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Abstract

The uniaxially anisotropic 3D Heisenberg antiferromagnet model in an external field

has been attracted great interest during recent decades, in particular, in its structures and

phase transition behaviors in an applied magnetic field. It has been known that it displays an

antiferromagnet (AF) phase (where spins from two sublattices tend to be aligned in opposite

directions along the z axis) in low field and temperature and a spin-flop (SF) phase (where

spins from two sublattices have the same z components but opposite xy components) and

paramagnetic (P) phase (where spins are aligned in the same z direction). The meeting point

of three phases is the multicritical point, however, the nature of the multicritical point has

been controversial. It has been suspected that there exists a biconical structure between

the AF and SP phase, and, the bicritical point is substituted with a tetracritical point.

We study the phase transition near the multicritical point using Monte Carlo simulation to

detect any evidence of the biconical phase. In addition, phase transitions near critical point

are discussed. Results are compared to previous findings.

Index words: 3D Heisenberg Model, histogram reweighting, bicritical point, phase
transition
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Chapter 1

Introduction

1.1 Background

There has been great interest in uniaxially anisotropic Heisenberg antiferromagnets in a

magnetic field for many years. Most past studies focus on the phase diagram of the XXZ

model. [1] Its Hamiltonian is described as:

H = −J
∑
i,j

[∆(Sx
i S

x
j + Sy

i S
y
j ) + Sz

i S
z
j ]−H

∑
i

Sz
i (1.1)

where J is the exchange coupling, i and j are neighboring sites on a simple cubic lattice. ∆

is the uniaxial exchange anisotropy, (0 < ∆ < 1). and H is the applied magnetic field along

the z−axis. The phase diagram has been studied for many years, by using mean-field theory,

[2] , renormalization group theory, [3] it is believed that an antiferromagnet (AF) phase

(structure see below) exists at low temperature and low field. In addition, there are spin-flop

(SF) and paramagnetic (P) phases. Phase transition boundaries of the paramagnetic (P)

phase to the AF and SF phase are believed to be in the Ising universality class and XY

universality classes, respectively. [4] There is a first order transition between the AF and

SP phase and an bicritical end point is located where the three phase boundary lines meet.
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Figure 1.1: Spin Orientations on neighboring sites in the ground states of the XXZ models,
corresponding to, from left to right, antiferromagnetic, spin-flop and biconical configurations.
Arrows in each group represent spin configuration from two sublattices

However, it is argued that the bicritical point is unstable,that, instead, a tetracritical

point exists, and that first order transition may be substituted with biconical(BC) structures

near the vicinity of the meeting point of the three phases. [5] In the BC structures, both

staggered z and xy will be nonzero while staggered z is zero in the SF phase and staggered

xy is zero is AF phase. More details will be presented in the next section.

1.2 Model

Using Monte Carlo simulations, Selke (2011) obtained the phase diagram of the XXZ

model on a simple cubic lattice in the vicinity of the AF-SF-P point [6] . At ∆ = 0.8, the
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position of the meeting point is located at kBT/J = 1.025 ± 0.015 and H/J = 3.9 ± 0.03

İn our thesis, we set Delta = 0.8 as well so that we make our results comparable with

Selke(2011).

Figure 1.2: Phase diagram of the XXZ model on a simple cubic lattice in the vicinity of the
AF-SF-P point. ∆ = 0.8, J = −1 [6]

As mentioned above, it has been noted recently [7] that a BC structure may also

exist in the XXZ model, separating AF and SF phases. In the BC structure, spins from two

sublattices A and B form different cones along the Z axis at different angles θA, θB. [1] See

Figure 1.1.

However, the behavior of the BC structure is still controversial. It is uncertain if there is

a BC structure bounded by second order phase lines or if we only have a single first order

transition between AF and SF phase , See Figure 1.3(a). G.Bannasch et al (2009) believe

there is a BC structure occurring at low temperatures close to the transition between the

AF and SF phases. [4] See Figure 1.3(b). It is also argued a biconical structure may start

at T = 0 and end at the AF-SF-P point. See Figure 1.3(c). Selke (2011) mapped the phase

diagram by using Monte Carlo simulation and presented evidence for the meeting point of
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AF-SF-P being a bicritical point by especially analyzing the Binder cumulant U+
xyz and stag-

gered susceptibility χ+
xyz (definition see Chapter 4) at different lattice sizes L = 8, 16, 24, 32.

