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ABSTRACT 

 A coupled numeric model of finite difference method (FDM) and smoothed particle 

hydrodynamic (SPH) is utilized for the simulation of dynamic penguin huddles.  In this coupled 

fluid model, the full Navier-Stokes equations are used to solve a wind field using a finite difference 

method and simultaneously model penguin huddling through a smoothed particle hydrodynamics 

method.  The FDM method is a common Eulerian numerical approach based on application of a 

local Taylor expansion and is used to estimate wind flowing in two dimensions around complex 

and dynamic huddle shape on a rectangular computational grid.  The SPH method is a mesh-free 

Lagrangian method driven by local interactions between neighboring fluid particles and their 

environment allowing particles to act as free ranging “penguins” unconstrained by a computational 

grid.  These coupled fluid numerical models are recomputed simultaneously as the huddle evolves 

over time to update individual particle positions, redefine the fluid properties of the developing 

huddle (i.e., shape and density), and redefine the wind field flowing through and around the 

dynamic huddle.  This study shows the ability of a coupled model to predict the dynamic properties 

of penguin huddles, to quantify biometrics of individual particle “penguins” and to attempt an 

explanation of communal penguin huddling behavior as observed in nature. 
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CHAPTER 1 

INTRODUCTION 

 Fluid dynamic models provide a powerful deterministic technique in a variety of 

application areas. Fluid mechanics models have been employed to characterize many ecological 

problems, such as animal locomotion when animals move through a fluid (Peskin. 1988), and even 

non-fluid problems, such as transportation (Chakraborty and Srinivasan. 2016) and dynamic 

pricing (Kachani and Perakis. 2006).  These dynamic phenomena in diverse application domains 

share similar characteristics that mimic fluid properties.  Experimentally, fluid model analysis can 

be an effective way to provide insights and understandings into the nature of dynamic phenomena 

existing outside traditional fluid disciplines (Kachani and Perakis. 2006). 

Huddling behavior in penguins is an example of a biological phenomenon that may lend 

itself to modeling as a fluid. The formation and movement of huddles share similar properties to 

fluids including having deformable boundaries and variable density. In the application to penguin 

huddles, both shape and density of the huddle are responsive to environmental inputs of wind, 

temperature, and physical obstacles.  Because of these fluid properties of penguin huddles, it is 

theorized that fluid mechanic models would be particularly well suited for simulating this 

communal behavior. Emperor penguins (Aptenodytes forsteri) are the only birds that breed during 

the Antarctic winter on fast-ice (sea ice that is “fastened” to the coastline) and are known to huddle 

(an active and close aggregation of animals) through extended stressful periods without food in 

the severe conditions of Antarctica winters. Huddling allows penguins to minimize heat loss, lower 

their energy expenditure and reallocate the saved energy to other functions by thermoregulation 
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(Gilbert, et al. 2010). Huddles are discontinuous events corresponding to severe storm events and 

the density in a huddle at a colony may be as high as 10 bird/m2 (Waters et al. 2012). Biologists 

observed that penguins rotate positions constantly when they are exposed to the wind during 

huddling, although the moving penguins remained together as single unit and the huddle as a whole 

appears semi-static (Gilbert et al. 2006). This repositioning of individual penguins has been well 

documented through observation, but the status of individual penguins (i.e. how warm or cold they 

are individually and how their positions within the huddle change over time) has been difficult to 

assess and quantify in the field.   

There are few numerical studies on penguins’ huddling. Waters et al. (2012) suggested that 

a model of Penguins’ huddling could be established based on fluid dynamics using the Navier-

Stokes advection-diffusion equation to quantify the temperature profile around the huddle. There 

are several numerical methods for solving the Navier-Stokes equation, including the Finite 

Difference Method (FDM), the Finite Element Method (FEM), the Finite Volume Method (FVM) 

and Smoothed Particle Hydrodynamics (SPH). FDM is a Eulerian numeric method based on the 

application of a local Taylor expansion to approximate the differential equation. It is easy to 

implement and optimizes the approximation for the differential operator of the considered patch. 

More recently, a meshless Smoothed Particle Hydrodynamics (SPH) method has developed and 

become widely adopted in modeling of dynamic fluid systems. SPH is a Lagrangian particle 

method that is well suited to transient fluid dynamics problems that involve complex free surface 

behavior and moving and deforming boundaries of complicated shape. In this study, FDM was 

applied to simulate two-dimensional wind field, and simultaneously SPH was applied to simulate 

penguin huddling. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Reviews on Huddling  

Huddling can be defined as active aggregation of individuals to share benefits from the 

warmth of colony, and is a very important social behavior for birds and mammals to survive low 

temperature environments (Gilbert et al. 2010; Ancel et al. 2015). Through huddling, penguins can 

maximize energy saving by reducing their body surface area exposed to the cold and decreasing 

individual heat loss through warming local ambient temperature. The local ambient temperature is 

raised as the heat released by individual penguins accumulates within huddles, and the benefits 

can be shared by all penguins in the huddling group (Haig. 2008; Ancel et al. 2015). Gilbert et al. 

(2006) suggested that all individuals may get the same benefits from huddling; therefore, penguins 

seek to join or leave huddle based on their individual need of warmth. 

Huddling behavior in social animals is considered by biologists to be a self-organized 

system (simple local interactions between individual animals collectively give rise to a complex 

group-level behavior) coupled with an external driving parameter (Canals and Bozinovic. 2011). 

Several studies investigated the effects of thermoregulatory huddling behaviors by mammals, birds 

and other social animals, and suggested that this self-organizing huddling behavior may guide 

natural selection (Glancy et al. 2016; Wilson. 2017; Canals and Bozinovic. 2011). There are 

several studies on mammals’ huddling behaviors to quantify the ecological and physiological 

benefits of these behaviors, including bats (Boratynski et al. 2014), mice (Eto et al. 2014), rats 

(Schank and Alberts. 1997) and other social rodents (Sanchez and Solis. 2015). One of the major 
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benefits of huddling comes through a reduction of individual energy expenditure. Therefore, 

individual survival is increased, required food intake is lowered, reduction in body mass is 

decreased, growth rate is increased, water loss is decreased, and metabolic rate is significantly 

reduced (Hayes et al. 1992; Willis and Brigham. 2007; Gilbert et al. 2010). By establishing 

numerical model of this group behavior, the status of individuals can be quantified, benefits to 

individual animal can be estimated, and the dynamics of social interactions, group behavior and 

developmental changes can be investigated by biologists (Schank and Alberts. 1997). 

Observations and simulations are the main methods to study penguin huddles. The average 

breeding male emperor penguin weighs from 22 to 45 kg and is 122 cm in height. The females lay 

eggs, which are incubated by the males while the females return to the sea to feed. During the 4-

month fast associated with pairing and egg incubation, male emperor penguins rely completely on 

their body reserves of fat to fuel ongoing metabolism. The warmth created inside huddles is a 

necessary mechanism explaining energy savings observed in huddling emperor penguins (Gilbert 

et al. 2008). By close packing in tight huddles, penguins’ cold-exposed body surface can be 

reduced greatly as penguins inside the huddle are shielded from wind. Also, the combined heat 

loss of all huddling penguins increases local ambient temperature and helps stabilize huddles 

within this comfortable TNZ (Gilbert et al. 2007). 

The dynamic of huddles is related to environmental conditions. Previous observations 

showed how external conditions affect penguins, suggesting that huddling behavior is enhanced 

by unfavorable weather conditions, such as low ambient temperature and high wind speed (Gilbert 

and Robertson. 2008). A series of environmental factors were tested for their influence on huddle 

patterns, such as the number of huddles and mean number of individuals per huddle. Both the 

number of huddles and the number of individuals per huddle increased when air temperature 
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decreased. When wind speed increased, or solar radiation decreased, the number of huddles 

decreased, and huddles got larger (Ancel et al. 2015).  

Determining individual benefits for emperor penguins’ huddling is a significant challenge 

as almost all their colonies are difficult to observe given their remote location and forbidding 

environment. In 2012, the first global census of penguins was published based on an automated 

analysis of satellite images by the British Antarctic Survey (Fretwell et al. 2012). Previous studies 

show that males are huddled on average 38% of the time (Gilbert et al. 2006), and experience 

ambient temperatures within their comfortable thermo-neutral zone (TNZ), which varies from -10 

to 20 ºC (Gilbert et al. 2008). To understand huddling as a key behavior enabling penguins to 

survive the long winter fast, new models are needed to identify individual benefits of this group 

behavior. Internal environmental conditions of penguin huddles and how they interact with 

external conditions, such as changes in wind speed direction, ambient temperature, and wind chill 

affecting huddling behaviors should be quantified to achieve full understanding of huddle 

dynamics. 

There are few theoretical models on penguins’ huddling. From previous observations, the 

movement of penguin huddles is slow but continuous (Le Maho. 1977). The observation of a 

medium-size Emperor penguin colony (~2000 animals) near the Neumayer Antarctic Research 

Station (70º39S 8º15W) with air temperature varying from -33 to -43ºC and a maximum 8.3 m/s 

wind speed showed that penguin huddle may be a self-organizing event. Penguins move small 

steps and the small movements lead to large-scale reorganization of the huddle (Zitterbart et al. 

2011). Additionally, there are several studies on other animal huddle behavior to investigate how 

huddling behavior is triggered by low temperatures as a self-organizing event (Canals and 

Bozinovic. 2011; Wilson. 2017).  
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Biologists attributed heterogeneity of the huddle shape to ensuring penguins have equal 

access to warm center, but without providing details about how equality is achieved (Gilbert et al. 

2006). A systematic and quantitative mathematical model on penguin huddles was established by 

Waters et al. (2012) based on the warmth equality assumption (each individual penguin in the 

huddle seeks only to reduce its own heat loss).  They used fluid dynamics equations to calculate 

wind flow and temperature around the huddles, with each penguin moving or staying stationary to 

minimize individual heat loss.  Penguins on the huddle boundary were assumed to lose more heat 

because they were exposed to a large temperature gradient due to wind chill. However, the model 

presented was simplistic and potentially misleading as penguins’ movement is not replicated as 

observed in nature. In their model, only the penguins on the leading edge of the huddle were 

relocated behind the huddle, while the penguins in the interior of the huddle didn’t move. 

Additionally, the status of individual penguin is not quantified in this previous model (Waters et 

al. 2012). 

2.2 Reviews on Finite Difference Method (FDM) 

The Finite Difference Method is a Eulerian numeric solution of differential equations 

derived from Taylor series expansions. It provides solutions at discrete points in a continuum 

domain as grid points and is the most commonly used numerical method because of its 

computational efficiency and relative ease of implementation. Finite difference solutions for 

solving parabolic partial differential equations can be classified as explicit or implicit. An explicit 

scheme predicts all quantities at a new advanced time step from known values at the current time 

step, whereas implicit schemes require a system of equations including the boundary condition 

equations to be solved simultaneously to determine quantities at each new advanced time step 

(Jeppson. 1972).  Truncation error reflects the fact that a finite part of a Taylor series is used in the 
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approximation. Central difference, back and front difference approximation are used in this model 

and have a second order truncation error. 

FDM models are widely used and have been one of the dominant numerical methods in the 

simulation of engineering applications. They require a computational mesh across the problem 

domain and can present stability problems with complex or dynamic boundary problems. Recently, 

coupled models with FDM and meshless method (Zhang et al. 2018), or meshless generalized 

finite difference method (Gu et al. 2017) have been shown to reduce problems associated with 

boundary or domain meshing. 

In computational fluid model analysis, FDM is commonly used to solve the Navier-Stokes 

equation. A challenge solving the Navier-Stokes Equation is that no explicit equation can be used 

for pressure of flow. Therefore, for most finite difference solution for incompressible flow, the 

pressure field is obtained from a pressure Poisson equation, which is derived from momentum 

equation and continuity equation (Rusli et al. 2011).  

