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Abstract

RNAseq has become a preferred method of data generation, particularly when dealing

with non-model organisms or organisms for which no reference genome has yet been com-

pleted. Similarly, single nucleotide polymorphisms (SNPs) and their phenotypic effects have

become a favorite subject of study throughout the genetic community. While several tools

exist and are being created to call and analyze SNPs from RNAseq data, there are still some

gaps in the situations that the current technologies can address. The Snv Heuristic Identifi-

cation, Exploration, and Location Detector (SHIELD) is a fully automated pipeline tailored

to take mapped RNA-seq reads from studies with small sample sizes, find unique SNVs

between user-defined groups, and generate Circos plots for visualization of the data and

results. SHIELD’s use is demonstrated in an analysis of M. mulatta subjects infected with

malaria. SHIELD identified several high density SNV regions that confirm the importance

of genetic variations in innate immune functions.
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Chapter 1

Background and Introduction

1.1 SNPs, SNVs, and GWAS

Single nucleotide polymorphisms (SNPs) and variations (SNVs) occur roughly once every

300 base pairs in the human genome [1]. Both occur when a single base pair varies from

a reference genome, but are only considered SNPs when at least 1% of a given population

carry the deviation [2]. A point mutation may be considered a SNV even if it is actually

a SNP if there is no means of confirming whether or not the variation is sufficiently fixed

in a population, such as when analyzing mutations in a small cohort of subjects. All point

mutations in this study will be considered to be SNVs, since it is not possible to conclude

whether the mutations are sufficiently frequent or are simply post-translational modifications.

Regardless, SNPS and SNVs alike are worth study as many have been found to be responsible

for a wide variety of genetic diseases, largely due to contributions made by genome-wide

association studies (GWAS) [3].

A GWAS compares whole genomes of individuals who have been split into two groups,

those with and without the phenotype in question [4]. Pairwise comparison tests are then

done at each SNP in order to determine frequencies of SNPs that are significantly different

between the groups yet similar within them. These studies have been successful in identi-

fying many variations responsible for most simple genetic diseases (that is, relatively binary

diseases caused by a mutation at a single locus, such as cystic fibrosis and phenylketonuria),

and some SNPs with particularly large contributions towards more complex diseases and

traits (those controlled by many loci, such as height and Crohn’s disease) [3, 5, 6]. However,

the technique is not without its drawbacks.

1



Due to the nature of the study, a GWAS requires a particularly large sample size and

extremely conservative P-value threshold. Many of the more commonly used SNP testing

arrays contain up to 2 million SNPs, which results in an average GWAS consisting of up to 2

million comparison tests [7]. At the standard P-value threshold of 0.05, one is accepting a false

positive rate of up to 5%. That error rate would accumulate after 2 million tests, however,

resulting in 100,000 falsely associated SNPs. Thus the Bonferroni correction is generally

applied, wherein the P-value is divided by the number of tests being performed, which

results in the highly conservative threshold of 2 x 10-8 [8]. Unfortunately, this process also

requires particularly large sample sizes in order to confidently predict association, ranging

anywhere from a minimum of hundreds of subjects to thousands and more depending on the

SNP’s allele frequency and effect size [7].

1.2 RNA-Seq

RNA-Seq has become a preferred method of data generation, particularly when dealing with

non-model organisms or organisms for which no reference genome has yet been completed

[9]. The process is generally similar to whole genome sequencing (WGS); the molecule in

question is broken down and then reassembled, either against an existing reference genome

or using de novo assembly methods. However, RNA-Seq first converts RNA into a cDNA

library which is then sequenced and assembled, either de novo or against a reference, which

can either be a genome or transcriptome [9]. RNA-Seq is a cheaper and faster method for

gathering sequence data than whole genome sequencing at this time, while also being more

exact and detailed than microarrays. For example, since eukaryotic organisms undergo a

splicing step before translation, the resulting RNA-Seq data can reveal how various exons

are connected in a given transcript.

While many tools exist and are being created to call and analyze SNPs from whole

genome sequence and RNA-Seq data respectively, there are still some gaps in the situations

that the current technologies can address. Admittedly, the largest obstacle to RNA-Seq data
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usage appears to be the ability to accurately map the reads. That is, most of the emerging

technologies and programs are presented as ways to optimize the read mapping process,

whether that is with a reference genome, de novo, or simply for an underrepresented non-

model organism [10, 11, 12, 13, 14]. However, RNA-Seq data usage does not stop at mapping.

There is a clear gap in the technology for an automated analysis pipeline that goes beyond

the initial read mapping and can provide some results with even a small sample size. Some

attempts at pipelines for further RNA-seq analysis have already been made, such as the

one reported by De Wit et. al [15]. However, even the authors admit that the scripts they

provide are now outdated and difficult to use, as they are a collection of individual programs

that must be found and run in a particular order rather than a single cohesive pipeline.

Mercury [16] is an example of an elegantly automated analysis pipeline, although it focuses

on genomic data.

The SNV Heuristic Identification, Exploration, and Location Detector (SHIELD) is a

fully automated pipeline tailored to take mapped RNA-seq reads and return comparisons

between user-defined groups of SNVs and Circos plots for data and result visualization.

Single nucleotide variants are specified in the name rather than polymorphisms because the

process used by the program is appropriate for small samples; sizes at which one could

confidently claim SNV discovery, but not always necessarily SNP discovery. SHIELD takes

RNA-Seq reads that have already been mapped and runs them through a series of standard

steps to generate SNV files tailor-made for easier downstream analysis, and provides some

visual representation of the results. SHIELD can also make various group comparisons of

the resulting SNV files based on the user’s desired analysis. The tools used are standard,

straightforward, dependable, and easily updated as versions become available. SHIELD’s use

is demonstrated through the analyses using data described in section 1.4.
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1.3 Malaria

Malaria is a blood disease caused by a parasite, primarily Plasmodium falciparum and Plas-

modium vivax in humans [17]. The disease is known to cause a range of symptoms in its hosts,

such as fever, aches, fatigue, and severe anemia, the combination of which is frequently fatal;

there were approximately 445,000 deaths due to malaria out of the estimated 196 - 263 mil-

lion cases that occurred in 2016, most of which were children under the age of five [18]. The

disease is most prominent in tropical areas with high mosquito counts and limited resources,

particularly Africa and southeast Asia (Figure 1.1) [19, 20].

