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ABSTRACT 

Largemouth bass (Micropterus salmoides) from L Lake, Par Pond, and Pond B located on the 

Savannah River Site in SC, were analyzed for mercury concentration, length, weight, and age. 

Fish skull asymmetries were assessed using geometric morphometrics by landmarking dorsal and 

ventral images. Mercury was positively correlated with fish length, weight, and age for all 

populations, but not with age for Par Pond. Directional asymmetry was significant in each 

population but not different among populations.  Each population had significant levels of 

fluctuating asymmetry (FA), but the only difference was that Par Pond had greater FA than Pond 

B for the dorsal view of the skull.  Correlations between individual overall asymmetry values 

and Hg for either view were not significant for any population or for populations considered 

together.  Patterns of variation in asymmetry and mercury concentrations among locations were 

not consistent. 
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INTRODUCTION 

Mercury (Hg) in fish has been a matter of concern worldwide, following the Minamata 

Bay episode of mass human poisoning.  Mercury is released to the atmosphere largely by 

burning fossil fuels.  Most Hg in the atmosphere is in the form of elemental vapor.  It is 

transferred to water and soil via precipitation.  Hg occurs in water as an inorganic salt or as 

organic methylmercury (MeHg).  Inorganic salts of Hg are transformed to MeHg by bacteria that 

are ingested by small aquatic organisms.  Phytoplankton may also concentrate MeHg from water.  

MeHg is almost completely absorbed in the digestive tract of organisms (Bloom, 1992) and is 

very slowly excreted.  Thus, MeHg biomagnifies, or increases with trophic position in foodwebs 

(Gilmour et al., 1992; Fitzgerald et al., 1998).  Humans eating fish containing Hg can be exposed 

to toxic levels of Hg.  Health advisories on eating contaminated fish have been issued to 

minimize neurotoxic and teratogenic effects of Hg on humans (National Research Council, 1978)  

Fish living in waters receiving Hg inputs where the potential for methylation is high often 

have Hg concentrations higher than EPA risk-based guidelines for human consumption (EPA, 

2000).  These guidelines suggest consumption of no more than 1 meal per month of fish with 

muscle Hg concentrations above 0.47 mg/kg.  Mercury concentrations tend to increase with 

trophic level, and higher concentrations are typically found in predatory fish (Kidd et al., 1995; 

Neumann and Ward, 1999; Bowles et al., 2001; Snodgrass et al., 2000).  Adult largemouth bass 

(Micropterus salmoides) are largely piscivorous (Howick and O’Brien, 1983), and so tend to 

accumulate higher concentrations of mercury in their bodies.  In addition to trophic position, 

mercury content of fish is positively related to fish length (Scott and Armstrong, 1972; Weiner et 
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al., 1990; Lange et al., 1993) and age (MacCrimmon et al., 1983; Guntnmann et al., 1992), and 

may vary between sexes (Nicoletto and Hendricks, 1988) 

Organisms are genetically predisposed to attain a particular form, defined by size, shape 

and symmetry. Fish and other vertebrates are bilaterally symmetrical; presumably, the same 

genes code for development of structures on both the left and right sides.  Variation in the 

development (instability) of various structures and the tendency for developmental stability 

interact to produce the adult form of an organism. Developmental instability tends to increase 

with environmental stress.  Thus, stress can disrupt precise development, and may result in 

individuals with an asymmetric shape. A variety of stresses, including pollutant exposure, may 

affect growth and level of morphological asymmetry (Ames et al., 1979; Jagoe and Haines, 

1985; Oleksyk et al., 2004).  The effects of stressors including heavy metals on asymmetry are 

still somewhat equivocal (reviews by Leary and Allendorf, 1989; Clarke, 1992 and 1993; 

Graham et al., 1993; Sommer, 1996). 

There are three types of asymmetry including directional asymmetry (DA), antisymmetry, 

and fluctuating asymmetry (FA).  DA is present when one side (right or left) of the body is 

consistently bigger than the other. Antisymmetry is present when the side which is bigger varies 

among individuals creating a bimodal distribution for the differences.  FA is a pattern of bilateral 

variation where the mean difference between sides for a population is zero, and the variation is 

normally distributed about zero (Palmer, 1994).  FA is frequently used to assess developmental 

stability due to environmental stress. 

