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Abstract

Organic farmers, wholesalers, and retailers need price forecasts. A methodology and

protocol to select the best performing method from several time and frequency domain

candidates is suggested. Seasonal autoregression, the additive Holt-Winters exponential

smoothing, and spectral decomposition are considered. The forecasting methods are eval-

uated on the basis of an aggregate accuracy measure and several out-of-sample predictive

ability tests. The seasonal autoregression is found to be broadly the best performing method.

The Holt-Winters method provides better forecasts in the short run; spectral decomposition

is preferable for more distant periods. The price-generating process is found to have a

strong autoregressive component and a clear but simple seasonal pattern. The role of better

price forecasts for the agents who deal in less common organic produce is highlighted. A

confirmation for the claim that the organic produce industry needs better farmgate price

forecasts to grow is provided. Contracting and diversification are suggested.
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Chapter 1

Introduction and Problem Statement

1.1 Overview of Organic Food Markets

The last years have seen a significantly increased interest in organic food, or food grown

using the principles and techniques that predated the introduction of agro-chemicals and

modern intensive farming techniques. In October 2002, the U.S. Department of Agriculture

fully implemented national organic standards which lay down in detail how food must be

produced, processed, and packaged to qualify for the description “organic.” The standards

also specify detailed criteria for the inspection and subsequent certification of food producers

and processors.

The National Organic Standards Board, a government-appointed panel that advises the

National Organic Program, defines the organic food as a product, which

“is produced by farmers who emphasize the use of renewable resources and the conserva-

tion of soil and water to enhance environmental quality for future generations. Organic

meat, poultry, eggs, and dairy products come from animals that are given no antibi-

otics or growth hormones. Organic food is produced without using most conventional

pesticides; fertilizers made with synthetic ingredients or sewage sludge; bioengineering;

or ionizing radiation.”

The level of average annual consumer food expenditures in the U.S. is stable. Since 1998,

it has been accounting for 13–14 percent of the total consumer expenditures. (DOL 2004).

Figure 1.1 shows the percentage of organic foods in total consumer sales. The percentage has

been growing steadily, reaching 1.9 percent in 2003.

1
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Figure 1.1: Percentage of Organic Foods in U.S. Total Foods Consumer Sales
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According to the National Marketing Institute’s 2003 Health and Wellness Trends

Database, 38.2 percent of the general population purchased organic foods in 2003. Nearly 32

percent of the surveyed said they would increase purchases of organic products (Haumann

2004). The Whole Foods Marketr Organic Foods Trend Tracker survey conducted in 2004

found that 27 percent of the Americans were eating more organic products than they did

one year ago. The survey of 1,000 U.S. consumers showed that 54 percent have tried organic

foods and beverages, with nearly 1 in 10 using organic products regularly or several times

a week. Reasons cited for buying organic foods were the following: 58 percent think that it

is better for the environment, 54 percent believe that it is better for human health, and 57

percent point out that it supports small and local farmers. In addition, 32 percent believe

that organic products taste better while 42 percent believe that organic foods are of better

quality (WFM 2004).

Packaged and precut organic vegetables and fruit are occupying more shelf space in

the produce department as they continue to gain acceptance by consumers. By 2003, fresh

produce had become the most popular category among consumers, accounting for about 42

percent of organic food sales (OTA 2004). Demand patterns are quite diverse. According to

the Environmental Protection Agency, the intake of cucumbers, carrots, apples, strawberries

and other berries does regularly increase by at least 100 percent of its lowest value in the

peak season. The intake of corn, tomatoes, broccoli, onions, and potatoes is more or less

stable all year round (EPA 1996).

As consumers become interested in organically-grown foods, organic farming in the U.S.

continues to expand at a rapid pace. Almost 950,000 hectares are managed organically,

which amounts to a 0.23 percent share of the total agricultural area. The U.S. is the fourth

country in the world with respect to certified organic farmland acreage, following Australia,

Argentina, and Italy. The number of certified organic growers has increased by 38 percent

since 1997. In 2001, there were 6,949 organic farms in the country (Yussefi 2004).
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Farmers nation-wide allocated 2.3 million acres of cropland and pasture to organic pro-

duction systems in 2001, which is 74 percent more than in 1997. Over 1.3 million acres were

used for growing crops versus over 1 million acres that were used for pasture and range-

land. The percentage of cropland acres versus pasture in 1997 was 63 percent to 37 percent,

respectively. Colorado, California, North Dakota, Montana, Minnesota, Wisconsin, and Iowa

have the largest share of organic cropland. Colorado, Texas, and Montana have the largest

expanses of organic pasture and rangeland.

Organic grain crop acreage accounted for the largest 19.4 percent of total organic acreage

in 2001. Organic fruit and vegetable acreage constituted 2.4 and 3.1 percent of the total

organic acreage, respectively.

According to the Fourth National Organic Farmer’s Survey, conducted by the Organic

Farming Research Foundation (OFRF) in 2001, organic production grows constantly in the

U.S. and little by little substitutes for conventional food production. As Figure 1.2 indicates,

51 percent of organic producers reported a market expansion of 10 percent or more in 2001.

Survey results revealed that 39 percent of respondents confirmed a steady market while 9

percent of farmers contracted the market. Two thirds of those who scaled down operations

(6 percent versus 3 percent) suffered a price drop of more than 10 percent during the year.

Two thirds (39 percent to 12 percent) of the farmers who expanded enjoyed a price increase

of 10 percent and more.

As Figure 1.3 shows, 56 percent of the OFRF survey respondents indicated that prices

held steady in 2001, 28 percent indicated that prices went up, and 16 percent said prices

went down. The price decreases reported were both small, less than 10 percent for 7 percent

of the survey respondents, and large—more than 10 percent for 9 percent of farmers. Price

increases were distributed less equally as 18 percent of farmers faced an increase of less than

10 percent. Prices went up by more than 10 percent for only 10 percent of producers.
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Figure 1.2: Market Expansion for Organic Farmers, 2001
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Figure 1.3: Average Price Change for Organic Farmers, 2001
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Figure 1.4: Average Price Change and Farmer Income, 2001

0%10%20%
30%40%50%
60%

down more than10% down less than10% steady up  less than 10% up more than10%Average Price Change
Percentage of Farm
ers Higher IncomeLower Income

Source: Fourth National Organic Farmers Survey, OFRF



8

Figure 1.4 presents average price changes for farmers of different income. The distribution

implies more favorable growth conditions for smaller farms as high-income farmers faced more

price decreases than lower-income farmers.

Ninety two percent of survey respondents were able to obtain organic price premiums: 41

percent obtained organic premiums on 100 percent of their organic product and 30 percent

obtained premiums on at least half of their organic product (Walz 2004).

Though organic food markets are growing, farmers indicate some barriers to expansion.

These are lack of information on prices and unavailability of price forecasts. The availability

of future prices is important to decision-making for it helps farmers to make production deci-

sions. Figure 1.5 illustrates the point by combining the market expansion and price change

information. A year-long decrease by more than 10% in the received price has caused almost

a half of farms to contract as shown in Panel (a). From Panel (b) we see that smaller decreases

bring this percentage down to a quarter. Figure 1.6 shows that three out of four farms have

responded to price increases by scaling up their operations. A seemingly small change in

price expectations can thus have a profound effect on the farmer’s market expansion.

The state of organic fresh produce markets varied for commodity groups. Fruit producers

experienced worse growth conditions in 2001 when compared to vegetable producers. Sixty

four percent of fruit producers contracted when facing a price decrease of more than 10

percent, while this share was only 32 percent for the farmers that specialize in vegetables.

(We define farmers who specialize in vegetables as those having more than 50 percent of their

land allocated to vegetable production). The picture is similar for smaller price decreases,

58 percent versus 20 percent, and for price increases.

Figure 1.7 displays farmers’ concentration plotted against the price change categories.

The concentration index on the value axis represents acreage percentages dedicated to fruit

and vegetable production, summed up across all survey participants that grow either fruit

or vegetables, or both. One can see that fruit production makes about three fourths of those
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Figure 1.5: Price Effect on Market Contraction, 2001
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Figure 1.6: Price Effect on Market Expansion, 2001
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Figure 1.7: Production Concentration Versus Price Change, 2001
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farms that faced a price decrease over the year, while vegetable production makes two thirds

of those farms that enjoyed an increase in the received price.

As a summary, the brief exploratory analysis of organic produce markets reveals several

important market trends:

• A small change in the received price can have a large effect on the farmer’s expansion

or contraction.

• There are favorable growth conditions for lower-income, smaller farmers, since they

receive higher prices for their produce.

• Market growth differs significantly across different types of organic produce.

1.2 Problem Statement

Farmgate prices play an important role in the product life cycle. Guided by farm-level com-

modity price expectations, farmers make production decisions each year. The better the price

information is, the more efficient decisions will be made. This effects the producer’s welfare.

The analysis from the previous section clearly shows that the farmgate price dynamics is

significantly related to the farmer’s scale of operations and income. At the same time, the

farmgate price is the point of origin for the final price at which the commodity is purchased

by the consumer.

Fresh produce is the most popular group among consumers. Americans increasingly

embrace national health authorities’ recommendation of consuming at least five fruit and

vegetables a day. Fruit and vegetables accounted for the largest portion of consumer sales of

organic foods at 42 percent in 2003. Fresh produce prices are among the most volatile of any

food product (McLaughlin 2004). A complicated distribution system, a broad spectrum of

varieties, perishability, weather conditions, all these factors make fresh produce prices hard

to predict. Particular importance is placed on price information for organic fresh produce.



13

Little research is currently conducted to analyze price risk for organic commodities. Devel-

oping accessible resource materials for farmers and agribusiness professionals to systemati-

cally compare the price risk of crop planning and marketing options will greatly improve the

chance of successful marketing. To provide market participants with accurate price expecta-

tions, several established forecasting methods will be compared. The best performing method

will be sought. The focus of the present research is forecasting farm-level prices for organic

fresh produce.

A price forecast is inextricably linked with two difficult choices. First, one must decide

on how to generate the forecast. Even when a forecast is done well, its usefulness and value

for the decision-maker must be established. Before one starts forecasting, it is useful to ask

some questions. Who is the one to use the forecast and what are the decisions to be made on

the basis of the forecast? Which factors affect the variable of interest and in what manner?

When and with what frequency are the forecasts to be generated? What data are needed

and what data are available? Once these questions are answered, a price forecasting process

can begin.

Every agent in the marketing channel of organic produce relies on farmgate price expec-

tations in the decision-making. Farmers can rarely make forecasts by themselves, but they

form the largest group of price forecast users. They need to make production and marketing

decisions that may have financial repercussions many months in future. Once committed to

a product, farmers are price-takers. They produce goods that are homogeneous or highly

substitutable with the goods of their competitors. It is very important to farmers to have a

reliable forecast of future prices. Both wholesalers and retailers use price forecasts for their

product mix decisions. They decide how many organic products should be purchased from a

particular farmer. Incorrect price expectations bring about wrong decisions, and, as a result,

profit losses.

The second question is about the usefulness of forecasts. Farmers want price forecasts

when it is time to make a planting or breeding decision. They want to know the future price
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of the produce at harvest. In this case, the lead—the interval between now and the forecast

time—depends on product rotation. It constitutes about six to nine months for fresh fruit

and vegetables. During and after the harvest, the producer is more likely to be interested in

more frequent price forecasts; that is, every month or even every ten-days period. Wholesalers

and retailers need future price forecasts by the time they make their product mix decisions.

The frequency of price forecast for wholesalers and retailers depends on how often they need

to restock. Taking into account that consumer demand for fresh produce does not have a

clear-cut seasonal pattern and that produce deteriorates quickly, wholesalers and retailers

would prefer to have a small but constant supply of fresh fruit and vegetables over the year.

Hence, they might need price forecasts for every ten days.

The last two questions address the possibility of price forecasting by industry decision-

makers. They may wish to make a regular price forecasting by themselves, with some changes

in the initial parameters. In this case, forecasting methods to use should be easy to implement

and forecasts should be obtained expediently. A prime criterion for such forecasting methods

is that they be self-contained, or that they should require no additional information other

than the past values of the price series. At least three methods—autoregressive and moving

average model (ARMA), exponential smoothing, and spectral decomposition— satisfy these

criteria.

There is no universally optimal forecasting method. Instead, a number of competing

suboptimal methods can be used. A problem that decision-makers might face is how to select

the best forecasting method from a set of several rivaling ones. This is why an agricultural

forecaster needs to have a tool to compare methods.

Forecast quality can be evaluated using the root mean squared error (RMSE) criterion

for point forecasts, and the Henriksson-Merton test for a direction-of-change comparison. For

comparing forecasting techniques, a test of conditional predictive ability recently proposed

by Giacomini and White (2003), is presented along with a derivative of quantile analysis.
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Once some results on method performance across forecasting technics are presented, the

method performance across commodities might be of interest. This part of the study answers

two questions: is there any difference in method performance across commodities and, if so,

what are the reasons?

The overall purpose of this study is to find an industry-oriented forecasting method

which steadily gives the best price forecasts, as compared to a reasonable number of other

alternative techniques. The following are the objectives of the study:

• Determine the users of organic produce price forecasts and establish price forecast

assessment criteria;

• Select several forecasting methods which meet the criteria established;

• Choose a method for price forecasting technique evaluation; and

• Apply the selected methods, compare forecasting techniques, and develop recommen-

dations based on the results.

Chapter 2 looks at potential users of organic produce price forecasts. It establishes several

criteria for the selection of farm-level price forecasting methods. A review of agricultural price

forecasting methods is presented in Chapter 3. Forecasting techniques are selected according

to the established criteria. Chapter 4 describes the modern techniques for comparing predic-

tive ability of several competing models. It also discusses an approach to comparing price

forecasting methods. A detailed data set description and empirical results of having com-

pared three forecasting methods are presented in Chapter 5. Chapter 6 concludes the study

and outlines directions for future research.



Chapter 2

Price in Organic Production Decisions

This chapter pursues two objectives. The first is to reveal potential users of price forecasts

for organic fresh fruit and vegetables. The second objective to provide an insight into the

structure of organic produce markets, with a view to establishing criteria for the assessment

of forecasting methods.

2.1 Organic Produce Marketing Chain

“Organic produce” covers a wide range of commodities, including fresh produce, processed

vegetables, fruit and grains, meat, egg and dairy products, livestock feed, fiber and textiles,

herbs, and more. In terms of market channels, consumers, and handling and labelling require-

ments, each commodity shares characteristics of its conventional counterpart, occupying its

niche in the organic marketplace. The present research focuses on fresh fruit and vegetables.

Next in this section, a marketing chain for fresh produce will be discussed briefly.

Counting the stages in the product handover, there are three possible forms of mar-

keting chain for fruit and vegetables. The full marketing channel includes the production

and preparation of fresh produce for shipment to the wholesaler, with a subsequent sale to

the retailer:

Farmer → Wholesaler → Retailer → Consumer

16
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When a specific variety, quality or quantity is desired, large retailers can sometimes buy fruit

and vegetables directly from the farmer:

Farmer → Retailer → Consumer

Organic fruit and vegetables must be delivered to the consumer as quickly as possible because

fresh foods deteriorate rapidly. Organic produce can be sold directly to consumers by the

farmer, that is:

Farmer → Consumer

The most common ways to deliver organic produce to its consumers are direct-to-consumer

and through wholesale market channels. According to the Fourth National Organic Farmer’s

Survey, 80 percent of respondents who produced vegetables sold them through consumer-

direct channels in 2001. For respondents producing organic fruit this figure was 58 percent.

Nearly 70 percent of respondents producing vegetables sold them through wholesale market

channels, as did 50 percent of fruit producers. Fifty four percent of respondents sold vegeta-

bles and 38 percent sold fruit through direct-to-retail channels. A majority of respondents

indicated that they were planning market channel increases in direct-to-consumer and direct-

to-retail markets (Walz 2004).