Figure 1.1: Map of Malaria Prevalence

All of the spots represent village level clustering surveys of malaria prevalence, with the
blue dots specifying P. vivax and the purple dots specifying P. falciparum. The map was
generated by the Malaria Atlas Project on April 3, 2018 [21]

.

The parasite matures from the gametocyte to the sporozoite stage from within mosquitoes

of the genus Anopheles over the course of a week [22]. Within the digestive tract of the

mosquito the male and female gemetocytes merge into zygotes, which then elongate into

ookinetes. These are larger motile forms which cross through the epithelium of the mosquito’s

tract forming an oocyst, which is a pocket of epithelial tissue full of ookinetes. The parasites

within the oocyst goes through several cycles of replication until they emerge as sporozoites
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and move into the mosquito’s salivary glands, at which point the mosquito can infect new

hosts. When the mosquito takes a blood meal, it first spits into the host a collection of

enzymes to thin the blood (which is the source of the itchy bump such bites produce). Thus

the sporozoites travel from the mosquito’s salivary glands into the host’s bloodstream and

begin the asexual stage of their life cycle [22].

The injected sporozoites immediately move to the host’s liver, where they remain for

a few days [22]. During the liver stage, the sporozoites replicate asexually into merozoites

from within the liver cells. Eventually the merozoites will rupture the liver cells and travel

into the blood stream where they invade red blood cells. The merozoites continue replicating

asexually in red blood cells until the cells lyse, spilling even more of the parasite into the

bloodstream. The newly introduced merozoites may either continue the cycle in new blood

cells or may differentiate back into male and female gametocytes. These gametocytes are

then taken up by a mosquito when it lands for a blood meal and the disease is carried to

a new host. The host does not display any symptoms of disease until the infection hits the

blood stage [22]. The cycle has been summarized in Figure 1.2.

While the parasite is in the liver stage, the host is asymptomatic. Disease symptoms do

not tend to appear until the parasite has reached the blood stage due to the body’s response

to the rupturing cells. Symptoms can range from what is clinically considered to be uncom-

plicated to complicated, depending on overall severity and organ damage. Uncomplicated

malaria can result in fevers, anemia, chills, and other flu-like symptoms, while complicated

malaria involves anemia severe enough to result in fatal organ failures [23]. For the pur-

poses of this analysis, all malaria cases will hereafter be referred to as either mild or severe,

depending on which set of symptoms the case falls under as outlined by the CDC (Table 1.1).

Generally, however, mild malaria tends to mimic influenza or other viral symptoms, while

severe malaria includes any case involving organ failure or abnormalities and can easily prove

fatal. Figure 1.3 summarizes some statistics collected on recent localized malaria cases and

demonstrates the correlation between severity and mortality [23, 24].
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Figure 1.2: Malaria Transmission Cycle

This summarizes the standard transmission cycle for the malaria parasite. It enters a host
via mosquito bite, replicates in the host’s liver and then moves to the bloodstream to invade
red blood cells. A new mosquito can then ingest some of the host’s infected blood, becoming
able to spread the parasite to its next host. Image credit: CDC, https://www.cdc.gov/
dpdx/malaria/index.html, retrieved April 6, 2018.
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Table 1.1: Mild vs. Severe Malaria Symptoms

Summary of the symptoms associated with mild (or uncomplicated) and severe malaria
according to the CDC. Information retrieved from the following url on July 5, 2018: https:
//www.cdc.gov/malaria/about/disease.html

Mild Severe
Fever Cerebral malaria (neurological issues, i.e. seizures and coma)
Chills Severe anemia
Sweats Hemoglobinuria (hemoglobin in the urine)
Headaches Acute respiratory distress syndrome (ARDS)
Nausea and vomiting Abnormalities in blood coagulation
Body aches Low blood pressure
General malaise Acute kidney failure
Weakness Hyperparasitemia (parasites in more than 5% red blood cells)
Enlarged spleen and/or liver Metabolic acidosis
Mild jaundice Hypoglycemia
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Figure 1.3: Basis for Malaria Interventions

The above is a summary of some statistics from reported malaria cases, representing symp-
toms, severity, and mortality from all three of the Plasmodium species known to infect
humans [23, 24].
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1.4 MaHPIC and HAMMER

The Malaria Host-Pathogen Interaction Center (MaHPIC), founded in 2012, is a collabora-

tive research effort involving investigators from Emory University, the Georgia Institute of

Technology, the Centers for Disease Control and Prevention, and the University of Georgia,

all funded by a combination of grants from the National Institute of Allergy and Infec-

tious Diseases (NIAID) and the Defense Advanced Research Project Agency (DARPA).

The research done in partnership with DARPA is part of DARPA’s Technologies for Host

Resilience program, specifically the Host Acute Models of Malaria to study Experimental

Resilience project (THoR’s HAMMER). The interdisciplinary group focuses on a systems

biology approach to understanding the interactions between Plasmodium parasites and their

hosts (primarily non-human primates) through a variety of carefully planned and executed

experiments, as well as the collection and analysis of the resulting ’omic’ datasets. The

collaborative effort follows a central unifying hypothesis that “Non-Human Primate host

interactions with Plasmodium pathogens as model systems will provide insights into mecha-

nisms as well as indicators for human malarial disease conditions” [25]. This project utilizes

transcriptomic data generated from a selection of these experiments for analysis, details of

which will be given in the next chapter. Particularly, the experiments involved infecting

Macaca mulatta hosts with either Plasmodium cynomolgi, Plasmodium coatneyii, or Plas-

modium knowlesi. The last pathogen, P. knowlesi, was chosen because it is known to infect

both humans and non-human primates [24]. Because P. vivax and P. falciparum require

human hosts, P. cynomolgi and P. coatneyi, respectively, were chosen as the most similar

species that also targets other primates [17].
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Chapter 2

Methods and Materials

2.1 The SHIELD Pipeline

While many SNP analysis protocols begin by mapping raw reads back to a genome, SHIELD

assumes that the user has access to the reference genome and reads that have already been

mapped. This direction was chosen because it is becoming more popular in collaborative

research to divide the workload, and a group responsible for analysis may not necessarily

be the same group responsible for initial sequencing. While this may not be the case for

all users, it is still frequently easier to add steps to the beginning of a protocol than it is

begin in the middle of one. Therefore, SHIELD begins by asking the user where to find the

reference genome and annotation, the mapped .bam files, the identifying tag for the species

in question (particularly necessary if the reads are a mix of host and pathogen RNA), and

where to set up output folders. The results of each step are stored in labeled folders so that

the user has the freedom to analyze their data from any stage in the process. The folders also

make it easier for the user to determine how far the program was able to run and continue

running without starting over if it is interrupted for any reason. Figure 2.1 summarizes the

flow of the steps taken and tools used by SHIELD.

