decided if a value is over 0.75. A cut point of 0.5 in this 

study was applied considering that the measurement was implemented at the earlier time of the 

course at which students were unlikely to be familiar with the topic. 

Latent Class Analysis for the Model of Learning Progress 

Stages in learning progress are inferred rather than directly observed. Accordingly, 

qualitative stages of the learning progress can be labeled latent classes because of their 

psychometric characteristics. Latent class modeling (LCM) is a method used to test the 

hypothesized latent categorical variables against the theorized latent classes (Heinen, 1996; 

Kaplan, 2008). In LCM there are corresponding latent classes associated with the other stages in 

http://www.netminer.com/NetMiner/home_01.jsp�
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the model so that at any given occasion of measurement each individual has an array of latent 

class memberships (Collins & Cliff, 1990; Collins, Graham, Rousculp, Fidler, Pan et al., 1994; 

Rost & Langeheine, 1997).  

This study considers latent class models adaptable to test the latent stages of learning 

progress. The main assumption is that a learner belongs to a certain stage of learning progress 

that is cumulative but exclusive in such a way that discrete ordinal latent classes (a learner’s 

status of mental model progress) range from novice to proficient. Considering that there are a 

variety of LCMs, to validate the model of learning progress this study located a best-fit model 

that is illustrated in the following section.  

Log-linear Classification Diagnostic Model (LCDM). In general, LCMs are used to 

determine whether the hypothesized model explains the number of latent classes in the data. 

Restricted latent class models make it possible to test the hypotheses of the structure of a 

measurement model and place fewer demands on the data (Heinen, 1996). Log-linear models, in 

the context of categorical data analysis, allow latent class models to place linear restrictions on 

the log-linear parameters (Agresti, 2007).  

Diagnostic Classification Models (DCMs), as a special case of constrained LCMs, are 

“multidimensional latent variable models with multiple latent variables” (Rupp et al., 2010, p. 

149). DCM includes the latent variables, or attributes, through which DCMs define an 

individual’s ability as the probability of a correct response (Henson, Templin, & Willse, 2009). 

According to Templin (2004, p. 8): “commonly, attributes are the atomic components of ability, 

the specific skills that together comprise the latent space of general ability.” Ultimately, the 

attributes that have or have not been mastered define an individual’s mastery profile. DCMs have 
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a set of attribute mastery profiles in that the set of K latent attributes can be considered a latent 

class model with 2k classes (Henson et al., 2009; Templin, 2004).  

In the context of the model of learning progress, the three features of knowledge structure 

(K = 3 latent attributes: surface, structure, and semantic) can be the attributes in DCMs. Each 

feature (attribute) of knowledge structure can be profiled as obtained (1) or not obtained (0). 

Those mastery profiles provide stages (i.e., 23 = 8 latent classes) of learning progress at which an 

individual is classified. The latent classes associated with the stages of learning progress are 

detailed in Table 5.4.  

Table 5.4 

Class-to-Profile Table 

Latent Class  
3S Attribute a 

Stage of Learning Progressc 

S1 S2 S3 

Class 1 (C1) 0b 0 0 Novice (L1)  

Class 2 (C2) 0 0 1 Advanced Beginner (L2) 

Class 3 (C3) 0 1 0 Novice (L1) 

Class 4 (C4) 0 1 1 Proficient Learner (L4) 

Class 5 (C5) 1 0 0 Advanced Beginner (L2) 

Class 6 (C6) 1 0 1 Competent Learner (L3) 

Class 7 (C7) 1 1 0 Competent Learner (L3) 

Class 8 (C8) 1 1 1 Proficient Learner (L4) 

Note. a. 3S attributes involve the three features of knowledge structure—Surface (S1), Structural 
(S2), and Semantic (S3). b. 0=absent and 1=present. c. The stages of learning progress use the 
first four stages labeled in Table 5-1, originally defined by Dreyfus and Dreyfus (1986).   

 

For instance, class 4 has its mastery profile (S1: 0, S2: 1, and S3: 1) that is matched to the 

proficient learner (L4) level. This match was determined by the theoretical assumption of the 

knowledge state of the level: The learners represent relatively a small in size (S1: 0 = surface 

feature is absent) but efficient knowledge structure (S2: 1 = structure feature is present) in which 
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sufficient key concepts are well-structured (S3: 1 = semantic feature is present) (good-fit in 

structure and semantic feature but not in surface fit, as discussed in Table 5.1).     

LCDMs are log-linear models used to represent DCMs (Rupp, Templin, & Henson, 

2010). LCDM requires all item responses and all attributes to be dichotomous. A key assumption 

of LCDM is the local independence (or, in other words, conditional independence) which means 

that “the responses of respondents are independent given the number of discrete latent variables 

included in the model, which create the latent classes” (Rupp et al., 2010, p. 325). This 

assumption is congruent with the conjecture of qualitatively different stages of learning progress 

in that the features of knowledge structure (attributes) capture the state of mental stages.   

Results 

This section provides validation results that involve (a) preliminary review of similarity 

measures; (b) selection of similarity measures; (c) validation of the three features of knowledge 

structure (the 3S knowledge structure model); and (d) validation of the model of stage-sequential 

learning progress using LCDMs. For the first three analyses, the original similarity measures (0 ≤ 

s ≤ 1) as continuous variables were used and for the LCDMs, the transformed similarity 

measures as binary variables (0 = not mastered, 1= mastered).  

Data Review 

A pre-analysis data inspection that included examination of descriptive statistics and 

correlations was conducted. As Table 5.5 describes, most similarity measures showed biased 

distributions. The similarity measures M10 to M12 were distributed within the lower areas of 

similarity band, ranging from 0 to 0.68 with lower means ranging from 0.05 to 0.24, while the 

distributions of the measures M3, M5, M6, to M8 stayed within higher band ranging from 0.15 to 

0.99 with means ranging from 0.73 to 0.82. Other measures such as M1, M2, M4, and M9 had 
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means between 0.31 and 0.35. Although some measures (M4. density, M7. clustering coefficient, 

and M9. subgroups) classified into the structure feature (see Table 5.3) showed trends more like 

those in the surface feature, the descriptive results implied that the similarity measures likely 

indicate different constructs that are assumed to be the features of knowledge structure.    

Table 5.5  

Descriptive Statistics of the Similarity Measures  

 

N Minimum Maximum Mean SD 

M1. Concept 143 0.04 0.96 0.35 0.18 

M2. Relation 143 0.02 0.98 0.31 0.20 

M3. Average Degree 143 0.42 1.00 0.82 0.14 

M4. Density 143 0.05 0.96 0.40 0.19 

M5. Mean Distance 143 0.28 0.99 0.74 0.17 

M6. Diameter 143 0.14 1.00 0.76 0.22 

M7. Clustering Coefficient 143 0.00 0.98 0.35 0.35 

M8. Connectedness 143 0.15 1.00 0.73 0.25 

M9. Subgroups 143 0.00 1.00 0.31 0.20 

M10. Concept Matching 143 0.05 0.57 0.24 0.08 

M11. Principle Matching 143 0.00 0.38 0.12 0.07 

M12. Propositional Matching 143 0.00 0.28 0.05 0.04 

M13. Balanced Matching 143 0.00 0.68 0.18 0.15 
 

Next, as shown in Table 5.6, correlations of the similarity measures were calculated. 

Concepts (M1) had a very high correlation with the relations (M2), r = 0.97, p < .01.Due to that 

strong correlation, it was determined to only use the relations measure (M2), indicating the 

surface feature of knowledge structure. Amongst the measures classified in the structure feature 

(see Table 5.3), clustering coefficient (M7) and connectedness (M8) were removed because they 

had a low correlation with other measures in the same category (average r = 0.28 and 0.26, 
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respectively). Remaining measures were retained because they mostly moderately related with 

one another, ranging from 0.38 to 0.85, and discriminated from the measures (M10 to M13) 

within the semantic feature category. The retained measures were: average degree (M3), density 

(M4), mean distance (M5), diameter (M6), and subgroups (M9). As for the measures within the 

semantic feature category, even though the balanced semantic matching (M13) had low 

correlations with concept matching (M10) and principle matching (M11), it was retained to have 

enough number of measures for the construct, semantic feature of knowledge structure.  

Table 5.6 

Correlations of the Similarity Measures 

 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

M1 1 
            

M2 .97** 1 
           

M3 .60** .71** 1 
          

M4 .95** .85** .38** 1 
         

M5 .64** .62** .65** .59** 1 
        

M6 .66** .62** .62** .63** .95** 1 
       

M7 .36** .41** .55** .25** .31** .31** 1 
      

M8 0.00 0.15 .51** -.22** .35** .21* .18* 1 
     

M9 .92** .92** .63** .85** .71** .73** .28** 0.14 1 
    

M10 .52** .54** .47** .44** .41** .43** .30** 0.06 .48** 1 
   

M11 .26** .30** .35** .17* .24** .25** .18* .17* .27** .45** 1 
  

M12 .37** .42** .35** .27** .20* .21* .23** 0.13 .36** .61** .32** 1 
 

M13 0.16 .20* .22** 0.09 0.07 0.07 0.13 0.11 0.15 .27** 0.15 .87** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

In particular, the relations (M2) measure was highly related to the average degree (M3), 

Density (M4), and subgroups (M9), r > 0.9, p < .01. Those correlations implied that the three 

structural measures (M3, M4, and M9) are possibly explained by the construct, surface feature, 



176 

of relations (M2). That conjecture was justified by the theoretical assumption that three structural 

measures (M3, M4, and M9) necessitate adequate surface feature. For example, higher density 

requires an adequate number of relations (links) in the graph.  

Validation of the 3S Knowledge Structure  

As a part of the preliminary review, the three-factor model of knowledge structure that 

was composed of the surface, structure, and semantic feature was investigated using CFAs 

(Confirmatory Factor Analyses). For the CFAs, M-plus software was used. A multivariate 

normality test showed univariate and multivariate distributions were significantly non-normal. 

To deal with this violation of test assumption, MLM (Maximum Likelihood Method) estimation 

was applied based on a suggestion in the M-Plus manual. Based on a significance level of .05, 

three cases were determined to be problematic outliers and thus were removed from the data. 

Finally, the total number of samples became 140 for the CFAs.    

Figure 5.1 depicts the three-factor CFA model. The validation procedure includes 

sequential evaluation of a single factor model with the proposed factor model. A single factor 

model provided poor-fit indices (CFI < 0.90, NNFI < 0.90, RMSEA > 0.05), while overall fit for 

the three-factor was good (CFI > 0.90, NNFI > 0.90) (see Table 5.7). 