Figure 1.3: Possible phase diagrams in 3D Heisenberg XXZ model near multicritical region

In this thesis, we will use Monte Carlo simulation on the XXZ antiferromagnet on

the simple cubic lattice to detect biconical structures near the multicritical point at around

T = 1.025, according to Selke (2011), (See Figure 1.3, the meeting point of AF-SF-P phases)

from another point of view. We will analyze different quantities related to the Ising, XY and

Heisenberg order parameters to identify the meeting point of AF-SF-P. In particular, we

consider larger lattice sizes, up to L = 40 and L = 60 in part, and more Monte Carlo steps

for desired accuracy. Wolffcluster method is employed with standard Metropolis method.

We also use histogram reweighting to analyze data near phase transition. Our goal is to

seek any evidences of the existence of tetracritical point or bicritical point. In chapter 2,

we introduce some background of Monte Carlo simulation. And in chapter 3, some useful

theories of critical behavior are discussed. Chapter 4 is about the results we have got from

our simulation and relevant discussion. Conclusion is presented in Chapter 5.



Chapter 2

Methods

2.1 Simple Sampling Monte Carlo Method

The average of some quantity A for each microstate of a system in thermodynamic

equilibrium is given by:

< A >=
1

Z

∫
A(x)e

−H(x)
kbT dx (2.1)

where A(x) is the quantity we are interested in, T is the temperature, kb is the Boltzmann

constant, H is the Hamiltonian. Z stands for the partition function given by:

Z =

∫
e

−H(x)
kbT dx (2.2)

Hence, if the configurations space is discrete then the above two equations can be replaced

with summing over all states as the following:

< A >=
1

Z

∑
all−states

A(x)e
−H(x)
kbT (2.3)

In general, there are too many states to calculate < A > exactly. To solve this problem,

we usually select certain subsets of the total configuration space by using a random number

generator to randomly produce spin states. This approach is called Monte Carlo method.

Obviously, the simplest way to select sampled states is random points in phase space. It is

known as simple sampling Monte Carlo method. Averages are then estimated by:

< A >appr.=

∑N
n=1 A(xn)e

−H(xn)
kbT∑N

n=1 e
−H(xn)

kbT

(2.4)

5
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where N stands for the number of states.

From the above equation we can see that as N → ∞, our estimation will be more and

more accurate. [8]

However, simple sampling is appropriate for functions that are relatively smooth.(i.e.

there are approximately equal probabilities in all of the states). Any sharp peak in the

function might be missed by the simple sampling method. In order to solve this problem,

we will introduce importance sampling.

2.2 Importance Sampling Monte Carlo Method

Importance sampling involves introducing a weight factor ω(x) to create a sampling

density that varies as a function of x. [9] Then we get:

< A >=

∫
ω(x)

f(x)

ω(x)
dx. (2.5)

If we change the variable to dy = ω(x)dx then it becomes:

< A >=

∫
f(x(y))

ω(x(y))
dy. (2.6)

And it can be estimated by:

< A >≈ 1

N

N∑
i=1

f(x(yi))

ω(x(yi))
. (2.7)

As a result, we have f/ω over a uniform distribution in y rather than over a uniform

distribution in x. The advantage to this is that ω can be chosen so that f/ω has a much

lower variance than f . Thus we can weight the sampling of points towards their areas where

f is changing the most. The result covers drawbacks of simple sampling and it gives rise to

the name importance sampling.
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In our case the importance sampling Monte Carlo method will yield the equation:

< A >β≈ ¯A(x)β =
[
∑N

i=1[A(x(yi))e
−βH(x(yi))/ω(x(yi))]∑N

i=1[e
−βH(x(yi))/ω(x(yi))]]

(2.8)

where β = 1/kT and again, N is the number of states sampled.

If we choose our ω(x) = P (x), where P (x) is given by:

P (x) =
1

Z
e−βH(x), (2.9)

then it reduces to:

< A >β=
1

N

N∑
i=1

A(x(yi)). (2.10)

The Metropolis Algorithm [10] is used to choose the N states in order to get a sufficient

distribution of the function x(y). The next section is the introduction of the Metropolis

Algorithm.

2.3 The Metropolis Algorithm

The principle of detailed balance is like the following [11] :

P (xi)W (xi → xj) = P (xj)W (xj → xi) (2.11)

where W (xi → xj) is the transition rate from xi to xj in the phase space, and P (x) is the

probability of a certain state.

