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Abstract

In design of experiments, optimal designs are designs that can glean the maximal amount

of information from a study. Therefore, an optimal design can reduce the number of ex-

perimental units needed and saving the cost of study. However, the research in designing

optimal experiments has not kept up with the increasingly complicated structure of data and

models; especially for correlated data and multiple-covariate models, finding optimal designs

is very difficult.

In a series of papers by Yang and Stufken, the complete class approach has been revi-

talized by applying it to the optimal design problem with great success. Their inspirational

idea has spawned my research, which includes three projects for three different topics.

In the first project, we develop a general approach to find optimal designs for independent

data with a single covariate. There has been lots of research under this topic, but most of the

work is done on a case by case basis. So we propose a unified way of finding optimal designs

for a class of models under general optimality criteria. In the second project, we consider

correlated data with a single covariate. There are very few results under this topic. To

bridge the gap, we extend the result from independent data to correlated data. Finally, we

consider multiple-covariate models under independent data. We are unable to find closed-



form solutions for optimal designs, but we give a complete class result that can save the

computational resources by orders of magnitude.

Index words: Chebyshev system, complete class, concavity, locally optimal design,
Loewner ordering, robustness
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Chapter 1

Introduction

In statistics, an experiment is an information gathering procedure carried out in order to

understand the relationship between certain inputs and outputs. By manipulating the input

factors and observing what happens to the output, data are collected from the experiment,

and statistical analysis can be performed to study the relationship between the input and

output variables.

Experimentations have a very broad application across all the natural and social sciences

as well as engineering. For example, a pharmaceutical company that hopes to understand the

pharmacokinetics of a new drug can conduct an experiment, whereby the experimental units,

patients, are each injected with one of several doses of the drug and their drug concentrations

are measured over time. As another example, a company that decides to launch an email

campaign wants to know which of the following two calls of action is more effective: “Offer

ends this Saturday!” or “Offer ends soon!”. An experiment can be conducted by sending

emails to 1000 people using the first call of action and another 1000 people with the second

call of action, and compare the response rates.

Design of experiment deals with planning and conducting a better experiment so that

a better understanding of the relationship between input and output is achieved. Modern
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experimental design theory dates back to the seminal work of R.A. Fisher, in his innova-

tive books: The Arrangement of Field Experiments (1926) and The Design of Experiments

(1935), when he was at the Rothamsted Agricultural Experimental Station in UK. Back at

that time, design work was motivated by problems in agriculture, and the main purpose

was to design experiments that allow for treatment comparisons. The important concepts

of randomization, blocking and replication were developed at that time. During the last

several decades, statistics has revolutionized numerous disciplines and as a result, design of

experiments has also been adopted in different areas, such as psychology, medicine, business,

etc. Meanwhile, the goal of experimental designs has also evolved from treatment compari-

son to variable screening, response surface exploration, system optimization, and so on. In

this dissertation, we will focus specifically on optimal experimental design.

1.1 Optimal design

The goal of optimal design is to design the best experiment that gives us the most information

about the unknown parameters. Because an optimal design is more efficient, it requires fewer

experimental runs to achieve the same result as a non-optimal design, hence saves resources.

A design is usually denoted as ξ = {(xk, ωk)}tk=1, where xk’s are the design points and

ωk’s are the weights put on each design point. The total number of experimental units is

fixed to be n, thus
∑t

k=1 ωk = n. In an exact design, ωk’s have to be integers. However

this creates difficulty in finding the optimal designs due to discrete optimization. Hence

approximate designs are usually used in which the weights can be any non-negative numbers

(Kiefer 1959). An efficient exact design can be found by rounding the weights in an optimal

approximate design.

The theory of optimal design can be described as given a model, find the design that

can maximize the information matrix (or minimize the variance-covariance matrix) under a
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certain criterion. For example, for univariate linear/nonlinear models

y = η(x,β) + ϵ,

the (scaled) information matrix under ξ can be calculated as (assuming observations are

independent)

M(ξ) =
t∑

k=1

ωkM(xk) =
t∑

k=1

ωk
∂η(xk,β)

∂β

(
∂η(xk,β)

∂β

)T

.

Because matrices cannot be maximized directly, different optimality criteria have been pro-

posed, for example,

1. D-optimality maximizes |M(ξ)|. Thus a D-optimal design minimizes the expected

volume of the confidence ellipsoid for the parameters.

2. A-optimality maximizes −tr(M−1(ξ)). Thus an A-optimal design minimizes the aver-

age variance of all parameter estimates.

3. E-optimality maximizes the minimal eigenvalue of M(ξ). Thus an E-optimal design

minimizes the largest variance of estimating cTβ over all unit length vector c’s.

4. c-optimality maximizes −cTM−1(ξ)c. Thus a c-optimal design minimizes the variance

of estimating cTβ for some specific vector c.

For nonlinear models, the information matrix depends on the unknown parameter β. To

circumvent this problem, an initial guess of β is assumed to be known, and the optimal

design found based on this guess is called locally optimal design.

A review of the literature indicates that modern optimal design theory can be traced back

to Kirstine Smith (1878-1939), who wrote a thesis that later became a precursor to modern

optimal design theory, published in 1918 Biometrika. In Smith (1918), she calculated G-

optimal designs for polynomial regression models of order up to 6. Other designs were also
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considered in her paper, for example, uniform designs. However, she did not extend her

work on optimal experimental designs; in fact, most work in this area started to appear

in the 50s and 60s, with the most significant contribution from Jack Kiefer (1924-1981).

The foundations behind optimal design are laid out in Kiefer (1959), in which different

optimality criteria and objectives were examined and methods of deriving optimal designs

are given on a sound mathematical basis. After this, a major development on optimal

design is the series of equivalence theorems. For example, Kiefer and Wolfowitz (1960)

proved the equivalence between G-optimality and D-optimality; Kiefer (1974) gave a general

equivalence theorem for general convex optimality criteria. Such an equivalence theorem

provides means to both construct an optimal design as well as check the optimality of

a design. Some other developments in optimal design include Bayesian optimal designs,

optimal model discrimination designs, multi-objective designs, etc.

However, over all, the research in optimal experimental design has not kept up with

the increasingly complicated structure of data and data analysis methods. Therefore, great

efforts need to be devoted to this area. My research tries to address three optimal design

problems.

First, explicit solutions for optimal designs under specific model and specific optimality

criteria are given in a few papers (eg, Dette et al. 2008, 2010), but such solutions don’t exist

in general. So theoretical guidance is lacking in general. Algorithms have been developed to

fill in the gap, however, they usually don’t provide much insight into the problem. Moreover,

the bulk of them find the optimal designs on a grid of the design domain, and it has three

disadvantages. First, the optimal design found on the grid is inferior to the optimal design on

the whole continuous design domain. Second, a finer grid is preferred, but it requires more

computational resources, and the computational cost also increases with the sample size N .

Third, the majority of algorithms focus on D-optimality, for general optimality criteria, it is

harder to search and a standard algorithm may not exist.
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Second, how to find optimal designs for correlated data? Compared to the independent

data case, results on correlated data are much more scarce. The reason is that the information

matrix becomes so complicated. For nonlinear mixed effects models, the likelihood function

even doesn’t even have an explicit form in general.

Third, how to find optimal designs for multiple-covariate models? For multiple-covariate

models (for example, logistic regression with m > 1 covariates), results derived under single

covariate models, such as complete class results in Yang and Stufken (2013), cannot be

generalized, and there are few theoretical results available. Even computationally it is very

expensive to find the optimal designs, because the grid size increases exponentially.

In the remainder of this dissertation, Chapter 2 gives implicit solutions of optimal de-

signs for a class of models under general optimality criteria, and the uniqueness of optimal

designs is proved under mild conditions. Chapter 3 generalizes this approach to correlated

data under mixed effects models, and studies the robustness against mis-specification of the

covariance structure. Chapter 4 gives preliminary results for multiple-covariate generalized

linear regression models, these results can be used to reduce the computational burden of

finding an optimal design. Chapter 5 discusses future research.
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Chapter 2

One covariate, independent data1

2.1 Introduction

In this chapter, we consider optimal design problem under independent data for a class of

models with a single covariate. In particular, we give implicit solutions for optimal designs in

a general case and the solution can be solved explicitly in special cases. Moreover, we show

the uniqueness of optimal designs under mild conditions. It is true that there are available

algorithms that can solve the optimal design problem numerically, but a theoretical solution

is always preferred over a numerical one due to the following two reasons.

First, a theoretical solution is concise, readily available and provides more insights into

the problem. Obviously, if an explicit solution exists, then finding a numerical solution is

a waste of time. If an explicit solution doesn’t exists because of the complexity of design

problems, an implicit solution is the best we can get, and it is still concise because it can

be described as a solution to an equation; it is readily available because a simple Newton’s

algorithm can solve it instantly. Moreover, our theoretical results show the uniqueness of

optimal designs, a phenomenon that has been observed in several papers.

1This chapter is taken from Hu et al. (2015), with minor changes.
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Second, there are some concerns about the numerical algorithms. The bulk of the algo-

rithms need to discretize the design domain into a grid of points, and construct the optimal

design on the grid. So it is inferior to the optimal design obtained on the whole continuous

design domain. While a finer grid leads to a better approximation of the optimal design, it

comes at a cost of more computational resources. Besides the speed issue, convergence is

not guaranteed for some algorithms.

In order to avoid intricacies caused by the discreteness of the problem, we will work with

approximate designs (see Section 2.2). Because the information matrix usually depends on

the unknown parameters, we consider locally optimal designs obtained by plugging in values

for the parameters in the information matrix. This gives good designs when prior knowledge

of the parameters is available, and it also provides a benchmark for evaluating other designs.

For the sake of simplicity, we omit the word locally hereafter.

Finding optimal designs is difficult. There are two challenges, the first challenge is to

determine the number of support points in an optimal design. By Caratheodory’s theorem,

the number of support points in an optimal design can be taken as no more than 1+d(d+1)/2,

where d is the number of parameters. However, this bound is often weak. To reduce the

bound, Kiefer’s equivalence theorem [Kiefer and Wolfowitz (1960)] and Elfving’s Geometric

method [Elfving (1952)] have been used. These two methods have proven to be successful,

and the optimal designs are found to be saturated (a saturated design is a design that has d

support points, where d is the number of parameters) in many cases [see for example Dette

et al. (2010)]. However, these methods can only be used on a case-by-case basis, and usually

only for D- and c-optimality. So Yang and Stufken (2009), Yang (2010), Dette and Melas

(2011), Yang and Stufken (2012) and Dette and Schorning (2013) studied a general method

called complete class approach. Based on this approach, optimal designs can be found in a

small class of designs called the complete class, and in many cases, this complete class only

contains designs with at most d design points. This solves the first challenge.
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The second challenge is to find an optimal design given the number of support points.

Based on the optimality criterion, we can formulate the objective function to be maximized.

Many optimality criteria have been proposed, and most are quite complicated, which also

makes the objective function complicated. Moreover, the required number of support points

increases as the model becomes more complex, also making the objective function more

complex. For these reasons, explicit solutions for optimal designs are only given for a few

models under particular optimality criteria. In addition, the uniqueness of optimal designs

has been shown in only a few situations [see for example Dette, Melas and Wong (2006)],

and has not been systematically studied either.

The goal of this project is to solve the second challenge based on the complete class

results. While an explicit solution does not exist in general, we provide an implicit solution

which can be solved easily using Newton’s algorithm, and we prove the uniqueness of these

optimal designs under mild conditions. Since our approach is based on the complete class

results, it applies to a variety of models under general optimality criteria.

2.2 Theory

2.2.1 Complete class results

The models under consideration include polynomial regression models, nonlinear regression

models and generalized linear models, with a univariate response y and a single covariate x

which belongs to the interval [L,U ] (L or U could be −∞ or∞ respectively, with [L,U ] being

half open or open). The unknown parameter is a d× 1 vector denoted as β = (β1, . . . , βd)
T .

To be specific, for polynomial regression models and nonlinear models β is the unknown

parameter in the mean response η(x,β) = E(y) and we take the constant variance to be 1

since it doesn’t affect the optimal design; for generalized linear models, β is the unknown

parameter in the linear predictor η(x,β) = h(E(y)), where h is the link function.
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In approximate design context, a design ξ with at most t design points can be written as

ξ = {(xk, ωk)}tk=1, where xk ∈ [L,U ], ωk ≥ 0, k = 1, . . . , t, xk’s and ωk’s are the design points

and corresponding design weights, and
∑t

k=1 ωk = 1. An optimal design is a design that

maximizes the Fisher information matrix M(ξ) =
∑t

k=1 ωkM(xk) under a certain criterion

Φ. In this project we focus on a general class of optimality criteria. Specifically, let NND(d)

be the set of all d × d nonnegative definite matrices, PD(d) be the set of all d × d positive

definite matrices, and Φ be any nonnegative, nonconstant function defined on NND(d) that

satisfies the following assumption [see Pukelsheim (1993), p. 115]

(1) it is concave, i.e., Φ(αM1 + (1 − α)M2) ≥ αΦ(M1) + (1 − α)Φ(M2), where α ∈

(0, 1),M1,M2 ∈ NND(d).

(2) it is isotonic, i.e., Φ(M1) ≥ Φ(M2) ifM1 ≥ M2 under the Loewner ordering, M1,M2 ∈

NND(d).

(3) it is smooth on PD(d), i.e., when interpreted as a function of the d(d+1)/2-dimensional

vector of elements in the upper triangle ofM ∈PD(d), Φ is differentiable and the partial

derivatives are continuous.

A design ξ∗ is Φ-optimal if it maximizes Φ(M(ξ)) with respect to ξ.

This class of optimality criteria is very broad and includes, for example, the well known

Φp-optimality criteria when −∞ < p ≤ 1, which are defined as follows. Suppose we are

interested in estimating a smooth function of β, say g(β) : Rd → Rv, where v ≤ d and

K = (∂g(β)/∂β)T has full column rank v. It can be estimated as long as the columns of

K are contained in the range of M(ξ). The information matrix for g(β) under design ξ is

defined as I(ξ) = (KTM(ξ)−K)−1, where M−(ξ) is a generalized inverse if M(ξ) is singular.

Then a Φp-optimal design for g(β) is defined to maximize

Φ(M(ξ)) = Φp(I(ξ)) =

(
1

v
trace (Ip(ξ))

)1/p

, p ∈ (−∞, 1].
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In addition to the Φp-optimality criteria, our general Φ-optimality criteria also include com-

pound optimality criteria, criteria for evaluating a mixture of information matrices obtained

from nested models [see Pukelsheim (1993), Chap. 11] and so on.

