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Abstract

Return-oriented Programming (ROP) has become the most common way to exploit bugs

in application, and stack pivoting is a common techniques for facilitating the attack. Stack

pivoting poses a challenge in finding the root cause of the exploitation because it is hard

to trace the execution flow and identify the exact trigger point of exploitation. This thesis

presents several ways to do stack pivoting and designed methods to traceback in different

situations. We tested our methods with real system crash dumps and evaluate the effective-

ness of our approaches. Our solution is expect to help malware researchers to debug and

defend against ROP-based attacks.
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Chapter 1

Introduction

Buffer overflows, among all memory vulnerabilities, have been exploited by attackers since

the wide adoption of C and C++ Programming Languages. The attacker will inject code into

memory (usually called shellcode since it will grant a shell to the attacker) and execute it.

To mitigate this kind of attack, techniques like WXORX and Data Execution Prevention,

were developed and widely adopted.

The focus of exploit then turned to Code Reuse Attack (CRA), of which, instead of

injecting code, the attacker will direct control flow through existing code in memory and get

a malicious result. Return-into-libc and Return-Oriented Programming are two examples of

CRAs.

Due to the complexity of making a function call on the Windows system, most of the

ROP attacks on the Windows system will construct a carefully crafted memory region, and

then modify the ESP register to point to that address. In this way, the application will use

that memory region when it needs to load arguments to function calls or when returning

from previous function call and jump back to caller. Essentially, the new memory region is

considered a stack. This whole procedure of modifying the ESP register to utilize another

stack was called stack pivoting.
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From the point of view of the security analyst, stack pivoting poses a challenge in finding

the trigger point of the exploit. The attacker needs to utilize several small gadgets to

construct an ROP chain, to prepare a special stack, and to do the redirection. We want to

find the trigger point of exploitation when a crash occurs. We would like to trace it back

as far as we can, find out if the stack pivot exists or not, and if it exist, determine if it is

possible to find the original stack.

In this thesis, we first introduce the background around the history of ROP attacks as well

as introduce stack pivoting. Next, we describe in detail how we would reconstruct backtrace

from a core dump with stack pivoting. First, we use our algorithm to find the starting point

of the ROP chain. Then, depending on the type of stack pivoting, we proposed the approach

of finding the original stack. We then use this old ESP register value to reconstruct the

backtrace. We present our test result of our tool in the next chapter. Lastly, we discussed

several corner cases that we did not discuss in detail, and give suggestions about future

research.
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Chapter 2

Background

2.1 Direct Code Injection

Direct Code Injection has a long history in vulnerability exploiting. Stack smashing attack

is one kind of attack in this category. Programming languages like C and C++ do not have

a built-in check for accessing illegal memory locations. Specially, when accessing an array

in these languages, it is possible to read and write outside the boundary of this array while

compiler happily produce the binary for you. This kind of illegal memory access often leads

to overwriting partial of stack memory, this is from where the name stack smashing comes.
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#include <string.h>

void foo(char *bar){

char c[12];

strcpy(c, bar); // Insecure function call

}

int main(int argc , char **argv){

foo(argv [1]);

return 0;

}

Listing 2.1: A Program Vulnerable to Stack Overflow Attack

Take Listing 2.1 as an example. In function foo, the local variable c was allocated 12

bytes of memory space. If argv[1] is longer than 11 characters (1 byte for the ending NULL

character), the strcpy will do the copy as is, until it reaches the end of the bar variable.

This kind of attack is a thing of the past. Nowadays operating systems are able to mark

certain memory region (e.g., the stack memory) as “non-executable”; thus, even if the at-

tacker can inject code onto the stack, the code cannot be interpreted as CPU instructions,

and consequently, the Direct Code Injection attack is prevented. This technique is called

Data Execution Prevention (DEP) on Windows systems, it has been in place since Windows

XP Service Pack 2. OpenBSD has a similar technique called W ⊕X, in which the operat-

ing system will mark writable memory locations as “non-executable”, and mark executable

memory locations as “non-writable”.

2.2 Code Reuse Attack

Because of DEP, even if the attacker find a way to inject the code into memory, it cannot be

executed. Because of this, the attacker starts focusing on reusing existing code in memory,
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which introduced the Code Reuse Attack (CRA). In general, all modules loaded into the

virtual memory space of the running process can be used in CRA, including the C runtime

library (libc).

libc provides system calls like creating new processes and reading/writing files, and is

usually the stepping stone in the whole exploitation process. The kind of CRA focusing on

libc is called Return-into-libc attack, as the attacker will modify the return address on the

stack and invoke a series of functions by the RET instruction.

Later research shows that reusing the whole function code is not necessary in achieving a

successful attack. The attacker can also run a chain of a small set of consecutive instructions

and deliver the attacker. This introduces the Return Oriented Programming (ROP).

2.3 Return-Oriented Programming

Return-Oriented Programming (ROP) is a way to chain small pieces of existing code (called

gadgets) together to do arbitrary computation, usually by using specific system call or Ap-

plication Programming Interface (API).