Hence, Equation 2.11 becomes:
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P (xj) =
W (xj → xi)

W (xi → xj)
= e−∆Hβ (2.12)

∆H is the energy change (H(xi) − H(xj)). Any transition rate which satisfies detailed

balance is acceptable. The first choice which was used in statistical physics is the Metropolis

form. We will describe the Metropolis algorithm in the following recipe: [11]

1. Choose an initial state

2. choose a site i

3. Calculate the energy change ∆H which results if the spin at site i is overturned

4. Generate a random number r such that 0 < r < 1

5. If r < e
−∆H
kT , flip the spin

6. Go the next site and go to (3)

After a set number of spins have been considered, the properties of the system are

determined and added to the statistical average which is being kept. Note that the random

number r is chosen uniformly in the interval [0,1], and successive random numbers are

uncorrelated. The accuracy of the result can also be improved by discarding the first D of

the M steps. Normally, we will analyze the non-linear time-dependent correlation function

to determine how much D we need to discard, which is described as:

φA(t) =
< A(t)− A(∞) >

< A(0) > − < A(∞) >
(2.13)

where φA(t) has an exponential decay at long time. [11] and the decay constant tells us

how big D should be.

If D is large enough this will effectively eliminate the bias that results from the choice of

the starting point x0. The first D Monte Carlo Steps is referred to as initialization Monte



9

Carlo Steps and the next M ′ = M −D MCS is referred as the sampling Monte Carlo

steps. We still need to carefully choose how big M ′ is enough for the simulation based on

the correlation function. Since too few samples will lead to a biased result while too many

samples are good but time-consuming.

We can also use Equation 2.14 to describe the equilibrium correlation function in order

to determine how many steps we need to discard among the successive Monte Carlo steps

for independent samples:

φAA(t) =
< A(0)A(t) > − < A >2

< A2 > − < A >2
(2.14)

It is worth mentioning that although the above receipe involve the Ising model, we still

apply the algorithm to Heisenberg Model with rotating the spin with some random angle

instead of overturning it.

2.4 Histogram Reweighting

Monte Carlo simulations have been used for many years to study the properties of

physical models. A major concern for any thorough and accurate MC study is the amount

of computer resources required. For large scale computations, such as those necessary to

study lattice gauge theories, the power and efficiency of the simulation are of major

importance. Hence, Ferrenberg et al [12] proposed a different, but complementary,

approach to improving efficiency is to increase the amount of information obtained from a

simulation. The data usually obtained from a MC simulation are averages of

thermodynamic quantities at the single point in parameter space for which the simulation

is performed. The technique uses multiple restricted-energy MC simulations to generate the

partition function for a range of parameter values.

Consider the Ising model in a magnetic field. The Hamiltonian for this system is:
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−βH = K
∑
<i,j>

σiσj + h
∑
i

σi = KS + hM (2.15)

where K is the dimensionless coupling constant (J/kT ) and h is an applied magnetic field

(H/kT ). The probability distribution of S and M at a point in the parameter space(K,h)

is given by:

PK,h(S,M) =
1

Z(K,h)
N(S,M)exp(KS + hM) (2.16)

where N(S,M) is the number of configurations at the point (S,M) in the configurations at

the point (S,M) in the phase space, and Z(K,h) is the canonical partition function given

by:

Z(K,h) =
∑
S,M

N(S,M)exp(KS + hM). (2.17)

The normalized probability distribution with new parameters (K ′, h′) can be described in

terms of (K,h) in the following way:

PK′,h′(S,M) =
PK,h(S,M)exp[(K ′ −K)S + (h′ − h)M ]∑

S,M P(K,h)(S,M)exp[(K ′ − k)S + (h′ − h)M ]
(2.18)

Using this reweighted probability distribution P (S ′,M ′), we can calculate new

thermodynamic quantities based on the data given from (S,M).

2.5 Fluctuations

We are often interested in macroscopic properties of the system being studied, including

specific heat, susceptibility, etc. Typically, the system is held at a fixed temperature. And

such quantities are allowed to fluctuate about their equilibrium values. β ≡ 1
kT
, as we

defined before, U is the fluctuating internal energy and Ū is the average energy.