Now we briefly introduce a fundamental theorem from Yang and Stufken (2012) for our

later use. Decompose the Fisher information matrix in the following way:

M(ξ) = PC(ξ)PT , C(ξ) =

(
t∑

k=1

ωkC(uk)

)
, (2.2.1)

where C(u) is a d× d symmetric matrix,

C(u) =



Ψ11(u)

Ψ21(u) Ψ22(u)

...
...

. . .

Ψd1(u) Ψd2(u) · · · Ψdd(u)


,

P is a d × d nonsingular matrix that only depends on β, and u ∈ [A,B] is a smooth

monotonic transformation of x that depends on β.

For some d̃, 1 ≤ d̃ < d, define C22(u) as the lower d̃ × d̃ principal submatrix of C(u).

Choose a maximal set of linearly independent non-constant functions from the first d − d̃

columns of the matrix C(u), and rename them as Ψℓ(u), ℓ = 1, . . . , q−1. Let Ψq(u) = C22(u)

and define the functions hr,s(u), 1 ≤ r ≤ s ≤ q, to be



h1,1 = Ψ′
1

h2,1 = Ψ′
2 h2,2 =

(
h2,1

h1,1

)′
h3,1 = Ψ′

3 h3,2 =
(

h3,1

h1,1

)′
h3,3 =

(
h3,2

h2,2

)′
...

...
...

. . .

hq,1 = Ψ′
q hq,2 =

(
hq,1

h1,1

)′
hq,3 =

(
hq,2

h2,2

)′
· · · hq,q =

(
hq,q−1

hq−1,q−1

)′


,
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where the entries on the last row are matrices, and the derivatives of matrices are element-

wise derivatives (assuming all derivatives exist). Define matrix H(u) =
∏q

ℓ=1 hℓ,ℓ(u). Then

the following theorem due to Yang and Stufken (2012) is available [see also Dette and Schorn-

ing (2013), Theorem 3.1].

Theorem 2.2.1 (Yang and Stufken (2012)). For a regression model with a single covariate,

suppose that either H(u) or −H(u) is positive definite for all u ∈ [A,B]. Then the following

results hold:

(a) If q = 2a−1 is odd and H(u) < 0, then designs with at most a support points, including

point A, form a complete class Ξ.

(b) If q = 2a−1 is odd and H(u) > 0, then designs with at most a support points, including

point B, form a complete class Ξ.

(c) If q = 2a is even and H(u) < 0, then designs with at most a support points, form a

complete class Ξ.

(d) If q = 2a − 2 is even and H(u) > 0, then designs with at most a support points,

including both A and B, form a complete class Ξ.

It is helpful to sketch how Theorem 2.2.1 is proved. For some carefully chosen d̃ (see

example below) where one of the conditions in Theorem 2.2.1 holds, it can be proved that

for any design ξ /∈ Ξ, we can find a design ξ̃ ∈ Ξ such that C(ξ̃) ≥ C(ξ) under the Loewner

ordering, hence M(ξ̃) ≥ M(ξ). To be specific, C(ξ̃) − C(ξ) has a positive definite lower

d̃ × d̃ principal submatrix, and is 0 everywhere else. So the search for optimal designs can

be restricted within Ξ.

Theorem 2.2.1 also applies to generalized linear models. Besides, while it is stated in

terms of the “transformed design point” u, the result can be easily translated back into x

using the relationship between them, and we will state results in x unless otherwise specified.

11



In Theorem 2.2.1, there are four different types of complete classes, the difference being

whether one or both of the endpoints are fixed design points (note however a fixed design

point can have weight 0 so that it need not be a support point). To make it easier to distin-

guish, let fix(Ξ) denote the set of fixed design points for the designs in the complete class

Ξ. For example, fix(Ξ) = ∅ and {L,U} refers to the complete classes in Theorem 2.2.1(c)

and Theorem 2.2.1(d), respectively.

Applications of Theorem 2.2.1 can be found in Yang and Stufken (2009), Yang (2010)

and Yang and Stufken (2012). Obviously, a ≥ d, however, in many applications we actually

find a = d. Take the LINEXP model from Yang and Stufken (2012) as an example.

The LINEXP model is used to characterize tumor growth delay and regrowth. The

natural logarithm of tumor volume is modeled using a nonlinear regression model with mean

η(x,β) = β1 + β2e
β3x + β4x, (2.2.2)

where x ∈ [L,U ] is the time, β1 + β2 is the logarithm of initial tumor volume, β3 < 0 is the

rate at which killed cells are eliminated, β4 > 0 is the final growth rate.

The information matrix for β can be written in the form of (2.2.1) with

P =


1 0 0 0

0 1 0 0

0 0 0 β2
β3

0 0 1
β3

0

 , C(u) =


1

eu e2u

u ueu u2

ueu ue2u u2eu u2e2u

 ,

where u = β3x ∈ [A,B] = [β3U, β3L]. Let d̃ = 2, C22(u) be the lower 2 × 2 principal

submatrix of C(u), and Ψ1(u) = u,Ψ2(u) = eu,Ψ3(u) = ueuΨ4(u) = e2u,Ψ5(u) = ue2u be

the set of linearly independent non-constant functions from the first two columns of C(u).
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Then q = 6, h1,1 = 1, h2,2 = eu, h3,3 = 1, h4,4 = 4eu, h5,5 = 1, and

h6,6(u) =

2e−2u e−u/2

e−u/2 2

 , H(u) =
6∏

ℓ=1

hℓ,ℓ(u) =

 8 2eu

2eu 8e2u

 .

Because H(u) > 0, Theorem 2.2.1(d) can be applied with a = 4 = d, and Ξ consists of

designs with at most four design points including both endpoints, thus fix(Ξ) = {L,U}.

2.2.2 Identifying the optimal design

If one of the cases in Theorem 2.2.1 holds, an optimal design exists of the form ξ =

{(xk, ωk)}ak=1, where xk’s are strictly increasing, with x1 or xa possibly fixed to be L or

U , respectively; ωk’s are nonnegative, and ω1 = 1 −
∑a

k=2 ωk. Let Z be the vector of un-

known design points (i.e., exclude x1 or xa if fixed to be the endpoint) and a − 1 unknown

weights ω2, . . . , ωa. Thus we can use Z to represent the design ξ. Now the objective function

Φ(M(ξ) is a function of Z, denoted as Φ̃(Z), and it is smooth by the smoothness of Φ. To

find an optimal design, we need to maximize Φ̃(Z) with respect to Z. The simplest way is

to find the critical points. Theorem 2.2.2 states the conditions when a critical point gives an

optimal design, where the condition “a valid design with support size a” means all a weights

are positive, all a design points are distinct and within [L,U ].

Theorem 2.2.2. Assume one of the cases in Theorem 2.2.1 holds. If there exists a vector

Zc such that it is a critical point of the objective function Φ̃(Z) and the corresponding design

ξc is a valid design with support size a, then ξc is a Φ-optimal design.

Proof. See Appendix

Theorem 2.2.2 gives an implicit solution of an optimal design if there exists a critical point

corresponding to a valid design with support size a, in which case we will call it a feasible
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critical point. Such a point can be given explicitly in special situations, but not in general

due to the complexity of the objective function. Nevertheless, we have an implicit solution

and it can be easily solved using Newton’s algorithm. However, we need to guarantee the

existence of a feasible critical point in the first place. Theorem 2.2.3 gives some sufficient

conditions that a feasible critical point exists.

Theorem 2.2.3. Suppose one of the cases in Theorem 2.2.1 holds and any Φ-optimal design

has at least a support points. Further assume the end points L and U are either a fixed design

point of Ξ or the information matrix at which is 0, then a feasible critical point of Φ̃(Z) must

exist, and by Theorem 2.2.2, the corresponding design is a Φ-optimal design.

Proof. Let ξ∗ ∈ Ξ be a Φ-optimal design, then ξ∗ has at least m support points. By

Theorem 2.2.1, designs in the complete class have at most m support points, hence ξ∗

has exactly m support points. Let Z∗ be the vector corresponding to ξ∗ according to the

definition in the beginning of Section 2.2.2. For each of conditions (a)∼(d), we know the

design points in Z∗ don’t include any of the endpoints (recall the fixed design points are

excluded in Z∗), hence they all belong to the open interval (L,U). The weights in Z∗ are

all positive, hence all belong to the open interval (0, 1), so Z∗ is not on the boundary and

must be a critical point of Φ̃(Z). This proves the existence.

As we have stated, for many models, the complete class given by Theorem 2.2.1 only

consists of designs with at most a = d support points. So the condition that any Φ-optimal

design has at least a support points is met for many optimality criteria. The condition (d)

is found to be satisfied for several models, as we will see in Section 2.3. For condition (a),

usually the information matrix becomes 0 at U only when U = ∞, so the condition fails if

we are interested in a finite design region, and so do conditions (b) and (c). This issue will

be addressed later in Theorem 2.2.6.
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For the most commonly used Φp-optimality criteria, Corollary 2.2.4 gives some useful

applications of Theorem 2.2.3.

Corollary 2.2.4. Suppose that one of the cases in Theorem 2.2.1 holds with a = d, and one

of the four conditions in Theorem 2.2.3 is met. Consider Φp-optimal design for g(β) where

g(β) satisfies either case (i) or (ii) below,

(i) g(β) = β or a reparametrization of β.

(ii) g(β) = cTβ, c = (c1, . . . , cd)
T is a d× 1 vector and cTβ can only be estimated with at

least d support points.

Then a feasible critical point of Φ̃(Z) exists, and the corresponding design is a Φp-optimal

design for g(β).

Remark 2.2.1. In Corollary 2.2.4(i), a special case of a reparameterization is g(β) = Wβ,

W is a diagonal matrix with positive diagonal elements. This will result in a rescaling of the

covariance matrix for β̂, and it makes sense when the magnitudes of var(β̂i)’s differ by orders.

For example, in Dette (1997), the author proposed “standardized” optimality criteria, where

the matrix W has diagonal elements Wii =
√

1/(M−1(ξ∗i ))ii, ξ
∗
i is the c-optimal design for

estimating βi alone, i = 1, . . . , d. Under the conditions of Corollary 2.2.4(i), finding such

optimal designs is easy after we find ξ∗i ’s.

Remark 2.2.2. Corollary 2.2.4(ii) considers c-optimality. The set of all vectors c such that

cTβ is only estimable with at least d design points is denoted as A∗ in Kiefer and Wolf

(1965). When c ∈ A∗, the c-optimal design is supported at the full set of Chebyshev points

in many cases [see Studden (1968)], but our method gives another way of finding c-optimal

designs. When c /∈ A∗, sometimes a feasible critical point still exists, and it still gives an

optimal design. However, if there is no such critical point, then c-optimal designs must

be supported at fewer points, which may not be the Chebyshev points, and this problem
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becomes harder. Nevertheless, we can approximate such c-optimal designs. Suppose c1 ̸= 0,

consider gϵ(β) = (cTβ, ϵβ2, . . . , ϵβd)
T , ϵ > 0. A Φp-optimal design for gϵ(β) can be found

easily by Corollary 2.2.4(i). Let ϵ → 0, it can be shown that these Φp-optimal designs will

eventually converge to the c-optimal design for cTβ (i.e., the efficiencies of these Φp-optimal

designs under c-optimality will converge to 1), for any p ≤ −1. Some examples are provided

in Section 2.3.

To verify the condition c ∈ A∗, let f(x,β) = (f1(x,β), . . . , fd(x,β))
T = ∂η(x,β)/∂β.

The condition c ∈ A∗ is equivalent to

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(x1,β) · · · f1(xd−1,β) c1

f2(x1,β) · · · f2(xd−1,β) c2
...

. . .
...

...

fd(x1,β) · · · fd(xd−1,β) cd

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0 (2.2.3)

for all L ≤ x1 < x2 < . . . < xd−1 ≤ U (this is also true for generalized linear models). In

particular, if we are interested in estimating the individual parameter βi, i.e., c = ei where

ei = (0, . . . , 0, 1, 0, . . . , 0)T denotes the ith unit vector, then ei ∈ A∗ is equivalent to f−i =

{fj|j ∈ {1, . . . , d}\{i}} being a Chebyshev system [see Karlin and Studden (1966)]. Here the

traditional definition of a Chebyshev system is used, which only requires the determinant in

(2.2.3) to be nonzero instead of positive.

Next, the uniqueness of optimal designs can also be established under mild conditions.

We first introduce some additional terminologies. A criterion Φ is called strictly isotonic on

PD(d) if Φ(M1) > Φ(M2) for any M1 ≥ M2 but M1 ̸= M2, where M1,M2 ∈ PD(d). It is

called strictly concave on PD(d) if Φ(αM1+(1−α)M2) > αΦ(M1)+(1−α)Φ(M2) for any α ∈

(0, 1),M1 > 0,M2 ≥ 0 and M2 ̸∝ M1. For example, Φp-optimality criteria are both strictly

isotonic and strictly concave on PD(d) when g(β) is β or a reparameterization of β and

p ∈ (−∞, 1) [see Pukelsheim (1993), p. 151]. Moreover, a compound optimality criterion
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which involves a strictly isotonic and strictly concave criterion is also strictly isotonic and

strictly concave. For these criteria, we have Theorem 2.2.5.

Theorem 2.2.5. Assume that one of the cases in Theorem 2.2.1 holds. If Φ is both strictly

isotonic and strictly concave on PD(d) and there exists a Φ-optimal design ξ∗ which has at

least d support points, then ξ∗ is the unique Φ-optimal design. In particular, the Φp-optimal

design under Corollary 2.2.4(i) is unique for p ∈ (−∞, 1).

Proof. See Appendix

Remark 2.2.3. The c-optimality criterion with g(β) = cTβ maybe neither strictly concave

nor strictly isotonic on PD(d). However, if c ∈ A∗ and f(x,β) is a Chebyshev system, the

uniqueness is proved in Studden (1968).

The uniqueness is not only of interest in itself, but also has implications for finding

optimal designs. As we have stated earlier, conditions (a), (b) and (c) in Theorem 2.2.3 may

only hold on a large design region, call it the “full design region”. Let ξ∗∗ be a Φ-optimal

design on the full design region with smallest support point x∗∗
min and largest support point

x∗∗
max. Then for a smaller design region [L,U ], under the same optimality criterion Φ, we

have Theorem 2.2.6.

Theorem 2.2.6. Assume that one of the cases in Theorem 2.2.1 holds for the full design

region, and both Φ-optimal designs on [L,U ] and the full design region are unique with support

size a, then we have

(a) under fix(Ξ) = {L}, if U < x∗∗
max, then the Φ-optimal design on [L,U ] has both L and

U as support points; otherwise, the optimal design is ξ∗∗.

