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ABSTRACT
The Murgul deposit is a copper-rich VMS system at Murgul, Turkey. It has been
interpreted as a Kuroko-type VMS system, and is one of several VMS and vein deposits
throughout the Eastern Pontides. The massive sulfide of the Murgul deposit has been removed
by mining, but remains profitable because the underlying stockwork is significantly mineralized.
Little isotopic research has been conducted on this deposit or others located in the region. Sulfur
and oxygen stable isotope data constrain fluid temperature and source for a better understanding
of the deposit’s origin. Chalcopyrite-pyrite pairs yield equilibrium temperatures of
approximately 350°C. Quartz and illite were determined to be in disequilibrium and unable to
provide temperature data, but the illite permits calculation of a fluid source 8'*0 of 8-11%.
These data suggest that the fluids that produced Murgul were likely derived from seawater, and

the deposit is best interpreted as a VMS deposit.
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CHAPTER 1
INTRODUCTION

Volcanogenic massive sulfide (VMS) deposits occur over a wide range of geologic ages,
from Archaen to the present. Although there are several different types of VMS deposits
(Kuroko, Besshi, Cyprus), all tend to share several common physical characteristics. They all
consist of silicate and sulfide minerals and are a significant source for Cu, Pb, Zn, Ag, and Au
throughout the world. The way in which they are formed is also very similar, if not the same in
detail. VMS deposits are formed on or near the seafloor via the circulation and release of metal-
rich hydrothermal fluids through a stockwork zone, which is rarely economic itself (Ciftci et al.,
in press). The stockwork zone acts as a plumbing system, through which fluids flow into the
ocean (via some vent or black smoker at the surface). The fluids quickly cool when mixed with
seawater, lowering the solubility of the metals, and in some instances deposit a large, solid
blanket of sulfide minerals around the vents over time.

The Murgul mine is an Upper Cretaceous copper rich VMS (Ciftci et al., in press). Itis
located in northeastern Turkey, near the border of Georgia and the Black Sea (figure 1). The
deposit is one of many found within the Eastern Pontides of Turkey, which is part of the overall
Pontide belt that runs along the coast of the Black Sea. The Pontide belt is part of the Alpine-
Himalayan chain that runs from the Western Mediterranean through Romania and Turkey, and
ends on the eastern side of Afghanistan at the Hindu Kush mountain range (Karakaya et al.,

2012).



The Murgul mine has been operating since 1907 and has been owned by several different
companies at different times, though records have not been kept. As of 2012, it is owned by
Etibank and a private company, with an annual production of 2,970,000 tons at 1.31% copper.
Annual copper concentrate production is 208,267 tons, 17% of which is copper. The majority of
the copper mined from Murgul is used within Turkey (Koz et al., 2012), making it an invaluable
resource to the country.

Purpose

The purposes of this study are 1) to evaluate the origin of the Murgul deposit by
determining the fluid source, and 2) evaluating the distribution of calculated temperatures within
the well-exposed stockwork zone. Both VMS and vein-type deposits are abundant in the Eastern
Pontides (figure 2), and the high-grade copper ore has long been mined away. No records have
been kept from the beginning of the mine and there have been few geologic studies on it. This
study has been conducted to gather data and information about the Murgul deposit by examining
what appears to be an intact stockwork zone and the host rock immediately surrounding the
deposit. Specifically, we have determined the temperature(s) of the ore forming fluids and the
source(s) of the fluids that created this deposit via stable oxygen and sulfur isotopic data.

Further significance of this paper is that besides the recent study by Ciftci et al. there is,
unfortunately, little isotopic data, on any of the other putative VMS deposits in the Eastern
Pontides, and that at Murgul we are able to thoroughly examine the stockwork zone, which is
intact and well exposed from mining activity, an uncommon occurrence. Ore deposit discovery
and exploration is dependent on ore deposit models, thus the more information there is about a
type of deposit and the more we understand it, the better the chance we have of finding more

deposits of this type.
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Fig 1. Location and regional geology map, taken from
Karakaya et al., (2012).
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CHAPTER 2
REGIONAL GEOLOGY

Turkey is divided tectonically into 4 major blocks, separated by suture zones and faults
(figure 3). The Rhodope-Pontide block is composed of the Pontide arc that runs E-W along the
northern end of Turkey. The Pontide arc makes up much of this block, and is a volcanic arc
formed from northward subduction of the Neo-Tethys Sea beneath the Eurasian plate during the
Late Cretaceous, and abundant flysch deposits from collision. To the east, this block also
contains the East Anatolian High Plateau and the Bitlis-Piitlirge massif (microcontinent) to the
south. The plateau is composed of ophiolites that have been uplifted via a complicated series of
continental collisions, volcanism, folding, faulting, and crustal shortening during the Eocene and
mid-Miocene.