Canalization is the ability of a structure to develop along an ideal developmental 

trajectory under a variety of different environmental conditions (Waddington, 1940).  FA is a 

result of the organism’s inability to completely canalize its development.  FA can be quantified 
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as the variance of the difference between right and left sides (R - L) corrected for measurement 

error.  Several studies have been conducted to measure FA and DA for morphological characters 

in fish (Ames et al., 1979; Felley, 1980; Jagoe and Haines, 1985; Allenbach et al., 1999).  Mouse 

skeletons have also been used to estimate FA and DA and establish their genetic basis and 

heritability (Leamy, 1997 and 1999 Leamy et al., 2000).  Geometric morphometrics extend the 

traditional approach of measuring left and right side traits to quantify individual variation and 

asymmetry in geometric shape of paired structures.  This approach consists of landmarking 

photographic images of each specimen and creating mirror images of the right and left sides to 

form a consensus figure.  Differences between landmarked points and consensus points are used 

to calculate Procrustes residuals as a measure of asymmetry for all landmarks allowing shape 

variation to be partitioned into symmetric shape and asymmetry (Klingenberg et al., 2002).  

Environmental stressors increase asymmetry in a variety of organisms (Møller and Swaddle, 

1997; pp. 134 - 153).  Geometric morphometrics have also been used to support this 

generalization (Oleksyk et al., 2004) and to study the relationship of asymmetry to other factors 

like population density (Novak, 2003).  However, some studies have failed to find a relationship 

between pollutants and asymmetry (e. g., Rabitsch, 1997; Vollestad et al., 1998).  The use of FA 

as an inexpensive reliable indicator of environmental stress is still an area of active research. 

My primary objective was to investigate relationships among Hg, asymmetry in skulls, 

body length, weight, and age of largemouth bass (Micropterus salmoides) from three sites on the 

Savannah River Site in South Carolina.  Secondly, the effects of location on symmetric shape 

variation, DA and FA in skulls were evaluated.  Finally, I tested for relationships between overall 

skull asymmetry and Hg concentrations in individual fish. 
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MATERIALS AND METHODS 

Sampling 

Adult largemouth bass were collected from three sites at the U.S. Department of Energy's 

Savannah River Site in South Carolina (Fig 1).  The sites, Pond B, Par Pond, and L Lake, are 

former reactor cooling reservoirs located in Aiken and Barnwell Counties.  These sites are 

impoundments of streams that drain into the Savannah River and support aquatic communities 

typical of southeastern reservoirs (Paller et al., 1992; Paller, 1997).   

Fish were collected by angling during all seasons in the years of 1998 to 2002.  Fish wet 

weight and total length were recorded, and whole fish were and frozen until analysis.  Muscle 

mercury concentrations were measured as described below.  Random numbers were assigned to 

each individual in a list ordered by their Hg concentrations.  The list was divided into three 

groups, the highest, middle, and lowest thirds.  Approximately equal numbers of fish were 

selected from each group using the random numbers.  The number of fish was approximately 

equal for each group and also for each location.. 

Mercury Analysis 

Skinless muscle tissue was taken adjacent to the dorsal fin of each fish.  The muscle 

tissue was weighed and freeze dried to determine moisture content.  The dried tissue was 

analyzed for Hg concentration using a modification of EPA method 7473 (EPA, 1998) using a 

DMA-80A Analyzer, (Milestone Inc, Monroe, CT).  This method uses automated thermal 

decomposition, preconcentration onto a gold trap, thermal desorption, and measurement of Hg in 

the vapor phase by a dual-path atomic adsorption spectrophotometer.  Approximately 50 mg of 
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muscle tissue was analyzed for each individual.  For QA/QC purposes, analyses were carried out 

in batches of ten, with each batch including a blank, a sample replicate, and a tissue standard 

certified for Hg concentration (DORM-2, dogfish muscle, or TORT-2, lobster hepatopancreas, 

purchased from the National Research Council of Canada, Ottawa).  Differences between 

replicates averaged 3.4 %, and concentration values for all standard materials fell within the 

certified range. 

