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Abstract

A variety of ecological models exhibit chaotic dynamics because of nonlinearities in pop-

ulation growth and interactions. Here, we will study the LPA model (beetle Tribolium). The

LPA model is known to exhibit chaos. In this project, we investigate two things which are

the effect of noise constant and the effect of diffusion combined with the LPA model. The

effect of noise is to blur the bifurcation diagram. Numerical simulations of the model have

shown that diffusion can drive the total population of insects into complex patterns of vari-

ability in time. We will compare these simulations with simulations without diffusion. And

we conclude that the diffusion coefficient is a bifurcation parameter and that there exist

parameter regions with chaotic behavior and periodic solutions.
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Chapter 1

Introduction

Chaos is one aspect of the larger subject known as dynamics. This is a subject that deals with

change, i.e. with systems that evolve in time. To determine whether the system in question

settles down to equilibrium, keeps repeating in cycles, or does something more complicated,

we analyze the dynamics to understand the behavior. There are two main types of dynamical

systems; differential equations and difference equations. Differential equations describe the

evolution of systems in continuous time, whereas difference equations arise in problems where

time is discrete. Difference equations are very useful, both for providing simple examples of

chaos, and also as tools for analyzing periodic or chaotic solutions of differential equations.

Population growth is an example of a dynamical system. In this case, we analyze the

population fluctuations. Population fluctuations depend on the stability of fixed points; stable

points are where every trajectory goes to a fixed point, stable periodic trajectories occur when

population numbers oscillate among a finite number of values and there is a limit cycle around

the fixed point, aperiodic cycles occur when populations oscillate but the characteristics of

the oscillation can change, and chaos which provides an unusual, apparently random, and

intuitively unexpected prediction of population behavior.

A variety of ecological models exhibit chaotic dynamics because of nonlinearities in pop-

ulation growth and interactions. Here, we will study a system which is difference equation,

say the LPA model (beetle Tribolium). The LPA model is known to exhibit chaos. It has

been argued that it is the only uncontroversial confirmation of chaos in a biological popula-

tion [9]. In this project, we investigate the effect of diffusion combined with the LPA model.

Numerical simulations of the model have shown that diffusion can drive the total population
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of insects into complex patterns of variability in time. We will compare these simulations

with simulations without diffusion. And we conclude that the diffusion coefficient is a bifur-

cation parameter and that there exist parameter regions with chaotic behavior and periodic

solutions.



Chapter 2

Background

2.1 Possible Dynamics in Mathematical Biology Systems

The following discussion is based on Britton’s book [6].

2.1.1 First-Order Equations

We shall consider the first-order difference equation.

Nt+1 = f(Nt) (2.1)

also called a recurrence equation or map, to be solved with the initial condition N0 given.

This defines a sequence N0, N1, N2 ... , called a solution of the equation with the initial

condition. It is stable if another solution N
′
0, N

′
1, N

′
2,... remains close to the first solution

whenever it starts close, that is |Nt −N
′
t | is small for all t whenever |Nt −N

′
t | is small, and

asymptotically stable if also |Nt−N
′
t | → 0 as t →∞. It is neutrally stable if it is stable but

not asymptotically stable. It is a steady state (or fixed point or equilibrium) solution

if Nt = N∗ for all t; it is clear from Equation (1) that the condition for N∗ to be a steady

state is that N∗ = f(N∗). It is periodic of period p if Nt+p = Nt for all t, but Nt+q 6= Nt

for all t and any q < p, and aperiodic if it is not periodic.

Linearization of the system

Let N∗ be a fixed point, and let n = N − N∗ be a small perturbation away from N∗. To

see whether the perturbation grows or decays, plug the perturbation into Equation (1) and

subtract N∗ = f(N∗) then Equation (1) gives

nt+1 = f(N∗ + nt)− f(N∗) = f ′(N∗)nt + h.o.t (2.2)

3
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where h.o.t. stands for higher order terms.