South of the Pontides, separated by the Northern Anatolian Fault (NAF) is the Sakarya
Block (also called the Sakarya Continent) that runs parallel to the Pontides. The Sakarya Block
is composed of Paleozoic crystalline basement, Carboniferous sedimentary cover, and Triassic
ophiolitic and mélange units. The Sakarya Block also contains Oligocene-Miocene granitoid
plutons and a metamorphic core complex, the Kazdag massif, to the west. The Central Anatolian
Crystalline Complex (CACC) lies in the middle of Turkey bounded to the north and south by the
[zmir-Ankara suture zone (IASZ) and the Inner-Tauride suture zone (ITSZ), respectively, and
pinches out to the West and East. The CACC is composed of several metamorphic massifs,
including the Kirsehir, Akdag, and Nigde. It is also composed of felsic-mafic plutons, and

ophiolites (ranging from the Cretaceous to Miocene). To the south are the Anatolian and Tauride



blocks, bounded to the south by the East Anatolian Fault (EAF) and Arabian plate in the east,
and the Mediterranean Sea in the west. To the west, the Anatolian block is separated from the
Sakarya Block to the north by the IASZ, and is composed of ophiolites and a metamorphic core
complex, the Menderes massif, that was exhumed during the Late Cenozoic and intruded by
granitic plutons in the Miocene. The Tauride block lies south of the Anatolian Block and runs E-
W. It is composed of carbonate and volcano-sedimentary rocks ranging in age from Cambrian to
Upper Cretaceous, and is overlain by ophiolites (Dilek & Sandvol, 2009).

The Pontides are subdivided into 3 sections: Western, Central, and Eastern, though there
is no obvious geographical or geological separation. This belt runs along the entire Black Sea
coast in Turkey and is bordered to the south by the NAF and the Anatolian High Plateau in the
Eastern portion of the belt. The Pontide belt is a magmatic island arc that was formed during the
closing of the Paleotethys Ocean during the Upper Jurassic and has since been molded into shape
by collision with the Bitlis-Piitlirge massif during the Late Eocene, which added abundant
sedimentary flysch. The Pontides are home to many large VMS deposits as well as less
abundant vein deposits (Karakaya et al., 2012).

The Eastern Pontides lie north of the Anatolian High Plateau, south of the Black Sea, and
east of the CACC (Arslan & Aslan, 2006; Dilek & Sandvol, 2009). The basement of the Eastern
Pontides is composed of Late Carboniferous granitoids, early Carboniferous metamorphic rocks,
and shallow marine-terrestrial sedimentary rocks of Carboniferous-early Permian age (Karsli et
al., 2012; Karsli et al., 2011). The Eastern Pontides are split into two sections, the Northern and
Southern Sections. The North Section is composed of volcanic and volcaniclastic rocks from the
Late Cretaceous-Early Eocene. The South Section is composed of rocks older than the Late

Cretaceous that were part of a fore-arc and have been more severely deformed over time than



those of the North section (Arslan & Aslan, 2006; Okay & Sahintiirk, 1997). The tectonic
setting of the Murgul deposit is very similar to that of Kuroko deposits, which is described by
Cathles, et al., (1983). The Murgul deposit is located in the Northern section of the Eastern
Pontides, which is interpreted as being formed in a back-arc extensional setting (Karakaya et al.,
2012, Koz, B., et al., 2012). During subduction and volcanic arc formation, heat flow in the back
arc region causes thinning and extension of the overlying crust, which drives upwelling of warm
fluids. Magmatism in this region is typified by intermediate to mafic rocks, including the

production of dacite dome complexes.

Sakarya Block

I Bitlis-Piitiirge Massif . Major Massif NAF-North Anatolian Fault system 1ASZ-lzmir-Ankara suture zone
) ) K-Kirsehir M-Menderes
East Anatolian High Plateau N-Nigde EAF-East Anatolian Fault system  ITSZ-Inner-Taurdide suture zone
X A-Akdag
Pontide Arc
u KD-Kazdag

Fig 3. Tectonic overview of Turkey, (modified from Dilek & Sandvol, 2009).



CHAPTER 3
SITE GEOLOGY
Previous Work

Ciftci et al. (in press) have done previous stable isotope and fluid inclusion work in this
area in an attempt to constrain the specific type (e.g. Kuroko, Cyprus) of several VMS deposits
that occur in the Eastern Pontides. In their study Dr. Ciftci et al. determined formation
temperatures, fluid salinity, and paragenesis of several major VMS deposits, including Murgul.
Using fluid inclusions Dr. Cift¢i et al. measured homogenization temperatures of 160-320 °C,
with the majority of temperatures for massive ores ranging between 200 °C and 320 °C (figure
4). The temperatures determined for the Murgul massive ore range from 260 °C-320 °C and
those for the stockwork zone range from 160 °C-295 °C (figure 5). Salinities were calculated to
be 0.5-6 wt% NaCl eq.

Ciftci et al. (in press) propose a four-stage paragenesis of the deposits. Stage 1 is the
formation of colloform and coarse-grained pyrite as well as the formation of chalcopyrite. Stage
2 is characterized by the formation of sphalerite and galena, and stage 3 by galena+sulfosalts.
Stage 4 is characterized by a second generation of chalcopyrite and bornite. In Murgul the
834SCDT of pyrite ranges from +3.3 0/00 to +3.7 0/00 and the 634SCDT of chalcopyrite range similarly

from +3.3 0/00 to +3.7 0/00 (Ciftci et al., in press).
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Detailed petrographic and geochemical descriptions of Murgul have been done by Sipahi
et al., (2013) and Eyuboglu et al., (2014). Sipahi et al., (2013) studied enclaves within the
footwall and hanging wall dacites. Both dacites are enriched in LILE and LREE and have
similar ¥'Sr/**Sr values, at approximately 0.704-0.705. Eyuboglu et al., (2014) examined the
dynamics of the formation of ore within the arc system of the Eastern Pontides and suggests that
while some VMS deposits formed in a magmatic arc system, others formed in a continental arc
system. The ***Pb/***U age of the host dacite at Murgul is 91 Ma, while the host dacite of other
VMS deposits, measured by zircon age dating, ranges from 83-87 Ma.