(b) under fix(Ξ) = {U}, if x∗∗
min < L, then the Φ-optimal design on [L,U ] has both L and

U as support points; otherwise, the optimal design is ξ∗∗.
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(c) under fix(Ξ) = ∅, if x∗∗
min < L or U < x∗∗

max, then the Φ-optimal design on [L,U ] has

at least one end point as a support point; otherwise, the optimal design is ξ∗∗.

Proof. We only give the proof for case (a), others being similar. When U ≥ x∗∗
max, the design

ξ∗∗ is still a feasible design on the region [L,U ], and it is optimal because it is optimal on the

full design region. When U < x∗∗
max, ξ

∗∗ is no longer a feasible design, let ξ∗ be the optimal

design on [L,U ]. A complete class of the same type exists for design region [L,U ] because,

e.g., F(c) > 0 on the full design region implies F(c) > 0 on the smaller design region. So

x∗
1 = L. If the largest support point x∗

m < U , then Z∗ = (x∗
2, . . . , x

∗
m, ω

∗
2, . . . , ω

∗
m)

T must

be a critical point of Φ̃(Z). Now if we consider the optimal design problem on the full

design region again, Z∗ is a feasible critical point and, by Theorem 2.2.2, ξ∗ must be an

optimal design on the full design region. However, ξ∗ ̸= ξ∗∗, this contradicts the uniqueness

assumption.

2.3 Application

The theorems we have established can be used to find optimal designs for many models.

In Sections 2.3.1 through 2.3.3, we consider Φp-optimal designs for models with two, three

and four or six parameters, respectively. In Section 2.3.4, we consider polynomial regression

models with arbitrary d parameters under more general optimality criteria.

2.3.1 Models with two parameters

Yang and Stufken (2009) considered complete class results for two-parameter models, includ-

ing logistic/probit regression model, Poisson regression model and Michaelis–Menten model.

The theorems we have established can be used to find the optimal designs. Take the Poisson

regression model as an example (the applications to other models are similar). It has the
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following form:

η(x,β) = log(E(y)) = β1 + β2x, x ∈ [L,U ].

Theorem 2.2.1(b) can be applied to this model, and a complete class consists of designs

with at most 2 design points including one boundary point [see Yang and Stufken (2009),

Theorem 4]. Specifically, when β2 > 0, U is a fixed design point, and M(−∞) = 0 (since

M(x) = eβ1+β2x(1, x)T (1, x)); when β2 < 0, L is a fixed design point, and M(∞) = 0.

Thus on any one-sided restricted region (−∞, U ] (when β2 > 0) or [L,∞) (when β2 <

0), Φp-optimal designs for β can be found by solving for the critical points, according to

Corollary 2.2.4(i). For c-optimality, recall f(x,β) = ∂η(x,β)/∂β = (1, x), thus f−2 = {1}

is a Chebyshev system, which means β2 can only be estimated with at least d = 2 support

points. Therefore, according to Corollary 2.2.4(ii), an e2-optimal design (c-optimal design

for β2) can also be found by solving for the critical points.

In particular, D- and e2-optimal designs can be found analytically through symbolic

computation software (for example, by using the solve function in Matlab) and are listed

in (2.3.1) and (2.3.2). Note that they do not depend on β1 since e
β1 is merely a multiplicative

factor in M(x).

ξ∗D =

 {(U − 2/β2, 1/2), (U, 1/2)}, β2 > 0,

{(L− 2/β2, 1/2), (L, 1/2)}, β2 < 0.
(2.3.1)

ξ∗e2 =

 {(U − 2.557/β2, 0.782), (U, 0.218)}, β2 > 0,

{(L− 2.557/β2, 0.782), (L, 0.218)}, β2 < 0.
(2.3.2)

However, A-optimal designs do not have explicit forms. Nevertheless the solutions can

be found easily using Newton’s algorithm. For the case of β2 < 0, some examples are listed

in Table 2.1 (again the optimal designs do not depend on β1).
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In addition, the Φp-optimal design for β and e2-optimal design are unique, due to The-

orem 2.2.5. For finite design regions, Theorem 2.2.6 can be applied. For example, the

A-optimal design for β = (1,−1)T on [0, U ] when U ≥ 2.261 is {(0, 0.444), (2.261, 0.556)};

when U < 2.261, the optimal design is supported at exactly two points 0 and U , and the

weights can be determined easily.

Table 2.1: A-optimal designs for Poisson regression model on [0,∞)
A-optimal

β2 (x1, x2) (ω1, ω2)
−1 (0, 2.261) (0.444, 0.556)
−2 (0, 1.193) (0.320, 0.680)

2.3.2 Models with three parameters

Dette et al. (2008) and Dette et al. (2010) considered optimal designs for the Emax and

log-linear models. These models, often used to model dose-response curves, are nonlinear

regression models with means

η(x,β) =

 β1 + β2x/(x+ β3), Emax,

β1 + β2 log(x+ β3), log-linear.

Here x ∈ [L,U ] ⊆ (0,∞) is the dose range, β2 > 0 and β3 > 0. Theorem 2.2.1(d) can be

applied to both models, and a complete class consists of designs with at most 3 design points

including both endpoints [Yang (2010), Theorem 3]. Hence Corollary 2.2.4 is applicable on

design space [L,U ]. In particular, D-optimal designs can be computed explicitly and are

listed in (2.3.3). They are consistent with the results in Dette et al. (2010).

ξ∗D =

 {(L, 1/3), (x∗
E, 1/3), (U, 1/3)}, Emax,

{(L, 1/3), (x∗
l , 1/3), (U, 1/3)}, log-linear,

(2.3.3)
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where

x∗
E =

L(U + β3) + U(L+ β3)

L+ U + 2β3

, x∗
l =

(L+ β3)(U + β3)

U − L
log

(
U + β3

L+ β3

)
− β3. (2.3.4)

For A-optimality, numerical solutions can be obtained easily by Newton’s algorithm. Ta-

ble 2.2 gives some examples for the Emax model using parameter settings in Dette et al.

(2008) (the optimal designs don’t depend on β1 since it is not involved in the information ma-

trix; and although it seems that the optimal weights are constant, they do change gradually

with β2 and β3).

Table 2.2: A-optimal designs for the Emax model on [0,150]
β2 β3 (x1, x2, x3) (ω1, ω2, ω3)

7/15 15 (0, 12.50, 150) (0.250, 0.500, 0.250)
7/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)
10/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)

For c-optimality, Dette et al. (2010) gave explicit solutions for EDp-optimal designs,

where an EDp-optimal design is a design that is optimal for estimating the dose that achieves

100p% of the maximum effect in dose range [L,U ], 0 < p < 1. In fact, EDp-optimality is

equivalent to e3-optimality regardless of p, and we can find the optimal designs using our

method. First, we have

f(x,β) =

 (1, x/(x+ β3),−β2x/(x+ β3)
2), Emax,

(1, log(x+ β3), β2/(x+ β3)), log-linear.

It is easy to prove for both the Emax and log-linear models that f−3 is a Chebyshev system,

which means that β3 is only estimable with at least d = 3 support points. So e3-optimal

designs can be found by solving for the critical points, by Corollary 2.2.4(ii). The solutions

are listed in (2.3.5). They are consistent with the results in Dette et al. (2010).
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ξ∗e3 = ξ∗EDp
=

 {(L, 1/4), (x∗
E, 1/2), (U, 1/4)}, Emax,

{(L, ω∗
l ), (x

∗
l , 1/2), (U, 1/2− ω∗

l )}, log-linear,
(2.3.5)

where x∗
E and x∗

l are the same as in (2.3.4), and

ω∗
l =

log(x∗
l + β3)− log(U + β3)

2(log(L+ β3)− log(U + β3))
.

Regarding f−2, it can be shown that it is always a Chebyshev system for the log-linear

model, and it is a Chebyshev system for the Emax model if β3 /∈ (L,U). In such cases,

e2-optimal designs can be found according to Corollary 2.2.4(ii), and the solutions can be

derived analytically as shown in (2.3.6).

ξ∗e2 =

 {(L, 1
4
− (U−L)β3

8(β2
3−LU)

), (x∗
E,

1
2
), (U, 1

4
+ (U−L)β3

8(β2
3−LU)

)}, Emax, β3 /∈ (L,U),

{(L, (U−x∗
l )(L+β2)

2(U−L)(x∗
l +β2)

), (x∗
l ,

1
2
), (U,

(x∗
l −L)(U+β2)

2(U−L)(x∗
l +β2)

)}, log-linear.
(2.3.6)

When β3 ∈ (L,U), f−2 is no longer a Chebyshev system for the Emax model. However, if

|(U−L)β3| < |2(β2
3−LU)|, the weights of ξ∗e2 in (2.3.6) are still positive, and the design is still

e2-optimal; otherwise, the optimal design is supported at fewer than 3 points, which may not

be the Chebyshev points. Nevertheless, we can approach the optimal design using the method

in Remark 2.2.2. To show this, consider the setting where the dose range is [0,150], β2 = 7/15

and β3 = 25. The exact e2-optimal design can be found to be ξ∗e2 = {(β2
3/U, 0.5), (U, 0.5)} =

{(25/6, 0.5), (150, 0.5)} using Elfving’s method. Now let ϵ = 10−5, 10−6, 10−7; the Φp-optimal

designs for estimating gϵ(β) = (ϵβ1, β2, ϵβ3)
T can be found by Corollary 2.2.4(i) and are used

to approximate the e2-optimal design. Table 2.3 shows the errors and 1−efficiencies of the

approximation for p = −1 and −3. As we can see, the error gets sufficiently small after a few

iterations, especially when |p| is larger; however, due to singularity issues, the error cannot

be made arbitrary small.
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Table 2.3: Approximating two point e2-optimal design using three point designs
p ϵ |x2 − 25

6
|/25

6
|ω1| |ω2 − 0.5| |ω3 − 0.5| 1− eff

-1 10−5 10−2 4 · 10−3 4 · 10−3 2 · 10−4 6 · 10−4

10−6 10−3 4 · 10−4 4 · 10−4 2 · 10−5 6 · 10−5

10−7 10−4 4 · 10−5 4 · 10−5 2 · 10−6 6 · 10−6

-3 10−5 3 · 10−4 1 · 10−4 9 · 10−5 4 · 10−6 2 · 10−5

10−6 8 · 10−6 3 · 10−6 3 · 10−6 5 · 10−8 5 · 10−7

10−7 7 · 10−7 3 · 10−7 2 · 10−7 1 · 10−8 4 · 10−8

2.3.3 Models with four or six parameters

Demidenko (2004) used a double exponential model to characterize the regrowth of tumor

after radiation. The natural logarithm of tumor volume can be modeled using a nonlinear

regression model with mean

η(x,β) = β1 + log(β2e
β3x + (1− β2)e

−β4x),

where 0 ≤ x ∈ [L,U ] is the time, β1 is the logarithm of the initial tumor volume, 0 < β2 < 1

is the proportional contribution of the first compartment, and β3, β4 > 0 are cell proliferation

and death rates.

Demidenko (2006) used the LINEXP model to characterize tumor growth delay and

regrowth. The model was described in Section 2.2.1 and re-presented below:

η(x,β) = β1 + β2e
β3x + β4x,

Li and Balakrishnan (2011) considered D- and c-optimal designs for these two models,

but our approach yields more general results. For both models, Theorem 2.2.1(d) can be

applied, and a complete class consists of designs with at most four design points including

both endpoints [see Yang and Stufken (2012)]. Thus Corollary 2.2.4 can again be applied
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on the design space [L,U ], and Φp-optimal designs for β and certain c-optimal designs can

be found by solving for the critical points. In particular, f−3 and f−4 are Chebyshev systems

under both models [see Li and Balakrishnan (2011)], thus e3- and e4-optimal designs for

both models can be found by solving for the critical points.

There is no explicit solution for the optimal designs, but numerical solutions can be easily

found using Newton’s algorithm. Here we give some A-optimal designs for the LINEXP

model in Table 2.4 (the optimal designs for the LINEXP model do not depend on β1 and

β4 since they are not involved in the information matrix). For D- and c-optimality, our

approach gives the same results as in Li and Balakrishnan (2011).

Table 2.4: A-optimal designs for the LINEXP model on [0,1]
β2 β3 (x1, x2, x3, x4) (ω1, ω2, ω3, ω4)
0.5 −1 (0, 0.220, 0.717, 1) (0.156, 0.324, 0.344, 0.176)
1 −1 (0, 0.220, 0.717, 1) (0.151, 0.319, 0.349, 0.181)
1 −2 (0, 0.195, 0.681, 1) (0.146, 0.315, 0.355, 0.184)

Consider one more example. Dette, Melas and Wong (2006) studied D-optimal designs

for biexponential regression models, which are nonlinear regression models with mean

η(x,β) =
S∑

s=1

β2s−1e
−β2sx, 0 ≤ x ∈ [L,U ], (2.3.7)

where β2s−1 ̸= 0, s = 1, . . . , S, 0 < β2 < . . . < β2S. When S = 2 and β4/β2 < 61.98 or

S = 3, 2β4 = β2 + β6 and β4/β2 < 23.72, Theorem 2.2.1(b) can be applied, and a complete

class consists of designs with at most 2S design points including the lower endpoint L [see

Yang and Stufken (2012), Theorem 3 and Theorem 4]. Moreover, it is easy to see that

the information matrix M(x) goes to 0 when x approaches infinity, thus Corollary 2.2.4

can be applied on any design region [L,∞). Table 2.5 gives some A-optimal designs when

S = 2, β1 = β2 = 1.
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Table 2.5: A- and e2-optimal designs for biexponential regression model on [0,∞)
Criterion β3 β4 (x1, x2, x3, x4) (ω1, ω2, ω3, ω4)

A-optimality 1 2 (0, 0.275, 1.196, 3.416) (0.078, 0.178, 0.251, 0.493)
1 4 (0, 0.170, 0.768, 2.472) (0.118, 0.261, 0.287, 0.334)
3 4 (0, 0.172, 0.760, 2.450) (0.083, 0.199, 0.296, 0.422)

e2-optimality 1 2 (0, 0.273, 1.197, 3.425) (0.054, 0.124, 0.200, 0.623)
1 4 (0, 0.168, 0.769, 2.492) (0.033, 0.082, 0.201, 0.683)
3 4 (0, 0.168, 0.769, 2.492) (0.033, 0.082, 0.201, 0.683)

For c-optimality, first we have

f(x,β) =

 (e−β2x,−β1xe
−β2x, e−β4x,−β3xe

−β4x), S = 2,

(e−β2x,−β1xe
−β2x, e−β4x,−β3xe

−β4x, e−β6x,−β5xe
−β6x), S = 3.

Both are Chebyshev systems. In addition, we can show that f−2s, s = 1, . . . , S are Chebyshev

systems for S = 2 and S = 3, so the c-optimal designs for β2s, s = 1, . . . , S on [L,∞) can

be found by solving for the critical points. Table 2.5 gives some e2-optimal designs when

S = 2, β1 = β2 = 1.

