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Abstract

With the proliferation of smartphones and �tness bands that have various sensors

such as accelerometers, wearable sensor-based Human Activity Recognition (HAR) sys-

tems have gained wide popularity and researchers have proposed numerous techniques

for recognition of these activities. Human activity recognition has many applications

particularly in health care, cognitive assistance, city planning, indoor localization and

tracking, and human-computer interaction. Although there has been some progress,

a practical robust HAR system remains elusive because the collected data are a�ected

by several factors such as noise, data alignment, and other constraints. In addition, the

variability in the sensing equipment and their displacement is a practical challenge for

implementing HAR in real-world applications.

�is dissertation explores the twin problems of making wearable sensor-based HAR

systems robust and real time. Towards enhancing the robustness of ML-based HAR sys-



tems, we adopt feature selection methods on time and frequency domain features and

apply classi�ers for evaluating the recognition performance. We show the e�ect of dif-

ferent feature sets on each of the classi�ers and further demonstrate in our results the

impact of decreasing the size of the training set on the accuracy of the classi�ers. To-

wards building an Online HAR system, this thesis explores the concept of Shapelets to

avoid complex feature extraction. We propose a procedure to �nd the most representa-

tive shapelet for each activity class based on time series distance metrics and dynamic

time warping. Furthermore, we generate a personalized shapelet library database driven

from users’ activity time series.

We evaluate the proposed algorithm and techniques using a dataset comprised of ac-

celerometer readings of 77 individuals performing various activities such aswalking/jogging

on treadmill, walking on di�erent surfaces, climbing stairs, and non-ambulatory activ-

ities. Our experiments demonstrate that by using selected features from the time and

frequency domain, we can achieve higher accuracy rates if we limit the training and test-

ing sets to speci�c age groups. Furthermore, while we mainly use a single hip-worn ac-

celerometer sensor as our sensing device, we show our method could support any wear-

able accelerometer sensor.

Index words: Human Activity, Times Series, Shapelets, DWT, Wavelets, Data
mining, Feature selection, Classi�cation, Decision tree, Health
Informatics
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Chapter 1

Introduction

�emost profound technologies are those that disappear. �ey weave them-

selves into the fabric of everyday life until they are indistinguishable from it.

— Mark Weiser [1999]

1.1 Sensor based Human Activity Recognition

Human Activity Recognition (HAR) has been a topic of interest within the ubiquitous

computing research community for several years. With the development of low-priced

wearable sensors, HAR is getting attention both in the research realm and in industries

due to its applications in health care, cognitive assistance, indoor localization and track-

ing, and human-computer interaction. Many of these domains demand a robust HAR

system that can distinguish ambulatory and non-ambulatory human activities with high

accuracy.

HAR systems can be categorized into two broad classes: namely, those that are based
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on wearable sensors and those that use external devices such as video recorders [Turaga

et al., 2008a], cameras and pressure sensors [Orr andAbowd, 2000]. �e later has a num-

ber of disadvantages including expensive hardware, computationally intensive image and

video analytics, limited monitoring and limited portability. On the other hand, wearable

sensor-based HAR systems are largely devoid of the above problems. Furthermore, re-

cent years have witnessed a tremendous proliferation of smartphones and �tness bands

that have various energy-e�cient sensors such as accelerometers. Driven by these trends,

wearable sensor-based HAR systems have gained wide popularity and acceptability.

Although accelerometers have become fairly accurate over the years, robust and ac-

curate identi�cation of activities still poses a number of signi�cant challenges. First,

because many di�erent brands of accelerometers are available on the market, HAR al-

gorithms have to be resilient against device heterogeneities. Second, human activities

are highly personalized in the sense that the salient characteristics of the activities vary

from person to person. Many factors such as age, height, body mass index (BMI), in-

jury histories and deformities may impact the manner in which a person walks, runs,

or performs other activities. HAR algorithms have to be robust towards these factors.

�ird, accelerometer data is o�en noisy (for example, sensors might be shaken, moved,

dropped during activities), and hence HAR algorithms have to be robust against noise.

�ere are also challenges associated with online HAR systems where real-time sensor

data processing and classi�cation are required. In classi�cations systems the dimension-

ality of the feature space has a direct relation with the computational intensiveness of the

systems. However, in onlineHAR systems the objective is tominimize computations and

it is therefore important to use a minimum number of features. �is may result in less
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accurate classi�cation of every day living activities. �ere had been limited amount of

research on online HAR classi�cation algorithms that recognize activities in real-time,

and most are based on a limited set of activities [Shoaib et al., 2015].

In this dissertation, we explore an o�ine as well as online approach to detect a set of

human daily activities. Although several researchers have explored usingmachine learn-

ing algorithms for HAR, very few, to our best knowledge, have comprehensively studied

the various facets of HAR [Bao and Intille, 2004; Lockhart and Weiss, 2014]. In many of

these studies, the datasets are small and homogenous (for example, consisting of subjects

in the same age group such as college students). Towards addressing these limitations,

we have comprehensively studied the e�ectiveness ofmachine learning-based techniques

for o�ine HAR systems.

Furthermore,most current research focuses on extracting complex features to achieve

high classi�cation accuracy. We apply shape-based time series classi�cation such that

complex feature extraction is avoided. We use annotated temporal data collected from a

single tri-axial accelerometer sensor worn on the hip.

In this chapter we provide an overview of the dissertation by laying out the research

context and describe the motivation behind this research. �e research novelty and con-

tributions are highlighted.

1.2 Research Context andMotivation

One of themajor challenges in human activity recognition is the usability of such systems

in real life applications. Unobtrusive wearable devices with limited number of sensors
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are more user-friendly, however, with fewer sensors attached to the body, the accuracy

of such systems may decrease. In this thesis, we propose approaches for an e�ective hu-

man activity recognition system based on a single accelerometer sensor. Our proposed

system could be embedded on any wearable device, including smart mobile phones and

smartwatches. Many HAR systems are only capable of detecting a prede�ned limited set

of simple activities, such as walking, running and laying down. Such systems are limited

to applications in controlled environments. We try to address these limitations by having

the system to train itself on a wide set of activities. To improve the accuracy of the system,

we personalize the training phase. Each user will have a training phase and the system

will adapt its learning based on the movements of a particular user. �is would require

that each user have a personalized copy of the application on their personal wearable de-

vice.

HAR systems are e�ective if they can recognize and detect human activities in a reason-

able time. Many HAR systems are based on employing machine learning techniques on

motion data on powerful servers. �is requires the system to record data and send it to a

server to be analyzed and detect the users’ activities, thus cannot be achieved in real-time.

Our method proposes that while the training phase can be done o�ine on a server, but

the application recognizes users activities in real time. Such a feature adds many bene�ts

toHAR systems and applications, one of which being in healthcare. OnlineHAR systems

enable us to continuously monitor patients with physical or mental di�culties for their

safety and recovery as discussed by Lara and Labrador [2013].

In addition, there have been very few comprehensive studies on various facets of HAR

[Bao and Intille, 2004; Lockhart andWeiss, 2014] with large heterogeneous datasets. We
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study the e�ectiveness of machine learning-based techniques for o�ine HAR systems

using datasets that consists data from users from a wide age range and body features.

Our research is motivated by the demand of ful�lling the weaknesses of current HAR

systems on topics mentioned above in order to developmore accurate and e�ective HAR

system.

1.3 Research Objectives and Contributions

�e main objective of this thesis is to perform human daily activity detection using a

single wearable accelerometer sensor in an unobtrusive manner. From this general ob-

jective the following particular objectives are derived with respect to o�ine and online

Human Activity Recognition systems:

• Comprehensive study on e�ective features to classify activities. We analyze the

e�ectiveness of a combination of time domain and frequency domain features. We

also propose an expert-selected feature set which improves the system’s accuracy.

• Studying the e�ect of reducing the dataset size of the accelerometer readings. We

show that decreasing the sampling rate down to 20% does not result in signi�cant

degradation of classi�er accuracies.

• In achieving a HAR system with high accuracy we limit the training and testing

sets to speci�c age groups. We show that this leads to a signi�cant increase in the

accuracy of activity recognition.

• We generate a personalized shapelet library database driven from users activity

5



time series for a shapelet-based online implementation of human activity classi�-

cation. �is database is small in terms of size and can be stored on mobile phones

and wearable devices.

• We propose a procedure to �nd the best shapelet which represents an activity class

based on time series distance metrics and DTW. For demonstration we use real

human activity data and show our system is independent of the sensor device.

1.4 Dissertation Organization

�e rest of the dissertation is divided into the following chapters. Chapter 2 presents

an analysis of relevant background material. Chapter 3 focuses on o�ine human activity

recognition systems. O�ine activity recognition systems have high accuracy in detecting

human activities. However, their application may be limited compared to online HAR

systems. In chapter 4 we show an online HAR system that can determine users activities

in real time. Chapter 5 is dedicated to related work in the �eld of activity recognition

and its application in the medical domain. �e dissertation concludes in chapter 6 with

re
ection on the implications of our work encompassing this dissertation. �e chapter

ends with future directions for this line of research.
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Chapter 2

Background

2.1 Introduction

In the past decade, HumanActivityRecognition (HAR)has attracted interest in academia

and industry due to its potentials in human-centric applications andusefulness for context-

aware computing. Mainly, the purpose of human activity recognition systems are to rec-

ognize user movements and behaviors from low-level data gathered from sensors (usu-

ally wearable sensors or mobile phone sensors). HAR systems can be exploited to great

bene�ts especially in health and medical domains, as an example in smart home envi-

ronments for aged care monitoring [Benmansour et al., 2015], based on the information

provided by cameras and other pervasive sensors, the system would monitor the occu-

pant and determine when they need assistance, raising an alarm if required. HAR also

allows for a continuous evaluation of users physical and cognitive capabilities by moni-

toring the performed activities of daily living. Previously, most of the work in HAR has
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been done using computer vision [Efros et al., 2003]. However, privacy and ethics are

very important therefore the camera based solution would not be suitable. Recently, mo-

bile phones and wearable sensors have been used for this purpose, these devices range

from accelerometers to magnetic �eld sensors and are unobtrusive and suitable for users

to wear throughout the day.

Various approaches are used to acquire useful information and knowledge from such

sensors and one of the key components of any HAR system are Machine Learning tech-

niques. To have a system that could automatically infer what activity is being performed

using the accelerometers and other wearable sensors, it must have a detailed model of

the activity [Guan et al., 2007]. Currently a variety of machine learning methods have

been proposed for human activity recognition applications, namely as neural networks,

Bayesian networks, hiddenMarkovmodels, K-nearest neighbors, decision tree andmore.

Most of the machine learning approaches used in HAR systems are supervised and need

labeled activity samples for training purposes. However, in real activity recognition sys-

tems, labeled samples usually require human subjects to annotate the activity data and

this is an expensive and time consuming process, therefor, recently there has been some

attention drawn towards semi-supervised applications which is beyond the scope of this

dissertation. In this chapter we will focus onmachine learning techniques used in o�ine

and online HAR systems. We try to show that there is no preferred machine learning

technique used for all activity recognition system types and the selection of the algo-

rithm and approach depends on the HAR application, sensors used and system design.

We review the most commonly machine learning methods used in activity recognition

and show a few of many of the HAR applications that have been developed in the recent
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years. We mainly focus on applications that use wearable sensors or embedded sensors

on mobile phones.

2.2 Wearable Sensors

Wearable sensors have the key advantage to record human motions and movements re-

gardless of the users’ location. Such sensors are small sized and can be attached to dif-

ferent body parts such as the hip, wrists, chest, ankle and head. In the recent years sen-

sors have been built into every day garment 1, making HAR systems less obtrusive and

enabling the user to record skin temperature, heart rate, heat 
ux, conductivity, GPS lo-

cation and body motion data without carrying a sensor object with them.

Some challenges with regards to HAR systems based on wearable sensors are pre-

serving battery life, minimizing obtrusiveness and privacy. We will discuss each issue in

detail in Chapter 5 along with approaches to overcome the challenges. In the following

section we will describe the key features for accelerometer wearable sensors that are used

in most HAR systems.

2.2.1 Accelerometer

Accelerometer sensor is a wearable device that measures the physical acceleration of the

user. Accelerometer sensors have been used in many applications in science, medicine,

engineering and industry. �ese sensors are particularly e�ective in recognizing ambu-

lation activities such as walking, running, climbing stairs, lying and etc. �ey are very
1Hexoskin Smart Shirts, https://www.hexoskin.com/
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inexpensive and require low power, therefore they have been embedded in smart devices

such as mobile phones and smart watches in the recent couple of years.

Traditionally three accelerometer sensorswere used tomeasure the accelerationmag-

nitude and direction as a vector by placing sensors orthogonally in the three spatial di-

mensions namely as x, y and z. Nowadays wearable accelerometer sensors are a single

chip called triaxial accelerometers which can measure acceleration along the three prin-

ciple axes. In modern smart devices triaxial accelerometer sensors are used.