Previous work done in the Eastern Pontides not focusing on the Murgul deposit includes
Akcay & Giindiiz (2004), Arslan & Aslan (2006), Demir et al., (2013), Karakaya et al., (2012),
Karsli et al., (2012), Karsli et al., (2011), Okay & Sahintiirk (1997). Ake¢ay & Giindiiz (2004),
examined the mineralization of a copper-gold porphyry deposit near Glimiishane, Turkey (figure
2). The mineralization here occurs as veins and disseminations and is composed of chalcopyrite,
pyrite, magnetite, pyrrhotite, hematite, molybdenite, sphalerite, and galena. Hydrothermal
alteration zones are prominent and are composed primarily of K-feldspars, K-silicates, and
quartz. Arslan & Aslan (2006) examined the mineralogy and geochemistry of granitic intrusions
within the Eastern Pontides. The geochemistry suggests these granitoids formed in either a post-
collisional setting or a volcanic arc setting. The granitic intrusions include monzonites and
monzodiorites in the Northern zone of the Eastern Pontides, with monzogranites and
granodiorites in the Southern zone. Demir et al., (2013) examined the mineralization of the
Istala deposit, near Glimiishane, Turkey (figure 2). The ore at the Istala deposit is separated into
massive black zinc ore, massive barite ore, and massive brecciated ore, in order from bottom to

top, stratigraphically. The black ore is composed of sphalerite and galena, with minor amounts of

10



pyrite and chalcopyrite. The barite ore is composed of massive barite layers, with galena and
tetrahedrite/tennantite. The brecciated ore is composed of barite fragments from the underlying
barite ore with disseminated sulfides. Karakaya et al., (2012) examined the geochemical
behavior of trace elements in the VMS deposits of the Eastern Pontides. The deposits have
similar REE patterns, being enriched in LREE and having a negative Eu anomaly, suggesting
that they came from similar felsic sources. Some HFSE (Hg, Se, Bi, etc.) could be used as
pathfinder elements to discover new VMS deposits, as they are strongly enriched in hematitic-
altered samples. Karsli et al., (2012) and Karsli et al., (2011) examined an A-type granitoid, the
Pirnalli pluton, and adakite-like granitoids in the Eastern Pontides. The Pirnalli is a hybrid
magma, formed via mixing of a more mafic magma, from the melting of the lower crust of the
Pontides, and one from an enriched lithospheric mantle. These magmas were formed via back-
arc extension caused by northward subduction of the Neotethys. The adakite-like granitoids
were formed by partial melting of the lower crust via asthenosphere upwelling, due to slab-break
off at a subduction zone. Okay & Sahintiirk (1997) review the geology of the entire Eastern
Pontides. Although this paper is outdated by more modern studies, it provides a general
overview of the geology and tectonic evolution of the Eastern Pontides.
Field Work

The Murgul mine is composed of two pits, the larger main pit of Damar and the smaller
secondary pit of Cakmakkaya (figure 6). Cakmakkaya ranges from 1020-1070 ft (310.5-326.1
m) above sea level, but most has been filled with water and so only the 1060-1070 ft (323.0-
326.1 m) level is accessible. Accessible areas of Damar range from 950-1070 ft (389.6-326.1 m)
above sea level. The overlying massive ore has long since been mined away and the stockwork

zone from Damar has been exposed, mined, and stockpiled for processing. Operations are

11



currently working on mining a 2" stockwork zone found in Cakmakkaya that is also economic.
Unfortunately, this active mining made most of the Cakmakkaya pit inaccessible for sampling.
Geologically, both pits are very similar, and so they will only be mentioned separately if there is

a significant difference between them.

Cakmakkaya
e

Purple Dacite

Host Dacite

Fig 6. Murgul open pits. Top: Cakmakkaya pit, facing SW. This pit is currently being
mined, removing the stockwork zone. Bottom: Damar pit, facing NE. The stockwork zone
of this pit has been completely mined and it is being refilled with water. The massive ore
was located between the purple dacite and the host rock, but an exact location is unavailable.

12



A simplified cross section of the deposit is shown in figure 7. Above the deposit lies a
distinct hanging wall purple dacite, which contains abundant quartz ‘eyes’ (phenocrysts). The
footwall host rock is composed of dacite that has been thoroughly altered by hydrothermal fluids
related to ore emplacement and from present day weathering processes. This alteration causes a
change in color in the dacite to white/yellow. This color change marks the contact between the
hanging wall and footwall dacites (figure 6 and 7). Both dacites are highly siliceous. The
footwall dacite contains abundant kaolinite on rock surfaces, as a result of low temperature
weathering. Original macroscopic igneous textures are mostly destroyed.

Alteration

Host rocks were collected at depths ranging from 950-1070 ft above sea level and include
both open pits (figure 8). The alteration mineralogy of the host rock consists of abundant silica
plus illite related to circulation of hydrothermal fluids, and kaolinite from low temperature
weathering. Occurring in smaller amounts as a weathering product is jarosite, occurring in
isolated ‘balls’ with grain sizes of 3-8mm in diameter. Also present in small amounts is
magnesite, which is very fine-grained and disseminated. The silica occurs as massive
silicification, veins, and veinlets. The clays occur as a weathering product over weathered
surfaces (kaolinite) and as a hydrothermal product within the rock (illite). Commonly found in
the host rock in smaller quantities are fine-grained chlorite, calcite and dolomite, fine-grained
disseminated pyrite, and remnant quartz ‘eyes’ (phenocrysts) ranging from 0.5-1.0cm in

diameter.