Moreover, the Φp-optimal designs for β and c-optimal design for β2s’s are unique by

Theorem 2.2.5. For a finite design region, Theorem 2.2.6 can be applied. For example, the

A-optimal design for β = (1, 1, 1, 2)T on [0, U ] when U ≥ 3.416 is the same as in Table 2.5;

when U < 3.416, the optimal design is supported at 4 design points including both 0 and U .

2.3.4 Polynomial regression model with d parameters

Yang (2010) considered the general (d− 1)th degree polynomial regression model Pd−1 with

variance σ2/λ(x) and mean

η(x,β) = β1 +
d∑

i=2

βix
i−1. (2.3.8)
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For different choices of the efficiency function λ(x), Theorem 2.2.1 gives the following com-

plete class results [see Yang (2010), Theorem 9]:

(a) When (i) λ(x) = 1 − x, x ∈ [−1, 1] or (ii) λ(x) = e−x, x ∈ [0,∞), a complete class

consists of designs with at most d design points including the left endpoint. Moreover,

the information matrix M(U) = 0.

(b) When λ(x) = 1 + x, x ∈ [−1, 1], a complete class consists of designs with at most d

design points including the right endpoint. Moreover, the information matrix M(L) =

0.

(c) When (i) λ(x) = (1 − x)u+1(1 + x)v+1, x ∈ [−1, 1], u + 1 > 0, v + 1 > 0 or (ii) λ(x) =

xu+1e−x, x ∈ [0,∞), u + 1 > 0 or (iii) λ(x) = e−x2
, x ∈ (−∞,∞) or (iv) λ(x) =

(1 + x2)−t, x ∈ (−∞,∞), d ≤ t, a complete class consists of designs with at most d

design points. Moreover, the information matrices M(L) = M(U) = 0.

(d) When λ(x) ≡ 1, x ∈ [L,U ], a complete class consists of designs with at most d design

points including both endpoints.

Corollary 2.2.4 can be applied to the above models on the respective (full) design regions,

thus Φp-optimal designs for β and c-optimal designs for βd can be found by solving for the

critical points. Furthermore, those designs are unique, so Theorem 2.2.6 can be used when

the design regions are small.

Finally, we apply our theorems to more general optimality criteria. Dette and Studden

(1995) considered optimal designs under nested polynomial regression models. To be specific,

suppose the degree of the polynomial regression model is an unknown integer between 1 and

d− 1. The D-optimal design ξℓD under a given model Pℓ, 1 ≤ ℓ ≤ d− 1, may not be efficient

under another model with a different degree. To take this uncertainty into consideration,
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the authors proposed the following weighted optimality criteria Φp′,β:

Φp′,β(Mξ) =

[
d−1∑
ℓ=1

βℓ(eff
ℓ
D(ξ))

p′

]1/p′
, (2.3.9)

where p′ ∈ [−∞, 1], β = {β1, . . . , βd−1} is a prior on the set {1, . . . , d− 1} with βd−1 > 0,

effℓ
D(ξ) =

(
detMℓ

ξ

detMℓ
ξℓD

) 1
ℓ+1

, ℓ = 1, . . . , d− 1,

Mℓ
ξ is the information matrix of ξ under model Pℓ, and effℓ

D(ξ) is the D-efficiency of ξ under

model Pℓ.

Dette and Studden (1995) gave the solution of Φp′,β-optimal design for λ(x) ≡ 1, x ∈

[−1, 1]. The solution is rather complicated, and it requires knowledge of canonical moments.

An alternative way is to use Theorem 2.2.3, and it can be applied to more general settings.

First, the D-efficiency in the definition of Φp′,β can be generalized to any Φp-efficiency,

p ∈ (−∞, 1] (e.g., A-efficiency when p = −1), and we denote the resulting optimality criteria

as Φp,p′,β. Second, the efficiency function λ(x) can be generalized to any function in cases

(a)∼(d) in this subsection, where x belongs to the respective (full) design regions.

Under this general setting, Φp,p′,β always satisfies our assumption about optimality crite-

ria in Section 2.2.1 [see Pukelsheim (1993), p. 285]. Moreover, while this optimality criterion

is defined on a mixture of different models, these models are nested within the largest model

Pd−1, thus our complete class result for Pd−1 can be applied to Φp,p′,β. Finally, to use Theo-

rem 2.2.3, any Φp,p′,β-optimal design must have at least d support points. This requirement

is reasonable since otherwise the optimal design will not be able to estimate the model

Pd−1, which may be the true model. To meet the requirement, it is sufficient to restrict

ourselves to p, p′ ∈ (−∞, 0], since any singular matrix will result in Φp,p′,β to be 0. So by

Theorem 2.2.3, Φp,p′,β-optimal designs for models in cases (a)∼(d) of this subsection can be
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found by solving for the critical points. Some examples are given in Table 2.6 for the case

λ(x) = 1 − x2, x ∈ [−1, 1], p = −1 (i.e., for A-efficiency in (2.3.9)), d = 4 and β a uniform

prior.

Table 2.6: Φp,p′,β-optimal designs for polynomial regression models
p′ (x1, x2, x3, x4) (ω1, ω2, ω3, ω4) (eff1

A(ξ), eff2
A(ξ), eff3

A(ξ))
0 (−0.860, −0.346, 0.346, 0.860) (0.263, 0.237, 0.237, 0.263) (0.692, 0.745, 0.902)
−1 (−0.854, −0.343, 0.343, 0.854) (0.268, 0.232, 0.232, 0.268) (0.701, 0.753, 0.879)
-3 (−0.846, −0.339, 0.339, 0.846) (0.273, 0.227, 0.227, 0.273) (0.714, 0.759, 0.846)

In addition, Φp,p′,β-optimality is strictly isotonic and strictly concave on PD(d) since

βd−1 > 0 and the Φp-efficiency under model Pd−1 is strictly isotonic and strictly concave on

PD(d) for p ∈ (−∞, 0]. Hence by Theorem 2.2.5, the optimal designs are unique. How-

ever, for smaller design regions, the optimality criterion Φp,p′,β changes as the design region

changes. For example, when p = 0, the design ξℓD changes when the design region changes,

which causes Φp,p′,β to change. So the optimal design on the full design region cannot be

used to obtain the optimal design on a smaller region as we did in Theorem 2.2.6.

2.4 Computational advantages

Although it is not the main motivation, our method does provide computational advantages

over other algorithms, as Newton’s algorithm is well studied, easy to program and fast. For

comparison, we choose the optimal weight exchange algorithm (OWEA) proposed in Yang,

Biedermann and Tang (2013), which is among the most general and fastest algorithms.

OWEA algorithm starts with an initial design on a grid of the design space, then iterates

between optimizing the weights for the current set of support points and adding a new grid

point to the current support points, until the condition for optimality in general equivalence

theorem is satisfied. The computing time increases as the grid size κ becomes larger. So

to reduce the computing time, the authors proposed a modified algorithm. The modified

algorithm starts with a coarse grid and finds the optimal design on the coarse grid. Based on
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that, the grid near the support points of the optimal design is refined and a more accurate

optimal design is found on the finer grid. We refer to their original and modified algorithm

as OWEA I and OWEA II, respectively. All algorithms are coded using SAS IML and run

on a Dell Desktop (2.5GHz and 4Gb RAM). Comparisons are made for different grid sizes,

different models, and under both A- and D-optimality criterion.

Table 2.7: Computation time (seconds) for the LINEXP model
A-optimal D-optimal

κ = 100 κ = 1000 κ = 10000 κ = 100 κ = 1000 κ = 10000
Newton’s 0.08 0.08 0.08 0.08 0.08 0.08
OWEA I 0.19 0.22 0.63 0.24 0.37 1.28
OWEA II 0.17 0.18 0.21 0.20 0.23 0.29

First, we consider the LINEXP model given in (2.2.2). The parameters are set to be

β = (1, 0.5,−1, 1)T , and the design space is [0, 1]. Three different grid sizes, κ = 100, 1000

and 10000, are used for OWEA I and II; and for OWEA II, the initial coarse grid sizes are

chosen to be 10, 100, and 100 respectively. The computing times are shown in Table 2.7.

Note the grid size κ is irrelevant for the speed of Newton’s algorithm.

Table 2.8: Computation time (seconds) for polynomial regression model
A-optimal D-optimal

κ = 100 κ = 1000 κ = 10000 κ = 100 κ = 1000 κ = 10000
Newton’s 0.17 0.17 0.17 0.14 0.14 0.14
OWEA I 0.33 0.61 3.49 0.48 1.09 4.83
OWEA II 0.34 0.48 0.89 0.44 0.72 1.35

From Table 2.7, we can see all three algorithms are very efficient in finding optimal

designs. Newton’s algorithm is at least twice as fast as the other two algorithms. The speed

gain is more prominent when comparing to OWEA I, especially when the grid size κ is large.

Second, we consider a polynomial regression model given in (2.3.8) with d = 6 and

λ(x) = 1 − x2, x ∈ [−1, 1]. It has more parameters than the previous example so finding

optimal designs takes longer. The results are shown in Table 2.8. Again, we can see all three
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algorithms are very efficient in finding optimal designs. Newton’s algorithm is at least twice

as fast as the other two algorithms. The speed gain is more prominent when comparing to

OWEA I, especially when the grid size κ is large.
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Chapter 3

One covariate, correlated data

3.1 Introduction

Correlation may arise when there is a cluster structure to the data. For example, in a lon-

gitudinal study, repeated measurements taken from the same subject may be correlated.

Observations from different subjects, for example, patients from the same physician or hos-

pital, can also be correlated. Despite the ubiquity of correlated data, there are very few

results on optimal designs for this type of data. These few results can be classified into two

approaches, depending on how the correlation is modeled.

The first approach, which composes the majority of the existing literature, usually as-

sumes the parameters are fixed and models the correlated errors using a covariance kernel

function, for example, an exponential covariance function. This approach has been applied

mainly in the linear models context. Sacks and Ylvisaker (1966, 1968) are among the very

first papers to consider optimal design problems for correlated data. They considered a

linear stochastic process where the parameters were fixed and the covariance between errors

was modeled using a covariance kernel function. The covariance kernel function made the

variance-covariance matrix of the weighted least squares estimator more complicated and the
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design problem became much harder. So the authors proposed asymptotic designs, which

are approximate optimal designs when the sample size goes to infinity, and are usually repre-

sented by density functions on the design space. This concept was adopted and extended by

other authors. For example, Bickel and Herzberg (1979) and Bickel et al. (1981) developed

an asymptotic theory for ordinary least squares estimators and a correlation function that

was assumed to depend on the sample size.

Asymptotic designs are difficult to find, and for a long time, results only existed for

location-scale models. Recently, Dette et al. (2013) provided results for certain more general

linear regression models. While a significant step forward, asymptotic designs are only known

for few combinations of covariance kernel function and regression function. To the best of

our knowledge, for nonlinear models, there are no theoretical results using this approach,

and even numerical results are rare.

Part of the difficulty is that many tools established for independent data do not hold

for dependent data. Firstly, the convexity property of information matrices with respect

to the designs no longer holds (see Dette et al., 2013). This means that only the necessity

part of Kiefer’s equivalence theorem (Kiefer and Wolfowitz, 1960) can be proved. Secondly,

the powerful complete class results established in a series of papers, for example, Yang and

Stufken (2012) and Dette and Schorning (2013), cannot be generalized either.

The second approach assumes a mixed effects model, i.e., the parameters are random and

the observational errors are independent. Mixed effects models are widely used for analyzing

correlated data, but research on optimal design is very underdeveloped, and there are even

fewer theoretical results available compared to the first approach. However, we will adopt

this second approach and show that it is well-suited for generalizing classical results for

independent data to correlated data.

The rest of this Chapter is organized as follows. Section 3.2 generalizes results under

independent data to mixed effects models. These results are used to find optimal designs
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for a pharmacokinetics study in Section 3.3. The robustness of design efficiency against

miss-specifying the covariance structure of random effects is investigated in Section 3.4.

3.2 Theory

Mixed effects models are similar to models in Chapter 2 but with some parameters being

random. Suppose yi = (yi1, ..., yimi
)T is the mi-dimensional vector of responses from subject

(cluster) i, where yij is the jth observation given by the following mixed effects model:

yij = η(xij,βi) + ϵij, i = 1, ..., n; j = 1, ...,mi. (3.2.1)

Here η(xij,βi) is the conditional mean given βi = (βi1, ..., βid)
T and βi = β + bi is the

parameter vector for the ith individual, β = (β1, ..., βd) is the population parameter vector

and bi ∼ N(0, σ2Σ) is the random effects vector, Σ is the scaled variance-covariance matrix

and Σ can be singular if some parameters are fixed. The observational errors ϵij’s are

independent, normally distributed with constant variance σ2. The random effects bi’s are

independent of each other and are independent of the observational errors.

As usual, our main interest lies in estimating the regression parameter β. It can be

estimated using maximum likelihood estimator, but the likelihood function doesn’t always

have a closed form. To begin with, let’s consider a simpler case where the random effects

enter the model linearly. Split βi into two parts, βi = (β
(1)T
i ,β(2)T )T , where β

(1)
i is the d1-

dimensional random parameter vector and β(2) is the (d− d1)-dimensional fixed parameter

vector. Assume the regression function can also be decomposed into two parts, a linear part

and a nonlinear part,

η(xij,βi) = f(xij)
Tβ

(1)
i + f̃(xij,β

(2)).
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In particular, when d1 = d, this is a linear mixed effects model; when d1 = 1 and f(x) ≡ 1,

this is a random intercept model.

For the above model, the likelihood function of yi can be derived explicitly. Let η(xi,β) =

(η(xi1,β), ..., η(ximi
,β))T , Fi = ∂η(xi,β)/∂β and Vi = Imi

+ FiΣF
T
i , the marginal distri-

bution of yi can be written as

yi ∼ N(η(xi,β), σ
2Vi).

The maximum likelihood estimator β̂ is asymptotically normally distributed with mean β

and variance-covariance matrix

Cov(β̂) = σ2

(
n∑

i=1

FT
i V

−1
i Fi

)−1

, Fi =
∂η(xi,β)

∂β
, Vi = Imi

+ FiΣF
T
i . (3.2.2)

However, in general, the likelihood of yi in model (3.2.1) requires an integration over the

random effects, which usually doesn’t have a closed form. So there is no analytical expression

for the variance-covariance matrix of β̂. In the literature, a first order linearization of the

model is often used, see Retout et al. (2001), Schmelter (2007b) or Dette et al. (2010),

among the others. To be specific, expand η around β (in the locally optimal design context,

we assume β is known or a good guess is available), we get

η(xij,βi) ≈ η(xij,β) +

(
∂η(xij,β)

∂β

)T

(βi − β).