The first few steps involve data processing in order to get the .bam files in a format

best read by the SNP caller. First, samtools [26] indexes the reference genome as is required

by future steps. SHIELD then sorts the contents of the files by chromosomal coordinate

via Picard SortSam [27], because different mapping algorithms may leave the files sorted

by other methods by default. Picard is used rather than samtools for this step because, in

some cases, a user may have a mixed set of reads, some sorted by chromosomal coordinate

10



Figure 2.1: SHIELD Pipeline Flowchart

This chart displays the steps that SHIELD takes and the tools used to carry out each step.
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and some by name. After a series of trials, Picard would reliably sort the given files by the

parameter specified, even if they have already technically been sorted, while others would

tend to return an error message and pause the program if asked to re-sort reads by the same

parameter. Once sorted, the contents of the files are then indexed via the samtools index

command. The sorted files have “ByLoc” added to the filenames and are stored in the first

output folder (“1 sort”) alongside the indexed reads which are given the file extension “.bai”.

The samtools view command is then invoked to convert the sorted reads to a non-binary

format while simultaneously removing any reads with a quality score less than 30. This

value was chosen based on the quality of the mapped reads, but more advanced users can

change the quality threshold based on their own data. The resulting files are stored in the

folder “2 quality” and have “Q30” added to the filenames. Afterwards, a simple linux grep

command is used to filter out any extraneous reads. This step is particularly necessary if

fillers are used to aid the sequencing process, or if the samples in question are a host-pathogen

combination. The user has the option to specify which read tag (that is, reads specific to the

host or the pathogen) they wish to keep. The output from this step has “Filter” added to

the end of the filename and is stored in the folder “3 filter.”

At this point, the reads are run through the samtools mpileup tool in order to generate

the format necessary for the actual SNP calling. The resulting .bcf files (given the “Raw.bcf”

filename addition) are stored in the folder “4 rawSNP.” The .bcf files are compressed and

encoded with information derived from the original reads and the reference genome com-

puting SNP likelihoods. Therefore, they are further run through the bcftools call command

which does the actual SNP calling and converts the file to a readable format. The output file

name is not changed, the extension is merely switched to “.vcf” and the files are stored in

the folder “5 calledSNP.” These .vcf files list all detected SNPs, their genomic coordinates,

what the normal and mutated alleles are, as well as some population genetics details for

each locus (note that these details may be biased depending on the data being used. For the

purpose of our test study, we disregarded that data due to an insufficient sample size). A
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program written in perl called SNPDat [28] is then invoked to compare the SNP files to the

reference genome and annotation files. The output, tagged “SNPdat.txt” and stored in the

folder “6 SNPdat,” lists whether each SNP is synonymous or nonsynonymous among other

details. More linux text editing commands are invoked to trim the files down to only the

nonsynonymous SNPs and the columns listing the chromosome name, genomic coordinate,

genomic feature (mRNA, exon, CDS, etc), gene name, gene transcript number, reported SNP

(as shown in the codon), and amino acid change, respectively. These text files simply have

“N” added to their names, and are also stored in folder 6. An extra step further reduces

the files to simply the chromosome names and genomic coordinates, adds “R” to the name

and stores the resulting files in the folder “7 Rinputs.” An R script then takes those files

and calculates the density of SNPs per 100,000 bp window of the genome. The resulting R

outputs have “Density” attached to the beginning of their names and are moved to the folder

“8 Routputs.” The density files are formated to be compatible with Circos plots for graphic

visualization [29]. A package of the necessary documents are included with SHIELD along

with simple instructions for generating the Circos plots for a given file. SHIELD can then

continue to run some analyses on the resulting files based on the user’s needs. Particularly,

the pipeline can make qualitative group comparisons identifying which SNVs are common

across all subjects, which SNVs are unique to two user defined groups, and how common

within the groups those unique SNVs may be. Table 2.1 summarizes the outputs and the

folders in which they can be found, and Figure 2.1 summarizes the steps and tools that

SHIELD uses.
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Table 2.1: SHIELD’s Output Folders and Filenames

Summary of the expected output after running SHIELD

Folder Name New Filename Description
$inputFiles test.bam The original mapped data that a user

starts with. $inputFiles is the variable
under which SHIELD stores the user
input for .bam file location.

1 sort
testByLoc.bam Mapped data sorted by chromosomal

coordinate.
testByLoc.bam.bai Sorted data is indexed.

2 quality testByLocQ30.bam Reads with quality scores less than 30
are removed.

3 filter testByLocQ30Filter.bam Only reads for the target organism are
kept.

4 rawSNP testByLocQ30FilterRaw.bcf Binary output from samtools mpileup.
5 calledSNP testByLocQ30FilterRaw.vcf Readable called SNPs.

6 SNPdat
testByLocQ30FilterRawSNPdat.txt Raw output from SNPdat listing

synonymous SNPs and amino acid
changes.

testByLocQ30FilterRawSNPdatN.txt Trimmed SNPdat output, listing only
the columns of interest.

7 Rinputs testByLocQ30FilterRawSNPdatNR.txt Only lists chromosome name and SNP
positions for density calculations.

8 Routputs DensitytestByLocQ30FilterRawSNPdatNR.txt Lists SNP density per 100,000 bp
window in a Circos-friendly format.
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2.2 The Experimental Data

Macaca mulatta (rhesus macaque) RNA-Seq reads that had previously been mapped back

to a reference genome, as provided by the MaHPIC Consortium, were the starting point

for this analysis. These reads represented transcripts from five different monkeys at peak

parasitemia from MaHPIC Experiment 04 (E04). The monkeys in question had been exposed

to identically cloned strains of either Plasmodium cynomolgi, after which various factors

such as temperature, red blood cell count, parasite count, and activity were all monitored

over the course of the infection (Figure 2.3) [30]. Two of the subjects were classified as

expressing mild malaria symptoms, while the other three were severe. Figure 2.2 shows

the summary of results published by the experimenters. Of particular note is the fact that

the parasitemia levels during the initial peak remained similar for both mild and severe

subjects. The only environmental difference between the two groups was the timing of the

anti-malarial treatment (the severe subjects required an earlier administration), and that

one was experiencing renal failure despite the treatments and required euthanasia.