2.3 Reviews on Smoothed Particle Hydrodynamics (SPH) Method 

Numerical methods are indispensable in successful simulation of physical problems. As 

mentioned earlier, conventional mesh-based numerical methods, such as the Finite Element 

Method (FEM) and Finite Volume Method (FVM), require connectivity of the nodes, give 

solutions only at nodal points, and remeshing is usually required when dealing with large boundary 

deformation problems (Fries and Matthies. 2004). Fries and Matthies (2004) provided a thorough 

review of all meshless methods that do not include these mesh-based constraints. Several features 

of mesh-free methods were summarized as: 

1) Mesh is absent, which means no mesh generation at the beginning of the 
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calculation and no remeshing during simulations. 

2) The requirement on conservation of mass is readily fulfilled, and the shape 

functions (the function which interpolates the solution between the discrete values 

obtained at the mesh nodes) may easily be constructed. 

3) Mesh-free methods are usually more computationally expensive as solution of 

shape functions are more complex than mesh-based methods. 

The Smoothed Particle Hydrodynamics (SPH) method is a mesh-free method for solving 

the Navier-Stokes equations in fluid mechanics. It is a Lagrangian model that uses motions of 

discrete particles to represent a flow of bulk fluid and to solve the continuum hydrodynamic 

equations (Hosseini and Feng. 2011, Ellero. et al., 2007). These hydro-particles carry their own 

fluid physical quantities, such as mass, volume, temperature, velocity and density, and the 

interaction with other particles is defined by a kernel function. This method was introduced 

initially to solve astrophysical problems where Eulerian mesh-based methods were insufficient. 

The SPH method has been extensively applied in science and engineering fields, especially in fluid 

mechanics and solid mechanics, as it provides advantages compared with both element-based and 

grid-based numerical methods. 

Because it is a mesh-free method, SPH inherently solves many of the issue caused by the 

grid-based modeling, such as avoiding problems relating to mesh distortion and tracing 

convection-diffusion terms (i.e., numeric solutions become unstable or oscillatory) (Fuller. 2010; 

Gu and Liu. 2006). Unlike mesh-based methods, there is unstructured and dynamic topological 

connectivity between traditional SPH particles, as they interact with all the neighbors according to 

their radial separation mediated by an interpolating kernel function. This particle-nature shows 

advantage for multi-phase fluid problems as each particle can be assigned to a different phase. 
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Similarly, interfacial or free-surface flows do not require the explicit tracking of the interface or 

free-surface of interest, as it will be implicitly defined by the positions of the particles (Fries and 

Matthies. 2003). Therefore, SPH shows great potential in solving problems with complex 

geometries, moving bodies, flexible boundaries or large deformation problems, such as surface 

erosion by impact (Dong et al. 2016; Leroch et al. 2015; Takaffoli and Papini. 2012; Wang and 

Yang. 2009), flow-like landslide propagation by earthquake (Dai et al. 2014), debris flows and 

avalanches (McDougall and Hungr. 2004), Lahars (a destructive mudflow on the slopes of a 

volcano) (Haddad et al. 2010), geo-disasters (Huang and Dai. 2014),  machining process (Spreng 

and Eberhard. 2015) , strong explosions (Sirotkin and Yoh. 2013), shear panel dampers (Chen et 

al. 2013), metal manufacturing (Cleary et al. 2006), rock caving (Karekal et al. 2011), rock shapes 

on brittle fracture (Das and Cleary. 2010), buried structures (Lu et al. 2005), liquifaction (Huang 

et al. 2011), and military applications including quantifying shape charge jet (Feng et al. 2013). 

Additionally, SPH modeling has been widely explored on many hydraulic applications, such as 

free surface flows (Shao et al. 2012; Amicarelli et al. 2015; Saunder et al. 2014), viscous flow 

(Takeda et al. 1994), high velocity impacts (Randles and Libersky. 1996), geophysical flows (Shao 

and Lo. 2003), and multi-phase flows (Hu and Adams. 2007; Tartakovsky and Meakin. 2005; Fries 

and Matthies. 2003).  

In fluid mechanics, SPH has been used in solving the Navier-Stokes Equation (NSE), such 

as propagation of solitary waves in shallow water over varying bottom geometries (Li et al. 2012). 

Forces on individual fluid particles can be calculated by the information carried from particles and 

interpolation kernel helps to get the smoothed approximations to the physical properties of the 

domain from particle information (Fries and Matthies. 2003). Recently, several studies applied 

SPH in the biomechanics field, such as penetrating impacts on ballistic gelatin (Taddei et al. 2015), 
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as well as aquatic sports context to simulate elite swimming and dolphin kicks (Cleary et al. 2013; 

Cohen et al. 2009; Cohen et al. 2010; Cohen et al. 2015; Cohen et al. 2012).  

Despite these remarkable numeric properties, SPH also has some disadvantages. To 

achieve satisfactory resolution accuracy and stability, SPH requires high demands for CPU time 

with a corresponding large number of particles. There is much less information in the literature 

available on SPH errors and instabilities for disordered particles than mesh-based methods 

(Monaghan. 2005). However, this resource-intensive issue is likely to see major improvement in 

the near future due to the increased availability of high-end computing capability and better coding. 

Recently, a parallel version of the SPH which takes full advantage of widely used multi-core 

resources GPU version of SPH employed in popular graphic processing techniques has been 

developed and proved highly efficient in certain simulations (Li, et al. 2012). There are several 

successful examples on GPU-based SPH method, such as simulations of automotive fuel cell 

sloshing (Longshaw and Rogers. 2015), simulations of free-surface flows (Valdez-Balderas et al. 

2013), and solving shallow-water equations (Xia and Liang. 2016). 
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CHAPTER 3 

RESEARCH METHOD AND MODEL SET-UP 

 In this chapter, governing equation, basic equations of the model and model set-up are 

discussed. The SPH method is a mesh-free method that solves the Navier-Stokes equations in fluid 

mechanics.  It uses a system of Lagrangian particles to represent a flow of bulk fluid through 

solution of the continuum hydrodynamic equations (Hosseini And Feng. 2011; Ellero et al. 2007).  

These hydro-particles carry their own physical quantities, such as mass, volume, temperature, 

velocity and density, and the interaction with other particles is defined by a kernel function.  For 

its advantages of Lagrangian, meshless, and particle properties, SPH has been extensively applied 

in fluid dynamics. In contrast, the FDM Euler grid-based method is based on the application of a 

local Taylor expansion to approximate the non-linear differential fluid equations.  FDM is 

comparatively easy to implement and has a relatively low computational cost.  A coupled method 

with SPH and FDM is established for penguin huddling simulation, with the “penguins” resolved 

by SPH particles and wind fields solved with FDM.  These two numeric solutions are coupled 

through ambient temperature and position of penguins at sufficient time intervals, making it 

possible to develop an algorithm that retains the best properties from each numerical solution 

approach when simulating dynamic penguin huddling. 

For this study, the penguin huddle is assumed to be situated on a flat plane with dimensions 

of 50m x 100m and no obstacles impeding penguin movement other than other penguins (Fig. 1).  

Penguins are initially randomly located in this flat plane and will interact with the wind field 

according to their distribution across the finite grids.  The wind-field in this study is calculated in 
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two dimensions, but wind only enters from the Y direction.  Initially, wind is assumed to develop 

from 0 to 5 m/s until it reaches steady state, while penguins are randomly located.  Turbulence is 

introduced as wind interacts with, and is impeded by, the distribution of penguins across the field’s 

computational grid. 

 

Figure 1 Models’ Setting (wind field is 2D and calculated in FDM, which wind enters in y 

direction and interact with penguin huddle. Penguins’ positions are updated in SPH method. 

Wind velocity also contributes to the wind chill effect) 

3.1 Governing equations 

The movement of wind and evolution of the penguin huddle are governed by the Navier-

Stokes equations (NSE) of fluid motion in a continuum as described below (also see Appendix A).  

𝜕

𝜕𝑡
𝒖 + 𝒖 ∙ ∇𝒖 =  −

1

𝜌
∇𝑝 + 𝜇∇2𝒖 + 𝒃                                                                 (1) 

∇ ∙ 𝒖 = 0                                                                                                                                 (2) 

Where  𝒖  is the velocity vector of the fluid at a point, 𝛻  is the del operator defining spatial 

gradients, 𝜌 is density, 𝑝 is the fluid pressure, 𝜇 is the viscosity of the fluid, 𝛻2 is the Laplacian 

operator.  This equation includes a dynamic term (
𝜕

𝜕𝑡
𝒖), a convective term (𝒖 ∙ ∇𝒖), a dispersive 

term (𝜇∇2𝒖), a pressure term (−
1

𝜌
∇𝑝), and an external acceleration term (𝒃).  Each term in 
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Equation 1 has units of acceleration (m/s2), and Equation 2 enforces conservation of mass. When 

resolving the wind field, equations 1 and 2 are solved for the dynamic term at the current time, 

after which the velocity field is updated for the next time step.  The Pressure Poisson equation 

(PPE) is considered to solve the pressure term to calculate the wind field (Eq. 4 and 5).  The 

implementation method is summarized by (Seibold. 2008). 

∇ ∙ (
𝜕

𝜕𝑡
𝒖 + 𝒖 ∙ ∇𝒖) = ∇ ∙ (−

1

𝜌
∇𝑝 + 𝜇∇2𝒖 + 𝒃)                                                                 (3) 

∇2𝑝 =  ∇ ∙ (𝒃 − (𝒖 ∙ ∇) ∙ 𝒖)                                                                                         (4)     

3.2 Heat flux and estimation of wind chill 

Heat fluxes through the wind field can be considered as a combination of convective and 

diffusive movement of heat within the wind field. The governing equations of change of 

temperature is defined by the divergences of the conductive and advective fluxes. 

𝜕

𝜕𝑡
𝑇 + (𝒖 ∙ ∇)𝑇 − 𝜇∇2𝑇 = 0                                                                                                         (5) 

Wind flow around and through the huddle affects individual penguins differently through 

the windchill effect depending on the wind velocity where penguins are positioned (Waters et al. 

2012).  Windchill for each particle penguin is calculated by a standard windchill index equation 

Eq. 6 (Grant. 2008). 

𝑇𝑤𝑐 = 13.12 + 0.6215𝑇𝑎 − 11.37𝑢0.16 + 0.3965𝑇𝑎𝑢0.16                                     (6) 

Where 𝑇𝑤𝑐 is the windchill temperature (ºC) felt by each computational particle, 𝑇𝑎 is the local air 

temperature (ºC) and 𝑢 is the the magnitude of wind vector u solved in Eq. 3 and 4.  
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3.3 Penguin metabolic heat release equations 

From biologists’ observation, penguin cold-exposed body surface can be reduced by 

huddling, which then affects their metabolic rate. Prior studies developed models on rodent 

huddling which incorporate an exponential decay relationship between surface area and the 

number of animals in a huddle (Wilson. 2017). In these studies, metabolic heat production is 

calculated based on Fourier’s Law of heat flow (Gilbert et al. 2007; Glancy et al. 2016; Canals and 

Bozinovic. 2001; Wilson. 2017). 