13
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In some of the host rocks there are also small amounts of chalcocite occurring as a secondary
supergene sulfide phase. The chalcocite is fine-grained. The quantity of chalcocite is higher in
those rocks with abundant pyrite, suggesting chalcocite forms via pyrite weathering. Some host
rocks are very green from an abundance of chlorite/sericite, mixed with quartz and clay (figure
9). These chlorite rich rocks are very common and occurred at depths ranging from
approximately 1010-1030 ft above sea level, in the pit Damar. They are the only ones that do not
contain visible pyrite. One of these green rocks contains a thin (.5cm thick) gypsum vein, and
this is the only occurrence of gypsum seen in this system.

A second ‘host rock’ is dacite that occurs not surrounding the deposit but within the
stockwork zone itself, hosting the sulfide veins (figure 10). This host rock dacite is different
from the main host rock in that it has not been so severely weathered and thus has less kaolinite,
both surficial and pervasive, giving it a less ‘crumbly’ texture. Some of these rocks do not
contain any clay. It is possible that these rocks have not been exposed to the surface as long as
the main host rock, since they have been recently mined, explaining this difference. It is also
possible that these rocks were silicified to a higher degree than the main host rocks, and thus
never contained much clay. Another difference is that these host rocks rarely contain
disseminated, fine-grained pyrite and then only in trace amounts. These rocks were collected
from a stockpile, but were originally mined from the Damar pit at the 950-900ft level.

Silicate-rich veins occur as well. These are not easily seen and they are distinguished by
their difference in appearance compared to the host rock (e.g. slight differences in color and
having a more massive texture). The mineralogy of these veins is quartz, calcite, dolomite,

disseminated fine-grained pyrite, kaolinite (on exposed surfaces), and illite.
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Mineralization

Ore mineralization at Murgul occurs as sulfide veins, ranging from < 1-20 cm in
thickness (figure 10). Mineralized samples were collected from the mine’s stockpile, taken
originally from the 950-900ft level in the Damar pit, as well as the 1000-980 ft level in the
Damar pit and the 1070-1060 ft level in the Cakmakkaya pit. The sulfide veins consist primarily
of massive chalcopyrite and pyrite, but also calcite, dolomite, magnesite, and quartz. Some veins
also have large amounts of supergene chalcocite, occurring as a thin, black layer coating
chalcopyrite. Kaolinite and illite are common but occur only in small amounts. Some sulfide
veins are found in the periphery of the stockwork zone, within the host rock dacite. These tend
to be very small, severely weathered, and contain only fine-grained pyrite. Rare stockwork veins
and the peripheral veins show evidence of open space, with subhedral pyrite and sub-euhedral
quartz crystals. These small veins were collected both in Damar and Cakmakkaya, at depths of

1000-980ft and 1070-1060 ft above sea level, respectively.
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Figure 9. Compilation of ‘green rocks’ host rocks. *63 chl’ denotes sample SF-
13-063, chlorite rich. Cm bar for scale, split into mm.
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Figure 10. Examples of sulfide veins and the second host rock dacite surrounding
them. Sample number is given in the corners. Cm bar for scale, broken into mm.
Orange arrows point to chalcopyrite, red arrows point to pyrite. Note the carbonate
and quartz occurring in the sulfide vein in samples 12 and 13, and the small veins in
sample 12.
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CHAPTER 4
METHODS

Sampling

Approximately 100 samples were collected from the Murgul mine. Sample locations
include both pits, but most are from Damar due to better access, larger size, and a greater range
of depth. The majority of the samples are from the host dacite, but twenty were collected from
the main stockwork zone located at the bottom of Damar, 50-100ft deeper than the rest of the
samples. At this depth the system may have been at a higher temperature, causing the sulfide
veins to be more abundant/concentrated in one area, instead of spreading out near the surface.
X-Ray Diffraction

In order to properly determine the mineralogy of the samples (both host rock and veins),
samples were analyzed via X-ray Diffraction (XRD). Powder mounts were made using a
McCrone micronizing mill and run on a Bruker D8 Advance XRD from 2-70 degrees 26 at 0.1
second per step increments, using a 0.6mm slit at the source and CoKa radiation. Data
interpretation was done using Eva, which uses a search-match method to qualitatively identify
XRD peaks, and is based on preconceived notions of what minerals are present in the icod
database.
Stable Isotopes

Minerals were separated via manual drilling using a diamond dental drill bit. Between 1
and 2 mg of quartz or illite were drilled for oxygen isotope analysis. Between 4 and 6 mg of

pyrite or chalcopyrite were drilled for sulfur isotope analysis. For silicates, stable isotope data
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were obtained via an offline laser fluorination line, using a modified method from Valley et al.
(1995). For sulfides, an offline vanadium pentoxide combustion line with variable cryogenic
temperature trap was used, employing a modified method from Yanagisawa and Sakai (1983).

For 'O analysis, samples were converted to O, gas via heating by a 1kW infrared CO,
laser in the presence of bromine pentafluoride. Excess waste halogeus as well as SiF4 were
removed cryogenically and via exposure to heated mercury. The remaining noncondensible gas
and sample were then moved to a platinum filament, graphite rod CO, converter, where O,
reacted with heated carbon to form CO,. The CO, sample is then measured and collected for
analysis.