Some characteristics of agents in an organic produce marketing channel are described

below, with the focus on the linkage of product, price, and market decisions.

An organic farmer is the basic agent in an organic produce channel. Problems faced by

organic farmers are similar to those conventional farmers face and include what to produce,

what prices to charge, and where to market the output. The first decision that a farmer

makes is about the production level. This usually is a decision about what and how much

to produce. At the same time, there is a regional specialization in the U.S. in terms of food

production. If a farmer chooses to specialize in a unique or unusual crop, there may be

limited facilities, expertise, or readily available markets to handle the new product. If the

farmer opts for the products which are commonly grown in his/her region, then facilities,

expertise, and market opportunities are already in place.



18

The key decision for many farmers is not what to produce, but how much. The decision

about the quantity is closely related to the expected price of the product. An accurate

future price forecast would help the farmer find the quantity that maximizes the profits.

Overestimation and underestimation of future prices alike entail a loss of potential revenues.

This is the main reason why farmers may pay special attention to the quality of price

forecasts.

Knowledge about future prices is not the sole factor that influences the farmer’s level of

profit. No matter how good the product is or how reasonable is the price, the farmer cannot

succeed unless the product gets to the consumer on time.

There are two basic problems in coordinating the supply and demand for organic goods.

First, there is a time difference between when organic foods are produced and when they

are demanded. Fresh fruit and vegetables have no seasonal consumption pattern. The only

constraint is the production cycle. Second, there is a spatial difference between where organic

foods are produced and where they are demanded. The Fourth National Organic Farmers’

Survey indicated that organic farmers predominantly sold fruit and vegetables locally. In

their sample of respondents, 79 percent of vegetable and 43 percent of fruit products were

sold within 100 miles of the farm (Walz 2004).

Along with the problems that are similar to those facing conventional farmers, there are

unique problems impacting organic farmers. The choice of methods to adopt suggests that

farmers face at least two major barriers. First, farmers must make a dramatic change in

their production methods. This aspect is especially important for those who have been in

farming for a while. The land under organic production must be free of prohibited chemicals

during some transition period, usually three years. During this time the land remains a

frozen asset. Secondly, farmers must acquire information on organic production methods

and become professional in using it. In the decision to adopt new agricultural methods,

farmers typically seek information from other organic farmers, local chemical dealers, local

government agencies (Duram 1999), magazines and newsletters on organic farming, and on-
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farm experiments. Another problem that influences the organic farmer’s decision is insects

and diseases. Some farmers have decided not to grow crops susceptible to insects or diseases

because the cost and risks associated with growing these crops exceeded potential returns

from selling them (Baker and Smith 1987).

Organic farms are often unable to produce enough to meet the local demand primarily

because their operations are small. Even though the numbers of organic farms and acres

farmed using organic techniques have increased rapidly, organic farms remain much smaller

than their conventional counterparts. Organic farmland acreage constitutes less than 1 per-

cent of the total agricultural area in the U.S. Organic fresh produce acreage accounted for

about 5 percent of the total organic acreage in 2001.

As Dimitri and Richman (2000) report, organic produce farmers usually lack two things

that make good marketing possible: financial means and the knowledge of marketing insti-

tutions. They are accustomed to marketing to a relatively small group of people who have

already converted to eating organic and other sustainably-grown products. Farmers under-

stand that they have a much larger group to appeal to, but are unused to working with

advertising consultants and firms. In many cases they do not have money to do so, even if

they wish to.

In the Fourth National Organic Farmers’ Survey, 75 percent of respondents used a word-

of-mouth method to sell organic produce, 48 percent used organic certification label/seal

on products, and 31 percent made telephone calls to potential buyers (Walz 2004). Another

financial problem is that farmers who want to increase organic acreage may not be able

to afford to purchase more land. Even if they could, farmers would still be unable to earn

organic revenues from the land during the time required to convert it from conventional to

organic use (assuming the land had not already been certified for organic production). The

loss of revenue during this period may be not as severe as in previous years, since transitional

products having recently begun appearing in natural foods stores.
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Nearly all commodities pass through the hands of at least one intermediary on their way

from farmer to retailer. For fruit and vegetables, this intermediate stage consists of packing

and sorting. There are two basic types of wholesalers—merchant wholesalers and brokers.

The majority of wholesalers are merchant wholesalers who take title to the product that they

handle. Brokers do not take ownership of the produce but rather serve as an intermediary on

behalf of either a farmer or a wholesale/retail buyer. Wholesalers do not produce products,

but do make product mix decisions. The target market for the wholesaler is the retailer.

Product mix decisions for merchant wholesalers and brokers are aimed at satisfying the

retail demand.

Dimitri and Richman (2000) report that many wholesalers face an insufficient market

supply. Except for a certain amount of organic products which retailers ask distributors to

provide, farmers cannot sell this amount to the wholesalers at a particular point in time.

Even if organically-operated farms could quickly step up and down their production output,

it would not be enough to improve the flow of the desired organic food to retailers.

Wholesalers are the primary intermediaries between farmers and retailers because they

procure food in large quantities at low prices, consolidate their purchases in warehouses, and

then resell and deliver these products to retailers at lower costs than any other procurement

and delivery option. Taking into account that the prices wholesalers charge to retailers are

largely administered with allowances and discounts, the basic wholesaler’s aim is to minimize

the cost of buying organic foods from a farmer and transporting them to a retailer.

The traditional operating system used by wholesalers to minimize the cost of delivering

products to the retailer consists of receiving, storage and replenishment, order selection,

and shipping. Farmgate price expectations affect not only production decisions at a farm

level, but also the wholesaler’s profit and product mix decisions. Knowing a farmgate price

forecast for a commodity, the wholesaler can adjust the delivery options and price charged

to retailers, in order to maximize profits.
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Organic foods are sold to consumers through three main venues: organic foods stores,

conventional grocery stores, and direct-to-consumer markets. A small amount is exported to

foreign markets (Dimitri and Greene 2002). Combined with the largest natural food chains—

Whole Foods Market and Wild Oats— the entire natural foods/specialty retail channel still

represented the largest portion of the U.S. organic sales of 47 percent in 2003. The mass

market channel, which includes supermarkets, grocery stores, mass merchandisers, and club

stores, accounted for 44 percent of sales, with direct sales through farmer’s markets and

coops, food service and exports making up the remaining 9 percent. Forty nine percent of all

organic products were sold in conventional supermarkets in 2000. Conventional supermarkets

comprise 99 percent of all food stores. Forty eight percent of organic products were sold in

health and natural products stores. Natural product retailers account for 1 percent of all food

stores. About 3 percent of organic food went through direct-to-consumer methods. In 1990,

7 percent of all organic products were sold in conventional supermarkets, 68 percent were

sold in health and natural product stores, and 25 percent were sold by direct-to-consumer

methods (Dimitri and Greene 2002).

Retailers in the organic foods industry behave much in the way their counterparts from

other industries do. They choose the product mixes, quantities, and prices that result in

optimal returns. The target market for the retailer is the consumer. Retailers make product

decisions within the context of the type of retail format operated. They look at a merchandise

variety to determine which product categories to carry, for example, perishables, dry grocery

food, general merchandise, and/or health and beauty products. Retailers make merchan-

dise assortment decisions to determine how many brands to carry in each category. These

decisions must be consistent with the level of quality demanded by the retailers’ customers.

Retailers dealing in fresh produce operate in a high price volatility environment. To

withstand the uncertainty and compete, they resort to a variety of pricing techniques. An

interesting aspect is a “to have the cake and eat it, too” strategy. At one hand, retailers have

to keep up with competition, so that they have to charge according to what the suppliers
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charge. At the other, they insulate themselves from production price volatility by not basing

their prices directly on what they pay to the supplier (McLaughlin 2004).

According to the survey conducted by Jolly and Norris (1991), an insufficient supply,

quality concerns, and high prices for organic foods were identified as the most important

problems that affect retailers’ decisions to carry organic products. Organic retailers want to

have a dependable supply of products. They also need to be able to assure their customers

that their organic food is truly organic. Consequently, they have made a point of establishing

long-term relationships with wholesalers, who keep the retailers needs in mind when pur-

chasing organic commodities from farmers. Prices set by retailers are generally an attempt

to meet a particular profit objective. Many retailers point out that retail price differentials

between organic and conventional foods may be lowered when organic foods become widely

accepted.

This summary information has identified who the main users of price forecasts are and

what interactions among them drive the farmgate prices. The next step is to choose the ade-

quate forecasting methods. These methods should be readily understood and convenient to

work with for industry decision-makers. The agricultural economics and forecasting literature

offers a broad range of methods to apply to commodity price forecasting. Before considering

particular methods, we should take a closer look at a general model of commodity price

and quantity determination to see what quantitative processes would need to be taken into

account.

2.2 Conventional Structural Model

Agricultural product markets are commonly assumed to be competitive and in equilib-

rium (Tomek and Myers 1993). In an equilibrium, the quantity and farm-level price of a

commodity are determined simultaneously. Both quantity and price are endogenous vari-

ables. Endogenous variables are determined by supply and demand shocks, which are the

exogenous variables in the system. Supply shocks may include the levels of land, labor,
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and other input costs. Input prices are assumed to be known and exogenous at the decision

time. Conventional commodity prices are an important supply shifter. Supply shocks for spe-

cific farm commodities differ considerably because of their different characteristics, different

sets of substitute and complement goods, and the varying extent of government support

programs. Demand shifters impose demand theory restrictions on the system. The inverse

demand specification is very common in agriculture. An inverse demand function character-

izes the price as a function of quantity and other exogenous variables. Most demand shocks

are represented by consumer demand variables, such as personal income, prices for substitute

and complement commodities, personal preferences that have a quantitative representation.

Both quantity and price equations are treated simultaneously in order to get equilibrium

values.

Organic producers are faced with the problem of output price uncertainty. But prices

of organic produce are inherently more volatile in comparison to its intensive agriculture

counterparts. In a long-established market, there is a well-functioning information infras-

tructure and the availability of hedging facilities reduces the risk in the whole chain. As

yet, organic farming is hardly a full-fledged industry. Such mechanisms are not yet in place

for the emerging organic produce market. This leads to a high degree of uncertainty about

future revenues and, accordingly, to a sub-optimal output and pricing decision.

Both intensive and organic farming are dependent upon many natural processes, which

are periodic either seasonally or on a multi-annual basis. Similarities between the two pro-

duction concepts include land preparation, planting, cultivation, and irrigation. Clearly, such

natural inputs as soil processes and rainfall play an important role in production technology.

Organic certification schemes specify that land must be free from chemical inputs for a

number of years prior to organic production, and organic production must avoid the use of

man-made fertilizers, pesticides, growth regulators and livestock feed additives. Moreover,

organic farming systems foster the cycling in resources, and rely on practices such as cultural

and biological pest control. Organic production primarily relies on natural processes and
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makes beneficial uses thereof. The metabolism of organic fertilizers—manure and compost—

depends mainly on soil and climatic conditions. Cover crops are additionally used, whose

growth is subject to a wide range of climatic phenomena. So it is with harmful insect and

rodent populations, which are suppressed by breaking their development cycles. There is

also role for social cycles. For example, the use of labor-intensive hand weeding may depend

on the availability of seasonal (potentially immigrant) workforce. Thus, cyclical natural and

social phenomena bring about an output uncertainty that amplifies the price uncertainty.

Park and Lohr (1996) estimate a system of reduced-form equations to establish supply and

demand factors that influence equilibrium farm price and quantity for a number of organic

produce items. The dynamic supply and demand equations from their partial adjustment

model can be written, with a change of notation, as

qt = [1 yt qt−1 sin(ωt) cos(ωt) y∗t Wt]βs + εs (2.1a)

and

yt = [1 qt yt−1 sin(ωt) cos(ωt) Dt]βd + εd (2.1b)

where yt and qt are the equilibrium price and quantity for the organic item at time t, respec-

tively, sin(ωt) and cos(ωt) are harmonic terms of a preset angular frequency ω to account

for seasonal effects, Wt is a vector of weather variables, y∗t is the supply-shifting price of the

conventional counterpart to the organic item, Dt are demand-shifting factors that include

a price premium for the organic item on the wholesale market, wholesaler’s transportation

and labor costs, etc., and βs and βd are the supply and demand coefficients to estimate,

respectively.

A simultaneous equations model requires a large array of data. The researcher must have

information about all exogenous variables that have been found to exert a significant influ-

ence on the endogenous variable. Industry price forecast users usually do not have this kind

of information readily available. Price series are in most case the only data at someone’s

disposal. While useful to explain the equilibrium price and quantity, the system in Equa-

tion (2.1) cannot be applied for price forecasting. The model contains factors that either need
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to be forecast, such as the price premium and the wholesaler’s costs. In addition, the infor-

mation for the values of quantity supplied/demanded in the recent past will be unavailable

at the time the forecast is to be made.

There is a class of forecasting methods that only use past information on the variable

of interest to generate forecasts. These methods are termed “self-contained” methods. The

issue is whether the output of a self-contained price forecaster can be as accurate as that

of a large, equilibrium-based system. This depends on how well the “self-contained” one

detects any systematic changes in the price; that is, how well it is suited to work with the

main components of the data-generating process. We will now attempt to single out those

components.

2.3 Data-Generating Process for Price Series

The approach we employ to obtain a structural forecasting model of price determination is

to rewrite the supply/demand system in Equation (2.1) in a geometric lag form for price.

Substituting repeatedly the supply equation (2.1a) into the demand in (2.1b) and regrouping

terms, we obtain

yt = µ + θ

∞∑
i=1

λiyt−i + s(t, θs) + g(t) + εt (2.2)

or, in a compact form

B(L)yt = µ + s(t, θs) + g(t) + εt

where µ is the mean of the series; λ and θ = [θ, θs] are parameters that depend on βs, βd,

and also parameters of the y∗t process; s(t, θs) is a cyclical signal that incorporates sin(ωt),

cos(ωt) as well as extracted periodic components from future levels of other variables in

Equation (2.1); g(t) is an unknown aperiodic stochastic process that reflects the cumulative

effect of all explanatory variables that cannot be forecast; and B(L) is the lag operator.

Assuming that the changing nature of the organic sector breaks the infinite memory

geometric lag process and, accordingly, that the order of the polynomial B(L) becomes
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finite, the structural model in Equation (2.2) clearly identifies three major components of

the price-determination process. These elements are: an ARMA component in yt and εt; a

seasonal component s(t); and an aperiodic stochastic process g(t) of unknown form.

We have already seen that different agents in the marketing chain would be eager to know

future farmgate price for a product. Farmers use price forecast for production decisions.

Wholesalers and retailers make product mix decision partly based on farm-level expected

prices. Incorrect price expectations lead to profit losses for all agents involved. The forecast

lead time will differ, depending on the type of the price forecast user. Farmers might be

interested in 6–9 months price forecast at the time of planting and 10–30 days price forecast

at harvest.

In turn, a periodical, 1–2 months-ahead price forecast would be the likely need of whole-

salers and retailers, depending on their product replenishment strategy. Producers are likely

to be interested in getting accurate forecasts in both magnitude and direction-of-change

sense. Retailers that attempt to isolate themselves from the supply-size price volatility may

look more for better directional quality of forecasts.

Price forecasting methods for industry application should be easy to implement and

automate. Organic market participants are unlikely to afford forecasting systems that have

high development and operation costs. At the same time, the industry would require quick

and relatively accurate forecasts. The discussion in the next chapter is about the availability

of forecasting methods than have such features.



Chapter 3

Price Forecasting Methods

Economic forecasting in agriculture shares some of its features with business forecasting and

macroeconomic forecasting. But it has developed over time a focus of its own. Agricultural

economists have committed considerable effort to the methodology of commodity price fore-

casting. Consequently, a variety of methods, from sophisticated multiple-equation regression

techniques to rather naive extrapolations or intuitive estimates, have been developed. The

aim of this chapter is to provide a summary of the main approaches used by agricultural

forecasters to predict commodity prices and select those that are most appropriate for a use

by industry decision-makers.