Let us assume that for nt sufficiently small the higher order terms are negligible. Then we

may infer that the solution of Equation (1) behaves similarly to that of the approximating

equation

nt+1 = f ′(N∗)nt (2.3)

This is known as the linearized equation. The solution is nt = n0f
′(N∗)t. Letting λ =

f ′(N∗), the steady state is oscillatorily unstable, oscillatorily asymptotically stable, monoton-

ically asymptotically stable or monotonically unstable according to whether λ < −1,−1 <

λ < 0, 0 < λ < 1 or 1 < λ respectively. The condition for asymptotic stability is

|λ| = |f ′(N∗)| < 1

and if |λ| = 1 the steady state is stable but not asymptotically stable. The use of the notation

λ reflects the fact that the place of f ′(N∗) will be taken by the eigenvalues of a matrix for

systems of equations and we shall often refer to f ′(N∗) itself as an eigenvalue.

2.1.2 Systems of Nonlinear Difference Equations

We shall consider second-order systems of the form

Nt+1 = f(Nt, Pt), Pt+1 = g(Nt, Pt) (2.4)

although the results may be extended to systems of higher dimension. Some new kinds

of behavior occur here, and we need some definitions. An invariant curve is a curve Γ in

(N,P )-space such that if (N0, P0) ∈ Γ, then (Nt, Pt) ∈ Γ for all t > 0. Such a curve is stable

if a solution remains close to it whenever it starts close to it, and asymptotically stable if the

distance between such a solution and the curve tends to zero as t →∞. A solution Nt which

starts and therefore remains on a closed invariant curve Γ may either return to its starting

point after a finite number of steps, or not. We say it has a rational or irrational rotation

number, respectively.
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Linearization of systems

Let us assume that there exists a steady state (N∗, P ∗) of this system; it satisfies Equation

(2). Perturbations from this steady state may be defined by (n, p) = (N,P ) − (N∗, P ∗).

Linearizing about the steady state, in the same way as was done for the first-order equation,

we obtain the approximate equations

nt+1 =
∂f

∂N
(N∗, P ∗)nt +

∂f

∂P
(N∗, P ∗)pt (2.5)

nt+1 =
∂g

∂N
(N∗, P ∗)nt +

∂g

∂P
(N∗, P ∗)pt (2.6)

or

nt+1 = J∗nt (2.7)

where n is the column vector (n, p)T , J is the Jacobian of the transformation and J∗ =

J(N∗, P ∗)

J(N,P )=


fN(N, P ) fP (N,P )

gN(N, P ) gP (N, P )


 and a star denotes evaluation at the steady state.

(1) if trace(J∗) < 0 and determinant(J∗) > 0 then, the steady state is stable

(2) if trace(J∗) > 0 and determinant(J∗) > 0 then, the steady state is unstable

2.2 Bifurcation and Chaos

The following discussion is based on Strogatz’s book [5]

2.2.1 Definition of Bifurcation and Chaos

Bifurcation

The qualitative structure of the solution can change as parameters are varied. In particular,

fixed points can be created or destroyed, or their stability can change. These qualitative

changes in the dynamics are called bifurcations, and the parameter values at which they

occur are called bifurcation points.
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Bifurcations are important scientifically – they provide models of transitions and insta-

bilities as some control parameter is varied. For example, consider the buckling of a beam.

If a small weight is placed on top of the beam, the beam can support the load and remain

vertical. But if the load is too heavy, the vertical position becomes unstable, and the beam

may buckle. Here the weight plays the role of the control parameter, and the deflection of

the beam from vertical plays the role of the dynamical variable.

Chaos

No definition of the term chaos is universally accepted yet, but almost everyone would agree

on the three ingredients used in the following working definition:

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive

dependence on initial conditions.

1. “Aperiodic long-term behavior” means that there are trajectories which do not settle down

to fixed points, periodic orbits, or quasiperiodic orbits as t → ∞. For practical reasons, we

should require that such trajectories are not too rare. For instance, we could insist that there

be an open set of initial conditions leading to aperiodic trajectories, or perhaps that such

trajectories should occur with nonzero probability, given a random initial condition.

2. “Deterministic” means that the system has no random or noisy inputs or parameters. The

irregular behavior arises from the system’s nonlinearity, rather than from noisy driving

forces.

3. “Sensitive dependence on initial conditions” means that nearby trajectories separate expo-

nentially fast, i.e., the system has a positive Liapunov exponent (which I’ll explain later)

2.2.2 Bifurcation Parameter

In this section, we will discuss bifurcation and chaos with an example of the logistic-like

equation [8].