For 8°*S analysis, the samples were combined with elemental copper, quartz, and
vanadium pentoxide. This mixture was then heated in a furnace at 1050°C to produce SO, and
other gases. Water was removed cryogenically using a dry ice-ethanol slush, and the remaining
sample was collected in a variable temperature cryogenic trap. After raising the temperature to -
145 °C to remove CO», the temperature was raised again to -90 °C to convert solid SO, to gaseous
SO,. This SO, was then measured in a manometer and collected for mass spectrometric analysis.
Once the gases, CO, and SO, were extracted, isotope ratios were measured using a Finnigan
MAT 252 dual inlet mass spectrometer. An accelerating potential of 8kV was used, and each
sample was measured for 8 seconds for 8§ standard-sample cycles against the appropriate CO, and
SO, reference gases. The oxygen samples were measured with an 800-100mV signal intensity.
The sulfur samples were measured with a 1000-2000mV signal intensity, with an open Variable
Ion Source Conductance (VISC) ‘sulfur window.” Results are reported relative to SMOW for

silicates, and CDT for sulfides.
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CHAPTER 5
RESULTS

Mineralogy

All XRD data are presented in appendix A. Minerals present in host rocks are quartz,
illite, kaolinite, calcite, dolomite, magnesite, jarosite, pyrite, chlorite, and gypsum. Minerals
found in sulfide veins are chalcopyrite, pyrite, quartz, calcite, dolomite, magnesite, illite, and
kaolinite. Chalcocite was undetected by the XRD with the scanning parameters used, possibly
due to a high level of oxidation during sample preparation. Corundum was detected in all
samples, but is an artifact of the sample preparation.
Stable Isotopes

All sulfur isotope data collected for pyrite and chalcopyrite pairs are presented in table 1.

All oxygen isotope data collected for illite and quartz pairs are presented in table 2.
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Table 1. Total collected sulfur isotope data.

Sample |Mineral **Scpr Mean **Scpr Std.Dev. **Scor

12 pyrite -10.1 0.03 4.3
12 chalcopyrite -10.9 0.01 3.4
13 pyrite -11.1 0.02 34
13 chalcopyrite -10.8 0.03 3.5
14 pyrite -10.5 0.01 4.0
14 chalcopyrite -11.3 0.02 3.0
15 pyrite -10.1 0.01 4.3
15 chalcopyrite -10.0 0.02 4.4
16 pyrite -10.5 0.02 3.1
16 chalcopyrite -9.0 0.03 5.7
20 pyrite -12.1 0.03 2.3
20 chalcopyrite -13.1 0.02 1.2
23 pyrite -15.5 0.03 -2.4
23 chalcopyrite -12.9 0.02 0.5
34 pyrite -12.1 0.03 2.2
34 chalcopyrite -14.4 0.03 -0.4
35 pyrite -12.3 0.02 2.0
35 chalcopyrite -13.8 0.01 0.3
36 pyrite -11.7 0.01 2.6
36 chalcopyrite -12.6 0.02 1.7
37 pyrite -9.4 0.01 5.0
37 chalcopyrite -11.5 0.03 2.8
39-5 pyrite -9.8 0.01 4.0
39-5 chalcopyrite -9.6 0.01 4.2
39-7.1 pyrite -9.9 0.04 3.8
39-7.1 chalcopyrite -10.1 0.01 3.6
39-9 pyrite -9.8 0.03 4.6
39-9 chalcopyrite -11.3 0.02 3.0
78 pyrite -20.8 0.01 -7.0
78 pyrite -23.6 0.01 -9.9
78 chalcopyrite -12.4 0.02 1.9
79 pyrite -10.3 0.03 4.1
79 chalcopyrite -13.6 0.02 0.6
80 pyrite -12.0 0.04 2.3
80 chalcopyrite -13.0 0.02 1.3
84 pyrite -11.8 0.02 1.7
84 chalcopyrite -13.0 0.03 0.4
89 pyrite -10.1 0.02 4.2
89 chalcopyrite -9.9 0.02 4.5
90 pyrite -10.4 0.02 3.3
90 chalcopyrite -9.7 0.02 4.1
DC-001 |pyrite -13.9 0.01 0.3
DC-001 |chalcopyrite -15.7 0.02 -1.6
DC-003 |pyrite -12.7 0.02 1.5
DC-003 |chalcopyrite -10.8 0.02 3.7
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Table 2. 6180VSMOW data collected from illite and quartz.

sample ID 6'80th 5"%0,, A gzl
SNF-13-006 10.2 9.8 0.4
SNF-13-008 10.1 9.6 0.5
SNF-13-025 host 8.2 8.7 -0.6
SNF-13-028 9.6 8.7 0.9
SNF-13-041 7.8
SNF-13-042 9.4

repeat 8.7

SNF-13-047 9.7 8.7 1.0
repeat 10.3

SNF-13-048 9.2 8.3 0.9

SNF-13-050 host 9.0 7.9 1.0

SNF-13-050 vein 9.3 9.8 -0.5

SNF-13-055 10.2
SNF-13-062 9.2 8.4 0.8
repeat 10.0

SNF-13-068 8.4
SNF-13-069 host 9.0 8.3 0.7
repeat 9.2

SNF-13-070 host 8.4
SNF-13-078 95| 109| -1.4
SNF-13-091 9.2 8.9 0.3
SNF-13-092 8.5
SNF-13-093 host 9.9
DC-001 host 95| 109| -1.4

DC-001 vein 10.0
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CHAPTER 6
DISCUSSION
Stable Isotopes-Sulfur
To determine the equilibrium temperature of pyrite-chalcopyrite pairs the equation of

Kajiwara & Krouse (1971) for temperatures between 250°C-600°C was used (equation 1).