3.1 Overview of Price Forecasting Methods

Forecasting can be performed in either time domain or frequency domain. All existing

methods for commodity price forecasting fall into one of these two groups.

The time series approach, which uses autocorrelation and partial autocorrelation func-

tions to study the evolution of a time series through parametric models, covers about all

of the most extensively used time domain techniques. The time domain methods include

a regression method, decomposition method, exponential smoothing, and the Box-Jenkins

methodology.

Regression models assume that the relationship between the dependent, or endogenous,

variable and independent, or exogenous, variables can be approximated by a known function

of an arbitrary form. This group of methods contains both single equation econometric

models and sectoral models that include, as the very minimum, a supply equation and

27
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a demand equation for a single commodity. In general, regression methods reveal those

exogenous variables that significantly influence the response of the endogenous variable.

A two-equation integrated demand and markup model was applied to markets for organic

broccoli and carrot in a study by Lohr and Park (1999). The purpose of the study was to

determine the organic wholesaler behavior to reduce price uncertainty. In Park and Lohr

(1996), a sectoral model of reduced-form supply and demand equations was estimated. The

average total supply and demand effects on long-run equilibrium quantities and prices of

organic broccoli, carrots, and lettuce were calculated.

Decomposition models have little theoretical basis — they are more of an intuitive

approach. However, the decomposition method has been found useful when the parameters

describing a time series are not changing over time. The basic idea behind the method is

to decompose the time series into several factors: trend, seasonal, cyclical, and irregular

components. Estimates of these factors are used to describe the series. X-12-ARIMA is

a decomposition method used by the Bureau of the Census of the U.S. Department of

Commerce (Bowerman et al. 2005). One can see, recalling Equations (2.1) and (2.2), that

the approach taken in the present study has a definite imprint of the decomposition method.

Exponential smoothing is a method of forecasting based on a simple statistical model

of a time series. Unlike regression models, exponential smoothing does not make use of

information from series other than the one being forecast. It is a method that weights the

observed time series values unequally. More recent observations receive larger weights than

more remote observations; that is, exponential smoothing assigns exponentially decreasing

weights as the observations get older. Nerlove (1958) used the exponential smoothing method

in estimation of farmers’ response to agricultural prices. Jarrett’s (1965) forecast of Aus-

tralian wool prices marked the first application of the method in agriculture. Monthly fore-

casts of six grades of wool using Winters multiplicative model were compared with a simple

moving average.
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Modern commodity price forecasts are largely made with the use of Box-Jenkins methods,

which include stationary autoregressive moving average (ARMA) models, nonstationary

autoregressive moving average (ARIMA) models, and stationary and nonstationary vector

ARMA models. In a study by Gil and Albisu (1993), three methods for the monthly maize

price one-step-ahead forecast were considered: an econometric model, exponential smoothing,

and ARIMA. Monthly maize prices lagged two periods, lagged maize ending stock, lagged

maize import, and lagged monthly barley price were used as explanatory variables in the

econometric model. Holt’s exponential smoothing method was applied, with level and trend

being the only factors considered. ARIMA (2,1,0) forecasts were obtained following the tra-

ditional approach. It was concluded that the ARIMA model generated the most accurate

forecasts among the three models, and the econometric model was found to be the worst one.

Kohzadi et al. (1996) compared ARIMA and neural network price forecasting performance

for live cattle and wheat monthly prices. It was found that ARIMA was able to capture a

significant number of turning points for wheat only, while the neural network did equally

well for both wheat and cattle.

A data analysis procedure that measures the fluctuations in a time series by comparing

them with sinusoids is known as frequency domain analysis. Fourier analysis is fundamental

for the frequency domain analysis. The basic idea of Fourier analysis, or spectral decompo-

sition of a time series, is a decomposition of a series into the sum of sinusoidal components,

the harmonics, to search for periodic patterns in the data.

There are two studies in agricultural economics literature that contain a Fourier analysis

application to price forecasting. A study by Myers (1972) applies spectral analysis to hog

price forecasting. A combination of spectral analysis, autoregression and multiple regression

analysis, and a recursive system is used in the empirical model. By attempting to keep the

constructed equation within manageable proportions and produce useful information, several

statistical properties were violated or fell outside the bounds of conventional acceptability.

It was found that the forecasting model can only be evaluated by its ability to provide ade-
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quate answers to pricing problems and only incidentally by its internal statistical properties.

Weiss (1970) used spectral analysis of cocoa prices to establish an effective potential price

stabilization policy for the cocoa market. Spectral analysis was used to identify empirically

cyclical patterns in world cocoa prices. An indicated lag that was thought to represent a

production cycle was compared with those used in several regression analyses of supply. In

addition to seasonal variations, he found that there existed periodic fluctuations in cocoa

prices attributable to lags in production response and in consumption response to price

changes with different average lengths.

Data availability can be limited in some instances. In such cases, a combination of fore-

casts generated by different models takes advantage of error structures in the joint pattern of

forecasts. Price forecasts using composite methods are presented in papers by Bunn (1989)

and Gil and Albisu (1993). From a perspective of minimizing error variance, forecasts from

a combined model are never worse than those of the best individual model.

When two or more forecasts of the same uncertain event are in hand, a composite forecast

can be formed as a weighted average of the forecasts available. There are several approaches

to combining forecasts. Clemen and Winkler (1986) suggest a simple average of available

forecasts. The weights are assumed to be constant over the time period analyzed, ignoring the

relative performance of the individual forecasts. Bates and Granger (1969) suggest deriving

weights that minimize the composite forecast variance, where the variance is estimated from

historical forecast performance of the individual forecasts. Bessler and Chamberlain (1987)

and McIntosh and Bessler (1988) have proposed a Bayesian approach to forming composite

forecasts.

The highlight of the next section is how to choose forecasting methods based on the

assessment criteria we established in the previous chapter.
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3.2 Industry-Oriented Forecasting Methods

Two classes of forecasting methods, time domain and frequency domain, were reviewed in

the previous section. For the sake of variety, it is logical to implement methods from each

class.

3.2.1 Exponential Smoothing

Industry-oriented forecasting methods remain the focus of our attention. These methods are

easy to implement, they give quick price forecasts with limited analytical input, and they

do not require more information than is contained in the series being forecast. Exponential

smoothing and ARMA methods satisfy these criteria among time domain methods. Spectral

decomposition, a frequency domain representative, also fits the industrial application criteria.

Exponential smoothing has been thought of as a way of getting accurate point predictions.

There are three main advantages to the exponential smoothing method. First, smoothing

forecasting equations are easy to understand and compute. Second, the method is often as

well-performing as far more sophisticated one. And, finally, it may work on short series with

possible structural changes. An arbitrary choice of smoothing constants and the impossibility

of its adaptation to certain types of data are usually referred to as the most serious drawbacks

of the exponential smoothing method.

The workhorses of the exponential smoothing family are the simple, or single exponential

smoothing, Holt’s (double) exponential smoothing, and Holt-Winters, or triple, exponential

smoothing. Simple exponential smoothing is used when the data are nonseasonal, or season-

ally detrended, and have a time-varying mean without a consistent trend. Holt’s exponential

smoothing was found to work well when data are nonseasonal and feature time-varying local

trends. It usually works quite well with the data that are “smoother” in appearance —that

is, less noisy — than what would be better handled by simple exponential smoothing.

The Holt-Winters exponential smoothing is used when data are trended and seasonal, and

one wishes to decompose it into local level/trend/seasonal factors. There are two versions of
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the Holt-Winters exponential smoothing models: additive and multiplicative. Normally, the

multiplicative version is used for nonstationary data. Similarly, the additive version of the

Holt-Winters exponential smoothing is a better choice for stationary data.

The simple exponential smoothing method is used for forecasting a time series when there

is no trend or seasonal pattern but the mean of the time series is slowly changing over time.

The simple exponential smoothing gives the most recent observation the most weight. Older

observations are given successively smaller weights. The estimate for the mean of the series

in time period T, lT , is given by the smoothing equation

lT = αyT + (1− α)lT−1 (3.1)

where α is a smoothing constant, 0 < α < 1, yT is the observation in time period T, and

lT−1 is the estimate of the mean of the time series in time period T − 1.

In the simple exponential smoothing method, a point forecast at time T of any future

value yT+τ of a time series is the last estimate lT for the mean of the series, that is

ŷT+τ = lT (3.2)

where ŷT+τ is a point forecast made in time period T for τ periods ahead, τ = 1, 2, ...∞.

Holt’s exponential smoothing is appropriate when both the mean, β0, and the regression

coefficient, or the growth rate, β1, are changing for the series that is described by the linear

trend model,

yt = β0 + β1t + εt (3.3)

where t represents the time trend, and εt is an error at time period t.

The estimate lT for the mean of the series and the estimate gT for the growth rate of the

series in time period T are given by the following smoothing equations

lT = αyT + (1− α)[lT−1 + gT−1] (3.4)

gT = γ[lT − lT−1] + (1− γ)gT−1 (3.5)
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where γ is smoothing constant, 0 < γ < 1, and lT−1 and gT−1 are estimates at time T − 1

for the mean and the growth rate, respectively.

In Holt’s exponential smoothing, a point forecast at time T of any future value yT+τ of

a time series can be represented as

ŷT+τ = lT + τgT . (3.6)

The additive Holt-Winters method is appropriate when a time series has a linear trend

with an additive seasonal component for which the mean, the growth rate, and the seasonal

pattern may be changing. Additive seasonal pattern is usually true for stationary series. The

estimate lT for the mean, the estimate gT for the growth rate, and the estimate sT for the

seasonal factor of the series in time period T are given by the following smoothing equations:

lT = α[yT − sT−λ] + (1− α)[lT−1 + gT−1] (3.7)

gT = γ[lT − lT−1] + (1− γ)gT−1 (3.8)

sT = δ(yT − lT ) + (1− δ)sT−λ (3.9)

where λ denotes the number of seasons in a year (λ = 12 for monthly data, and λ = 4 for

quarterly data), sT−λ is the estimate for the seasonal factor in time period T − λ, and δ is

smoothing constant, 0 < δ < 1.

In the additive Holt-Winters exponential smoothing method, a point forecast at time T

of any future value yT+τ of a time series is

ŷT+τ = lT + τgT + sT+τ−λ (3.10)

where sT+τ−λ is the “most recent” estimate of the seasonal factor for the season corresponding

to time period T + τ .

The multiplicative Holt-Winters method is appropriate when a time series has a linear

trend with a multiplicative seasonal component for which the mean, the growth rate, and

the seasonal pattern may be changing. The presence of multiplicative seasonal pattern is
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commonly true for nonstationary series. The estimate lT for the mean, the estimate gT for

the growth rate, and the estimate sT for the seasonal factor of the series in time period T

are given by the following smoothing equations:

lT = α

[
yT

sT−λ

]
+ (1− α)[lT−1 + gT−1] (3.11)

gT = γ[lT − lT−1] + (1− γ)gT−1 (3.12)

sT = δ

[
yT

lT

]
+ (1− δ)sT−λ. (3.13)

In the multiplicative Holt-Winters, a point forecast at time T of any future value yT+τ of a

time series can be represented as

ŷT+τ = [lT + τgT ]sT+τ−λ. (3.14)

3.2.2 Box-Jenkins Model

The Box-Jenkins model is the second method from the time domain group that we consider

for industry-oriented price forecasting. The Box-Jenkins approach has different versions for

stationary and nonstationary time series.

In time series analysis, a weaker sense of stationarity in terms of the moments of the

process is often used. A process is said to be n-th order weakly stationary if all its joint

moments up to the order n exist and are time invariant, that is, independent of a time

origin.

A stationary process can be represented either in a moving average form

(1− φ1B − φ2B
2 − ...− φpB

p)yt = εt (3.15)

or in an autoregressive form

yt = (1− θ1B − θ2B
2 − ...− θqB

q)εt (3.16)

where B denotes the lag operator which power coefficient represents the number of lags. The

autoregressive and moving average coefficients are represented by φ and θ, while p and q

denote the order of autoregressive and moving average terms, respectively.
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A problem with both representations is that there may be too many parameters. This is

true even for a finite order moving average and a finite order autoregressive model as it often

takes a high order model for good approximation. A large number of parameters frequently

reduces efficiency in estimation. It may be necessary in building the model to include both

autoregressive and moving average terms in a model. This leads to the following mixed

autoregressive moving average (ARMA) model:

(1− φ1B − φ2B
2 − ...− φpB

p)yt = (1− θ1B − θ2B
2 − ...− θqB

q)εt. (3.17)

A stochastic ARMA model can be extended to the following seasonal ARMA model:

φp(B)ΦP (Bλ)yt = θq(B)ΘQ(Bλ)εt (3.18)

where φp(B) = 1− φ1B − φ2B
2 − ...− φpB

p is autoregressive operator, while ΦP (Bλ) = 1−
Φ1B

λ−Φ2B
2λ− ...−ΦpB

pλ indicates seasonal autoregressive operator. λ denotes periodicity

in the seasonal pattern, where λ = 12 for monthly seasonal pattern, and λ = 4 for quarterly

seasonal pattern. θq(B) = 1− θ1B − θ2B
2 − ...− θqB

q represents moving average operator,

and ΘQ(Bλ) = 1−Θ1B
λ −Θ2B

2λ − ...−ΘqB
qλ denotes seasonal moving average operator.

If the series is not stationary, it must be first transformed to be stationary. One possible

transformation is differencing, that is the value of the previous period is subtracted from

the value of the current period. More sophisticated and, in most cases, economically mean-

ingful transformation is the Box-Cox transformation. The stationary process resulting from a

properly differenced nonstationary series can be represented by the following autoregressive

integrated moving average (ARIMA) model:

(1− φ1B − φ2B
2 − ...− φpB

p)(1−B)dyt = (1− θ1B − θ2B
2 − ...− θqB

q)εt (3.19)

where (1 − B)dyt term represents d -order differencing of the initial time series in order to

make the nonstationary series stationary.

There are several statistical tests for stationarity. The augmented Dickey-Fuller test,

Phillips-Perron test, and the weighted symmetric test can be applied to the null hypothesis
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of nonstationarity in the form of a unit root process (see Chapter 5). The rejection of the

null hypothesis would imply that the series is stationary and does not need to be differenced.

The Box-Jenkins seasonal ARIMA model takes the following form:

φp(B)ΦP (Bλ)(1−B)d(1−Bλ)Dyt = θq(B)ΘQ(Bλ)εt (3.20)

where (1−Bλ)D denotes the D-order seasonal differencing factor.

3.2.3 Spectral Decomposition

The spectral decomposition method is a representative frequency domain approach for mod-

elling data. It can be used to look for periodicities or cyclical patterns in the data.

The basic idea of spectral decomposition is the representation of data in terms of weighted

sinusoidal functions—sine and cosine—to search for periodic components in empirical data.

The intuition behind the choice of these particular functions is described in Bloomfield

(2000).

The simplest use of sinusoids in data analysis is to describe and isolate the periodic part

of a series when the periods are known. The data {y1, y2, ..., yt, ..., yT} are modelled as

yt = st + εt = µ +
r∑

k=1

[akcos(ωkt) + bksin(ωkt)] + εt (3.21)

where st represents the seasonal cycle, εt is an error at time t, and µ denotes the mean of the

series. The cosine and sine coefficients are represented by ak and bk, respectively. Functions

of the Fourier coefficients ak and bk can be plotted against frequency ωk or against wave

length to form periodograms. The amplitude periodogram Jk is defined as follows:

Jk =
T

2
(a2

k + b2
k). (3.22)

For the decomposition of the process into two-degree-of-freedom components for each

of the r frequencies, the periodogram can be interpreted as the contribution of the k-th

harmonic to the total sum of squares, in an analysis of variance sense. When T is even,

sin(ωT
2
) is zero, and thus the last periodogram value is a one-degree-of-freedom component.
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The periodogram is a volatile and inconsistent estimator of the spectrum. The spectrum

shows statistical regularity and is characteristic of the series as a whole. The spectral density

estimate is produced by smoothing the periodogram. Smoothing reduces the variance of the

estimator but introduces a bias.