We will have: [11]
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Ū(β) = < H(µ) >

≡
∑

µ H(µ)e−βH(µ)∑
µ e

−βH(µ)

=
∑
µ

PµH(µ) (2.19)

while < H2 > is denoted as:

< H2 >=

∑
µ H2e−βH(µ)∑
µ e

−βH(µ)
(2.20)

Note that the relation:

−(
∂U(β)

∂β
)V =< H2 > − < H >2 . (2.21)

And since (∂U/∂T )V = CV , the specific heat thus yields a fluctuation relation:

kBT
2CV = < H2 > − < H >2

= < (∆U)2 >NV T , (2.22)

where ∆U ≡ H− < H >.

2.6 Finite Size Scaling

Often, we find it is hard to distinguish between first order and second order transitions

since thermodynamic properties for finite systems are smooth as they pass through a phase

transition. So it is important to use the finite size scaling to distinguish these two types of

transitions, [13] also to locate transitions, determine critical behavior, etc.

At a second order transition, the critical behavior of a system in the thermodynamic

limit can be extracted from the size dependence of the singular part of the free energy,

which, according to finite size scaling theory, is described by a scaling ansatz similar to the
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scaling of the free energy with thermodynamic variables T,H. [14] We can deduce different

thermodynamic properties based on the differentiation of the free energy:

M = L−β/νM0(εL1/ν) (2.23)

χ = Lγ/νχ0(εL1/ν) (2.24)

C = Lα/νC0(εL1/ν) (2.25)

where M , χ and C stand for magnetization, susceptibility and specific heat, respectively.

M0(x), χ0(x) and C0(x) are their corresponding scaling functions. However, since the finite

size scaling ansatz is only valid for sufficiently large size, we need some correction terms

when it is in smaller systems or at temperatures away from Tc. (We are not going to

discuss too much details here) See Liu and fisher (1990), Ferrenberg and Landau (1991).

The scaling functions M0(x), C0(x), χ0(x) will reduce to proportionality constants as the

following:

M ∝ L−β/ν (2.26)

χ ∝ Lγ/ν (2.27)

C ∝ Lα/ν (2.28)

α, β, γ, ν are all critical exponents which are identical in the same universality class.

Equations 2.26 ∼ 2.28 can be used to extract estimates for the ratio of certain critical

exponents.

Another way to determine the transition temperature accurately is to locate the peaks

in the thermodynamic derivatives. We can write:

Tc(L) = Tc + λL−1/ν(1 + bL−$) (2.29)

Kc(L) = Kc + λ′L−1/ν(1 + b′L−$) (2.30)
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where b, λ′ , b′ are constants. Each thermodynamic quantity has its own scaling function

while the peaks occur at different temperatures for finite systems. We can use the above

equations to locate the infinite lattice transition. Of course, it requires very good statistical

accuracy because we should have all Kc, ν,$ the same for all properties.

∂ln < mn >

∂K
= (< mnE > / < mn >)− < E > . (2.31)

For different nth power of cumulant, they share the same slope. Hence, the location of the

maxima in these quantities also provides us with estimates for Kc(L) which can be used in

extrapolate Kc.



Chapter 3

Critical Behavior and Multicritical Behavior

3.1 Introduction

Different systems may undergo a variety of phase transitions and phase diagrams can

be drawn to show the boundaries between these phases. For the phase diagram, the critical

point is known as the location in the equilibrium phase diagram where a first order line

representing the boundary between two phases terminate. When system comes close to the

critical point, it will show various singular properties, for instance, the magnetic

susceptibility, the heat capacity will diverge at the critical point.

3.2 Phase Transitions

A phase is a set of states for a system where the general physical properties are

relatively uniform. Common phases include gases, liquids, solids, ferromagnets,

antiferromagnets, etc.

It has been proved that the densities of the thermodynamic potentials may exhibit

singularities in the thermodynamic limit. The singular points determine the phase diagram

of the system and the singularities are interpreted as changes in the phase structure of the

system, i.e. as phase transitions.

There are two main types of phase transitions, first-order and second-order.

A first-order phase transition is defined as having a discontinuities of the first

derivatives of free energy while the second order phase transition has discontinuity of the

second derivatives but the first derivatives are continuous. [8] A body-centered cubic

14
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nearest-neighbor ferromagnet in zero field is an example of a system with a second-order

phase transition. Also, a typical first order transition is ice undergoing melting. When ice

melts, the temperature remains constant while the entropy is discontinuous. [15] A line of

first order phase transitions is called a coexistence line, since two different phases can

coexist on it, and such a line will terminate at an ”end-point” called a critical point.