𝑀𝑅 = 𝐴𝐶(𝑇𝑏 − 𝑇𝑎)                                                                                                      (7) 

Where MR is metabolic heat lost to the environment (in Watts, W), C is the whole body thermal 

conductance (WºC-1), 𝑇𝑏 is individual body temperature (ºC), 𝑇𝑎 is ambient air temperature (ºC) 

and 𝐴 is the proportion to the body surface area that is exposed to the ambient temperature.  Eq. 7 

indicates that internal thermal conductance of penguins and temperature gradients between body 

and ambient temperatures determine total heat loss. When penguins experience thermo-neutral 

environmental temperatures (TNZ), they produce minimum and constant metabolic heat to 

maintain their physiological activities (Gilbert et al. 2010).  For penguins, the TNZ ranges from 

the lower critical temperature (LCT) of -10ºC to the upper critical temperature (UCT) of 20 ºC 

(Gilbert et al. 2007).  For ambient temperatures higher than the UCT, heat loss is increased, and 

huddles disperse; and for temperatures lower than the LCT, metabolic rate is increased prompting 

huddles to form (Gilbert. 2010). Huddle behavior allows a reduction in the body surface (𝐴) 

exposed to wind through tight packing and provides for local heating of the surrounding 

environment (Gilbert et al. 2010). In previous models on mammals, researchers suggested that the 
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average reduced proportion of animal’s surface area   that is exposed depends on the number of 

aggregated animals (Canals and Bozinovic. 2001), which can be estimated as 

𝐴 = 𝑛−
1

4                                                                                                                                      (8) 

where n is the number of huddling individuals. 

3.4 Formulation of particle solution using SPH 

In SPH method, the fluid field is discretized and solved by a series of particles representing 

individual penguins.  Using this method, the interpolated value of fluid parameter (A) at any 

position (r) can be expressed as (Gingold and Monaghan. 1977): 

𝐴(𝒓) = ∫ 𝐴(𝒓′)𝑊(𝒓 − 𝒓′, ℎ)𝑑𝒓′                                                                                       (9)                                        

Where the integration is over the entire domain corresponding to the continuous medium, (ℎ) is a 

smoothing length, and (𝑊) is a weight function, called an interpolation kernel.  For the simulation 

model, the integral interpolant in Eq.8 can be approximated by a summation interpolant shown as: 

𝐴(𝑟) = ∑ 𝑚𝑑𝑑
𝐴𝑑

𝜌𝑑
𝑊(𝑟 − 𝑟𝑑, ℎ)                                                                                               (10) 

Where 𝑚𝑑 and 𝜌𝑑 are the mass and density of particle d and the sum is over all particles within a 

radius of 2h to the current particle a.  In this application, the smoothing kernel W (r, h) is specified 

to be a C2 spline-based interpolation (a special type of piecewise polynomial) with radius 2h, which 

approximates the shape of a Gaussian function (Fig. 2 and Eq. 11).  

𝑊(𝑟, ℎ) =
7𝜋

10ℎ2
{

1 −
3

2
𝑞2 +

3

4
𝑞3                     𝑖𝑓 0 ≤ 𝑞 ≤ 1

1

4
(2 − 𝑞)3                               𝑖𝑓 1 ≤ 𝑞 ≤ 2

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (11) 
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where =
𝑟

ℎ
 . 

 

Figure 2 Kernel value (a) smooth kernel value depends on distance (b) only particles within 

smooth length contribute because W falls off rapidly for r≥h and the interactions are zero for 

r>2h 

The spatial gradient of the function (A) is given by differentiating the interpolation equation as 

(Gingold and Monaghan. 1977): 

𝛻𝐴(𝒓) = ∑ 𝑚𝑑𝑑
𝐴𝑑

𝜌𝑑
𝛻𝑊(𝒓 − 𝒓𝑑 , ℎ)                                                                                           (12)        

The increased temperature due to released metabolic heat can by calculated by 

∆𝑇 =
∑ 𝑀𝑅𝑑

𝐴𝑑
𝜌𝑑

𝑊(𝑟−𝑟𝑑,ℎ)𝑑

𝐶𝑎𝑖𝑟𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟
                                                                                               (13)     

Ambient temperature is then updated by adding background air temperature and increased 

temperature ∆𝑇 from released metabolic heat. 

Kernel value plays a significant role in deciding the contribution of neighboring particles 

to the center particle. By Eq. 7 and Eq. 13, to allows penguins to stay in their thermo-neutral zone 

(-10 to 20 ◦C) when huddle is formed, a 1.5m of kernel value is chosen for local ambient 

temperature calculation from accumulated metabolic heat by penguins in SPH model. 
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3.5 Continuity and momentum equations 

An SPH-approximation of the continuity equation (Monaghan. 2009) is used for penguin 

huddle model as shown in Eq. 14 and 15:  

𝜌𝑎 = ∑ 𝑚𝑑𝑊𝑎𝑑𝑑                                                                                                                         (14)                                                                    

𝑑𝜌𝑎

𝑑𝑡
=  ∑ 𝑚𝑑(𝑣𝑑 − 𝑣𝑎)𝛻𝑊𝑎𝑑𝑑                                                                                           (15)                                                       

Where 𝜌𝑎  is the density of particle a with velocity 𝑣𝑎 , and 𝑚𝑑  is the mass of particle d.  The 

position vector 𝒓 from particle d to particle a is calculated by 𝒓𝒂𝒅 = 𝒓𝒂 − 𝒓𝒅. 𝑊𝑎𝑑 = 𝑊(𝑟𝑎𝑑, ℎ) is 

the interpolation kernel with smoothing length h evaluated by the distance |𝑟𝑎𝑑|. 

In the SPH method, the pressure gradient is estimated using: 

𝜌𝑎𝛻𝑃𝑎 = ∑ 𝑚𝑑𝑑 (𝑃𝑑 − 𝑃𝑎)𝛻𝑎𝑊𝑎𝑑                                                                                           (16) 

Momentum Equation is usually described as: 

𝐷𝒖

𝐷𝑡
+

∇𝑃

𝜌
= 0                                                                                                                     (17) 

By rewriting 
∇𝑃

𝜌
 as: 

∇𝑃

𝜌
= ∇ (

𝑃

𝜌
) +

𝑃

𝜌2 ∇𝜌                                                                                                             (18) 

The interpolated value of pressure gradient (
∇𝑃

𝜌
) can be expressed using SPH smoothing as: 

∇(
𝑃

𝜌
) = ∑ 𝑚𝑑

𝑃𝑑

𝜌𝑑
2 ∇𝑊𝑑                                                                                                                  (19) 

Combining Eq.16 and Eq.18, the momentum equation for particle a becomes 
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𝐷𝒗𝒂

𝐷𝑡
=  − ∑ (𝑚𝑑(

𝑃𝑑

𝜌𝑑
2 +

𝑃𝑎

𝜌𝑎
2)∇𝑎𝑤𝑎𝑑𝑑                                                                              (20) 

The contribution force from particle d to particle a when the kernel is a Gaussian is summarized 

as 

𝐹 =
2𝑚𝑎𝑚𝑑

ℎ2 (
𝑃𝑑

𝜌𝑑
2 +

𝑃𝑎

𝜌𝑎
2)(𝒓𝒂 − 𝒓𝒅)𝑊𝑎𝑑                                                                                  (21) 

Finally, penguin particles are moved throughout the simulation using 

𝑑𝒓𝑎

𝑑𝑡
= 𝑣𝑎                                                                                                                                 (22) 

3.6 Penguin behavior model          

This numeric experiment attempts to mimic huddling behavior and possibly provide clues 

explaining the process behind it through an algorithm seeking to minimize heat lost from 

individual penguins.  In other words, the experimental model considers huddling not as an 

empathetic behavior where penguins cooperate for the good of the colony, but as an individual 

strategy to minimize energy expenditures with no knowledge or concern of the state of neighbors.  

The algorithm implemented considers possible factors compelling penguin movement using a 

modified form of the Navier-Stokes equation.  

𝜕𝒗

𝜕𝑡
− 𝒃 +

𝛻𝑃

𝜌
= 0                (23) 

In Eq. 23, 𝒗 is the velocity vector of each individual penguin; b is assumed an acceleration 

term (m/s2) that compels “cold” penguins toward the mass center of the penguin colony and ‘hot’ 

penguins away from the huddle center; p is a repulsive pressure between individual penguins that 

prevents particles from overlapping.  In this SPH huddle model, the convection term (i.e., 𝒗 ∙ ∇𝒗) 
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is not represented as there is no bulk fluid flow of penguins in the time frame of interest, nor is the 

dispersion term needed (i.e., 𝜇∇2𝒗 ) as the huddle does not develop internal eddies.  The 

contribution to the pressure force p on one particle from its neighboring particles is driven by the 

SPH momentum equation (Eq. 21), and the body acceleration parameter b is a function of ambient 

temperature which accelerates cold penguin particles towards the huddle center of mass.  The 

empirical b value is decided by considering the largest pressure force generated between penguins 

when huddle is formed. Linear and second order polynomial equations between b and ambient 

temperature are tested, and there is no significant difference on penguin moving direction. Linear 

relation is chosen for its simplicity and easy implementation. As the ambient temperature 

increases, this b parameter diminishes. As the ambient temperature increases further, b becomes 

negative and accelerates particles away from the colony center (Fig.3).  

 

Figure 3 Relationship between ambient temperature (𝑇𝑎) and particle acceleration (b) 

After calculating individual penguin’s metabolic heat from Eq. 7, the accumulated heat 

released from penguins is calculated by Eq. 10 in SPH method. Ambient temperatures at grid 
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locations are calculated by summing air temperature and the temperature increased by accumulated 

heat from penguins nearby. Incorporated with wind velocity from FDM, the wind chill temperature 

is used to identify if penguins are within their TNZ. If penguins are not in their TNZ, the moving 

direction is determined by the body force acceleration b and pressure force acceleration from 

neighboring penguins.  

3.7 SPH-FDM coupling 

FDM is implemented in central difference approximations for interior nodes; in forward 

and back difference approximations for grid points on the boundary; both are with an expected 

second order of numeric error. In FDM, the mass within the zone changes due the mass fluxes and 

may cause error. However, SPH shows advantages in eliminating truncation and round-off errors 

for conservation of conservative properties, such as heat, mass, momentum. The properties of SPH 

let particles carry their own mass, and therefore, mass is always conserved.  

Penguin particles move in response to ambient temperature as determined by the individual 

body temperature, the aggregate heat given off by neighboring penguins, the effects of wind chill, 

and the background ambient environmental temperature.  As the trajectory of a particle is 

computed, the quantities of heat release and momentum gained or lost by all particles are 

incorporated in subsequent calculations.  For the SPH-FDM coupled method, the penguin positions 

and resultant ambient temperature are the primary parameters exchanged between the models, and 

the wind velocity field is updated every 30 seconds (simulation time) as individual penguins move 

and the huddle shape forms, deforms or breaks apart.  The flow chart of SPH-FDM coupled method 

is shown as Fig 4. 



 

21 

 

Figure 4 Algorithm of SPH-FDM 

Penguin’s radius is assumed around 0.25m. The particle size and grid size should be the 

same magnitude in order to make particle covers at least one grid point for wind field calculation 

in FDM. Therefore, a small grid size (0.25m) is chosen in order to bridge SPH model and FDM 
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model. The position of penguins calculated in SPH model need to be updated in FDM model for 

wind field calculation. Therefore, a small grid size is used to make sure the interaction between 

the wind and penguins is well-simulated. The small grid size also leads to a small time-step. In this 

case, the time step is set to 0.02 second. In the process of SPH model, the most time-consuming 

part is identifying neighboring particles. In a small time-step, the positions of particles are not 

significantly changed. Therefore, in aim to save computational time, the identifying process is only 

recalculated once as penguin moves at least one grid size.  

3.8 Model Setup 

It is important to note that the goal of each penguin is to minimize their individual 

metabolic rate by finding a comfortable position within its thermo-neutral zone. Penguins are 

motivated to move or stay stationary depending on the ambient temperature and pressure force 

from neighboring penguins. Individual penguins in the huddle are assumed to have uniform body 

temperature, height, volume, and mass. The procedure to simulate huddle is as follows: 

1. Randomly locate penguins across the computational FDM grid and resolve the wind 

field by FDM. 