3.2.4 Method Strengths and Weaknesses

Exponential smoothing, ARMA, and spectral decomposition are among the simplest methods

available today. They can be implemented with mainstream statistical or all-purpose soft-

ware, do not contain any proprietary algorithms, and do not require intense computing power.

This makes the methods broadly qualify as the industry-oriented tools we seek. On the basis

of accuracy, the three methods are quite different in how they can handle the components

of the data-generating process in Equation (2.2).

As its name suggests, ARMA is to work with the ARMA component. While it is mod-

erately robust to noisy data, its capabilities in terms of modelling seasonality and cyclical

patterns are limited to seasonal coefficients.

Spectral decomposition can extract a periodic signal of complex form from the data.

However, the method cannot handle autoregressive processes and therefore may produce

very poor results for short-run forecasts.

Exponential smoothing encompasses some kinds of ARMA process and can account for

a simple seasonal pattern and trends. Apart from this, the method is capable of producing

satisfactory predictions in the presence of a considerable amount of noise.

Summing up the discussion: a set of candidate methods— exponential smoothing,

ARMA, and spectral decomposition—are chosen for our forecasting of organic fresh produce

prices. A problem that economic forecasters often face is how to select the best forecasting

method from a set of available ones. The next chapter offers an overview of techniques one

can consider when comparing forecasting methods on the basis of performance.



Chapter 4

Evaluation and Comparison of Forecasting Methods

Reliable and practically useful forecasting methods are needed for organic producers. Once

we have selected a set of candidate methods, we need to address two problems that economic

forecasters inevitably face. First, one needs to make sure that each method generates forecasts

that are of some economic value to the agents. Second, the best performing method needs

to be chosen out of the set in a statistically valid way. The objective of this chapter is to

provide an overview of techniques for the evaluation and comparison of forecasting methods.

4.1 Review of Method Evaluation and Comparison

The economic solution to the problem of forecast valuation is to calculate the profit loss

from using the forecast, compared to the ideal forecast— the actual price. A commonly used

measure of economic performance, based on agricultural producers’ response to expected

prices is a calculation of the actual income losses suffered by the producers as a result of

their forecasting errors. Economists generally assume that farmers use forecasts because the

latter add to profits. Thus, a more appropriate test of forecast accuracy is profitability.

In particular, DeCanio (1980) expresses the loss from forecasting error as a percentage of

gross real income from production of two crops. The analysis in this study shows that the loss

from forecasting error is proportional to the squared forecasting error and inversely related to

the absolute curvature of the transformation surface. Havlicek and Seagraves (1962) focus on

applications of more precise information about one input factor that influences production,

assuming that other determinants of optimum production are known. There is an optimal

level of production and a net revenue function which permits computing the reduction in net

38
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revenue due to a wrong decision, that is, due to the use of wrong assumptions. The “cost of

the wrong decision” is defined as the reduction in producer’s net income.

Another common measure of comparing forecasting models is a utility-based metric, illus-

trated in papers by McCulloch and Rossi (1990) and by West et al. (1993). It is designed

to assess forecasting models in terms of direct utility gains rather than statistical signifi-

cance. Unfortunately, the economic loss associated with a forecast may be poorly assessed

by common statistical metrics. That is, forecasts are used to guide decisions, and the loss

associated with a forecast error of a particular sign and size is induced directly by the nature

of the decision problem in hand.

In order to describe the accuracy of a method in repetitive trials, an aggregate measure

may be needed. Literature abounds in numerous aggregate measures of forecast accuracy.

The most popular is the mean squared error (MSE), which is calculated as

MSE =
1

N

N∑
i=1

e2
i (4.1)

where ei denotes the prediction error, and is calculated as the difference between the forecast

value, ŷi, and the actual value, yi. N is the number of forecasts. Some other measures —mean

squared percent error (MSPE), root mean squared error (RMSE), and root mean squared

percent error (RMSPE) —are derivatives of the MSE.

Mean absolute error (MAE) is another aggregate statistical measure of forecast accuracy,

which is derived as

MAE =
1

N

N∑
i=1

|ei|. (4.2)

Likewise, the mean absolute percent error (MAPE) is a derivative of the MAE.

While all these measures are related to minimizing a particular loss function, they have

considerable limitations. The measures are descriptive. They do not convey by themselves any

meaningful information. Statistically, these aggregate measures have been subject to intense

criticism. The RMSE is particularly affected by outliers that are common in economic data.

Neither of the measures is naturally scale-independent except when applied to percentage
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changes, that is the measures can be significantly changed by scaling the raw data (Armstrong

and Collopy 1992; Fildes 1992). The measures involve an averaging of errors over observations

that have different degrees of variability (Fair 1980; Jenkins 1982). The issue of scaling is

also critical when one is to analyze a number of data series. Some measurements of forecast

accuracy, such as RMSE, can change if the the variables to predicted are transformed.

Clements and Hendry (1993) have proposed a generalization of the RMSE that takes into

account the correlations between errors when more than one time series is being analyzed,

to ensure invariance to linear transformations. The practicality of their measure has been

questioned because a typical forecast evaluation is bound to be based on a sample of non-

normal data with autocorrelation and contemporaneous correlation between errors from

competing forecasts (Baillie 1993; Armstrong and Fildes 1995).

However, the main problem with the common aggregate measures of forecast accuracy

lies in the very fact of aggregation. Method comparisons that are based on point estimates of

forecast accuracy are essentially an attempt to describe a whole distribution on the basis of

a single draw from it. The proper econometric approach to the problem of forecast valuation

and comparison is to develop tests for comparing the predictive ability of several alternative

forecast models, given the forecaster’s loss function. The sampling prediction error distribu-

tion is examined, which distinguishes this approach from merely comparing point estimates.

A number of scholars have proposed econometric techniques for forecast comparison under

a general loss function, known as out-of-sample predictive ability testing. The discussion on

the topic was initiated by Diebold and Mariano (1995) and further extended by West (1996),

West and McCracken (1998), McCracken (2000), and Corradi et al. (2001).

When parametric forecasts and forecast errors are used to estimate moments or conduct

inference there are two sources of uncertainty. There is uncertainty that exists even when the

model parameters are known, and there is uncertainty due to the estimation of parameters.

Diebold and Mariano (1995) show how to construct asymptotically valid out-of-sample tests

of predictive ability when there is no parameter uncertainty. They propose and evaluate
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several tests of a null hypothesis of no difference in the accuracy of two competing forecasts.

The approach allows forecast errors to be non-normal, nonzero mean, serially correlated, and

contemporaneously correlated.

The tests reviewed by Diebold and Mariano (1995) are valid for a wide class of loss func-

tions, including non-quadratic, non-symmetric, and non-continuous loss functions. A simple

F-test— testing the equal variance hypothesis—can be applied if forecast errors are indepen-

dently and identically distributed Gaussian variates. An asymptotic test exploits the asymp-

totic normality of forecast error difference provided the errors are covariance-stationary. The

test they (ibid.) refer to as the Morgan-Granger-Newbold applies an orthogonalizing trans-

formation to forecast errors: two new variables are their sum and difference. One can then

test the equal predictive ability hypothesis by testing the one of zero correlation between the

transformed errors. An extension of this test is considered in Meese and Rogoff (1988).

Non-parametric tests can also be applied. Diebold and Mariano (1995) discuss an applica-

tion of the sign test and Wilcoxon’s signed-ranks test (Conover 1999). The former is a simple

test for correlation in a bivariate pair. In the sign test, the actual differences are replaced

with their signs and then the number of positive (or negative) differences is compared to

tabulated critical values. The second (Wilcoxon’s) test builds upon this idea by using signed

ranks of differences and has a higher asymptotic relative efficiency.

Diebold and Mariano (1995) provide a review and extension of procedures to perform

inference about predictions do not rely on parameter estimates; for example, when param-

eters are known. When parameters are unknown and must be estimated, parameter uncer-

tainty can play a role in out-of-sample inference. West (1996) shows how the uncertainty

due to parameter estimation can affect the asymptotic distribution of moments of differ-

entiable functions of out-of-sample forecasts and forecast errors. Procedures for asymptotic

inference about the moments of smooth functions of predictions and out-of-sample predic-

tion errors were suggested. These asymptotic procedures allow for a wide class of linear and

nonlinear techniques to estimate the models used to make the predictions, such as least
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squares method, maximum likelihood method, and generalized method of moments. They

allow for serial correlation and conditional heteroscedasticity in the regression disturbances

and prediction errors as long as inference about moments in general, nonlinear functions of

single or multi-period predictions and prediction errors.

Using standard regularity conditions, West (1996) establishes consistency and asymp-

totic normality of the estimators of the moments and shows that the asymptotic variance-

covariance matrix may be estimated by familiar methods, including kernel techniques that

allow for unknown forms of serial correlation and heteroscedasticity in prediction errors.

The study by West and McCracken (1998) is a revisited and renewed version of West’s

work. The usual tests of predictive ability account for the uncertainty that would be present if

the underlying parameter vector were known rather than estimated, but ignore uncertainty

resulting from error in estimation of that parameter vector. West and McCracken (1998)

establish conditions under which the second type of uncertainty is asymptotically negligible.

They show that such uncertainty is sometimes asymptotically nonnegligible and suggest

computationally convenient ways to obtain test statistics that account for both types of

uncertainty.

McCracken (2000) presents analytical, empirical, and simulation results concerning infer-

ence about the moments of nondifferentiable functions of out-of-sample forecasts and fore-

cast errors. The work by Diebold and Mariano (1995) is extended by showing that parameter

uncertainty can affect out-of-sample inference regarding moments of nondifferentiable func-

tions. The previous findings by West and McCracken (1998) are extended by providing suf-

ficient conditions for asymptotic normality of sample averages of nondifferentiable functions

of parametric forecasts and forecast errors.

The crucial object in measuring forecast accuracy is the loss function. In addition to the

loss function, the forecast horizon is of great importance. Ranking of forecast accuracy may

vary across different loss functions and/or different horizons. Corradi et al. (2001) show that

the test proposed by Diebold and Mariano (1995) can be used in the cases where either the
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loss function is quadratic or the length of the prediction period grows at a slower rate than

the length of the regression period. For the case of a generic loss function, when the length

of the prediction period grows at a higher rate than the length of the regression period, the

asymptotic normality result obtained by West (1996) no longer holds.

The studies on forecast evaluation that we have briefly reviewed focus solely on the fore-

cast model. The forecast model is the only entity which is considered to affect method per-

formance. A far more realistic situation when a good model produces bad forecasts because

its parameters have been badly estimated or change over time remains largely an uncharted

territory.

Giacomini and White (2003) propose an alternative approach to the conventional out-

of-sample predictive ability testing, called a test of conditional predictive ability. The object

of the valuation is the forecasting method, which includes the forecast model, the estimation

procedure, and the choice of an estimation window. Apart from this fundamental difference,

there are at least three features that make this test preferred over the model-based evaluation.

These are important for the present research.

First, Giacomini and White (2003) suggest using a rolling estimation window instead of

an expanding estimation window. This allows the estimation window to be a component of

the forecasting method. The use of a rolling window avoids the arbitrary sample division

problem between estimation and evaluation parts of the data set. The rolling window cuts

off all dated information, which may keep contaminating results when the data-generating

process has already changed. Second, their predictive ability test is conditional on the values

of parameter estimates in the model, not their dubious probability limits. This matters when

the researcher is unsure about the model itself. Finally, the conditional predictive ability test

is easily computed using standard regression packages.

No matter how theoretically valid or general a particular comparison test is, it takes it

for granted that the two or more competitors already generate forecasts of some economic

value. An assumption is made that the decision-maker is better-off using either method, and



44

the problem reduces to selecting the best one. But how can one judge on whether or not a

single method generates useful predictions, to begin with?

Suppose the decision-maker considers the price series in question to be a martin-

gale. A martingale belongs to the class of first-order Markov processes; that is, only the

most recent realization of the variable of interest affects the location of the next draw:

E[yT+τ |y0, y1, . . . , yT ] = E[yT+τ |yT ]. The process is a martingale if E[yT+τ |yT ] = yT . In this

case, the forecast for any horizon will be the last observed price. The actual price at that

time in the future will fall either below or above its last observed value. If an alternative

method cannot consistently predict this direction of change, then the method is clearly

either useless or even counterproductive in terms of reducing profit losses.

A well-known test of sign predictability was developed in papers by Merton (1981) and

Henriksson and Merton (1981). They were interested in whether or not the sign of the

forecast would be useful as a predictor of the sign of the realization. We will describe the

nonparametric test later in this study. Another sign test was suggested by Cumby and

Modest (1986), who argue that their test of sign predictability is more powerful than the one

suggested by Henriksson and Merton (1981). An extension of the nonparametric Henriksson-

Merton test for a multivariate case can be found in Pesaran and Timmermann (1994).

The next section introduces an experimental design for price forecast evaluation with

several competing forecasting methods. Details of the Giacomini-White and Henriksson-

Metron tests will be presented in greater detail.

4.2 Forecasting Experiment Design

There are two approaches to building a forecasting experiment—an in-sample and out-of-

sample forecasting. An in-sample forecasting experiment implies using the whole data set to

estimate a chosen forecasting model and to obtain forecasts for at least one period ahead. This

forecast cannot be compared with the actual value until it realizes in the value observed the
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next time period. McCracken and West (2002) suggest reasons to believe that models which

seem to fit well by conventional in-sample criteria do poorly in out-of-sample prediction.

An out-of-sample forecasting experiment is essential in determining whether a proposed

forecasting model is potentially useful for forecasting the variable of interest. The idea behind

out-of-sample forecasting is to divide the available data set into two parts: the in-sample data

and the out-of-sample data. Applied economists usually recommend to include 75–80 percent

of the data in the in-sample part and the remaining 20–25 percent in the out-of-sample part.

The in-sample data set ought to encompass the complete cyclical patterns of the series.

Practitioners recommend the size of the in-sample data to be even and cover one-year period

at the very least. The length of our organic price data is sufficient to allow a 2-years period

as the in-sample part of the data. The out-of-sample part is the difference between the length

of the whole time series and the in-sample data length for a particular commodity.

An appropriate forecast horizon and loss function should be chosen according to the

needs of the forecast user. The forecast horizon is the number of steps ahead that one is

most interested in forecasting the target variable for. For example, if a farmer is making a

production decision, he/she would be interested in the product price at harvest time. The

forecast horizon in this case depends on the growing period of that particular commodity. If

the farmer has already gathered the harvest and is about to decide whether to sell it or to

store for a while, one week or one month-ahead price forecast would be more appropriate.

Wholesalers and retailers want to have a constant supply of fresh produce during the whole

year. Hence, they might be interested in six months ahead price forecast. Ten days, one,

two, and six months forecast horizons have been chosen for the purpose of this study as

reasonably representing the short-, medium-, and long-run forecasting needs.

The loss function is a function that is minimized to achieve the desired outcome. Absolute

error, squared error, and predictive log-likelihood are some examples of loss functions. Often

econometricians minimize the sum of squared errors in making an estimate of a function or a
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slope. In this case, the loss function is the sum of squared errors. Following the mainstream

choice, the squared prediction error is used throughout the rest of the study.

Once several competing forecasting methods are chosen, and the in-sample data has been

decided upon, price forecast competition is run. Each model is estimated on the in-sample

part of the data of size m and the price forecasting is made for the chosen number of periods

ahead (τ); see Figure 4.1. Then it is rolled through the out-of-sample data in one-period

increments. Each model is reestimated and another price forecasting is made. This process

continuous up to the end of the out-of-sample part of the data.