Hence, the critical point is a point in the space of thermodynamic variables at which the

differences between two coexisting phases disappear. [16]

3.3 Order Parameter

The order parameter is a distinguishing feature of most phase transitions, which will

appear as a non-zero value in the ordered phase but is zero in the disordered phase. [11]

Order parameters can be different in all kinds of physical systems. For instance, the

magnetization is the order parameter for an ferromagnetic Ising model, and the difference

in the density between the liquid and gas phases is the order parameter in a liquid-gas

system.

3.4 Critical Exponents

Our interest is to study the thermodynamic behavior near the critical region. We

usually focus on the reduced temperature instead of the absolute temperature. The reduced

temperature is a measure of the distance from the critical temperature Tc, as the following:

ε = |1− T

Tc

|. (3.1)

Some thermodynamic properties can be expressed in terms of the reduced temperature

by power laws near the critical point Tc
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χ = χ0ε
−γ (3.2)

C = C0ε
−α (3.3)

ξ = ξ0ε
−ν (3.4)

m = m0ε
β (3.5)

γ, α, ν, β are all critical exponents and χ0, C0, ξ0,m0 are critical amplitudes. The above four

equations are only valid as ε → 0, so correction to scaling terms might be needed to correct

the deviations from asymptotic behavior. [4]

A multicritical point is an intersection point of multiple curves of second order

transitions, whose thermodynamic properties still obey the power law relations, and the

values of exponents can be determined from different multicritical universality classes.

3.5 Universality

The principle of universality can be defined as the following: Depending on the

dimensionality and the symmetry, we can have different systems having identical behavior

in the critical region. Hence, they have identical critical exponents for these systems. In

that case, we say these systems belong to the same universality class. [11] Other properties

can also determine the universality class such as the spatial dimensionality, spin

dimensionality, symmetry of the ordered state, the presence of symmetry breaking fields

and the range of interactions. [15] The principle of universality is a powerful tool since we

can simulate ”real” system as a ”simple” system in the same universality class. The

behavior of the simple system will match that of the complicated system when both are

close to the critical point.



Chapter 4

Results

4.1 Background

We will focus our study on the XXZ Heisenberg Antiferromagnet in a magnetic field on

the simple cubic lattice. Its Hamiltonian describing it is written as the following:

H = −J
∑
i,j

[∆(Sx
i S

x
j + Sy

i S
y
j ) + Sz

i S
z
j ]−H

∑
i

Sz
i (4.1)

where J is the exchange coupling and J > 0. i, j stands for the spins at neighboring sites in

the lattice and ∆ is the uniaxial exchange anisotropy. In our thesis, ∆ = 0.8. H is the

applied external magnetic field along the z-axis. We use the standard Metropolis Monte

Carlo algorithm and Wolffcluster method, also a simple cubic lattice with periodic

boundary conditions is employed. We study the lattice sizes L = 10, 20, 30, 40 while error

bars are estimated by averaging over at least three independent runs. In order to get

reliable statistics, large number of independent measurements is necessary. Also large

enough system sizes are needed due to finite size effect. Limited by the computer resources

and time, we choose the histogram method to provide an efficient way to extract

thermodynamic information near the temperatures that we actually run. Generally, we take

106 hybrid steps for L = 10, 2× 106 for L = 20, 3× 106 for L = 30 and 4× 106 for L = 40.

In particular, for the points where we take for the reweighting, we collect more Monte

Carlo samples, specifically 5× 106 for L = 20, 6× 106 for L = 30, 1.2× 107 for L = 40 and

for L = 60 at T = 1.025, we collect 1.5× 107 samples to do reweighting. It is worthing

mentioning that for each hybrid step, we run 6 Wolffcluster and 4 Metropolis steps.