2. Calculate the heat flux across the wind field by FDM. 

3. Compute accumulated heat released from penguin particles and its contribution to local 

temperature by SPH. 

4. Update ambient air temperature and calculate particle wind chill temperature by SPH.  

5. Compute body force (b) of individual penguin depending on ambient temperature. 

6. Compute pressure force of individual penguin from neighboring penguins by SPH. 

7. Update particle positions. 

8. Simulate huddle break-up by increasing ambient temperature higher than penguin’s 



 

23 

thermos-neutral zone and update penguins’ moving path   
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CHAPTER 4 

DYNAMIC PENGUIN HUDDLE FORMATION SIMULATION 

This chapter presents the simulation of this new method of coupling the smoothed particle 

hydrodynamic and finite difference methods (SPH-FDM) in penguin huddling formation.  With 

this novel approach, each individual penguin and its information, such as position, velocity, 

temperature, metabolic heat loss, and path of motion can be traced through implementation of the 

SPH method, and solutions for wind velocity and direction across a complex and dynamic 

landscape can be easily quantified using FDM at a reduced computational cost.  This coupled 

method shows benefits in simulating complicated flow dynamic shapes and interactions in 

dynamic environment. 

Penguins are assumed to be randomly situated on a flat plane with dimensions of 50m x 

100m. Wind enters from Y direction boundary and interacts with the penguins. Penguin movements 

towards to the group’s mass center (i.e., the warmest part of the computational grid) during huddle 

formation are tracked in SPH method as shown in the time series figures (i.e., upper panes) of Fig. 

5 for each of six intervals during the two-hour simulation.  Figure 5, panel A is at time zero; panel 

B is 30 minutes; C is at 60 minutes; D is at 75 minutes; E is at 90 minutes; and F is at time 120 

minutes.  Wind velocity (lower panes) and the resulting ambient temperature (middle panes) are 

calculated using the wind field derived by the FDM and SPH model.  As a huddle forms, the 

cumulative metabolic heat released from penguins in a neighborhood accumulates, and the penguin 

huddle blocks wind from flowing around individuals – thereby eliminating wind chill and elevating 

local ambient temperature.  When wind chill temperatures fall within the thermo-neutral zone 
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(Typically -10 to 20ºC), penguins are less motivated to move, and the huddle becomes stable.  

Throughout the simulation, the positions of individual penguins can vary, and wind velocity field 

is recalculated and updated by FDM model as the shape of the huddle changes. 

 

 

Figure 5 Simulation results of penguin huddling process in 2-hour increments (Upper: penguin 

position; Middle: Ambient temperature Contour (ºC); Lower: Wind velocity (m/s)) 
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This simulation estimates that individual penguins relocated from loose aggregations to a 

stable and dense huddle with an interior ambient temperature around 5ºC.  Penguins on the huddle 

perimeter released more metabolic heat than those in the interior because of higher temperature 

gradient and proximal exposure to wind and associated wind chill effects (Figure 6).  Because the 

ambient temperature of penguins around the perimeter was not in the TNZ, these penguins 

continued to seek a more comfortable position within the huddle and were not stationary.  Table 1 

summarizes average temperature, temperature range and the percentage of penguins within TNZ 

from the six-time points in Figure 5. The average temperature is calculated as the average of all 

particles, and temperature range is the highest to lowest ambient temperature at these time series.  

After a 2-hour simulation, approximately 75% of the simulated penguins are in their TNZ, as seen 

in Figure 6.   

Table 1 Summary of descriptive statistics 

 

 

Figure 5 

Pane 

Average ambient 

Temperature 

 (ºC ± σ) 

Ambient Temperature 

Range at the huddle  

(ºC) 

% of Penguins  

in TNZ 

Average 

Huddle 

Density 

(penguins/m2) 

A -26.97±0.92 -28.00~-24.09 0 0.2 

B -23.78±6.07 -27.98~-2.05 5.5 0.3 

C -18.38±9.37 -27.97~2.42 25.5 0.4 

D -14.87±10.00 -27.88~3.80 37.5 0.7 

E -11.42±10.01 -27.67~5.56 53.5 1.2 

F -5.03±6.85 -23.12~7.74 77.5 3.1 
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Figure 6 Frequency graph of individual penguin ambient temperature at 2h (the arrow indicates 

the TNZ) 

The ambient temperature of the location where individual particles stand, individual 

metabolic heat loss are plotted against its distance to the huddle center, which shown through 

Figure 7 and 8. In Figure 8, the windward quantified penguins on the boundary where exposed to 

high wind velocity (greater than 3m/s), while leeward quantified penguins on the boundary where 

exposed to low wind velocity (less than 3 m/s). 
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Figure 7 Relationship between individual metabolic heat loss and its distance to huddle center 

 

Figure 8 Relationship between individual temperature and its distance to huddle center 
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Figure 9 Huddle density 

In this simulation model, ambient temperature and wind speed are the main factors 

affecting penguin huddles. As Figure 5 shows, at the beginning, penguins are affected by both 

ambient temperature and wind speed; while when the huddle forms, only penguins on the perimeter 

of the huddle are affected by wind chill effects. These results suggest that both ambient temperature 

and wind speed are predictors of huddling occurrence, which meet the observations from previous 

research (Gilbert and Robertson, 2008). This model can then provide a quantified way to calculate 

the probability of huddling according to ambient temperature and wind speed. 

The simulation model forms a huddle around 9 × 7.25 m, as shown in Figure 9. With 200 

penguins, the density of huddle is around 3.1 birds m-2, which is very close to 2.8 birds m-2 -- the 

typical mean density shown by emperor huddle in general during winter (Gilbert and Robertson, 

2008). While biologists suggest that ground movement may be affected by wind direction, the 

ambient temperature, however, is the main meteorological factor influencing huddling group 

density. In our simulation model, the body force term is assumed only by ambient temperature, 
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thus the density of huddle in this model is mainly affected by this factor. This model can be used 

to interpret thermal infrared image to predict the occurrence of huddle.  

 

Figure 10 Relationship between % of huddle radius in 3 sizes of huddles and (a) local 

ambient temperature (b) local penguin number density 

From continuity equation in SPH (Eq. 14), local number density within SPH smooth circle 

is estimated against percentage of huddle radius (Figure 10-b). The typical penguin huddle size 

under 3 breeding stages (100 penguins, 200 penguins and 800 penguins) are simulated in this 

model. Figure 10-a shows the relationship between ambient temperature where penguins stand and 

the percentage of huddle radius. These three penguin huddles show similar trend, where the highest 
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density and highest ambient temperature are the center of the huddle. It suggests that penguins 

tend to gather in the warmest place. Penguins on the boundary are affected by wind chill effect. In 

addition, the trendline of ambient temperature is similar to the trendline of local number density. 

In SPH calculation, particles within smooth circle contribute to the center particle, which are 

quantified by kernel function. The denser inside the smooth circle, the more released metabolic 

heat is contributed to the center particle. These results also suggest that the ambient temperature 

from the edge to the center of huddle may not increase linearly and fit second polynomial relation 

(with constrain condition that distance should be positive). Penguin individual temperature can be 

estimated according to its local number density. Because the body force term is determined by 

ambient temperature, and pressure force term can be quantified in SPH model, we can then use 

this model to estimate penguin individual path.  
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CHAPTER 5 

HUDDLE DYNAMICS AND ENVIRONMENTAL FACTORS 

Previous observations (Zitterbart et al, 2011) suggest that penguins in a huddle are tightly 

packed. However, huddle structure is continuously reorganized by the penguins, because each 

individual needs to maintain warmth and stay in the center part of the huddle. Moreover, penguin 

huddles are observed in a very slow but continuous movement, and those penguins exposed to the 

wind move slowly along the sides of the huddle trying to find a warmer locations (Waters et al, 

2012; Le Maho, 1977). 

In the previous chapter, the model shows the ability to simulate huddle formation. Because 

SPH model has the advantages in tracking properties of each individual, the dynamic process in a 

huddle could be well simulated. The assumption is penguins have equal access to the warm center. 

In this numeric experiment, a circular shape huddle is generated, and all penguins stand besides 

each other with no empty spaces (Figure 11.a). The total number of penguins is constant during 

the simulation and the 2D wind field is simulated by FDM model (Figure 11.b). Winds blow from 

one direction and interact with the huddle. The initial air temperature is set to -30°C, which is a 

typical temperature in Antarctica’s winter.  
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Figure 11 Initial generated huddle of penguins (a) position of each penguin located in a 

huddle and the huddle arrangement (b) initial wind field calculated by FDM (m/s) (c) ambient 

temperature (-30°C air temperature plus increased temperature by released metabolic heat) (d) 

Wind chill temperature 

The penguins are stimulated to move by the significant temperature difference between 

penguin’s body and ambient air, while in the same time, SPH model shows that the penguin’s 

metabolic heat also makes the ambient air warmer. Figure 11 shows that the huddle center is the 

warmest with temperature reaching 3°C (Figure 11.c). With the comparatively high ambient 

temperature, most penguins within the huddle stay in their thermos-neutral zone; yet the penguins 

on the perimeter are still in a critical low temperature (-10°C). Penguins on the huddle’s windward 

edge are experiencing higher heat loss and are more motivated to reposition than penguins on the 

leeward edge of the huddle (Figure 11.d).  
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Figure 12 Moving directions of penguins on the perimeter (arrows show the moving 

direction, x and y are grid numbers) 

Because of low ambient temperature and no pressure force from neighboring penguins, 

body acceleration term 𝒃  is the only driven factor that determines the penguin’s movement 

direction on the perimeter, the direction of b always point towards the warm center, as shown in 

Figure 12. 
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Figure 13 Moving direction of penguins on the perimeter under body force and pressure 

force (arrows show the moving direction, x and y are grid numbers) 

As the penguins on the perimeter move towards the warm center, those on the inner circle 

gets pushed by their outer companions. The resultant force forces penguins on the perimeter to 

move along the side from windward edge to the leeward edge (Figure 13), thereby exposing a new 

layer of penguins to the coldest part of the huddle. From the simulation model, the moving process 

is continuous.  
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The huddle dynamics show a strong dependence on the variations of body force term 𝒃 

and pressure force 𝑝 (Figure 14). Body external accleration is an assumptive condition in this 

model. For penguins on the perimeter, the body force 𝒃 is dominant, and penguins tend to move 

towards the center. Based on SPH kernel function, as penguins continued to move inward and push 

the interior penguins, the huddle density increase leads to increased pressure force which stops the 

penguins from further inward movement. At this point, the body forces decrease because ambient 

temperature is comparatively high. Penguins on the perimeter then move to the leeward edge. With 

a relative small body force, pressure force is large enough to change or determine moving 

directions of penguins on the perimeter (Figure 14). 

 

Figure 14 Moving direction under the total force of 𝒃 and 𝑝 

In previous chapter, the huddle forms under unfavorable meteorological conditions: both 

wind speed and ambient temperature affect huddling occurrence. If ambient temperature is higher 

than penguin’s critical temperature 20 °C, huddles start to break up. As Figure 14 shows, b 
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parameter diminishes when the ambient temperature increases; as the ambient temperature 

increases further, b becomes negative and accelerates particles to disperse from the colony center.  

Two scenarios of different background air temperature are being tested in this model to 

simulate the process of huddle break-up. Air temperature is increased to 0 °C and 10 °C, 

respectively, to create local ambient temperature higher than penguin’s thermos-neutral zone. 