Therefore, the model is linearized, and (3.2.2) can be used as an approximation of the

intractable variance-covariance matrix of β̂ under nonlinear mixed models.

Now we formulate the locally optimal design problem. Assume the number of subjects

(clusters) is fixed to be n, the total number of measurements is fixed to be N . The number

of measurements taken from each subject and the way of distributing these measurements
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within the subject need to be designed. To avoid the difficulty of discrete optimization, we

consider approximate designs; efficient exact designs can usually be found by rounding.

According to Schmelter (2007a), the optimal design should have the same number of

measurements taken from each subject and the same design within each subject. Hence

m = N/n is the number of measurements taken from each subject. Let ξi ≡ ξ = {(xk, ωk)}tk=1

be the common design for all subjects, where
∑t

k=1 ωk = m, and Fi ≡ F,Vi ≡ V, i = 1, ..., n.

The covariance matrix in (3.2.2) now becomes Cov(β̂) = σ2(nFTV−1F)−1. Define M(ξ) =

FTV−1F as the information matrix for each subject, nM(ξ) as the total information matrix,

and our goal is to maximize M(ξ) with respect to ξ.

We first generalize the complete class results in Chapter 2 to mixed models. To do this,

we present a lemma which relates the information matrix under independence, denoted as

M(ξ) in Chapter 2, to the information matrix under mixed model. The lemma and its proof

can be found in Schmelter (2007a).

Lemma 3.2.1 (Schmelter (2007a)). The information matrix M(ξ) can be rewritten as

M(ξ) =
(
M+(ξ) +M+(ξ)M(ξ)ΣM(ξ)M+(ξ)

)+
,

where M+(ξ) is the Moore-Penrose inverse of M(ξ). If M(ξ) is non-singular the right hand

simplifies to

(M−1(ξ) + Σ)−1.

For singular M(ξ) it holds that

lim
δ→0

(
(M(ξ) + δId)

−1 + Σ
)−1

= M(ξ)

Lemma 1 connects the information matrix under independent data with its counterpart

under correlated data in a surprisingly nice way, it allows results established under indepen-
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dent data to be generalized. For example, an immediate observation here is, M(ξ) and M(ξ)

have the same rank and the same column space. So a design ξ is feasible for estimating β

(under mixed model) if and only if it has at least d support points; it is feasible for estimating

cTβ if and only if it is feasible under independent data. More similarities will be revealed

along the way.

Using Lemma 3.2.1, we can generalize the complete class results to mixed models easily.

Theorem 3.2.2. The complete class Ξ derived under independent model in Chapter 2 is

also the complete class under mixed model (3.2.1).

Proof. We only need to show for any design ξ /∈ Ξ, we can find a design ξ̃ ∈ Ξ such

that M(ξ̃) ≥ M(ξ). Using results in Chapter 2, there exists a design ξ̃ ∈ Ξ such that

M(ξ̃) ≥ M(ξ).

Case 1, M(ξ) is nonsingular, by Lemma 3.2.1 we have

M(ξ̃) = (M−1(ξ̃) + Σ)−1 ≥ (M−1(ξ) + Σ)−1 = M(ξ),

Case 2, M(ξ) is singular. Still we have

(
(M(ξ̃) + δId)

−1 + Σ
)−1

≥
(
(M(ξ) + δId)

−1 + Σ
)−1

Take the limit as δ → 0, we have M(ξ̃) ≥ M(ξ).

Now the search of optimal designs can be restricted within Ξ, in particular, we focus

on Φp-optimal designs. The Φp-optimal design for a smooth function of the parameters,

g(β) : Rd → Rv where v ≤ d, is defined to maximize the following objective function with

respect to ξ:

Φp(I(ξ)) =

(
1

v
tr(Ip(ξ))

)1/p

, p ∈ (−∞, 1],
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where I(ξ) = (KTM−(ξ)K)−1 = (KT (M−(ξ) + Σ)K)−1 is the (scaled) information matrix

for g(β), K = (∂g(β)/∂β)T has full column rank v and M−(ξ) is the generalized inverse if

M(ξ) is singular.

Before finding the optimal designs, it is important to point out the concavity of the

information matrix mapping I(ξ). Under independent data, for any two feasible designs

ξ1, ξ2, let ξα = αξ1 + (1− α)ξ2, α ∈ (0, 1), we have

(KTM−(ξα)K)−1 ≥ α(KTM−(ξ1)K)−1 + (1− α)(KTM−(ξ2)K)−1.

Same concavity holds under mixed models. To see that, Schmelter (2007a) proved M(ξα) ≥

αM(ξ1) + (1− α)M(ξ2), thus I(ξα) ≥ (KT (αM(ξ1) + (1− α)M(ξ2))
−K)−1 ≥ αI(ξ1) + (1−

α)I(ξ2).

To find the Φp-optimal designs, Theorem 2.2.3 can be used in many situations. Rewrite

Φp(I(ξ)) as Φ(M(ξ)). It is easy to see Φ satisfies assumptions (2) ∼ (3); for assumption (1),

since we have established the concavity of the information mapping I(ξ), this assumption

holds as well. So Theorem 2.2.3 can be applied which gives Theorem 3.2.3.

Theorem 3.2.3. Suppose the complete class Ξ satisfies (i) a = d (ii) the end points L and

U are either a fixed design point of Ξ or the information matrix at which is 0, then a feasible

critical point of Φ̃(Z) must exist, and any such point gives a Φp-optimal design for β.

Examples will be given for the biexponential regression model in Section 3.3. Note that

for c-optimality, Theorem 3.2.3 also applies if cTβ can only be estimated with at least d

support points. However, we decided not to go into much details here.

Next, Theorem 3.2.4 and Theorem 3.2.5 gives some interesting properties of the optimal

designs under the commonly used A-, c-, and D-optimality.

Theorem 3.2.4. When p = −1, a Φ−1-optimal design for g(β) under a fixed effects model

is also a Φ−1-optimal design under its corresponding mixed effects model, for any Σ.
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Proof. When p = −1, the optimality criterion reduces to

Φ−1(I(ξ)) = v
(
tr(I−1(ξ))

)−1
= v

(
tr(KT (M−(ξ) + Σ)K)

)−1
= v

(
tr(KTM−(ξ)K) + tr(KTΣK)

)−1
.

Since tr(KTΣK) is a constant scalar, the optimal design obtained under independent data,

which maximizes Φ−1(I(ξ)) under Σ = 0, must also maximizes Φ−1(I(ξ)) under any non-

negative definite Σ.

By Theorem 3.2.4, the A-optimal designs and c-optimal designs obtained under inde-

pendent data are also optimal under mixed models. On the other hand, for D-optimality

and other optimality criteria where p ̸= −1, the optimal design depends on Σ in general.

However, for random intercept models, the D-optimal design actually doesn’t depend on Σ

either.

Theorem 3.2.5. A D-optimal design for β under a fixed effects model is also a D-optimal

design under its corresponding random intercept model, for any Σ.

Proof. The D-optimal design maximizes det(M(ξ)). From Lemma 3.2.1, we can assume

M(ξ) is nonsingular since otherwise det(M(ξ)) = 0. We only need to prove det(M(ξ)) =

det(M(ξ))/(1 +mσ11), where σ11 is the (1, 1)th element of Σ.

For a random intercept model, F = (F(1),F(2)) where F(1) is the m-dimensional vector of

all 1’s, and Σ is a sparse matrix with all 0’s except σ11 > 0. Thus

M(ξ) =

 m F(1)TF(2)

F(2)TF(1) F(2)TF(2)

 , M(ξ)Σ =

 σ11m 0

σ11F
(2)TF(1) 0

 ,

det(M(ξ)) = det(M−1(ξ)+Σ)−1 = det(M(ξ))×det(Id+M(ξ)Σ)−1 = det(M(ξ))/(1+mσ11).
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A nice property about D-optimal designs in independent data case is that they are

invariant to re-parameterizations. This property also holds under mixed data. Suppose

β̃ = g(β) is a reparameterization of β, then M̃(ξ) = K−1M(ξ)K−T , whereK = (∂g(β)/∂β)T

is nonsingular. Moreover, using Delta method, the variance covariance matrix of β̃i’s is σ
2Σ̃,

where Σ̃ = KTΣK. Therefore, M̃(ξ) = (M̃
−1
(ξ) + Σ̃)−1 = K−1M(ξ)K−T , which means det

M̃(ξ) ∝ det M(ξ), and the D-optimal designs are invariant.

Finally, Kiefer’s equivalence theorem also holds because of the concavity of information

mapping I(ξ).

Theorem 3.2.6. A design ξ∗ is a Φp-optimal design for estimating g(β) if and only if

tr(Ip+1(ξ∗)KTM−(ξ∗)M(ξx)M
−(ξ∗)K) ≤ tr(Ip+1(ξ∗)KTM−(ξ∗)K) (3.2.3)

for all x ∈ [L,U ], where M−(ξ∗) is some G-inverse of M(ξ∗), ξx = {x,m} is the one-point

design. Moreover, the equality holds at the support points of ξ∗.

3.3 Application

Before going to an application, there is another practical issue that needs to be addressed.

The optimal designs suggest replications on each support point. However, in reality, it

may occur that observations are non-repeatable within each subject, for example, when the

covariate x is time. In such situation, an efficient design can be found by replacing each

(xk, ωk) with a set of distinct x’s that are close to xk.

Applications of our method can be presented for multiple families of models, for example,

models in Yang (2010) and Yang and Stufken (2012). We will take the mixed effects version of

the biexponential regression model as an example. To make it meaningful, the experimental

settings are taken from a real-life study described in Pinheiro and Bates (2000). It is a study
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about the pharmacokinetics of the drug indomethicin. In this study, there are six human

subjects, each subject received the same dose of indomethicin and his/her drug concentration

was measured 11 times between 0.25 hours and 8 hours after injection. In Pinheiro and Bates

(2000), the jth measurement from subject i was modeled as

yij = βi1 exp(−eβi2xij) + βi3 exp(−eβi4xij) + ϵij, i = 1, ..., 6; j = 1, ..., 11,

where βi = (βi1, βi2, βi3, βi4)
T ∼ N(β, σ2Σ), β = (β1, β2, β3, β4)

T and β2 > β4. Different

covariance structure of the random effects were proposed and compared, and finally, the

authors used the following block-diagonal structure for Σ:

Σ =


σ11 σ12 0 0

σ21 σ22 0 0

0 0 σ33 0

0 0 0 0


Based on this covariance model, the parameters are estimated and given in Table 3.1 (Pin-

heiro and Bates 2000, p.287).

Table 3.1: Parameter estimates for indomethicin data
Parameter β1 β2 β3 β4 σ11 σ12 σ22 σ33 σ
Estimate 2.8045 0.8502 0.5887 -1.1029 78.93 17.54 4.76 5.50 0.0782

We will design our locally optimal designs based on the estimated parameters β̂ and Σ̂

in Table 3.1. The design space is chosen to be [0.25, 8].

Because eβ̂2/eβ̂4 = e0.8502+1.1029 < 61.98, by Yang and Stufken (2012), designs with at

most 4 support points including L form a complete class. Now we are going to find optimal

designs within Ξ, specifically, we will focus on A and D optimality.

If the design space were [0.25,∞), Theorem 3.2.3 can be used to find the optimal designs,

and the results are listed in Table 3.2. Because the largest support points are 6.018 and 5.153
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for A-optimal design and D-optimal design, respectively, which are below 8, we can conclude

that they are also the optimal designs on the restricted design space of [0.25, 8].

Table 3.2: A- and D-optimal designs for indomethicin study
A-optimal D-optimal

(x1, x2, x3, x4) (w1, w2, w3, w4) (x1, x2, x3, x4) (w1, w2, w3, w4)
(0.250, 0.619, 1.655, 6.018) (1.417, 1.770, 2.770, 5.043) (0.250 0.601 1.882 5.487) (0.774 2.117 2.956 5.153)

Now we compare the optimal designs with other designs. We consider four alternatives,

the design used in the original study ξ0 , the uniform design ξu and the “practical” optimal de-

signs ξ∗p1 and ξ∗p2. The original design takes observations at 0.25, 0.5, 0.75, 1, 1.25, 2, 3, 4, 5, 6, 8,

the uniform design takes observations at 11 equally spaced design points, 0.25, 1.025, 1.8, ..., 8,

the “practical” optimal designs are constructed from the locally optimal design by rounding

and distributing the weight on each support point to distinct design points. Specifically,

round the weights in ξ∗ to integers first, say (w̄1, w̄2, w̄3, w̄4); then for any xk that has a

weight w̄k > 1, we will replace (xk, w̄k) with w̄k distinct design points that are close to xk.

In practice, we may not be able to choose the w̄k new design points to be arbitrarily close

to xk, so we consider two situations here. First, assume we can only take observations at

a multiple of 0.25 hours, and the practical optimal design obtained under this constraint is

denoted as ξ∗p1. Second, assume we can take observations at any time as long as they are at

least 0.1 hours apart, denote the practical optimal design obtained under this constraint as

ξ∗p2. Therefore, the practical optimal designs can be chosen as (they don’t have to be unique)

ξ∗p1 =

 (0.25, 0.5, 0.75, 1.5, 1.75, 2, 5.5, 5.75, 6, 6.25, 6.5) A-optimality

(0.25, 0.5, 0.75, 1.75, 2, 2.25, 5, 5.25, 5.5, 5.75, 6) D-optimality

and

ξ∗p2 =

 (0.25, 0.57, 0.67, 1.56, 1.66, 1.76, 5.8, 5.9, 6, 6.1, 6.2) A-optimality

(0.25, 0.55, 0.65, 1.80, 1.90, 2.0, 5.3, 5.4, 5.5, 5.6, 5.7) D-optimality
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Now we compare the efficiencies of these four alternatives with ξ∗ under A- and D-

optimality criteria. The efficiency of any design ξ compared to the optimal design ξ∗ is

defined as

eff(ξ) =


tr(M−1(ξ∗))

tr(M−1(ξ))
, A-optimality(

det(M−1(ξ∗))

det(M−1(ξ))

)1/d
, D-optimality

,

here d = 4.

Efficiency is directly related with sample size. For example, an efficiency of 0.8 means the

optimal design only needs 80% of the sample size ξ needed to achieve the same accuracy of

parameter estimation. The efficiencies of the four alternative designs are listed in Table 3.3.

Table 3.3: Efficiencies for the alternative designs
Optimality ξ0 ξu ξ∗p1 ξ∗p2

A 0.855 0.776 0.976 0.990
D 0.870 0.765 0.973 0.994

From Table 3.3, we can see the uniform design has the worst efficiency under both op-

timality criteria. Its efficiencies are 20% lower than the optimal designs and the practical

optimal designs. The practical optimal designs have only a negligible loss of efficiency, and

it is not surprising to see ξ∗p2 performs slightly better than ξ∗p1. The original design has a

decent efficiency, however, it is still 10% less than the practical optimal designs.