17
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To map the phase diagram, we carefully pick out the quantities that are relevant to the

Ising, XY and Heisenberg order parameters. In particular, we choose the staggered z

magnetization and staggered xy magnetization quantities as interest. Staggered

magnetization M+
α is the magnetization (α stand for z, xy, etc) from sublattice A minus

the magnetization from sublattice B. The reason is when it comes into the SP phase from

AF phase, the staggered magnetization z will decrease from 1 to 0 which indicates the

phase transition. And the stggered magnetization xy will also change from 0 in the AF

phase to large values in SP phase. These two quantities will be sufficient for us to identify

the phase transition. We calculate the corresponding staggered susceptibility χ+
z , χ

+
xy and

Binder fourth order cumulants U+
z , U

+
xy as the following:

χ+
z =

< M+2
z > − < M+

z >2

kT
(4.2)

χ+
xy =

< M+2
xy > − < M+

xy >
2

kT
(4.3)

U+
z = 1− < M+4

z >

3 < M+2
z >2

(4.4)

U+
xy = 1−

< M+4
xy >

3 < M+2
xy >2

(4.5)

Selke(2011) used staggered susceptibility χ+
xyz and cumulant U+

xyz to identify a bicritical

point with Heisenberg symmetry, which are defined as:

χ+
xyz =

< M+2
xyz > − < M+

xyz >
2

kT
(4.6)

U+
xyz = 1−

< M+4
xyz >

3 < M+2
xyz >

2
(4.7)

(4.8)

4.2 Results for T = 0.95

We start our study at fixed temperature T = 0.95, and sweep the field. We change our

lattice size from L = 10 to L = 40. According to Selke(2011), at low temperatures, if the
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external field is low enough (see Figure 1.2), the system is in the antiferromagnetic state

and will turn into spin-flop phase if the external field increases. The transition between AF

and SF phases is believed to be the first order transition only if there is no biconical phase.

As found in our Monte Carlo runs, Figure 4.1, 4.2 below show the behavior of both order

parameters when field changes. It indicates that the order parameter M+
z on different

lattice sizes starts from zero at low field, and is nonzero in the AF phase and may

gradually go to 0 in the SP phase. The position where the highest slope occurs indicates

the transition location. As we can see from Figure 4.1 and 4.2, the curve gets sharper and

sharper as the lattice size goes up, and when L = 40, we have the largest slope around H=

3.835 ∼ 3.84, which indicates the transition occurs in that region.

3.79 3.8 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89
H

0.1

0.2

0.3

0.4

<
M

xy

+ >

L = 10
L = 20
L = 30
L = 40

Figure 4.1: Order Parameter M+
xy for T = 0.95, ∆ = 0.8
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z+ >
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Figure 4.2: Order Parameter M+
z for T = 0.95, ∆ = 0.8

Figure 4.3 and 4.4 show the susceptibilities of the two order parameters respectively.

The location of the curves’ peaks indicate the phase transitions, from which we can tell the

peak of χ+
xy shifts toward right hand side as the lattice size increases. And at L = 40 the

highest susceptibility is located at H between 3.8374 and 3.8378 within error bars. Also,

the peak of χ+
z moves toward right and when L = 40, the peak is within 3.8377 and 3.8382.

The movement of the peak is due to the finite size effect and from Figure 4.1 ∼ 4.4, we are

confident that the susceptibility peaks of both χ+
z and χ+

xy occur at about the same H

within error bars. Hence, it provides an indication of only one transition at T = 0.95, and

we don’t have evidence at this temperature to suggest that we have two phase transitions

that would be expected if there was a biconical structure.
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Figure 4.3: Susceptibility χ+
z for T = 0.95, ∆ = 0.8
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Figure 4.4: Susceptibility χ+
xy for T = 0.95, ∆ = 0.8
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We check the cumulant of U+
xy and U+

z . Figure 4.5 indicates the crossover point shifts

towards the right hand side as the lattice size gets larger, because of the finite size effect.

The two largest lattice sizes, L = 30 and L = 40 intersect for H at 3.8382 ∼ 3.8383. If we

look at the cumulant U+
xy versus field plot at Figure 4.6, the crossing point is also between

3.8382 ∼ 3.8383. This demonstrates that both order parameters’ cumulants cross at the

same external field, and thus indicates there is only one transition at this temperature.