Huddle break-up is expected during the process of increasing temperature. Figure 15 and 16 show 

the huddle break-up happens under the background air temperature of 0°C. Due to released 

metabolic heat, the highest local ambient temperature reach to 23 °C, which is higher than 

penguin’s thermal neutral zone. Penguins at the warmer part tend to move away under the body 

acceleration term b to dissipate excess heat and maintain their thermal-neutral zone. Influenced by 

pressure force from neighboring penguins, huddles start to break up from edge to the center. This 

simulation scenario meets the observation (Ancel et al, 2005) that breakups start close to the edge 

of the huddle, then propagate within a short time to the entire huddle.  
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Figure 15 Huddle break-up after air temperature is increased to 0 °C (a) positions of 

penguins located in a huddle when huddle tends to break up (b) wind profile calculated by FDM 

(m/s) (d) ambient temperature (calculated by adding air temperature 0 °C and the increased 

temperature by released metabolic heat (°C) (d) wind chill temperature, calculated by wind chill 

equation, which incorporated with wind velocity and ambient temperature (°C) 
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Figure 16 Moving directions of penguins during huddle break-up (Air temperature is 0°C; 

Arrows show the moving direction and path of the penguins) 

When background air temperature is increased to 10 °C (Figure 17 and 18), due to 

metabolic heat, the local ambient temperature of the whole huddle, with an exception of penguins 

on the perimeter, is higher than penguin’s thermal-neutral zone. With the large body acceleration 

b, penguins at the warmest part start to move out and push outer loop penguins. From the previous 

observation, breakup expands until the huddles reach almost twice as large as the initial huddle. 

Figure 16 indicates penguins’ positions during break-up process. Penguins from warmest part can 
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then release themselves from mutual body contact and dissipate excess heat; while penguins on 

the perimeter have a large density and will continue to move under the pressure force acceleration 

and body acceleration b. Biologists observed huddle break-ups happened due to a variety of 

reasons, such as confliction between two individuals, chick-rearing and even no visible cause. 

These two scenarios explain how ambient temperature affect penguin break-up while they are 

under thermoregulation theory, although it cannot explain all types of the huddle break-ups. These 

simulation results provide a good application of thermoregulation: huddle growth and decay when 

penguins gain, conserve or lose heat; an individual penguin tends to seek individual need of 

warmth and main its thermos-neutral zone. 

 

Figure 17 Huddle break-up after air temperature is increased to 10 °C (a) positions of 

penguins located in a huddle when huddle tend to break up (b) wind profile calculated by FDM 

(m/s) (d) ambient temperature (calculated by adding air temperature 0 °C and the increased 

temperature by released metabolic heat (°C) (d) wind chill temperature, calculated by wind chill 

equation, which incorporated with wind velocity and ambient temperature (°C) 
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Figure 18 Moving directions of penguins during huddle break-up (Air temperature is 10 °C; 

Arrows show the moving direction and path of the penguins) 
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CHAPTER 6 

CONCLUSION AND FUTURE APPLICATIONS 

For this dissertation, a coupled model is successfully implemented in simulating penguin 

huddles. Finite Difference Method (FDM) and Smoothed Particle Hydrodynamics (SPH) method 

are applied to simulate dynamic penguin huddle and simultaneously wind field interacted with the 

huddle. As the simulation results show, the coupled model can simulate the dynamic huddling 

formation, track moving directions of penguins when huddle is formed and relatively stable, and 

simulate the break-up of huddles when ambient temperature is higher than penguin’s thermo-

neutral zone.  

Computational fluid model analysis is widely used in a variety of applications, including 

ecological problems and non-fluid problems. Previous research suggests that penguin huddles 

allow individuals to protect individuals from unfavorable environmental conditions, with similar 

properties as fluid. This behavior can be simulated and implemented with fluid dynamic models. 

There are few numerical models in penguin huddle simulation. A previous penguin model used 

fluid dynamic equation to compute the temperature profile around the huddle, with assumptions 

that penguin will move to positions where the local heat loss is minimal without considering 

moving path or interactions between penguins. Biologists suggest that penguins may choose to 

join or leave huddle based on individual need of warmth, therefore, the SPH method was 

considered in this research because it’s mesh-free and can track individual’s properties. In addition, 

SPH shows advantages in solving complex boundaries and moving bodies. Penguins can be treated 
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as “particles” and represented in SPH method to track their properties, such as moving direction, 

moving speed, individual temperature. 

From previous observations, air temperature and wind velocity are the main environmental 

factors affecting huddle patterns. To simulate wind field to interact with penguin huddle, FDM is 

implemented in this research for its easy implementation and calculation. The Navier-Stokes 

equation is the basic equation used to resolve wind field by using MATLAB. Wind is assumed to 

enter in one direction and interact with penguins. The most difficult part in wind field simulation 

is the resolution of pressure term in Navier-Stokes equation. A pressure Poisson equation is 

considered in the model to deduct pressure gradient term, which make wind bypass penguins when 

wind field interact with huddle. Moreover, in this research, a small grid size (0.25m) is chosen in 

order to bridge SPH model and FDM model. A small grid size is used to make sure the interaction 

between the wind and penguins are well-simulated. The small grid size also requires a small time-

step to eliminate numeric oscillations and instability. In the process of SPH model, the most time-

consuming part is identifying neighboring particles. In a small time-step, the positions of particles 

are not significantly changed. Therefore, in aim to save computational time, identifying process is 

calculated once penguin move at least one grid size.  

In severe environmental conditions, penguin tend to huddle to keep warm and reduce 

energy costs. A 2-hour simulation of the huddle forming process is done by the couple-model.  In 

this simulated huddle, most of the interior penguins reached a thermo-neutral temperature, which 

kept them stationary and the huddle is stable.  However, for the penguins on the huddle perimeter, 

the ambient temperature was below TNZ and motivated those penguins to move toward a more 

comfortable location within the huddle (either in the interior or around to the rear of the huddle).  

This model is then applied to simulate the dynamic huddle in Antarctic’s winter as well as how 
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the huddle breaks up when air temperature increased. In agreement with previous predictions in 

Chapter 5, the model simulates how the cold-exposed penguins on the perimeter move during 

huddling and how the huddle move during breakup when air temperature increase. These results 

prove the coupled SPH-FDM model can be a calibration in predicting the formation of penguin 

huddling based upon a “selfish” algorithm seeking only to minimize individual energy 

expenditures and shows potentials in interpret thermal infrared image of penguins in the future. 

 

In Ancel et al’s (2015) observations, several climate factors, such as atmospheric pressure, 

relative humidity, solar radiation, wind speed and direction, are correlated with dynamics of 

huddles. Environmental factors affect not only the number of huddles, but also the mean number 

of individuals per huddle. This research only considers wind velocity and air temperature; 

therefore, future applications that considering other environmental factors are needed to further 

study the penguin’s behavior equation and track the effect of these factors on huddling patterns. 

Moreover, biologists suggest that reproductive stages of penguins affect their huddling pattern as 

well, such as pairing, incubation and chick-rearing. The sizes of huddles are different among these 

three stages: males and females are present during pairing, while only males in incubation period. 

Varied sizes of huddles can be then generated and simulated by this coupled method to determine 

the effecting levels of climate factors and can be used to interpret thermal infrared images of 

penguin huddle under different reproductive stages. The recorded data for penguin huddles is very 

limited. Researchers used satellite remote sensing data to track and record penguin distributions. 

The model can be testified by real penguin huddle data with collaboration of penguin studies.  

This model platform can be applied to other interesting ecological systems with fluid-fluid 

properties such as fish shoaling in river currents or bees swarming in a wind field.  Also, this model 
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strategy can be considered to apply to engineering applications such as the behavior of swarms of 

autonomous drones. 

MATLAB is chosen for the model due to its explicit parameters to the methods and 

straightforward output analysis. However, the running efficiency of loop cycles in MATLAB is 

relative slow. Future work in improving computational efforts is need to be considered. When 

greatly increase the number of penguins, SPH presents a high computational cost. High 

performance computing, such as GPU implementation, parallelization, are common ways to 

improve model efficiency. In addition, other language may be considered to improve model 

efficiency, such as Python, which shows advantages in namespaces and introspection. 
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APPENDIX A 

The movement and evolution of the wind and the penguin huddling process are governed 

by the Navier-Stokes equations (NSE) of fluid motion in a continuum.  

ρ (
𝜕

𝜕𝑡
𝒖 + 𝒖 ∙ ∇𝒖) =  −∇𝑝 + 𝜇∇2𝒖 + 𝒃                                (24) 

𝛻 ∙ 𝒖 = 0                                                         (25) 

 Wind field simulation is only considered in two dimensions and can be expressed in the 

FDM as:  

𝑢𝑡 + 𝑝𝑥 = −(𝑢2)𝑥 − (𝑢𝑣)𝑦 + 𝛾(𝑢𝑥𝑥 + 𝑢𝑦𝑦)                                             (26) 

𝑣𝑡 + 𝑝𝑦 = −(𝑣2)𝑦 − (𝑢𝑣)𝑥 + 𝛾(𝑣𝑥𝑥 + 𝑣𝑦𝑦)                                             (27) 

𝑢𝑥 + 𝑣𝑦 = 0                                                                               (28) 

 The two momentum equations (Eq. 26, Eq. 27) describe the time evolution of the wind 

velocity field under inertial and viscous forces, where u and v are flow velocity (m/s2) in two 

directions, 𝑢𝑥 , 𝑢𝑦,  𝑣𝑥, 𝑣𝑦  are gradients of u and v in two directions; 𝑢𝑥𝑥 , 𝑢𝑦𝑦 , 𝑣𝑥𝑥 , 𝑣𝑦𝑦  are 

divergences of gradient in two directions; and 𝑝𝑥 , 𝑝𝑦  are gradients of pressure (Pa) in two 

directions. 

  The Pressure Poisson equation (PPE) is used to solve the pressure term. The protocol can 

be found in Seibold (2008) and Cornthwaite (2013). 
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      At time 𝑛 + 1 (the pressure that corresponds with the velocity at 𝑛 + 1) 

𝒖𝑛+1 = 𝒖𝑛 + ∆t(−𝒖𝑛 ∙ ∇𝒖𝑛 −
1

𝜌
∇𝑝𝑛+1 + 𝜇∇2𝒖𝑛)                                    (29)                                                           

∇ ∙ 𝒖𝑛+1 = ∇ ∙ 𝒖𝑛 + ∆t(−∇ ∙ (𝒖𝑛 ∙ ∇𝒖𝑛) −
1

𝜌
∇2𝑝𝑛+1 + 𝜇∇2(∇ ∙ 𝒖𝑛))                           (30)               

      Forcing ∇ ∙ 𝒖𝑛+1 = 0 to satisfy continuity, the passion equation for 𝑝 at time 𝑛 + 1 is 

∇2𝑝𝑛+1 = 𝜌
∇∙𝒖𝑛

∆𝑡
− 𝜌∇ ∙ (𝒖𝑛 ∙ ∇𝒖𝑛) + 𝜇∇2(∇ ∙ 𝒖𝑛)                                          (31) 