Nt+1 = cN2
t (1−Nt) (2.8)
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Here Nt ≥ 0 is a dimensionless measure of the population in the t-th generation and c ≥ 0

is the intrinsic growth rate. We restrict the control parameter c to the range 5 ≤ c ≤ 6.6 to

see well-behaved solutions. For many values of c, the sequence {Nt} never settles down to a

fixed point or a periodic orbit. This is a discrete time version of chaos.

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time

N

c = 6.0

Figure 1: Time-series of logistic equation solution for c = 6.0

One might guess the system would become more and more chaotic as c changes, but in

fact the dynamics are more subtle than that. To see the long-term behavior for all values of

c at once, we plot the bifurcation diagram1 (Figure 2).

Smoothly distributed parts in Figure 2 are evidence of chaos, and the lines represent

periodic cycles. For C ∈ [5, 5.8], it shows periodic behavior and for C ∈ [5.9, 6.2], it shows

chaotic behavior. For C=5.4, the bifurcation occurs from 1 to 2 periodic cycles. From the

bifurcation diagram, we can see the long-term behavior as the control parameter, C, changes.

1The bifurcation diagram shows the possible long-term values a variable of a system can obtain
as a function of a parameter of the system.
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Liapunov Exponent

We have seen that the logistic map can exhibit aperiodic orbits for certain parameter values,

but how do we know that this is really chaos? Here is the intuition. Given some initial

condition x0, consider a nearby point x0 + δ0, where the initial separation δ0 is extremely

small. Let δn be the separation after n iterates. If |δn| ≈|δ0|enλ, then λ is called the Liapunov

Exponent (λ is defined to be the long-term exponential rate of divergence between two

trajectories with an infinitesimally small difference in their initial conditions). A positive

Liapunov exponent is a signature of a chaotic system, while a negative or zero Liapunov

exponent represents a non-chaotic system. Figure 3 is a plot of the Liapunov exponent in

the logistic equation as a function of C. We can compare it with Figure 2. For C ∈ [5, 5.8],

λ (Liapunov exponent) is negative which means it shows periodic behavior. In Figure 3, for

that interval ([5,5.8]), it shows lines (periodic solutions). And for C ∈ [5.9, 6.2], λ is positive

which means it shows chaotic behavior, as you see in Figure 2.

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

P
o
p
u
la

ti
o
n

Bifurcation diagram

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
−12

−10

−8

−6

−4

−2

0

2

C

λ

Liapunov Exponent

Figure 2 : Bifurcation diagram, Figure 3: Liapunov Exponent
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2.3 Diffusion

The following discussion is based on Brown’s book [10]. and Murray’s book [11]

Transport is one of the fundamental processes of biology. Animals move from regions of

high to low density because of shortage of resources, or in a trial-and-error search for better

conditions. They also need to search for food and for a mate. Plant seeds disperse to avoid

competing with the parent plant. On a smaller scale, materials need to be transported from

the site of synthesis within the organism to the utilization site, for metabolism or growth or

some other need.

Diffusion is a form of transport due to the continual random motion of particles. This

ranges from the Brownian motion of very small particles (named after the biologist R. Brown

who first wrote about the random walks of invertebrates and small animals, such as those

of the larvae of Trichostrongylus retortaeformis). In these cases, the random motion usu-

ally results in a rate of spread from one region to another which is proportional to the

concentration difference between the two regions.

2.3.1 Diffusion Model

Suppose a particle moves randomly backward and forward along a line in fixed steps ∆x

that are taken in a fixed time ∆t. If the motion is unbiased then it is equally probable that

the particle takes a step to the right or left. After time N∆t the particle can be anywhere

from -N∆x to N∆x if we take the starting point of the particles as the origin. The spatial

distribution is clearly not going to be uniform if we release a group of particles about x = 0

since the probability of a particle reaching x = N∆x after N step is very small compared

with that for x nearer x = 0.

2.3.2 Example of Diffusion

One of the classic examples of diffusion as applied to animal dispersal is that of the muskrat

which spread across entire countries within a decade or two. The spread was so fast because
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the new center of population acted as breeding colonies in their own right, and this very

much accelerated the spread. If the population locally is reproducing at a rate, ρ, and the

density is denoted by N , then the growth rate for unaided diffusion is incremented by ρN ,

and so we obtain the equation

∂N

∂t
= D

∂2N

∂2x
+ ρN (2.9)

where, D is diffusion coefficient. The first term is diffusion term and the second term is

growth term.