The name comes from the fact that each gadget ends with an “RET” instruction. Instead

of modifying the stack to let it contain instructions, ROP focuses on modifying the memory

region that is pointed out by the Extended Stack Pointer (ESP) register, so that the execution

flow will be redirected to an arbitrary memory location.

Take Figure 2.1 as an example. The green boxes on executable memory are the normal

instructions, and the red ones are some short sequences of instructions that ends with RET.

The attacker first gets control of the stack memory and puts addresses of gadgets onto

the stack. Then using a normal RET instruction (step 1 in the figure), the execution flow will

jump to address of gadget A (step 2 in the figure), and so on.

To find the proper gadgets, one can use tools like mona.py and metasploit to scan the
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EIP register

ESP register

(Executable Memory)
...

XOR %EAX , %EAX

RET
...
...

INC %EAX

RET
...
...

(normal function call)

RET
...
...

INT 0x80

RET
...
...

(Corrupted stack)

Address of gadget A

Address of gadget B

Address of gadget C

1

2

Figure 2.1: Return-Oriented Programming

text segment of a program and all the modules that will be loaded into memory. The basic

algorithm for searching gadget involves disassemble the text segmentation, and checking if

sequences of instructions can be found which ends with a RET instruction. To find more

available gadgets, these tools will start disassembling with a certain offset. Listing 2.2 shows

an example of this algorithm: without the starting offset, the original hex code can be

disassembled into two instructions, but if we ignore the first one byte (hex number f7), we

can get four completely different instructions, with a RET instruction at the end.
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; Original hex code and disassemble result

f7 c7 07 00 00 00 test $0x00000007 , %edi

0f 95 45 c3 setnzb -61(%ebp)

; Same hex code but disassemble with one byte offset

c7 07 00 00 00 0f movl $0x0f000000 , (%edi)

95 xchg %ebp , %eax

45 inc %ebp

c3 ret

Listing 2.2: Example of disassemble with a one-byte offset

2.4 Stack Pivoting

It has been proven that ROP is Turing-complete, which means that given a long and complex

enough ROP chain, it is capable of any complex computation that a normal programming

language can do. But in real world examples, it is hard to craft a chain of gadgets to

accomplish even a small task.

¡¡¡¡¡¡¡ HEAD Stack pivoting is a technique to ease this situation. Instead of doing ev-

erything using only gadget chain, the attacker can use gadget to allocate a small memory

range which is executable, then put code on that range, and finally using gadget to redirect

execution flow to that memory range. The newly allocated memory range can be treated as

another execution stack.

7



2.4.1 TEB Block

2.4.2 Last Branch Record

2.5 Problem Definition

2.5.1 System Goals

Traditionally security analyst will need to take the core dump and manually inspect the

stack, then based on previous experience to find the trigger point of ROP attack. This work

is tedious and inefficient, and heavily rely on previous experience. Our goal is to design a

tool, that can take a core dump of a ROP attack, and then automatically generate useful

information to help security analyst determine the cause of the ROP attack.

G1: Ability to trace back along the stack

We should be able to trace back the execution stack as far as possible, given the memory

address value in esp register which is included in the core dump. The tool should recognize

literal values and instructions along the way, parse instructions correctly. Due to the ambi-

guity in x86 instructions, the process need to handle different situations and maybe different

branches when tracking back the stack.

G2: Ability to detect stack pivoting

The tool should be able to detect whether stack pivoting technique is used in the attack,

with a relatively high confidence. Again due to the ambiguity of x86 instructions, we may

need to use some heuristics, but the result should have low false-positive and false-negative

rate.

G3: Ability to trace back to the original stack

Based on G1 and G2, we should be able to trace back from the execution stack in core

dump to the original stack, so the trigger point of the ROP attack can be found. We should

8



cover as much ways of doing stack pivoting as possible.

2.5.2 Threat Model

The tool is supposed to be used to do off-line analysis. The possible security issue involved

would be that the attacker is in aware of this tool, and try to scramble the memory trace, or

even try to destroy some parts of the stacks, to hide the trace. MORE TO BE ADDED

HERE

2.5.3 Assumptions

We assume that the original stack is presented in the core dump, e.g. it’s not been destroyed

by the attacker, or not in anyway modified after stack pivoting. Also, we assume that we’ve

found the beginning address of executing stack when core dump was created.

2.6 Design Rational

Essentially our tool is to analyze a core dump and produce useful and accurate information

from it.

2.6.1 x86 instruction ambiguity

The core

2.6.2 Characteristics of Stack Pivoting

2.6.3 Direct jump using literal memory address

The most obvious way to jump to the new stack is to use call instruction with a literal

memory address.

9



Below is a graph showing this kind of jump in memory.

2.6.4 Indirect jump using numbers in register

Second scenario is to jump using the numbers stored in register. This is pretty common that

attacker can chain several gadgets to get a specified number load into register, e.g. eax, and

then a gadget similar to call [eax] will redirect control flow to the new stack.

Below is a graph showing this kind of jump.