  By applying left array division in MATLAB, the velocity field can be updated after 

pressure correction.   
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APPENDIX B 

clear all 
close all 
clc 

  
% Defining grid in the horizontal direction and vertical direction and 
% calculate the x step and y step 
xmin = 0.0; xmax = 50.0; xnum = 200.0; 
xstp =(xmax-xmin)/xnum; 
ymin = 0.0; ymax = 100.0; ynum = 400.0; 
ystp =(ymax-ymin)/ynum; 
Np = 223;                 % Number of particles 
UX = zeros(xnum,ynum);    % Current velocity matrix 
UY = zeros(xnum,ynum); 
Dist = zeros(xnum,ynum); 
V  = zeros(xnum,ynum);    % total wind speed in each grid point 
P  = zeros(xnum,ynum);    % Pressure variable matrix 
p  = zeros(xnum,ynum); 
xp = zeros(1,Np);         % Particle positions 
yp = zeros(Np,1);         % Particle positions 
dx = 8;                   % Define length between particles 
hp = 5;                   % Particle smoothness value 
hhp =1; 
tol = 1;                  % Check the mass conservation shold  be less than  

this tolerance 
DistToObj = zeros(1,Np); 
load xp;                  % Load saved particle position and initial wind 

field 

load yp; 
% Defining Related Coefficient 
D = 1.0;                  % Diffusion coefficient in m^2/s 
timestep = 0.002;         % Time step not to exceed 0.2 seconds for 1 m grid 
Vel = 5 ;                 % Initial wind velocity in m/s 
rhoair = 1.4224;          % Density(kg/m3) of air at -25 degree C 
mass = 0.5;                % Penguin mass (constant) 
height = 1.2;             % Average height of adult emperor penguin 
C = 0.1040;               % Thermal conductance of penguin (W/C) 
CA = 0.0204 ;             % Thermal conductivity of air (W/mC)at-50 degree C 
RadObj = 1;               % Radius of the impediment object in grid size 
k = .08;                  % Ideal gas equation Constance 
a = 1;                    % File number                       
n = zeros(1,Np);          % Initial number of particle within smooth length 

circle at the point of each particle 

  

  
rhoparticle = zeros(1,Np); % Particle density 
rhop = zeros(1,Np);       % Density of the particle smooth circle 
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rhop0 = zeros(1,Np);      % Initial particle density 
rhopr = zeros(xnum,ynum); % Particle density at grid point 
Ep = zeros(1,Np);         % Local Metabolic energy within smooth length 
Epr = zeros(xnum,ynum);   % Local metabolic energy at grid point 
Ei = zeros(1,Np);         % Particle metabolic energy 
Eir = zeros(xnum,ynum);   % Particle metabolic energy at grid point 
distance = zeros(1,Np); 
DistToB1 = zeros(1,xnum); % Distance to boundaries 
DistToB2 = zeros(1,xnum); 
DistToB3 = zeros(1,ynum); 
DistToB4 = zeros(1,ynum); 
Tw = zeros(xnum,ynum);    % Wind chill temperature 
Tp = zeros(1,Np)+273.15;  % Particle wind chill temperature in K 
Pe = zeros(1,Np);         % Particle pressure 
fp = zeros(1,Np);         % pressure acceleration 
up = zeros(1,Np);         % Particle velocity 
r = zeros(Np,Np);         % Distance between each particle 
s = zeros(1,Np);          % Particle moving distance 
delT = zeros(1,Np);       % Temperature change 
delTr = zeros(xnum,ynum); % Temperature change at grid point 
zeta = zeros(1,Np);       % Moving angle 
coszeta1 = zeros(Np,1); 
sinzeta1 = zeros(Np,1); 
coszeta2 = zeros(Np,1); 
sinzeta2 = zeros(Np,1); 
w = zeros(1,Np);           % Kernel function 
dw = zeros(1,Np); 
ww = zeros(1,Np);          % Kernel function 
dww = zeros(1,Np); 
Ti = ones(1,Np)*37.7;      % Penguin body temperature is 37.7 degree C 
Ta = -30*ones(xnum,ynum);  % Ambient temperature 
volqr = 0.345; 

  
% Initialize partile on the grid 

  
xexact=xp;                 % x position of penguins at t=0 

yexact=yp;                 % y position  of penguins at t=0 

  
% Defining the maximum number of iterations for convergence 
maxiter  = 300000; 

  
for iter = 1:maxiter 
    iter                   % iteration numbers 
    err = 0.0; 

     
    % Define the boundary condition for the current velocity matrices 
    % Set upwind x-boundary to normal velocity of applied wind 
    UX0 = UX;                 % Previous time velcoity matrix 
    UY0 = UY; 
    % Populate the pressure matrix using velocites from previous step 
    Lp = kron(speye(ynum),K1(xnum,xstp,1))+kron(K1(ynum,ystp,1),speye(xnum)); 
    Lp(1,1) = 3/2*Lp(1,1); 
    perp = symamd(Lp); Rp = chol(Lp(perp,perp)); Rpt = Rp'; 
    % upper boundary velocity update 

     
    UX(1,:) = 0; 
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    UY(1,:) = Vel; 
    Tw(1,:) = 13.12 + 0.6215.*Ta(1,:) - 11.37*Vel^0.16 + 

0.3965.*Ta(1,:)*Vel^0.16; 
    % Calculate wind velocity at interior points for x and y fr om 2 to (max-

1) 
    if (iter ==1 ||iter == maxiter) 
        for xn = 2:xnum-1 
            for yn = 2:ynum-1 

                 
                for ip = 1:Np 
                    DistToObj(ip) = sqrt((xn-xp(ip))^2+(yn-yp(ip))^2) ;  

%Distance from current grid point to impeding object 1 
                    Dist(xn,yn) = min(DistToObj); 
                end 
            end 
        end 

         
        %DistToObj1 = sqrt((xn-ObjX1)^2+(yn-ObjY1)^2); 
        for xn = 2:xnum-1 
            for yn = 2:ynum-1 
                Ta = -30*ones(xnum,ynum); 
                if Dist(xn,yn) <= RadObj  % If the grid point is covered by 

an object, define the velocity and pressure to be zero 
                    UX(xn,yn) = 0; 
                    UY(xn,yn) = 0; 
                    Tw(xn,yn) = Ta(xn,yn); 
                else 

                     
                    U2XY = (UX0(xn-1,yn)-

2.0*UX0(xn,yn)+UX0(xn+1,yn))/(ystp)^2; %Central difference of 2nd derivative 

of x-velocity in x-direction 
                    U2XX = (UX0(xn,yn-1)-

2.0*UX0(xn,yn)+UX0(xn,yn+1))/(xstp)^2; %Central difference of 2nd derivative 

of x-velocity in y-direction 
                    U1XY = (UX0(xn+1,yn)-UX0(xn-1,yn))/(2*ystp);                

%Central difference of 1st derivative of x-velcoity in x-direction 
                    U1XX = (UX0(xn,yn+1)-UX0(xn,yn-1))/(2*xstp);                

%Central difference of 1st derivative of x-velcoity in y-direction 
                    U2YX = (UY0(xn,yn-1)-

2.0*UY0(xn,yn)+UY0(xn,yn+1))/(xstp)^2; %Central difference of 2nd derivative 

of y-velocity in y-direction 
                    U2YY = (UY0(xn-1,yn)-

2.0*UY0(xn,yn)+UY0(xn+1,yn))/(ystp)^2; %Central difference of 2nd derivative 

of y-velocity in x-direction 
                    U1YX = (UY0(xn,yn+1)-UY0(xn,yn-1))/(2*xstp);                

%Central difference of 1st derivative of y-velcoity in y-direction 
                    U1YY = (UY0(xn+1,yn)-UY0(xn-1,yn))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
                    UX(xn,yn) = UX0(xn,yn) + timestep*(D*(U2XX + U2XY) - 

UX0(xn,yn)*U1XX - UY0(xn,yn)*U1XY); 
                    UY(xn,yn) = UY0(xn,yn) + timestep*(D*(U2YY + U2YX) - 

UY0(xn,yn)*U1YY - UX0(xn,yn)*U1YX); 
                    U1XXcurrent = (UX(xn,yn)-UX(xn,yn-1))/xstp; 
                    U1YYcurrent = (UY(xn,yn)-UY(xn-1,yn))/ystp; 
                    err = max(err,timestep*abs(U1XXcurrent+U1YYcurrent)); 
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                    V(xn,yn) = sqrt(UX(xn,yn)^2 + UY(xn,yn)^2);                

                     
                end 

                 
            end % End inner loop 

             
        end %outer loop 
        % left and right boudanry velocity update 
        for xn = 2: xnum-1 
            UX(xn,1) = 0; 
            UX(xn,ynum) = 0; 
            U2YXy1 = (UY0(xn,1)-2.0*UY0(xn,2)+UY0(xn,3))/(xstp)^2; %Forward 

difference of 2nd derivative of y-velocity in y-direction 
            U2YYy1 = (UY0(xn-1,1)-2.0*UY0(xn,1)+UY0(xn+1,1))/(ystp)^2; 

%Central difference of 2nd derivative of y-velocity in x-direction 
            U1YXy1 = (UY0(xn,2)-UY0(xn,1))/xstp;                %Forward 

difference of 1st derivative of y-velcoity in y-direction 
            U1YYy1 = (UY0(xn+1,1)-UY0(xn-1,1))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
            U2YXynum = (UY0(xn,ynum)-2.0*UY0(xn,ynum-1)+UY0(xn,ynum-

2))/(xstp)^2; %Back difference of 2nd derivative of y-velocity in y-direction 
            U2YYynum = (UY0(xn-1,ynum)-

2.0*UY0(xn,ynum)+UY0(xn+1,ynum))/(ystp)^2; %Central difference of 2nd 

derivative of y-velocity in x-direction 
            U1YXynum = (UY0(xn,ynum)-UY0(xn,ynum-1))/xstp;                

%Back difference of 1st derivative of y-velcoity in y-direction 
            U1YYynum = (UY0(xn+1,ynum)-UY0(xn-1,ynum))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 

             
            UY(xn,1) = UY0(xn,1) + timestep*(D*(U2YYy1 + U2YXy1) - 

UY0(xn,1)*U1YYy1 - UX0(xn,1)*U1YXy1); 
            UY(xn,ynum) =UY0(xn,ynum) + timestep*(D*(U2YYynum + U2YXynum) - 

UY0(xn,ynum)*U1YYynum - UX0(xn,ynum)*U1YXynum); 
            V(xn,1) = sqrt(UX(xn,1)^2 + UY(xn,1)^2);                

% Calculate average wind speed affecting particle 

             
            if V(xn,1) >= 1.3 
                Tw(xn,1) = 13.12 + 0.6215.*Ta(xn,1) - 11.37.*V(xn,1).^0.16 + 

0.3965.*Ta(xn,1).*V(xn,1).^0.16; 
            else 
                Tw(xn,1) = Ta(xn,1); 
            end 
            V(xn,ynum) = sqrt(UX(xn,ynum)^2 + UY(xn,ynum)^2);                

% Calculate average wind speed affecting particle 

             
            if V(xn,ynum) >= 1.3 
                Tw(xn,ynum) = 13.12 + 0.6215.*Ta(xn,ynum) - 

11.37.*V(xn,ynum).^0.16 + 0.3965.*Ta(xn,ynum).*V(xn,ynum).^0.16; 
            else 
                Tw(xn,ynum) = Ta(xn,ynum); 
            end 
        end 
        % bottom boundary velocity update 
        for yn = 2: ynum-1 



 

60 

            U2XXxum = (UX0(xnum,yn+1)-2.0*UX0(xnum,yn)+UX0(xnum,yn-

1))/(xstp)^2; %Central difference of 2nd derivative of y-velocity in y-

direction 
            U2XYxum = (UX0(xnum-2,yn)-2.0*UX0(xnum-

1,yn)+UX0(xnum,yn))/(ystp)^2; %Central difference of 2nd derivative of y-

velocity in x-direction 
            U1XXxum = (UX0(xnum,yn+1)-UX0(xnum,yn-1))/(2*xstp);                

%Central difference of 1st derivative of y-velcoity in y-direction 
            U1XYxum = (UX0(xnum,yn)-UX0(xnum-1,yn))/(ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
            U2YYxum = (UY0(xnum-2,yn)-2.0*UY0(xnum-

1,yn)+UY0(xnum,yn))/(ystp)^2; %Central difference of 2nd derivative of x-

velocity in x-direction 
            U2YXxum = (UY0(xnum,yn+1)-2.0*UY0(xnum,yn)+UY0(xnum,yn-

1))/(xstp)^2; %Central difference of 2nd derivative of x-velocity in y-

direction 
            U1YYxum = (UY0(xnum,yn)-UY0(xnum-1,yn))/(ystp);                