�e main issue in HAR systems based on a single accelerometer sensor is that they

get confused for non-ambulatory activities, such as brushing teeth, talking on the phone,

eating, working at the desk and etc. Since such non-ambulatory activities have similar

acceleration patterns, accuracy rates may decrease noticeably when a single accelerome-

ter sensor is used. It would be helpful to include data from other sensors to detect such

non-ambulatory activities with higher accuracy.

2.3 Data Preprocessing

Feature construction and extraction is the key action in preprocessing the data and it is

important not to lose any information in this process. To improve the accuracy of the

Machine Learning algorithms, statistical calculations are performed on raw accelerom-

eter data before using the data for training the classi�er. In many HAR systems pre-

processing transformations include normalization, scaling and statistical analysis. We

will brie
y review some of these methods in the following sections. It is worth men-

tioning that choosing appropriate features of accelerometer data is not always clear cut
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and requires experience and trial-and-error. A good choice of features can signi�cantly

increase classi�er performance and on the other hand naive and un-wise selection of

features could lead to results with high error rates. Because activities are preformed over

a long period of time (in seconds or minutes) compared to their sampling rate (which

is 100 Hz in our experiments), analyzing a single sample point would be meaningless,

therefore an important initial step in feature extraction isWindowing.

2.3.1 Feature Extraction

Some authors extract features based on mean, standard deviation, median, dynamic

time warping, mean between axis, energy, characteristic frequencies, Pearson correla-

tion, magnitude and angular degree. In the following sections we discuss the di�erent

feature domains. Features can be extracted from the raw signal data or from the signal

processing features on the raw accelerometer signals.

Time Domain Features

In analyzing time domain features we study the activity accelerometer signals with re-

spect to time. Time domain features are extracted from each axis acceleration signal.

Basic statistical and inter-relationship metrics among the data points in the time domain

are some of the most commonly used features.

In addition to the raw accelerometer data, Vector Magnitude ∥v∥ is calculated where

dx(i), dy(i), and dz(i) are the i th acceleration sample of the x, y, and z axis in each

window respectively.
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Table 2.1: Summary of Feature Extractionmethods for accelerometer signals as presented
by Lara and Labrador [2013].

Group Methods

Time domain
Mean, standard deviation, variance, interquartile range,
mean absolute deviation (MAD), correlation between axes,
entropy, and kurtosis.

Frequency domain Fourier Transform (FT) and Discrete Cosine Transform (DCT).

Others Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Autoregresive Model (AR), and HAAR �lters.

∥v(i)∥ =
√
dx(i)2 + dy(i)2 + dz(i)2

We will discuss the various features extracted from the time domain in Chapter 3.

Frequency Domain Features

Frequency domain refers to the analysis of accelerometer signals with respect to fre-

quency, rather than time [Broughton and Bryan, 2011]. �e Frequency domain of the ac-

celerometer signals reveals useful information for discriminating various activities. �is

information that cannot be easily extracted from the time domain. Due to the high sen-

sitivity of accelerometer devices, noise (which is high frequency signals) cause the 3D

accelerometer signals to jump from high frequencies to low. Analyzing the signals from

a frequency domain perspective, would allow �ltering such noise by omitting the high

frequencies, resulting in cleaner signals and therefore higher accuracy for activity recog-

nition.
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2.3.2 Window Length

As mentioned in the previous sections, Segmentation or Windowing is the process of

grouping streaming time series raw sensor data into manageable chunks that contain

clueful information describing activities [Bashir et al., 2016]. �e selection of the window

length depends on the sampling rate of the device, the activities being performed and the

computational complexity of the method. Although having short windows may enhance

the feature extraction performance, butwould cause higher computation overhead due to

the recognition algorithm being triggeredmore frequently. Furthermore, short windows

may not provide su�cient information to fully describe the characteristics of the pattern

of the performed activities. On the other hand, if the window length is too long, there

may be more than a single activity occurring within a single window, causing di�culties

in the learning phase.

�ere are three common approaches for windowing [Bashir et al., 2016]; �rst ap-

proach is to collect chunks of data de�ned within every �xed time period. �e second

approach is to use overlapping windows where the previous window overlaps with the

current window by a �xed percentage. Overlapping time windows are intended to han-

dle transitions more accurately. Lara and Labrador [2013] propose that using small non-

overlapping windows, misclassi�cations due to transitions are negligible. �e third ap-

proach does not employ time but collects a prede�ned amount of data points from the

streaming sensor data. It is worth mentioning that di�erent types of sensor data may re-

quire a di�erent approach for �nding the best window lengths. As an example heart rate

signal requires at least 30s time windows Tapia et al. [2007]. Controversially, some other

activities such as non-ambulatory activities may need shorter windows as 1.5s [Lara and
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Labrador, 2013].

2.3.3 Feature Selection

�epurpose of feature selection is to select which features of a large feature set to include

in the �nal feature subset. If we have n number of features in the initial set, we may have

up to 2n possible subsets, and trying each and every one of the subsets to �nd the best one

is not a rational and feasible option. Many approaches exist to search the feature subset

space and �nd optimal features. In this section we describes some of the most common

feature selection methods as well as the methods we have used in our approach.

Relief-based

[Kira and Rendell, 1992]: �is feature selection method is essentially based on how well

the features values can di�erentiate similar data points in di�erent classes. Generally it

works by randomly selecting an instance, and then �nding the nearest instance of the

same class and of the opposite class. �e attributes are then weighted based on how

well their values can distinguish the sampled instance from the nearest hit and nearest

miss, it is likely to receive higher weight if it can di�erentiate between instances from

di�erent classes and it would be updated for each data point as needed. In this method,

features that carrymore information about the target class will typically have closer value

to their nearest neighbor of the same class, and be further away from instances of the

other class. �e major drawback of Relief-based feature selection is that it does not take

feature dependencies into account and therefore cannot discard redundant features if

they exist.
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Correlation-based

Unlike Relief-based, Correlation Feature Selection (CFS) ranks feature subsets rather

than individual features [Hall, 2000]. CFS evaluates the relevance of features based on the

correlation heuristic and scores each of the feature subsets. It takes the inter-correlation

among features into consideration as well as their ability to di�erentiate classes. Subsets

of features that are highly correlated within the class while having low inter-correlation

are preferred in this method. CFS selects attributes that are highly correlated within the

class and uncorrelated with each other. If two features are perfectly correlated, only one

should make it into the �nal selected subset.

PCA-based

Principle Component Analysis (PCA), is a well known technique used for de-correlation

and dimensionality reduction of data. PCA is a basic form of feature learning in its nature

since it discovers meaningful representations of raw data without the need of relying

on the domain knowledge. PCA reduces the original data to lower dimensional feature

vectors by constructing a linear combination of the variables. Jolli�e [2002] note that

since PCA does not consider class labels of the data, an accurate class separation in the

direction of the high variance principal components is not guaranteed.

ICA-based

IndependentComponentAnalysis (ICA), is another commonly usedmethod for creating

spatially-localized features. Unlike PCA which generates linearly combined features, in

ICA basis vectors that are statistically independent are generated [Comon, 1994]. �e
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algorithm is based on minimizing mutual information between the variables for judging

independence between them.

Deep Learning

As an alternative to thementionedmethods for feature selection are deep learningmeth-

ods that are based on a feed-forward arti�cial neural network consisting of an input layer,

an output layer and a number of hidden layers. �e innermost layer of the network has

lower dimensionality, therefore there is a bottleneck for transmitting a signal through

the innermost layer. �is can be solved by a meaningful encoding of the input. �is

non-linear low-dimensional encoding is hence an automatically learned feature repre-

sentation as described by Plotz et al. [2011].

2.4 Learning & Activity Recognition

In recent years, the development of sensing devices (e.g., accelerometers, cameras, GPS,

etc.) has enabled the ability to collect attributes related to individuals movements. �ese

applications require additional challenges of knowledge discovery since raw accelerome-

ter data are not useful. Various Machine Learning tools are used in Activity Recognition

Systems to analyze, and predict data [Lara andLabrador, 2013]. InHARmachine learning

classi�ers each instance is a feature vector extracted from signals within a time window

as described in the previous section. Activity Recognition can be viewed as a classi�-

cation problem such that each class corresponds to an activity. Generally the instances

in the training set are labeled by the application, user or an external source, however
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in some cases, labeling data is not feasible since it requires an expert to manually label

the examples and assign a label based upon their decision. In this section, we provide a

brief overview on the the di�erent classi�cation algorithms that are commonly used in

for classifying di�erent activities in HAR systems.

2.4.1 Decision Tree

Decision Tree classi�ers are based on predictive models that determine the class of a new

sample from attributes of the data. �ese attributes values are denoted by the branches

of the tree. �e classes are represented by the terminal leaves. Many HAR systems use

decision trees because their models are easy to read. In this model a new decision tree is

�rst constructed based on the attributes that discriminates samples in the training data.

Decision trees can be evaluated in O(log n) for n attributes. �e advantages of decision

trees are that they are simple and fast however, need to hold considerable data in each of

their non-terminal leaves, whichwould increase thememory space required and increase

computation time.

2.4.2 Random Forests

RandomForest is essentially an ensemblemodel for decision trees and it corrects the over

�tting behavior of decision trees. �ey are also considered as form of a nearest neighbor

predictor, that construct a number of decision trees at training time and outputs themode

of the classes as the �nal output class [Chetty et al., 2015]. Random Forests reduce the

existing bias and variance in decision trees by computing an average, and balancing the

two extremes. Moreover, Random Forests have a few number of parameters to tune. Due
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to all the mentioned advantages, Random Forests can be used without much adjusting

compared to other classi�ers and yield a reasonable model that is fast and e�cient to use.

2.4.3 K-Nearest Neighbor

Similar to Random Forest, k-NN is also an instance-based learner, and is the basis of

many lazy learning algorithms. K-NN tends to be very fast in training because they sim-

ply store the entire training set and postpone inductive generalization to classi�cation

time [Wettschereck et al., 1997]. An instance would be classi�ed using a majority vote

method of its neighbors, then the instance is assigned to the class most common among

its k nearest neighbors.

2.4.4 Baysian Network

�is classi�er is based on Bayes theorem which uses probabilities in order to perform

Bayesian inferences. �e simplest Bayesian method is Naive Bayes, which is based on

supervised learning and is straightforward to train themodel. Naive Bayes performs well

in terms of accuracy [Chetty et al., 2015]. Although Naive Bayes are known to be good

models for comparison, however it may not be the best choice for HAR systems since it

assumes that for any class value all features are independent, but because accelerometer

signal values are heavily correlated, classi�ers that work in this manner would not result

in promising results [Lara and Labrador, 2013].
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2.4.5 Support Vector Machine

SVMhas become one of the popular classi�cationmethods inMachine Learning �eld es-

pecially for activity recognition. SVM is a two-class classi�er however, can be extended to

multi-class problems by combining multiple binary SVM classi�ers. A multi-class clas-

si�cation problem can be solved by dividing of the problem into several two-class prob-

lems. Most HAR systems based on SVM use One-versus-One Strategy (OVO), where a

set of binary classi�ers vote on the class, and the class with the most number of votes will

be the output [Ri�in and Klautau, 2004].

2.4.6 Arti�cial Neural Networks

Arti�cial neural networks resemble the brain neural network. Multi-Layer Perceptrons,

which are a class of feed-forward Arti�cial Neural Networks [Roy et al., 2005], are com-

monly used in HAR classi�ers and have proven to produce relatively high accuracy rates

due to their learning capabilities. A neural classi�er consists of an input layer for all of

the signal features as discussed in the previous section, connect them to hidden layers

with the activation function. By comparing the position of themaximum value in output

vector and label vector we can determine the class of the activity.

2.4.7 K-means Clustering

Clustering is an unsupervised learning approach where the training set does not need

to be labeled as in the supervised learning methods. If the instances are related to each

other they are placed in a group and those who are not related would be placed in a
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di�erent group. K-Means is the simplest algorithmwhichworks without having previous

knowledge based on a distance metric (Euclidean distance or Manhattan distance) to

analyze if the instances can be grouped together. Due to its simplicity in functionality,

and its capability toworkwith unlabeled data, it is a goodmethod for examining classi�er

performance.

2.4.8 Lazy IBk Classi�er

IBk is a Lazy Learner based on the principle of learning during classi�cation time. �ey

store the training instances during training time. IBk classi�er is very similar to k-nearest

neighbor classi�er. Asmost of the learning happens during classi�cation phase, they tend

to be slow, therefor a variety of di�erent search algorithms are used to �nd the nearest

neighbors .

HiddenMarkovModels

HMM are based on discrete state variables which are linked using a state transition ma-

trix. When classifying time-based sequences of human activities, observing signals gen-

erated from complex or unfamiliar activities can be used to build a model of the activity

indirectly. San-Segundo et al. [2016] state in their work that HMMs are an e�ective tech-

nique for activity classi�cation, because they o�er dynamic time wrapping, have clear

Bayesian semantics and are well-understood training algorithms.

20



2.4.9 Ensemble Models

Ensemble learning approach is based on the assumption of improving performance by

combining the output of several classi�ers. Bagging, boosting, and stacking are some

examples of this method. By using the strengths of several individual classi�ers it applies

a combination rule for the �nal decision of the classi�ers. As an example, minimum

probability, maximum probability, majority voting, product of probabilities, and average

of probabilities are di�erent examples for the mentioned combination rules. Classi�er

ensembles are computationally expensive compared to single classi�ers, as they require

several models to be trained and evaluated [Catal et al., 2015].