2.6.5 Direct modify to stack pointer register

This is rear in our study. The attacker can modify a register, e.g. eax, and let it contain

the start address of the new stack. Then, the attacker can use a mov esp, eax gadget or

an xchg esp, eax gadget to directly modify esp register, thus modify the execution flow.

2.7 System Overview

How each components works together

2.8 Implementation

How each components implemented

10



2.9 Evaluation

2.10 Discussion

2.11 Related Works

2.12 Conclusion and Future Works

The conclusion goes here. ======= In a real world ROP attack, a technique called stack

pivoting is often been used to facilitate the delivery of successful attacks. Instead of modifying

the stack memory directly, the attacker can prepare a memory region, place the gadget chain

into that memory region, and then use a small gadget to modify ESP register value, and fool

the Operating System into using that memory region as a new stack.

The fact that the new stack can be anywhere in memory significantly simplifies the

construct of the ROP chain. The attacker can feed the ROP chain to the vulnerable process

as a normal input value, instead of carefully crafting the chain on the original stack.

2.13 Thread Environment Block

Thread Environment Block (TEB) is a thread-specific in memory data structure that holds

information related to that particular thread.

Information that is presented in TEB data structure is filled by the Operating System

when a new thread is created. Things like Process ID (PID), Thread ID (TID), and Last

Error Number will be stored in this data structure.

Among all this information, there is something that could help in our research, the stack

top and bottom address. These addresses are the stack region known to the operating system,

not necessarily the corresponding register values (values in ESP and EBP). In the case of a

11



stack-pivoted attack, the stack range in the TEB data structure is likely not the same as the

values in the registers.

2.14 Core Dumps

When a process crashes on a Windows system, if installed with a debugger, the user will get

a chance to create a core dump. The core dump is a snapshot of all relevant information of a

running process. Typical information that can be found in a core dump includes the complete

virtual memory layout, the register values of the CPU. With a proper configuration, the

core dump can even contain thread information like the time created and running time of

the thread, the unloaded module list, etc.

On a Windows System, a user can use taskmgr or WinDBG to create dumps from the

running process.

Security analysts heavily rely on core dumps to analyze new exploitations and find bugs

in software.
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Chapter 3

Problem Definition

3.1 Goal and Assumptions

The goal of this study is to infer and recover the call stack right before the execution of the

ROP chain.

A call stack is the control flow of a program indicated by the addresses of the stack frame.

In x86 architecture calling conventions, when a function is called through CALL instruction,

the memory address of the next instruction will be pushed onto the stack and then the EIP

register points at the beginning of the function.

Because of this feature, at any point in the execution of a program, it is possible to deter-

mine how the execution flow reached the current code, by examining the return addresses on

the stack. For example, developers often use the backtrace command in gdb to show how

the process reaches the current breakpoint. The call stack is often represented by a series of

addresses that indicate the functions and addresses of call sequences.

13



(gdb) backtrace

#0 func2 (x=30) at test.c:5

#1 0x80483e6 in func1 (a=30) at test.c:10

#2 0x8048414 in main (argc=1, argv=0 xbffffaf4) at test.c:19

#3 0x40037f5c in __libc_start_main () from /lib/libc.so.6

Listing 3.1: The GDB backtrace command

Listing 3.1 illustrates an example of a call stack. The first line starts with #0, indicating

the innermost function call, which is func2 with argument x=30 defined in test.c line 5.

Caller of func2 is func1, whose caller is, in turn, the main function.

The reason we want to infer the call stack before the ROP execution is to find out how

the exploitation works. Specifically, we want to know how the control flow of a vulnerable

program can be manipulated to jump to a ROP chain. The use of ROP to bypass DEP

protection is a common practice, and ROP is often (as observed by us and others) used as the

first step of modern exploitation. From a security analyst’s point of view, detecting the ROP

execution is a good way to know that exploitation has occurred. However, finding out how

the ROP attack was triggered is critical if we hope to identify the vulnerability in software

and infer how the attack happens.

A common method for determining how an exploitation occurs is to get the call stack,

e.g., run backtrace at the crash point. However, practical ROP exploitations almost always

involve stack pivoting, which means the current call stack (that runs the ROP gadget chain)

is not the stack which leads to the execution of the ROP.

In the normal running of a program, the calling convention is always honored. This

means that each function call will create a new stack frame by pushing the return address

and old EBP register value onto the stack. This makes it relatively easy to do a backtrace:

the EBP register points to the base address of the current stack frame, the next 8 bytes are

the outer frame’s base address value; then, another 8 bytes for the return address. But it is

14



not always the case when ROP is used in an exploitation, specifically stack pivoting is used

to start the ROP chain execution.

Loosely speaking, any modification to the ESP register to let it hold another memory

address can be called stack pivoting, including all stack related benign instructions like

PUSH/POP. The reason for modifying the value in the ESP register is that, after modifying

that register, any POP/PUSH/RET instructions will operate on the new stack whose address is

determined by the value in the ESP register. The attacker can place multiple gadget memory

addresses anywhere in the memory, use stack pivoting to start using that memory range as

the stack, and finally chain those ROP gadgets together.