%Central difference of 1st derivative of x-velcoity in x-direction 
            U1YXxum = (UX0(xnum,yn+1)-UX0(xnum,yn-1))/(2*xstp);                

%Central difference of 1st derivative of x-velcoity in y-direction 
            UY(xnum,yn) = UY0(xnum,yn) + timestep*(D*(U2YYxum + U2YXxum) - 

UY0(xnum,yn)*U1YYxum - UX0(xnum,yn)*U1YXxum ); 
            UX(xnum,yn) = UX0(xnum,yn) + timestep*(D*(U2XXxum + U2XYxum) - 

UX0(xnum,yn)*U1XXxum - UY0(xnum,yn)*U1XYxum ); 
            V(xnum,yn) = sqrt(UX(xnum,yn)^2 + UY(xnum,yn)^2);                

% Calculate average wind speed affecting particle 

             
            if  V(xnum,yn) >= 1.3 
                Tw(xnum,yn) = 13.12 + 0.6215.*Ta(xnum,yn) - 

11.37.*V(xnum,yn).^0.16 + 0.3965.*Ta(xnum,yn).*V(xnum,yn).^0.16; 
            else 
                Tw(xnum,yn) = Ta(xnum,yn); 
            end 
        end 
        % Left Bottom Boundary point and right Bottem boundary point 
        UX(xnum,ynum)=0; 
        UX(xnum,1) = 0; 
        U1XX1 = (UX0(xnum,2)-UX0(xnum,1))/xstp; 
        U1YY1 = U1XX1; 
        UY(xnum,1) = U1YY1*ystp+ UY(xnum-1,1); 
        U1XXnum =(UX0(xnum,ynum)-UX0(xnum,ynum-1))/xstp; 
        U1YYnum = U1XXnum; 
        UY(xnum,ynum) = U1YYnum*ystp+ UY(xnum-1,ynum); 
        V(xnum,ynum) = sqrt(UX(xnum,ynum)^2 + UY(xnum,ynum)^2);               

% Calculate average wind speed affecting particle 

         
        if V(xnum,ynum) >= 1.3 
            Tw(xnum,ynum) = 13.12 + 0.6215.*Ta(xnum,ynum) - 

11.37.*V(xnum,ynum).^0.16 + 0.3965.*Ta(xnum,ynum).*V(xnum,ynum).^0.16; 
        else 
            Tw(xnum,ynum) = Ta(xnum,ynum); 
        end 
        V(xnum,1) = sqrt(UX(xnum,1)^2 + UY(xnum,1)^2);                

% Calculate average wind speed affecting particle 

         
        if V(xnum,1) >= 1.3 
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            Tw(xnum,1) = 13.12 + 0.6215.*Ta(xnum,1) - 11.37.*V(xnum,1).^0.16 

+ 0.3965.*Ta(xnum,1).*V(xnum,1).^0.16; 
        else 
            Tw(xnum,1) = Ta(xnum,1); 
        end 
        %Pressure correction 
        AA = UY(:,1); 
        AB = UX(xnum,:); 
        rhs = 

reshape((diff([UX;AB])/xstp+diff([AA';UY'])'/ystp)*timestep,[],1); 
        p(perp) = (-Rp\(Rpt\rhs(perp))); 
        P = reshape(p,xnum,ynum); 
        P(1,1) = 3/2*P(1,1); 
        if iter >5000 
            for i = 1:35 
                for j = 1:25 
                    if P(i,j)>P(36,1) 
                        P(i,j)=P(36,1); 
                    end 
                end 
            end 
        end 
        AC = diff(P); 
        AD = diff(P')'; 
        AC(:,1)=0; 
        AC(:,end)=0; 
        AD(1,:) = 0; 
        UX(2:end,:) = UX(2:end,: )-AC/xstp*0.8; 
        UY(:,1:end-1) = UY(:,1:end-1)-AD*0.8; 
    end 

     

     
    if (iter ==1 ||mod(iter,15000)==0) 

         
        Epr = zeros(xnum,ynum); 
        Eir = zeros(1,Np); 
        rhopr = zeros(xnum,ynum); 
        rr = zeros(1,Np); 
        drr = zeros(1,Np); 
        m = zeros(xn,yn); 
        n = zeros(1,Np); 
        Pe = zeros(1,Np);         % Particle pressure 
        bpX = zeros(1,Np); 
        bpY = zeros(1,Np); 
        upX = zeros(1,Np);         % Particle velocity in x direction 
        upY = zeros(1,Np);         % Particle velocity in y direction 
        bp = zeros(1,Np); 
        fp = zeros(1,Np); 
        fpX = zeros(1,Np);         % pressure acceleration in x direction 
        fpY = zeros(1,Np);         % pressure acceleration in y direction 
        rhoparticle = zeros(1,Np); 
        Ep = zeros(1,Np); 
        Tp = zeros (1,Np); 
        volq = zeros(1,Np); 
        Ei = zeros(1,Np); 

       A = zeros(1,Np); 
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        Ta = -30*ones(xnum,ynum); % Ambient temperature 
        for xn = 1:xnum 
            for yn = 1:ynum 
                 

        for ip=1:Np 
            for iq=1:Np 
                if iq==ip 
                    continue; 
                end 
                xpq = xp(ip)-xp(iq) ; 
                ypq = yp(ip)-yp(iq); 
                r(ip,iq) = sqrt(xpq^2+ypq^2); 
                hhpq = hhp; 
                [w(ip,iq),dw(ip,iq),stopIter] = 

penguin_kernel(hhpq,r(ip,iq)); 
                if w(ip,iq)>0 
                    n(ip) = n(ip)+1; 
                end 
            end 
        end                
                for ip = 1:Np 
                    xa = xn-xp(ip) ; 
                    ya = yn-yp(ip); 
                    ha = sqrt(xa^2+ya^2); 
                    hpq = hp; 
                    [rr(ip),drr(ip),stopIter] = penguin_kernel(hpq,ha); 

                     
                    if (rr(ip)>0) 

                    A(ip) = n(ip).^(-1/4); 
                        Eir(ip) = A(ip).*C*(Ti(ip)-Ta(xn,yn)); 
                        Epr(xn,yn) = Epr(xn,yn) + (Eir(ip)*volqr*rr(ip)); 
                    else 
                        Epr(xn,yn) = Epr(xn,yn); 
                    end 
                end 
                delTr(xn,yn) = Epr(xn,yn)./(CA*rhoair*pi*hp^2*height); 
                Ta(xn,yn) = Ta(xn,yn) + delTr(xn,yn); 
            end 
        end 
        for xn = 2:xnum-1 
            for yn = 2:ynum-1 
                T1X = (Ta(xn,yn+1)-Ta(xn,yn-1))/(2*xstp); 
                T1Y = (Ta(xn+1,yn)-Ta(xn-1,yn))/(2*ystp); 
                T2Y = (Ta(xn-1,yn)-2.0*Ta(xn,yn)+Ta(xn+1,yn))/(ystp)^2; 
                T2X = (Ta(xn,yn-1)-2.0*Ta(xn,yn)+Ta(xn,yn+1))/(xstp)^2; 
                Ta(xn,yn)=  Ta(xn,yn) + timestep*(D*(T2X + T2Y) - 

UX(xn,yn)*T1X - UY(xn,yn)*T1Y); 
                if V(xn,yn)>1.3 
                    Tw(xn,yn) = 13.12 + 0.6215.*Ta(xn,yn) - 

11.37.*(3.6*V(xn,yn)).^0.16 + 0.3965.*Ta(xn,yn).*(3.6*V(xn,yn)).^0.16; 
                else 
                    Tw(xn,yn) = Ta(xn,yn); 
                end 
            end 
        end 
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        for ip=1:Np 
            Vtem =[V(floor(xp(ip))-2,floor(yp(ip))-2),V(floor(xp(ip))-

2,ceil(yp(ip))+2),V(ceil(xp(ip))+2,floor(yp(ip))-

2),V(ceil(xp(ip))+2,ceil(yp(ip))+2)]; 
            if max(Vtem)>1.3 
                Twtem = [Tw(floor(xp(ip))-2,floor(yp(ip))-

2),Tw(floor(xp(ip))-2,ceil(yp(ip))+2),Tw(ceil(xp(ip))+2,floor(yp(ip))-

2),Tw(ceil(xp(ip))+2,ceil(yp(ip))+2)]; 
                Tp(ip)=  mean(Twtem)+273.15; 
            else 
                Tp(ip) = 

(Tw(floor(xp(ip)),floor(yp(ip)))+Tw(floor(xp(ip)),ceil(yp(ip)))+Tw(ceil(xp(ip

)),floor(yp(ip)))+Tw(ceil(xp(ip)),ceil(yp(ip))))/4+273.15; 
            end 
        end 
        for ip = 1:Np 
            CenterX = sum(xp)/Np; 
            CenterY = sum(yp)/Np; 
            if xp(ip)-CenterX ~=0 
                coszeta1(ip)= (CenterX-xp(ip))/(sqrt(((xp(ip)-

CenterX)^2)+((yp(ip)-CenterY)^2))); 
                sinzeta1(ip)= (CenterY-yp(ip))/(sqrt(((xp(ip)-

CenterX)^2)+((yp(ip)-CenterY)^2))); 
            end 
            if Tp(ip) <263.15 
                bp(ip) = (-0.2354*Tp(ip)+62.507)*0.9; 
                bpX(ip) = bp(ip)*coszeta1(ip); 
                bpY(ip) = bp(ip)*sinzeta1(ip); 
            else 
               bpX(ip) = 0; 
               bpY(ip) =0; 
            end 
            for iq = 1: Np 
                if (iq==ip) 
                    continue; 
                else 
                    if w(ip,iq)>0 
                        Pe = ones(1,Np).*0.1; 
                        density = mass/(pi*RadObj^2*height); 
                        fpX(ip) = fpX(ip) - 

mass.*((Pe(ip)/density.^2)+(Pe(iq)./density.^2)).*(xp(ip)-

xp(iq))/abs(r(ip,iq)).*dw(ip,iq)*10; 
                        fpY(ip) = fpY(ip) - 

mass.*((Pe(ip)/density.^2)+(Pe(iq)./density.^2)).*(yp(ip)-

yp(iq))/abs(r(ip,iq)).*dw(ip,iq)*10; 
                    end 
                end 
            end 
            upX(ip) = 50*timestep*(bpX(ip)+fpX(ip)); 
            upY(ip) = 50*timestep*(bpY(ip)+fpY(ip)); 
        end 
    end 
    for ip = 1:Np 

         
        if xp(ip) > xnum-1 
            xp(ip) = xp(ip) - xnum +2; 
        elseif yp(ip)> ynum-1 
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            yp(ip) = yp(ip) - ynum +2;  
        elseif xp(ip) < 1 
            xp(ip) = xp(ip) + xnum -1; 
        elseif yp(ip) < 1 
            yp(ip) = yp(ip) + ynum-1 ; 
        end 
        xp(ip) = xp(ip) + upX(ip).*timestep; % Relocate new position of 

particle 
        yp(ip) = yp(ip) + upY(ip).*timestep; 
        UX(round(xp(ip)),round(yp(ip)))=0; 
        UY(round(xp(ip)),round(yp(ip)))=0; 
    end 

     
    err 
    UX0=UX;% Resetting current values for the next iteration 
    UY0=UY; 
    if (iter ==1 ||iter == maxiter) 
        aberrorX = abs(UX0-UX); 
        aberrorY = abs(UY0-UY); 
        maxaberrorX = max(max(aberrorX)); 
        maxaberrorY = max(max(aberrorY)); 

         
        while max(maxaberrorX,maxaberrorY)> 0.05 
            for xn = 2:xnum-1 
                for yn = 2:ynum-1 
                    Ta = -30*ones(xnum,ynum); 
                    if Dist(xn,yn) <= RadObj  % If the grid point is covered 

by an object, define the velocity and pressure to be zero 
                        UX(xn,yn) = 0; 
                        UY(xn,yn) = 0; 
                        Tw(xn,yn) = Ta(xn,yn); 
                    else 