It is worth mentioning if we have a biconical structure at T = 0.95, we will expect to see

susceptibility peaks of χ+
xy and χ+

z are at different H and cumulant crossing points of U+
xy

and U+
z are also at different H, because M+

z will be zero at the upper bound of biconical

structure and M+
xy will be zero at lower bound of biconical structure. However, Figure 4.1

∼ 4.6 indicate the phase transition occurs at the same H within error bars, we can only

conclude we have a first order transition at T = 0.95.
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Figure 4.5: Cumulant U+
z for T = 0.95, ∆ = 0.8
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Figure 4.6: Cumulant U+
xy for T = 0.95, ∆ = 0.8

We show a log-log plot of the finite size scaling in Figure 4.7. We do a linear regression

on all four data points and get a slope nearly equal to 3. We know the first order transition

goes with Ld, where d = 3 is the dimension of our model, and the finite size scaling fit in

Figure 4.7 is consistent with the first order behavior. We conclude at T = 0.95, there is

only a first order transition between AP and SP phases and no indication of a biconical

phase bounded by two second order phase boundaries.
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Figure 4.7: Finite Size Scaling for T = 0.95, the straight lines are fitted lines from data
points

4.3 Results for T = 0.98

We move to a higher temperature at T = 0.98 and sweep the external field to analyze

these quantities. The largest slopes of both M+
z and M+

xy occur at about H = 3.86. The

susceptibility of χ+
xy and χ+

z show the largest peaks locate around 3.860 ∼ 3.861 within

error bars. Also the cumulants of U+
xy and U+

z cross between 3.861∼3.8615. All the

evidences show we have one transition at H = 3.86 ∼ 3.8615 at T = 0.98, and we fail to see

any biconical phase existing so far.
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Figure 4.8: Order Parameter M+
xy for T = 0.98, ∆ = 0.8
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Figure 4.9: Order Parameter M+
z for T = 0.98, ∆ = 0.8
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Figure 4.10: Susceptibility χ+
xy for T = 0.98, ∆ = 0.8
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Figure 4.11: Susceptibility χ+
z for T = 0.98, ∆ = 0.8
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Figure 4.12: Cumulant U+
z for T = 0.98, ∆ = 0.8
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Figure 4.13: Cumulant U+
xy for T = 0.98, ∆ = 0.8
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Also, if we look at the finite size scaling plot for the maxima, the slope is less than 3 if

we fit four lattice sizes, namely L = 10, 20, 30, and 40. However, because T = 0.98 is close

to the multicritical point, we may have crossover effects and finite-size effects become

stronger. Therefore, the first-order nature of the transition is only evident when large

lattice sizes are considered. In fact, if we use L = 10 to L = 40 to fit the line, the exponent

is no longer 3; however, if we only use the two larger system sizes in the fitting (L = 30 and

40), then the slope increases and its value is close to 3. (d, i.e. slope shown in Figure 4.14 is

from linear fittings using the two larger L in each case.) This means we still have a first

order transition at T = 0.98, but because the finite-size effects are much stronger, our

analyses cannot include data for the smaller lattice sizes. This means we still have a first

order transition here, but it is no longer as clear as what we have at T = 0.95.
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Figure 4.14: Finite Size Scaling for T = 0.98, the d shown in the graph are the slopes from
fitting the largest two sizes L = 30, L = 40
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4.4 Results for T = 1.01

We take a look at T = 1.01, which is even closer to the multiricitical point T = 1.025.

In Figure 4.15 and 4.16, the order parameters data for M+
z and M+

xy both demonstrate the

biggest slope at around H = 3.883 ∼ 3.885. Susceptibilities for χ+
z and χ+

xy locate the peaks

between 3.883 and 3.885 within error bars. The crossing points of the cumulant for U+
z and

U+
xy also stay around H = 3.886. Finite size scaling plot in Figure 4.21 indicates the

exponent is away from 3 in contrast to lower temperatures. However, due to the crossover

effect, if we only fit the last two lattice sizes L = 30 and L = 40 to a power law, we will

have larger slope, and it is believed if we run larger lattice size, the exponent will get closer

and closer to 3 due to the stronger asymptotic behavior. Since T = 1.01 is quite close to

the multicritical point, the crossover effect is dominant, hence the indication of the first

order transition is even weaker than lower temperatures.
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Figure 4.15: Order Parameter M+
z for T = 1.01, ∆ = 0.8
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Figure 4.16: Order Parameter M+
xy for T = 1.01, ∆ = 0.8
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Figure 4.17: Susceptibility χ+
xy for T = 1.01, ∆ = 0.8
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Figure 4.18: Susceptibility χ+
z for T = 1.01, ∆ = 0.8
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xy for T = 1.01, ∆ = 0.8
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Figure 4.20: Cumulant U+
z for T = 1.01, ∆ = 0.8
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Figure 4.21: Finite Size Scaling for T = 1.01, the d shown in the graph are the slopes from
fitting the largest two sizes L = 30, L = 40
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4.5 Results for T =1.025