Even if we have the range of the previous stack section by checking the Thread Environ-

ment Block (TEB) information in the dump, the stack points (such as the EBP, and ESP) are

no longer valid. ESP is definitely being overwritten, and likely EBP as well.

So if we look directly at a crash dump that occurs during the execution of the ROP chain

or after, the first thing we will notice is that the ESP register may contain a memory address

that is not in the stack range from the TEB (thread environment block). This can be used

as proof that stack pivoting has really happened.

We used a set of deterministic and heuristics algorithms to infer what happened before

the ROP chain, especially how the stack pivot happens.

Our work is based on the following assumptions:

1. We have a core dump that is generated during (or right after) the execution of a ROP

chain.

2. A stack pivot occurred before the execution of the ROP chain.

3. The stack pivoting target is at the start of the ROP chain.

4. The old stack has not been destroyed by the execution of the ROP chain.

5. We have access to the binary and the debug symbols of the vulnerable program.

15



3.2 Determining the Stack Pivoting Target

During the process of stack pivoting, the final value in the ESP register is the top of the

new stack. We call this value the stack pivoting target. As per our assumption, the stack

pivoting target can be determined by inferring the start of the ROP chain.

The start of the ROP chain can be inferred from the core dump. The ESP register value in

the core dump is somewhere below the stack pivoting target (in a higher memory location

compare to the stack pivoting target). We can start scanning memory from the final ESP

register value towards lower memory locations, and identify gadget addresses during the

scan.

The general algorithm to determine if the address is a gadget address is described as

follows:

• The memory location identified by this value is executable.

• When disassembling that memory location, we can find a RET instruction less than

threshold instructions.

In order to determine a proper threshold, we analyzed the entire loaded Dynamic Link

Library (DLL) of Internet Explorer 8 on the Windows 7 SP1 32bit System. Of all the

gadgets with 20 less instructions, 88% of them are less than 10 instructions. We use 10 as

our threshold value.

As the memory region is used as a stack, we are aware that values we meet are not

always memory addresses. Some gadget, e.g. “XOR %EAX , %EAX ; POP %EBX ; RET” will need

to have one byte of compensation on the stack due to the POP instruction. We took this into

consideration when scanning gadget addresses.

We scanned towards the lower memory, found as many gadget addresses as possible, and

stopped at the memory location containing the last gadget address we could find. We used

this resulting memory location as the stack pivoting target address.

16



3.3 Types of Stack Pivoting

This section describes the known stack pivoting methods. The purpose of stack pivoting is

to change the stack pointer register to a new memory region (rather than grow/push on the

current stack).

The current active stack frame of a running program is captured by the values of the two

special purpose registers, ESP for the top of the current active stack frame, and EBP for the

base of the current active stack frame.

...

...

XOR %EAX , %EAX

INC %EAX
...
...

POP %ESP

RET
...
...

EIP register

ESP register

Original Stack New Stack

(created by attacker)

(contain the ROP chain)

1

2

3

Figure 3.1: How Stack Pivoting Works

In Figure 3.1 we show a typical stack pivot used in an attack. In Step 1, the EIP register

is pointing at a normal instructions in the memory. As the CPU continues execution, the

stack pivot gadget eventually gets executed in step 2. After the RET instruction, the ESP

register will contain the value of an arbitrary new memory address, and thus the stack range

will be modified by the attacker.

Stack Pivoting is commonly achieved by changing the ESP to point to a new memory

17



place that is filled with content controlled by the attacker. The location of the “new stack”

can be arbitrary memory locations like the heap, loaded dynamic modules, or even inside

the original stack. The point of stack pivoting is that it makes it easier for an attacker to

prepare ROP chain in a new memory range instead of modifying the original stack.

Many instructions are not affected by the change in the ESP register. Instructions like

“MOV/SUB/ADD” after the ESP register value change will work as expected since they do not

interact with the stack at all. But instructions like “PUSH/POP/CALL/RET” will start using

the memory location pointed out by the ESP register immediately. In most situations the

new stack will only contain the ROP chain, so any modification to the ESP register will likely

be followed by an RET instruction to start running the ROP chain.

In order to cover all available cases of stack pivoting, we chose Mona.py to generate

gadgets that are available for stack pivoting and to group them by their features. The

following sections describe popular ways to pivot the stack.

3.3.1 Through POP %ESP

A popular way to change the ESP register value to a new stack region is to trigger a POP

operation and assign some value on the stack to the ESP register. For example, the sequence

“PUSH %EAX ; POP %ESP ” will PUSH value containing in the EAX register onto the top of stack,

and then the POP instruction load that same value from the stack to the ESP register.

3.3.2 Through arithmetic operation over the ESP register

The attacker can also use arithmetic instructions to increase/decrease values in the ESP

register. Examples of these instructions are: ADD/SUB %ESP , 0x20, and INC/DEC %ESP . If the

distance between the current stack and the target stack can be pre-calculated, the attacker

can carefully design a chain of arithmetic instructions that involves the ESP register, and
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modify its value to a new stack location.