2.3.3 Rule for Interaction between Spatial Points

When we consider the diffusion equation in a discrete context on a line, there must be a rule

for movement between spatial points (bins). Suppose we have 10 different bins (groups), a

fraction of the population can move to an adjacent bin (each bin has 2 adjacent bins which

are its left and right bins except for the initial and final bins which are the 1st and 10th

bins.) at each time step. And let’s assume that the rate of diffusion, called d, is the same in

both directions.

From the 2nd bin to 9th bin, the diffusion process (see Figure 4) is the same. But the 1st

bin and 10th bin will have different diffusion processes. Eq (2.10) is the diffusion equation

for the 2nd to 9th bin. In this process, adults in the jth bin move at rate d to the (j − 1)st

and (j +1)st bins and adults in the (j− 1)st and (j +1)st bins move at rate d to the jth bin

N j
t+1 = N j

t + d(N j+1
t − 2N j

t + N j−1
t ) (2.10)

where 2 ≤ j ≤ 9, t = time, and j = space. Note that second term of the right hand side

equation is a finite difference version of the diffusion term above.

Eq (2.11) is the diffusion equation for the 1st bin. Here, the adults in the 1st bin move

at rate d to the 2nd bin and the adults in the 2nd bin move at rate d to the 1st bin.

N j
t+1 = N j

t + d(N j+1
t −N j

t ) (2.11)

where j=1.
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Eq (2.12) is the diffusion equation for the 10th bin. Here, the adults in the 9th bin move

at rate d to the 10th bin and the adults in the 10th bin move at rate d to the 9th bin.

N j
t+1 = N j

t + d(N j−1
t −N j

t ) (2.12)

where j=10.

Figure 4 : the rule for diffusion process; j indicates j-th bin.



Chapter 3

Methods and Data

3.1 LPA Model with Stochastic Terms

Many species of Tribolium (flour beetle) are cannibalistic, including the species Tribolium

castaneum that we analyze in this thesis. The following model, which is called the LPA

model, describes the dynamics of larval, pupal, and adult Tribolium populations at time

t + 1 as a function of the populations at time t by means of a system of three difference

equations

Lt+1 = bAt exp(−CelLt − CeaAt + E1t) (3.1)

Pt+1 = Lt(1− µl) exp(E2t) (3.2)

At+1 = [Pt exp(−CpaAt) + At(1− µa)] exp(E3t) (3.3)

In this model [1], Lt is the number of feeding larvae (referred to as the L-stage) at time

t, Pt is the number of large larvae, non-feeding larvae, pupae, and callow adults (collectively

the P-stage) and At is the number of sexually mature adults (A-stage animals). The unit of

time is taken to be the feeding larval maturation interval so that after one unit of time a

larva either dies or survives and pupates. The unit of time is 2 weeks and is, approximately,

the average amount of time spent in the feeding larval stage under standard experimental

conditions described in the reference [1]. The unit of time is also approximately the average

duration of the P-stage. The quantity b is the number of larval recruits per adult per unit

time in the absence of cannibalism. The fractions µl and µa are the larval and adult rates of

mortality, respectively, in one time unit.

12
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The exponential nonlinearities account for the cannibalism of eggs by both larvae and

adults and the cannibalism of pupae by adults. The fractions exp(−CelLt) and exp(−CeaAt)

are the probabilities that an egg is not eaten in the presence of Lt larvae and At adults,

respectively, in one time unit [1]. The fraction exp(CpaAt) is the survival probability of a pupa

in the presence of At adults in one time unit. The terms E1t, E2t and E3t are random noise

variables assumed to have a joint multivariate normal distribution with a mean vector of zeros

and a variance-covariance matrix denoted by Σ (The variance-covariance matrix is estimated

from experimental data in [1]. The maximum likelihood estimates in the variance-covariance

matrices are σ11 = 0.3412, σ22 = 0.2488, σ33 = 1.627 × 10−4, σ12 = 7.312 × 10−2, σ13 =

−1.719×10−3, and σ23 = 3.374×10−4). The deterministic skeleton of the model is identified

by setting
∑

= 0, or equivalently, by letting E1t, E2t and E3t equal to zero in Eqs. 1–3.