2.5 Existing HAR Approaches & their Limitations

In this section we will present some of the state-of-art HAR applications that have been

recently developed. We only consider studies that use accelerometer data gathered by

the mobile phone or another wearable device. It is important to note that there are a

variety of HAR applications that use multiple sensors however, we only mention those

parts of these studies that �t the scope of this dissertation. We discuss these studies in

the context of the following aspects: Online HAR classi�ers and O�ine HAR Classi�ers.

Online HAR systems can classify activities on the mobile phones in real time and O�ine

systems are trained beforehand, usually on a server. We see that most studies have used

the o�ine method. One reason that o�ine systems are more popular could be because

the training process is computationally expensive. Moreover, it is easy to implement only

the classi�cation part on the mobile phone. �ere is only a limited number of studies
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where classi�ers can be trained on mobile phones in real time.

2.5.1 Online

�e goal of this section is to see the potential of mobile phones and wearable devices

in running activity recognition systems locally. In healthcare, continuously monitoring

patients is an important factor for their protection, safety, and recovery [Shoaib et al.,

2015]. In the rest of this section we will describe some of the online state-of-the-art ac-

tivity recognition approaches.

Energy E�cient SVM-based HAR

Anguita et al. [2013] propose an energy e�cient approach for human activity recogni-

tion using mobile phones as wearable sensing devices. In their method they use a �xed-

point arithmetic for human activity recognition of instead of the conventionally used


oating-point arithmetic algorithms. �ey claim there method is capable of preserving

the phone’s battery while maintaining high accuracy levels. �eir dataset consists of a

total of 30 people with age range of 19 - 48 years who performed a set of activities includ-

ing: standing, sitting, laying, walking, walking upstairs andwalking downstairs. Features

extracted from raw data were Signal Magnitude Area (SMA), mean, standard deviation

(STD), entropy, signal-pair correlation (Corr) and Fast Fourier Transform (FFT) was

used to �nd the frequency components for each of the windows.
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MARS

Mobile Activity Recognition System (MARS) [Gomes et al., 2012] is another HAR appli-

cation that its model is built and continuously updated on the mobile device using data

streammining. �e advantages of this model is that it is personalized and thus increases

privacy as the data is not sent to any external site. Furthermore, training/updating the

model takes less than 30 seconds per activity and quickly adapts to user pro�le changes

while being scalable and e�cient in terms of the devices resource consumption. Naive

Bayes classi�er is used because it provides a simple and incremental learning approach.

actiServe

Berchtold et al. [2010] proposed anActivity Recognition service formobile phones called

ActiServ. �ey use a fuzzy system to classify human movement based on accelerometer

signals gathered by the phone. �e systems accuracy is in the range of 71% and 97%.

However, in order to obtain the top accuracy level, the system requires a very long run-

time duration. When the algorithms are executed to meet a real-time response time, the

accuracy drops to 71%. On the other hand accuracy increases up to 90% a�er subject-

dependent analysis and personalization.

2.5.2 O�ine

Besides HAR Online learners, in O�ine learners the user does not need to receive im-

mediate feedback. As an example we can refer to applications that analyze the users daily

habits and exercise routines, or in other health applications which the physician can re-

view the patient’s movement and exercise habits. Another example of an o�ine HAR
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system is an application to discover commercial patterns for advertisement [Lara and

Labrador, 2013]. For instance, if an individual exercises a lot, certain advertisement could

be presented to them such as sport gear. In such cases data gathered from human move-

ments can be analyzed on longer periods of time, like daily orweekly, to draw conclusions

on the person’s behavior. In the remainder of this section we will summarize some state-

of-art work in o�ine human activity recognition based on body wearable sensors.

Orientation Independent

Mobile phones by their nature are not �xedwearable sensors, carrying location of phones

is o�en a�ected by the carrier’s gender and garment style. �erefore, the location of the

device needs to be independent of the algorithm. Guiry et al. [2012] designed and im-

plemented a mobility monitor algorithm across a range of Android-based smartphones

based in a test set with 6 subjects. Activities in their data set consists of sitting, stand-

ing, cycling walking, jogging and running. �eir results appear promising, with average

accuracies of 88.8% produced by the real-time mobility monitor, and a custom personal-

ized classi�er. �ey deploy a method to existing �xed position based algorithms to make

HAR systems work in an orientation independent manner.

Bao et al.

One of the highly cited works in this domain is Bao and Intille [2004] work. �eir system

can recognize 20 activities, including human daily activities such as scrubbing, vacuum-

ing, watching TV, and working on the PC.�ey used the aid of the system’s users to label

their activities. �e sensors they use for recording data was bi-axial accelerometers which
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were placed on the user’s knee, ankle, arm, and hip. However, in their results they con-

cluded that only two accelerometers that are on the wrist and hip were actually useful and

by omitting the other sensors the recognition accuracy is not signi�cantly diminished.

�ey use decision tree classi�ers on time and frequency domain features and achieve 84%

overall accuracy.

Obtrusive System

In the work of Parkka et al. [2006], seven activities are considered namely as: lying, row-

ing, riding a bike, standing still, running, walking, andNordicwalking. A combination of

accelerometers, vital sensors and environmental sensors were used in their HAR system,

which made their system a relatively invasive approach. �e sensors had to be attached

to the users chest, wrist, �nger, forehead, shoulder, upper back, and armpit, all the sen-

sors were integrated into a package that the users would carry in a backpack. Time and

frequency domain features were extracted from most of the sensor signals along with a

speech recognizer that was applied to the audio signal captured from the microphone

in the package. �e classi�cation methods used were decision tree and arti�cial neural

network. A limitation of their system is the need for high processing power, and it also

raises privacy concerns since the microphone constantly records audio.

2.5.3 Limitations of Existing Applications

One of the limitations inmost systems discussed in the previous sections is the variability

in sensor device characteristics. Sensor devices may have di�erent sensitivities, partic-

ularly being more sensitive to motion, where another sensor may be less sensitive. �is
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di�erence should be considered in designing HAR systems to implement a system that

would be independent to variabilities in sensors. Also, another limitation in the systems

mentioned in this chapter is sensor displacement. HAR systems that are based onmobile

phone’s accelerometer sensors are prone to changes in sensor orientation and location

becuase the user may carry the device in di�erent locations. HAR systems should be

designed such that changes in sensor orientation or location would not e�ect the classi-

�cation of the users activities. Another important challenge in the existing HAR systems

is the tradeo� between accuracy and response time. Depending on the real-world appli-

cation of the HAR system either response time, or accuracy would become crucial. By

reviewing many of the HAR applications we observe that HAR systems that o�er a real

time classi�cation o�en tend to be less accurate compared to o�ine HAR systems, which

analyze and classify activities o�ine. Another limitation in currentHAR systems is scala-

bility. HAR systems that are heavily based on feature extraction from time and frequency

domainwill lack scalability. In o�ineHAR systems scalability can be addressed by having

the system rely on less features or adding hardware. However scalability issues are perti-

nent with respect to online HAR systems as well. In such systems addressing scalability

is more complicated compared to o�ine systems becuase adding hardware components

is not an option. We will address scalability in Online HAR systems in chapter 4.

2.6 Chapter Summary

In this chapter we survey the state-of-the-art applications in human activity recognition

based on wearable sensors and mobile phone. We consider studies that use supervised
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machine learning for activity classi�cation either locally on mobile phones in real time

or on a remote server on a periodic basis. Prepossessing techniques have an important

role in the accuracy of the classi�er, therefor we provide an overview of popular feature

extraction and feature selection methods currently used. As we have stated in this chap-

ter, there is no clear de�nition on what techniques would better suit HAR systems. �e

characteristics of the systems and devices used can be di�erent in activity recognition

applications and thus di�erent approaches should be considered for di�erent systems.

We reviewed a number of Human Activity Recognition systems and compare them with

regards to their response time, learning approaches, obtrusiveness, data segmentation,

feature extraction and selection, recognition accuracy, and other important design is-

sues.
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Chapter 3

O�ineMulti-Featured Approach for

Human Activity Recognition

Chapter Overview 1

In this chapter, we present an o�ine multi-featured approach for recognition of various

everyday activities using a single tri-axial accelerometer under real-world conditions.

Although several researchers have explored usingmachine learning algorithms for HAR,

very few, to our best knowledge, have comprehensively studied the various facets of HAR

[Bao and Intille, 2004; Lockhart andWeiss, 2014]. Furthermore, inmany of these studies,

the datasets are small and homogenous (for example, consisting of subjects in the same

age group such as college students). Towards addressing these limitations, we aim to

comprehensively study the e�ectiveness of machine learning-based techniques for HAR.
1�is chapter partially appears as:

D. Yazdansepas et al., ”A Multi-featured Approach for Wearable Sensor-Based Human Activity Recogni-
tion,” 2016 IEEE International Conference on Healthcare Informatics (ICHI).
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We extract features a from the combination of time and frequency domain. We adopt

two feature selection methods, as well as an expert-de�ned feature selection method, to

the datasets to extract the most e�ective features for discriminating di�erent activities.

Six classi�ers are used for evaluating recognition performance. As the primary focus,

we show the e�ect of di�erent feature sets on each of the classi�ers. We further demon-

strated in our results the impact of decreasing the size of the training set on the accuracy

of the classi�er. In additionwe also analyze time and frequency domain features and their

combination on the accuracy of the classi�ers. As a secondary contribution we tested our

system on age based training data to observe if the system can gain higher accuracy if the

training mode is personalized for the subjects’ age group. In conclusion, we show sev-

eral �ndings from our empirical experiments and discuss outstanding challenges and

propose open research directions.

3.1 Overview of O�ine HAR system

In this study we perform a comprehensive study with six machine learning algorithms

along with three di�erent feature selection methods. Our experimental study considers

HAR systems that rely on a single tri-axial accelerometer sensor, which can be embedded

in the smart phone, �tness band or small wearable devices. Compared to similar work,

we have a relatively large dataset with 77 participants of distributed age range (from 18

to 65 years old) performing 25 activities. We perform wavelet analysis on accelerometer

signals, then extract a set of 176 features from both time and frequency domain. A com-

bination of both domain features are used to achieve higher accuracy for classifying the
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activities. One question we answer in this chapter is whether we can increase the speed

of the system, limit the communication overhead and preserve battery life by reducing

the dataset size without a degradation in accuracy. Figure 3.1 illustrates our o�ine HAR

system overview.

Accelerometer Wavelet Analysis

Time FA Freq FA

Feature
Selection ML Toolkit

Classi�ed Activities

x,y,z

signal
x,y,z
signal

wavelet
coe�cients

features

Training set

Testing set

Results

Figure 3.1: HAR system overview
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Table 3.1: Summary of Activities

Activity Description No of Subjects Duration/Distance

Treadmill at 1 mph @ 0% grade 29 3 min
Treadmill at 2mph @ 0% grade 21 3 min
Treadmill at 3mph @ 0% grade 28 3 min
Treadmill at 3mph @ 5% grade 29 3 min
Treadmill at 4mph @ 0% grade 33 3 min
Treadmill at 5mph @ 0% grade 21 3 min
Treadmill at 6mph @ 0% grade 34 3 min
Treadmill at 6mph @ 5% grade 26 3 min
Seated, folding/stacking laundry 74 3 min
Standing/Fidgeting with hands while talking 77 3 min
1 minute brushing teeth + 1 minute brushing hair 77 2 min
Driving a car 21 -
Hard surface walking w/sneakers 76 400m
Hard surface walking w/sneakers hand in front pocket 33 100m
Hard surface walking w/sneakers while carry 8 lb. object 30 100m
Hard surface walking w/sneakers holding cell phone 24 100m
Hard surface walking w/sneakers holding �lled co�ee cup 26 100m
Carpet w High heels or dress shoes 70 100m
Grass barefoot 20 134m
Uneven dirt w/sneakers 23 107m
Up hill 5% grade w high heels or dress shoes 27 58.5m x 2 times
Down hill 5% grade w high heels or dress shoes 26 58.5m x 2 times
Walking up stairs (5 
oors) 77 5 
oors x 2 times
Walking down stairs (5 
oors) 77 5 
oors x 2 times

3.1.1 Data Set

Participants and Procedures

Participants were recruited from the Phoenix, AZ and surrounding areas through com-

munity sources, email distribution lists, and social media outlets. �e participants were

selected from a broad age range of 18-64 years old and were all free of any contraindica-
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tions for exercise. Participants were �ttedwith a single hip-worn accelerometer and com-

pleted a series of activities for three minutes in duration (see Table 3.1). All participants

completed the following activities: seated, folding/stacking laundry, standing/�dgeting

with hands while talking, 1 min of brushing teeth and 1 min brushing hair, hard surface

walking, carpet walking, and walking up and down stairs. An additional three treadmill

activities and three other activities were randomly assigned. Time stamps for the begin-

ning and end of activities were captured using a custom-built Android application which

was synced to the same server as the activity monitor.