                         
                        U2XY = (UX0(xn-1,yn)-

2.0*UX0(xn,yn)+UX0(xn+1,yn))/(ystp)^2; %Central difference of 2nd derivative 

of x-velocity in x-direction 
                        U2XX = (UX0(xn,yn-1)-

2.0*UX0(xn,yn)+UX0(xn,yn+1))/(xstp)^2; %Central difference of 2nd derivative 

of x-velocity in y-direction 
                        U1XY = (UX0(xn+1,yn)-UX0(xn-1,yn))/(2*ystp);                

%Central difference of 1st derivative of x-velcoity in x-direction 
                        U1XX = (UX0(xn,yn+1)-UX0(xn,yn-1))/(2*xstp);                

%Central difference of 1st derivative of x-velcoity in y-direction 
                        U2YX = (UY0(xn,yn-1)-

2.0*UY0(xn,yn)+UY0(xn,yn+1))/(xstp)^2; %Central difference of 2nd derivative 

of y-velocity in y-direction 
                        U2YY = (UY0(xn-1,yn)-

2.0*UY0(xn,yn)+UY0(xn+1,yn))/(ystp)^2; %Central difference of 2nd derivative 

of y-velocity in x-direction 
                        U1YX = (UY0(xn,yn+1)-UY0(xn,yn-1))/(2*xstp);                

%Central difference of 1st derivative of y-velcoity in y-direction 
                        U1YY = (UY0(xn+1,yn)-UY0(xn-1,yn))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
                        UX(xn,yn) = UX0(xn,yn) + timestep*(D*(U2XX + U2XY) - 

UX0(xn,yn)*U1XX - UY0(xn,yn)*U1XY); 
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                        UY(xn,yn) = UY0(xn,yn) + timestep*(D*(U2YY + U2YX) - 

UY0(xn,yn)*U1YY - UX0(xn,yn)*U1YX); 
                        U1XXcurrent = (UX(xn,yn)-UX(xn,yn-1))/xstp; 
                        U1YYcurrent = (UY(xn,yn)-UY(xn-1,yn))/ystp; 
                        err = max(err,timestep*abs(U1XXcurrent+U1YYcurrent)); 

                         
                        V(xn,yn) = sqrt(UX(xn,yn)^2 + UY(xn,yn)^2);               

% Calculate average wind speed affecting particle 

                         
                        if V(xn,yn) >= 1.3 
                            Tw(xn,yn) = 13.12 + 0.6215.*Ta(xn,yn) - 

11.37.*V(xn,yn).^0.16 + 0.3965.*Ta(xn,yn).*V(xn,yn).^0.16; 
                        else 
                            Tw(xn,yn) = Ta(xn,yn); 
                        end 

                         
                    end 

                     
                end % End inner loop 

                 
            end %outer loop 
            % left and right boudanry velocity update 
            for xn = 2: xnum-1 
                UX(xn,1) = 0; 
                UX(xn,ynum) = 0; 
                U2YXy1 = (UY0(xn,1)-2.0*UY0(xn,2)+UY0(xn,3))/(xstp)^2; 

%Forward difference of 2nd derivative of y-velocity in y-direction 
                U2YYy1 = (UY0(xn-1,1)-2.0*UY0(xn,1)+UY0(xn+1,1))/(ystp)^2; 

%Central difference of 2nd derivative of y-velocity in x-direction 
                U1YXy1 = (UY0(xn,2)-UY0(xn,1))/xstp;                %Forward 

difference of 1st derivative of y-velcoity in y-direction 
                U1YYy1 = (UY0(xn+1,1)-UY0(xn-1,1))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
                U2YXynum = (UY0(xn,ynum)-2.0*UY0(xn,ynum-1)+UY0(xn,ynum-

2))/(xstp)^2; %Back difference of 2nd derivative of y-velocity in y-direction 
                U2YYynum = (UY0(xn-1,ynum)-

2.0*UY0(xn,ynum)+UY0(xn+1,ynum))/(ystp)^2; %Central difference of 2nd 

derivative of y-velocity in x-direction 
                U1YXynum = (UY0(xn,ynum)-UY0(xn,ynum-1))/xstp;                

%Back difference of 1st derivative of y-velcoity in y-direction 
                U1YYynum = (UY0(xn+1,ynum)-UY0(xn-1,ynum))/(2*ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 

                 
                UY(xn,1) = UY0(xn,1) + timestep*(D*(U2YYy1 + U2YXy1) - 

UY0(xn,1)*U1YYy1 - UX0(xn,1)*U1YXy1); 
                UY(xn,ynum) =UY0(xn,ynum) + timestep*(D*(U2YYynum + U2YXynum) 

- UY0(xn,ynum)*U1YYynum - UX0(xn,ynum)*U1YXynum); 
                V(xn,1) = sqrt(UX(xn,1)^2 + UY(xn,1)^2);               % 

Calculate average wind speed affecting particle 

                 
                if V(xn,1) >= 1.3 
                    Tw(xn,1) = 13.12 + 0.6215.*Ta(xn,1) - 

11.37.*V(xn,1).^0.16 + 0.3965.*Ta(xn,1).*V(xn,1).^0.16; 
                else 
                    Tw(xn,1) = Ta(xn,1); 
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                end 
                V(xn,ynum) = sqrt(UX(xn,ynum)^2 + UY(xn,ynum)^2);               

% Calculate average wind speed affecting particle 

                 
                if V(xn,ynum) >= 1.3 
                    Tw(xn,ynum) = 13.12 + 0.6215.*Ta(xn,ynum) - 

11.37.*V(xn,ynum).^0.16 + 0.3965.*Ta(xn,ynum).*V(xn,ynum).^0.16; 
                else 
                    Tw(xn,ynum) = Ta(xn,ynum); 
                end 
            end 
            % bottom boundary velocity update 
            for yn = 2: ynum-1 
                U2XXxum = (UX0(xnum,yn+1)-2.0*UX0(xnum,yn)+UX0(xnum,yn-

1))/(xstp)^2; %Central difference of 2nd derivative of y-velocity in y-

direction 
                U2XYxum = (UX0(xnum-2,yn)-2.0*UX0(xnum-

1,yn)+UX0(xnum,yn))/(ystp)^2; %Central difference of 2nd derivative of y-

velocity in x-direction 
                U1XXxum = (UX0(xnum,yn+1)-UX0(xnum,yn-1))/(2*xstp);                

%Central difference of 1st derivative of y-velcoity in y-direction 
                U1XYxum = (UX0(xnum,yn)-UX0(xnum-1,yn))/(ystp);                

%Central difference of 1st derivative of y-velocity in x-direction 
                U2YYxum = (UY0(xnum-2,yn)-2.0*UY0(xnum-

1,yn)+UY0(xnum,yn))/(ystp)^2; %Central difference of 2nd derivative of x-

velocity in x-direction 
                U2YXxum = (UY0(xnum,yn+1)-2.0*UY0(xnum,yn)+UY0(xnum,yn-

1))/(xstp)^2; %Central difference of 2nd derivative of x-velocity in y-

direction 
                U1YYxum = (UY0(xnum,yn)-UY0(xnum-1,yn))/(ystp);                

%Central difference of 1st derivative of x-velcoity in x-direction 
                U1YXxum = (UX0(xnum,yn+1)-UX0(xnum,yn-1))/(2*xstp);                

%Central difference of 1st derivative of x-velcoity in y-direction 
                UY(xnum,yn) = UY0(xnum,yn) + timestep*(D*(U2YYxum + U2YXxum) 

- UY0(xnum,yn)*U1YYxum - UX0(xnum,yn)*U1YXxum ); 
                UX(xnum,yn) = UX0(xnum,yn) + timestep*(D*(U2XXxum + U2XYxum) 

- UX0(xnum,yn)*U1XXxum - UY0(xnum,yn)*U1XYxum ); 
                V(xnum,yn) = sqrt(UX(xnum,yn)^2 + UY(xnum,yn)^2);               

% Calculate average wind speed affecting particle 

                 
                if  V(xnum,yn) >= 1.3 
                    Tw(xnum,yn) = 13.12 + 0.6215.*Ta(xnum,yn) - 

11.37.*V(xnum,yn).^0.16 + 0.3965.*Ta(xnum,yn).*V(xnum,yn).^0.16; 
                else 
                    Tw(xnum,yn) = Ta(xnum,yn); 
                end 
            end 
            % Left Bottom Boundary point and right Bottem boundary point 
            UX(xnum,ynum)=0; 
            UX(xnum,1) = 0; 
            U1XX1 = (UX0(xnum,2)-UX0(xnum,1))/xstp; 
            U1YY1 = U1XX1; 
            UY(xnum,1) = U1YY1*ystp+ UY(xnum-1,1); 
            U1XXnum =(UX0(xnum,ynum)-UX0(xnum,ynum-1))/xstp; 
            U1YYnum = U1XXnum; 
            UY(xnum,ynum) = U1YYnum*ystp+ UY(xnum-1,ynum); 
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            V(xnum,ynum) = sqrt(UX(xnum,ynum)^2 + UY(xnum,ynum)^2);               

% Calculate average wind speed affecting particle 

             
            if V(xnum,ynum) >= 1.3 
                Tw(xnum,ynum) = 13.12 + 0.6215.*Ta(xnum,ynum) - 

11.37.*V(xnum,ynum).^0.16 + 0.3965.*Ta(xnum,ynum).*V(xnum,ynum).^0.16; 
            else 
                Tw(xnum,ynum) = Ta(xnum,ynum); 
            end 
            V(xnum,1) = sqrt(UX(xnum,1)^2 + UY(xnum,1)^2);               % 

Calculate average wind speed affecting particle 

             
            if V(xnum,1) >= 1.3 
                Tw(xnum,1) = 13.12 + 0.6215.*Ta(xnum,1) - 

11.37.*V(xnum,1).^0.16 + 0.3965.*Ta(xnum,1).*V(xnum,1).^0.16; 
            else 
                Tw(xnum,1) = Ta(xnum,1); 
            end 
            %Pressure correction 
            AA = UY(:,1); 
            AB = UX(xnum,:); 
            rhs = 

reshape((diff([UX;AB])/xstp+diff([AA';UY'])'/ystp)*timestep,[],1); 
            p(perp) = (-Rp\(Rpt\rhs(perp))); 
            P = reshape(p,xnum,ynum); 
            P(1,1) = 3/2*P(1,1); 
            if iter >5000 
                for i = 1:35 
                    for j = 1:25 
                        if P(i,j)>P(36,1) 
                            P(i,j)=P(36,1); 
                        end 
                    end 
                end 
            end 
            AC = diff(P); 
            AD = diff(P')'; 
            AC(:,1)=0; 
            AC(:,end)=0; 
            AD(1,:) = 0; 
            UX(2:end,:) = UX(2:end,: )-AC/xstp; 
            UY(:,1:end-1) = UY(:,1:end-1)-AD; 
        end 
    end 
    if (mod(iter,300000)==0) 

         
        filename = [ '20180316' num2str(a) '.mat' ]; 
        save(filename); 
        a = a+1; 
    end 

     
end 
plot(xp,yp,'or','MarkerSize',5); grid on; xlim([0 200]);ylim([0 400]); 

drawnow; 
subplot(1,2,1),surf(UX), xlabel('X'),ylabel('Y'); 
subplot(1,2,2),surf(UY), xlabel('X'),ylabel('Y'); 
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x = xmin:xstp:xmax; 
y = ymin:ystp:ymax; 

  
set(gcf,'Renderer','zbuffer'); 

 

 

 

 

 

 

 

 

 

 

 