Table 5.7 

Summary of Fit Indices 

Models χ2(df) χ2/(df) CFI NNFI RMSEA SRMR AIC ABIC 

Single factor  699(35) 19.90 0.49 0.34 0.36 0.14 -2518 -2430 

3 factor  96(26) 3.69 0.94 0.90 0.14 0.18 -3157 -3042 
Note. Indices (their expected values) are: χ2(df) = Chi-square statistics and degrees of freedom for test of model fit 
(equal to 0); χ2/(df)  = the ratio of Chi-square statistic to the degrees of freedom (equal to 1), CFI = comparative fit 
index(> 0.90), NNFI = non-normal fit index (a.k.a., Tucker-Lewis index)(> 0.90), RMSEA = root square error of 
approximation (<0.05), SRMR = standardized root mean square residual (< 0.05), AIC (Akaike Information 
Criterion (close to 0, smaller the better), ABIC (Adjusted Bayesian Information Criterion) (close to zero, smaller the 
better) 
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Figure 5.1. Three-factor CFA model. 10 similarity measures were used as items in the model: 
M2 (Relations); M3 (Average degree); M4 (Density); M5 (Mean distance); M6 (Diameter); M9 
(Subgroups); M10 (Concept matching); M11(Principle Matching); M12 (Propositional 
Matching); and M13 (Balanced semantic matching). 

 

LCDMs for the Model of Learning Progress 

So far it was identified that: (a) the similarity measures as continuous variables indicate a 

set of constructs like the 3S knowledge structures; (b) their trends somewhat differ from one 

another depending on the traits of the constructs by which the measures are explained; and (c) 

the proposed 3S knowledge structures are present in the data. However, the findings were not 

able to provide comprehensive information to diagnose an individual’s learning stages. LCDMs 

were employed as confirmatory methods for the diagnosis of learning progress.          

Q-matrix. It is important to note that LCDM requires a substantive theoretical model so 

that researchers can interpret statistical classifications as meaningful latent classes. The 

hypothetical model in LCDM is called Q-matrix, which defines a limited relationship between a 

set of attributes and a set of test items (Templin, 2004). It is imperative to specify the Q-matrix 
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applicable to the context of the model of learning progress. In addition, notably, LCDM requires 

all item responses and all attributes to be dichotomous. 

Following the results from the correlations and CFA analyses, ten similarity measures 

were selected and transformed as binary variables. Those transformed similarity measures and 

the three features of knowledge structure are defined as the items and the attributes in the 

LCDMs, respectively. The Q-matrix postulates that correctly answering each item (i.e., the 

subject’s model value is similar to that of the reference model) requires mastering the designated 

attributes (that is to say, obtaining the required knowledge features)). Table 5.8 shows the 

hypothesized relationships between the ten measures (items) and three features of knowledge 

structure (attributes). In the table, it is coded ‘1’ when the attribute is required to correctly 

answer the item. For example, correctly answering the balanced semantic matching is assumed to 

require the semantic feature (refer to Table 5.3 and Figure 5.1). It is notable that the patterns of 

mastering attributes define an individual’s latent classes that were listed in Table 5.4.  

Table 5.8 

Similarity Measures Associated with Attributes of Knowledge Structure (Q-Matrix) 

Similarity Measure  
3S Attribute a 

S1 S2 S3 
I1:Number of relations   1 0 0 
I2:Average Degree 1 1 0 
I3:Density of graphs 1 1 0 
I4:Mean Distance 0 1 0 
I5:Diameter 0 1 0 
I6:Subgroups 1 1 0 
I7:Concept matching 0 0 1 
I8:Principle Matching 0 0 1 
I9:Propositional Matching 0 0 1 
I10:Balanced Semantic Matching 0 0 1 
Note. a. the 3S knowledge attributes: surface (S1), structure (S2), and semantic (S3) 
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Evaluating the Model of DCMs. The transformed binary similarity measures were 

investigated. The data review showed that all cases of item 8 and item 9 were zero (see Table 

5.9). Thus, only eight measures excluding these two were applied to the analysis of DCMs.  

Table 5.9 

Descriptive Statistics of the Transformed Similarity Measures  

 
N Minimum Maximum Mean SD. 

I1. Relation 143 0.0 1.0 0.17 0.38 
I2. Average Degree 143 0.0 1.0 0.97 0.17 
I3. Density 143 0.0 1.0 0.22 0.42 
I4. Mean Distance 143 0.0 1.0 0.91 0.29 
I5. Diameter 143 0.0 1.0 0.86 0.35 
I6. Subgroup 143 0.0 1.0 0.20 0.40 
I7. Concept Matching 143 0.0 1.0 0.01 0.08 
I8. Principle Matching 143 0.0 0.0 0.00 0.00 
I9. Propositional Matching 143 0.0 0.0 0.00 0.00 
I10. Balanced Matching 143 0.0 1.0 0.02 0.14 

 

The evaluation was conducted for multiple candidate DCMs so as to determine a good-fit 

model. M-plus software was used for the analysis of DCMs. The models included the DINO and 

DINA model. The deterministic-input, noisy-or-gate (DINO) model (Templin & Henson, 2006) 

assumes that a correct/positive answer for item i is expected when a respondent masters at least 

one of the required abilities (attributes), while the deterministic-input, noisy-and

As Table 5.10 shows, The DINA model fit better than the DINO model considering that 

lower values are desirable in both AIC and BIC. In both of the two models, the three-way 

interaction effect parameter between attributes 1, 2, and 3 had no variance with SE = 0. Thus, the 

parameter was removed from the models to reduce the complexity of the models. Additional 

-gate (DINA) 

model (de la Torre & Douglas, 2004) allows the increasing probability of correct answers for 

item i only if a respondent has mastered all required attributes.  
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DINO and DINA models without the three-way effect were evaluated. As a result, the DINA 

model without the three-way interaction was determined to have the best-fit indices.   

Table 5.10 

Comparison of Relative Fit of DCMs 

Model Number of 
Parameters AIC BIC 

DINO 23 639.485 707.630 

DINO without 3 way interaction 22 637.485 702.668 

DINA 23 551.833 619.978 

DINA without 3 way interaction 22 549.935 615.118 
Note. Akaike’s information criterion (AIC); Bayesian information criterion (BIC) 

X2 and G statistic for the eight-item diagnostic assessment with the DINA model without 

the three-way interaction effect returned values with a p-value of 1.000, supporting the null 

hypothesis that the model fit the data well. The selection of the DINA model requiring the 

mastery of all attributes was in accord with the theoretical assumption that good structure 

(attribute 1) necessitates sufficient surface feature (attribute 2).  

The estimated latent class membership. M-plus reports the estimated posterior 

probabilities and the most likely latent class for each respondent. Table 5.11 describes the 

posterior probability results in terms of final counts and proportions for the latent classes.  

Two latent classes such as class 5 and class 6 were not present in both estimated counts 

and proportion. The posterior values of the latent classes were summed as each of the stages of 

learning progress according to the earlier theoretical discussion about knowledge features 

(attributes) associated with the stages. Differing from the measurable four stages suggested in the 

theoretical framework, in this analysis, the advanced beginner stage was not present and the 

proportion of the competent learner stage was extremely small. Thus, this model analysis 
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concluded that two stages—novice and proficient learner—have a high probability to be present 

during a problem-solving situation. Referring to the estimated latent class membership, among 

the participants, 113 individuals belonged to the novice and 30 participants the proficient learner 

category. All seven experts were classified in the proficient learner level.     

Table 5.11 

The Estimated Final Class Counts and Proportions  

Stage of 
Learning 
Progress 

Latent Class 
(profile)  

Counts Proportion Sum of Counts  Sum of Proportion 

Novice Class 1 (000) 19.9991 0.13986 
110.86033 0.77525 

Class 3 (010) 90.86123 0.63539 

Advanced 
Beginner 

Class 2 (001) 0.00009 0.00000 
0.00009 0.00000 

Class 5 (100) 0.00000 0.00000 

Competent 
Learner 

Class 6 (101) 0.00000 0.00000 
0.00152 0.00001 

Class 7 (110) 0.00152 0.00001 

Proficient 
Learner 

Class 4 (011) 0.00002 0.00000 32.13725 0.22474 
Class 8 (111) 32.13723 0.22474 

 

Discussion 

This study attempted to validate the model of stage-sequential learning progress 

composed of four stages. Contrary to expectations, the data analyses using latent class modeling 

technique demonstrated that there are probably two stages rather than four stages in the data. 

Some potential implications of that result are presented here based on three categories: (a) 

statistical issues; (b) research context issues; and (c) theoretical issues. 

First, statistical issues of this study might render the results different from the proposed 

model. At first, in most assessment situations, attributes are positively correlated. For example, 

the surface feature can be assumed to be nested in the structure feature. The correlated attributes 
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result in classifying a large number of respondents as having mastered either none or all 

attributes (i.e., either the novice level or the proficient learner level) (Rupp et al., 2010).      

In addition, the relatively small sample size (N = 143) of this study could be problematic. 

For instance, eight items created 28 = 256 possible response patterns. That setting needs over five 

respondents at each pattern in an ideal condition (N = 256 X 5 = 1280) following Agresti and 

Finlay’s (1997) suggestion. Small sample size probably led to many cells being sparse and 

reduced the chance for the two items (items 8 and 9) to have positive responses. Larger sample 

size and including all ten items in an analysis may provide somewhat more information in terms 

of the number of stages and their estimated proportions. Further studies with an adequate number 

of samples are required. 

Second, the research context should be taken into consideration. The course was not 

designed to teach contents directly related to the problem situation (i.e., technology adaptation to 

classroom instruction). Moreover, the responses were gathered at an early part of the semester. 

That is, students responded to the problem with little chance of being instructed about the 

problem contexts. It is possible to argue that at that point there were two groups of students who 

either had or had not prior experience. There might be a lack of time to develop transitional 

knowledge structures. For future studies, a better research context can be suggested as involving: 

(a) providing instruction related to a problem situation prior to the data gathering; and (b) 

implementing data collection in the middle of an instructional period. 

Third, accepting the two-stage model as true, studies of conceptual change can provide 

some accounts of why only two stages were present. In spite of controversy regarding the 

process of conceptual change, this study supports that learning is a process of reorganizing the 

knowledge base as a coherent structure in which concepts are embedded. It is argued that 
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concept change often requires change of the knowledge base as a whole (Chi, 2008; Vosniadou 

et al., 2008). Conceptual change can be illustrated as a shift through which a student having 

theoretical framework A (a wrong structure) changes to theoretical framework B (an expected 

structure).  

A shift from one model to another seems to abruptly happen at a certain point after an 

initial slower process. The empirical studies claim that radical conceptual changes usally happen 

at the end state of a slow process (Vosniadou, 2003; Hatano & Inagaki, 1994). Vosniadou and 

colleagues (2008) contend that the slow and gradual enrichment of knowledge is largely 

unconscious although the enrichment mechanism leads to conceptual changes in the long run. 

For example, a recent experiment conducted by Siegler and colleagues (2009) supported the 

claim that stage transitions suddenly take place after retaining the current model for some time; 

they called it a logarithmic-to-linear shift. In their experiment, children estimated the position of 

a number in a line representing the numeric magnitude. Their estimations showed probabilistic 

patterns, which moved from being stable to approximate to the actual value. This shift occurred 

abruptly after recurrently taking existing approaches. 