Activity monitor

Participants were �tted with the ActiGraph GT3X+ (ActiGraph, LLC, Pensacola, FL) ac-

tivity monitor positioned along the anterior axillary line of the non-dominant hip. �e

monitor was �xed using an elastic belt. �e ActiGraph GT3X+ is a lightweight monitor

(4.6cm x 3.3cm x 1.5 cm, 19g) thatmeasures tri-axial acceleration ranging from -6g to +6g.

�e device was initialized to sample at a rate of 100Hz, then accelerometer data were sent

to the server and extracted using Actilife 5.0 so�ware (ActiGraph, LLC, Pensacola, FL).

Figure 3.2: a) Human activity acceleration signal. �e subject performed various activi-
ties with a pause between each of them. b)DWT absolute details coe�cients on the �ve
levels for the same activities.
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3.1.2 Data Preprocessing

Feature construction is the key action in preprocessing the data and it is important not to

lose any information in this process. To improve the accuracy of the Machine Learning

algorithms, we perform statistical calculations on raw accelerometer data before using

the data for training the classi�er. In our study, pre-processing transformations include

normalization, scaling, statistical analysis and discrete wavelet transforms. It is worth

mentioning that choosing appropriate features of accelerometer data is not always clear

cut and requires experience and trial-and-error. However, a good choice of features can

signi�cantly increase classi�er performance. To achievemaximum performance we have

used a combination of Time Domain features and Frequency Domain Features. Because

activities are preformed over a long period of time (in seconds or minutes) compared

to their sampling rate (which is 100 Hz in our experiments), analyzing a single sample

point would be meaningless, therefore an important initial step in feature extraction is

Windowing. We have set non-overlapping windows to be 2 seconds, yielding 200 data

points in every window for each axis. In order to be able to e�ectively compare windows

we need to perform Feature Extraction. Combining features extracted from the time and

frequency domain we have a total of 176 features. In the following sections we discuss

our di�erent feature domains.

Time Domain Features

Time domain features are extracted from each axis acceleration signal, to process the

data we look into some basic statistical and inter-relationship among the data points.
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∥v(i)∥ =
√
dx(i)2 + dy(i)2 + dz(i)2

In addition to the raw accelerometer data we calculate Vector Magnitude ∥v∥ where

dx(i), dy(i), and dz(i) are the i th acceleration sample of the x, y, and z axis in each

window respectively. �e de�nition of the time domain features for a given window

W = {d1, d2, ..dn} are listed below:

• Max{d1, d2, ..dn} andMin{d1, d2, ..dn}

• Arithmetic mean (w̄) for each accelerometer axis and ∥v∥ (Equation 3.1)

• Standard deviation (stdW) for each axis and ∥v∥ (Equation 3.2)

• Median crossing rate which is the number of times the signal changes from below

the median to above the median or vice versa.

• �e 10th, 25th, 50th (Equation 3.3) , 75th, 90th percentile

• Correlations between Accelerometer axes and Vector Magnitudes

mW = 1
n

n

∑
i=1

W[i] (3.1)

stdW =
¿
ÁÁÀ 1

n − 1
n

∑
i=1

(W[i] −mW)2 (3.2)

50thpercentil e = (n + 1
2

)thterm (3.3)
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Frequency Domain Features

Frequency domain features are derived by transforming the raw accelerometer time se-

ries data into frequency domain by using Fast Fourier transform (FFT). �e FFT coe�-

cients obtained from the transform serve as the amplitudes of the frequency components

of the signal and its energy distribution. A number of these coe�cients can serve as fea-

tures and other features such as energy can be derived from these coe�cients [Bashir

et al., 2016]. On the other hand wavelet analysis can show spectral information of non-

stationary signals. Spectral analysis methods such as Fourier Transform (FT) can only

provide the frequency content of a stationary signal [Bidargaddi et al., 2007]. In ambula-

tory activity signals, we observe that frequency changes rapidly over time. �is highlights

the importance of Wavelet Transforms, which can describe the intensity level of the sig-

nal’s di�erent base bands at a certain point of time. �ere has been a few number of

Activity Recognition systems based on features extracted from wavelets.

He [2010] selectDaubechies 3wavelet by comparing the decomposition level required

while keeping the energy as much as possible. Haar wavelet [Graps, 1995] �ltering tech-

niques are proposed as a low calculation cost feature extraction method suitable for 3D

acceleration signals based human activity recognition as noted by Hanai et al. [2009].

Most Activity Recognition systems use Daubechies 3 wavelet because it resembles the

pattern of human motion and therefore would provide more accurate wavelet features.

�e usefulness of wavelet transform is in its trade o� between time and frequency

resolution. Components in the activity signal that have low frequency are not as easy to

resolve compared to signals of higher frequencies, on the other hand high frequencies

are di�cult to resolve in the time domain. So by applying Wavelet transforms we can
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achieve better frequency resolution at low frequencies and better time resolution at high

frequencies [Chau, 2001].

Figure 3.2 shows the original signal of a few daily human activities in the time do-

main, and the absolute coe�cients of the discrete wavelet transform of the correspond-

ing signal. A�er applying discrete wavelet transform on the raw accelerometer signal,

the outputs areWavelet Coe�cients which describe the power of the signals at the given

5 levels. Below is a list of features derived from the wavelet coe�cients and dominant

frequency magnitude of the Fourier transform for a given windowW = {d1, ..., dn}

• Maximum andMinimum of {d1, d2, ..dn}

• Arithmetic mean w̄ (Refer to equation 3.1)

• Standard deviation stdW (Refer to equation 3.2)

• Median crossing rate

• �e 10th, 25th, 50th, 75th, 90th percentile (Refer to equation 3.3)

Note that Wavelet transforms requires multiple components in order to be able to

discriminate di�erent human activities. Hence it will increase computation and may not

be suitable for real time applications. Time domain features can be easily extracted in real

time, they are more popular in many practical acceleration activity recognition systems.

3.1.3 Feature Selection

�epurpose of feature selection is to decidewhich features of a large feature set to include

in the �nal feature subset. If we have n number of features in the initial set, we can have
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Table 3.2: List of features for each Feature Selection method.

Feature Selection Time Fourier Wavelet

Expert-selection

Xmean, Xstdev ,X50thPer,Ymean,
Ystdev ,Y50thPer, Zmean, Zstdev ,
Z50thPer, VecMagmean,
VecMagstdev , VecMag50thPer

- XLev1mean - XLev5mean,
YLev1mean - YLev5mean

Correlation-based

Xmax , Xmean, Xstdev ,X50thPer,Ystdev ,
Y10thPer,Y25thPer, Y75thPer,Zmean,
Z90thPer, VecMagmin, VecMagmax ,
VecMagmean, VecMagstdev ,
VecMag10thPer,VecMag25thPer,
VecMag50thPer, VecMag75thPer,
VecMag90thPer

X f rmin, X f rstdev , X f r25thPer,
X f r50thPer,X f r90thPer, Y f rmin
Y f r50thPer,Y f r75thPer,Z f rstdev
Z f r25thPer,Z f r50thPer,Z f r90thPer

XLev4max ,XLev5max ,
XLev550thPer, XLev575thPer,
YLev3stdev

Relief-based

VecMag10thPer,VecMag25thPer,
VecMag50thPer,XZcorr,YZcorr,
XYcorr,Ystdev ,Xmean,
VecMagstdev ,Zmean, Z50thPer,
Xstdev , X90thPer,VecMag75thPer,
X50thPer,Z25thPer,Z75thPer,
Y75thPer, X75thPer,VecMag90thPer

X f rY f rcorr,
X f rZ f rcorr,
Y f rZ f rcorr

XLev5max , XLev590thPer,
XLev575thPer, XLev4max ,
YLev10max , YLev1MedCross,
XLev1MedCross

up to 2n possible subsets, and trying every one of them to �nd the best subset is not a

rational option. Many approaches exist to search the feature subset space and �nd the

optimal features. �is section describes the feature selection methods we have used in

our approach. A summary of the features selected in each Feature Selection method can

be found in Table 3.2.

Relief-based [Kira and Rendell, 1992]: �is feature selectionmethod is based on how

well the features values can di�erentiate similar data points in di�erent classes. It works

by randomly selecting an instance, and �nding the nearest instance of the same class and

of the opposite class. �e attributes are assigned higher weights if they can di�erentiate

between instances from di�erent classes. Features that carry more information about

the target class will have closer value to their nearest neighbor of the same class, and
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be further away from instances of the other class. �e major drawback of Relief-based

feature selection is that it does not take feature dependencies into account and therefore

cannot discard redundant features.

Correlation-based: Unlike Relief-based, Correlation Feature Selection (CFS) ranks

feature subsets rather than individual features [Hall, 2000]. CFS evaluates the inter-

correlation among features along with their ability to di�erentiate classes. Highly cor-

related subsets with the class are preferred, while having low inter-correlation. If two

features are perfectly correlated, then only one will make it into the �nal subset of se-

lected features.

Expert-selection: Having run multiple feature selection methods and looking at the

selected features in each case, wemanually suggested a selection set of reasonable features

on the dataset. By looking at the trends in the type of features selected by the majority of

feature selectionmethods, we found the features that occur most frequently in the di�er-

ent feature subsets and construct a new subset from the top N that are most frequently

chosen. �is hand-tuning resulted in a reduced and standardized feature subset which

also had improvements in generalization performance, pre-processing time and stream-

line the feature extraction processes. It was observed that many of the feature selection

methods agreed on the following properties most prominently: Mean, Standard Devia-

tion and the 50th Percentile. In addition to this, we observed that features of the Fourier

transform features were lowly ranked by most methods and therefore were omitted in

the Expert-selection feature set. Furthermore some of the wavelet coe�cients were also

discarded observing these trends. Our results show that applying the Expert-selection

feature selection method reduces the pre-processing time signi�cantly and has shown
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generally better results than the features sets extracted by the recommendation of the

traditional feature selection methods.

3.2 Empirical Evaluation

Expert-selection Correlation-based Relief-based All Features
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Figure 3.3: Comparison of the performance of di�erent feature selection methods.

3.2.1 Classi�cation Algorithms Comparison

Activity Recognition can be viewed as a classi�cation problem in that each class corre-

sponds to an activity. A selection of features were chosen from the combination of time

domain and frequency domain as described in the previous sections. We tried six dif-

ferent machine learning algorithms: Random Forest (RF), K-Nearest Neighbor (k-NN),

Decision Tree (DT), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM),

and Naive Bayes (NB) to classify the activities performed by subjects. All classi�ers can

be found in the Weka Machine Learning Algorithms toolkit [Hall et al.], an open source
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machine learning suite. Each classi�er that was chosen has its own strengths and weak-

nesses in terms of activity recognition on accelerometer data. In order to determine the

accuracy of each classi�er the data set was divided into a training and testing set with

ratio of 9 to 1 with no overlapping instances. In the �rst step of machine learning exper-

iments, we compared the classi�cation accuracy of the six machine learning algorithms

using the features selected from the tri-axial accelerometer in time domain and frequency

domain.

�e results on the di�erent feature selection methods are shown in Figure 3.3. As

it can be seen, Random Forest ranked as the best classi�er through all the experiments

on di�erent feature selection methods while having an average accuracy of 83.7%. Ran-

dom Forest is essentially an ensemble model for decision trees and it corrects the over

�tting behavior of decision trees, therefore we observe an improved accuracy rate com-

pared to Decision Trees. �e second best classi�cation algorithm is k-Nearest Neighbor

(k-NN). Similar to Random Forest, k-NN is also an instance-based learner, and is the

basis of many lazy learning algorithms. K-NN tend to be fast in training because they

simply store the entire training set and postpone all e�ort towards inductive general-

ization until classi�cation time [Wettschereck et al., 1997]. Decision Tree ranked third

among all feature selection methods. Multi-Layer Perceptrons, which are a class of feed-

forward Arti�cial Neural Networks, performs slightly better than random (50% accuracy

rate). Naive Bayes and SVMhave not provided any promising results in this set of experi-

ments. We can claim that the poor performance of Naive Bayes is because it assumes that

given any class value all features are independent and since accelerometer signal values

are heavily correlated, classi�ers that work in this manner would not result in promising
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Table 3.3: Condensed Summary Matrix of Intra and Inter Activity Categories

Activity Treadmil l4mph Treadmil lothrs Stand NonAmbothrs Walkhiheel Walkothrs Downstairs Gradedothrs

Treadmil l4mph 0.84 0.04 0.0 0.01 0.01 0.05 0.0 0.02

Stand 0.0 0.0 0.91 0.02 0.0 0.0 0.0 0.0

Walkhiheel 0.1 0.06 0.02 0.01 0.68 0.14 0.02 0.03

Downstairs 0.0 0.04 0.01 0.02 0.0 0.05 0.81 0.03

results [Lara and Labrador, 2013].