Equation 1

1000 In0py.cpy=4.5(10°T?)

Table 3 shows calculated temperatures using the pyrite-chalcopyrite pair. All calculated
temperatures below 250 °C and above 1000 °C are not used for further calculations as they are
likely disequilibrium pairs (the two minerals did not precipitate from the same fluid).
Chalcopyrite is thermogenically unstable at lower temperatures, and the high-end temperatures
would not be produced by this kind of system. Contamination of one phase by the other during
sampling could explain the high-end temperatures, but is highly unlikely given the coarse-
grained nature of the samples. It is always possible that all calculated temperatures are from

disequilibrium pairs, and that some fortuitously yield temperatures within the realistic range.
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Table 3. §**S data from pyrite and chalcopyrite and calculated temperatures.
Calculations were done with the Kajiwara and Krouse (1971) equation. ‘Shallow’
samples were collected from 1040-1070ft above sea level; ‘deep’ samples were
collected from the stockpile.

Temp Range Average

Shallow 315-433 377.8
Deep 397-476 435.3

Sample Depth 5*'S KK Temp

36|shallow 0.9 433

80[shallow 1 397

20|shallow 1.1 366

84 |shallow 1.3 315

14|deep 1 397

90|deep 0.8 476

12|deep 0.9 433

Disequilibrium

35|shallow 1.7 241

78|shallow 9.9 -60

34|shallow 2.6 142

79]shallow 3.5 85

37|shallow 2.2 179

23|shallow 1.9 213

89|deep 0.3 951

39-5[deep 0.2 1226

39-7.1|deep 0.2 1226

16|deep 2.6 142

13|deep 0.1 1848

15]|deep 0.1 1848

dc-003|deep 2.2 179

dc-001|deep 1.9 213

39-9[deep 1.6 257
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It is important to note that the range of temperatures obtained here are ~100 °C higher
than those obtained by Cift¢i et al. (in press), in his fluid inclusion work. This will be discussed
further in the next section. Although these data are sparse and not statistically significant, there
is a difference of about 60°C across the 100 ft, vertical section of the stockwork zone, suggesting
a possible temperature gradient. It could be argued that as this system was convecting that there
would be no gradient, and that the temperature of the stockwork zone should be uniform.
Although this may be true at depth, modern MOR black smoker systems tend to be leaky near
the seawater interface (Koski et al., 1985), with cold seawater entering the system near the
interface and producing a temperature gradient.

Stable Isotopes-Oxygen
In order to determine fluid temperature using Aguart-iliite, the equation of Eslinger & Savin

(1973) for temperatures between 160°C-270°C was used (equation 3).

Equation 3

100010 Olguartz-iie=0.95 (10°T?) + 0.88

The calculated temperatures for the illite-quartz pairs are presented in table 4. The
temperature calculations show that the illite and quartz are in disequilibrium, meaning that no
single fluid phase at any temperature could yield the observed §'*O values for illite and quartz.
It is possible that the quartz present in the samples is either magmatic, such as the remnant
phenocrysts, or, more likely, it was formed from some different fluid than the one that formed

the illite. Thus we are unable to use the silicate data to determine temperatures of formation.
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Typical ore-formation temperatures of volcanogenic massive sulfide deposits range from 200-

400°C (Barnes, 1979, Lydon, 1988, Ciftci et al., in press, and Sato, T., 1977).

Table 4. 3'°0 data collected from illite and quartz and calculated temperatures.
Calculations using the Eslinger and Savin, 1973, equation. ‘N/A’ indicates ‘no
result for -70<T<2000.’

sample ID 80y, 8"°0y |A ypn |Temperature (O
SNF-13-006 10.2 9.8 0.4|N/A
SNF-13-008 10.1 9.6 0.5|N/A
SNF-13-025 host 8.2 8.7 -0.6|N/A
SNF-13-028 9.6 8.7 0.9IN/A
SNF-13-041 7.8
SNF-13-042 9.4

repeat 8.7

SNF-13-047 9.7 8.7 1.0[N/A
repeat 10.3

SNF-13-048 9.2 8.3 0.9IN/A

SNF-13-050 host 9.0 7.9 1.0|N/A
SNF-13-050 vein 9.3 9.8] -0.5[N/A

SNF-13-055 10.2
SNF-13-062 9.2 8.4 0.8|N/A
repeat 10.0

SNF-13-068 8.4
SNF-13-069 host 9.0 8.3 0.7IN/A
repeat 9.2

SNF-13-070 host 8.4
SNF-13-078 9.5 109| -1.4|N/A
SNF-13-091 9.2 8.9 0.3|N/A
SNF-13-092 8.5
SNF-13-093 host 9.9

DC-001 host 9.5 109| -1.4|N/A
DC-001 vein 10.0
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The temperatures calculated by Ciftci et al. (in press) are mostly too low for the
formation of chalcopyrite, which is the major ore mineral in this deposit (as well as other VMS
deposits). However, his calculations were done using fluid inclusion data from quartz. If we
trust that the quartz analyzed came from a different fluid and are not remnant phenocrysts, as the
lower temperatures suggest, then these temperatures represent a cooler, later stage fluid
responsible for the abundant silica in all of the rocks.