In other words, a transition from the novice level to the proficient learner level is likely to 

abruptly take place at some point during a slow and gradual process of learning and instruction. 

The middle stages such as the advanced beginner and competent learner levels are probably 

present but very short moment just before becoming the proficient level. If that situation is true, 

it would be hard to capture the stages in a measurement occasion.   

In summary, considering that this study as an initial attempt suggested a measureable 

framework of learning progress and tried to validate the model with a data, it is too early to 

conclude how many stages of knowledge structure can explain the process of learning progress. 
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In addition, there exist diverse potential theoretical accounts of the mental stages. Therefore, 

further studies in the conditions described earlier are requested. 

Implications 

Along with the theoretical model of stage-sequential learning progress, this study 

provides future research with methods and tools that involve: (a) a set of parameters quantifying 

traits of a knowledge structure; (b) multidimensional attributes of a knowledge structure; (c) a set 

of similarity measures applicable to the studies of cognitive changes; and (d) a statistical 

approach (that is LCDM approach) to diagnose the stages of learning progress. Those methods 

are applicable to a wide range of areas that include: the studies of conceptual change in a 

problem-solving situation, linguistic comprehension, the evaluation of scientific argumentations, 

expertise modeling, and longitudinal studies of learning progress. For example, it is required to 

study longitudinal stage changes of learning progress so as to evaluate effectiveness of 

instruction and determine proper educational supports to an individual. Collins and Wugalter 

(1992) pointed out that psychological research and theory is increasingly turning to longitudinal 

studies in which development is monitored by following individuals over a period of time 

suggesting a measurement theory and methods using latent variables.  

The ultimate goal of applying LCDMs to the validation of the theoretical model of 

learning progress is to determine parameters in the LCDM model that can be generalized. In 

other words, based on the identified parameters, a student’s stages can be easily and quickly 

estimated using their responses such as similarity values. That diagnostic algorithm can be 

embedded in an assessment technology. It is essential to devise an assessment technology 

adapted for the complex, dynamic structure of mental models because assessment is a 
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fundamental unit of instruction providing feedback, revision, and reflection on learning 

(Pellegrino, Chudowsky, & Glaser, 2001).   
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CHAPTER 6 

CONCLUSION 

The Problem Areas 

This dissertation centered on the claim that dynamic formative assessments of how 

learners’ understanding evolves in response to problem situations are widely applicable and 

viable approaches of adaptive instruction. Notably, creating adaptive learning environments 

necessitates knowing the extent to which students understand the given problem situations and 

the changes in their levels of understanding. The sequence of studies and papers described in this 

dissertation was initiated due to the lack of a robust diagnostic methodology to assess changes in 

student understanding to a complex problem situation. The problem areas addressed in these 

papers are as follows. 

First, a theoretically grounded framework forms the basis for viable formative assessment 

methods and technologies. A theoretically sound and systematic assessment model is required to 

determine levels of expertise, explain learning progress, and provide adaptive instruction that 

meets individual requirements in terms of differences in cognitive stages of expertise as an 

established problem space. 

Second, concept map methods and technologies are widely used for externally 

representing students’ knowledge structures so that students’ problem-solving knowledge and 

skills can be assessed. It was assumed that using natural language responses as a basis for 

concept map representations of student thinking was likely to provide a reliable foundation for 

use in providing formative feedback and assessment (Pirnay-Dummer, Ifenthaler, & Spector, 
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2010). It was required to identify which methods that use text responses to generate a concept 

map work best in terms of forming the basis for dynamic formative feedback.  

Third, a new concept map technology constructing knowledge representations from 

natural language responses needed to be explored and validated. Language plays a critical role in 

building and mediating an individual’s internal representations of the external world 

(Wittgenstein, 1922). The text is an initial re-representation of a student’s beliefs and thinking 

about a problem, and the constructed concept map is a second representation of that mental 

model. A technology should create concept maps closer in meaning and structure to the targeted 

internal mental models.  

Fourth, the theoretical framework suggested to account for learning progress in a problem 

situation needed be empirically validated so as to use that framework as a diagnostic model for a 

formative assessment technology. The validation process involved identifying measurable 

features of concept maps, selecting statistical methods pertinent to testing hypothesized learning 

stages, and exploring the extent to which the model fits to the data.   

Summary of Results 

This dissertation composed of four manuscripts focused on devising better assessment 

methods when natural language is used for representing students’ understanding to a complex 

problem situation. Specific findings are as follows. 

The first paper, Theoretically grounded guidelines for assessing learning progress: 

Cognitive changes in problem-solving contexts, conceptualized the levels of learning progress, 

associating the development of expertise in domain learning with the structural features of 

mental models. The theory of mental models accounts for how people conceptualize problem 

situations. That is, a mentally represented problem space is a structure including diverse 
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relationships. It was necessary that assessment tools be adapted for the complex, dynamic 

structure of mental models so that diagnostic, formative information became more precise. In 

short, the proposed stage-sequential model of learning progress was theoretically justified as 

being able to serve as a diagnostic model of learning progress.  

The second paper, Cross-validation study of methods and technologies to assess mental 

models in a complex problem solving situation, was based on the assumption that an individual 

student’s understanding is meaningfully elicited via a natural language approach. Two state-of-

the-art technologies, ALA-Reader and T-MITOCAR, consistent with that assumption were 

compared to an alternative method established as a benchmark. The benchmark approach was 

created by drawing on semantic relations distilled from responses. The results demonstrated that 

the benchmark approach has the potential to be a preferred way to visually represent concept 

maps because of three findings: (a) concept maps elicited via the benchmark were much more 

descriptive than those of the other two models; (b) the benchmark model was able to more 

capably distinguish better concept maps from those of lesser quality; and (c) the benchmark 

model had no constraints on the number of words. 

The third paper, Development of an assessment technology for measuring knowledge 

structures using natural language responses to a complex problem scenario, elaborated on the 

benchmark approach explored in the second study. Eliciting the semantic structure was assumed 

to be a better way to visually represent concept maps. That approach was termed Semantic 

Relation (SR) in contrast with the other approaches, Proximity Relation (adopted in T-

MITOCAR) and Adjacent Relation (employed in ALA-Reader). The data investigation suggests 

that SR is alternative more productive way of enabling concept maps to be more descriptive and 
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authentic way of eliciting how an  individual is thinking about a complex problem-solving 

situation. 

The fourth paper, Investigation of a model of stage-sequential learning progress in 

problem solving, tested the stage-sequential model of learning progress conceptualized in the 

first paper. To accomplish this, a set of parameters describing the features of concept maps were 

defined and then matched with the structural features of mental models that account for each 

level of learning progress. Due to the latent characteristics of mental states, latent class model 

(LCM) methods were employed to validate the proposed model of learning progress. Good-fit 

indices proved that the students proceeded toward an expert-like knowledge structure through the 

suggested levels of learning progress (e.g., χ2 = 48.435, p > .05).. While a large number of 

respondents were classified at the novice level or proficient learner level, the proportion of those 

at the advanced beginner and competent learner levels was not significant.  

Implications and Recommendations 

This dissertation, as an initial effort, dealt with some of the current assessment issues 

pertaining to complex learning. The findings of this study should continue to inform subsequent 

research. Some potential topics are as follows. First, as a basis for detecting and validating stages 

of learning progress, this study provides a theoretical framework called stage-sequential model 

of learning progress. The framework can work as a diagnostic model for a formative assessment 

technology and be applied to further validation studies in order to find a best-fit model that 

accounts for changes in learner understanding in response to ill-structured complex problem 

situations.  

Second, methods for creating reference models were theoretically (in chapter 2) and 

practically (in chapters 3 to 5) discussed. In an instructional setting, single or multiple reference 
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models can be used to diagnose an individual response in near real-time, when analyzed by an 

automated assessment technology, in order to help that respondent consider aspects of the 

problem situation that might have been overlooked but that appear in one or more reference 

models.  

Third, the studies in this dissertation can continue to developing an automated assessment 

technology embedding an SR concept mapping method and diagnostic model of learning 

progress. That technology would enable a teacher to gain a better sense of students’ learning and 

provide them with elaborate feedback and support. For example, McKeown (2009) used 

HIMATT with 40 actual classroom teachers. The teachers did manage to use that technology to 

diagnose student understanding and provide instructional support to an individual even though 

the tool was new to them.  

Development of the technology likely includes technological supports in terms of natural 

language processing. That study would require multi-disciplinary efforts including computational 

linguistics, computer sciences, educational statistics, and instructional science. In addition to 

instructional use, the automated technologies could be applicable to a wide range of areas: 

traditional language comprehension study in linguistics; automated essay evaluation; expertise 

modeling; competency diagnosis in adult learning; and longitudinal study of learning progress in 

problem solving. 

Fourth, this study discussed the assessment model and methods to diagnose domain 

knowledge as an internally represented problem situation. It is generally accepted that human 

cognition includes meta-cognition and motivation. Necessarily, it is required to investigate how 

the two cognitive domains influence or interact with the proposed stages of learning progress. 
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Furthermore, it could be assumed that meta-cognition and motivation proceed through 

qualitatively different stages just as general cognition is assumed to do.    

Fifth, the relationships among cognitive and non-cognitive domains need to be identified 

so that learning progress can be more comprehensively modeled. Following are some possible 

questions. What non-cognitive factors are related to learning progress? To what extent is each 

non-cognitive factor associated with the change of learning stages? Can the five-stage model of 

learning progress be a shared model that classifies non-cognitive factors?  

Sixth, instructional and feedback strategies associated with each developmental stage of 

learning progress should be elaborated. Assessment results should be accompanied by 

instructional supports suited to each individual or group of students. Instructional models based 

on diagnostic assessment can lead to the development of diverse instructional applications such 

as intelligent tutoring systems. 

Limitations 

This sequence of studies has the following limitations. First, theoretical suggestions that 

include some measurable attributes for determination of expert-level mental models require 

elaboration. The assessment technologies designed in this study only deal with stages of learning 

progress that preceding the expert level. Intuitive decision-making (the expert learner) toward 

problem-solving is not easily discerned by investigating a single set, or even a few sets, of 

mental observations, such as concept models, because the measurable features of experts’ mental 

models are still not well understood.  

Second, although the semantic relation (SR) approach illustrated in the third paper can be 

automated, the semantic relations including concepts were manually distilled in the study.  It is 

true that complex structured sentences are not easily rendered in a concept map in terms of 
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automatically distilling correctly paired concepts. In order to elicit concept models from multiple 

quantified language inputs, firstly, the algorithm to identify semantic relations from a text should 

be further elaborated and then technological supports in terms of automated natural language 

processing would be required.   