3.3.3 Through an exchange instruction with another register

Controlling the ESP register is not that easy. Modifying the ESP register should be done

in instructions as short as possible since modification of the ESP register will immediately

affects the results of the instructions related to the stack. But, the general registers like

EAX does not have that constraint. One can load a value to the EAX register, then do some

ADD/SUB operation to get the specific values he/she wants, and finally exchange the value in

the EAX register with the ESP register.

3.3.4 Through other stack operations

Some stack related instructions related to stack operation will implicitly change the ESP

value. For example, POP instruction will increase the ESP value by 4 bytes, and PUSH instruc-

tion will decrease it by 4 bytes. The batch push/pop instruction, PUSHAD and POPAD, will

modify the ESP value by 32 bytes.

A variant of the RET instruction, RETN, accepts an operand as the offset when calculating

the return address. While the RET instruction will jump to retAddr directly, “RETN 0x8”

and “RETN -0x8 will jump to retAddr + 8 and retAddr − 8, respectfully.

These seemingly harmless instructions can be used by attackers too.

3.4 The Proposed Approach for Finding the Old ESP

Value

We plan to look at each of the pivoting methods mentioned above and to try to infer the

old ESP value. When we have a crash dump, we do not really know which pivoting method
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is being used. Here we just first assume that we know the method, and describe the plan of

recovery from there. In practice, we plan to try all our heuristics and find as much potential

old ESP register value as possible.

Of course, we need to use a lot of heuristics in our program. For some of the pivot

techniques, we only handle only the simplest situation. For the other techniques, we may

get multiple candidates. Our plan is to reconstruct a call stack for each of the candidates

and let the user decide which one is correct.

In the end, we discuss a general way to reconstruct the call stack in case there is no

potential candidate returned from our heuristic algorithm.

Solutions about different stack pivot techniques are listed in Table 3.1.

Table 3.1: Stack Pivoting Techniques and Solutions

Name
Solutions

Deterministic Heuristic Fallback solution

POP instruction 3 7

3
Arithmetic operations 7 3

XCHG instruction 7 3

Other stack related operations 7 7

3.4.1 POP %ESP

This case is relatively easy. Our assumption is that we know the beginning address of the

new stack, so we know what memory address will be popped from the stack to the ESP

register. Because the pivot is achieved by a POP instruction, it means the new stack address

is likely still on the old stack. So the deterministic solution is to search for the value of

the pivoting target address in the old stack region. Once we find the memory address that

contains the stack pivot, we know that the ESP was once pointed at the next higher memory

address, and we discover the old ESP value.
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For example, in the case of “PUSH %EAX ; POP %ESP ”, the address was passed by the EAX

register, and it was pushed on the stack (which means it is in the memory) before the POP

instruction get executed. Therefore, the old ESP register value can be identified by searching

the new stack address on the old stack.

3.4.2 Arithmetic Instruction over ESP register

The arithmetic operation on the ESP register makes a “short distance jump” to a new memory

address relative to the current ESP value.

To restore the old ESP value, first we need to scan all loaded modules in core dump to get

potential arithmetic gadgets used for stack pivoting. Through the WinDBG’s API, we can get

the memory range for each loaded modules, and then we can disassemble the binary content

to get the CPU instructions.

Each of these potential gadgets has an offset value. For example, “INC %ESP ” will have

an offset of +1, and “SUB %ESP , 0x08” will have an offset of −8.

As per our assumption, we assume the original stack memory is not destroyed by the

execution of the ROP chain. Therefore, we do not consider the possibility that the attacker

placed the ROP chain inside the original stack region, because this would likely have destroyed

the original stack. In fact, in reality if the attacker is able to place the ROP chain on the

stack, it is highly possible that stack pivoting is not needed at all.

The default stack reservation size used in the Windows system is 1MB, so we consider

only gadgets with an absolute offset value greater than 0x20000000, because any number

less than this value will have less than a 40% possibility of “jumping” outside of original

stack region. The calculation of this number comes from the following inequity:

minOffset
10243bytes

≥ 0.4 minOffset ≥ 0x20000000.

We treat all of these gadget as potential gadgets. For each of these gadgets, we calculate

the potential old ESP register value. Based on this old ESP register value and the old stack
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memory information, we are able to infer the details of the stack frame containing the ESP

value. Then we validate if the potential gadget is indeed from that function.

3.4.3 Exchange Instruction

As was discussed previously, controlling a general purpose register like the EAX is much easier

than controlling the ESP register directly.

There is one heuristic we can use in this scenario: “POP %EAX ; XCHG %ESP , %EAX ”. This

is similar to the case we discussed in Section 3.4.1: the attacker modifying the EAX register

using POP, and exchanging the values in ESP and EAX register.

Since the value in EAX was POP’ed from the stack, the literal value is likely still on the

old stack. We can scan the stack range presented in the TEB, find any literal values equal to

the start address of the new stack, and use the next higher memory as the starting point of

our call stack recovery.

3.4.4 Other Stack-related Instructions

We do not consider these operations as viable to accomplish a successful stack pivot, thus

we ignore this case in our research.