Several more experiments were performed by MaHPIC and HAMMER using macaque

monkeys infected with either P. cynomolgi, P. knowelsi, or P. coatneyi. Table 2.2 shows a

summary of the various experiments and their designation, as either primary or secondary

infections, the precise strain of Plasmodium used, and the NCBI accession numbers for the

transcript data used (some transcripts were not yet assigned accession numbers at this time).

Experiments 23, 24, and 25 were studying infection and reinfection with the same monkeys,

and for the purposes of our analyses were counted as three different sets of monkeys. Exper-

iment 23 lists one extra subject than experiments 24 or 25 because one subject, RJn13, was

removed from the program after experiment 23 due to behavioral issues. Figure 2.3 summa-

rizes the general experimental procedures used in each of the experiments referenced here.

All experimental designs were approved by the Emory University Institutional Animal Care

and Use Committee (IACUC). Experiments 6 and 30 were further approved by the MRMC
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Figure 2.2: MaHPIC E04 Summary

Experimental summary of the five M. mulatta subjects used in Experiment 04. The black line
shows the log parasitemia count over time (determined via daily or twice daily finger pricks),
while the vertical yellow bars show the time points at which blood was drawn for sequencing.
The Rx symbols show when curative treatments were administered to the subjects. From
this, subjects RIc14 and RSb14 were considered to have mild malaria, while the other three
were considered severe cases due to the necessity for extra treatments or euthanasia.

Office of Research Protection Animal Care and Use Review Office (ACURO). Information

about these experiments was summarized from their PlasmoDB entries.

The different treatment procedures require further clarification. Subcurative treatments

were always administered via artemether, and in just enough of a dosage to prevent fatal

complications without completely clearing the parasite from the bloodstream. Curative treat-
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ments in the form of higher artemether dosages do clear the parasite from the blood, but

not the liver, allowing relapses. Curative treatments via primaquine and chloroquine com-

pletely clear the parasite from both the blood and liver. Only one subject (REd16) in E30

received a subcurative treatment with artemether to avoid clinical complications, but no

other treatments were administered. The subjects in E03 received artemether in subcurative

doses during peak parasitemia and additionally as needed, then in curative doses at the

end of the experiment. Subjects in E04 and E23 had the same treatment protocol; both

were given subcurative treatments during the initial parasitemia peak, followed by curative

artemether treatments to clear the blood after the initial infection in order to detect relapses,

then curative treatments with primaquine and chloroquine at the end of the experiment. E25

followed the same protocol, but without the curative artemether treatments. Because E24

was designed to study potential relapses in reinfected individuals, only the final curative

treatment of primaquine and chloroquine was necessary.
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Figure 2.3: Summarization of the MaHPIC Experimental Procedure

The above flowchart summarizes the key similarities and differences in the procedures for the
experiments used in this analysis. The central flow represents the core steps taken in each
experiment: selection and inoculation of male M. mulatta subjects, a number of days with
infection, some form of treatment, and data collection. (*) treatment with artemether, either
curative or subcurative. (+) final curative treatment with primaquine and chloroquine.
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Table 2.2: Total Experimental Summary

Summarization of the MaHPIC experiments and subjects used in this study. The first row
for each experiment lists the infection type (either primary or secondary) and the specific
Plasmodium species and strain used. The designation used for each subject is provided
alongside the NCBI accession number for the transcript data, if it is currently publicly
available. This study used data from acute parasitemia time points.

E03

Primary P. coatneyi, Hackeri strain
RCs13 GSM2759334
RTi13 GSM2759335
RUn13 GSM2759336
RWr13 GSM2759337
RZe13 GSM2759338

E04

Primary P. cynomolgi, B/M strain
RIc14 GSM2772567
RSb14 GSM2772573
RMe14 GSM2772577
RFa14 GSM2772584
RFv13 GSM2772587

E06

Primary P. knowlesi, Malayan strain
RUf16 not yet available
RIh16 not yet available
RTe16 not yet available
RCl15 not yet available

E23

Primary P. cynomolgi, B/M strain
RAd14 GSM2792852
RBg14 GSM2792858
RIb13 GSM2792863
RJn13 GSM2792868
ROc14 GSM2792875
ROh14 GSM2792882

E24

Secondary P. cynomolgi, B/M strain
RAd14 GSM2789835
RIb13 GSM2789836
ROh14 GSM2789837
ROc14 GSM2789838
RBg14 GSM2789839

E25

Secondary P. cynomolgi, Ceylonensis strain
ROh14 GSM2795511
RAd14 GSM2795512
RIb13 GSM2795513
ROc14 GSM2795514
RBg14 GSM2795515

E30
Primary P. knowlesi, Malayan strain
RKy15 not yet available
REd16 not yet available
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Chapter 3

Results

This chapter details the results found from the analyses performed, which are split into three

major sections. Section 3.1 involves SNVs found to be common across all subjects. Variants

that were found to be unique to either the mild or severe subjects are shown in section

3.2. Finally, section 3.3 provides a summary of SNV results from each of the subjects for

comparison to the other analyses results.

3.1 Common SNVs

The nonsynonymous SNVs were collected and compared by experiment in order to identify

genes for which all of the monkeys had some reported SNV. Thus, genes that had at least one

SNV for all monkeys within each experiment were identified (3.1, 3.2, 3.3, 3.4, 3.5). Those

intersections were then compared to find the genes that were common across all monkeys

(3.6).