In this case, the in-sample data set is called the “estimation window.” The two types of

estimation window are expanding and rolling windows. An expanding window always starts

with the first observation and gets wider over time. A rolling window retains its constant

width. Older observations are shed as the competition progresses. When one new observation

is added to the estimation window, the oldest observation gets dropped and each forecasting

model must be re-estimated. This means that coefficients are re-estimated and prediction

errors are obtained.

The main disadvantage of the expanding window is the influence of old observations on

the parameter estimates. This is particularly troublesome when the industry—the data-

generating process — is rapidly changing (Giacomini and White 2003). The organic sector

in the U.S. is changing and growing, and so are the organic produce prices. Based on this

premise, the present research uses a rolling estimation window technique rather than an

expanding estimation window.

While competing models are rolling through the out-of-sample data set, prediction errors

of each model are recorded each time the forecast is made. At the end of the forecasting

procedure, there are a number of prediction errors recorded for each model.

We have earlier reviewed the two main approaches to comparing the forecast accuracy.

The conventional approach assumes the mean squared prediction error or any other aggregate

statistical measure. While the alternative approach examines the distribution of prediction
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Figure 4.1: Rolling Window Design
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errors. The conditional predictive ability test proposed by Giacomini and White (2003) is in

line with the latter approach.

The test by Giacomini and White (2003) consists of testing the null hypothesis of equal

accuracy of the two forecasts, given the current information set. The null hypothesis is

formulated as

H0,τ : E[Lt+τ (yt+τ − ft(ϕ̂t))− Lt+τ (yt+τ − gt(υ̂t))|It] = 0 ≡ E[4Lt+τ |It] = 0 (4.3)

against the alternative hypothesis of unequal accuracy of the two forecasts. yt+τ is a τ periods

ahead forecast for the variable of interest, Lt+τ is a loss function, ϕ̂t and υ̂t are the parameter

estimates at time t for two competing forecasting models, ft and gt, and It is the information

set available at time t = 1, 2, ...∞.

Let T be the size of the sample available. Since the data indexed 1, ..., m are used for

estimation of the first set of parameters, the first τ -step ahead forecasts are formulated

at time m and compared to the realization ym+τ . The second set of forecasts is produced

by moving the estimation window forward one step and estimating the parameters on data

indexed 2, ..., m+1. These forecasts are compared to the realization ym+1+τ . The procedure is

thus iterated and the last forecasts are generated at time T−τ , by estimating the parameters

on data indexed T − τ −m + 1, ..., T − τ , and they are compared to yT . This rolling window

procedure yields a sequence of n ≡ T − τ −m + 1 forecasts and relative forecast errors.

The sequence of out-of-sample forecasts thus produced is evaluated by selecting a loss

function Lt+τ , which depends on the forecasts and on the realizations of the variable.

For a fixed maximum estimation window length, m, conditional predictive ability test

statistic is a Wald-type test statistic of the following form

T h
n,m,τ = nZ

′
m,nΩ̂−1

n Zm,n (4.4)

where Zm,n = n−1
∑T−τ

t=m ht4Lt+τ , 4Lt+τ is the difference of loss functions at t + τ , ht is a

vector of test functions, and Ω̂n is the estimated covariance matrix of Zm,n. In practice, the

test function is chosen by the researcher to embed elements of the information set that are
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believed to have potential explanatory power for the future difference in predictive ability.

In the present research, the test function is ht = (1,4Lt), corresponding to the difference of

squared residuals in the last period in the window.

A level α rejects the null hypothesis of equal conditional predictive ability whenever

T h
n,m,τ > χ2

q,1−α, where q = 2 is the size of ht and χ2
q,1−α is (1 − α)-quantile from the χ2

q

distribution.

In order to assess the economic value of forecasts, the direction-of-change test proposed

by Merton (1981) and Henriksson and Merton (1981) was conducted. The null hypothesis of

the Henriksson-Merton test is that the probability limit of the Henriksson-Merton criterion

is one:

H0 : plimn→∞

(
nii

ni

+
njj

nj

)
= 1 (4.5)

against the alternative of the left-hand side being greater than one. i denotes the “up” state

(an increase from the last observed value) and j indicates the “down” state (a decrease)

into which forecasts and realizations fall. ni and nj are the numbers of actual price “ups”

and “downs,” respectively, recorded by moving the data window n times. nii and njj are

the numbers of correctly forecast price realizations. Under H0, njj follows a Hypergeometric

distribution with parameters (nj, n, n.j), where n.j is the number of forecast “downs.” Hen-

riksson and Merton (1981) assert that a forecast has an economic value if their criterion is

greater than one.

Once the experimental design for price forecasting and forecast evaluation is fixed, the

actual competition can be run and statistical analysis performed. A description of the price

data set and empirical results of having evaluated and compared the three selected methods

are presented in the next chapter.



Chapter 5

Statistical Analysis and Discussion

5.1 Data Set Description

Nine produce items, presented in Table 5.1, were chosen for implementing price forecasting

methods. The choice was based on the knowledge of consumption levels, demand patterns,

and the frequency of purchase for conventional fresh produce; see Appendix A. Potatoes,

lettuce, tomatoes, and apples are the most demanded products among fresh produce. They

are purchased two to four times per month by consumers all over the U.S. Being generally

popular among consumers, onions are more consumed in the Western states. Whereas, it is

less consumed in the Northeast. Cabbage is also largely demanded nation-wide. Consumers

purchase it at least once a month.

Farm-level price series of organic commodities are currently available from three

sources—Hotline Printing and Publishing, Inc. (Hotline), the Rodale Institute, and the

Organic Farmers Agency for Relationship Marketing (OFARM). Hotline is the only for-

profit firm providing weekly organic price information at the national level. According to

the mail survey of existing and prospective subscribers to the Hotline Organic Commodity

FAX Service (Lohr 2005), more than half of the respondents are satisfied with the overall

quality of the information provided. Most of those who are able to make a comparison with

other price reporting services rate the Hotline service as either “good” or “excellent.”

The price data for the study were collected by Hotline through weekly telephone inter-

views of brokers and farmers throughout the United States. The list of sources is confiden-

tial and cannot be disclosed. Weekly prices were averaged for all locations from which data

has been collected. The methods used to assess representativeness were based on statistical

50
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testing and qualitative comparison of the states in the source list with geographic distribution

of production acreage and brokers (Lohr 2005).

In order to allow for a seasonality adjustment, series of weekly price observations were

regrouped into ten-days periods. Observations available for dates 1 through 10, 11 through 20,

and from 21 until the end of the month were placed into the group 1, 2, and 3, respectively. If

only one observation was available for a ten-days period, it was used itself; if two observations

were available, their average was used. If weekly observations were missing to obtain a ten-

days period value, the value was set to missing as well. As a result, 36 observations per year

were made available for estimation and forecasting. Regrouping weekly data into ten-days

periods were utilized to avoid the unevenly-spaced data problem that plagued the initial

series.

All data sets had some missing values. None of the standard software packages allows to

work with data contained missing values. There are many methods for handling missing data.

When a series does not have too many missing observations, it is possible to perform some

missing data replacement. A crude missing data replacement method is to plug in the mean

for the overall series. Another approach is to take the mean of the adjacent observations.

Missing values in exponential smoothing are replaced with their one-step-ahead forecasts and

so used in smoothing (Yaffee and McGee 2000). The last approach was found inappropriate

because three different forecasting methods were applied to the same data. As a practical

solution, missing ten-days values were linearly interpolated using the available boundary

points. Missing observations at the beginning and end of a series were cut off.

Each series was tested for white noise with Bartlett’s version of the Kolmogorov-Smirnov

test. The test involves examining a random sample from some unknown distribution in order

to test the null hypothesis that the unknown distribution is in fact the white noise. The

maximum vertical distance between the empirical distribution function and the hypothesized

distribution function serves as a measure of how well the functions resemble each other. The
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main advantage of this test is that it does not require any assumptions about the distribution

function of the organic price series.

With all commodities, p-values of the Kolmogorov-Smirnov statistic were reported to be

less than 10−4; see Appendix B. This lead to the rejection of the white noise null hypothesis

in every case.

Additionally, each series was tested for stationarity with the Augmented Dickey-Fuller

test at the maximum lag order p = 18. The Dickey-Fuller test checks whether the series is

stationary or non-stationary. The unit root process is a particular form of non-stationary

process. A simple unit root model with zero mean, and white noise errors (random walk)

is given by yt = γyt−1 + εt, where γ denotes the autoregressive coefficient. If γ = 1, the

process has a unit root and the non-stationarity null hypothesis cannot be rejected. The

Dickey-Fuller statistic is constructed as the conventional t-statistic for the null hypothesis

γ = 1 in a regression of 4yt = yt − yt−1 on yt and its p lags. The asymptotic distribution of

the test statistic is a peculiar one and is tabulated in many econometric textbooks.

The p-values of the Augmented Dickey-Fuller statistic all fell in the range of 10−3 to

10−2; see Appendix C. This resulted in having rejected the non-stationarity null hypothesis

for all commodities and the series having been considered stationary.

A series being non-white noise warrants that its expected future value is not the overall

mean of the series. Since the series were considered stationary, its expected future value

would not be the last observed value. No transformation would have been needed before

forecasting.

5.2 Model Specification and Statistical Results

A preliminary analysis of price series conducted with the use of SAS Time Series Forecasting

System, revealed autoregressive and seasonal components in the series. No significant moving

average process was detected. The high density of ten-days data allows using a set of indi-

vidual forecasting methods rather than a combination of approaches. All three method classes
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discussed in Chapter 3 are able to deal with data featuring seasonal variation. A seasonal

autoregressive (AR) model was chosen out of the autoregressive-moving-average (ARMA)

class of models. The additive version of the Holt-Winters (HW) exponential smoothing was

chosen out of the exponential smoothing family.

The width of the rolling estimation window was set at two years (m = 72 observations)

so that every observation in the year cycle would have its year-long lag included in the

estimation data set. Thus, for a series of length T and a specified lead of τ periods ahead,

T−m+1−τ = T−71−τ forecasts could be obtained for competition. Four forecast horizons:

next ten days with τ = 1, next month with τ = 3, two months ahead with τ = 6, and six

months ahead with τ = 18, were selected as being reasonable for the purpose of comparing

method performance in short-, mid-, and relatively long-term planes. The squared forecast

error was used as the loss function with all methods and lags. The squared prediction error is

a point estimator of variance. It reflects the philosophy of mean-variance analysis, is related

to the economic loss (DeCanio 1980), and therefore is more economically meaningful than

other types of loss function. Details of method implementation are set out below and the

SAS code is given in AppendixF.

Estimation of the AR model was performed in two stages. In the first stage, monthly

constants were estimated by regressing the price on a set of 12 month indicators. Residuals

from the first stage regression were used to estimate the autoregressive part of the model. The

latter was estimated by least squares, the least squares computation was performed by using

the Householder transformation method. The appropriate autoregressive order, up to 3 lags,

was chosen in each case by using the minimum Akaike Information Criterion (AIC) method.

Once the optimum lag order was identified, the forecast was produced by recombining the

first-stage monthly constant estimate and the predicted value from the autoregression part

of the model. SAS IML/TIMSAC modules were used to program the method (SAS Institute

Inc. 1999b).
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Estimation of the spectral decomposition (SD) model was performed by using the Finite

Fourier Transform (FFT) of the series and obtaining smoothed spectral density estimates.

The estimation window of length m allows obtaining m/2 Fourier cosine and sine coefficients.

These were used to obtain the respective values of the amplitude periodogram according to

Equation 3.22. Since the periodogram is a volatile and inconsistent estimator of the spec-

trum, spectral density estimates were produced by smoothing the periodogram. A triangular

symmetric kernel with 3 points on each side was used for smoothing. A simple form of model

identification in the frequency domain was chosen, based on the identification of peaks in

spectral density. A spectral density estimate ŝk, k = 1 . . . m/2 was considered to be a peak if

its value was greater than its neighbors, that is, if ŝk > ŝk−1 and ŝk > ŝk+1. Correspondingly,

amplitude coefficients for all non-peak harmonics were set to zero. Thus modified coefficients

were used to obtain the forecast value. In case the spectral density was found monotone, only

the series mean (the leading term in Equation 3.21) was used as the forecast for all periods.

SAS ETS/SPECTRA procedure was employed to program the method (SAS Institute Inc.

1999a).

Monthly seasonal factors were used for the HW method, one for each month in the year.

The starting values for the seasonal factors were computed from seasonal averages over the

first complete seasonal cycle of 36 observations. The weights for updating the seasonal factors

were set at ω3 = ω2 = 0.25 and ω1 = 0.2. SAS ETS/FORECAST procedure was employed

to program the method (SAS Institute Inc. 1999a).

After a forecast was generated at any position of the rolling window, the following infor-

mation was stored:

a. The squared residual for the last observation m in the estimation window Lm = (ŷm−
ym)2;

b. The squared forecast error at the specified lead Lm,τ = (ŷm+τ − ym+τ )
2; and
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c. The direction of change for the forecast price d̂m+τ = 1[ŷm+τ − ym > 0] and the actual

price dm+τ = 1[ym+τ − ym > 0].

The output (a) and (b) was used to conduct the Giacomini-White test of conditional

predictive ability. The squared forecast errors from (b) were used to obtain quantiles from

their distribution for a derivative of quantile analysis. The indicators (c) were used for the

Henriksson-Merton test of the direction-of-change.

Forecast quality was evaluated using the root mean squared error (RMSE) for point

forecast (Table 5.2), and the Henriksson-Merton test for direction-of-change comparison

(Table 5.3).

The precision of AR forecasts is notably better in both magnitude and direction-of-change

sense. RMSE of AR forecasts are smaller, for all commodities and all horizons, than those

for SD and WH forecasts, sometimes by two or three times. Values of RMSE increase as the

forecast horizon increases; that is, the precision of relatively long-term forecasts is lower than

that for short-term forecasts. RMSE for avocados and strawberries are higher as compare to

the rest of organic items. One of the possible reasons is larger number of missing observations

in the series relative to the number of missing price values for another commodities. It is

impossible to make deeper analysis about the difference in the RMSE magnitude for different

commodities.

Values of the Henriksson-Merton criterion are significantly greater than unity for most

commodities, with both AR and SD model, while those for WH model were often found

insignificant. The reason for mostly poor fits with WH model appears to be an autoregressive

rather than moving-average nature of the data-generating process and problems with the

automatic choice of smoothing weights.

Although RMSE does point at the best performing method for the considered data series,

this aggregate measure does not allow formal testing. Therefore, a statistical technique, such

as the Giacomini-White test, must be employed to verify if the method yielding the minimum

RMSE can indeed boast a better predictive ability.



57

T
ab

le
5.

2:
R

o
ot

M
ea

n
S
q
u
ar

ed
E

rr
or

fo
r

O
rg

an
ic

P
ro

d
u
ce

F
o
r
e
c
a
st

H
o
r
iz

o
n

t
e
n

d
a
y
s

o
n
e

m
o
n
t
h

t
w

o
m
o
n
t
h
s

si
x

m
o
n
t
h
s

A
R

SD
H

W
A

R
SD

H
W

A
R

SD
H

W
A

R
SD

H
W

a
p
p
l
e
s

0.
09

4
0.

15
2

0.
11

2
0.

12
0

0.
13

8
0.

14
5

0.
13

9
0.

15
4

0.
16

6
0.

16
3

0.
19

0
0.

27
3

a
v
o
c
a
d
o
s

0.
25

4
0.

38
7

0.
27

2
0.

33
9

0.
34

8
0.

34
4

0.
36

9
0.

37
8

0.
38

6
0.

40
5

0.
41

2
0.

46
9

c
a
b
b
a
g
e

0.
08

1
0.

12
0

0.
11

6
0.