Asymmetry measurements 

Frozen fish were thawed at room temperature, and heads were cut from the bodies and 

individually boiled in water for 20 to 40 min to partially clean each skull.  Skulls were then 

soaked in strong detergent solution for a few hours, cleaned thoroughly with a brush and left to 

air dry.  Skulls were labeled and stored. Opercular bones from the skulls were collected and used 

to determine age as in Peles et al. (2000).  Annuli on both opercular bones were counted by two 

investigators (MS and NY) and were rechecked when inconsistencies were noted.   

Images of the skulls were recorded using a Fuji Fine Pix 4900 digital camera.  Individual 

skulls were placed on clay adjacent to a ruler, which was used as a scale for every image.  A 

bubble-level was placed at the anterior end of the skull for both the dorsal and the ventral images 

to level the skull.  The camera was attached to a copy stand facing downward at a height of about 

50 cm above the skull, which allowed the skull to fill most of the image frame.  Lighting from 

incandescent bulbs was supplied from both sides of the copy stand.  The camera was also leveled 

using the bubble-level centered on its upper side.  Duplicate images of the dorsal and ventral 

sides were recorded with skulls selected in a random order.  Thus, each skull had four pictures 

taken; two each for the dorsal and ventral surfaces.  The images were downloaded to the 

computer from the camera via a USB port.  Each dorsal image was digitized using TPSDIG 
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(Rohlf, 2001) for a series of 35 landmarks including 17 pairs with points on each side of the skull 

and one on the midline (Fig. 2a).  Each ventral image was digitized for a series of 10 pairs of 

landmarks using the same program (Fig, 2b).  There were no points located on the anterior end of 

the ventral image, because of disarticulation of part of the skull in this region in some specimens.  

Each image was then digitized again with images placed in a random order.  As a result there 

were two sets of landmarked images for each dorsal and ventral view.   

Data analyses 

Analyses of FA were performed using a geometric morphometric protocol (Adams et al., 

2004) similar to that used in Oleksyk et al. (2004).  The shape of the skull is defined by the set of 

paired and unpaired landmarks and the symmetry only by the paired landmarks.  RelWarp, a 

software package provided by Rohlf (2003) was used to conduct generalized least-squares 

Procrustes fit of the landmark data for each image (Rohlf and Slice, 1990, Goodall, 1991; 

Dryden and Mardia, 1998).  A mixed model Procrustes ANOVA (Klingenberg and McIntyre 

1998, Klingenberg et al., 2002) was used to examine the relative amounts of symmetric variation 

and FA.  SAS was used to conduct a multivariate ANOVA (SAS Institute Inc., 1999).  The SAS 

code is given in Appendix A.   

Estimates of overall asymmetry for individuals were calculated as in Oleksyk et al. 

(2004) using aligned landmark coordinates of the left and right sides of the skull.  Statistica 6.0 

(StatSoft Inc., 2001) was used to perform linear and multiple regressions and generate scatter 

plots.  Estimates of FA and mean values of DA were also calculated for each population 

(Oleksyk et al., 2004).  Mean squares for the effects of side (DA), individuals (shape), and 

side*individual (FA) for each population were used to calculate F ratios comparing two 

populations at a time.  Sequential Bonferroni corrections were applied to adjust for Type 1 errors 
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(Palmer, 1994).  Antisymmetry was evaluated by examining the distributions of the Procrustes 

residuals of the aligned coordinates of the landmarks for deviations from normality. 