For Figure 3.6, it should be noted that analyses were run on 32 monkeys across seven

experiments. However, venn diagrams lose legibility with more than five subjects. Therefore,

for the sake of visualizing the process, a diagram is provided below showing the intersection

of genes from E03, E04, E06, E23, and E30, omitting E24 and E25. The image shows 1,776

common genes, while the actual intersection contains 1,657 genes. Figure 3.7 shows the

density of SNVs from within these common genes, calculated per 100,000 bp, to give a quick

look at their distribution across the genome. Already it is clear that the end of chromosome

19, which corresponds with many immune response-related genes in particular, is the region

with the highest SNV density.
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Figure 3.1: E03 Gene Intersection

The numbers indicate the number of genes with at least one nonsynonymous SNV reported
within it. The diagram shows the various intersections of said genes for each monkey, with
the central section showing that all five subjects reported at least one SNV in the same
3,722 genes. Generated on May 28, 2018 via the online tool developed by Ghent University,
available at http://bioinformatics.psb.ugent.be/webtools/Venn/.

Gene set enrichment analysis (GSEA) of the 1,657 common genes against the Broad

Institute’s Molecular Signatures Database (MSigDB) curated gene sets revealed that they

were significantly associated with immune system sets [31, 32, 33]. A similar analysis of

the common genes against the MSigDB immune system sets revealed that many of the

significantly enriched genes were involved in anti-viral responses. The top ten results from

both enrichments are listed in Table 3.1, with the blue italicized entries highlighting the

relevant gene sets. Other projects in this lab performed a similar analysis on genes that

were significantly up-regulated for all primary infection (that is, excluding E24 and E25) M.

mulatta subjects and found comparable results (Table 3.2). A comparison between the two

gene lists revealed that all M. mulatta subjects were both significantly up-regulated and had
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Figure 3.2: E04 Gene Intersection

The numbers indicate the number of genes with at least one nonsynonymous SNV reported
within it. The diagram shows the various intersections of said genes for each monkey, with
the central section showing that all five subjects reported at least one SNV in the same
3,287 genes. Generated on May 28, 2018 via the online tool developed by Ghent University,
available at http://bioinformatics.psb.ugent.be/webtools/Venn/.

SNVs in the same 28 genes (Figure 3.8). Figure 3.9 shows the 28 identified genes and their

expression levels in each of the primary infection subjects. Contrary to expectations, not all

of the identified genes are located in regions of high SNV density (Table 3.3).
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Figure 3.3: E06 Gene Intersection

The numbers indicate the number of genes with at least one nonsynonymous SNV reported
within it. The diagram shows the various intersections of said genes for each monkey, with
the central section showing that all five subjects reported at least one SNV in the same
4,310 genes. Generated on May 28, 2018 via the online tool developed by Ghent University,
available at http://bioinformatics.psb.ugent.be/webtools/Venn/.
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Figure 3.4: E23 Gene Intersection

The numbers indicate the number of genes with at least one nonsynonymous SNV reported
within it. The diagram shows the various intersections of said genes for each monkey, with
the central section showing that all five subjects reported at least one SNV in the same
2,702 genes. Generated on May 28, 2018 via the online tool developed by Ghent University,
available at http://bioinformatics.psb.ugent.be/webtools/Venn/.

Figure 3.5: E30 Gene Intersection

The numbers indicate the number of genes with at least one nonsynonymous SNV reported
within it. The diagram shows the various intersections of said genes for each monkey, with
the central section showing that all five subjects reported at least one SNV in the same
5,766 genes. Generated on May 28, 2018 via the online tool developed by Ghent University,
available at http://bioinformatics.psb.ugent.be/webtools/Venn/.
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Figure 3.6: Gene Intersection for Five Experiments

The intersections mentioned above can be seen compared here, showing 1,776 genes common
across all monkeys in these five experiments. This diagram omits results from E24 and
E25, even though they were included in all analyses, for ease of visualization. Generated
on May 28, 2018 via the online tool developed by Ghent University, available at http:

//bioinformatics.psb.ugent.be/webtools/Venn/.
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Figure 3.7: Genome Distribution of SNV Density from Genes Common Across All
Experiments

The density of SNVs per 100,000 bp window when only considering SNVs in the 1,657
previously reported to be common across all monkeys. The red innermost ring represents
densities between 0 and 0.01, the middle gray ring shows densities between 0.011 and 0.099,
and the green outermost ring displays densities of 0.1 and higher.
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Figure 3.8: Intersection of Up-Regulated Genes and Genes With Common SNVs

This displays the intersection between the genes for which every subject reported at
least one SNV and the genes that were reported to be significantly up-regulated. Gen-
erated on May 28, 2018 via the online tool developed by Ghent University, available at
http://bioinformatics.psb.ugent.be/webtools/Venn/.

Figure 3.9: Absolute Expression Fold-Change in 28 Genes

A separate analysis found a list of 151 genes with significantly up-regulated expression from
all primary infection M. mulatta subjects. This heatmap shows the absolute expression levels
for the 28 genes for which all subjects also reported at least one SNV.
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Table 3.1: Gene Set Enrichment Analysis for Genes with Common SNVs

The top ten GSEA results for genes with common SNVs across experiments when compared
to both the curated gene sets and the immune system sets. Sets of interest, immune system
in the first section and anti-viral in the second, are shown in blue and italicized.

Enrichment of Genes with Common SNVs

Curated Gene Sets
REACTOME IMMUNE SYSTEM
REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM
REACTOME ADAPTIVE IMMUNE SYSTEM
REACTOME INTERFERON SIGNALING
REACTOME HEMOSTASIS
REACTOME METABOLISM OF LIPIDS AND LIPOPROTEINS
KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY
KEGG AMINOACYLE TRNA BIOSYNTHESIS
KEGG ENDOCYTOSIS
REACTOME TRNA AMINOACYLATION

Immunologic Signatures
GSE369 PRE VS POST IL6 INJECTION SOCS3 KO LIVER
GSE22886 DAY0 VS DAY7 MONOCYTE IN CULTURE
GSE22886 CD8 TCELL VS BCELL NAIVE
GSE24671 CTRL VS SENDAI VIRUS INFECTED MOUSE SPLENOCYTES
GSE29618 PDC VS MDC DAY7 FLU VACCINE
GSE10325 LUPUS BCELL VS LUPUS MYELOID
GSE22886 NAIVE BCELL VS MONOCYTE
GSE3982 NEUTROPHIL VS CENT MEMORY CD4 TCELL
GSE7548 NAIVE VS DAY7 PCC IMMUNIZATION CD4 TCELL
GSE10325 LUPUS CD4 TCELL VS LUPUS MYELOID
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Table 3.2: Gene Set Enrichment Analysis for Commonly Up-Regulated Genes

The top GSEA results for genes that were commonly significantly up-regulated when com-
pared to both the curated gene sets (top) and the immune system sets (bottom). Sets of
interest, immune system in the first section and anti-viral in the second, are shown in blue
and italicized.