The noise variables represent unpredictable departures of the observations from the deter-

ministic behavior (resulting from environmental and other causes) and are assumed to be

correlated with each other within a time unit but uncorrelated on longer time scales. These

assumptions were found acceptable for many previous data sets by standard diagnostic anal-

ysis of time-series residuals. The adult mortality rate, µa, may be experimentally set to 0.96

by removing or adding adults at time of census. In Costantino et al. 1997 [1], recruitment

into the adult stage was manipulated by removing or adding young adults at the time of

census to make the number of new adult recruits consistent with the treatment value of Cpa..

3.2 Various Dynamics with LPA Model

In this section, we will discuss population evolution solutions for the LPA model. By using

numerical iteration (with MATLAB), we will describe the dynamics of the total population

(larvae+pupae+adults) versus time for each fixed parameter, Cpa. In this description, we

will see when we change Cpa, the evolution of the total population will be changed from

steady state (equilibrium) to periodic cycles or periodic cycles to chaos. The results will be
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the same with the bifurcation diagram of the total population which we will discuss in next

section.

3.2.1 Numerical Method

Here, we assume that E1t, E2t and E3t in Eqs. 1–3 are zero. By changing the parameter, Cpa,

the population dynamics changes giving rise to bifurcations in dynamics. In the case where

Σ = 0, for each Cpa, the dynamics of the adult population shows a stable equilibrium,

periodic cycles or chaos. For the deterministic skeleton, we iterated the LPA model for 10000

steps to see the long term behavior of the total population. Fixing Cpa, we calculate the total

population for each time point. And then we graphed the total population as a function of

time. These graphs give us a good visualization of the dynamics of the total population.

By changing Cpa, we can conclude that the dynamics of the total population has different

asymptotic behaviors (stable equilibrium, periodic cycles and chaos). In the next section, we

will graph some solutions (3 different cases; stable equilibrium, periodic cycles and chaos).

3.2.2 Dynamics of the Total Population

Here, we plot three different total population dynamics; steady state, periodic and chaotic

behavior (see Figure 5).

For Cpa = 0.0, there is a horizontal straight line; we call it a stable equilibrium or steady

state. That means the population of adults does not change after some time (or long time).

In this case, the dynamics is very simple. It’s easy to predict long term behavior of the total

population since the population dynamics does not change.

For Cpa = 0.55 and 0.9, these graphs show periodic cycles. As you see in the two graphs,

the total population is oscillating periodically. For Cpa = 0.55, there are 8 periodic cycles.

And for Cpa = 0.9, there are 3 periodic cycles.

For Cpa = 0.1, 0.3 and 0.45, the graphs show aperiodic cycles or chaos. These solutions

are oscillating. However there is no fixed period for oscillations.
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Figure 5: Dynamics of the LPA model for different values of Cpa

Now, from the above graphs, we know that the parameter, Cpa, determines the nature of

bifurcations.

3.2.3 Histogram

In this section, we will see the density of the total population for the values of Cpa in the

previous Figure. In the above, we showed the dynamics of the LPA model for different values

of Cpa.

Figure 6 is the histogram of the dynamics of the total population for each Cpa. This

Figure shows how many times the solution has a value within a given population bin for

various values of the Cpa. As you see in Figure 6, for Cpa = 0, the histogram shows 1 vertical

line since there is an equilibrium in Figure 5.

For Cpa = 0.55, the histogram shows 8 vertical lines since it takes on 8 different values in

one cycle and for Cpa = 0.9, the histogram shows 3 vertical lines since it takes on 3 different

values in one cycle in Figure 5.

For Cpa = 0.1, 0.3 and 0.45, chaotic solutions, the solution gives a distribution of values.
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Figure 6: The histogram of the Dynamics of the LPA model for different values

of Cpa

3.3 Bifurcation Diagram without Random Noise

Above, we showed when the parameter Cpa is changed, the dynamics of adult population also

changes. In this section, we investigate the dynamics of total insect-population by changing

Cpa via the bifurcation diagram.