By looking at the results in Figure 3.3, it may seem that the accuracy rates of the

classi�ers are lower than other similar HAR systems. However, it is important to reiterate

that we perform classi�cation on a large range of activities, many of which are in the same

category (for example we have a variety of walking activities, in each one the subject is

asked to hold a di�erent object while walking, see Table 3.1). Naturally this yields a lower

accuracy rate compared toHAR systems that classify activities in a lower granularity. �e

confusionmatrix obtained with the Random Forest classi�er and Expert-selected feature

set is reported in Table 3.3. We limited the activities to be displayed in the confusion

matrix because of space constraint. Note how some activities in the same category like

walking in heels and other walking activities have confusions between them. From Table

3.3 it can be concluded that the RF classi�er has accuracy above 82% while recognizing

activities in di�erent categories (for example treadmill walking and standing).
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3.2.2 The E�ects of Feature Selection

In section 3.1.3 we have introduced three di�erent feature selection methods in order to

extract the most dominating features. For the purpose of observing the e�ect of each

feature selection method on the accuracy of the classi�er, a dataset containing all 176

features is used in addition to the 3 feature selected datasets in our experiments. Figure

3.3 shows the accuracy of the classi�ers over the di�erent feature sets. As it can be easily

observed in the graph, in Expert-selected feature set all the classi�ers have better accu-

racies compared to Correlation-based, Relief-Based and All-Feature set. �ere is only

one exception to this case, Multi-Layer Perceptrons perform better on the data set that

includes all 176 features. In other words, feature selection did not have the same e�ect

on recognition accuracy for Multi-Layer Perceptron as it did on the other classi�ers. We

believe the reason is that for very large datasets the neural network training algorithm

is able to learn the relevance of individual features, and therefore no feature selection is

necessary [Spence and Sajda, 1998]. �is explains the phenomenon that in our study the

accuracy of the MLP increases when we increase the number of features in the dataset

we give into the network to train on. Correlation-based feature selection method has

slightly lower accuracy rates for all the classi�ers compared to Expert-selection feature

set with an exception of SVM classi�er. �ere is a signi�cant di�erence of accuracy in

SVM for Expert-selection and Correlation-based subsets, showing that the features in

the Expert-selection subset have better e�ect on the accuracy of this classi�er.
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3.2.3 Impact of Training set Size on Accuracy

We have generated multiple datasets from the original dataset to observe the e�ect of

dataset size on the accuracy of each classi�er. As we have stated in the previous sec-

tion, our Expert-selection feature dataset had the best accuracy for most of the classi�ers

among the others, therefore we have used this dataset and selected 50%, 25% and 10% of

it’s instances randomly. Although this is not the same as decreasing the sampling rate,

however reducing the dataset size can result in a shortened response time to classify a

new activity. In general, when the size of dataset decreases, the accuracy of the clas-

si�cation algorithms also decreases. However the degrading slope is di�erent for each

classi�er. For Decision Tree, k-NN and Random Forest algorithm the accuracy inclines

moderately when we shrink the dataset size to 20% of the original dataset, meanwhile

some other algorithms such as Naive Bayes and MLP roughly maintain the same accu-

racy rate while the dataset is minimized to 20%. However we observe a sharp drop in the

accuracy rates for the the majority of the algorithms once their dataset size is reduced to

10%.

Figure 3.4 illustrates the impact of the dataset size on the classi�cation accuracy. All

of the classi�ers maintain the same ranking for the di�erent dataset sizes. In our ex-

perimental studies, using four di�erent dataset sizes, we observed that despite the fact

that decreasing the dataset size would negatively impact the accuracy, but may be worth

disregarding since the smaller datasets are more e�cient in terms of space and computa-

tional time, thus the algorithms that are trained on smaller datasets can be implemented

on devices with lower computational power such as mobile phone devices. �is would

also help preserve the battery power if the classi�cation algorithms would be to run on
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Figure 3.4: Accuracy of the six classi�ers with varying dataset sizes

mobile application independent of an external server.

3.2.4 E�ect of Combining Frequency and Time domain features

In section 3.1.2 we have claimed that we believe the Frequency Domain features add valu-

able information for recognizing human activity using accelerometer data. In order to

show the impact of such features on the accuracy of the classi�ers we have generated two

separate datasets, one only consisting of time domain features, and the other one contain-

ing a combination of time and frequency domain features. Adding the frequency domain

feature had di�erent impacts on each classi�cation algorithm. Figure 3.5 illustrates the

accuracy of the classi�ers in each dataset.

It is evident that for SVMclassi�er adding the frequency features had positive impact,

increasing the accuracy 12% compared to the dataset where only the time domain features
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existed. MLP also had a 6% increase of accuracy rate when frequency features were added

to time domain features. For the rest of the classi�ers therewas not a noticeable di�erence

in the accuracy rates for the two datasets.

TIME + FREQ TIME

0.4

0.6

0.8

1
A
cc
ur
ac
y

DT NB kNN MLP SVM RF

Figure 3.5: Classi�er accuracy rates for time domain vs frequency domain.

3.2.5 Impact of Age-based Training

Human Activity Recognition systems that are trained on the data of other subjects can

su�er from a loss of accuracy. To minimize the error rate we tried to group the subjects

based on their ages, then train/test the classi�ers on individual age group datasets. We

have divided the dataset into four di�erent subsets according to the subjects ages. Table

3.4 summarizes the age distribution across four age groups. We selected this age break

down particularly for the following reasons: �rst, subjects in each age group have sim-

ilar health and body characteristics representing their age group and second, based on
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the distribution of the subjects age, this break down was the most balanced in terms of

number of subjects in each group.

We studied two approaches to compare the accuracy of the classi�ers. First we used

the RandomForestmodel we previously described to train the classi�er on the individual

age groups dataset and tested on the same age group using 5-fold cross validation. We

compare these results to the accuracy of the general Random Forest Classi�er, which was

trained and tested on the entire dataset instead of speci�c age groups. However for the

purpose of having comparison grounds, we down sampled the number of instances in

the general dataset to have the same number of instances in the age grouped training sets.
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Figure 3.6: Accuracy improvement in age-speci�c training set over generic training set

As seen in Figure 3.6 for all of the age groups, training on a speci�c age group dataset

results in an improved accuracy. We observe a signi�cant increase in the accuracy of the

system when we train the classi�er on individual age groups. We see that the age group

consisting of participants ages 45-65 has the highest accuracy improvement. It can be in-

ferred that this age group have themost similarity in bodymovements within their group
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and are distinguishable from subjects in other age groups and therefore obtain higher ac-

curacy rate. �is suggests that we can designmore accurate systems if we personalize the

training phase based on the users age.

Table 3.4: Dataset Age Ranges Summary

Age Range 18-26 27-33 34-45 46-65

Number of subjects 17 27 24 9

3.3 Chapter Summary

In this study, we focus on the recognition of various everyday activities using a single tri-

axial accelerometer attached to the belt of the participants. �e data was acquired from

over 75 subjects under real-world conditions performing 25 activities. A total of 176 fea-

tures were extracted from the combination of time and frequency domain. Two feature

selection methods, as well as a self-de�ned feature selection method, were applied to the

datasets to extract the most e�ective features for discriminating di�erent activities. Six

classi�ers were used for evaluating recognition performance. We showed the e�ect of

di�erent feature sets on each of the classi�ers. In order to improve the energy e�ciency

of the system, we further demonstrated in our results the impact of decreasing the size

of the training set on the accuracy of the classi�er. In addition, we tested our system on

age based training data to observe if the system can gain higher accuracy if the training

mode is personalized for the subjects’ age group. Our preliminary results showed that

training on speci�c age groups would be e�ective in increasing the accuracy of the ac-

tivity recognition system, therefore training the classi�ers based on the participants age
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would result in more accurate HAR models. We plan to extend this further and include

demographic features in our datasets in our future work.
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Chapter 4

Online Human Activity Recognition

Using Time Series Shapelets

Chapter Overview

In this chapter, we explore an online HAR system to detect a set of daily activities using

shape-based time series classi�cation such that complex feature extraction is avoided.

Mobile phones, activity trackers, and many other current mobile devices incorporate

various sensors such as GPS, accelerometer and gyroscope. �ese sensors can be used

to study and analyze human physical activities. In our study we use annotated temporal

data collected from a single tri-axial accelerometer sensor worn on the hip. Such sen-

sor data are noisy and therefore in preprocessing the data, we eliminate the noise and

distortion. When comparing activity time series, we should consider the shape similari-

ties within the time series regardless of the magnitude. �erefore, we consider applying
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normalization and standardization to make the time series independent of magnitude.

Further in this chapter we propose a method for classifying activity time series based on

shapelets. Shapelets enable us to compare time series in terms of their shape similari-

ties, without the need of extracting features. Shapelets are small segments of time series

that can capture important characteristics such as pattern of the time series. We believe

shapelets are extremely useful for HAR systems because of the repetition nature of hu-

man motions and activities. Shapelets can easily capture and present activity patterns,

and therefore represent a class of human activity. Because shapelets are small in terms

of data points compared to time series, they are computationally e�ective for classifying

time series which makes our proposed system fast and computationally e�cient.

4.1 Challenges of Online HAR Systems

Most existing HAR systems are based onmachine learning techniques that require many

features to be extracted from the data. Feature extraction is computationally expensive

and therefore systems that use this technique detect human activities need todo human

activity classi�cation o�ine [Bao and Intille, 2004]. By o�ine we mean that the recog-

nition system would not detect the activity in real time, rather the process and compu-

tations will be performed on a server a�er the data has been collected. In o�ine HAR

systems sensor data will be processed and analyzed as batches of data. In these systems

the computation overhead of the classi�ers is not as crucial as it is in onlineHAR systems.

Online HAR systems give immediate feedback about the individual’s activity, and they

are usually embedded in a wearable device. Because these wearable devices are limited
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in data storage, computation capabilities and battery life, an important concern is to cre-

ate online activity classi�cation systems that would be fast and computationally e�cient

without requiring large amounts of data. We therefore study classifying the time series

activities using shapelets in real time. We believe that time series shapelets would enable

fast classi�cation of data without the need to extract features at classi�cation time. We

will address the limitations of most online human activity classi�cation systems by us-

ing time series shapelets and similarity metrics. In the remainder of this chapter we will

discuss the di�erent components of the proposed system.

4.2 Approach

Our method is based on extracting shapelets from activity time series where ideally each

shapelet is a representation of each activity class. By using several distance metrics we

compare the time series to the shapelets, each time series that exhibits similar patterns

to the shapelet will be labeled in the same class as the shapelet. �e ultimate purpose of

our proposedmethod is to classify activities using raw data, therefore, there is no need to

de�ne features that separate di�erent activities. Using raw data makes the method more

general in terms of being applicable to other sets of activities.

�e main component in our proposed method is extracting and selecting shapelets

from activity time series. Ideally each shapelet is a representation of each activity class

capturing the dominant pattern of the activity. We evaluate all sub-patterns in the time

series and select those of which are representative of the activity. Finding the best of such

patterns requires examining every single sub-pattern of a particular size. A few years
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ago, many authors of related work [Geurts, 2001] believed this task would be tedious to

test and slow in execution, but we believe with the recent improvements in CPU time

and parallelization techniques the proposed algorithm for discovering time series sub-

patterns is achievable in a reasonable time. We then select the activity class representative

shapelets by selecting the most representative shapelet for each activity which captures

the dominant pattern in that activity time series. We then classify time series based on

distance or similarity to the shapelet of each class. Cross correlation, Euclidean distance,

Pearson correlation and Dynamic TimeWarping (DTW) are a few examples of distance

metrics popularly used for time series.

We generate a personalized shapelet library database driven from users activity time

series for a shapelet-based online implementation of human activity classi�cation. �is

database is small in terms of size and can be stored on mobile phones and wearable de-

vices. To build this library in the training phase each individuals activity time series goes

through the di�erent components in our method de�ned below:

• AveragePeakDistance. Given a time series, P is the average number of data points

between two consecutive local peaks. We use a peak detection algorithm explained

in section 4.3.2 to �nd the local upper and lower peaks. We denote the average

distance of the upper peaks with Pupper and the lower peak distance with Plower.

• Shapelet Extraction. We extract all shapelets of a certain length lsh using a sliding

window. �e size of the slidingwindow is set based on the lower and upper peaks of

the activity times series. We call the set of all shapelets of a time series the candidate

shapelets. �e total number of possible candidate shapelets for all the time series
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in the dataset are:

∑
TS i∈D

(ni − li + 1)

where ni is the length of TSi , D is the set of all time series and l is the length of the

shapelets for the ith time series.

• Distance Metric. �e distance between each time series and a shapelet is repre-

sented with dist. �e distance function takes TS and SH as inputs and returns a

total distance value. In this study we measure distance using Euclidean distance

and DTW, which are discussed and evaluated in section 4.4.

• Class Shapelet Representative. Given a set of candidate shapelets we �nd the sin-

gle best shapelet which is representative of the activity class from the set of can-

didate shapelets. �ere are several methods used to select the single best shapelet

that would represent an activity class, we discuss this further in section4.3.4.

We propose a procedure to �nd the best shapelet which represents an activity class

based on time series distance metrics and DTW. For demonstration we use real human

activity data and show our system is independent of the sensor device.

4.2.1 Notation

In this section we introduce key terms used in this study. Table 4.1 summarizes the no-

tations used in the this chapter. We expand on each de�nition below.