3.5 Challenges in Finding the Old ESP Value

The previous section describes basic approaches to finding the old ESP register value. Here

we discuss the challenges we discovered in the process.
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3.5.1 An inaccurate Stack Pivoting Target Value

A stack pivoting gadget has a target value, which is, in most cases, the starting point of

the gadget chain. Our research depends on the assumption that we have already gotten the

accurate value. In reality, this is not always the case.

To find the starting point of the gadget chain, we use the following algorithm:

• Get the current ESP register value in the core dump.

• Examine the lower memory addresses and find as many potential gadget addresses as

possible.

• Consider the smallest memory address which contains a potential gadget address the

starting point of this gadget chain

There are some flaws in this algorithm that may result in an incorrect stack pivoting

target value. The problems in this algorithm are summarized below:

Determining if an Address points to a Gadget

When given a memory address, we first need to determine if the permission of the target

memory is executable or not. If the target memory address is not executable, it is guaranteed

not to be a gadget address.

If the memory address is executable, we will disassemble it from that address and get up

to 10 instructions. We may get fewer instructions if not all of the addresses are executable.

Nevertheless, we will check if there is any control transfer instructions (e.g. RET, JMP, JNE

etc.) in the following instructions. If there is, we consider the memory address is pointing

to a gadget.

We use the number 10 as the maximum number of instructions to be checked for control

transfer instructions. This number is due to the fact that most of the gadgets contains
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fewer than 10 instructions. To determine the upper limit of gadget length, we use Mona.py

to generate ROP gadget list from Internet Explorer and all its loaded modules (DLLs), and

then group the gadgets together according to their length. Of all the gadgets, 88% of them

contains fewer than 10 instructions.

Gadget Chain Prefixed by NOP instructions

The gadget may be intentionally prefixed by a number of the RET instructions serving as the

No-Operation (NOP) gadget. In this way, when doing stack pivoting, the attacker does not

need to modify the ESP register to reflect the exact starting point of the ROP chain. One can

modify the ESP register value to an address in the range of NOP gadgets, and still gets the

actual ROP chain running.

In this case, when we look for the start of ROP chain, we may find the first NOP gadget

as the starting point.

Our solution to this flaw is that, when we look for the stack pivoting target value on the

original stack, we allow a range instead of just a number. If we have the start of the gadget

chain at location addr1, we will look for a number on the original stack that is in the range

of (addr1 − delta, addr1 + delta). The delta we use is 0x10000.

3.5.2 Multiple Potential Value vs. No Potential Value

Ideally, when using our heuristic to search the original stack memory, we will get one result

and reconstruct the backtrace using that old ESP register value.

But it is possible that we will find multiple values that match our criteria or no results

at all.

If we find multiple values, we will construct the backtrace for each value and use a calling

graph to filter some incorrect cases; we will then output the remaining backtrace to let the

user decide which one is correct.
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If no result is returned, we will use a fallback algorithm to scan the whole original stack

memory region, as described in Section 3.6.

3.6 Plan for Recreating the Call Stack

This subsection describes the plan to recover the whole call stack when we have the stack

section memory range, the top of the stack (ESP) and the binary executable of the running

process, along with the debug symbol. Essentially we are creating a “backtrace” that is

aware of possible stack pivoting and creates the trace accordingly.

3.6.1 Identifying Return Address

A stack consists of multiple stack frames, each frame represents a function call and contains

all of the local variable information. One way to identify the stack frame is to identify the

return addresses, which were pushed on the stack for each function call. Therefore, the first

effort is to scan the stack section for all possible return addresses.

A value is considered a return address if it meets these criteria: 1. It points to an

executable memory location and 2. There is a CALL instruction right before that memory

address.

Therefore, an intuitive approach is to scan the memory range from the bottom to the

memory address pointed out by the ESP register, to identify all of the return addresses, and

then to create a call stack by consulting the debug symbols.

Unfortunately, things are a little bit complicated. The values on the stack can be either

a memory address (the return address of function calls) or literal value (the arguments

of function calls). The literal value on the stack can accidentally be equals to a memory

address that point to executable memory locations, or in some situations, a function pointer

was passed to another function as a callback function.
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Fortunately if we have the debug symbol, we are able to create a calling graph containing

every pair of callers/callees in the program and every loaded modules. Using this calling

graph, we can filter most of the false results. For example, if we find that func1 is calling

func2 by scanning the stack, but we see that there is no such function invocation in the

calling graph, we can be sure that is a false result. Details about creating this calling graph

will be discussed in a later chapter.

3.6.2 Solution Wrap-up and the Fall-back Plan

If we find the old ESP register value through our ESP value finder, we can scan from that

address towards higher memory addresses (from top to bottom) and identify stack frames

along the way, until we reach the outermost function call.

The plan is straightforward, for each return address we identify, we consult the debug

symbols to translate it into function names, and optionally parse the function variables

pushed onto the stack.

As we mentioned above, our method of inferring the old ESP register value could return

no candidate at all. In this case, we will fall back to scan the whole stack range, but from

higher memory addresses towards lower memory addresses (from bottom to top). We can

use the calling graph and stop at a position where the caller-callee does not make sense.