Enrichment of Genes Significantly Up-Regulated

Curated Gene Sets
REACTOME INTERFERON SIGNALING
REACTOME CYTOKINE SIGNALING IN IMMUNE SYSTEM
REACTOME IMMUNE SYSTEM
REACTOME INTERFERON ALPHA BETA SIGNALING
REACTOME INTERFERON GAMMA SIGNALING
PID IL4 2PATHWAY
REACTOME ANTIVIRAL MECHANISM BY IFN STIMULATED GENES
NABA MATRISOME ASSOCIATED
NABA MATRISOME
REACTOME INNATE IMMUNE SYSTEM
REACTOME RIG I MDA5 MEDIATED INDUCTION OF IFN ALPHA BETA PATHWAY

Immunologic Signatures
GSE13485 DAY3 VS DAY7 YF17D VACCINE PBMC DN
GSE13485 CTRL VS DAY7 YF17D VACCINE PBMC DN
GSE13485 DAY1 VS DAY7 YF17D VACCINE PBMC DN
GSE13485 CTRL VS DAY3 YF17D VACCINE PBMC DN
GSE42724 NAIVE BCELL VS PLASMABLAST UP
GSE14000 UNSTIM VS 4H LPS DC DN
GSE14000 UNSTIM VS 4H LPS DC TRANSLATED RNA DN
GSE18791 UNSTIM VS NEWCASTLE VIRUS DC 10H DN
GSE18791 UNSTIM VS NEWCASTLE VIRUS DC 6H DN
GSE13485 PRE VS POST YF17D VACCINATION PBMC DN
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Table 3.3: Locations for the Genes of Interest

Below is a list of the 28 genes found in the intersection of the two analyses (Common SNVs
and significant up-regulation of expression), and the chromosomes where they are found.
When compared with Figure 3.7, some genes appear in regions of high SNV density, as
would be expected, but several do not.

Gene Chromosome Gene Chromosome
AGRN Chr01 AHNAK2 Chr14
BPI Chr15 DDX60 Chr04
DDX60L Chr04 DTX3L Chr03
DYSF Chr02a FBXO6 Chr01
FCGR1B Chr01 FHAD1 Chr01
FPR2 Chr19 GBP1 Chr01
GBP3 Chr01 GBP6 Chr01
IFI44 Chr01 IFIT1B Chr10
IFIT2 Chr10 IFIT3 Chr10
IL1RN Chr02a MX1 Chr07
OAS2 Chr12 OASL Chr12
PARP14 Chr03 PLA2G4C Chr19
PSTPIP2 Chr18 RHBDF2 Chr17
SLC2A3 Chr12 WARS Chr14
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3.2 Mild VS Severe SNVs

The subjects were divided into two groups based on whether they exhibited mild or severe

symptoms in the course of their experiments. Results from E24 and E25 were omitted from

this particular analysis as they were performed with the same subjects as E23. Coinciden-

tally, there were then 11 mild and 11 severe subjects. Table 3.4 lists how each subject was

categorized. A list was compiled of all SNVs expressed by the mild group and compared to

a similar list from the severe group, and the SNVs unique to each group were identified.

The genes containing the unique SNVs were identified, and GSEA was performed on both

sets against the MSigDB curated gene sets. Unlike the previous analysis, the results from

this initial enrichment did not reveal an obvious subset to focus on. Also, contrary to the

initial expectation, there was no clear separation between the mild and severe enrichment

results; both displayed enrichment in the same types of gene sets, namely those involved in

the matrisome and transmembrane proteins. Table 3.5 provides a summary of the GSEA

results for genes uniquely mutated between the mild and severe subjects.

Table 3.4: Mild and Severe Subjects

The subjects below come from E03, E04, E06, E23, and E30. Their categorization was
determined by their clinical symptoms.

Mild Severe
RAd14 RCl15
RBg14 REd16
RCs13 RFa14
RIb13 RFv13
RIc14 RIh16
RJn13 RKy15
ROc14 RMe14
ROh14 RTe16
RSb14 RTi13
RWr13 RUf16
RZe13 RUn13

Although GSEA revealed little difference between the mild and severe groups, SNV den-

sity proved to be quite different. The density of the SNVs unique to each group was calculated
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Table 3.5: GSEA on Genes with SNVs Unique to Mild or Severe Subjects

GSEA against MSigDB’s curated gene sets revealed little difference between the mild (top)
and severe (bottom) groups’ uniquely mutated genes. Both display enrichment for the same
gene sets, namely those involving the matrisome and other transmembrane proteins.

MILD
NABA MATRISOME
REACTOME GPCR LIGAND BINDING
NABA MATRISOME ASSOCIATED
KEGG SYSTEMIC LUPUS ERYTHEMATOSUS
REACTOME SIGNALING BY GPCR
REACTOME GPCR DOWNSTREAM SIGNALING
REACTOME RNA POL I PROMOTER OPENING
PID RB 1PATHWAY
NABA SECRETED FACTORS
KEGG PRION DISEASES

SEVERE
NABA MATRISOME
NABA MATRISOME ASSOCIATED
NABA SECRETED FACTORS
REACTOME GPCR LIGAND BINDING
KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION
REACTOME SIGNALING BY GPCR
REACTOME CLASS A1 RHODOPSIN LIKE RECEPTORS
KEGG RIBOSOME
REACTOME METABOLISM OF PROTEINS
REACTOME PEPTIDE LIGAND BINDING RECEPTORS

and displayed on Circos plots to show their distributions across the genome (Figures 3.10 and

3.11). While both groups appear to contain SNVs in genes involved in the same processes,

the severe group contains far more SNVs within more genes than the mild group.
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Figure 3.10: Density of SNVs Unique to Mild Subjects