Third, the fourth study attempted to validate the model of stage-sequential learning 

progress composed of four stages (the novice, advanced beginner, competent learner, and 

proficient learner). The latent class modeling analysis demonstrated that there are probably two 

stages rather than four stages in the data. Two limitations might cause that result. The relatively 

small sample size (N=143) of this study is admittedly problematic. For instance, eight items 

created 28 = 256 possible response patterns. Following Agresti and Finlay’s (1997) suggestion, in 

an ideal condition (N = 256 X 5 = 1280) that setting needs more than five respondents at each 

pattern. The small sample size probably led to many cells with no case and reduced the chance 

for the two items (items 8 and 9) to have positive responses. A larger sample size including all 

ten items in an analysis may provide somewhat more information in terms of the number of 

stages and their estimated proportions. In addition, the research context can be taken into 

consideration. The course was not designed to teach content directly related to the problem 

situation (i.e., technology adaptation to classroom instruction). Moreover, the responses were 

gathered earlier in the semester. That is, students responded to the problem with little chance of 

having been instructed about the problem context. It is possible to argue that at that point there 

were two groups of students who either had or had not prior experience. There might have been a 

lack of time to develop transitional knowledge structures. For further studies, a better research 

context could be suggested as involving (a) providing instruction related to a problem situation 
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prior to the data gathering; and (b) implementing data collection in the middle of an instructional 

period. 

Fourth, this dissertation assumed four stages of learning progress through which a 

learner’s understanding of a problem evolves. The model used in this study is one a possible 

suggestion. Different models could very well accounting for learning progress. For example, as 

found in chapter 5, the number of stages might not be four, as suggested Dreyfus and Dreyfus 

(1986). The number of stages and the patterns of stage changes could vary depending on 

different problem-solving domains. In addition, considering that the concept map methodology 

used for analyzing learning progress was derived from English syntax and semantics, the 

assessment methodology might not work in other languages and cultures; the key features of 

concept maps and their changes when learning and instruction take place could vary.        

Fifth, it is required to study the longitudinal stage changes of mental models based on the 

given framework so that we can apply the model of learning progress to evaluating the 

effectiveness of instruction and determine the proper educational supports for an individual. 

Collins and Wugalter (1992) pointed out that psychological research and theory is increasingly 

turning to longitudinal studies in which development is monitored by following individuals over 

time. In an investigational setting, we can suppose that researchers find a set of patterns in stage 

transition, their proportion, and transition probabilities among measurement points from the 

statistical analyses. These results can inform researchers of students’ dynamic changes of 

learning progress and the effects of a given instructional intervention in a longitudinal manner.  

Conclusion 

The ultimate goal of this sequence of studies is to propose theoretical models and 

methodologies to diagnose cognitive development in problem-solving situations, which are 
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essential to providing a best-fit learning experience to students with precision and confidence. 

The theory of mental models associated with the development of expertise provides practical 

suggestions on how to elicit learner models, build reference models for both structured and ill-

structured problem-solving tasks, and explain learning progress through which learners 

experience qualitatively distinct cognitive stages.  

The SR as a new concept map approach embedded in automated technologies could be an 

effective formative assessment tool for classroom learning. For example, the SR technology can 

enable teachers to identify individual student progression on complex problem-solving based on 

the whole structure of the concept map and to provide personalized feedback in terms of missing 

key areas and relations. Moreover, the studies of this dissertation provide future research with 

methods and tools that involve (a) a set of parameters quantifying traits of a knowledge structure; 

(b) the multidimensional attributes of a knowledge structure; (c) a set of similarity measures 

applicable to the studies of cognitive changes; and (d) a statistical approach (that is, the LCDM 

approach) to diagnose the stages of learning progress. Those methods are applicable to a wide 

range of areas that include the following: the studies of conceptual change in a problem-solving 

situation, linguistic comprehension, the evaluation of scientific argumentations, expertise 

modeling, and longitudinal studies of learning progress.    
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Personal Background Questionnaire 
 
We would like to know some of your background. As informed earlier, any information obtained about you as a 
participant in this study will be held confidential. Your identity will be protected with a pseudonym or number. 
 
 
 

Are you 
 Male 
 Female 
 
What year student are you? 
 Freshman 
 Sophomore 
 Junior 
 Senior 
 
At your last birthday, were you 
 20 or less 
 21-24 
 25-29 
 30 or more 
 
What previous degree(s) do you have? Please include area(s) of study. 
 
______________________________________________________________________________________
________________________________________________________________ 
What is your current degree and area of study? 
______________________________________________________________________________________
______________ 
Before you take this course, have you taken any courses related to use of technology in teaching and 
learning? 
 
 Yes 
 No 
 
 
If yes, please list up to three courses that you believe to be the most important. 
 
______________________________________________________________________________________
________________________________________________________________ 
 
What is your typical role in the educational settings that you are involved?  
 Teacher 
 Student 
 Instructional designer 
 Other________________________ 
 
How many years have been in this role? 
 0-2 
 3-5 
 6-8 
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 9-11 
 12 or more 
 
How often do you have opportunities to do instructional design in this role? 
 1 – Never 
 2 – Seldom 
 3 – Sometimes 
 4 – Often 
 5 – Very often 
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Directions: Read the case study described below and then prepare a response to the questions 
below (written response with at least 350 words is required for each question):   

Case Study  

Assume that you have been involved in evaluating a media implementation project in an urban 
inner middle school. At the beginning of the school year all of the students assigned to four 
subject area teachers (math, language arts, social studies and science) in the seventh grade at the 
middle school were given tablet PCs (laptop computers also equipped with a stylus/pen and a 
touchscreen that can be written upon) and were also given wireless internet access at home and 
in school for a entire year.  

The students took the tablet PCs home every evening and brought them into classes every day. 
The teachers were also provided with tablet PCs 24/7 (24 hours a day, every day of the week) for 
the entire year. The teachers and students were trained on how to use the tablet PCs. Moreover, 
all of the curriculum materials (textbooks, workbooks, student study guides, teacher curriculum 
guides, some activities, tests, etc.) were installed on the tablet PCs or were accessible through the 
tablet PCs. 

Your job as one of the evaluators for the project was to examine how this innovation (providing 
teachers and students with tablet PCs 24/7) changed the way instruction was presented in the 
classrooms of the four teachers. Results indicated that the innovation had very little effect on the 
manner in which instruction took place in the teachers’ classrooms. 

1. Based on what you have learned about the use of technology in education, describe what 
concepts, issues, factors, and variables are likely to have contributed to the fact that the 
introduction of the tablet PCs had very little effect on the instructional practices that were 
employed in the classes.  

2. Describe the strategies that could have been employed to help mitigate the factors that you 
think contributed to the minimal effect the tablet PCs had on instructional practices. When you 
answering this question, use the concepts, factors, and variables you described in the question 1 
or add other assumptions and information that would be required to solve this problem.   
 
 
 
Acknowledgment 
 
This case you are using is based on a case described by Robert Reiser for use in his Trends and 
Issues in ID&T course at Florida State University 
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Call for the First Response to the Delphi survey 
 
Dear Professor  
 
I am writing to request your assistance in a research study that I am conducting.  My dissertation 
supervisor at UGA is Professor Michael Spector. As an expert in the area of Designing and 
Implementing Technology-Enhanced Learning Environments in Classrooms, we know that you 
are well qualified to participate. The assistance I am requesting will only require a small amount 
of your time. 
 
Basically, I would like you to serve as a panel member in a Delphi process to establish an expert 
reference model on the case study to be used in my research. What is required is simply for you 
to respond to a problem scenario (see attached) and respond to two questions involving the key 
factors influencing the problem situation and their relationships.  
 
In accordance with a Delphi process to create consensus among a small number of expert 
respondents, you will be asked to respond to the case a couple of times to get a consensus on the 
key factors and their relationships with other panel members. The time required to respond is less 
than 30 minutes, and I expect that only 2 or 3 rounds will be required to reach consensus (see the 
Delphi process attached below). The consensus expert response will be used as a standard 
against which responses of less experienced persons will be assessed. In accord with the 
approved IRB for this effort, your response will be kept anonymous and your identity not 
revealed to anyone other than me. 
 
Anticipated Delphi Process 
* Round 1: Brain Storming  
- Collect and consolidate all responses from experts  
* Round 2: Narrowing Down 
- Send refined final version of consolidated lists including statements and used concepts     
- Ask expert to add comments if he/she disagrees with or has different opinion(s) on a statement   
- Ask experts to rank key statements and concepts   
* Round 3: Ranking  
- Send each panelist ranked statements and concepts summarized by the investigators 
- Ask to revise his/her judgments or to specify the reasons for remaining outside the consensus 
 
 
It would be very happy to your first response to the problem scenario by the middle of January if 
that is possible. The total time commitment expected for this activity is between one and two 
hours. Please let me know if you are able and willing to participate. If more time is required, I 
will happily accommodate your schedule, as your expertise is very much needed for this study.  
 
Again, I am very glad to include you on this panel and excited to learn from you.  
 
 
Sincerely, 
Min Kyu Kim 
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1. Based on what you have learned about the use of technology in education, describe what concepts, issues, 
factors, and variables are likely to have contributed to the fact that the introduction of the tablet PCs had 
very little effect on the instructional practices that were employed in the classes.  

It is possible that the teachers and students were only trained on operating the tablet PCs, which is to say that the 
training they received was primarily technology training. In addition to the familiarization with the functionality of 
the tablet PCs, the teachers required training on how to effectively integrate student of the tablet PCs into their 
instruction. The students also required training on how to effectively make use of the tablet PCs in support of 
learning goals and assignments. One factor that probably has a significant effect on instructional practice is training 
that aims at pedagogical uses of the technology for teachers and learning uses of the technology for students. These 
two kinds of training should be coordinated to ensure proper technology, pedagogical, and content knowledge. A 
second factor that has an effect on instructional practice is time of training. The training should be extensive and 
include opportunities for tryouts with feedback. Type of training is also significant – as just indicated, the training 
should be experiential and not just informational. Other factors that could affect instructional practice are prior 
training of the teachers, the length of time they had been teaching, their attitudes towards innovation, and incentives 
to make effective use of the new technology. Similar factors pertain to students. The longer teachers or students 
have developed habits of teaching and learning that are not compatible with the affordances of the new technology, 
the less likely are they to embrace a new technology. Similarly, if teachers or students believe that a new technology 
is not likely to have an impact of outcomes of interest, then they are not likely to embrace a new technology. The 
lack of incentives to make effective use of a new technology could also contribute to lack of use. In short, 
motivational concerns could account for the lack of change in instructional practices. Still other inhibiting factors 
include a conservative cultural environment in terms of teaching and learning. The grade level involved might be an 
additional consideration – 7th grade involves students who are about 12 years old. In principle, they should be able to 
understand the advantages of a new technology in terms of learning and performance, but they may have expected 
other uses of the laptop in addition to educational uses. If games were also available, they might have served as an 
incentive for student use of the tablet PCs. Finally, it is impossible to put much confidence in an implementation that 
only involved 4 teachers. 

2. Describe the strategies that could have been employed to help mitigate the factors that you think 
contributed to the minimal effect the tablet PCs had on instructional practices. When you answering this 
question, use the concepts, factors, and variables you described in the question 1 or add other assumptions 
and information that would be required to solve this problem.   
 