11
8

0.
12

1
0.

15
3

0.
13

4
0.

14
0

0.
17

6
0.

15
3

0.
17

2
0.

29
0

l
e
m
o
n
s

0.
15

0
0.

34
1

0.
17

2
0.

20
4

0.
34

4
0.

21
8

0.
21

6
0.

37
8

0.
24

3
0.

21
4

0.
32

6
0.

34
6

l
e
t
t
u
c
e

0.
17

8
0.

23
2

0.
21

8
0.

22
6

0.
24

0
0.

27
9

0.
24

5
0.

26
7

0.
32

1
0.

25
2

0.
27

7
0.

45
6

o
n
io

n
s

0.
08

0
0.

14
3

0.
11

1
0.

11
5

0.
13

9
0.

14
5

0.
13

5
0.

15
7

0.
16

7
0.

15
2

0.
15

7
0.

23
1

p
o
t
a
t
o
e
s

0.
08

5
0.

12
4

0.
10

5
0.

10
2

0.
12

2
0.

13
3

0.
11

4
0.

14
1

0.
15

3
0.

11
8

0.
14

8
0.

22
3

st
r
a
w

b
e
r
r
ie

s
0.

40
0

0.
73

7
0.

55
9

0.
59

2
0.

72
0

0.
76

0
0.

70
9

0.
83

4
0.

89
5

0.
89

2
0.

91
9

1.
43

5
t
o
m
a
t
o
e
s

0.
14

8
0.

20
1

0.
18

8
0.

20
5

0.
21

8
0.

23
8

0.
21

4
0.

24
2

0.
26

3
0.

21
4

0.
26

0
0.

34
6

T
he

en
tr

ie
s

ar
e

ro
ot

m
ea

n
sq

ua
re

d
er

ro
rs

fo
r

se
as

on
al

au
to

re
gr

es
si

on
(A

R
),

sp
ec

tr
al

de
co

m
po

si
ti

on
(S

D
),

an
d

th
e

ad
di

ti
ve

H
ol

t-
W

in
te

rs
(H

W
)

m
et

ho
d.



58

T
ab

le
5.

3:
H

en
ri

k
ss

on
-M

er
to

n
C

ri
te

ri
on

fo
r

O
rg

an
ic

P
ro

d
u
ce

F
o
r
e
c
a
st

H
o
r
iz

o
n

t
e
n

d
a
y
s

o
n
e

m
o
n
t
h

t
w

o
m
o
n
t
h
s

si
x

m
o
n
t
h
s

A
R

SD
H

W
A

R
SD

H
W

A
R

SD
H

W
A

R
SD

H
W

a
p
p
l
e
s

1.
04

1.
06

1.
04

1.
17

**
1.

12
**

1.
08

*
1.

24
**

1.
20

**
1.

13
**

1.
53

**
1.

31
**

1.
09

*
a
v
o
c
a
d
o
s

1.
04

1.
03

1.
03

1.
24

**
1.

17
**

1.
13

**
1.

42
**

1.
35

**
1.

33
**

1.
35

**
1.

36
**

1.
27

**
c
a
b
b
a
g
e

1.
24

**
1.

10
**

1.
07

1.
33

**
1.

28
**

1.
06

1.
41

**
1.

35
**

1.
16

**
1.

45
**

1.
30

**
0.

87
l
e
m
o
n
s

1.
07

1.
01

1.
06

1.
36

**
1.

11
**

1.
24

**
1.

68
**

1.
19

**
1.

58
**

1.
82

**
1.

79
**

1.
75

**
l
e
t
t
u
c
e

1.
15

**
1.

19
**

1.
11

**
1.

27
**

1.
22

**
1.

11
**

1.
18

**
1.

08
*

0.
95

1.
36

**
1.

21
**

0.
93

o
n
io

n
s

1.
04

1.
08

**
0.

99
1.

28
**

1.
28

**
1.

12
**

1.
42

**
1.

44
**

1.
31

**
1.

63
**

1.
54

**
1.

31
**

p
o
t
a
t
o
e
s

1.
22

**
1.

21
**

1.
20

**
1.

28
**

1.
26

**
1.

28
**

1.
46

**
1.

35
**

1.
39

**
1.

58
**

1.
44

**
1.

30
**

st
r
a
w

b
e
r
r
ie

s
1.

14
**

1.
19

**
0.

90
1.

34
**

1.
24

**
1.

00
1.

42
**

1.
20

**
1.

16
**

1.
58

**
1.

41
**

1.
29

**
t
o
m
a
t
o
e
s

1.
17

**
1.

23
**

1.
14

**
1.

37
**

1.
35

**
1.

24
**

1.
56

**
1.

42
**

1.
35

**
1.

45
**

1.
37

**
1.

08

**
—

si
gn

ifi
ca

nt
at

5%
le

ve
l;

*
—

si
gn

ifi
ca

nt
at

10
%

le
ve

l.
T

he
en

tr
ie

s
ar

e
th

e
H

en
ri

ks
so

n-
M

er
to

n
cr

it
er

ia
fo

r
se

as
on

al
au

to
re

gr
es

si
on

(A
R

),
sp

ec
tr

al
de

co
m

po
si

ti
on

(S
D

),
an

d
th

e
ad

di
ti

ve
H

ol
t-

W
in

te
rs

(H
W

)
m

et
ho

d.



59

In order to select the best performing method, the formal Giacomini-White test of equal

conditional predictive accuracy was conducted. The table in Appendix E contains the results

of pairwise tests of equal conditional predictive ability of AR, SD, and HW for all price

series, with the squared error loss function.

The Giacomini-White test is a new approach in predictive ability comparison. That is

why, in addition to it, a derivative of quantile analysis was implemented. The stochastic

dominance principle was used for quantile analysis.

With two alternative states of nature present, state A stochastically dominates state B

(in the first degree) if the probability of obtaining no more than a given level of wealth for

state A is less than or equal to the probability of obtaining no more than the same level of

wealth for state B. Taking this definition of stochastic dominance as the basis for comparison,

a forecasting method A dominates (in the first degree) method B, for a selected loss function,

if the probability of getting a loss less or equal to some value with method A is higher than

with method B, for any loss value.

The comparison was performed using the squared prediction error as the statistical cri-

terion of loss and quantiles from the empirical distribution function of squared prediction

errors. Quantiles are essentially points taken at regular vertical intervals from the cumulative

distribution function of a random variable. In our study, quantiles represent the percentage

of data points below a given RMSE magnitude; see Figure 5.1.

Since it is generally hard to attain the first order stochastic dominance in samples of

moderate size, the dominance requirements were relaxed so as to apply to a number of key

quantiles, instead of all quantiles. The key quantiles were chosen to be 2.5%, 20%, 50% (the

median), 75%, and 97.5%. Quantile tables are presented in AppendixD.

Tables 5.4 and 5.5 summarize test results, which are fully presented in AppendixE.

Table 5.4 presents combined results of both quantile analysis and the Giacomini-White test.

Eighty three percent of cases where the method could be chosen on the basis of quantile

analysis were confirmed by the Giacomini-White test. According to both quantiles and the
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Figure 5.1: Quantile Analysis
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In Panel (a), Method A dominates Method B for the selected 25%, 50%, and 75%
quantiles because their values are all smaller with Method A than Method B.
Panel (b) presents a case of no clear (first-degree) dominance relationship between
Methods A and B for these quantiles.
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Table 5.4: Comparison of Quantile Analysis and Giacomini-White Tests

Forecast Horizon

ten days one month two months six months

apples AR AR AR —
(AR) (AR) (AR) (AR)

avocados — — — —
(—) (—) (—) (—)

cabbage AR — — AR
(AR) (—) (—) (AR)

lemons AR AR AR AR
(AR) (—) (AR) (AR)

lettuce AR — AR AR
(AR) (—) (—) (AR)

onions AR AR AR AR
(AR) (AR) (AR) (—)

potatoes AR AR AR AR
(AR) (AR) (AR) (AR)

strawberries AR — AR —
(AR) (AR) (AR) (AR)

tomatoes AR AR AR AR
(AR) (—) (AR) (AR)

The entries without parentheses denote the best performing method among
seasonal autoregression, spectral decomposition, and the additive Holt-Winters
based on quantile analysis. Letters in parentheses indicate the best performing
method according to the Giacomini-White test. “—” symbolizes the equivalence
of the three forecasting methods.
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Giacomini-White test results, AR is broadly the best forecasting method as compared to

both SD and HW methods for all produce items and all horizons.

Results of pairwise comparisons of SD and HW can be found in Table 5.5. Seventy eight

percent of the quantile analysis results were confirmed by the Giacomini-White test. Based on

both quantiles and the Giacomini-White test results, HW appears to be the best forecasting

method for the ten-days-ahead forecast horizon. SD outperforms HW for mid-term and

relatively long-term forecasts.

Given the available data and the quadratic loss function, the results indicate that a

forecast user would be better off using the seasonal autoregressive model as a forecasting

technique for all forecast horizons. For the purpose of short-term forecasting, such as ten days

ahead, the additive Holt-Winters method can be reasonably employed along with a seasonal

autoregressive model, whereas spectral decomposition would likely have resulted in decreased

forecast accuracy. For mid-term and long-term forecasts, however, spectral decomposition

along with a seasonal autoregressive model would promise better forecasts than the additive

Holt-Winters method.

In order to see the complete picture, one should also look at method performance across

commodities. The question we pose is: are there any commodities for which the methods

perform better and, if so, what might be the reason?

To answer the first part in a statistically valid way, the Friedman test (non-parametric

ANOVA) was performed. This test (Conover 1999) is similar to the usual parametric method

of testing the null hypothesis of no treatment difference (two-way ANOVA). Friedman’s

method makes use of only ranks of observations within each block, not their actual values.

This makes their distribution immaterial. For the purpose of the test, commodities were con-

sidered treatments and methods played the role of blocks. Commodity RMSE were averaged

across all forecast horizons and normalized by average commodity prices. The Friedman test

allows for correlation between treatment effects, which is useful when dealing with comple-

ment or substitute goods.
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The χ2[8] distributed test statistic was 21.51, which leads to the rejection of the null

hypothesis of no forecast quality difference among the nine commodities. The null hypothesis

is rejected at any reasonable confidence level, since it has the p-value of 0.006. Therefore,

we can conclude that prices for some commodities can be better predicted with any method

than others.

To see how the performance differs across commodities, Dunn’s post-test pairwise com-

parisons (Conover 1999) were conducted. This particular implementation of the post-test

makes use of the asymptotic t-distribution of the absolute difference of ranks across blocks.

At the borderline tolerance of 0.006 above, three commodity groups can be identified by

forecast quality:

• apples and potatoes; (the highest precision)

• cabbage, lemons, onions, and tomatoes;

• avocados, strawberries, and lettuce (the lowest precision).

The post-test comparison results showed that price forecast quality differs across com-

modities. The discussion about some options to manage price risk is followed.

The grouping of commodities by their forecast quality does not lend itself to any evident

explanation. It does not align with the OFRF survey results, where it may appear that fruit

producers who experienced more market shrinkage than vegetable producers should be facing

more unpredictable prices; see Figure 5.2. A significant relationship comes to light when

analyzing the correlation between normalized commodity RMSE and commodity-specific

factors.

It was found that the correlation between the normalized RMSE and the consumption

share of the commodity in total consumption of fresh produce is −0.6. The correlation of

the normalized RMSE and the standard deviation of price series is 0.5. Both values indicate

the presence of relatively high correlation.
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Table 5.5: Comparison of Spectral Decomposition and Holt-Winters Method

Forecast Horizon

ten days one month two months six months

apples HW — SD SD
(HW) (SD) (—) (SD)

avocados HW — — —
(HW) (—) (—) (SD)

cabbage HW SD SD SD
(HW) (SD) (SD) (SD)

lemons HW HW HW —
(HW) (HW) (HW) (—)

lettuce — SD SD SD
(—) (SD) (SD) (SD)

onions HW — SD SD
(HW) (SD) (—) (SD)

potatoes HW SD SD SD
(HW) (SD) (SD) (SD)

strawberries HW — — SD
(HW) (SD) (SD) (SD)

tomatoes HW — SD SD
(HW) (—) (—) (SD)

The entries without parentheses indicate the best performing method among
spectral decomposition and the additive Holt-Winters by quantile analysis. Let-
ters in parentheses denote the best performing method as found through the
Giacomini-White test. “—” symbolizes the equivalence of the two forecasting
methods.
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Figure 5.2: Price Effect on Market Expansion by Commodity Category, 2001

(a) Market Shrinkage64% 58%
23% 16% 17%32% 20% 6% 1% 4%0%10%20%30%40%50%60%70%

down more than10% down less than10% steady up  less than 10% up more than10%Average Price Change
Percentage of Farm
ers FruitVegetables

(b) Market Expansion

2% 3% 18%
43% 31%

0%
18% 29% 39% 44%

0%5%10%15%
20%25%30%35%
40%45%50%

down more than10% down less than10% steady up  less than 10% up more than10%Average Price Change
Percentage of Farm
ers FruitVegetables

Source: Fourth National Organic Farmers Survey, OFRF
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Larger organic produce markets appear to have less price volatility and behave in a more

predictable way. This result is broadly in line with economic theory which states that larger

markets with many agents more resemble the perfect competition environment (Ferris 1997).

Information is more freely available in larger markets. Farmers that supply to large markets

are less subject to the oligopsonic market control by retailers (McLaughlin 2004).

Another factor is the varying perishability of produce. Table 5.6 reveals a relationship

between perishability and forecast quality. Apparently, supply and demand for more per-

ishable commodities experience more sporadic shocks, which boosts price volatility in these

markets and makes the prices less predictable. It was mentioned in Chapter 2 that buyers

and sellers of fresh produce generally tend to be averse to opportunistic transactions and

do engage in contractual agreements. This stabilizes prices. One can therefore recommend

producers of the commodities in the least predictable group to consider forward contracting

to damp down shocks and improve their profits.

The OFRF survey results show that only 14 percent of vegetable product produced was

sold under forward contracts in 2001. While 86 percent of vegetable product was delivered on

the spot market. Fruit producers, on the contrary, prefer reducing price risk. Sixty one percent

of fruit product produced was sold under forward contracts versus 39 percent delivered on

the spot market (Walz 2004).

Alternatively, farmers can participate in marketing order programs in order to manage

price risk. Marketing orders assist farmers in allowing them to collectively work to solve

marketing problems. Marketing orders are binding on all individuals and businesses who are

classified as “handlers” in a geographic area covered by the order. In 2002, only 9 percent of

organic farmers participated in marketing order programs (Walz 2004).

The predictability of price is positively related to the commodity’s market size. This

emphasizes the role of better price forecasts for the agents— farmers and traders—who

deal in less common organic produce. Economic theory tells us that better price information

improves profits of the producer. This confirms the claim made at the very beginning of
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Table 5.6: Forecast Quality and Produce Perishability

Item Forecast Quality† Perishability‡

AR SD HW

apples 1 1 1 low

potatoes 2 2 3 low

lemons 3 7 2 low

tomatoes 5 3 4 high

onions 4 4 5 low

cabbage 6 5 6 moderate

lettuce 7 6 7 high

strawberries 8 8 8 high

avocados 9 9 9 no data

† For each method, forecast quality is given by within-method
ranks of normalized commodity RMSE. The highest forecast
quality is 1; the lowest quality is 9. Commodities are arranged
in descending order according to their average ranks.
‡Relative produce perishability (Hardenburg et al. 1986); cat-
egories “very low” and “low,” “very high” and “high” merged
to simplify exposition.
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the study: organic producers do need better farmgate price forecasts to grow. Diversifica-

tion could also be instrumental. Farmers can be recommended to hedge themselves against

price volatility risks by adding a commodity from a better predictable group to their pro-

duction assortment. Diversification across a range of marketing channels—consumer-direct,

direct-to-retail, and wholesale-market— can be employed by organic fresh producers as well.