The univariate relationships between Hg concentrations with age, total length, and total 

weight for fish in each population were calculated using Statistica 6.0.  Duncan’s Multiple Range 

tests were used to compare population means.  Shapiro-Wilks’ tests for normality of the 

distributions of Hg concentration, age, total length, and total weight for fish in each population 

were conducted using SAS.  Multivariate analyses of the relationships between Hg concentration 

and total length, total weight, age, population, and the interactions of the independent variables 

were conducted using PROC GLM in SAS.  Population was treated as a categorical variable with 

three levels in the model.  Statistical significance was indicated when p ≤ 0.05.  
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RESULTS 

The distributions of Hg concentrations, total weight, total length, and age for individual 

populations did not depart from normality as indicated by Shapiro-Wilks’ tests.  The means for 

these variables, FA, DA, and the results of Duncan’s tests comparing them are given in Table 1.  

Par Pond and Pond B fish had similar mean values for Hg, but that for L Lake was significantly 

lower than the other two (Table 1).  Hg concentrations in bass ranged from 0.55 mg/kg to 5.64 

mg/kg dry weight, 1.33 to 7.82 mg/kg, and 1.6 to 7.47 mg/kg in L Lake, Pond B, and Par Pond, 

respectively.  The means of total weight and total length were significantly less in fish from Pond 

B than those from L Lake and Par Pond, while those from the latter two sites were not different.  

Mean ages of fish among the three populations were not significantly different. 

There were positive linear relationships between Hg concentrations and total weight (Fig 

3).  The linear relationships were also positive between Hg concentration and total length for 

each population.  A significant positive linear relationship between Hg and age was found for 

fish from L Lake and Pond B but not from Par Pond (Fig. 3).  Slope of the relationship between 

Hg and total length was significantly greater for Pond B fish compared to that for fish from L 

Lake but not from Par Pond.  Slopes for L Lake and Par Pond were not significantly different.  

The slopes of the relationship between Hg and total weight were not different among the 

populations either (Appendix B). 

Multiple regression analyses were carried out for each location, using Hg as the 

dependent variable and total weight, total length, and age as the independent variables.  Hg was 

positively related to total length in Par Pond (p = 0.006) and Pond B (p = 0.008), while it was 
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positively related to total weight only in Pond B fish (p < 0.001).  There were no significant 

relationships between Hg and any variable for L Lake fish.  Multicollinearity due to interactions 

between the variables occurred.  Hg concentration was not related to any of the variables when 

all three or four way interactions were included in the model.  When the three and four way 

interactions were dropped, total length, total weight and age were found to be significant 

predictors of Hg concentration in fish from all populations (R 2 = 0.78, p < 0.001, < 0.001, and 

0.034, respectively).  All two-way interactions were significant except that between total length 

and location (p = 0.27).   

Skull shape and asymmetry 

There was no evidence for antisymmetry in any population.  There were significant levels of 

DA (p varied from 0.002 to 0.013) and FA (p < 0.001), and variation in symmetric shape (p < 

0.001) for both views in each population.  Appendix C provides ANOVA tables and pairwise 

comparisons of asymmetry in fish skulls between populations.   Mean symmetric shape of the 

dorsal view was significantly different among locations with fish from L Lake having greater 

values than those from Pond B (p < 0.001), and Par Pond (p < 0.001), but shape did not differ 

between the latter two locations (p = 0.07).  Fish skulls from Par Pond were more variable in 

symmetric shape of the ventral view than those from Pond B (p <0.001) or from L Lake (p = 

0.02), but those from the latter two sites were not different (p = 0.23).   

DA was significantly greater than zero for both dorsal and ventral views of the skulls for all 

locations (p ≤ 0.01).  There were no significant differences between populations for the DA of 

either dorsal or ventral views (p > 0.1).  FA values were significantly greater than zero for both 

views in each population. Pond B fish had the lowest FAs both for dorsal and ventral views of 
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the skulls.  Pair-wise differences of FAs were significant only for the dorsal view between Pond 

B and Par Pond skulls (p = 0.01).   