First, a professional development plan for teachers could have been put into place to ensure that teachers had proper 
technological, pedagogical, and content knowledge to make effective use of the tablet PCs. This plan should be 
implemented well in advance of introducing the tablet PCs in the classroom, and it should include an experiential 
training approach with substantial formative feedback. Similarly, when teachers had been properly trained, they 
should then engage students in a similar training regimen that includes not only technology training on the use of the 
tablet PCs, but also how to make use of the computers in support of learning activities and exercises. Prior to 
introducing the tablet PCs to teachers and students, it would be a good idea to determine attitudes toward technology 
innovation in general as well as attitudes toward the tablet PC. Beliefs about whether use of the tablet PC is likely to 
improve learning and instruction should be determined and taken into account in the training to be provided. In 
addition, teachers and students should be given opportunities to develop their own activities and exercises to 
showcase the use of the tablet PC in promoting learning and enhancing instruction.  Because the tablet PCs are being 
deployed in  7h grade math, language arts, social studies and science classes, an evaluation plan should be developed 
to see if differences in terms of use and impact emerge for subject area sub-groups. A pilot test should be made with 
a few teachers to revise training and evaluation plans, and then all of the teachers should be involved. A real issue 
pertains to the small number of teachers and students involved, without many more teachers involved, it will be 
difficult to have any confidence in findings. If it is possible, all of the teachers and students in a middle school 
should be involved – that would still be an exploratory study, though, but it could show how to spread the 
innovation to other schools, and perhaps a randomized control trial could be developed as the effort scales up. As 
mentioned earlier, teachers and students should be tested at the outset with regard to attitudes and beliefs. If attitudes 
and belief are detected that are likely to inhibit effective use, these should be addressed in the training, and the 
training should be experiential with lots of opportunities to test a variety of educational uses of the tablet PCs. 
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Round #2 of the Delphi Study 
Aimed at Developing a Consensus Expert Model for Thinking about the 

Problem Situation Below 
 
 

 

Q1. Based on what you have learned about the use of technology in education, describe what 
concepts, issues, factors, and variables are likely to have contributed to the fact that the 
introduction of the tablet PCs had very little effect on the instructional practices that were 
employed in the classes.  

Q2. Describe the strategies that could have been employed to help mitigate the factors that you 
think contributed to the minimal effect the tablet PCs had on instructional practices. When you 
answering this question, use the concepts, factors, and variables you described in the question 1 
or add other assumptions and information that would be required to solve this problem.   
 
 
 
►A summary of the expert responses to each of the two questions is presented next. In 
each case, you are asked to indicate your agreement or disagreement, provide any 
additional opinions or comments you might have, identify key concepts by highlighting 
selected terms, and then rank order the consensus terms identified in round #1. 
  

CASE STUDY 

Assume that you have been involved in evaluating a media implementation project in an 
urban inner middle school. At the beginning of the school year all of the students assigned to 
four subject area teachers (math, language arts, social studies and science) in the seventh 
grade at the middle school were given tablet PCs (laptop computers also equipped with a 
stylus/pen and a touchscreen that can be written upon) and were also given wireless internet 
access at home and in school for an entire year.  

The students took the tablet PCs home every evening and brought them into classes every 
day. The teachers were also provided with tablet PCs 24/7 (24 hours a day, every day of the 
week) for the entire year. The teachers and students were trained on how to use the tablet 
PCs. Moreover, all of the curriculum materials (textbooks, workbooks, student study guides, 
teacher curriculum guides, some activities, tests, etc.) were installed on the tablet PCs or 
were accessible through the tablet PCs. 

Your job as one of the evaluators for the project was to examine how this innovation 
(providing teachers and students with tablet PCs 24/7) changed the way instruction was 
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Panel Responses to Question #1 

Q1. Based on what you have learned about the use of technology in education, describe what 
concepts, issues, factors, and variables are likely to have contributed to the fact that the 
introduction of the tablet PCs had very little effect on the instructional practices that were 
employed in the classes.  

 
Eleven key issue areas affecting the project’s results have been identified and specific 
descriptions associated with each issue area have been distilled from the first round responses.  
Please read each issue and the associated descriptions.  
 
1. If you disagree with or have comments on it, please mark on “D (Disagree)” or “C (Comment)” 
and put your opinions on it using “Review>New Comment” function of MS-WORD.   
 
2. Please find out TWO or THREE of the most important concepts (terms) associated with each 
key issue. As an example, three key concepts associated with Resisting Change are indicated 
below. You can highlight others. Please use the “Text Highlight” function of MS-WORD.   
   

 Disagree/ Comment 
C1. Resisting Change D/C 
 C1-1. There are some teachers who will simply resist almost any innovation (about 3%). If they are not 

managed, they can slow the rate of change during any innovative initiative for the other teachers in the 
building. 
 
C1-2. Teachers were uncomfortable with their new roles.  
 
C1-3. Teachers were simply teaching as they were taught. 
 
C1-4. The longer teachers or students have developed habits of teaching and learning that are not 
compatible with the affordances of the new technology, the less likely are they to embrace a new 
technology. 
 
 

D/C 
 
 
 
D/C 
 
D/C 
 
D/C 

C2. Lack of Supportive Environment D/C 
 C2-1. Inhibiting factors include a conservative cultural environment in terms of teaching and learning. 

 
C2-2. There are concerns that the environment does not support change. 
 
C2-3. Even teachers who have adequate skills and knowledge still may fail to enact new instructional 
practices because of the environment.  
 
C2-4. Environment could include a culture that does not support the desired performance. 
 
C2-5. Visible, sustained commitment among all constituencies in a desired environment makes the 
change. 
 
C2-6. An ongoing supportive environment where teachers initially learn how to use the technology, how 
to use the technology with their content (including effective instructional strategies) and how to continue 
to develop their expertise in the technology and incorporating it to the classroom is critical.   
 
C2-7. For example, the lack of incentives to make effective use of a new technology could also contribute 
to lack of use. 

D/C 
 
D/C 
 
D/C 
 
 
D/C 
 
D/C 
 
 
D/C 
 
 
 
D/C 
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C3. Insufficient Training D/C 
 C3-1. Teachers were not trained how to integrate the new media including hardware and software into the 

curriculum.  
 
C3-2. The teachers required training on how to effectively integrate student use of the tablet PCs into their 
instruction. 
 
C3-3. The students also required training on how to effectively make use of the tablet PCs in support of 
learning goals and assignments. 
 
C3-4. One factor that probably has a significant effect on instructional practice is training that aims at 
pedagogical uses of the technology for teachers and learning uses of the technology for students. 
 
C3-5. A second factor that has an effect on instructional practice is time of training. The training should be 
extensive and include opportunities for tryouts with feedback. 
 
 
 

D/C 
 
 
D/C 
 
 
D/C 
 
 
D/C 
 
 
D/C 

C4. Design Issue D/C 
 C4-1.There was likely insufficient study of how instructional and learning practices in the classroom were 

being conducted already without the technology. 
 
C4-2. One big issue is defining what a successful integration or change in instructional practice actually is. 
 
C4-3. According to Ely (1990), successful technology implementations must begin with an identified 
instructional need.   
 
C4-4. While everyone in the situation may have felt that they knew this already, the assumptions inherent 
in a design situation need to be articulated and checked if they are not to distort the design space. 
 
C4-5. A primary generator (Lawson, 1990) or central narrative of the change are not evident in the case as 
presented, nor is it clear that there were efforts to establish such a narrative consciously and follow and 
adjust it through the course of the project.  
 
 
 

D/C 
 
 
D/C 
 
 
D/C 
 
D/C 
 
 
D/C 
 

C5. Belief and Attitude D/C 
 C5-1. Teacher beliefs also play a big role in adopting new practices and changing their instructional 

practice. They may not believe that students learn with laptops, and thus do not use them in their 
instruction. They may believe that they do not have enough time to integrate the laptops. 
 
C5-2. Similarly, if teachers or students believe that a new technology is not likely to have an impact on 
outcomes of interest, then they are not likely to embrace a new technology. 
 
C5-3. Stakeholders need to view technology as the solution (or partial solution) to that need and believe it 
is possible to successfully integrate technology to fix the problem. 
 
 
 
 

D/C 
 
 
 
D/C 
 
 
D/C 
 

C6. Professional Development D/C 
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 C6-1. Professional development (PD) for teachers is a major determinant as to whether or not teachers will 
employ technology in classrooms. 

C6-2. Teachers didn’t have enough professional development using the technology in classroom teaching 
and learning, on ways to integrate use into their teaching, and best practices with regard to effective 
educational use. 

C6-3. Teacher professional development that discusses not just technical know-how but also pedagogy 
could help teachers realize how to do things differently that takes full advantage of the affordances of the 
tablets. 

C6-4. Professional development is needed for teachers to become skilled or knowledgeable about a topic 
that will in turn increase the knowledge and achievement of their students. 

 

D/C 
 
 
D/C 
 
 
 
 
D/C 
 
 
 
D/C 

C7. High-Stakes Tests D/C 
 C7-1. A big barrier today is state-mandated testing. 

 
C7-2. Many teachers see technology as taking away from preparing for those tests. 
 
C7-3.  Teachers were more interested in ensuring that the students do pass high-stakes year-end tests and, 
thus, reverted back to the traditional method of instruction. 
 
 

D/C 
 
D/C 
 
D/C 
 

C8. Mentoring D/C 
 C8-1.  The only support teachers had during implementation was technical support; they lacked a mentor 

who could assist them as instructional issues arose throughout the year. 
 
C8-2.  Mentoring on additional and advanced uses of the technology in the classroom is critical for 
teachers to increase their skills and maintain their motivation in utilizing the technology.   
 
 

D/C 
 
 
D/C 
 

C9. Empowerment & Engagement D/C 
 C9-1. Teachers were not involved in the decision to implement the new media; thus, they did not fully 

“buy into” the plan. 
 
C9-2. The intervention seems to have been “applied to” this community rather than involving them from 
the beginning as collaborators in its design and modification. 
 
C9-3. The most salient component of the intervention from the standpoint of the participants was therefore 
likely to be the literal technology. 
 
 

D/C 
 
 
D/C 
 
 
D/C 

C10. Community of Practice D/C 
 C10-1. There was no attempt to get the four teachers to meet on a regular basis throughout the year to 

discuss instructional issues, nor was there any attempt to link these teachers with teachers at other schools 
who were also attempting to integrate these types of tools (tablet PCs or similar devices) into their 
instructional practices.  
 
C10-2. In other words, there was no attempt to establish a community of practice. 
 

D/C 
 
 
 
 
D/C 

C11. Students D/C 
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Please RANK the key issues in order of their contribution to the poor project results from 1 
(most influential) to 11 (least influential).       
 
Key Issues Rank Order 
C1. Resisting Change  
C2. Lack of Supportive Environment  
C3. Insufficient Training  
C4. Design Issue  
C5. Belief and Attitude  
C6. Professional Development  
C7. High-Stakes Tests  
C8. Mentoring  
C9. Empowerment & Engagement  
C10. Community of Practice  
C11. Students  
 

 

 

 

 

 

 

 

 

PLEASE SEE THE NEXT PAGE  

 C11-1. The grade level involved might be an additional consideration – 7th grade involves students who 
are about 12 years old. 
 