3.4 Robustness

Because the covariance information is hard to obtain, we consider the robustness of design

efficiency with respect to miss-specifying the covariance matrix Σ. Since A-optimal designs

are invariant to Σ, we only consider D-optimal designs. It would be too time consuming

and lengthy to consider all different models and different parameter settings, so we will

restrict considerations to the biexponential model and the following parameter settings. The
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regression parameters are fixed to be β̂, and we consider two parallel scenarios about the

structure of Σ. One is that Σ is singular, specifically we consider the case where σ44 = 0. The

other scenario is that Σ is positive definite. We will use Σ̃ and R̃ to denote the mis-specified

covariance and correlation matrices, respectively. We will find D-optimal designs under the

mis-specified covariance matrix Σ̃, and compute their efficiencies with respect to optimal

designs under the true covariance matrix Σ. The design space is kept as [0·25, 8], and n as

11. Under this setting, all D-optimal designs below can be found using Theorem 3.2.3.

First, assume the variances are known exactly and study the effect of the miss-specified

correlation matrix. Each time, we sample a random correlation matrix using rcorrmatrix

function in the R package clusterGeneration, and treat it as the true correlation. The

miss-specified correlation matrix is fixed to be diagonal (no correlation). The variances are

assumed to be known exactly, but to make the result more general, we draw the variances

from a distribution instead of fixing them at certain values.

To be specific, in the first scenario, let σii = σ̂ii×ri, i = 1, 2, 3, 4 (note σ̂44 = 0), where each

ri has a discrete uniform distribution on the set of ratios {1/r̄, 2/r̄, ..., (r̄ − 1)/r̄, 1, 2, ..., r̄},

r̄ is a positive integer. In the second scenario we consider a positive definite Σ. We can

still let σii = σ̂ii × ri, i = 1, 2, 3, 4, except replacing σ̂44 with a positive value. Because the

scale of β̂4 is about one half the scale of β̂1 and two time the scale of β̂3, 20 seems to be a

reasonable value to replace σ̂44. We consider three values for r̄, r̄ = 1, 10, 100, thus allowing

the variances to vary by a maximum of four orders of magnitude. For each value of r̄ in each

scenario, 500 optimal designs are generated based on the miss-specified diagonal covariance

matrices, also 500 optimal designs are generated based on the true covariance matrices, and

the efficiencies of the former compared to the latter are summarized in Table 3.4.

Table 3.4 shows that the design efficiencies are robust against mis-specified correlation

matrix. For scenario one, the minimum efficiency goes below 90%, however the 5% quantile

shows that 95% of the efficiencies are above 97%, and the P(eff≥0.95) column shows more
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Table 3.4: Efficiencies of D-optimal designs under mis-specified correlation
Scenario 1 Scenario 2

r̄ min 5% P(eff≥0.95) min 5% P(eff≥0.95)
1 94.2% 97.2% 99.8% 95.1% 97.7% 100%
10 89.5% 97.4% 99.2% 95.3% 98.1% 100%
100 89.0% 98.8% 99.2% 94.2% 99.1% 99.6%

than 99% of the efficiencies are above 95%. For scenario two, the results look even better.

Therefore, we can conclude that when the variances are known exactly, the design efficiencies

are robust against mis-specification in the correlation matrix.

Second, we allow mis-specification in both variances and correlations, but we assume

there are some prior knowledge about Σ, for example, an estimate. This naturally leads

us to sampling Σ̃ from the Wishart distribution. Specifically, sample a random matrix W

from Wishart distribution W4(Σ, ν) with degrees of freedom ν, and let Σ̃ = W/ν be the

mis-specified covariance matrix. Again we consider two scenarios here. In the first scenario,

we let Σ = Σ̂. Note due to the singular structure of Σ̂, Σ̃ is also rank 3 with the last column

0. In the second scenario, we let the variances be σii = σ̂ii, i = 1, 2, 3 and σ44 = 20, and the

correlation structure be exchangeable with ρ = 0.5.

Table 3.5: Efficiencies of D-optimal designs under mis-specified Wishart Σ’s
Scenario 1 Scenario 2

ν cv min 5% P(eff≥0.95) min 5% P(eff≥0.95)
4 0.707 93.4% 97.2% 99.8% 95.3% 97.6% 100%
7 0.535 96.7% 98.7% 100% 97.1% 98.6% 100%
10 0.447 98.0% 99.2% 100% 97.9% 98.9% 100%

We know E(Σ̃) = Σ and Var(σ̃ij) = (σ2
ii + σiiσjj)/ν, i, j = 1, 2, 3, 4. Specially Var(σ̃ii) =

2σ2
ii/ν, so the coefficient of variation for any σ̃ii is cv =

√
2σ2

ii/ν/σii =
√
2/ν. Therefore,

we can manipulate ν to control the error between the mis-specified covariance and the true

one. We consider ν = 4, 7, 10. For each value of ν in each scenario, 500 optimal designs
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are constructed based on 500 mis-specified Σ̃’s, and their efficiencies under the true Σ are

evaluated and given in Table 3.5.

Figure 3.1: Efficiency plots for scenario one and two, the third study

From Table 3.5, we can see the design efficiencies are quite robust given we have certain

amount of knowledge about Σ from previous experience. The worse case happens when

ν = 4, and the minimum efficiency goes below 95% (93.4%) in scenario one. However, 95%

of the time, the efficiency is above 97.2%, and 99.8% of the time, the efficiency is above 95%.

For Scenario two, the efficiencies are above 95% all the time.

Third, we don’t assume any prior knowledge about the structure of Σ, so there will be

larger errors in specifying the covariance matrix. For the true covariance matrix, let them to

be the same as in the second study. For the mis-specified covariance, we consider two cases

in each scenario. The first case, assume a diagonal covariance matrix with mis-specified

variances σ̃ii = σii × r, i = 1, 2, 3, 4. Note unlike the first study, the ratio r is kept the

same for all four variance components. This means the variances will be over estimated

(r > 1) or under estimated (r < 1) simultaneously. The second case, we use the same mis-

specified variance components as in the first case, but adopting the true correlation structure.

This is an extension of the first study, to see the robustness against mis-specification in the
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correlation when the variances are also mis-specified. Take r = 1/100, 1/99, ..., 99, 100, the

efficiencies of optimal designs derived under mis-specified covariance matrices are given in

Figure 3.1, where red crosses show design efficiencies under diagonal correlation structure

and black dots show design efficiencies under true correlation structure. Note the x-axis is

log(r) instead of r.

In Figure 3.1, it is not surprising to see that the efficiency decreases as the mis-specification

in variances aggravates (r moves further away from 1). However, the pattern and pace of

the decline are very different between the two scenarios. The decline is much faster in the

first scenario than in the second scenario; and while the efficiencies are worse for over esti-

mated variances than under estimated variances in the first scenario, it is the contrary in the

second scenario. In both scenarios, we find that the efficiency differences between case one

(red crosses) and case two (black dots) are minor, which suggests miss-specifying correlation

structures doesn’t affect design efficiencies much.

Figure 3.2: Efficiency plots for scenario one and two, the fourth study

Finally, the fourth study is similar to the third study but more general. In the third

study, the variances are over estimated or under estimated simultaneously, but in prac-
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tice this is hardly the case. Moreover, only one true correlation structure is considered in

each scenario. So to make a more general study, the mis-specified variances are set to be

σ̃ii = σii × ri, i = 1, 2, 3, 4, where ri has a discrete uniform distribution on the set of ratios

{1/r̄, 2/r̄, ..., 1, 2, ..., r̄}. The true correlation structure is sampled randomly using rcorrma-

trix function. Still we consider two cases in each scenario, as did in the third study. Set

r̄ = 100 and 500 iterations are run for each case, the results are given in Figure 3.2, where

upper panel shows design efficiencies under diagonal correlation structure and lower panel

shows design efficiencies under true correlation structure. Note the lines in Figure 3.2 are

jagged because different correlation matrix and variances are sampled at each iteration.

Comparing upper panel with lower panel, we can see the efficiency plots are very similar.

So this again confirms our observation that design efficiencies are generally robust to mis-

specified correlation structures, and it also means the imperfect design efficiencies are caused

mainly by mis-specified variances. Table 3.6 summarizes the efficiencies. The minimum

efficiency for either case under either scenario is only slightly above 75%, the 5% quantile

is around 85% and the proportion of efficiencies that are at least 95% is merely 60%. The

efficiencies aren’t poor, but it is not that robust either. Note that unlike in the third study,

the efficiencies between the two scenarios are more comparable now.

Table 3.6: Efficiencies of D-optimal designs under mis-specified covariance matrices
Scenario 1 Scenario 2

Case min 5% P(eff≥0.95) min 5% P(eff≥0.95)
One 75.7% 86.2% 63.4% 75.3% 84.4% 58.4%
Two 76.0% 86.8% 62.8% 78.2% 85.8% 61.2%

Summarizing the results, design efficiencies are generally very robust against mis-specification

in the correlation structure, but not so robust against mis-specification in the variance com-

ponents unless some prior knowledge is known.
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Chapter 4

Multiple-covariate generalized linear

models, independent data

4.1 Introduction

The models we have considered so far all contain only one covariate. For models with multiple

covariates, particularly generalized linear models, research is far behind. Most efforts in the

literature rely solely on limited computational tools like simulated annealing or Fedorov ex-

change algorithm. However, as the number of covariates increases, the optimization problem

can get very time-consuming. As pointed out in Khuri et al. (2006), “The situations where

one has several covariates (control variables) or multiple responses corresponding to each

subject demand extensive work to evaluate optimal or at least efficient designs”. Therefore,

theoretical guidance is desired in this multiple-covariate setting.

However, methodological research is even more scarce than numerical studies. There

are only a couple of papers that provided theoretical results. For count data, Russell et al.

(2009) gave explicit formula for D-optimal designs under a Poisson regression model, when

the design space is relatively large. For binary data, Sitter and Torsney (1995) considered c-
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andD-optimal designs for logistic/probit regression models with two covariates. Haines et al.

(2007) also studied D-optimal designs for the logistic regression model with two covariates,

but under a slightly different set-up. Yang, Zhang and Huang (2011) derived closed-form

solutions of optimal designs for logistic/probit regression models with an arbitrary number

of covariates, where the design space is unbounded for exactly one covariate and bounded

for all other covariates. Specifically, a small class of designs in which the optimal designs

can be found was identified, and explicit forms of D-, A- and E-optimal designs were given.

However, none of these papers considered any interaction effects between the covariates,

which usually makes the problem much harder.

In this chapter, we will extend the methods in Yang, Zhang and Huang (2011) to more

general models and more general design spaces. We will focus on loglinear models for count

data and logistic/probit regression models for binary data, with an arbitrary number of

covariates and possible interactions between the covariates. The design space can be any

hypercube. We are not able to give explicit forms of optimal designs in such a general setting,

but we will use the complete class approach to identify a relatively small class of designs in

which the optimal designs can be found, thus greatly simplifying the computational cost of

the numerical search.

4.2 Theory

Assume there are d unrelated continuous covariates, x1, . . . , xd, and the response Y can be

either binary or count. First, consider models without interactions. The loglinear, logistic

and probit regression models can be written in the following unifying form:

E(Yi) = P (β0 + β1xi1 + · · ·+ βdxid), xij ∈ [Lj, Uj], i = 1, ..., n, j = 1, ..., d, (4.2.1)
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where n is the number of subjects, xij is the value of covariate xj for subject i, xij belongs to

the design space [Lj, Uj], and P (u) = eu for loglinear models, P (u) = eu/(1+ eu) for logistic

models and P (u) = Φ(u) for probit models, where Φ(u) is the cumulative distribution

function of the standard normal distribution.

Let xq = (xq1, ..., xqd)
T . An approximate design ξ = {(xq, wq)}tq=1 puts nwq observations

at the design point xq, where
∑t

q=1wq = 1 and the nwq’s don’t have to be integers. The

(scaled) information matrix under ξ can be written as

M(ξ) =
t∑

q=1

wqM(xq) =
t∑

q=1

wqΨ(uq)zqz
T
q , (4.2.2)

where uq = β0 + β1xq1 + · · · + βdxqd, zq = (1,xT
q )

T ,Ψ(u) = eu for loglinear models and

Ψ(u) = [P ′(u)]2/[P (u)(1− P (u))] for logistic/probit models.

Let χ =
∏d

j=1[Lj, Uj], define Sj = {(x1, ..., xd) ∈ χ|xℓ = Lℓ or Uℓ for any ℓ ̸= j} as the

union of all parallel 1-dimensional edges of the design hypercube.

Theorem 4.2.1. Under model (4.2.1), for any design ξ, there exists another design ξ̃ =

{(x̃s, w̃s)}t
′
s=1, such that

(1) M(ξ̃) ≥ M(ξ) under Loewner ordering.

(2) x̃s ∈
∪d

j=1 Sj, s = 1, ..., t′.

Proof. We will construct ξ̃ by replacing each design point that’s not on the edge with a few

design points on the edge and meanwhile improve the information matrix. Without loss of

generality, assume Lj < xqj < Uj for j = d − 1 and d, for design point xq. Fix x
(1)
q =

(xq1, ..., xq,d−2)
T , consider the constant logit line that passes through x

(2)
q = (xq,d−1, xq,d)

T ,

βd−1z1 + βdz2 = βd−1xq,d−1 + βdxq,d, z1 ∈ [Ld−1, Ud−1], z2 ∈ [Ld, Ud].
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Let x̄
(2)
q = (x̄q,d−1, x̄q,d)

T and x
(2)
q = (xq,d−1, xq,d)

T be the two points on the perimeter

of the design rectangle [Ld−1, Ud−1]× [Ld, Ud] where this line intersects at. There exists a λ

such that x
(2)
q = λx̄

(2)
q + (1− λ)x

(2)
q , 0 < λ < 1, and by convexity,

λx̄(2)
q x̄(2)T

q + (1− λ)x(2)
q x(2)T

q ≥ x(2)
q x(2)T

q . (4.2.3)

Replace xq with x̄q = (x
(1)T
q , x̄

(2)T
q )T and xq = (x

(1)T
q ,x

(2)T
q )T , with weight λwq and

(1− λ)wq, respectively. Because of (4.2.3),

M(xq) = Ψ(uq)


1 x

(1)T
q x

(2)T
q

x
(1)
q x

(1)
q x

(1)T
q x

(1)
q x

(2)T
q

x
(2)
q x

(2)
q x

(1)T
q x

(2)
q x

(2)T
q



≤ Ψ(uq)


1 x

(1)T
q x

(2)T
q

x
(1)
q x

(1)
q x

(1)T
q x

(1)
q x

(2)T
q

x
(1)
q x

(2)
q x

(1)T
q λx̄

(2)
q x̄

(2)T
q + (1− λ)x

(2)
q x

(2)T
q


= λM(x̄q) + (1− λ)M(xq).