The illite data can be used to constrain the fluid source for this system. In order to
determine the fluid source the equations by Sheppard & Gilg (1996) (equation 4) and Savin &

Lee (1988) (equation 5), were used.

Equation 4

1000 In Oijite-water=2.39(10°77)-3.76

Equation 5

1000 In tjjite-water=2.39(10°T?)-4.19

Using the 5'®0y and a temperature determined by the sulfur isotope data, 5'*O of the
fluid from which the illite formed can be determined. These values are presented in table 5 and
figure 11, along with various references and data from a previous study (Greene et al., 1983). A
temperature of 350 °C has been chosen to represent the overall temperature of the system for
several reasons. This temperature represents the average of calculated temperatures using sulfur
stable isotope data (this study), as well as measured fluid inclusion minimum trapping

temperatures (Ciftci et al., in press). Chalcopyrite is stable at this temperature and forms by
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reaction of copper in solution with H,S produced via seawater sulfate reduction (discussed in a
later section) (Woodruff and Shanks, 1988). Burnham & Ohmoto (1980) show that at lower

temperatures (<300°C) illite is not stable and that kaolin group minerals begin to form.

Table 5. 8'°0 collected from illite and calculated water values for a given
temperature. ‘S+G’ refers to calculations done with the Sheppard and Gilg , 1996,
equation; ‘S+L’ refers to those calculated with the Savin and Lee, 1988, equation.
Colors correspond to relative depths. ‘Deep’ samples (white) were collected from
the stockpile and from 950-960ft above sea level. ‘Middle’ (light grey) samples
were collected from 960-1030ft above sea level. ‘Shallow’ (dark grey) samples
were collected from 1030-1070ft above sea level.

At 350 °C, S+G |At 350 °C, S+L |At250°C, S+G

Sample ID §"0ill %0 H,0 §'°0 H,0

SNF-13-025 host [Deep 8.7 6.3 6.7 3.7
SNF-13-041 Deep 7.8 54 5.8 2.8
SNF-13-042 Deep 9.3 6.9 7.3 4.3
DC-001 host Deep 10.9 8.5 8.9 5.9
DC-001 vein Deep 10 7.6 8.0 5.0
SNF-13-001 Deep 9.5 7.1 7.5 4.5
SNF-13-005 Deep 8.3 5.9 6.3 3.3
DC-002 Deep 7.8 5.4 5.8 2.8
SNF-13-090 Deep 8.4 6 6.4 3.4
SNF-13-002 Deep 9.4 7 7.4 4.4
SNF-13-006 Middle 9.8 7.4 7.8 4.8
SNF-13-008 Middle 9.5 7.1 7.5 4.5
SNF-13-028 Middle 8.7 6.3 6.7 3.7
SNF-13-047 Middle 8.7 6.3 6.7 3.7
SNF-13-048 Middle 8.3 5.9 6.3 3.3
SNF-13-050 host [Middle 7.9 5.5 5.9 2.9
SNF-13-050 vein [Middle 9.8 7.4 7.8 4.8
SNF-13-055 Middle 10.1 7.8 8.1 5.1
SNF-13-062 Middle 8.3 6.0 6.3 3.3
SNF-13-068 Middle 8.4 6.1 6.4 3.4
SNF-13-069 host [Middle 8.2 5.9 6.2 3.2
SNF-13-070 host [Middle 8.3 6.0 6.3 3.3
SNF-13-078 Shallow 10.8 8.5 8.8 5.8
SNF-13-091 Shallow 8.9 6.5 6.9 3.9
SNF-13-092 Shallow 8.5 6.1 6.5 3.5
SNF-13-093 host [Shallow 9.8 7.5 7.8 4.8
SNF-13-019 Shallow 8.9 6.6 6.9 3.9
SNF-13-081 Shallow 9.6 7.2 7.6 4.6
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Figure 11. Plot of 8'0 values. Shaded vertical areas show the range of
measured illite 3'°0 as well as the calculated 5'®O values of water at different
temperatures (using the Sheppard and Gilg, 1996, equation) in reference to
SMOW, the meteoric water line, and the primary magmatic water box. Note that
the range of 8'*O for whole rock analyses of Kuroko district dacites from
Greene at al., (1983) shows values that overlaps values for illite.
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Formation of Murgul
Oxygen

With these data we are able to confirm how the Murgul deposit was formed and that it is
indeed a VMS deposit (figure 12). Seawater sulfate with a 8'*O value of 0 %/ circulates through
and exchanges with basalt as well as mixes with convecting hydrothermal fluids. This mixed
fluid continues convecting through the basalt and, due to a very low water/rock ratio, takes on
the isotopic signature of the basalt. The fluid then exits the system via black smokers or vents
with a §'%0 5-8 0/00, the same as the basalt. Due to isotopic fractionation, where the heavier and
lighter isotopes of an element are fractionated into different phases (solid, liquid, or gas), the
illite formed from this fluid has an enriched isotopic content than the water by +2.39 %, (using
the Sheppard and Gilg, 1996, equation). The isotopic data collected correspond with the values
we would expect to see if Murgul was formed at or near the seafloor, 8-11 0/00. If it was formed
near the Earth’s surface (figure 13) as a vein deposit, the resulting 5'*O values of illite would be
significantly higher (+3-4 %) than collected here. The fluid in this system would be a mix of
hydrothermal fluids and meteoric water with a negative 5180 (here we use -5 0/00 for
demonstrative purposes). Since this system would also have a very low water/rock ratio, the
fluid would take on the isotopic signature of the felsic crust (5'*0 8-11%go) and the resulting §'*O
values of illite would be 11-13 0/00.