3.3.1 Numerical Method

For the case Σ = 0 and b = 6.598, Cel = 1.209 × 10−2, Cea = 1.155 × 10−2, µl = 0.2055,

and µa = 7.629× 10−3 [1], we plot the bifurcation diagram. In this thesis, the initial values

are from [1] which are 250 larvae, 50 pupae and 100 adults. The number of time steps is

6400 steps. The last 200 time points are assumed to represent the asymptotic behavior of

the solutions and are used to calculate the density bifurcation diagram (see below).
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3.3.2 Density Bifurcation Diagram

The bifurcation diagram conveys information about how the dynamics of the total population

changes as a function of the parameter, Cpa. In this plot, we plot the population density (i.e.

histogram) as a function of Cpa. Figure 7 is the density bifurcation diagram of the total

population for the LPA model. In Figure 7, black means zero population and white indicates

high populations with gray scales in between.

Smoothly distributed regions are evidence of quasiperiodicity or chaos, and the sharp lines

represent periodic cycles. For Cpa = 0.0, the population dynamics shows a stable equilibrium

(not shown in Figure 5). For Cpa ∈ [ 0.1, 0.3 ], chaotic behavior occurs. Again, for Cpa ∈
[ 0.1, 0.2 ], and 0.45, it shows chaos. For Cpa = 0.75 and 0.9, there are 8 lines and 3 lines,

respectively. Those lines mean that the dynamics of population has 8 periodic cycles or 3

periodic cycles. In this region of parameter space, if we change the initial values, the solution

may change and the trajectory may enter a different periodic attractor.

Figure 7: Density Bifurcation diagram for total population numbers (L-stage+P-

stage+A-stage) using deterministic skeleton (
∑

= 0)
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3.4 Bifurcation Diagram with Noise

Let us look at the LPA Model (Eq 1-3) again. In the above section, we ignored the noise

terms which are E1t, E2t and E3t. The reason is that if we ignore the noise terms in the LPA

model, then we can see the dynamics of population easily for each species. This means that

we can predict the behavior of the population exactly for some parameters.

Now, if there are noise terms, what happens in the LPA model? In this section, we will

discuss the effect of stochastic terms in the LPA model. And we will show when we change the

noise constant, called ε (which is a constant multiplying Σ), what occurs in the bifurcation

diagram. We will show the bifurcation diagram as a function of the amplitude of the noise.
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Figure 8: Density bifurcation diagram for various noise constant.
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For very small amplitude noise, the form of the graph looks similar to the bifurcation

diagram without noise terms. However, we can no longer predict where we can be sure of

periodicity. For ε = 0.001, there is a 3-periodic cycle around Cpa = 0.9. If we choose the

noise constant small enough, then the bifurcation diagram will approach the old bifurcation

diagram. The effect of noise is to blur the bifurcation diagram. Structure is still apparent

even for ε = 0.1. But, as the noise constant increases, more and more structure is destroyed.



Chapter 4

Diffusion

The few ecological studies of chaos in spatial systems consider models in discrete time and

space [3] or in discrete time and continuous space [4]. In all these models, the diffusive

dispersal of organisms drives the biological system (prey-predator or host-parasitoid system)

into chaotic dynamics. The results of discrete models cannot be applied directly to nonlinear

interactions and dispersal in continuous time and space. It is well known that discrete models

exhibit chaos more readily than their continuous counterparts. For example, chaotic dynamics

is possible for discrete time models of even a single species, but require at least three variables

in continuous time. In this section, we will investigate the behavior of the insect population

with diffusion.

Simulations of the model have shown that diffusion can drive adults into complex patterns

of variability in time. The main point of my thesis is to determine whether these patterns

are chaotic. We will demonstrate that there is diffusion–induced chaos and diffusion–induced

periodicity in the LPA model with diffusion.

4.0.1 The Model

To pose the problem in its simplest form, we will assume that we are investigating the

deterministic skeleton and Σ = 0. We will also assume that only adults move to other insect

niches and no unpredictable external factors are acting. We set the rate of diffusion, d, to be

the same for all niches.

With these assumptions, we can generalize the LPA model to include the effects of dif-

fusion. Consider a single dimension along which adults diffuse at the same constant rate d.

22
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Larvae and pupae do not move. Thus, there is no diffusion term in the populations of larvae

and pupae .