This Circos plot shows the distribution of SNV density across the genome for the SNVs
unique to the 11 mild subjects. Density was calculated per 100,000 bp. The red innermost
ring represents densities between 0.00001 and 0.0009, the middle gray ring shows densities
between 0.001 and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.11: Density of SNVs Unique to Severe Subjects

This Circos plot shows the distribution of SNV density across the genome for the SNVs
unique to the 11 severe subjects. Density was calculated per 100,000 bp. The red innermost
ring represents densities between 0.00001 and 0.0009, the middle gray ring shows densities
between 0.001 and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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3.3 The Individual Subjects

The following series of Circos plots show the general SNV densities for each of the individuals

used in this project. These densities were calculated with all of the nonsynonymous SNVs

reported for a given individual without filtering for shared or unique results. These plots

are provided for completeness and for comparison with the results provided above. While

each individual has a slightly different SNV density distribution, they all share a peak at

chromosome 19, which validates the peak seen when comparing the common SNVs (Figure

3.7).

3.3.1 Experiment 03

The following plots (Figures 3.12, 3.13, 3.14, 3.15, and 3.16) represent whole genome SNV

densities per 100,000 base pairs in each of the five M. mulatta subjects infected with P.

coatneyi malaria.
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Figure 3.12: Subject RCs13, peak parasitemia timepoint, E03

This subject was mild. The subject displays particularly high SNV densities at chromosomes
10, 19, and X. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.13: Subject RTi13, peak parasitemia timepoint, E03

This subject was severe. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.14: Subject RUn13, peak parasitemia timepoint, E03

This subject was severe. The subject displays particularly high SNV densities at chromosomes
10 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.15: Subject RWr13, peak parasitemia timepoint E03

This subject was mild. The subject displays particularly high SNV densities at chromosomes
10 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.16: Subject RZe13, peak parasitemia timepoint, E03

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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3.3.2 Experiment 04

The following plots (Figures 3.17, 3.18, 3.19, 3.20, and 3.21) represent whole genome SNV

densities per 100,000 base pairs in each of the five M. mulatta subjects infected with P.

cynomolgi malaria.

41



Figure 3.17: Subject RFa14, peak parasitemia timepoint, E04

This subject was severe. The subject displays particularly high SNV densities at chromosomes
8 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the middle
gray ring shows densities between 0.001 and 0.01, and the green outermost ring displays
densities of 0.011 and higher.

42



Figure 3.18: Subject RFv13, peak parasitemia timepoint, E04

This subject was severe. The subject displays particularly high SNV densities only at chro-
mosome 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.19: Subject RIc14, peak parasitemia timepoint, E04

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8, 10, 19, and X. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.20: Subject RMe14, peak parasitemia timepoint, E04

This subject was severe. The subject displays particularly high SNV densities at chromosomes
8, 10, 19, and X. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.21: Subject RSb14, peak parasitemia timepoint, E04

This subject was mild. The subject displays particularly high SNV densities at chromosomes
2a, 8, 10, 19, and X. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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3.3.3 Experiment 06

The following plots (Figures 3.22, 3.23, 3.24, 3.25, and 3.21) represent whole genome SNV

densities per 100,000 base pairs in each of the five M. mulatta subjects infected with P.

knowlesi malaria.
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Figure 3.22: Subject RCl15, peak parasitemia timepoint, E06

This subject was severe. The subject displays particularly high SNV densities at chromosomes
2a, 8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.23: Subject RIh16, peak parasitemia timepoint, E06

This subject was severe. The subject displays particularly high SNV densities at chromosomes
10, 19, and X. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.

49



Figure 3.24: Subject RTe16, peak parasitemia timepoint, E06

This subject was severe. The subject displays particularly high SNV densities at chromosomes
10 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.25: Subject RUf16, peak parasitemia timepoint, E06

This subject was severe. The subject displays particularly high SNV densities at chromosomes
10 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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3.3.4 Experiment 23

The following plots (Figures 3.26, 3.27, 3.28, 3.29, 3.30, and 3.31) represent whole genome

SNV densities per 100,000 base pairs in each of the six M. mulatta subjects infected with P.

cynomolgi malaria.
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Figure 3.26: Subject RAd14, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.27: Subject RBg14, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.28: Subject RIb13, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities only at chro-
mosome 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.29: Subject RJn13, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8 and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the middle
gray ring shows densities between 0.001 and 0.01, and the green outermost ring displays
densities of 0.011 and higher.
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Figure 3.30: Subject ROc14, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities only at chro-
mosome 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.31: Subject ROh14, peak parasitemia timepoint, E23

This subject was mild. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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3.3.5 Experiment 24

The following plots (Figures 3.32, 3.33, 3.34, 3.35, and 3.36) represent whole genome SNV

densities per 100,000 base pairs in each of the five M. mulatta subjects reinfected with P.

cynomolgi malaria.
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Figure 3.32: Subject RAd14, peak parasitemia timepoint, E24

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.33: Subject RBg14, peak parasitemia timepoint, E24

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.34: Subject RIb13, peak parasitemia timepoint, E24

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 10, 19, and X. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.35: Subject ROc14, peak parasitemia timepoint, E24

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 10, 19, and X. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.36: Subject ROh14, peak parasitemia timepoint, E24

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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3.3.6 Experiment 25

The following plots (Figures 3.37, 3.38, 3.39, 3.40, and 3.41) represent whole genome SNV

densities per 100,000 base pairs in each of the five M. mulatta subjects infected with a

different strain of P. cynomolgi malaria.
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Figure 3.37: Subject RAd14, peak parasitemia timepoint, E25

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, 19, and X. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.38: Subject RBg14, peak parasitemia timepoint, E25

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.39: Subject RIb13, peak parasitemia timepoint, E25

Data from this experiment was not used in the severity analysis. The subject displays par-
ticularly high SNV densities at chromosomes 10 and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.40: Subject ROc14, peak parasitemia timepoint, E25

Data from this experiment was not used in the severity analysis. The subject displays par-
ticularly high SNV densities at chromosomes 10 and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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Figure 3.41: Subject ROh14, peak parasitemia timepoint, E25

Data from this experiment was not used in the severity analysis. The subject displays partic-
ularly high SNV densities at chromosomes 8, 10, and 19. The red innermost ring represents
densities between 0.00001 and 0.0009, the middle gray ring shows densities between 0.001
and 0.01, and the green outermost ring displays densities of 0.011 and higher.
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3.3.7 Experiment 30

The following plots (Figures 3.42 and 3.43) represent whole genome SNV densities per

100,000 base pairs in both of the M. mulatta subjects infected with P. knowlesi malaria.