Relationships between individual overall asymmetry values for either view and Hg 

concentrations were not significant as revealed by linear regressions for each population (Figs. 4 

and 5; p ranged from 0.1 to 0.9 and r2 from 0.001 to 0.16 for ventral and dorsal views).  The 

results were also non-significant when the analyses were done for individuals from the three 

populations considered together for dorsal as well as ventral views (Figs. 6a and 6b; p = 0.08 and 

0.34; r2 = 0.056 and 0.017, respectively).  Relationships between overall asymmetry and age 

were not significant for either view of the skull (Appendix D).   
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DISCUSSION 

All largemouth bass in this study had detectable levels of mercury as has been reported 

for Savannah River Site bass (Cummins et al.,1990, 1991; Arnett 1992; Jagoe et al., 1996).  The 

source of this Hg is probably atmospheric deposition along with industrial discharges into the 

Savannah River upstream from the Savannah River Site (Kvartek et al., 1994).  There were no 

significant differences in the mean ages of fish collected from the three locations, but Pond B 

bass were significantly lighter and shorter than those from the two other locations (Table 1).  Hg 

concentrations in fish sampled from L Lake were significantly lower than those from the two 

other sites, which had comparable levels (Table 1).  Jagoe et al. (1996) reported much higher 

values of Hg in muscle for L Lake bass than our values for this population, a difference that may 

reflect different analytical methods, small samples, or temporal variation. 

Hg is positively correlated with length and body mass in fresh water and estuarine fishes 

(Scott and Armstrong, 1972 ; Weiner et al., 1990 ; Lange et al., 1993; Davis, 1997) as was found 

in this study (Fig. 3).  Health advisories have been issued informing people not to eat larger fish 

based on an understanding of this relationship.  Hg concentrations and the fish’s age were 

positively related in L Lake and Pond B but not Par Pond (Fig. 3).  Largemouth bass, being long 

lived and functioning at a high trophic level should accumulate Hg as they grow in size and age. 

There is a larger scatter of the data for the fish from Par Pond than from the other two locations, 

and there were few young fish sampled from this location. 

Mercury concentrations in Pond B fish tended to increase at a greater rate with increasing 

length and weight than did those in L Lake and Par Pond fish.  The water chemistry of Par Pond 
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and L Lake are similar, but Pond B has softer and more acidic water than the other reservoirs 

(DOE, 1997; Peles et al., 2000).  The Pond B fish were smaller in length and weight than those 

from the other two sites, and this may be due to a lack of nutrients in this reservoir.  This stunting 

of growth is different from the thin bass phenomenon observed in Par Pond (Gibbons et al., 

1978).  The latter is caused by overall food limitation among larger bass leading to the loss of 

weight.  Thin bass may have contributed to the scatter of the Par Pond data.   

Analyses indicated that the independent variables age, total length, total weight, and 

population were highly correlated with each other when data for fish from all populations were 

considered together. The expected increase in Hg concentration in fish depends on age, total 

length, total weight, and on location. The significant interactions between variables indicate that 

Hg concentrations change differently depending upon which variables are involved in the 

interactions. Hg levels in fish are clearly influenced by a complex set of interactions, which are 

not completely understood at this time. 

It is important to understand how pollutants including metals act as stressors that affect 

an organism’s development.  FA has been used as an indicator of developmental stability in 

populations.  Lower pH was found to elevate FA in fish species (Zakharov, 1981; Jagoe and 

Haines, 1985).  Polluted waters are associated with increased asymmetry in grey seal skulls 

(Zakharov, 1990).  Oleksyk et al. (2004) reported higher levels of FA in yellow-necked mouse 

skulls collected from radioactively contaminated populations around Chornobyl in Ukraine.  FA 

is generally elevated in stressed populations (Møller and Swaddle, 1997).   

Hg may affect asymmetry in certain fish species (Ames et al., 1979) but not in others 

(Vollestad et al., 1998).  Significant DA was found in each population of largemouth bass in this 

study. These results are similar to those of Oleksyk et al. (2004) where significant DA was 
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present in the yellow-necked mouse skulls collected from reference as well as contaminated sites.  