Lj
t+1 = bAj

t exp(−CelL
j
t − CeaA

j
t); (4.1)

P j
t+1 = Lj

t(1− µl); (4.2)

where j is jth bin and t is the time

Now, consider the dynamics of the adult population. We will assume that adults can

diffuse between bins. The equations in this case become

Aj
t+1 = P j

t exp(−CpaA
j
t) + Aj

t(1− µa) + d(Aj+1
t − 2Aj

t + Aj−1
t ) (4.3)

Aj
t+1 = P j

t exp(−CpaA
j
t) + Aj

t(1− µa) + d(Aj−1
t − Aj

t) (4.4)

Aj
t+1 = P j

t exp(−CpaA
j
t) + Aj

t(1− µa) + d(Aj+1
t − Aj

t) (4.5)

where d is a diffusion coefficient.

Eq (4.3) is the case for interior bins, Eq (4.4) is the case for the right boundary, and Eq

(4.5) is the case for the left boundary.

Numerical Method

For the case Σ = 0 and the parameter which we indicated in section 3.4.1, we plot the density

bifurcation diagram for the LPA model with diffusion. The time iteration is 64000 steps. We

consider 10 bins. When we change the diffusion coefficient, we will see the dynamics change.

We will show results from two cases; Cpa = 0.55 (periodic when d = 0) and Cpa = 0.3

(chaotic when d = 0).

Density Bifurcation Diagram

Figure 9 is the diffusion density bifurcation diagram for Cpa = 0.55. For various values of the

diffusion coefficient, the total population density changes. The first figure of Figure 9 has

a range of diffusion coefficient from 0.001 to 0.02 and below two graphs are for d = 0.001
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to 0.0015 and for d = 0.017 to 0.02. For d = 0.001 to 0.005, it seems that there are only

periodic cycles. However, between periodic cycles, some chaotic behavior occurs. For d ∈
[0.005 0.0173], chaotic behavior occurs. In that region, periodic cycles do not appear. Look

at the right figure of Figure 9. This figure is focused on the range of d from 0.0170 to 0.02. As

you see it, the bifurcation occurs at d = 0.0177 from chaotic to periodic cycles and again for d

= 0.0183, the periodic cycles change to chaotic behavior. For this parameter (Cpa = 0.55), we

conclude that changing the diffusion coefficient can induce either chaos or periodic dynamics.

Figure 9: Diffusion Density Bifurcation diagram for total population numbers with

diffusion (Cpa = 0.55) using deterministic skeleton (
∑

= 0)
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Figure 10 shows the diffusion density bifurcation diagram for Cpa = 0.3. For d = 0, there

is chaotic behavior. For d 6= 0, for various values of d, there are both chaotic and periodic

cycles. Almost all regions exhibit chaos, however, for d = 0.0186, the bifurcation occurs from

chaotic to periodic cycles. In this case, the diffusion coefficient induces periodic cycles in a

previously chaotic system.

Figure 10: Density Bifurcation diagram for total population numbers with diffu-

sion (Cpa = 0.3) using deterministic skeleton (
∑

= 0)



Chapter 5

Conclusion

We discussed the dynamics of total population with the LPA model. In this discussion, we

used the density bifurcation diagram (without noise and with noise) to see the dynamics.

The effect of noise is to blur the density bifurcation diagram. Small-scale features blur

most easily and large-scale features retain their characteristics longer as the amplitude of

noise increases. In the experimental setting (ε = 1), therefore, in the last panel of Figure 8,

we show predicted population densities for Cpa = 0 to 1. No fine detail is visible. The only

relic of the solution is the change in the lower population limit as a function of Cpa. Even if

the noise constant is large enough, the dynamics of total population is not extinct.

In the diffusion case, we have shown that there is another parameter that may induce

chaos, the diffusion coefficient, d. Conversely, we have also shown that diffusion can also

induce periodicity in a previously chaotic system.

Can diffusion induced chaos be observed? In an experimental setting, if the equations

for the evolution of the system are unknown, then one is at most able to determine if

the dynamics is chaotic or not. However, in deliberately designed experiment, when the

equations for the dynamics are known and the diffusion coefficient can be freely control, one

can certainly study if diffusion induced chaos has occurred and what diffusion coefficient

level can induce chaos.
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