C11-2. In principle, they should be able to understand the advantages of a new technology in terms of 
learning and performance, but they may have expected other uses of the laptop such as games in addition 
to educational uses. 

D/C 
 
 
D/C 
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Panel Responses to Question #2  
 
Q2. Describe the strategies that could have been employed to help mitigate the factors that you 
think contributed to the minimal effect the tablet PCs had on instructional practices. When you 
answering this question, use the concepts, factors, and variables you described in the question 1 
or add other assumptions and information that would be required to solve this problem.   
 
 
Twelve key strategies that could have been employed to mitigate the project have been 
identified and specific descriptions associated with each strategy have been distilled from the 
first round responses.  Please read each strategy and the associated descriptions.  
 
1. If you disagree with or have comments on it, please mark on “D (Disagree)” or “C (Comment)” 
and put your opinions on it using “Review>New Comment” function of MS-WORD.   
 
2. Please find out TWO or THREE of the most important concepts (terms) associated with each 
key strategy. Use the “Text Highlight” function of MS-WORD to indicate those key concepts as 
was done in the previous section.   
 

 Disagree/ Comment 
S1. Empowerment & Engagement D/C 
 S1-1. A more appropriate approach to this intervention would have been the selection of some form of 

participatory design as the basis for process decisions.   
 
S1-2. The administration should have gotten at least some of the teachers (preferably the opinion-leaders) 
involved in the initial planning of this project so that the teachers had a voice in the decisions that were 
made. 
 
S1-3.  All efforts that make up a school-based technology initiative should focus on empowering teachers 
to create innovative practices (i.e., activities and exercise) that can help all learners succeed. 
 
S1-4.  If you want teachers to totally transform their curriculum, give them some extra time to prepare 
their lessons, and compensate for additional time outside of school they need to go to professional 
development. 
 

D/C 
 
 
D/C 
 
 
 
D/C 
 
 
D/C 
 
 
 

S2. Professional Development (PD) D/C 
 S2-1. Borrowing from a systems-based model for technology integration, one big component of successful 

initiatives like this is professional development.  
  
S2-2. The PD workshop should also have focused on the changing instructional role that the teachers were 
likely to play (i.e., serving as guides on the side, not sages on the stage). 
 
S2-3. A professional development plan for teachers could have been put into place to ensure that teachers 
had proper technological, pedagogical, and content knowledge to make effective use of the tablet PCs. 
 
S2-4. The PD plan should be implemented well in advance of introducing the tablet PCs in the classroom, 
and it should include an experiential training approach with substantial formative feedback.  
 
S2-5. The goal of modeling how to use the technology for instruction in the PD program would be to have 
teachers learn effective strategies as form of best practices on integrating the technologies into the 
classroom. 
 
S2-6. The teachers in turn would model the use of the technologies to the students, who would then learn 

D/C 
 
 
D/C 
 
 
D/C 
 
 
D/C 
 
 
D/C 
 
 
 
D/C 
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effective uses of the tablets PCs. 
 

S3. Training D/C 
 S3-1. It is stated that all were trained on how to use the tablet PCs.   

 
S3-2. After initial training on how to use the tablet PCs, teachers need to engage in extensive technology 
and curriculum integration training in order to effectively use the innovation in their classrooms. 
 
S3-3.  This training could have been done in a variety of different ways.  For example, the teachers could 
have been provided with an interactive hands-on summer workshop on how to integrate the new media 
(hardware and software) into the curriculum.   
 
S3-4. They should then engage students in a similar training regimen that includes not only technology 
training on the use of the tablet PCs, but also how to make use of the computers in support of learning 
activities and exercises.  
 

D/C 
 
D/C 
 
 
D/C 
 
 
 
D/C 
 
 

S4. Need Assessment D/C 
 S4-1. It is not illustrated in the case whether a needs assessment was ever done to determine the purpose of 

providing the tablet PCs to the teachers and students. 
 
S4-2. Successful classroom innovations require that the desired change be clearly understood among 
stakeholders in terms of its need, purposes and processes, complexity, and quality/practicality. 
 
S4-3. The observation process of current practices would also provide opportunities for the teachers and 
students to input directly to the process, increasing their connection to the change before it begins. 
 
S4-4. Prior to introducing the tablet PCs to teachers and students, it would be a good idea to determine 
attitudes toward technology innovation and the tablet PC as well as beliefs about whether use of the tablet 
PC is likely to improve learning and instruction. 
 

D/C 
 
 
D/C 
 
 
D/C 
 
 
D/C 
 
 

S5. Community of Practice D/C 
 S5-1. The school might have established an online community of practice involving the four teachers at 

the school as well as teachers at other schools who were also attempting to integrate these types of tools 
(tablet PCs or similar devices) into their instructional practices. 
 
S5-2. It would be imperative to set up an online support program for teachers on using the technologies.  
 
S5-3. This could include daily/weekly updates on effective strategies on integrating the technology in the 
classroom, how to overcome integration obstacles, how to use the tablets for instruction and assessment of 
individual students and the entire classroom group, etc. 
 
S5-4. In addition, the schools might have set up weekly meetings for the teachers to discuss instructional 
issues with each other and with a mentor.  
 

D/C 
 
 
 
D/C 
 
D/C 
 
 
 
D/C 
 

S6. Mentoring D/C 
 S6-1. The school might have provided the teachers with an on-site mentor who could have helped them 

solve instructional issues that came up during the year. 

S6-2. The mentor focuses on basic skills and individualizes the instruction so that every teacher’s basic 
skills increase in some way.  

 

D/C 
 
 
D/C 

S7. Curricula Alignment D/C 
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Please RANK the key strategies in order of your preference from 1 (most liked) to 11 (least 
liked).    
    
Key Strategies Rank Order 
S1. Empowerment & Engagement  
S2. Professional Development (PD)  
S3. Training  
S4. Need Assessment  
S5. Community of Practice  
S6. Mentoring  
S7. Curricula Alignment  
S8. Leadership Support  
S9. Evaluation & Pilot Test  
S10. Support for Parent  
S11. Tech Specialists  
S12. Project Period  
 

 

 S7-1. One thing is to make sure the curricular materials that are loaded on the tablets are not like 
traditional workbooks and textbooks. Rather, have them be things like cognitive flexibility hypertexts, 
problem solving scaffolds, and so forth. 
 
S7-2. Teachers should be given time enough to redesign their instruction given the new technologies. 
   
S7-3. Teachers use technology to house a digital library of activities for teachers to share by grade level 
with the mentor helping them create materials. 

D/C 
 
 
 
D/C 
 
D/C 
 

S8. Leadership Support D/C 
 S8-1. It is imperative to make school leader support visible and consistent. 

 
S8-2. The stakeholders feel they are to supporting and sustaining meaningful educational change.  
 
S8-3. Rewards/incentives given to teachers can help them expend the additional effort to fully integrate the 
new technology into their classrooms. 
 

D/C 
 
D/C 
 
D/C 

S9. Evaluation & Pilot Test D/C 
 S9-1.  Test new ideas first, then improve and replicate them based on the test. 

 
S9-2. Because the tablet PCs are being deployed in  7h grade math, language arts, social studies and 
science classes, an evaluation plan should be developed to see if differences in terms of use and impact 
emerge for subject area sub-groups.  
 
S9-3. A pilot test should be made with a few teachers to revise training and evaluation plans, and then all 
of the teachers should be involved.  

D/C 
 
D/C 
 
 
 
D/C 

S10. Support for Parent D/C 
 S10-1.  Offer Support for parents. D/C 
S11. Tech Specialists D/C 
 S11-1.  Provide one or more tech specialists to deal with technical issues (someone other than the mentor). D/C 
S12. Project Period D/C 
 S12-1.  Extend project period- one year is too short to see meaningful change. D/C 



226 

 

 

APPENDIX F 

 THE ROUND #3 OF THE DELPHI STUDY 
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Summary of the Delphi Study (Round #2) 
Aimed at Developing a Consensus Expert Model for Thinking about the Problem 

Situation Below 
 

An expert response to each of the two questions was written based on the panel 
responses gathered through round #1 and #2 of this Delphi survey. For each response, 
key issues and terms (concepts) are presented next. You are asked to add, omit, or 
change them if needed

 

. This should require no more than 15 minutes. Just key word 
additions or deletions are required now. Please send me your response by May 2, 2011. 
Thanks again for your support. 

 

CASE STUDY 

Assume that you have been involved in evaluating a media implementation project in an 
urban inner middle school. At the beginning of the school year all of the students assigned to 
four subject area teachers (math, language arts, social studies and science) in the seventh 
grade at the middle school were given tablet PCs (laptop computers also equipped with a 
stylus/pen and a touchscreen that can be written upon) and were also given wireless internet 
access at home and in school for an entire year.  

The students took the tablet PCs home every evening and brought them into classes every 
day. The teachers were also provided with tablet PCs 24/7 (24 hours a day, every day of the 
week) for the entire year. The teachers and students were trained on how to use the tablet 
PCs. Moreover, all of the curriculum materials (textbooks, workbooks, student study guides, 
teacher curriculum guides, some activities, tests, etc.) were installed on the tablet PCs or 
were accessible through the tablet PCs. 

Your job as one of the evaluators for the project was to examine how this innovation 
(providing teachers and students with tablet PCs 24/7) changed the way instruction was 
presented in the classrooms of the four teachers. Results indicated that the innovation had 
very little effect on the manner in which instruction took place in the teachers’ classrooms. 
 

Q1. Based on what you have learned about the use of technology in education, describe 
what concepts, issues, factors, and variables are likely to have contributed to the fact that 
the introduction of the tablet PCs had very little effect on the instructional practices that 
were employed in the classes.  

Q2. Describe the strategies that could have been employed to help mitigate the factors that 
you think contributed to the minimal effect the tablet PCs had on instructional practices. 
When you answering this question, use the concepts, factors, and variables you described in 
the question 1 or add other assumptions and information that would be required to solve 
this problem.   
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Question #1 
Based on what you have learned about the use of technology in education, describe what 
concepts, issues, factors, and variables are likely to have contributed to the fact that the 
introduction of the tablet PCs had very little effect on the instructional practices that were 
employed in the classes. 
 
 
Key Issue Key Terms (Concepts) 
Professional Development Professional Development, Best Practice, Training, Mentor, 

Mentoring, Pedagogy, Affordance 
Design Issue Instructional Need, Instructional Practice, Integration, Change, 

Assumption, Design Space, Intervention 
Lack of Supportive Environment Environment, Support, Culture, Performance 
Empowerment Empowerment, Leadership, Inceptive, Decision, Motivation, 

Collaborator 
Belief and Attitude Belief, Attitude 
 
Is this a fair summary? What would you add, omit, or change? 
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Question #2 
Describe the strategies that could have been employed to help mitigate the factors that you 
think contributed to the minimal effect the tablet PCs had on instructional practices. When you 
answering this question, use the concepts, factors, and variables you described in the question 
1 or add other assumptions and information that would be required to solve this problem.   
 