This result implies that certain features on one side of the skull must be larger than on the other 

in each fish population.  There was no difference in DA, but there was in Hg levels among 

sampling sites (Table 1) implying no relationship between DA and Hg.  FAs for both views were 

significant in each population.  Comparisons of FA for the ventral view showed no significant 

differences among populations.  This result might be partially due to the lack of landmarks on 

the anterior portions of the ventral view of the skull.  The dorsal views did show a significant 

difference in FA between Par Pond and Pond B skulls.  However, these results do not correspond 

with differences in mean Hg concentrations in fish from these reservoirs (Table 1).  At this level 

of analysis, Hg concentrations appear unrelated to asymmetry in the skulls of largemouth bass. 

A study of developmental instability in grayling exposed to methylmercury during 

embryogenesis showed an increased proportion of phenodeviants in individuals exposed to the 

highest concentration of MeHg during early development (Vollestad et al., 1998).  However, 

after three years of development, the effect on morphological variability and FA was non-

significant, although exposed fish had significantly reduced feeding ability (Fjeld et al., 1998).  

Other sub-lethal effects may be present after a few years, but FA was apparently reduced by 

growth correcting the differences between the left and right sides.  There were some older 

individuals in our study that had low levels of overall asymmetry.  This could be due to adults 

correcting asymmetries during their development.  Alternatively, some of them may not have 

survived as well as others leading to their elimination by selection.  The lack of significant 

relationships between overall asymmetry and age in any population does not support the idea of 

asymmetries being corrected as the fish age (Appendix E).  We have no data for survivorship of 

`bass with different asymmetries.  However, Allenbach et al. (1999) studied two fish species and 
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found that the least symmetric individuals do not survive as well as the more symmetrical ones 

when exposed to pesticides.  The survivorship hypothesis needs further support if it is to be 

applied to largemouth bass. 

Overall asymmetry values of individual skulls include asymmetry due to shape, DA, FA 

and measurement error. Uniform measurement error and equal amounts of isotropic variation in 

landmarks were assumed. The regression of individual overall asymmetry values against 

individual Hg levels in the fish for each population showed a lot of scatter (Fig. 5).  However, 

the relationship between overall asymmetry and Hg was close to being significant for the dorsal 

view, when data from all fish were considered together (p = 0.08; Fig. 6a).  The lack of 

significant relationship between overall asymmetry and Hg suggests that Hg is probably not 

acting as a stressor on developmental stability of bass skulls at the contaminant concentrations 

observed.  My data are consistent with a general lack of convincing evidence for Hg having an 

effect on asymmetry in the literature for fish. 
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Table1.  Mercury concentrations for and characteristics of largemouth bass taken from three 

locations on the Savannah River Site*.  Fluctuating asymmetry (FA) and directional asymmetry 

(DA) are given for both ventral and dorsal views of the skulls. 

Variable L Lake Par Pond Pond B 

Mean Hg (mg/kg dry 
weight)** 2.66±0.63a 4.53±0.77b 4.06±0.79b 

Mean Total Length (mm)** 419.3±34.03b 443.5±33.60b 307.1±17.25a 

Mean Total Wet Weight 
(g)** 1034±173b 1160±256b 329±57a 

Mean Age (yrs)** 4.70±0.87a 4.94±0.80a 4.77±0.77a 

FA (ventral view)+ 1.21E-06a 1.34E-06a 7.51E-07a 

FA (dorsal view)+ 6.37E-07a,b 7.48E-07a 2.47E-07b 

DA (ventral view)+ 9.25E-06a 9.81E-06a 3.19E-06a 

DA(dorsal view)+ 6.94E-07a 6.67E-07a 3.82E-07a 

*N = 19 for L Lake; N =17 for Par Pond; and N = 22 for Pond B.  N occasionally varies by one 

or two within a location for certain tests because of missing data   

**Means are given with 95% confidence intervals 

a,bValues not sharing the same superscript for a variable are significantly different at p  0.05 

+Unitless values based on Procrustes analyses 
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Fig 1.  Savannah River Site (outlined in bold) with the three sampling sites L Lake, Par Pond, 
and Pond B identified.   
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Fig. 2a.  Locations of landmarks on the dorsal image of a largemouth bass skull.   
 