Figure 3.42: Subject REd16, peak parasitemia timepoint, E30

This subject was severe. The subject displays particularly high SNV densities at chromosomes
8, 10, 17, and 19. The red innermost ring represents densities between 0.00001 and 0.0009,
the middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Figure 3.43: Subject RKy15, peak parasitemia timepoint, E30

This subject was severe. The subject displays particularly high SNV densities at chromosomes
8, 10, and 19. The red innermost ring represents densities between 0.00001 and 0.0009, the
middle gray ring shows densities between 0.001 and 0.01, and the green outermost ring
displays densities of 0.011 and higher.
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Chapter 4

Discussion and Implications

4.1 Caveats

No system is perfect, a rule from which this project is not exempt. Perhaps the most apparent

caveat is the limited sample size as compared with the statistical power needed to make

claims of significance. As it currently exists, SHIELD cannot identify statistically significant

SNVs or SNPs. The program is specifically designed around exploratory analysis for studies

with small sample sizes. Some amount of further analysis is required of the user, though

the output is designed to be as versatile and malleable as possible to accommodate many

possible routes of examination.

Another caveat is the reference genome that was used in this analysis. As mentioned

before, this project began with RNA-Seq reads that had already been mapped back to a

reference genome. In order to minimize unnecessary variables, all analyses were done against

the same reference. This reference was sequenced internally, and is not yet publicly available.

Furthermore, this genome is different enough from the current NCBI M. mulatta reference

genome to make coordinate-based comparisons with databases impossible (i.e., there is cur-

rently no way to compare the SNVs with SNP databases to see if any of them have already

been reported). However, this is an issue isolated to this analysis and unrelated to SHIELD’s

performance.

4.2 Common SNVs

The 1,657 genes for which every monkey in all seven experiments (E03, E04, E06, E23, E24,

E25, and E30) commonly reported at least one SNV were identified. The density distribution
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of SNVs from within those genes was plotted and revealed chromosomes 1, 2a, 6, 10, 19, and X

as areas with particularly high densities (Figure 3.7). Out of that list, 28 genes of interest were

found to also be significantly up-regulated during the peak parasitemia time point. While

many of those 28 genes are in highly dense SNV regions, several are not (Table 3.3). For

example, the genes BPI and PARP14 are located on chromosomes 15 and 3, respectively, both

of which appear to have particularly low SNV densities by comparison. This could support

the idea that such genes and the reported SNVs within them are worth closer examination.

These genes (as well as the genes determined to be significantly upregulated) were also

identified via GSEA to be significantly involved with the immune system (Tables 3.1 and

3.2). However, it is known that genes involved in immunity, particularly innate immunity,

are under higher selective pressure than other genomic regions, which would in turn result in

higher shared SNV densities [34, 35]. Therefore, the fact that SNPs are expected and found

in such genes suggests the validity of results from this analysis.

4.3 Mild vs Severe

As shown in Figures 3.10 and 3.11, there is a clear difference between the amount of SNVs

uniquely expressed in the mild and severe subject groups. However, it is unclear why at this

time. Because the two groups show different SNVs in different genes in the same genesets

(Table 3.5), this suggests that the pathways are being regulated differently, which could result

in the difference in clinical responses. If mutations occur in regulatory genes, particularly

in receptors, the immune system could enter a feedback loop, resulting in an over reactive

immune response. Such a response tends to be the source of clinically severe symptoms;

the host’s system begins attacking healthy red blood cells as well as infected ones with no

apparent regulatory feedback to end the response. The fact that the severe group returned so

many more SNVs in genes involved in such regulatory pathways could suggest that the par-

asite itself is causing some post-translational changes in the host. However, further targeted

testing would need to be done in order to confirm or deny this.
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Cytokine-cytokine receptor interactions are particularly important to response severity,

and are one gene set that was uniquely enriched in the severe group. From within that set,

SNVs in genes such as IL6, IL10, and IFNA were also unique to the severe group. These

genes code for interleukins and interferon, respectively, and are influential in regulating

inflammatory and other innate immune reactions. In fact, mutations in IL6 and other type

I interferons have recently been connected to malaria severity in humans [36]. Figure 4.1

depicts the role of various type I interferons in a case of severe malaria, including IL6,

IL10, and IFNA [36]. This not only validates findings from this analysis, but also serves as

further justification for the use of non-human primates, particularly M. mulatta, as a model

organism.

Furthermore, similar analyses can be done on the parasite itself to see if there is any

correlation between the parasite genome and the clinical outcomes of the subjects. Perhaps

there is some selection occurring as the parasite replicates within a host in response to the

host’s immune reaction. Already there is evidence to support the idea that the parasite

responds quickly to changes in the host’s environmental conditions [37]. Following any of

these lines of inquiry could provide some invaluable insights to host-pathogen relationships

and disease severity for diseases beyond malaria.

4.4 Future Directions With SHIELD

SHIELD was designed with the intent to distribute. Thus, the pipeline could be encapsulated

and published as a web service in the near future for use by other research groups. Any study

with RNA-Seq reads, a reference genome, and a genome annotation can use SHIELD to

generate useful SNV files for further study, and the described analyses can be easily repeated.

This presents an opportunity to inquire about pan-pathogenic commonalities among genes

identified as more likely to be affected by variations. In the future, SHIELD could include

additional methods of analysis such as the dynamic network biomarker (DNB) method,

which was designed to detect early warning signals of primary tumor cell metastasis [38].
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The model behind this method could theoretically be applied to host-pathogen systems as

well to determine the early warning signs of a severe immune reaction, or perhaps even

predict susceptibility.
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Figure 4.1: Role of Type I Interferons in Malarial Infections

Depiction of the various type I interferon responses during a severe malarial response. Image
taken from Sebina et al [36]. Examining the named interferons reveals associations between
specific interferons and response severity. Among those listed are IL6, IL10, and IFNA, which
were mentioned above.
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