De�nition 1: Time Series. A time series TS = t1, t2, t3, ..., tn is an ordered set of n real-

valued variables that are recordings of an accelerometer sensor measured in meters per
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Figure 4.1: Online HAR System Overview

second squared (m/s2). Each value tk in the time series represents the rate of change of

the velocity of the user wearing the sensor.

De�nition 2: Shapelet. Given an activity time series TS of length n, a sub-pattern or a

shapelet is a partition of length m where m ≤ n. A shapelet is a continuous set of sensor

readings that are spaced at the same rate of the time series. We present a shapelet as

SH = tl , tl+1, ..., tl+m−1 for 1 ≤ l ≤ n −m + 1.

De�nition 3: Recording Rate. Data points in activity time series are arranged in tem-

poral order spaced at equal time intervals 1/r.
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Table 4.1: Summary of notations used in Chapter 4

Symbol Explanation

TS time series
TSk kth data point in the time series
SH shapelet
SH j jth data point in the shapelet
∥TS∥ length of time series
lsh length of shapelet
r sensor recording rate

4.2.2 Data Representation

Participants and Procedures

We use a subset of ambulatory activities performed by users in this study. Refer to sec-

tion 3.1.1 for a description of participants and procedures of the collected dataset. We

select activities that are similar in nature but are preformed in di�erent environments

to show that shapelets can capture the di�erences in activities that may appear similar.

For instance, walking on a treadmill may seem to have a similar pattern of walking bare

foot on grass. However, we show the shapelets that represent each class have di�erent

patterns.
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Activity monitor device

Participants were �tted with a hip worn tri-axial accelerometer sensor. Refer to section

3.1.1 for description of the wearable device used in collecting the dataset.

4.3 Shapelet Extraction

4.3.1 Time Series Normalization

Before �nding the candidate shapelets in the activity time series, we need to perform an

important preprocessing step to reduce noise and highlight the pattern in the time se-

ries. Normalizing activity time series is necessary in order to compare time series with

shapelets using any distance measure [Keogh and Kasetty, 2003]. Normalizing time se-

ries enables us to eliminate di�erences of overall magnitude of two time series. �erefore,

with normalization we can correctly measure the true similarity of a shapelet and a seg-

ment of an activity time series that that may be similar in shape but have di�erent o�sets

along the accelerometer axis.

�ere are various methods of normalization techniques, common ones are exponen-

tial smoothing, Holt’s linear smoothing [Holt, 2004], single moving average, di�erenc-

ing, splines [Silverman, 1984], and LOESS technique [Cleveland, 1979]. In related litera-

ture standardization and normalization are sometimes used inter-changeably. However,

there is a slight di�erence between the two mentioned methods. Standardizing a time

series requires the data to have a mean of 0 and a standard deviation of 1. In normaliza-

tion of time series we scale the data in a speci�c range which is usually between 0 and 1,

but other ranges could also be used.
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Figure 4.2: Activity time series before and a�er applying SMA technique

Our method is based on single moving average smoothing (SMA) technique. SMA

avoids noise and smoothens the pattern in the times series. �e formula is shown below.

SMAt =
t

∑
i=t−N+1

xi
N

SMAt is single moving average for the tth data point, xi is the i th time series data

point, and N is length of the moving average window.
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4.3.2 Peak Detection

�e nature of humanmotion is based on repetition of movement phases [Ignatov, 2016].

�is is an important feature of human motion data which helps us analyze and classify

activities. �e data point values that are recorded by the accelerometer signal in every

point of time my change in each cycle, but the general shape of the pattern in the time

series stays the same. For example, when a person is walking, each leg goes through a

stance phase, a swing phase and then returns to the stance phase again [Shultz et al.,

2009]. When a person is performing a non-ambulatory activity, such as brushing teeth,

the repetition phase in the time series data is less visible. Usually in non-ambulatory

activities repetition is connected with respiration phases [Ignatov, 2016].

We can �nd the repetition pattern in activity time series signal and based on the aver-

age size of these patterns we measure repetition periods. We denote the average number

of data points in the repetition period with P. Repetition period is a segment of time

series, measured during one cycle of motion [Ignatov, 2016], such as a step. Figure 4.3

shows that �nding peaks can help us segment the time series into individual steps or

pattern repetitions. Every peak in the accelerometer time series denotes that there has

been a sudden increase in acceleration, followed by a sudden drop. In every step when

the lower limb goes through a swing phase we can see a sudden rise in the accelerometer

value. We can therefore use such peaks to determine the step size (number of data points

in each step).

In our method we use a common peak detection algorithm to detect the peaks. We use

Python1 PeakUtils [Negri, 2014] package to identify peaks and �nd their indexes. �is
1https://www.python.org/
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Figure 4.3: Finding peaks on walking activity time series

package provides utilities related to the detection of peaks on 1-Dimensional data by tak-

ing the �rst order di�erence and applying a normalized threshold. We �nd the indexes of

the peaks from the activity time series as illustrated in Figure 4.3. Once we have found all

peaks we �nd the number of data points between each two consecutive peaks in the time

series. As the peaks identi�ed by this package are rough approximations, there may be

some outliers in the distance between consecutive peaks. �erefore we take the median

of all peak distances instead of average. Using median instead of average enables us not
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consider peak distances that are too short or too wide and therefore eliminate any outlier

peak distances. We apply peak detection algorithm to the data once for �nding positive

peaks, which we call upper peaks, and once for negative peaks. We call the negative peaks

lower peaks. For �nding the lower peaks, the same peak detection algorithm should be

applied to the negative of the time series. �e median of the number of data points in

between upper and lower peaks are denoted by Pupper and Plower respectively.

4.3.3 Shapelet Extraction

Given a time series TS with a median peak distance of P, we can extract candidate

shapelets from the time series. Candidate shapelets are the set of all overlapping time

series subsequences. �e Candidate shapelet sizes will all have the same size, P. We start

from the �rst data point of the time series and select the �rst P data points as our �rst

candidate shapelet, we then move to the next data point and select the next P points. We

continue these steps until we reach (∣∣TS∣∣−P)th data point of the time series, every time

jumping only one data point. All theses time series subsequences will be stored in an un-

ordered list called the Candidate Shapelets Dataset. We will then select the best shapelet

among the candidate shapelets.

4.3.4 Shapelet Selection

In this section we present our proposed algorithm to select a single shapelet from the

list of candidate shapelets, such that it has the closest pattern to the time series. In other

words we will select the shapelet which has a pattern that is most similar to the dominant

pattern in the times series. �e proposed algorithm checks each shapelet against the
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entire time series and computes a similarity value. We then use this similarity value to

select the shapelet that ismost similar to the fundamental or dominant pattern in the time

series. �is algorithm is based on a brute-force method inspired by Template Matching

method in image processing.

In comparing the shapelet to the time series we use a sliding window to measure the

similarity of each Candidate Shapelet to a time series. In every step, the sliding win-

dow selects a set of P consecutive points in the times series, and �nds the distance to the

shapelet, which is also of size P. We use two di�erent methods for measuring the dis-

tance of the time series segments and shapelets, which we will go through in detail in the

section 4.4. �e brute force algorithm and the sliding window guarantee that we will go

over every single possible segment of the time series and measure its similarity with the

shapelet. Once the sliding window passes through all the data points in the time series, a

total value of similarity will be returned by the method. �is value denotes the similarity

of a particular shapelet and the activity time series. However, the brute force method

takes a long time and is computationally expensive operation. �erefore, we parallelized

the algorithm using PySpark2 which is the Python API for Apache Spark [Zaharia et al.,

2016]. Parallelizing the brute force method enables us to run the main function and exe-

cute various parallel operations on a cluster. We successfully reduced the run time of the

brute force shapelet selection method by 75%.
2http://spark.apache.org/docs/latest/api/python/pyspark.html
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4.4 Matching Time Series with Shapelets

An important task in time series analysis is the estimation of similarity among di�erent

time series [Cassisi et al., 2012]. In activity time series a similarity measure is a relation

between a shapelet and a time series. �e algorithm requires comparing the time series

to each candidate shapelet by evaluating the distance function and keeping track of the

shapelet with the lowest distance to the time series. Shapelet matching requires that the

shapelet SH be placed at every possible o�set within the time series. In the next sections

we describe two methods we have experimented in this study to estimate the similarity

between a shapelet and a time series.

4.4.1 Euclidean Distance

A common way to compare time series data involves the concept of distance measures.

Let two time series x and y be the length of n, and xi and yi the i th values of x and y,

respectively. Euclidean Distance of the two time series is the sum of the point-to-point

distances along all the time series data points.

∣∣x̄ − ȳ∣∣2 =
¿
ÁÁÀ n

∑
i=1

∣xi − yi ∣2

Shapelets have smaller lengths compared to time series, therefore whenwe compare a

shapelet to a time series, we use a sliding window in the time series that is the same length

of the shapelet. We compute the distance of the shapelet to the part of the time series in

the sliding window, we store the distance in a variable, and shi� the sliding window to

the next data point, we then calculate the euclidean distance and add the value to the
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previous value. As the sliding window goes through all the data points in the time series,

the total distance gets accumulated each time. Once the sliding window reaches the end

of the time series the total euclidean distance is a single value representing the distance

between the shapelet and the entire time series. Figures 4.4 and 4.4 show the histogramof

the euclidean distances for comparing a shapelet to a time series. Each euclidean distance

between the shapelet and the slidingwindowof the time series is plotted in the histogram.

It can be seen that when the shapelet is compared to a time series of the same activity (of

same user) the histogram resembles a bell shape distribution. �is is usually not the case

when we compare a shapelet to a time series of another activity. Figure 4.5 illustrates this.

(a) Jogging at 6 mph of user 113 (b) Normal walking of user 113

Figure 4.4: Histogram of euclidean distances of a shapelet compared to the same activity
time series windows

Once every candidate shapelet is compared to the activity time series and a total eu-

clidean distance is computed for each shapelet, we will select a single or a set of shapelets

as our �nal representatives for each activity class. We experimented two approaches to
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(a) Jogging compared to walking upstairs (b) Walking compared to walking downstairs

Figure 4.5: Histogram of euclidean distances of a shapelet compared to another activity
time series per window

select a �nal shapelet from the candidates and we compare these selected shapelets to

the shapelets selected in the method described in the next section. In the �rst approach

we select a single shapelet based on the least euclidean distance. We sort the shapelets

based on their euclidean distances and select the shapelet which its euclidean distance is

the median of the �rst decile of best distances (least distance). We use the median of the

�rst decile of euclidean distances instead of the shapelet with the least euclidean distance

because a�er performingmany experiments we observed that the shapelets with the least

euclidean distances were not expressing any visible pattern. Usually such shapelets re-

sembled vertical lines with no trend or pattern, which are de�nitely not a practical rep-

resentation of the time series. In light of these �ndings in the �rst approach, we explored

another approach for selecting a shapelet. �is approach selects a set of 10 shapelets in-
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stead of a single shapelet, aligns and averages the shapelets to generate a new shapelet.

�is approach also returns a single shapelet, but the shapelet is built upon 10 shapelets

that had minimum euclidean distance with the time series. Figure 4.6 presents our sec-

ond approach to select a shapelet. We preform a simple averaging on the shapelets to

create the new shapelet.

Figure 4.6: Aligning and averaging multiple shapelets to generate a new shapelet repre-
senting an activity class. Blue shapelet is the result of aligning and averaging the green
and orange shapelets.

Euclidean distance is a simple and commonly used method for �nding the similarity

of time series, however it has several drawbacks. Activity time series may be similar in

pattern but they may not be aligned in the time phase. �is will cause the euclidean

distance to measure the similarity incorrectly. Euclidean distance and its variants are not

robust in phase di�erences in time of time series. In order to reduce the error associated
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with the Euclidean distance metric we study another similarity measure explained in the

next section.

Figure 4.7: T and S are two time series along the time axis t. �e Euclidean distance
results in the sum of the point-to-point distances along all the time series [Cassisi et al.,
2012]

4.4.2 Dynamic TimeWarping

As we mentioned in the previous section Euclidean distance is an e�cient distance mea-

surement that is the sum of squared distances from each point in the time series to each

point of the shapelet. One of the disadvantages of Euclidean distance is that if two time

series are identical, but one is slightly shi�ed along the time axis, then their Euclidean

distance will show them being di�erent or distant from each other. Most algorithms
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used to compare time series use the Euclidean distance or some variation of this tech-

nique. However, since Euclidean distance is sensitive to distortion [Ratanamahatana and

Keogh, 2004] we need another technique for calculating the distance between time series

that would ignore the shi�s in the time dimensions of the time series.