 

 
 
Fig. 2b.  Locations of landmarks on the ventral image of a largemouth bass skull.   
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Fig. 3.  Regression equations and coefficients of determination for the 
linear relationships between Hg concentrations with total length, age, 
and total weight of fish from three sites.  Confidence intervals for the 
slopes and intercepts are given in Appendix D. 
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Fig 4.  Linear regression plots of Hg (mg/kg dry weight) vs overall asymmetry (which includes 

asymmetry due to shape, DA, FA, and measurement error) for dorsal views of fish from the three 

locations.  No significant relationships were found. 
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Fig 5.  Linear regression plots of overall asymmetry (which includes asymmetry due to shape, 

DA, FA, and measurement error) for ventral views of fish from the three locations vs Hg (mg/kg 

dry weight).  No significant relationships were found.   
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Fig. 6a.  Linear regression of overall asymmetry (which includes asymmetry due to shape, DA, 

FA, and measurement error) for dorsal views of fish from the three locations considered together 

vs Hg (mg/kg dry weight).   
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Fig. 6b.  Linear regression of overall asymmetry (which includes asymmetry due to shape, DA, 

and FA) for ventral views of fish from the three locations considered together vs Hg (mg/kg dry 

weight).
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APPENDIX A 
 
 

SAS CODE FOR PROCRUSTES MULTIVARIATE ANOVA 
 
 
 

 
Dorsals SAS code 
 
PROC IMPORT OUT= WORK.dorsals  
            DATAFILE= "C:\Neera\Dorsalsall.xls"  
            DBMS=EXCEL2000 REPLACE; 
     GETNAMES=YES; 
RUN; 
 
Data in;Set work.dorsals; 
run; 
 
Proc sort data=in;by POPID; 
run; 
 
Proc GLM Outstat=Stats Noprint; by POPID; 
Class Side ID2; 
Model X1-X35 Y1-Y35=Side ID2 Side*ID2/SS3; 
Random ID2 Side*ID2/Test; 
Run; 
 
Proc Print Data=stats; 
Var POPID _NAME_ _SOURCE_ _TYPE_ DF SS; 
Run; 
quit; 

 
Ventral SAS code 
 
PROC IMPORT OUT= WORK.ventrals  
            DATAFILE= "C:\Neera\SASventrals.xls"  
            DBMS=EXCEL2000 REPLACE; 
     GETNAMES=YES; 
RUN; 
 
Data in;Set work.ventrals; 
run; 
 
Proc sort data=in;by POPID; 
run; 
 
Proc GLM outstat=stats Noprint; 
by POPID; 
Class Side ID2; 
Model X1-X20 Y1-Y20=Side ID2 Side*ID2/SS3; 
Random ID2 Side*ID2/Test; 
Run; 
 
Proc Print data=Stats; 
Var POPID _NAME_ _SOURCE_ _TYPE_ DF SS; 
Run; 
quit; 
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APPENDIX B 

CONFIDENCE INTERVALS FOR SLOPES AND INTERCEPTS FOR LINEAR 

REGRESSIONS FOR MERCURY DATA 

Mercury (mg/kg dry weight) vs total length (mm)    
       
L Lake       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept -2.03 1.45 -1.40 0.18 -5.06 0.997 
Slope 0.011 0.0034 3.36 0.0033 0.0043 0.018 
       
Par Pond       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept -3.56 1.58 -2.25 0.040 -6.94 -0.19 
Slope 0.018 0.0035 5.17 0.0001 0.011 0.026 
       
Pond B       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept -6.42 2.11 -3.04 0.0065 -10.8 -2.01 
Slope 0.034 0.0068 5.01 0.0001 0.02 0.048 
       
       
Mercury (mg/kg dry weight) vs total weight (g)    
       
L Lake       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 1.13 0.86 1.32 0.202 -0.66 2.93 
Slope 0.0015 0.0008 2.02 0.058 -0.0001 0.0031 
       
Par Pond       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 2.07 0.700 2.97 0.0096 0.58 3.55 
Slope 0.0021 0.0005 3.87 0.0015 0.0010 0.0033 
       