Alternatively, farmers can diversify delivery of the product across geographic regions.

The influence of commodity consumption share also reveals an important role of demand

factors in the farmgate price formation. This study deals with the prediction of farm-level

prices only. The downstream effects of pricing behavior of wholesalers and retailers are not

considered. Forecasting prices at a wholesale and retail level coupled with the farmgate price

may thus improve the general accuracy of forecasts.

More than half of farmers that participated in the OFRF survey stated that they had

not experienced much price volatility. This was demonstrated with Figure 1.3 in Chapter 1.

It is reasonable to conclude that based on the positive correlation between the forecast

accuracy and price volatility, at least 50 percent of the OFRF survey respondents would

receive price forecasts of relatively high quality. Since the distribution of farmers income is

roughly symmetric in volatility categories (Figure 1.4), one cannot expect price forecasts to

influence a particular income category of organic farmers.



Chapter 6

Conclusions

The organic food market is one of the most promising emerging sectors of the U.S. economy.

A substantial consumer demand for organic produce leads to an increasing interest in this

sector by farmers, wholesalers, and retailers. This emphasizes the importance of farm-level

price information in decision-making.

Simultaneous equations models, being the most popular method of equilibrium price

determination, require a wide range of data. Commodity price series are usually the only

information available to industry forecast users. Self-contained forecasting methods were

found to be as reliable as large, equilibrium-based models operated by governmental agencies.

To be considered for industry application, self-contained price forecasting methods should

be easy to implement and give quick and relatively accurate price forecasts. The following

passages are a brief recap of what this study set out to do, what was done, and what was

achieved.

Three forecasting methods —seasonal autoregression, spectral decomposition, and the

additive Holt-Winters exponential smoothing— were selected, implemented and extensively

tested at four planning horizons with nine produce items. A problem was considered that

decision-makers face: how to select the best forecasting method from a set of several com-

peting ones. Forecast quality is evaluated by using the RMSE for the comparison at an

aggregate level, and the Henriksson-Merton test for the direction-of-change comparison. For

comparing several forecasting techniques, a test of conditional predictive ability, proposed

by Giacomini and White (2003), along with a derivative of quantile analysis were discussed

and implemented.
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The best performing method was found among these three industry-oriented forecasting

techniques. Based on both quantile analysis and the Giacomini-White test, seasonal autore-

gression is the best forecasting method, compared to spectral decomposition and the Holt-

Winters exponential smoothing for all produce and all horizons. Choosing between spectral

decomposition and the Holt-Winters exponential smoothing, the latter provides better fore-

casts for the ten days horizon, while spectral decomposition is preferable for one, two, and

six months horizons.

A significant positive correlation between the forecast precision and market size and a

negative one between the precision and commodity price volatility were found. This empha-

sized the role of better price forecasts for agents who deal in less common organic produce and

more perishable items. A confirmation for the claim that the organic produce industry needs

better farmgate price forecasts to grow was provided. Organic farmers were recommended to

consider contracting, marketing order programs, and diversification. The relevance of joint

forecasting of prices in the whole marketing channel of the product was underlined.

Price risks were found to be significant and forecasting models had varying degrees of

success across different commodities. The study demonstrated the validity of a key set of

models and tools. Market participants, however, need more sophisticated models and forecast

evaluation tools, to compare and assess the value of forecasts from a range of models.

As a result of the study, market participants were provided with a methodology of appli-

cation, evaluation, and comparison of price forecasting methods for organic fresh produce.

Factors that influenced the forecast performance across commodities were discussed. Con-

sidering those factors can help the market participants evaluate the riskiness of various crops

and crop combinations.

A seemingly simple matter of choosing between several forecasting methods is not so

simple indeed. It requires a large scope of analysis to select a good forecaster’s tool, provided

that one approaches the issue thoroughly and rigorously. The present study is yet a small
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step toward supplying the organic industry with a set of forecasting tools and guides. Below

are some of the directions for future study, as were identified throughout the present study:

• Adaptation of forecasting methods for cases when the data are unevenly-spaced. This

kind of data is more common in agricultural economics rather than data sets of evenly-

spaced observations.

• Missing data are a common problem not only for agricultural data but for economic

data in general. More effective techniques need to be implemented instead of linear

spline interpolation used in the present research. A kernel approach with varying

weights may be one of them.

• Instead of applying a forecasting method to one commodity at a time, prices for a

group of products can be forecast jointly, in order to account for an effect of substitu-

tion amongst commodities. Spectral decomposition and multivariate ARMA allow to

conduct such a kind of analysis.

• Combining several methods. Even though the seasonal ARMA was found to be the

best performing method, ARMA forecasts can be combined with those from the Holt-

Winters method and spectral decomposition to further improve the forecast quality.

Various statistical and heuristic methods exist to combine forecasts, and those are

worth a closer look.

• A more in-depth analysis of forecast performance across commodities. Such an analysis

would require more information about production technologies and costs.

Another direction for future research comes from the insufficiency of price forecasts for

the farmgate level only. Three price spreads (differentials) matter in the decision-making by

organic industry agents; these are: farm-wholesale, wholesale-retail, and farm-retail spreads.

The analysis in this study shows the importance of demand-driven factors in the farmgate

price formation. This means that the above spreads should better be forecast together with
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the farm-level price rather than considering the latter in isolation. Such a joint forecasting

would necessitate the development of an extensive forecasting system that takes into account

mathematically the interaction between the farm, wholesale, and retail stages.

Finally, it is important to find the channels through which results of the study can be

disseminated among market participants. Future work should include liaison with the farm

organizations or trade associations which organic market participants belong to, in order to

enhance models and improve forecasting techniques.
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Appendix A

Conventional Fresh Produce Characteristics

Item Frequency of purchase Region† Percentage of
consumption‡

potatoes twice a month U.S. 14.6
lettuce no data U.S. 7.3
tomatoes once a week U.S. 6.0
onions no data West/Northeast 6.0
apples twice a month U.S. 5.2
cabbage once a month U.S. 2.7
cucumbers twice a month Northeast/West 2.2
strawberries no data no data 1.5
lemons no data no data 1.1
avocados no data West/Northeast 0.8
cauliflower once a month Midwest/South 0.5
asparagus once a month West/South 0.3
blueberries less once a month Northeast/West 0.3

†The entries indicate the regional impact on produce purchases. “U.S.” stands for
a product purchased nationwide; “West/South” indicates that western part of the
U.S. is the dominating region in product consumption while the southern part is the
least-consuming region (FT 2003).
‡ The entries are the percentage of product consumption in total fresh produce
consumption (USDA/ERS 2004). Commodities are arranged in descending order
according to their consumption share.
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Appendix B

Kolmogorov-Smirnov Test Results

Commodity Test statistic†

apples 0.717
avocados 0.715
cabbage 0.654
lemons 0.790
lettuce 0.547
onions 0.787
potatoes 0.685
strawberries 0.776
tomatoes 0.578

†All tests are significant at 1% level.
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Appendix C

Augmented Dickey-Fuller Test Results

Commodity Test statistic†

apples -4.09
avocados -4.51
cabbage -5.04
lemons -4.82
lettuce -5.60
onions -5.25
potatoes -4.49
strawberries -5.01
tomatoes -6.06

†All tests are significant at 1% level.
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Appendix D

Quantiles of Squared Prediction Errors

Forecasting Quantiles, %
Method 97.5 75.0 50.0 20.0 2.5

APPLES

horizon = ten days

AR 0.050 0.011 0.003 0.001 0.000

SD 0.106 0.029 0.016 0.006 0.000

HW 0.066 0.013 0.005 0.002 0.000

horizon = one month

AR 0.073 0.019 0.007 0.002 0.000

SD 0.089 0.026 0.011 0.004 0.000

HW 0.125 0.023 0.009 0.003 0.000

horizon = two months

AR 0.082 0.027 0.011 0.002 0.000

SD 0.121 0.031 0.013 0.003 0.000

HW 0.158 0.031 0.013 0.003 0.000

horizon = six months

AR 0.108 0.039 0.013 0.004 0.000

SD 0.168 0.047 0.018 0.003 0.000

HW 0.275 0.108 0.048 0.014 0.000

AVOCADOS

horizon = ten days

AR 0.404 0.066 0.019 0.005 0.000

SD 0.817 0.205 0.063 0.014 0.000

HW 0.287 0.093 0.034 0.009 0.000

horizon = one month

AR 0.628 0.153 0.055 0.011 0.000

SD 0.647 0.156 0.051 0.011 0.000

HW 0.498 0.172 0.054 0.013 0.000

horizon = two months

AR 0.636 0.175 0.065 0.016 0.000

SD 0.655 0.202 0.069 0.014 0.000

HW 0.599 0.213 0.073 0.017 0.000

horizon = six months

AR 0.665 0.258 0.082 0.014 0.000

SD 0.619 0.258 0.114 0.032 0.000

HW 0.920 0.326 0.093 0.020 0.000
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Forecasting Quantiles, %
Method 97.5 75.0 50.0 20.0 2.5

CABBAGE

horizon = ten days

AR 0.053 0.005 0.002 0.000 0.000

SD 0.072 0.017 0.005 0.001 0.000

HW 0.070 0.017 0.005 0.001 0.000

horizon = one month

AR 0.101 0.012 0.004 0.001 0.000

SD 0.086 0.019 0.005 0.001 0.000

HW 0.110 0.029 0.009 0.003 0.000

horizon = two months

AR 0.112 0.017 0.005 0.001 0.000

SD 0.102 0.030 0.007 0.001 0.000

HW 0.157 0.044 0.012 0.004 0.000

horizon = six months

AR 0.126 0.023 0.006 0.001 0.000

SD 0.149 0.035 0.010 0.001 0.000

HW 0.438 0.114 0.026 0.008 0.000

LEMONS

horizon = ten days

AR 0.138 0.023 0.008 0.001 0.000

SD 0.395 0.171 0.086 0.025 0.000

HW 0.153 0.037 0.011 0.002 0.000

horizon = one month

AR 0.246 0.052 0.014 0.003 0.000

SD 0.401 0.163 0.080 0.030 0.000

HW 0.246 0.063 0.018 0.004 0.000

horizon = two months

AR 0.291 0.060 0.015 0.003 0.000

SD 0.551 0.196 0.081 0.031 0.001

HW 0.301 0.078 0.025 0.005 0.000

horizon = six months

AR 0.274 0.059 0.019 0.004 0.000

SD 0.547 0.156 0.061 0.018 0.000

HW 0.447 0.160 0.076 0.019 0.000
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Forecasting Quantiles, %
Method 97.5 75.0 50.0 20.0 2.5

LETTUCE

horizon = ten days

AR 0.183 0.030 0.009 0.002 0.000

SD 0.273 0.060 0.023 0.004 0.000

HW 0.230 0.064 0.015 0.004 0.000

horizon = one month

AR 0.315 0.059 0.020 0.005 0.000

SD 0.261 0.072 0.026 0.005 0.000

HW 0.382 0.097 0.035 0.005 0.000

horizon = two months

AR 0.327 0.074 0.025 0.006 0.000

SD 0.374 0.092 0.035 0.006 0.000

HW 0.439 0.149 0.045 0.010 0.000

horizon = six months

AR 0.302 0.074 0.022 0.005 0.000

SD 0.443 0.091 0.036 0.010 0.000

HW 0.664 0.303 0.131 0.028 0.000

ONIONS

horizon = ten days

AR 0.043 0.007 0.002 0.000 0.000

SD 0.140 0.023 0.008 0.002 0.000

HW 0.076 0.015 0.005 0.001 0.000

horizon = one month

AR 0.076 0.016 0.004 0.001 0.000

SD 0.128 0.022 0.008 0.002 0.000

HW 0.116 0.029 0.008 0.001 0.000

horizon = two months

AR 0.113 0.021 0.007 0.001 0.000

SD 0.158 0.026 0.010 0.002 0.000

HW 0.186 0.037 0.012 0.002 0.000

horizon = six months

AR 0.162 0.022 0.007 0.001 0.000

SD 0.166 0.026 0.010 0.003 0.000

HW 0.402 0.060 0.022 0.005 0.000
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Forecasting Quantiles, %
Method 97.5 75.0 50.0 20.0 2.5

POTATOES

horizon = ten days

AR 0.045 0.008 0.002 0.001 0.000

SD 0.084 0.020 0.007 0.002 0.000

HW 0.066 0.013 0.005 0.001 0.000

horizon = one month

AR 0.051 0.013 0.005 0.001 0.000

SD 0.088 0.019 0.006 0.001 0.000

HW 0.102 0.021 0.007 0.001 0.000

horizon = two months

AR 0.068 0.017 0.005 0.001 0.000

SD 0.097 0.028 0.007 0.001 0.000

HW 0.139 0.029 0.008 0.002 0.000

horizon = six months

AR 0.077 0.015 0.006 0.001 0.000

SD 0.102 0.026 0.010 0.003 0.000

HW 0.235 0.073 0.022 0.005 0.000

STRAWBERRIES

horizon = ten days

AR 1.158 0.150 0.027 0.005 0.000

SD 2.905 0.639 0.203 0.035 0.001

HW 2.767 0.228 0.055 0.020 0.000

horizon = one month

AR 1.790 0.452 0.127 0.026 0.001

SD 3.128 0.544 0.155 0.030 0.000

HW 3.466 0.413 0.114 0.037 0.001

horizon = two months

AR 2.399 0.619 0.147 0.029 0.001

SD 4.412 0.818 0.248 0.036 0.001

HW 5.684 0.666 0.166 0.046 0.000

horizon = six months

AR 3.716 1.081 0.236 0.057 0.002

SD 3.983 1.218 0.251 0.038 0.000

HW 11.183 3.618 0.336 0.064 0.000
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Forecasting Quantiles, %
Method 97.5 75.0 50.0 20.0 2.5

TOMATOES

horizon = ten days

AR 0.110 0.028 0.008 0.002 0.000

SD 0.215 0.049 0.017 0.004 0.000

HW 0.170 0.045 0.014 0.004 0.000

horizon = one month

AR 0.230 0.058 0.011 0.003 0.000

SD 0.257 0.062 0.019 0.004 0.000

HW 0.244 0.084 0.025 0.006 0.000

horizon = two months

AR 0.248 0.059 0.014 0.003 0.000

SD 0.329 0.077 0.022 0.005 0.000

HW 0.332 0.105 0.028 0.006 0.000

horizon = six months

AR 0.263 0.056 0.014 0.003 0.000

SD 0.459 0.093 0.020 0.004 0.000

HW 0.530 0.180 0.047 0.017 0.000



Appendix E

Giacomini-White Test Results

Forecast Horizon

ten days one month two months six months

AR SD AR SD AR SD AR SD

APPLES

SD 0.000 0.005 0.035 0.000

(AR) (AR) (AR) (AR)

HW 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000

(AR) (HW) (AR) (SD) (AR) (—) (AR) (SD)

AVOCADOS

SD 0.000 0.029 0.245 0.131

(AR) (AR) (—) (—)

HW 0.091 0.000 0.657 0.167 0.211 0.765 0.000 0.000

(—) (HW) (—) (—) (—) (—) (AR) (SD)

CABBAGE

SD 0.000 0.338 0.422 0.003

(AR) (—) (—) (AR)

HW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(AR) (HW) (AR) (SD) (AR) (SD) (AR) (SD)

LEMONS

SD 0.000 0.000 0.000 0.000

(AR) (AR) (AR) (AR)

HW 0.000 0.000 0.138 0.000 0.004 0.000 0.000 0.344

(AR) (HW) (—) (HW) (AR) (HW) (AR) (—)

LETTUCE

SD 0.000 0.132 0.055 0.001

(AR) (—) (—) (AR)

HW 0.000 0.166 0.000 0.000 0.000 0.000 0.000 0.000

(AR) (—) (AR) (SD) (AR) (SD) (AR) (SD)
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Forecast Horizon

ten days one month two months six months

AR SD AR SD AR SD AR SD

ONIONS

SD 0.000 0.000 0.000 0.178

(AR) (AR) (AR) (—)

HW 0.000 0.000 0.000 0.000 0.000 0.241 0.000 0.000

(AR) (HW) (AR) (SD) (AR) (—) (AR) (SD)

POTATOES

SD 0.000 0.000 0.000 0.000

(AR) (AR) (AR) (AR)

HW 0.000 0.000 0.000 0.002 0.000 0.010 0.000 0.000

(AR) (HW) (AR) (SD) (AR) (SD) (AR) (SD)

STRAWBERRIES

SD 0.000 0.000 0.000 0.010

(AR) (AR) (AR) (AR)

HW 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(AR) (HW) (AR) (SD) (AR) (SD) (AR) (SD)

TOMATOES

SD 0.000 0.227 0.013 0.000

(AR) (—) (AR) (AR)

HW 0.000 0.000 0.000 0.177 0.000 0.096 0.000 0.000

(AR) (HW) (AR) (—) (AR) (—) (AR) (SD)

The table shows the best performing method among seasonal autoregression (AR), spectral
decomposition (SD), and the additive Holt-Winters (HW) methods according to the Giacomini-
White test. The entries are the p-values of the test of equal conditional predictive accuracy for
the methods in the corresponding row and column. The letters within parentheses indicate the
better performing method. “—” denotes the equivalence of the corresponding methods. Tests
were conducted at a 5% significance level.