Thus the above replacement produces a information matrix that is at least as large. By

continuing to do this for x̄q, xq and the other xq’s until all designs points are located at the

edges, we end up with a design ξ̃ that satisfies (1) and (2).

With Theorem 4.2.1, the search of optimal designs can be greatly simplified. Suppose we

are going to use Fedorov’s algorithm to find the D-optimal designs. To form the candidate

set, κ grid points are chosen from each dimension [Lj, Uj], thus the size of the candidate set

N = κd. However, with Theorem 4.2.1, we only need the design points on the edges, which

reduces N from κd to κd2d−1. For example, when κ = 100 and d = 3, N reduces from 1

million to 1200. As d gets larger, the reduction will only become more substantial.
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Now let’s look at models with two-way interactions. Let I2 = {(j, k)|1 ≤ j < k ≤ d}

be the set of two-way interactions we are interested in, which need not be all two-way

interactions. Then the model can be written as

E(Yi) = P (β0 +
d∑

j=1

βjxij +
∑

(j,k)∈I2

βjkxijxik), xij ∈ [Lj, Uj], i = 1, ..., n, (4.2.4)

The information matrix under design ξ can be written in the same format as in 4.2.2 with

zq = (1, xq1, ..., xqd, ..., xqjxqk, ...).

Define Sj,k = {(x1, ..., xd)
T |xℓ = Lℓ or Uℓ for any ℓ ̸= j, k}, so Sj,k is actually a set of

parallel 2-dimensional faces of the design hypercube χ.

Theorem 4.2.2. If there is no j < k < l such that all three two-way interactions between

xj, xk, xl exist in (4.2.4), then for any design ξ, there exists another design ξ̃ = {(x̃s, w̃s)}t
′
s=1,

such that

(1) M(ξ̃) ≥ M(ξ) under Loewner ordering.

(2) x̃s ∈ (
∪d

j=1 Sj)
∪
(
∪

(j,k)∈I2 Sj,k), s = 1, ..., t′..

Proof. First, suppose there exists some q and j < k < l such that Lℓ < xqℓ < Uℓ for

ℓ = j, k, l. Since not all three interactions between xj, xk, xl exist in (4.2.4), we can assume

(j, k) /∈ I2. Fix xqℓ for ℓ ̸= j, k, so that (4.2.4) becomes a model with only two covariates and

no interaction term. So by Theorem 4.2.1, (xqj, xqk) can be replaced by design points (with

suitable weights) on the perimeter of the design rectangle. Apply the same replacement to

xq. Keep on doing this until all design points are on the faces of the design hypercube.

Meanwhile, condition (1) is satisfied.

Now that all design points are on the faces, assume xq ∈ Sj,k but for some (j, k) /∈ I2.

Fix all covariates other than xj, xk, so that (4.2.4) again reduces to a model with only two

covariates and no interaction. Therefore xq can be replaced by design points on the edges

of the design hypercube while keeping the information matrix at least as large. Repeat this
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procedure to any xq that doesn’t satisfy (2), we finally get a better design ξ̃ satisfying both

Conditions (1) and (2).

Remark 4.2.1. The condition that not all three two-way interactions exist is necessary. For

example, for the following logistic regression model with 3 covariates and all two way inter-

actions:

logit(Prob(Yi = 1)) = β0 +
3∑

j=1

βjxij +
∑

1≤j<k≤3

βjkxijxik, xij ∈ [0, 1], i = 1, ..., n, j = 1, 2, 3,

(4.2.5)

the c-optimal design with c = (1, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25)T can be found to be the single

point design which puts all weights on the point (0.5, 0.5, 0.5). Moreover, this design is better

than any design found on the faces of the design cube. Therefore, Theorem 4.2.2 does not

hold in this case.

4.3 Computational savings

Theorem 4.2.1 and 4.2.2 greatly reduce the searching space for the optimal designs. This

can in turn save substantial computational resources.

Consider a logistic regression model with 3 covariates and no interactions:

logit(Prob(Yi = 1)) = β0 + β1xi1 + β2xi2 + β3xi3, xij ∈ [0, 1], i = 1, ..., n, j = 1, 2, 3.

We use the optimal weight exchange algorithm (OWEA) proposed in Yang, Biedermann and

Tang (2013) to find the optimal designs. We consider two different candidate sets

1. the full candidate set with all κd grid points, with grid size κ;

2. the reduced candidate set with d2d−1κ grid points from the edges only, with the same

grid size κ.
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Table 4.1: Computation time (seconds) for A- and D-optimal designs, β = (−4, 1, 1, 1)T

A-optimal D-optimal
candidate κ = 50 κ = 100 κ = 200 κ = 50 κ = 100 κ = 200

full 4.62 34.58 270.17 4.64 35.10 271.14
reduced 0.24 0.28 0.31 0.24 0.28 0.29

Table 4.1 shows the computation times for finding A- and D-optimal designs. We can see

that computation time using the reduced candidate set is much less, and the saving increases

exponentially as the grid size κ increases. In particular, when κ doubles, the computation

time using the full candidate set increases by approximately a factor of 23 = 8; this is

consistent with the increment in the size of the full candidate set. However, the increment is

marginal if the reduced candidate set is used. Moreover, the saving increases exponentially

as the number of covariates d increases.

4.4 Discussion

For some specific optimality criteria, the optimal designs may be found on a smaller space

than the one given in Theorem 4.2.2. For example, Table 4.2 shows that the support points

of A- and D-optimal designs for Model 4.2.5 are all located on the faces, where the searching

space given in Theorem 4.2.2 has to be the whole design cubic. However, the reasons behind

this are unclear and needs further investigation.

Table 4.2: Support points in A- and D-optimal designs, for β = (−4, 1, 1, 1, 1, 1, 1)T

D-optimality x1 0 1 0 0 1 1 0 1 1 0.9
x2 0 0 1 0 1 0 1 1 0.9 1
x3 0 0 0 1 0 1 1 0.9 1 1

A-optimality x1 0 1 0 0 1 1 0 1
x2 0 0 1 0 1 0 1 1
x3 0 0 0 1 0 1 1 1
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Chapter 5

Discussion

This dissertation covers three different topics of the optimal design area: single covariate

linear/nonlinear/generalized linear models, single covariate linear/nonlinear mixed effects

models and multiple-covariate generalized linear models. The underlying idea is nevertheless

the same; by using the complete class approach demonstrated in Yang and Stufken (2009),

Yang (2010) and Yang and Stufken (2012), general theoretical results can be obtained for a

class of models and optimality criteria. However, the problems are not completely solved.

First, for single covariate fixed effects models, we point out some models that cannot be

accommodated. One case is that when the complete class given by Theorem 2.2.1 is not

small enough. For example, in Dette et al. (2010), D-optimal designs for a nonlinear model

with mean η(x,β) = β1 + β2 exp(x/β3), x ∈ [L,U ] are found to be 3-point designs with

both endpoints, whereas a complete class consists of designs with at most 3 design points

including only the upper endpoint as a fixed design point [Yang (2010), Theorem 3]. So the

D-optimal designs are actually on the boundary of the Z-space, hence no feasible critical

points can be found, and Theorem 2.2.3 does not apply.

Another case is that when the model contains multiple covariates. In general, theoretical

results are very hard to obtain for multiple-covariate models, and only a couple of papers
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have provided some theoretical guidance. Specific to our approach, complete class results

similar to Theorem 2.2.1 are not available. The reason is that complete class results are built

upon Chebyshev systems. However, there is no satisfactory multi-dimensional generalization

of the Chebyshev system yet. While Yang, Zhang and Huang (2011) gave complete class

results for logistic and probit models with multiple covariates, the complete classes are not

derived using multidimensional Chebyshev systems, and they are not small enough for our

method to be applied.

Second, for mixed effects models, we haven’t considered generalized linear mixed effects

models. Similar to the nonlinear mixed models, the marginal log likelihood in a generalized

linear mixed model also does not have a closed form. A first order linearization can be

used, as we did for nonlinear mixed models; however, unlike nonlinear mixed models, the

responses are not normal for generalized linear mixed models, thus a normal approximation

of the response is needed, and the approximation can be poor for binary outcomes. In

addition to that, the conditional variance (conditioning on the random effects) depends on

the conditional mean. This is different from nonlinear mixed models, where the conditional

variances are homogeneous. This creates another complication.

Third, for multiple-covariate generalized linear models, we know that optimal designs

may not be found on the 2-dimensional faces if for example, all three two-way interactions

exist in a logistic regression model with three covariates. However, our numerical study

shows that the Φp-optimal designs for β can still be found on the faces, but it is unclear how

to prove it. Besides, it is also not intuitively clear why the complete class result does not

hold in this case.
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Appendix A

Proofs

We will prove Theorem 2.2.2 and Theorem 2.2.5. Before proving Theorem 2.2.2, we first

provide a lemma. This lemma is easier stated in terms of u, but it can be translated into x.

Recall that Theorem 2.2.1 gives the form of a complete class. For any design ξ, we can find

a design ξ̃ = {(ũj, ω̃j)}mj=1 in the complete class that is non-inferior (M(ξ̃) ≥ M(ξ)).

In particular, for ξ specified in Lemma A.0.1, let Ψ0(u) ≡ 1, a design ξ̃ can be found by

solving the following nonlinear equation system [see Yang and Stufken (2012) and Dette and

Schorning (2013)]:

∑
i

ωiΨℓ(ui) =
∑
j

ω̃jΨℓ(ũj), ℓ = 0, 1, . . . , q − 1 (A.0.1)

where ũ1 and ũa may be fixed to be boundary points (see Lemma A.0.1). Multiply both

sides of (A.0.1) by a positive constant, the equation system still holds, so we can remove the

constraint of
∑

iwi = 1 for ξ and allow
∑

iwi to be any positive number in the following

Lemma A.0.1; similarly for ξ̃ (but we still refer to them as designs for convenience). Let

X = (uT ,ωT )T be the vector of all ui’s and ωi’s in ξ. Let S1 and S2 be the sets of all

possible vectors X corresponding to designs in cases (1a)∼(1d) and (2) of Lemma A.0.1,
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respectively. Further let Y be the vector of all ũj’s except those fixed as boundary points (if

any) and all ω̃j’s in design ξ̃ given in Lemma A.0.1. We will define function H, H(X) = Y ,

where X ∈ S = S1

∪
S2, and show this function is smooth on S under certain conditions.

Lemma A.0.1. Suppose one of the conditions in Theorem 2.2.1 holds.

(1a) If q = 2a − 1 and H(u) < 0, then for any design ξ = {(ui, ωi)}ai=1, A < u1 < . . . <

ua ≤ B,ωi > 0 for i ≥ 1, there exists a non-inferior design ξ̃ = {(ũj, ω̃j)}aj=1, where

ũ1 = A, ω̃j > 0 for j ≥ 1, that solves (A.0.1).

(1b) If q = 2a − 1 and H(u) > 0, then for any design ξ = {(ui, ωi)}ai=1, A ≤ u1 < . . . <

ua < B,ωi > 0 for i ≥ 1, there exists a non-inferior design ξ̃ = {(ũj, ω̃j)}aj=1, where

ũa = B, ω̃j > 0 for j ≥ 1, that solves (A.0.1).

(1c) If q = 2a and H(u) < 0, then for any design ξ = {(ui, ωi)}a+1
i=1 , A ≤ u1 < . . . < ua+1 ≤

B,ωi > 0 for i ≥ 1, there exists a non-inferior design ξ̃ = {(ũj, ω̃j)}aj=1, where ω̃j > 0

for j ≥ 1, that solves (A.0.1).

(1d) If q = 2a − 2 and H(u) > 0, then for any design ξ = {(ui, ωi)}a−1
i=1 , A < u1 < . . . <

ua−1 < B,ωi > 0 for i ≥ 1, there exists a non-inferior design ξ̃ = {(ũj, ω̃j)}aj=1, where

ũ1 = A, ũa = B, ω̃j > 0 for j ≥ 1, that solves (A.0.1).

Such solution is unique under each case, hence H is well defined on S1.

(2) For each case of (1a)∼(1d), let ξ be similarly defined as above except that there is

exactly one 0 weight and all other weights are positive. Then rewriting ξ in the form

of ξ̃ in each corresponding case solves (A.0.1) and defines H on S2. Moreover, H is

smooth on S = S1

∪
S2.

proof of Lemma A.0.1. We only prove for case (a), others being similar. First, let’s consider

(1a). From Lemma 1 in Yang (2010) [see also Dette and Schorning (2013), Theorem 3.1], we
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know that a solution to (A.0.1) exists with ũ1 = A, ω̃j > 0, j ≥ 1. Moreover,H(u) < 0 implies

that {Ψ0,Ψ1, . . . ,Ψ2a−2} is a Chebyshev system [see Yang and Stufken (2012), Proposition

4], thus such solution is unique. So H is well defined on S1. Now we show the smoothness

on S1.

We have X = (u1, . . . , ua, ω1, . . . , ωa)
T ,Y = (ũ2, . . . , ũa, ω̃1, . . . , ω̃m)

T by definition (ũ1 is

excluded in Y since it is fixed to be A). Subtract the left hand side from the right hand side

in (A.0.1), we get an equation system G(X,Y ) = 0, where G is smooth. So Y = H(X)

is the implicit function defined by G(X,Y ) = 0. By implicit function theorem, to ensure

H to be smooth, we only need the Jacobian matrix GY (X,Y ) = ∂G(X,Y )/∂Y to be

nonsingular, i.e.,

detGY (X,Y )

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 1 · · · 1

ω̃2Ψ
′
1(ũ2) · · · ω̃aΨ

′
1(ũa) Ψ1(A) · · · Ψ1(ũa)

...
. . .

...
...

...
. . .

ω̃2Ψ
′
2a−2(ũ2) · · · ω̃aΨ

′
2a−2(ũa) Ψ2a−2(A) · · · Ψ2a−2(ũa)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (

a∏
j=2

w̃j)d(ũ) ̸= 0,

where

d(ũ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 0 · · · 0

Ψ1(A) · · · Ψ1(ũa) Ψ′
1(ũ2) · · · Ψ′

1(ũa)

...
. . .

...
...

. . .
...