Pond B       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 1.51 0.904 1.67 0.111 -0.377 3.39 
Slope 0.0078 0.0025 3.05 0.0063 0.0025 0.0131 
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Mercury (mg/kg dry weight) vs age (years)    
       
L Lake       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 0.452 0.661 0.684 0.503 -0.937 1.84 
Slope 0.504 0.130 3.87 0.0011 0.230 0.777 
       
Par Pond       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 5.19 1.28 4.06 0.0010 2.47 7.92 
Slope -0.134 0.246 -0.547 0.593 -0.659 0.390 
       
Pond B       

 Coefficients Standard Error t Stat P value 
Lower 
95% 

Upper 
95% 

Intercept 0.958 0.899 1.07 0.299 -0.918 2.83 
Slope 0.650 0.176 3.69 0.0014 0.283 1.018 
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APPENDIX C 
 
 

ANOVA TABLE AND PAIRWISE COMPARISON OF ASYMMETRY IN FISH SKULLS BETWEEN POPULATIONS  

Dorsal View  

 Pond B L Lake Par Pond 
 df* SS MS df SS MS df SS MS 

Side 33 0.00279 8.4E-05 33 0.004 1E-04 33 0.004 0.00010685 
Ind 726 0.17326 0.00024 594 0.19 3E-04 495 0.1 0.000202004 

Side* Ind 726 0.03746 5.2E-05 594 0.035 6E-05 495 0.032 6.41769E-05 
Error 8316 0.13834 1.7E-05 7524 0.037 5E-06 6336 0.052 8.13823E-06 

            
Note: Side MS estimates DA; Individual (Ind) MS estimates Symmetric Shape; Side*Ind estimates FA; Error estimates measurement 
error 
             
   Pond B vs L lake Pond B vs Par Pond L lake vs Par Pond  

   F P cPa F P cPa F P cPa  
  DA 1.31 0.2182 0.6547 1.265 0.2516 0.7547 1.039 0.4566 1.3697  
  Shape 1.34 0.0001 0.0002 1.181 0.0225 0.0675 1.59 0.0000 0.0000  
  FA 1.130 0.0587 0.1761 1.244 0.0038 0.0115 1.10 0.1315 0.3946  

acP = Bonferroni corrected p-value 
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Ventral View 

 Pond B L Lake Par Pond 
 df* SS MS df SS MS df SS MS 

Side 18 0.006994 0.000389 18 0.01459 0.000811 18 0.013856 0.00077 
Ind 414 0.180687 0.000436 324 0.1642 0.000507 288 0.194155 0.000674 

Side* 
Ind 414 0.036834 8.9E-05 324 0.03484 0.000108 288 0.031456 0.000109 

Error 5040 0.047623 9.45E-06 4104 0.03126 7.62E-06 3672 0.021887 5.96E-06 
          

Note: Side MS estimates DA; Individual (Ind) MS estimates Symmetric Shape; Side*Ind estimates FA; Error estimates measurement 
error   
            
   Pond B vs L Lake Pond B vs Par Pond L Lake vs Par Pond  

   F P cPa F P cPa F P cPa  
  DA 2.086 0.064 0.19 1.98 0.078 0.23 1.053 0.46 1.37  
  Shape 1.161 0.076 0.23 1.54 2.59E-05 7.77E-05 1.330 0.0063 0.019  
  FA 1.209 0.035 0.10 1.23 0.028 0.085 1.016 0.45 1.34  

acP = Bonferroni corrected p-value 
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APPENDIX D 

 

OVERALL ASYMMETRY VS AGE FOR EACH POPULATION AND FOR 

THE POPULATIONS CONSIDERED TOGETHER 
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Fig D1.  Linear regression plots of overall asymmetry vs age for each population for dorsal view.  
No significant relationships were found.   
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Fig D2.  Linear regression plots of overall asymmetry vs age for each population for ventral view.  
No significant relationships were found.   
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Fig D3.  Linear regression plots of overall asymmetry vs age for all populations for dorsal view.  
No significant relationship was found.   
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Fig D4.  Linear regression plots of overall asymmetry vs age for all populations for ventral view.  
No significant relationship was found.   