Appendix F

SAS Code for Rolling Window Forecasting

dm out ’clear’ continue; dm log ’clear’ continue; options nocenter
nodate pageno=1 ls=255;

%macro app;
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
%let nme=Tomatoes; /*set commodity name*/
%let sl = 0.05; /*set significance level*/
%let wnd=72; /*set size of rolling window WND*/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
%let ld=1;

proc iml;
start main;
use work.Timeline; read all into T; close work.Timeline;
TN = nrow(T);

do i=1 to TN; T[i]=datepart(T[i]); end;

use work.Prices_in; read all into X; close work.Prices_in;
N = nrow(X);

do i=1 to N;
X[i,1]=datepart( X[i,1]);
if (X[i,2]=0) then X[i,2]=.;

end;

X1 = T||j(TN,2,0);
do i=1 to (TN-1);

do j=1 to N;
if (X[j,1]>=X1[i,1] & X[j,1]<X1[i+1,1]) then do;

X1[i,2] = X1[i,2]+X[j,2];
X1[i,3] = X1[i,3]+1;

end;
end;

end;
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flag = 1;
do i=1 to TN while(flag=1);

if X1[i,3]^=0 then flag=0;
end;
lo = i-1;

flag = 1;
do i=TN to 1 by -1 while(flag=1);

if X1[i,3]^=0 then flag=0;
end;
up = i+1;

X = X1[lo:up,];
N = nrow(X);
call symput("dsize",char(N));

do i=1 to N;
if (X[i,2]^=0 & X[i,3]^=0) then X[i,2]=X[i,2]/X[i,3];
else X[i,2]=.;

end;

X = X[,1:2];

do i=2 to (N-1);
if X[i,2]=. then do;

lo = X[i-1,2];
flag = 1;
do j=(i+1) to N while(flag=1);

if X[j,2]^=. then flag=0;
end;
j=j-1;
up = X[j,2];
nn = j-i+1;
if up^=lo then do;

tmp = do(lo,up,(up-lo)/nn)‘;
tmp = tmp[2:nn];

end;
else do;

tmp = j(j-i,1,lo);
end;
X[i:(j-1),2]=tmp;

end;
end;

X = (do(1,N,1))‘||X;

varnames = {ind date price};
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create Prices_tmp from X [colname=varnames];
append from X;
close;

finish main;
run main;

quit;

data Prices_out;
set Prices_tmp;
format date date8.;
run;

proc datasets nolist;
delete Prices_tmp;
run;

/*+++++++++++++++Data format complete+++++++++++++++*/

%do %while(&ld>0);
%do i=&wnd %to (&dsize-&ld);
%let lo=&i-&wnd+1;
%let up=&i;

/*+++++++++++++++Winters-Holt method+++++++++++++++*/

proc forecast data=Prices_out interval=tenday
method=addwinters seasons=month lead=&ld
out=WH outresid;

where ind between &lo and &up;
id date;
var price;
run;

proc iml;
start main;

use work.WH;
read all into X;
close work.WH;

use work.Prices_out;
read all into Y;
close work.Prices_out;

LWH = j(1,2,0);
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LWH[2] = X[&wnd,3]##2;
LWH[1] = (X[&wnd+&ld,3]-Y[&up+&ld,3])##2;

HMWH = j(1,2,0);
HMWH[1] = ((Y[&up+&ld,3]-Y[&up,3])>0);
HMWH[2] = ((X[&wnd+&ld,3]-Y[&up,3])>0);

create WH1 from LWH;
append from LWH;
close;

create WH2 from HMWH;
append from HMWH;
close;

finish main;
run main;
quit;

proc datasets library=work nolist;
append base=work.WHcum data=work.WH1;
append base=work.WHHMcum data=work.WH2;
delete WH;
run;
quit;

/*+++++++++++++++Spectral Analysis+++++++++++++++*/

proc spectra data=work.Prices_out out=sp coef s;
where ind between &lo and &up;
var Price;
weights 1 2 3 4 3 2 1;
run;
quit;

proc iml;
start main;
use work.sp;
read all into X;
close work.sp;
N = nrow(X);

nk = (&wnd/2)+1;

toleave=j(nk,1,0);
toleave[1]=1;
do k=2 to nk;
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if k=2 then do;
if (X[k,5]>X[k+1,5]) then toleave[k]=1;

end;
else if k=nk then do;

if (X[k,5]>X[k-1,5]) then toleave[k]=1;
end;
else do;

if (X[k,5]>X[k+1,5] & X[k,5]>X[k-1,5]) then toleave[k]=1;
end;

end;
X[,3]=X[,3]#toleave;
X[,4]=X[,3]#toleave;

Ppred = j(&wnd,1,0);
do t=1 to &wnd;

cum = 0;
do k=2 to (&wnd/2+1);

cum = cum+X[k,3]#cos(X[k,1]#(t-1))+X[k,4]#sin(X[k,1]#(t-1));
end;
cum = cum+X[1,3]/2;
Ppred[t]=cum;

end;

Predict = j(1,2,0);
HMFD = j(1,2,0);

use work.Prices_out;
read all into tmp;
close work.Prices_out;

Predict[1] = (Ppred[&ld]-tmp[&up+&ld,3])##2;
Predict[2] = (Ppred[&wnd]-tmp[&up,3])##2;

HMFD[1] = ((tmp[&up+&ld,3]-tmp[&up,3])>0);
HMFD[2] = ((Ppred[&ld]-tmp[&up,3])>0);

create FD from Predict;
append from Predict;
close;

create FD2 from HMFD;
append from HMFD;
close;

finish main;
run main;
quit;



94

proc datasets library=work nolist;
append base=work.FDcum data=work.FD;
append base=work.FDHMcum data=work.FD2;
delete Sp;
run;
quit;

%end;

proc datasets library=work nolist;
delete WH1 WH2 FD FD2;
run;
quit;

/*+++++++++++++++Box-Jenkins ARIMA+++++++++++++++*/

proc iml;
start main;
use work.Prices_out;
read all into X;
close work.Prices_out;
N = nrow(X);
X1 = X;
X = X[,3];

opt = {0 1};
constant = 0;
nma = 0;
maxlag = 3;

results = j(1,2,0);
HMBJ = j(1,2,0);

do i=&wnd to (N-&ld);
lo = i-&wnd+1;
up = i;

Xr = X1[lo:up,];
Tr = j(&wnd,12,0);
do j=1 to &wnd;

Tr[j,month(Xr[j,2])]=1;
end;
Xr = X[lo:up,];
X2 = (I(&wnd)-Tr*inv(Tr‘*Tr)*Tr‘)*Xr;
Br = inv(Tr‘*Tr)*Tr‘*Xr;
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call TSUNIMAR(arcoef,ev,nar,aic,X2,maxlag,opt);
call TSPRED(forecast,impulse,mse,X2,arcoef,nar,nma,ev,&ld,,constant);

addrow = j(1,2,0);
addrow[1,1]=(forecast[&wnd+&ld]+Br[month(X1[up+&ld,2])]-X[up+&ld])##2;
addrow[1,2]=(forecast[&wnd]+Br[month(X1[up,2])]-X[up])##2;
results=results//addrow;

addrow[1,1]=((X[up+&ld]-X[up])>0);
addrow[1,2]=((forecast[&wnd+&ld]+Br[month(X1[up+&ld,2])]-X[up])>0);
HMBJ = HMBJ//addrow;

end;
results = results[2:nrow(results),];
HMBJ = HMBJ[2:nrow(HMBJ),];

create BJcum from results;
append from results;
close;

create BJHMcum from HMBJ;
append from HMBJ;
close;

finish main;
run main;
quit;

/*+++++++++++++++The Giacomini-White Test+++++++++++++++*/

proc iml;
reset noname;
start main;

use work.BJcum;
read all into bj;
close work.BJcum;

use work.FDcum;
read all into sa;
close work.FDcum;

use work.WHcum;
read all into wh;
close work.WHcum;

nm = {&nme};
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use work.BJHMcum;
read all into bjhm;
close work.BJHMcum;

use work.FDHMcum;
read all into sahm;
close work.FDHMcum;

use work.WHHMcum;
read all into whhm;
close work.WHHMcum;

print "++++++++++++++++++++++++++++++";
print "Commodity: " nm;
print "Lead: " &ld;
print "Alpha value: " &sl ,;

print "+++++ Descriptive & HM tests +++++";
print "+++++ BJ Forecast:";
RMSE = sqrt(bj[:,1]);
print "RMSE: " RMSE;
tmp = bj[,1];
ntmp = nrow(bj);
tmp2 = tmp;
tmp[rank(tmp)]=tmp2;
q975 = tmp[ceil(ntmp#0.975)];
q75 = tmp[ceil(ntmp#0.75)];
q50 = tmp[ceil(ntmp#0.5)];
q25 = tmp[ceil(ntmp#0.25)];
q025 = tmp[ceil(ntmp#0.025)];
print "Sq. Error Quantiles (97.5 75 50 20 2.5):";
print q975 q75 q50 q25 q025;

XHM = bjhm;
HMS = ((XHM[,+]=0)[+]);
N1 = (nrow(XHM)-XHM[+,1]);
N2 = (XHM[+,1]);
m = (nrow(XHM)-XHM[+,2]);
HMC = HMS/N1 + ((XHM[,+]=2)[+])/N2;
print "HM criterion: " HMC;
pval = 1-CDF(’HYPER’,HMS,N1+N2,N1,m);
print "P-value: " pval;

print "+++++ SA Forecast:";
RMSE = sqrt(sa[:,1]);
print "RMSE: " RMSE;
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tmp = sa[,1];
ntmp = nrow(sa);
tmp2 = tmp;
tmp[rank(tmp)]=tmp2;
q975 = tmp[ceil(ntmp#0.975)];
q75 = tmp[ceil(ntmp#0.75)];
q50 = tmp[ceil(ntmp#0.5)];
q25 = tmp[ceil(ntmp#0.25)];
q025 = tmp[ceil(ntmp#0.025)];
print "Sq. Error Quantiles (97.5 75 50 20 2.5):";
print q975 q75 q50 q25 q025;

XHM = sahm;
HMS = ((XHM[,+]=0)[+]);
N1 = (nrow(XHM)-XHM[+,1]);
N2 = (XHM[+,1]);
m = (nrow(XHM)-XHM[+,2]);
HMC = HMS/N1 + ((XHM[,+]=2)[+])/N2;
print "HM criterion: " HMC;
pval = 1-CDF(’HYPER’,HMS,N1+N2,N1,m);
print "P-value: " pval;

print "+++++ WH Forecast:";
RMSE = sqrt(wh[:,1]);
print "RMSE: " RMSE;
tmp = wh[,1];
ntmp = nrow(wh);
tmp2 = tmp;
tmp[rank(tmp)]=tmp2;
q975 = tmp[ceil(ntmp#0.975)];
q75 = tmp[ceil(ntmp#0.75)];
q50 = tmp[ceil(ntmp#0.5)];
q25 = tmp[ceil(ntmp#0.25)];
q025 = tmp[ceil(ntmp#0.025)];
print "Sq. Error Quantiles (97.5 75 50 20 2.5):";
print q975 q75 q50 q25 q025;

XHM = whhm;
HMS = ((XHM[,+]=0)[+]);
N1 = (nrow(XHM)-XHM[+,1]);
N2 = (XHM[+,1]);
m = (nrow(XHM)-XHM[+,2]);
HMC = HMS/N1 + ((XHM[,+]=2)[+])/N2;
print "HM criterion: " HMC;
pval = 1-CDF(’HYPER’,HMS,N1+N2,N1,m);
print "P-value: " pval;
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print "+++++ Predictive ability pairwise tests +++++";

print "Testing BJ versus WH:";
dL = (bj[,1]-wh[,1])‘;
dL1 = (bj[,2]-wh[,2])‘;
n = ncol(dL);
h = j(1,n,1)//dL1;
Z = h#repeat(dL,2,1);
Omega = (1/n)#(Z*Z‘);
T = n # (Z[,:])‘*inv(Omega)*(Z[,:]);
pval=1-probchi(T,2);
dff = dL[:];
if (dff<0 & pval<&sl) then dff2="BJ is better";
if (dff>0 & pval<&sl) then dff2="WH is better";
if pval>=&sl then dff2="Tests Equivalent";
print "Test statistic (chi-sq, df=2): " T;
print "p-value: " pval;
print "Indication: " dff2 ,;

print "Testing BJ versus SA:";
dL = (bj[,1]-sa[,1])‘;
dL1 = (bj[,2]-sa[,2])‘;
n = ncol(dL);
h = j(1,n,1)//dL1;
Z = h#repeat(dL,2,1);
Omega = (1/n)#(Z*Z‘);
T = n # (Z[,:])‘*inv(Omega)*(Z[,:]);
pval=1-probchi(T,2);
dff = dL[:];
if (dff<0 & pval<&sl) then dff2="BJ is better";
if (dff>0 & pval<&sl) then dff2="SA is better";
if pval>=&sl then dff2="Tests Equivalent";
print "Test statistic (chi-sq, df=2): " T;
print "p-value: " pval;
print "Indication: " dff2 ,;

print "Testing WH versus SA:";
dL = (wh[,1]-sa[,1])‘;
dL1 = (wh[,2]-sa[,2])‘;
n = ncol(dL);
h = j(1,n,1)//dL1;
Z = h#repeat(dL,2,1);
Omega = (1/n)#(Z*Z‘);
T = n # (Z[,:])‘*inv(Omega)*(Z[,:]);
pval=1-probchi(T,2);
dff = dL[:];
if (dff<0 & pval<&sl) then dff2="WH is better";
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if (dff>0 & pval<&sl) then dff2="SA is better";
if pval>=&sl then dff2="Tests Equivalent";
print "Test statistic (chi-sq, df=2): " T;
print "p-value: " pval;
print "Indication: " dff2 ,;

/*LIST OF LEADS*/
lds = {1 3 6 18};
if ((&ld)=18) then do;

ldset = -1;
end;
else do;

ldset = loc(lds=(&ld))+1;
ldset = lds[ldset];

end;
call symput("ld",char(ldset));

finish main;
run main;
quit;

proc datasets library=work nolist;
delete BJcum BJHMcum FDcum FDHMcum WHcum WHHMcum;
run;
quit;

dm log ’clear’ continue;

%end;

proc datasets library=work nolist;
delete Prices_out;
run;
quit;

%mend app;

%app;