Ψ2a−2(A) · · · Ψ2a−2(ũa) Ψ′
2a−2(ũ2) · · · Ψ′

2a−2(ũa)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.0.2)

Since w̃j > 0 for all 1 ≤ j ≤ a, we only need to show d(ũ) ̸= 0. We first do some column

manipulations to the matrix in (A.0.2). Subtract the first column from the second to the ath

59



column, then for the resulting matrix, subtract the second column from the third to the ath

column, continue doing this until finally subtract the (a−1)th column from the ath column.

Because the determinant doesn’t change during this process,

d(ũ) =

∣∣∣∣∣∣∣∣∣∣
Ψ1(ũ2)−Ψ1(A) · · · Ψ1(ũa)−Ψ1(ũa−1)

...
. . .

... D

Ψ2a−2(ũ2)−Ψ2a−2(A) · · · Ψ2a−2(ũa)−Ψ2a−2(ũa−1)

∣∣∣∣∣∣∣∣∣∣
, (A.0.3)

where D is the (2a− 2)× (a− 1) matrix,

D =


Ψ′

1(ũ2) · · · Ψ′
1(ũa)

...
. . .

...

Ψ′
2a−2(ũ2) · · · Ψ′

2a−2(ũa)

 .

Treat A in the first column of the matrix in (A.0.3) as a variable and fix everything else,

then the determinant becomes a real-valued function of A. By the mean value theorem,

d(ũ) = (ũ2 − A)×∣∣∣∣∣∣∣∣∣∣
Ψ′

1(û1) Ψ1(ũ3)−Ψ1(ũ2) · · · Ψ1(ũa)−Ψ1(ũa−1)

...
...

. . .
... D

Ψ′
2a−2(û1) Ψ2a−2(ũ3)−Ψ2a−2(ũ2) · · · Ψ2a−2(ũa)−Ψ2a−2(ũa−1)

∣∣∣∣∣∣∣∣∣∣
,

(A.0.4)

where A < û1 < ũ2. Let ε = sign d(ũ) be the sign of d(ũ), treat ũ2 in the second column of

the matrix in (A.0.4) as a variable, and use the mean value theorem again to obtain

ε = sign

∣∣∣∣∣∣∣∣∣∣
Ψ′

1(û1) Ψ′
1(û2) · · · Ψ1(ũa)−Ψ1(ũa−1)

...
...

. . .
... D

Ψ′
2a−2(û1) Ψ′

2a−2(û2) · · · Ψ2a−2(ũa)−Ψ2a−2(ũa−1)

∣∣∣∣∣∣∣∣∣∣
,

60



where ũ2 < û2 < ũ3. Keep on doing this, and finally get

ε = sign

∣∣∣∣∣∣∣∣∣∣
Ψ′

1(û1) · · · Ψ′
1(ûa−1) Ψ′

1(ũ2) · · · Ψ′
1(ũa)

...
. . . · · · · · · . . . · · ·

Ψ′
2a−2(û1) · · · Ψ′

2a−2(ûa−1) Ψ′
2a−2(ũ2) · · · Ψ′

2a−2(ũa)

∣∣∣∣∣∣∣∣∣∣
,

and A = ũ1 < û1 < ũ2 < û2 < . . . < ûa−1 < ũa. Since {Ψ′
1, . . . ,Ψ

′
2a−2} is a Chebyshev

system, ε ̸= 0. Hence the Jacobian matrix is invertible, and the function H is smooth on S1.

Turning to case (2), without loss of generality, assume ω1 = 0, ωi > 0 for i ≥ 2. If we

can show the function H(X) is continuous on S2 and its partial derivatives can be extended

continuously to S2, then it can be proved that H(X) is also differentiable on S2. So first,

we prove its continuity.

To show this, for any sequence Xn = (un
1 , ..., u

n
a , ω

n
1 , ..., ω

n
a )

T , n ≥ 1, ωn > 0 and Xn

approaching X0 = (u1, ..., ua, 0, ω2, . . . , ωa)
T , we need to show Y n = (ũn

2 , ..., ũ
n
a , ω̃

n
1 , ..., ω̃

n
a )

T

approaches Y 0 = (u2, ...ua, 0, ω2..., ωa)
T .

By definition we have

a∑
i=1

ωn
i Ψℓ(u

n
i ) =

a∑
j=1

ω̃n
j Ψℓ(ũ

n
j ), ℓ = 0, ..., 2a− 2. (A.0.5)

Suppose we have Y n
j1

doesn’t converge to Y 0
j1

for some j1, then because Y n is a bounded

sequence, there exists a subsequence {nt|t = 1, 2, ...} such that Y nt converges to some

Ȳ 0 = (ū2, ..., ūa, ω̄1, ..., ω̄a)
T and Ȳ 0

j1
̸= Y 0

j1
.

Now let nt → ∞, take the limit of (A.0.5) on both sides, we get:

a∑
i=2

ωiΨℓ(ui) =
a∑

j=1

ω̄jΨℓ(ūj), ℓ = 0, ..., 2a− 2. (A.0.6)

Since {Ψ0, . . . ,Ψ2a−2} is a Chebyshev system and the maximum number of different support
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points in (A.0.6) is 2a − 1, (A.0.6) only holds if ω̄1 = 0, ω̄i = ωi, ūi = ui for i ≥ 2, which

means Ȳ 0 = Y 0, leading to a contradiction.

Next, we show the partial derivatives can be extended continuously to S2. Using the

implicit function theorem, we know

∂H(X)

∂X
= −G−1

Y (X, H(X))GX(X, H(X)), GX(X,Y ) =
∂G(X,Y )

∂X
,

for X ∈ S1. When X → X0, H(X) → H(X0) by continuity, hence GY (X, H(X)) →

GY (X
0, H(X0)) since GY (X,Y ) is continuous. Furthermore, GY (X

0, H(X0)) is nonsin-

gular by the similar argument as previously, therefore, G−1
Y (X, H(X)) → G−1

Y (X0, H(X0)).

It is easy to see GX(X, H(X)) → GX(X0, H(X0)), therefore, the derivative ∂H(X)/∂X →

−G−1
Y (X0, H(X0))GX(X0, H(X0)), i.e., the derivative can be extended continuously to S2.

So H(X) is differentiable on S2 and the partial derivatives are continuous.

Now we are ready to prove Theorem 2.2.2, the proof is stated in terms of x to be consistent

with the theorem.

proof of Theorem 2.2.2. We only prove the case where the complete class consists of designs

with at most a points including L, other cases being similar. Assume the design ξc given

by a feasible critical point is not an optimal design, and an optimal design exists as ξ∗ =

{(L, 1 −
∑a

i=2 ω
∗
i ), {(x∗

i , ω
∗
i )}ai=2}, where L < x∗

2 < . . . < x∗
a is a strictly increasing sequence

(some of the weights ω∗
i may be 0 if the support size of ξ∗ is less than a). We have Φ(M(ξ∗)) >

Φ(M(ξc)). Consider the linear combination of the two designs, ξϵ = ϵξ∗+(1−ϵ)ξc, 0 ≤ ϵ ≤ 1,

so

ξϵ = {(L, 1− (1− ϵ)
a∑

i=2

ωc
i − ϵ

a∑
i=2

ω∗
i ), {(xc

i , (1− ϵ)ωc
i )}ai=2, {(x∗

i , ϵω
∗
i )}ai=2}.

By the concavity of the optimality criterion Φ, we have Φ(M(ξϵ)) ≥ (1 − ϵ)Φ(M(ξc)) +
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ϵΦ(M(ξ∗)), which gives

Φ(M(ξϵ))− Φ(M(ξc))

ϵ
≥ Φ(M(ξ∗))− Φ(M(ξc)) > 0. (A.0.7)

Now, if we can find ξ̃ϵ = {(L, 1 −
∑a

i=2 ωi,ϵ), {(xi,ϵ, ωi,ϵ)}ai=2}, ϵ ≥ 0 belongs to a neigh-

borhood of 0, to be a set of designs with a support points such that

1. Φ(M(ξ̃ϵ)) ≥ Φ(M(ξϵ));

2. Zϵ = (xϵ,ωϵ) depends smoothly on ϵ, where xϵ = (x2,ϵ, . . . , xa,ϵ), ωϵ = (ω2,ϵ, . . . , ωa,ϵ);

3. Z0 = Zc = (xc,ωc), thus ξ̃0 = ξc.

Then, applying (A.0.7) to get

Φ(M(ξ̃ϵ))− Φ(M(ξ̃0))

ϵ
≥ Φ(M(ξϵ))− Φ(M(ξc))

ϵ
≥ Φ(M(ξ∗))− Φ(M(ξc)) > 0.

Because ξ̃ϵ has a ≥ d support points, M(ξ̃ϵ) must belong to PD(d). By our smoothness

assumption of Φ, Φ(M(ξ̃ϵ)) is a smooth function of ϵ. Take the limit as ϵ → 0, it gives

∂Φ(M(ξ̃ϵ))

∂ϵ

∣∣∣∣
ϵ=0

> 0. (A.0.8)

On the other hand, by our definition, Φ(M(ξ̃ϵ)) = Φ̃(Zϵ). Applying the chain rule and using

the fact that Z0 = Zc is a critical point of Φ̃(Z), we can get

∂Φ(M(ξ̃ϵ))

∂ϵ

∣∣∣∣
ϵ=0

=
∂Φ̃(Zϵ)

∂ϵ

∣∣∣∣
ϵ=0

=
∂Φ̃(Z)

∂Z

∣∣∣∣
Z=Z0

∂Zϵ

∂ϵ

∣∣∣∣
ϵ=0

= 0.

This contradicts with (A.0.8). Hence ξc must be an optimal design.

To find such designs ξ̃ϵ, first, if the design ξ∗ doesn’t have new design points other than

those in ξc, that is, ∀2 ≤ i ≤ a, we have either ω∗
i = 0 or x∗

i ∈ xc, then the design ξϵ is itself
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a design with a support points, therefore we can simply let ξ̃ϵ = ξϵ, and Conditions 1 ∼ 3

are satisfied.

Otherwise, suppose we have r > 0 new design points x∗
i1
, ..., x∗

ir introduced by ξ∗, with

ω∗
ik
> 0, k = 1, ..., r. Let δii′ = 1 if xc

i = x∗
i′ and 0 otherwise. Rewrite the design ξϵ as

ξϵ = {(L, 1− (1− ϵ)
a∑

i=2

ωc
i − ϵ

a∑
i=2

ω∗
i ), {(xc

i , (1− ϵ)ωc
i + ϵ

a∑
i′=1

ω∗
i′δii′)}ai=2}

∪{(x∗
ik
, ϵω∗

ik
)}rk=1

= {(L, ω(0)
1,ϵ ), {(x

(0)
i,ϵ , ω

(0)
i,ϵ )}ai=2} ∪ {(x∗

ik
, ϵω∗

ik
)}rk=1,

where the second equation simply renames the design points and design weights. It is easy to

verify that conditions 2 ∼ 3 are satisfied forZ
(0)
ϵ = (x

(0)
ϵ ,ω

(0)
ϵ ) = (x

(0)
2,ϵ , . . . , x

(0)
a,ϵ , ω

(0)
2,ϵ , . . . , ω

(0)
a,ϵ ).

To find the desired m-point design ξ̃ϵ, we need to reduce the number of design points in

a “smooth” way. We reduce one point at a time. First consider the design {(x(0)
i,ϵ , ω

(0)
i,ϵ )}ai=2 ∪

{(x∗
i1
, ϵω∗

i1
)}, all the weights are positive when 0 < ϵ < 1, and when ϵ = 0, only one weight is 0.

So applying Lemma A.0.1 to this design we can get a new design {(L, ω(1)
1,ϵ ), {(x

(1)
i,ϵ , ω

(1)
i,ϵ )}ai=2}

that is non-inferior, and conditions 2 ∼ 3 are satisfied for Z
(1)
ϵ = (x

(1)
ϵ ,ω

(1)
ϵ ), where ω

(1)
ϵ > 0

for 0 ≤ ϵ < 1.

Next, we add point x∗
i2

to {(x(1)
i,ϵ , ω

(1)
i,ϵ )}ai=2 (we can always assume x∗

i2
is a new point

to x
(1)
ϵ by taking ϵ small enough). Again, all the weights are positive when ϵ > 0, and

when ϵ = 0, only one weight is 0. Use the same method to reduce one design point again.

Keep on doing this until all r new points have been added and reduced, we get ξ̃ϵ = {(L, 1−∑a
i=2 ω

(r)
i,ϵ ), {(x

(r)
i,ϵ , ω

(r)
i,ϵ )}ai=2}, that is not inferior to ξϵ, with the conditions 1 ∼ 3 satisfied.

Finally, we prove Theorem 2.2.5, the proof is stated in terms of u for convenience.

proof of Theorem 2.2.5. We only consider the case of Theorem 2.2.1(a). First, ξ∗ must

belong to the complete class. Otherwise, we can find a design ξ̃∗ with M(ξ̃∗) ≥ M(ξ∗) and
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M(ξ̃∗) ̸= M(ξ∗). Because ξ∗ has at least d support points, M(ξ∗) is positive definite. Since

Φ is strictly isotonic on PD(d), we have Φ(M(ξ̃∗)) > Φ(M(ξ∗)), which is a contradiction.

Now suppose there is another optimal design ξ̃∗.

(i) if ξ̃∗ also has at least d support points, then it also belongs to the complete class by

previous arguments, and we can write ξ∗ = {(u∗
i , ω

∗
i )}ai=1, ξ̃

∗ = {(ũ∗
i , ω̃

∗
i )}ai=1, u

∗
1 = ũ∗

1 =

A. By strict concavity, we must have M(ξ∗) ∝ M(ξ̃∗) since otherwise Φ(αM(ξ∗) + (1 −

α)M(ξ̃∗)) > αΦ(M(ξ∗)) + (1 − α)Φ(M(ξ̃∗)) = Φ(M(ξ∗)) for all α ∈ (0, 1). Let M(ξ∗) =

δM(ξ̃∗), then Φ(δM(ξ̃∗)) = Φ(M(ξ̃∗)). The strict isotonicity of Φ implies δ = 1, hence

M(ξ∗) = M(ξ̃∗) and C(ξ∗) = C(ξ̃∗). Then we have (A.0.1) holds. Because H(u) < 0,

{Ψ0, . . . ,Ψ2a−2} is a Chebyshev system. The maximum number of different support points

in (A.0.1) is 2a − 1, so (A.0.1) only holds if the design points and weights on two sides of

the equations are equal, which means ξ∗ = ξ̃∗.

(ii) if ξ̃∗ has less than d support points, let ξα = αξ∗+(1−α)ξ̃∗, 0 < α < 1. By concavity,

ξα is also an optimal design, moreover, it has at least d support points. Thus following the

arguments in case (i), we have ξα = ξ∗, which means ξ∗ = ξ̃∗. This contradicts with the fact

that ξ̃∗ has less than d support points.
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