Whole-rock 8'*0 analyses of dacites of the Fukazawa Kuroko VMS deposit (Greene et
al., 1983) show a similar 8'*0 range when compared to our illite analyses (figures 11 and 12).
Samples collected at Murgul for this study are mineralogically analogous to what Greene et al.,

(1983) call zone III, sericitet+chlorite. The §'*0 data collected by Greene et al., (1983), ranges
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from 5.5-10.5 /o0, in agreement with the range of data collected in this study for illite and the

range of calculated fluid values at 350°C, approximately 6-11 °/,, in total,

Fukazawa

Legend

0 1KM
v Kuroko Ore body I I

06.0 80, (°/ ) value

Figure 12. Distribution of whole-rock 8'*0 values of dacites in the Fukazawa
area, zone III, modified from Greene et al., (1983).
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Sulfur
When the seawater sulfate mixes with convecting hydrothermal fluids within the basalt,

the sulfate is thermogenically reduced to sulfide and forms H,S (reaction 1, taken from Woodruff

and Shanks, 1988).

Reaction 1
8Fe'*+10H +S0?<=>8Fe*+H,S+4H,0

The 8**S of the sulfide, like the 8'*0, takes on the isotopic signature of the basalt as it
continues convecting through it. This occurs because the sulfide portion of basalt is highly
soluble at 350°C (Woodruff and Shanks, 1988), enabling it to become incorporated into the
mixed fluid. When the fluid exits the system via black smokers or vents, water is released into
the sea and the massive ore is formed. To form the massive ore, H>S combines with iron and
copper ions to form chalcopyrite (reaction 2, taken from Woodruff and Shanks, 1988), which

precipitates due to reduced solubility at colder temperatures.

Reaction 2

4Cu*+4Fe?+8H,S=>4CuFeS,+2H,+12H"

Since the amount of copper is limited, pyrite precipitates as well. If Murgul was a vein-
type deposit, meteoric water would enter the system and mix with the hydrothermal fluid. Since
there is no seawater sulfate in this system the amount of sulfide is limited to only what is soluble
within the crust, so there would not be enough sulfide to form a massive ore or a mineralized

stockwork system like we see here.
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Sulfur Oxygen
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H,S sulfides,
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&0

Hydrothermal fluids

s0?, formation of chalcopyrite
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Figure 13. Schematic showing the formation of the Murgul deposit (as a VMS).
Right: Oxygen story. Seawater enters the system at 5O 0 “/qo. It circulates and
convects through basalt (8'*0 5-8 /), taking on the isotopic signature of the basalt
via isotopic exchange. The resulting fluid (80 5-8 %) cools and deposits illite,
which is isotopically enriched compared to the fluid (5'%0 8-11 %q). Left: Sulfur
story. Seawater sulfate enters the system and (via circulation and convection)
mixes with hydrothermal fluids. The mixing of these fluids reduces sulfate to
sulfide, forming H,S. As the fluid exits the system it cools, causing the H,S to
combine with (no longer soluble) iron and copper ions, forming chalcopyrite both in
the stockwork zone and as the massive ore.
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Figure 14. Schematic showing the formation of the Murgul deposit (as a vein
deposit). Meteoric water with 5'%0 -5 0/00 enters the system. It circulates and
convects, undergoing isotopic exchange with the felsic crust (50 8-11 %) and
mixing with hydrothermal fluids. The resulting fluid takes on the isotopic
signature of the crust, 8'*0 8-11 %po. As it exits the system it cools, depositing
sulfides and an isotopically enriched illite (6180 11-13 O/00).
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CHAPTER 7
CONCLUSIONS
The isotopic data collected are consistent with ore forming fluid temperatures of 315°C-

476°C within the stockwork zone of Murgul. Fluid inclusion data collected by Cifti et al. (in
press) suggest a secondary, silica-rich fluid with temperatures of 160 °C-295 °C within the
stockwork zone. By back-calculating the isotopic values of water that coincide with illite and an
average temperature of 350 °C it is clear that the emplacement environment for the Murgul
deposit is at or near the seafloor, making it a VMS deposit.

Despite statistically insignificant data, the data do show a temperature variation with depth. The

average temperature for shallow samples is 377.8°C and the average temperature for deep

samples is 435.3°C. It is possible that there is a temperature gradient throughout this system, but

with a lack of data from middle samples it is also possible that there is no gradient.
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APPENDICES
APPENDIX A
XRD patterns of samples. These are ordered first by depth (shallow, middle, deep),
secondly numerically by sample name, and lastly by whether there is a significant amount of

sulfide (shown in pattern).
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APPENDIX B
Drill hole sample pictures, displaying the sample as well as the drill locations for the
stable isotope work. They are ordered numerically, split into silicate and sulfide sections.
Silicates
Scale bar is in cm, broken into mm. Black arrows point to quartz locations, yellow

arrows point to illite locations.
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Sulfides
Scale bar is in cm, broken into mm. Orange arrows point to chalcopyrite locations, red arrows

point to pyrite locations.
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