 
Key Strategies Key Terms (Concepts) 
Professional Development Professional Development, Training, Formative Feedback, Strategy, 

Best Practice, Goal, TPACK, Mentor, Community of Practice 
Needs Assessment Innovation, Need Assessment, Change, Purpose, Process, Current 

Practice 
Leadership Support/ 
Empowerment 

School Leadership, leader, educational Change, Initial Planning, 
Voice, Reward, Incentive 

Curriculum Alignment Curricular Material, Time, Design 
Evaluation & Pilot Test Pilot Test, Evaluation 
 
Is this a fair summary? What would you add, omit, or change? 
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A Sample Expert Response to the Question 1 

Technology implementations usually begin with an identified instructional need. There was 
likely insufficient study of how instructional practices in the classroom were being conducted 
already without the technology. One big issue is defining what a successful integration 
or change in instructional practice actually is. While everyone in the situation may have felt that 
they knew this already, the assumptions inherent in a design situation need to be articulated 
and checked if they are not to distort the design space

Teachers didn’t have enough 
. 

professional development using the technology in classroom 
teaching and learning, on ways to integrate use into their teaching, and best practices with 
regard to effective educational use. Teacher professional development that discusses not just 
technical know-how but also pedagogy could help teachers realize how to do things differently 
that takes full advantage of the affordances of the tablets. Training as a professional 
development effort should be extensive including teacher belief and attitude

The only 

. Teacher beliefs 
play a role in adopting new practices and changing their instructional practice. They may not 
believe that students learn with laptops, and thus do not use them in their instruction.  

support teachers had during implementation was technical support; they lacked 
a mentor who could assist them as instructional issues arose throughout the year. Mentoring 
on additional and advanced uses of the technology in the classroom is critical for teachers to 
increase their skills and maintain their motivation

There are concerns that the environment does not support change. An ongoing 
supportive 

 in utilizing the technology.  In addition, 
mentors could help teachers to maintain the belief that these efforts will have positive results. 

environment where teachers initially learn how to use the technology, how to use 
the technology with their content, and how to continue to develop their expertise in the 
technology and incorporating it to the classroom is critical. Environments could involve 
a culture that does not support the performance. For example, the lack of incentives to make 
effective use of a new technology could also contribute to lack of use. The intervention seems 
to have been applied to this community rather than involving them from the beginning 
as collaborators in its design and modification. Teachers were not involved in the decision

  

 to 
implement the new media; thus, they did not fully “buy into” the plan. 
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A Sample Expert Response to the Question 2 

Successful classroom innovations require a needs assessment prior to introducing the tablet 
PCs. A needs assessment makes the desired change be clearly understood among stakeholders 
in terms of its need, purposes and processes, and practicality.  The observation process 
of current practices

The 

 would provide opportunities for the teachers and students to input directly 
to the process, increasing their connection to the change before it begins.  

professional development (PD) plan should be implemented well in advance of 
introducing the tablet PCs in the classroom, and PD plan should include an 
experiential training approach with substantial formative feedback. The PD program would 
require teachers to learn effective strategies as forms of best practice on integrating the 
technologies into the classroom as they incorporate those technologies and appreciate their 
affordances.  A professional development plan for teachers could be put into place to ensure 
that teachers establish their own goals for change and, with respect to those goals, have proper 
technological, pedagogical, and content knowledge (TPACK

It is imperative to have 

) to make effective use of the tablet 
PCs. 

school leadership support visible and consistent. School leaders 
should support and sustain meaningful educational change. Leaders need to show how they 
value as teachers. The administration should get at least some of the teachers (preferably the 
opinion-leaders) involved in the initial planning of this project so that the teachers have a voice 
in the decisions that are made.  Rewards/incentives

One thing to make sure is that the 

 given to teachers can help them expend 
the additional effort to fully integrate the new technology into their classrooms.  

curricular materials that are loaded on the tablets are 
not like traditional workbooks and textbooks. Teachers should be given time

A 

 enough to 
redesign their instruction given the new technologies and be compensated for additional time 
outside of school they need to go to professional development.  

pilot test should be made with a few teachers to revise training and evaluation plans, and 
then all of the teachers should be involved. Because the tablet PCs are being deployed in  7h 
grade math, language arts, social studies and science classes, an evaluation plan should be 
developed to see if differences in terms of use and impact emerge for subject area sub-groups.  
Finally providing one or more tech specialists

 

 to deal with technical issues will help teachers to 
test, prepare, and implement a new technology. 
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APPENDIX G 

A STUDENT RESPONSE TO THE PROBLEM-SOLVING TASK 
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An Example of Student Response to the Problem-Solving Task 
 
 
I think that one of the big reasons that the introduction of tablet PCs had very little effect 
on the instructional practices is that the teacher did not seem to use the tools in any way 
different than she was teaching before.   
You can easily transfer paper tests, worksheets, and text onto a technology piece, it is 
the way you use them and format them that makes a difference.   
While the teacher probably was successful in meeting standards, the technology could 
lend itself better if it was used in a collaborative way.   
There are so many tools for this online, and so many ways to integrate them into 
lessons.   
It may not even have been necessary for each student to have had a laptop to make a 
difference.  
 Another factor that could have limited the positive effect of the technology was the time 
that was spent simply teaching the children how to use the tool.   
Children are fast learners and most of the time are better at learning as they do 
something.   
Perhaps it would be better to teach them to use the tool as they perform activities on 
them. 
It also may have helped if the four teachers collaborated on activities for the students, 
and incorporated activities that had to do with all subject areas together.   
Performing the same activities in every class could get boring, and will lower the 
motivation of the children.   
I believe that it is most important for the children to use these tools to learn in a way that 
they had never done before.   
These tools should be incorporated into all areas of their lives.   
Perhaps the tools are only being used at school for learning, or the homework they are 
sent home with is the same format that they had before they were given the tool.   
It is simpler for the teacher to continue in the same teaching patterns they were using 
before the tools were implemented, but these tools should completely change the way 
the children are taught.  
So in conclusion, a lack of innovative ideas, low motivation to search for new methods 
of teaching, and repetitive and archaic ways of using the tool all combine to produce the 
results seen.  
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APPENDIX H 

LIST OF CONCEPTS (NOUNS)7

  

 

                                                 
7 The list of concepts (nouns) was created involving all concepts gathered from the participants’ responses. 

Here is presented an example captured from the original spread sheet.  
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LIST OF CONCEPTS 
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APPENDIX I 

DISTILLED SEMANTIC RELATIONS TOGETHER WITH CONCEPTS8

  

 

                                                 
8 A list of semantic relations together with concepts was distilled from each participant’s response. Here is 

presented an example captured from the original spread sheet.  
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DISTILLED SEMANTIC RELATIONS TOGETHER WITH CONCEPTS FROM A 

STUDENT’S RESPONSE 
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APPENDIX J 

CONCEP MAP ANALYSIS TOOL: NETMINER9

  

 

                                                 
9 A sample screen was attached here. 
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CONCEP MAP ANALYSIS TOOL: NETMINER 
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APPENDIX K 

CONCEP MAP ANALYSIS TOOL: ALA-Reader10

  

 

                                                 
10 A sample screen was attached here. 
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CONCEP MAP ANALYSIS TOOL: ALA-Reader 
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APPENDIX L 

CONCEP MAP ANALYSIS TOOL: T-MITOCAR11

  

 

                                                 
11 A sample screen was captured from the website. 
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CONCEP MAP ANALYSIS TOOL: T-MITOCAR 
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APPENDIX M 

3S SIMILARITY ANALYZER12

  

 

                                                 
12 A batch file to run the program was presented together with a student’s output and log files. 
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A BATCH FILE  
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A STUDENT OUTPUT FILE 

 

A STUDENT LOG FILE 
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APPENDIX N 

M-PLUS SYNTAX USED FOR THE CFA ANALYSIS 

  



248 

Mplus VERSION 6 
MUTHEN & MUTHEN 
08/26/2011   2:28 PM 
 
INPUT INSTRUCTIONS 
 
  TITLE:           First analysis of the initial model with non-normal Data 
in MLM 
 
  DATA:            FILE are cfadata.dat; 
 
  VARIABLE:        NAMES ARE V1-V21; 
                   USEVARIABLES ARE V2-V6 V10 V11-V14; 
 
  ANALYSIS:        type=general; 
                   estimator=mlm; 
 
  MODEL:           SUR   BY V2* V3 V4 V10; 
                   STR   BY V3* V4 V5 V6 V10; 
                   SEM   BY V11* V12-V14; 
 
 
                   SUR@1; 
                   STR@1; 
                   SEM@1; 
 
                   V3 with V2; 
                   V4 with V3; 
                   V10 with V2; 
 
  OUTPUT:  standardized sampstat modindices residual tech1 tech4; 
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APPENDIX O 

M-PLUS SYNTAX USED FOR THE LCDM ANALYSIS 
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TITLE: !section that appears in header of output file 
Parameterization of Stages of Learning Progress 
Test Model 3 _ eliminating 3-way interaction 
DINA applied to 2,3,6 item, three attribute data set. 
 
DATA:!location of free format data file (in syntax file folder); 
    FILE IS cut5.dat;  
 
VARIABLE: 
    NAMES = x1-x10; !list of variables in input file 
    USEVARIABLE = x1-x7 x10; !use only variables x1 through x7 
    CATEGORICAL = x1-x7 x10; !variables x1 through x7 are categorical (binary) 
    CLASSES = c(8); !8 possible attribute patterns for 3 attribute model; 
 
ANALYSIS: 
    TYPE=MIXTURE;  !estimates latent classes; 
    STARTS=0; !turn off multiple random start feature (disabled anyway); 
 
MODEL: 
 
%OVERALL% 
[C#1] (m1); !latent variable mean for attribute pattern [0,0,0]; 
[C#2] (m2); !latent variable mean for attribute pattern [0,0,1]; 
[C#3] (m3); !latent variable mean for attribute pattern [0,1,0]; 
[C#4] (m4); !latent variable mean for attribute pattern [0,1,1]; 
[C#5] (m5); !latent variable mean for attribute pattern [1,0,0]; 
[C#6] (m6); !latent variable mean for attribute pattern [1,0,1]; 
[C#7] (m7); !latent variable mean for attribute pattern [1,1,0]; 
 
%c#1% !for attribute pattern [0,0,0]; 
[x1$1] (t1_1); !threshold for item 1 LCDM kernel 1 
[x2$1] (t2_1); !threshold for item 2 LCDM kernel 1 
[x3$1] (t3_1); !threshold for item 3 LCDM kernel 1 
[x4$1] (t4_1); !threshold for item 4 LCDM kernel 1 
[x5$1] (t5_1); !threshold for item 5 LCDM kernel 1 
[x6$1] (t6_1); !threshold for item 6 LCDM kernel 1 
[x7$1] (t7_1); !threshold for item 7 LCDM kernel 1 
![x8$1] (t8_1); !threshold for item 8 LCDM kernel 1 
![x9$1] (t9_1); !threshold for item 9 LCDM kernel 1 
[x10$1] (t10_1); !threshold for item 10 LCDM kernel 1 
 