In this section, we do the analysis for T = 1.025, which, according to the Selke (2011),

is the bicritical point location (T = 1.025± 0.015) and belongs to the 3D Heisenberg

universality class. By looking at the order parameters of M+
z and M+

xy, we confirm the

transition may occur between the field H = 3.892 ∼ 3.896. Our susceptibility data also

locates the peaks at H = 3.890 ∼ 3.897. Cumulant curves intersect at about H = 3.899.

Since it is almost at the multicritical point, we will have critical slowing down at phase

transitions, which happens when the temperature T approaches to critical point Tc, we will

have longer correlation times, hence more Monte Carlo steps need to be run in order to get

accurate results. We collect at least 107 samples for larger sizes and L ranges from 10 to 60

in order to locate the transition point precisely.

We show a log-log plot of the finite size scaling and analysis the critical exponents. We

have the following relationship:

χ ∼ L
γ
ν

and the theoretical value for 3D Heisenberg universality class is γ = 1.37(5) and

ν = 0.70(5) respectively [17] . Hence, if we do the log-log plot and the slope of the

regression line will be γ
ν
' 1.95(0) which closely matches our estimation 1.94(4). Folk

(2008) also predicted the critical exponents for tetracritical point with γ = 1.36(6) and

ν = 0.69(6). γ
ν
∼ 1.96(3). Therefore, unfortunately we can not conclude if the exponent

values are bicritial or tetracritical point at T = 1.025, but we do not have any evidence of

the biconical structure so far.
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Figure 4.22: Order Parameter M+
z for T = 1.025, ∆ = 0.8
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Figure 4.23: Order Parameter M+
xy for T = 1.025, ∆ = 0.8
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Figure 4.24: Susceptibility χ+
xy for T = 1.025, ∆ = 0.8
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Figure 4.25: Susceptibility χ+
z for T = 1.025, ∆ = 0.8
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z for T = 1.025, ∆ = 0.8



37

10 20 30 40 60
Lattice Size

1

2

3

4

5

6

χ+

z
:    γ/ν = 1.94(3)

χ+

xy
:   γ/ν = 1.94(4)

Figure 4.28: Finite Size Scaling for T = 1.025, the straight lines are fitted lines from data
points



Chapter 5

Conclusion

We study the simple cubic lattice of a uniaxially antisotropic Heisenberg

antiferromagnet in an external field H along with the z direction and examine the behavior

which is close to the multicritical point. We search the biconical structures which is

suspected to exist between the AF and SP phase and confirm the phase transition between

Af and SF is the first order transition near the multicritical point.

We use Monte Carlo simulation method to generate data at different fields for T = 0.95,

T = 0.98, T = 1.01. Red dots noted in Figure 5.1 show their locations in the phase

diagram, respectively. We also adopt histogram reweighting to simulate thermodynamic

behaviors near the phase transition. We focus on the quantities staggered susceptibilities

χ+
z , χ

+
xy, and Binder cumulants U+

z and U+
xy. The finite size scaling demonstrates at

different temperatures below T = 1.025, the phase transition belonexpect to detectgs to the

first order transition. We also notice when the temperature we take comes close to the

multicritical point, the crossover effect gets dominant which makes the first order transition

behavior difficult to detect. In the end, we have no evidence to support the existence of two

second order transitions and a biconical phases in between, but we do have evidence for a

single first order transition ending in a multicritical point.

We also check the multicritical behavior at T = 1.025. It is hard to conclude if the

critical exponents belong to 3D Heisenberg universality class or tetracritical universality

class because both critical exponents are very close to each other. However, we do not find

any existence of the biconical structure, which agrees with Selke (2011), and disagrees with

the conclusion of Folk et al(2008). We conclude that the schematic picture of a first order
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phase boundary ending in a bicritical point is likely to be correct, in disagreement with

recent theoretical predictions. [18]

Figure 5.1: Data points we have analyzed at different temperatures in the phase diagram of
the anisotropic antiferromagnet Heisenberg model with ∆ = 0.8. The lines separating AF
and P, SF and P phases are second order transition lines, see Selke(2011)
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