Dynamic Time Warping (DTW), is a widely used algorithm for computing the dis-

tance and alignment of time series [Seto et al., 2015]. DTW is less sensitive to time series

shi�ings, thus allows us to measure the similarity of time series even if they are out of

phase in time. Although DTW has a time complexity of O(n2), but it is still the best

solution known for time series problems in a variety of domains [Ratanamahatana and

Keogh, 2005]. �is method is much more robust compared to other similarity measures

such as euclidean distance. It �nds the best alignment between time series by �nding the

path through the grid that minimizes the total distance between them. Given two time

series x = x1, x2, ..., xn and y = y1, y2, ..., ym of length n andm, respectively, an alignment

by DTW uses information in a n ×m distance matrix [Cassisi et al., 2012]:

distMatrix =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(x1, y1) (x1, y2) ... (x1, ym)

d(x2, y1) (x2, y2) ... (x2, ym)

⋮ ⋱

d(xn , y1) (xn , ym)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where distMatrix(i , j) is the the distance of ith point of x and jth point of y, with 1 ≤

i ≤ n and 1 ≤ j ≤ m. �e objective is to �nd the path W = {w1,w2, ...,wk , ...,wK}

of continuous datapoints on the Distance Matrix such that it minimizes the following
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function [Cassisi et al., 2012]:

DTW(x , y) = min(
¿
ÁÁÀ K

∑
k=1

wk)

It is worth noting that although with DTW distance there may be several warping

paths of minimal total cost, DTW is well de�ned and much more e�ective in �nding

similarity of time series. In this study, our experiments show that DTW yields the most

precise similarity between activity time series and shapelets.

Figure 4.8: Dynamic Time Warping Alignment Path

DTW can handle time series of di�erent lengths, and there is no evidence in liter-

ature to support the claim that comparing variable length time series has less accuracy
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[Ratanamahatana and Keogh, 2005]. However for visualization reasons we linearly rein-

terpolate the shapelets to have the same length of the time series. We call this expanding

shapelets, and it requires a shapelet to be repeated t times where t is:

⌈∥TS∥
lsh

⌉

Figure 4.9 illustrates how a shapelet for a particular activity is expanded.

(a) Expanded shapelet from lower peaks (b) Expanded shapelet from upper peaks

Figure 4.9: Jogging on treadmill expanded shapelets for user 113

4.5 Experimental Evaluation

�e previous section we discussed how shapelets for each activity are extracted from the

activity time series. It is worth noting that the proposed system is a personalized model

system, every user would have a personal dictionary of activity shapelets based on their

activity data. In this section we will discuss the details of training and testing the system.
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4.5.1 Training Phase

�e training phase of our proposed system will take place o�ine. In this phase we will

extract shapelets from activity time series of each user, using methods described in sec-

tion 4.3. Wewill select the best shapelet that we believe is most representative of the users

activity among all the shapelet candidates based on similarity measure metrics. Each ac-

tivity shapelet will be stored in a local database for a speci�c user. Figure 4.10 shows a

graph of euclidean distances when comparing treadmill jogging time series of user 118

to di�erent shapelets of the same user. It can be clearly seen that when we compare the

activity time series to the shapelet of the same activity (treadmill jogging), the euclidean

distances are lower compared to when the time series is compared to shapelets of other

activities. We �nd a threshold for euclidean distances to classify a time series based on

the euclidean distance with shapelets. When a time series is compared to a shapelet of the

same activity, the euclidean distances are comparably smaller. �is is the key component

for classifying the time series class. In the next section we describe how we train a model

to �nd this threshold and classify the time series based on the euclidean distances it has

with shapelets.

Classifying Time Series

Wewill then compare each activity time series of a particular user to the set of its activity

shapelets. We break each activity time series into chunks. A chunk CHi is a partition of

a time series with a limited length. In our experiments we have set the chunk size to be

3 seconds, and since the sampling rate is 100 Hz, every chunk will have 300 data points.

�e concept of a chunk is helpful for simulating the nature of stream sensor data. A chunk
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Figure 4.10: Euclidean distances graph of comparing treadmill jogging time series to
di�erent shapelets of the same user. It can be seen that comparing the time series to
treadmill jogging shapelet (blue line) results in lower euclidean distances.

of 3 seconds infers that the programwould delay 3 seconds in recognizing activities since

it would need to wait for 300 data points to be bu�ered, then analyze them to predict

the class. �e activity time series will get compared to each shapelet in chunks, and the

euclidean distance will get recorded. Once the bu�ered chunk of time series is compared

against each shapelet, we will analyze the euclidean distances. For each shapelet we have

a series of euclidean distance values for which we �nd the �ve number summary statistics

in addition to variance and standard deviation. �ese statistic summaries provide a base

line to compare how the time series is being matched to each shapelet.
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Table 4.2: Summary Statistics of Euclidean Distance of Time series and Shapelets

Median Min Max Var STD p25 p75

User 118 - Treadmill Jogging Activity

Activity Shapelet

Treadmill walking 1.564 1.369 1.768 0.009 0.097 1.494 1.636

Treadmill jogging 0.592 0.310 0.694 0.008 0.094 0.501 0.633

Walking hard surface 1.139 0.940 1.321 0.008 0.0932 1.070 1.208

Upstairs 1.708 1.612 1.847 0.002 0.0542 1.681 1.758

Downstairs 0.456 0.327 0.556 0.004 0.063 0.391 0.501

User 126 - Treadmill Jogging Activity

Activity Shapelet

Treadmill slow walking 1.826 1.695 2.0477 0.009 0.099 1.786 1.943

Treadmill jogging 0.587 0.148 0.729 0.016 0.129 0.535 0.644

Walking hard surface 0.750 0.623 1.074 0.014 0.121 0.684 0.904

Upstairs 1.004 0.737 1.241 0.0164 0.128 0.887 1.119

Table 4.2 shows the summary statistics for two treadmill jogging activities performed

by two di�erent users. For each user we have compared the time series to their set of
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shapelets. It can be seen that when the activity is compared to the shapelet of the same ac-

tivity the summary statistics are signi�cantly distinguishable from other shapelets. Based

on these summary statistics we train a decision tree to classify the time series. Deci-

sion Trees are a non-parametric supervised learning method used for classi�cation and

regression. We create a model for each shapelet to predict the class of a time series by

learning simple decision rules inferred from the statistic summaries seen inTable 4.2. �e

Decision Tree Classi�er is implemented using the well-known Pythonmachine-learning

library, Scikit Learn [Pedregosa et al., 2011]. �e classi�er takes as input an array hold-

ing the training samples, and another array holding the binary class labels of TRUE or

FALSE, True being the state if the shapelet and the time series are of the same activity

and false when they di�er. A�er �tting the tree, the model could be used to predict the

class of activities of time series which are not labeled.

We use decision tree model because they have features which make them favorable over

other classi�ers. First becuase the trees do not require much of data preparation. Sec-

ond, because the cost of using the tree is logarithmic in the number of data points used

to train the tree. Figure 4.11 illustrates a visualization of the models for treadmill jogging

shapelet for two users. �e decision tree models in �gure 4.11 are very simple and easy to

understand. �e reason is because, based on the values in Table 4.2, the summary statis-

tics for the shapelet that matches the activity are distinguishable from the other shapelets

statistics, therefore a simple decision rule can easily classify it. However other shapelets

may have a more complicated tree as seen in Figure 4.12. We can infer that the summary

statistics for this shapelet (treadmill slow walking), were not as distinguishable from the

other shapelet, and therefore a more sophisticated tree is needed to classify the state. �e
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model for the shapelet of treadmill slow walking is more sophisticated becuase the activ-

ity is very similar to a non-ambulatory activity and therefore the shapelet cannot capture

a distinguishable pattern. Shapelets which capture the pattern of the activity will have a

simpler model since they are easy to distinguish.

max <= 0.8924
gini = 0.2449

samples = 112
value = [96, 16]

class = True

gini = 0.0
samples = 16
value = [0, 16]
class = False

True

gini = 0.0
samples = 96
value = [96, 0]
class = True

False

(a) DT model for shapelet 17 user 118

max <= 0.9075
gini = 0.2778
samples = 96

value = [80, 16]
class = True

gini = 0.0
samples = 16
value = [0, 16]
class = False

True

gini = 0.0
samples = 80
value = [80, 0]
class = True

False

(b) DT model for shapelet 17 user 126

Figure 4.11: Decision Tree Model for Treadmill Jogging Shapelet of users 118 and 126

4.5.2 Testing Phase

For each user we have extracted a shapelet from each of the individual’s activity time

series. Webelieve the selected shapelets are the best representative for each activity. Based

on the shapelets and the activity time series we have also created decision tree models for

each shapelet. Each user will have a personalized library of shapelets and decision tree

models. Figure 4.1 shows the architecture of stages and components of our proposed

online HAR system, using a library of shapelets and models. �e shapelets and models

are extracted and created in the training phase which can be o�ine. In this section we

will describe the testing phase which is online with a 3-5 second delay in detecting the
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var <= 0.2755
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samples = 96
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Figure 4.12: Decision TreeModel for User 126 performing treadmill slowwalking activity

�rst activity.

Because of the stream nature of the accelerometer sensor data, we need to simulate

the testing phase to generate time series similar to streamed data. We therefore take

advantage of the concept of chunks again. We will read the activity time series data in

chunks of 300 data points (3 seconds), bu�er it, then analyze and classify it with the
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correct activity label, then the next chunk will be read and analyzed similarly. We set the

chink size to be 300 and read 2 chunks at a time to assure that chunk sizes are larger than

the shapelet size. We also need to make sure that each chunk contains only one activity

type. Studying human daily activities time series we see that a 3 second window frame

is an ideal chunk size, since usually activities are performed at least 3 seconds, or have

a recurring pattern length less than 3 seconds. In other words, if a user is walking, then

decides to jog, in most cases we see that jogging will last at least 3 seconds before the

user decides to perform another activity. It is also worth noting that the activity time

series in the testing phase may consist of several activities of the same user. Since this

is a personalized system, each time series that is being analyzed will belong to a single

user. Once the �rst two chunks of the activity time series are bu�ered in the system, they

will be compared to all the shapelets of that particular user. Each time the chunks are

being compared to a shapelet, euclidean distance statistics are created. �ese statistics

include the minimum, maximum, median, standard deviation, variance, �rst and third

percentile of the euclidean distances as the sliding window goes over the chunks and

compares the chunk window to shapelets. Using the statistics provided for each shapelet

and the shapelet decision tree models, we can predict the class of the chunk. �e system

will behave similar to a binary classi�er on each model, outputting a label of yes or no

for each shapelet.

Ensemble of Binary Classi�er

Since there are multiple classes of activities, we need to have a multi-classi�er to de-

tect and label activities. Our system breaks the multi-classi�cation problem into several
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binary classi�cation problems with a divide and conquer strategy. We do this because bi-

nary problems are simpler to solve than the originalmulti-category problems [Galar et al.,

2011], however, the outputs of each binary classi�er have to be combined to decide the

predicted class of activity. It is important to correctly combine the result of each classi�er

to produce a correct prediction. �ere are several strategies to manage the combination

of binary classi�ers, we use the One-vs-all method to combine the binary classi�ers pre-

dictions. One-vs-all (OVA) uses a binary classi�er to distinguish between a single class

and the remaining ones, then with a voting strategy each classi�er votes for the predicted

class and the onewith the largest amount of votes is predicted [Ri�in andKlautau, 2004].

class label

combiner of classi�cation outputs

binary
classi�er

1

binary
classi�er

2

binary
classi�er

n

input x

f1(x)
f2(x)

fn(x)

Figure 4.13: Diagram of multi-class classi�er via combining binary classi�ers.

We decompose the classi�cation problem to n binary classi�cation problems where
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n is the number of activity classes. When an activity time series chunk is presented to

each one of the binary classi�ers, the classi�er which gives a positive output indicates the

output class. Figure 4.13 illustrates this method. However, there exists an issue in such

a system. In some cases the problem is that more than one of the classi�ers outputs a

positive label for a chunk of activity and a tie-breaking technique is required to decide

on the activity label. In such caseswe use the common approach ofmaximumcon�dence.

�e output class is determined by the classi�er with the largest con�dence score [Galar

et al., 2011].

Class = arg max ri , i = 1, ..., n

4.5.3 Results

In this section we discuss the results of our system. We randomly select 5 users to detect

their activities. Each user has an activity time series which consists of multiple activities

performed in an arbitrary order. In the training phase we have already created a shapelet

for each of the activities preformed by the user andwe store these shapelets in the shapelet

library for each user. We have decision tree classi�ers for each shapelet, and we store all

the models in themodel library in our personalized system. Each activity time series will

be read chunk by chunk and analyzed. �e systemwill classify each chunk and display the

label of the activity. We use a single time series for each user. Once activities are classi�ed

by the system we evaluate the results using an automated program. �e program checks

each chunk and its label against the ground truth and provides performance metrics.

Table 4.3 summarizes the performance metrics of our system for each user. Each row in

this table summarizes a performance metric. �ese metrics are the result of the average
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performance metrics over all the activities performed by the user. In order to make the

results comparable between users we have selected users that have performed the same

activities for the same amount of time.