The fall-back plan will start scanning from the bottom of the stack to the top. For each

identified stack frame, we ask the question: does the outer function (the function of previous

identified stack frame) has an edge to the current function in the calling graph? We stop at

the point when there is no such invocation relationship by consulting the calling graph, and

output the stack information as our backtrace result.

Details about how to create the calling graph will be discussed in Section 4.1.
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Chapter 4

System Overview and Implementation

In this chapter, we discuss the design and implementation of our system.

Figure 4.1 shows the overall design of the system. Details about each component will be

discussed in the following sections.
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Figure 4.1: System Design
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4.1 Debugging Symbol Preprocessor

In order to fully reconstruct the call stack, we need to pre-process the debug symbol together

with the core dump to construct a calling graph.

The calling graph is a directed graph that contains potential circles. Each edge of the

graph represents a calling relation. Take Listing 4.1 as an example.

#include <stdio.h>

int fib(int n) {

switch (n) {

case 0:

case 1:

return n;

default:

return fib(n-1) + fib(n-2);

}

}

int main() {

int seq = 0;

printf("Input the sequence number :\n");

scanf("%d",&seq);

printf("Fibonacci series\n");

for (int i=1; i<=seq; i++) {

printf("%d\n", fib(i));

}

return 0;

}

Listing 4.1: A Simple C Program to Calculate Fibonacci

In this example, there are roughly four functions involved: main, printf, scanf and fib.
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The fib function is a recurring function which will call itself an arbitrary number of times.

The corresponding calling graph is shown in Figure 4.2.

main

fib

printfscanf

Figure 4.2: A Calling Graph

Bear in mind that we do not intend to walk through all possible branches in a function

body as a symbolic virtual machine does. As long as there is a CALL instruction in the

function body, we will add an edge from caller to callee. It is possible that a function call is

surrounded by an if (false) statement and is, therefore, never actually been called, but

in our research, we will add an edge to our graph.

Since we do not have access to the source code, the calling graph can be extracted only

from the core dump and the debug symbol. The process can be described below.

1. Disassemble all memory ranges of loaded modules in core dump

2. For each instruction:

(a) If this is a CALL instruction, create a tuple (addr1, add2), meaning “memory ad-

dress 1 contains a CALL instruction to memory address 2”

(b) Consult the debug symbol to translate (addr1, addr2) into (func1, func2)

(c) Store the result into the SQLite database to allow for faster retrieval
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4.2 The ESP Value Finder

For each stack pivot method, we have a proposed heuristic to infer the old ESP register

value. We will need to run all finders since we do not know which method was used in stack

pivoting.

4.3 The Stack Frame Analyzer

By running the ESP Finder, we are able to find the original stack pointer value. We will run

the stack frame analyzer starting with that address to construct the actual call stack.

We will use the generated calling graph to filter the incorrect results, so that the researcher

do not need to manually confirm the correctness of the backtrace result.
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Chapter 5

Implementation

5.1 Debugging Symbol Preprocessor

The preprocessor was written in Python. We use the pykd Python module to access the

WinDBG’s C++ interface. WinDBG offers an easy way to disassemble the memory content;

therefore we can use it to create the calling graph easily.

We first list all loaded modules in the core dump. A module is essentially a loaded

Dynamical-link Library (DLL) or the program binary itself. Each module comes with a mem-

ory region representing the binary of that module. The preprocessor will then disassemble

each module.

Because WinDBG does not provide an easy way to get the text segment range of a loaded

module, we need to do disassembling in a dumb way. That is, we will first check the

permission of the memory address to be disassembled. If the memory is not executable, we

will ignore it and continue disassembling the remaining memory content.

The result calling graph will be stored in an SQLite database for latter querying.
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5.2 ESP Finder

The ESP Finder is a set of Python classes which implement the infer method. This method

will return a list of memory addresses containing the potential old ESP value. If the finder

cannot find a potential value, an empty list will be returned.

In order to ease the implementation of the ESP Finder, we use meta programming in

Python to automatically register new Finders once they are coded.

5.3 The Stack Frame Analyzer

The stack frame analyzer will look for return addresses on the stack memory range and

reconstruct the call stack.

The analyzer will need to query the calling graph data in the SQLite database and filter

out the false results. This is especially important in the situation when no old ESP value

was inferred by the ESP Finder and we have to use the stack range specified in the TEB

information.
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Chapter 6

Evaluation

In order to test our program, we manually generated several core dumps of Internet Explorer

8 on the Windows 7 SP1 32bit operating system, and tested all stack pivoting methods. Our

result is summarized in Table 6.1.

6.1 Manually Creating Core Dumps

In order to test our program, we generated several core dumps using pykd, which is a Python

library used to interact with WinDBG’s C++ Application Programming Interface (API).

We use Internet Explorer 8 on Windows 7 SP1 32bit as our victim program. To create

core dumps, we first launch the program, and then attach our program to the running process

using pykd. The debugger will inject into the running process as a separate thread. As the

side effect of attaching to a running process, the whole program will pause and stop at the

default breakpoint at ntdll DbgBreakPoint.