%c#2% !for attribute pattern [0,0,1]; 
[x1$1] (t1_1); !threshold for item 1 LCDM kernel 1 
[x2$1] (t2_1); !threshold for item 2 LCDM kernel 1 
[x3$1] (t3_1); !threshold for item 3 LCDM kernel 1  
[x4$1] (t4_1); !threshold for item 4 LCDM kernel 1 
[x5$1] (t5_1); !threshold for item 5 LCDM kernel 1 
[x6$1] (t6_1); !threshold for item 6 LCDM kernel 1 
[x7$1] (t7_2); !threshold for item 7 LCDM kernel 2 
![x8$1] (t8_2); !threshold for item 8 LCDM kernel 2 
![x9$1] (t9_2); !threshold for item 9 LCDM kernel 2 
[x10$1] (t10_2); !threshold for item 10 LCDM kernel 2 
 
%c#3% !for attribute pattern [0,1,0]; 
[x1$1] (t1_1); !threshold for item 1 LCDM kernel 1 
[x2$1] (t2_2); !threshold for item 2 LCDM kernel 2 
[x3$1] (t3_2); !threshold for item 3 LCDM kernel 2 
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[x4$1] (t4_2); !threshold for item 4 LCDM kernel 2 
[x5$1] (t5_2); !threshold for item 5 LCDM kernel 2 
[x6$1] (t6_2); !threshold for item 6 LCDM kernel 2 
[x7$1] (t7_1); !threshold for item 7 LCDM kernel 1 
![x8$1] (t8_1); !threshold for item 8 LCDM kernel 1 
![x9$1] (t9_1); !threshold for item 9 LCDM kernel 1 
[x10$1] (t10_1); !threshold for item 10 LCDM kernel 1 
 
%c#4% !for attribute pattern [0,1,1]; 
[x1$1] (t1_1); !threshold for item 1 LCDM kernel 1 
[x2$1] (t2_2); !threshold for item 2 LCDM kernel 2 
[x3$1] (t3_2); !threshold for item 3 LCDM kernel 2  
[x4$1] (t4_2); !threshold for item 4 LCDM kernel 2 
[x5$1] (t5_2); !threshold for item 5 LCDM kernel 2 
[x6$1] (t6_2); !threshold for item 6 LCDM kernel 2 
[x7$1] (t7_2); !threshold for item 7 LCDM kernel 2 
![x8$1] (t8_2); !threshold for item 8 LCDM kernel 2 
![x9$1] (t9_2); !threshold for item 9 LCDM kernel 2 
[x10$1] (t10_2); !threshold for item 10 LCDM kernel 2 
 
%c#5% !for attribute pattern [1,0,0]; 
[x1$1] (t1_2); !threshold for item 1 LCDM kernel 2 
[x2$1] (t2_3); !threshold for item 2 LCDM kernel 3 
[x3$1] (t3_3); !threshold for item 3 LCDM kernel 3 
[x4$1] (t4_1); !threshold for item 4 LCDM kernel 1 
[x5$1] (t5_1); !threshold for item 5 LCDM kernel 1 
[x6$1] (t6_3); !threshold for item 6 LCDM kernel 3 
[x7$1] (t7_1); !threshold for item 7 LCDM kernel 1 
![x8$1] (t8_1); !threshold for item 8 LCDM kernel 1 
![x9$1] (t9_1); !threshold for item 9 LCDM kernel 1 
[x10$1] (t10_1); !threshold for item 10 LCDM kernel 1 
 
%c#6% !for attribute pattern [1,0,1]; 
[x1$1] (t1_2); !threshold for item 1 LCDM kernel 2 
[x2$1] (t2_3); !threshold for item 2 LCDM kernel 3 
[x3$1] (t3_3); !threshold for item 3 LCDM kernel 3 
[x4$1] (t4_1); !threshold for item 4 LCDM kernel 1 
[x5$1] (t5_1); !threshold for item 5 LCDM kernel 1 
[x6$1] (t6_3); !threshold for item 6 LCDM kernel 3 
[x7$1] (t7_2); !threshold for item 7 LCDM kernel 2 
![x8$1] (t8_2); !threshold for item 8 LCDM kernel 2 
![x9$1] (t9_2); !threshold for item 9 LCDM kernel 2 
[x10$1] (t10_2); !threshold for item 10 LCDM kernel 2 
 
%c#7% !for attribute pattern [1,1,0]; 
[x1$1] (t1_2); !threshold for item 1 LCDM kernel 2 
[x2$1] (t2_4); !threshold for item 2 LCDM kernel 4 
[x3$1] (t3_4); !threshold for item 3 LCDM kernel 4 
[x4$1] (t4_2); !threshold for item 4 LCDM kernel 2 
[x5$1] (t5_2); !threshold for item 5 LCDM kernel 2 
[x6$1] (t6_4); !threshold for item 6 LCDM kernel 4 
[x7$1] (t7_1); !threshold for item 7 LCDM kernel 1 
![x8$1] (t8_1); !threshold for item 8 LCDM kernel 1 
![x9$1] (t9_1); !threshold for item 9 LCDM kernel 1 
[x10$1] (t10_1); !threshold for item 10 LCDM kernel 1 
 
%c#8% !for attribute pattern [1,1,1]; 
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[x1$1] (t1_2); !threshold for item 1 LCDM kernel 2 
[x2$1] (t2_4); !threshold for item 2 LCDM kernel 4 
[x3$1] (t3_4); !threshold for item 3 LCDM kernel 4 
[x4$1] (t4_2); !threshold for item 4 LCDM kernel 2 
[x5$1] (t5_2); !threshold for item 5 LCDM kernel 2 
[x6$1] (t6_4); !threshold for item 6 LCDM kernel 4 
[x7$1] (t7_2); !threshold for item 7 LCDM kernel 2 
![x8$1] (t8_2); !threshold for item 8 LCDM kernel 2 
![x9$1] (t9_2); !threshold for item 9 LCDM kernel 2 
[x10$1] (t10_2); !threshold for item 10 LCDM kernel 2 
 
 
MODEL CONSTRAINT: !used to define LCDM parameters and constraints 
!NOTE: Mplus uses P(X=0) rather than P(X=1) so terms must be multiplied by -1 
 
!STRUCTURAL MODEL: 
NEW(g_0 g_11 g_12 g_13 g_212 g_213 g_223); 
m1=-(g_11+g_12+g_13+g_212+g_213+g_223); 
m2=g_13-(g_11+g_12+g_13+g_212+g_213+g_223); 
m3=g_12-(g_11+g_12+g_13+g_212+g_213+g_223); 
m4=g_12+g_13+g_223-(g_11+g_12+g_13+g_212+g_213+g_223); 
m5=g_11-(g_11+g_12+g_13+g_212+g_213+g_223); 
m6=g_11+g_13+g_213-(g_11+g_12+g_13+g_212+g_213+g_223); 
m7=g_11+g_12+g_212-(g_11+g_12+g_13+g_212+g_213+g_223); 
g_0=-(g_11+g_12+g_13+g_212+g_213+g_223); 
 
!ITEM 1:  
!Q-matrix Entry [1 0 0] 
!One attibute measured: 1 intercept; 1 main effect 
NEW(b1_0 b1_11);    !define LCDM parameters present for item 1 
t1_1=-(b1_0);       !set equal to intercept by LCDM kernel  
t1_2=-(b1_0+b1_11); !set equal to intercept plus main effect for attribute 1 
b1_11>0;            !make sure main effect is positive  
 
!ITEM 2:  
!Q-matrix Entry [1 1 0] 
NEW(b2_0 b2_e);    !define LCDM parameters present for item 2 b2_e is common 
effect 
t2_1=-(b2_0); 
t2_2=-(b2_0); 
t2_3=-(b2_0); 
t2_4=-(b2_0+b2_e); 
b2_e>0;            !make sure main effect is positive  
 
!ITEM 3: 
!Q-matrix Entry [1 1 0] 
NEW(b3_0 b3_e);    !define LCDM parameters present for item 3 
t3_1=-(b3_0); 
t3_2=-(b3_0); 
t3_3=-(b3_0); 
t3_4=-(b3_0+b3_e); 
b3_e>0;            !make sure main effect is positive  
 
!ITEM 4: 
!Q-matrix Entry [0 1 0] 
!two attibutes measured: 1 intercept; 1 main effects 
NEW(b4_0 b4_12);       !define LCDM parameters present for item 4 
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t4_1=-(b4_0); 
t4_2=-(b4_0+b4_12); 
b4_12>0;                            !the order constraints necessary for the 
main effects 
 
!ITEM 5: 
!Q-matrix Entry [0 1 0] 
!two attibutes measured: 1 intercept; 1 main effects 
NEW(b5_0 b5_12);       !define LCDM parameters present for item 5 
t5_1=-(b5_0); 
t5_2=-(b5_0+b5_12); 
b5_12>0;                            !the order constraints necessary for the 
main effects 
 
!ITEM 6: 
!Q-matrix Entry [1 1 0] 
NEW(b6_0 b6_e);    !define LCDM parameters present for item 6 
t6_1=-(b6_0); 
t6_2=-(b6_0); 
t6_3=-(b6_0); 
t6_4=-(b6_0+b6_e); 
b6_e>0;            !make sure main effect is positive  
 
!ITEM 7: 
!Q-matrix Entry [0 0 1] 
!two attibutes measured: 1 intercept 
NEW(b7_0 b7_13);   !define LCDM parameters present for item 7 
t7_1=-(b7_0); 
t7_2=-(b7_0+b7_13); 
b7_13>0; 
 
!ITEM 8: 
!Q-matrix Entry [0 0 1] 
!two attibutes measured: 1 intercept 
!NEW(b8_0 b8_13);   !define LCDM parameters present for item 8 
!t8_1=-(b8_0); 
!t8_2=-(b8_0+b8_13); 
!b8_13>0; 
 
!ITEM 9: 
!Q-matrix Entry [0 0 1] 
!two attibutes measured: 1 intercept 
!NEW(b9_0 b9_13);   !define LCDM parameters present for item 9 
!t9_1=-(b9_0); 
!t9_2=-(b9_0+b9_13); 
!b9_13>0; 
 
!ITEM 10: 
!Q-matrix Entry [0 0 1] 
!two attibutes measured: 1 intercept 
NEW(b10_0 b10_13);   !define LCDM parameters present for item 10 
t10_1=-(b10_0); 
t10_2=-(b10_0+b10_13); 
b10_13>0; 
 
OUTPUT: 
    TECH10; !request additional model fit statistics be reported 
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SAVEDATA: 
    FORMAT IS f10.5;             !format for output file 
    FILE IS respondent_m3_eli 3way.dat;  
    SAVE = CPROBABILITIES;       
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