Then we will find the return address of all paused threads and place a stack pivot gadget

at that return address. Before resuming the process, we will backup the backtrace result for

later comparison.

34



We did not carefully craft our stack pivot gadget so the stack pivoting target is likely a

random number (e.g. the “POP %ESP ” stack pivoting gadget will pop a random number at the

top of original stack into the ESP register). So when our program detached from the process

and let it resume running, the process will likely return to a non-executable random memory

location, which in turn will crash the process. We create a core dump using taskmgr.exe

after we get the alert window indicating that the program has a memory access violation.

6.2 Evaluation Results

Since the program was crashed because of a memory access violation, the value of ESP register

in the core dump is considered the stack pivoting target address.

We use this target address as the input to infer the old ESP value. Of all the stack

pivoting methods, only the one using an XCHG instruction cannot recreate the backtrace.

After getting the backtrace, we compare it to the backup backtrace obtained right before

the core dump was created to verify the accuracy of our tool.

Regarding the accuracy of the tool, if they meet either of the following criteria, we

consider the result accurate.

• Their length is the same, and only the innermost function call is different.

• Their length is not the same; the shorter one excluding the innermost function is the

subset of the longer one.

With the above rules, we consider the following pairs of backtrace results as accurate:

• funcfish → funccat → funcdog

funcfish → funccat → funchusky

• funcfish → funccat → funcdog

funcfish → funccat → funchusky → funccorgi
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The results are shown in Table 6.1.

Table 6.1: Evaluation Results

Tested Pivoting Gadget
Result

# of Core dumps # of Backtrace created Accurate?

POP %ESP 2 2 2
INC %ESP , 0x40000000 2 2 2
POP %EAX ; XCHG %EAX , %ESP 2 2 2
XCHG %EAX , %ESP 2 2 0

6.3 Discussion of the Results

It is no surprise that the core dump generated by “XCHG %EAX , %ESP ” cannot generate the

accurate backtrace. Our heuristic for this stack pivoting method assumes that the other

register involves in the XCHG operation get the value POP’ed from the stack, so the stack

pivoting target should remain on the old stack region. If we do the stack pivoting use only

the XCHG gadget, our heuristic algorithm will return no old ESP register value, and the fall

back solution gives an inaccurate backtrace.
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Chapter 7

Discussion

There are many issues in our research that have not been solved. We discuss these issues in

this section.

7.1 Correctness of the Pivot Target

We refer to the target address of a Stack Pivot sequence as the Stack Pivot Target. Our

research rely on the assumption that the pivot target address can be known before running

the program.

The pivot target is usually the beginning of the ROP chain, but this is not always the

case. Even this is true, the automate tool used to recognize the start of ROP chain may give

an incorrect result. This in turn may affect the correctness of our backtrace result.

7.2 Relying on the Debugging Symbol

Our research heavily relies on the debug symbols to create the calling graph, as well as the

result backtrace.

For programs provided by Microsoft, e.g. Internet Explorer, we have a public accessible
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debug symbols server. But for other program, e.g. Adobe Reader, we do not have these

debug symbols, which means we cannot create a calling graph. We have to use the fallback

method to construct backtrace. Furthermore, the resulting backtrace will contain only offset

numbers to loaded modules, instead of actual function names.
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Chapter 8

Conclusion and Future Works

In this paper, we developed a full working program to automate the analysis of core dumps

which contains Stack Pivoting. We discussed the details of ROP and Stack Pivoting, analyzed

the features of different stack pivoting methods, and finally designed and implemented a

program to automate the whole process. We also tested our program against manually

generated core dumps to prove that it worked.

This research may be improved in multiple ways. We list possible future work in the

following sections.

8.1 Deterministic Algorithm to Search for the Old ESP

Register Value

Our current solution to stack pivoting, except for the POP instruction case, are all heuristic

solutions. We have preliminary thought of solving the rest of the cases deterministically by

integrating an assembly language emulator into our tool and find the old ESP register value

with higher confidence.

Taking the XCHG stack pivoting gadget as an example: “XCHG %EAX , %ESP ”, the deter-

39



ministic solution would be finding how the specific value loaded into EAX.

We can go back several steps and find an instruction that gives EAX a concrete value. For

example, “MOV %EAX , 0x08” will give EAX a value of 0x8, and “XOR %EAX , %EAX ” will result

in EAX register containing zero. Then we follow the instructions until we reach the potential

pivot gadget and we see if the EAX register contains the stack pivoting target address.

8.2 Other Stack Pivoting Scenarios

8.2.1 Chain of Gadgets to do Stack Pivoting

In our research we consider only those situations in which the stack pivoting is done by one

gadget (with possible small numbers of prepare gadgets). But it is possible that the attacker

might use an arbitrary length of a gadget chain to do stack pivoting.

8.2.2 Stack-related Instructions as Stack Pivoting Method

We think it is not viable to use normal stack-related instructions to conduct stack pivoting.

But a carefully crafted chain of stack pivoting target do have the possible of resulting in

successful stack pivoting. ¿¿¿¿¿¿¿ 559334e203a54ca71c47df1a79565e01be3db805

40