Table 4.3: Summary of classi�cation performance metrics for random users

Description User 102 User 113 User 118 User 126 User 143 Total

Sensitivity 0.77 0.20 0.59 0.40 0.25 0.44
Speci�city 0.94 0.88 0.95 0.97 0.91 0.93
Precision 0.68 0.20 0.65 0.73 0.31 0.51
False Positive Rate 0.06 0.12 0.05 0.03 0.09 0.07
False Discovery Rate 0.32 0.80 0.35 0.27 0.69 0.49
Accuracy 0.92 0.79 0.90 0.88 0.83 0.86
F1 Score 0.72 0.20 0.62 0.52 0.28 0.47

From the results of the study presented in Table 4.3, we demonstrate that the accuracy

of the system can be variable between di�erent users. Users who have higher accuracy

in activity detection have shapelets that are more representative of an activity class. �e

system can improve by retraining shapelets for a user who has low accuracy. Di�erent

real life situations may a�ect the users time series and shapelet. As an example a user

may be wearing uncomfortable shoes when training data was being collected. �is will

e�ect their normalmovement patterns and shapelets would not be representative of their

normal movement signature. �erefore an important step in the system would be to

repeat the training phase for users who show low accuracy rates.

Table 4.4 provides the summary of classi�cation performance metrics per activity.

Activities such as activity 17 -treadmill jogging- has better classi�cation performance
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Table 4.4: Summary of classi�cation performance metrics per activity.

Description 11 13 17 23 33 34

Sensitivity 0.30 0.71 0.80 0.30 0.39 0.33
Speci�city 0.91 0.94 0.93 0.88 0.95 0.89
Precision 0.50 0.77 0.76 0.41 0.69 0.36
False Positive Rate 0.09 0.06 0.07 0.12 0.05 0.11
False Discovery Rate 0.50 0.23 0.24 0.59 0.31 0.64
Accuracy 0.77 0.89 0.90 0.75 0.83 0.80
F1 score 0.38 0.74 0.78 0.35 0.50 0.35

Activity 11: Slow Treadmill Walking; 13: Normal Treadmill Walking; 17: Treadmill Jogging; 23: Normal
Walking; 33:Stairs Up; 34:Stairs Down.

metrics compared to other activities. Studying the results of this table we come to the

fact that the more body movement there is in a speci�c activity, the classi�er will classify

that activity with higher accuracy. �is means that an activity such as jogging, which

involves several singular moving components, has a de�ned pattern which is muchmore

visible and dominant than other patterns in the time series. Compare jogging to an ac-

tivity that does not have many moving components, such as brushing teeth; it would be

a far more di�cult task to extract patterns from such an activity, and therefore extracted

shapelets would not contain valuable information about the pattern of the activity. Look-

ing at shapelets of non-ambulatory activities, we see that they all look very similar to a

horizontal line. �ese shapelets would not be e�ective in �nding a common pattern in

the time series, therefore our proposed system has low accuracy rates when recogniz-

ing non-ambulatory activities. Activity 11, which is slow treadmill walking at a pace of 1
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mile per hour resembles a non-ambulatory activity and therefore has low classi�cation

performance rates. We will further address this issue in our future work. However, it is

important to reiterate that we perform classi�cation on a large range of activities, many

of which are in the same category (for example we have a variety of walking activities, in

each one the subject is asked to hold a di�erent object while walking, see Table 3.1). Nat-

urally this yields a lower accuracy rate compared to HAR systems that classify activities

in a lower granularity.

In order to show that our method is sensor-type independent, we also discuss the

accuracy of human activity recognition using di�erent sensors. We have used an iPhone

6s and Samsung Galaxy S8+ to gather motion data from 5 new individuals in Athens GA

local area with a frequency of 100Hz. �e activities these individuals performed was a

subset of the the same activities included in the original dataset, including treadmill 1

mph, treadmill 3mph, treadmill 6mph, normal hard surface walking, walking upstairs,

walking downstairs. Table 4.5 describes the results of activity recognition accuracy for

the auxiliary dataset described above.

�e results in Table 4.5 show that using other devices for recording data has compa-

rable performance results to the original dataset. In the original dataset an accelerometer

sensor was attached to the non-dominant hip. In the auxiliary dataset we attached a mo-

bile phone to the individuals non-dominant hip and they performed the activities in a

similar but not identical setting. In this dataset the activities were performed in a less

controlled environment hence more similar to real-life activities. �e results presented

in table 4.5 proves that our proposed method can work on any dataset regardless of the

make and model of the sensor used to collect motion data.
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Table 4.5: Summary of classi�cation performance metrics for users in auxiliary dataset

Description Performance Rates

Sensitivity 0.62
Speci�city 0.86
Precision 0.59
False Positive Rate 0.14
False Discovery Rate 0.41
Accuracy 0.80
F1 score 0.61

4.6 Discussion and Analysis

We proposed an online HAR system to detect human activities in real time. First, we

showed how to create shapelets that would represent the pattern of each activity time se-

ries based on the the x-axis accelerometer data. It is worthmentioning that by leveraging

other axes of the accelerometer sensor such as y-axis and z-axis it is possible to compute

a more precise shapelet length and therefore extract better candidate shapelets. We also

show how we would select the best shapelet from the candidate shapelets using various

distance metrics.

Another possible way to select shapelets is through transforming the time series to

the frequency domain and �nding similarities in the frequency pattern. However, the

drawback of this approach is that if the shapelets are smaller than the entire activity time

series (which usually are), transformation of the time series into the frequency domain

82



will not assist in detecting the patterns because they may appear at any point of time in

the time series. �erefore, we believe that extracting shapelets from the time domain is

more e�cient and applicable. However, spectral analysis of the activity time series will

show the dominant frequency and by leveraging this we �nd a proper shapelet length for

extracting candidate shapelets.

�e euclidean distance of each shapelet to a time series was used to train a decision

tree model. �emodel is designed to classify activity time series in real-time. Ourmodel

is unique in its ability to classify an activity using a small portion (chunk) of the time

series. It can perform near real time, since both the chunk and the shapelet are very

small in size and the classi�er is not not relying on any preprocessed features.

In addition to Decision Trees another possible learning algorithm that can be applied

are Multi-Layer Perceptrons (MLP). MLP is a supervised learning algorithm that trains

on a dataset and learns a function. �e advantage of usingMLP in online HAR systems is

that they have the capability to classify the activities in real time. We can classify the ac-

tivities by giving the set of features which are the �ve-number summary of the euclidean

distances of shapelets and activities time series. By providing the set of features and the

activity labels to MLP, it can learn a function for classifying new activities by having one

or more non-linear layers. �e disadvantage of using MLP is that the training phase re-

quires many iterations with many training epochs and this will cause the training phase

to be slow. However, since in our online HAR system the training phase is o�ine we can

easily disregard this disadvantage.
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4.7 Chapter Summary

We introduced an online human activity recognition system to detect activities in real

time based on a single accelerometer sensor time series. �e system’s training phase is

o�ine, and a�er training is completed, it detects human activities near real-time using

time series shapelets. �e proposed system is a personalized activity recognition system,

therefore the system has to be trained on each individual’s motion data. We train and

test our proposed system on motion data from �ve users, while performing a variety of

activities. Activities performed by the users are similar in nature, as they are all walking

activities. However they are performed under di�erent conditions with di�erent speed,

and di�erent footwear. We have shown with extensive experiments that we �nd the most

representative shapelet for each class, which can then provide accurate and fast classi�-

cation decisions in activity time series. �e results validate that it is possible to detect

human activities based on the time series shapelets. �e results obtained were promising

for the following reasons. Firstly, they represent a baseline for practical realtime activity

recognition using a device with with a single accelerometer sensor. Secondly, this study

explored using a single sensor for activity recognition, but many other sensors could also

be utilized to improve activity recognition such as blood pressure sensor, gyroscope and

GPS. And thirdly, this work suggests that it may be possible to build systems that would

be capable for recognizingmore complex humanmovements whileminimizing the com-

putation overhead and time complexity to achieve promising results in real-world con-

ditions. Despite the promise of this method, it is worth considering that the data was

gathered under controlled settings. �e sensor was secured to the users hip and an stu-

dent research assistant monitored the users tomake sure the activities are being recorded
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correctly. We would expect a slightly lower performance in real-world conditions. One

of the challenges of such a HAR system is that the device may not be properly attached to

the body. If the device is placed in a bag or pocket, it will have additional movements that

would generate noise in the data being recorded. �e existence of such noise will block

the movement patterns in the data that correspond to the activities. We will discuss this

issue in future work section.
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Chapter 5

RelatedWork

Chapter Overview

In this chapter, we present recent work that pertains to activity recognition while lever-

aging sensors and ubiquitous computing techniques. Motivated by the increasing health-

care costs, research on Human Activity Recognition systems in health and medical do-

mains has attracted attention in both scienti�c community and industry. �e recent

technology advances has also played an important role in the growth of such systems.

In this chapter we review the current research and development of healthcare mobile ap-

plications, context-aware assistive devices, and activity monitoring systems. We believe

advances in HAR research will transform the future of healthcare by enabling ubiquitous

monitoring of human physical and mental health state. �e main hardware component

of HAR systems are sensing devices that are small, low in price and very accurate, there-

for facilitate low-cost continuous activity monitoring. We review major approaches and
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methods based on vision sensors and wearable sensors.

5.1 HAR in Health andMedical Applications

�edesign and development of gadgets for healthmonitoring has attracted a lot of atten-

tion in the scienti�c community in the recent decades. Such advances in technology com-

bined with medical breakthroughs has improved the quality of life and also increased life

expectancy. Technological advances in small sized bio-sensors, smart textiles, microelec-

tronics and wireless communications, will potentially transform the future of healthcare

by enabling proactive personal healthmanagement andmonitoring of a patient�s health

condition [Pantelopoulos and Bourbakis, 2010]. In the last couple of years, Human Ac-

tivity Recognition (HAR) has became an emerging �eld of research within multiple dis-

ciplines in computer science. With the help of HAR systems health monitoring is now

more accessible, and cheaper than it has ever been. Various communication technolo-

gies such as mobile devices, devices with embedded sensors and vision sensors can help

improve health care systems and reduce medical sta� activities. Such systems would al-

low patients to get discharged from the hospital sooner, as the physician would be able to

monitor them remotely and would be quickly noti�ed if any abnormalities occur for the

patient. Implementing such systems in a large scale would eventually reduce healthcare

costs as well. Human Activity Recognition applications have spread beyond the scope

of health, and many real world problems rely on activity recognition. As an example in

security and surveillance HAR systems would be able to detect any abnormal activities in

public areas such as airports and train stations. City Planning [Feng and Timmermans,
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2013], Sport coaching and Fitness Assessment [Ermes et al., 2008], Internet of �ings

and Smart Homes [Das et al., 2012] are a just few of many domains that HAR can play

an e�ective role in. In this section of the dissertation we focus on the current state in

research and development of various Human Activity Recognition Systems in the �eld

of Health and Medical sciences.

5.1.1 Activity Recognition Types

Research onHumanActivity Recognition involves the use of di�erent sensing and vision

technologies. Some work has been based on the integration of many di�erent heteroge-

neous sensors into the system to allow the model itself to choose the most e�ective ones

for any given situation [Wang et al., 2010]. On the other handmany work has been based

on reducing the complexity of the HAR systems, in order to work more e�ciently on

lower power consumption. In the following sections we will review the two main cate-

gories of HAR applications. Vision-based and Sensor-based HAR systems.

Vision-based HAR

In the past decade we have witnessed a rapid growth in the quality of cameras and video

cameras resulting interest in analysis of human activities in videos and images. Human

Activity Recognition using vision based systems has applications in security and surveil-

lance, entertainment and health monitoring. In this chapter we focus on applications in

the health domain. Although there is a large variety of approaches in Vision-Based ac-

tivity recognition however, the problem they are solving can be summarized as : given

a sequence of images of a person performing an activity, can a system be designed to auto-
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matically recognize what activity is being performed? [Turaga et al., 2008b]. �e process

overview is also similar in most vision-based systems as the human has to be detected in

the image or video and then the activity can be recognized. Bodor et al. [2003] present the

overview of the process as shown in Figure 5.1 to capture the key stages in human activ-

ity recognition. Most previous work on vision-based activity classi�cation has focused

on using 2D video [Ning et al., 2009; Gupta et al., 2009] and single images. Di�erent

vision-based methods for activity recognition are discussed in more detail below.

Human
Detec-
tion

Human
Tracking

Activity
Recognition

Complex
Activity
Recognition

Figure 5.1: Activity Recognition Process using Vision-based Systems proposed by Bodor
et al. [2003].

Video Efros et al. [2003] propose a system that can recognize human activities at a dis-

tance using low resolution video. Having stabilized human �gure motion sequence, they

compute the spatio-temporalmotion descriptor centered at each frame using optical 
ow

measurements. �e descriptors are then matched to a database of pre-classi�ed and an-

notated video sequences actions using the k-nearest-neighbor algorithm. �e retrieved

matches obtain the correct classi�cation label, as well as other associated information

with the human activity being performed by the subject.

In amore traditional video-basedHAR , Stau�er andGrimson [2000] have developed

a vision system that monitors activity in a site over extended periods of time, and detects

patterns of motion and interaction demonstrated by human and objects in the site. �ey

explore the monitoring of an outdoor site by using a set of video cameras. �e main
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focus of their work is on the algorithmic processing of the data, rather than on the video

camera locations. �e forest of cameras can learn patterns of activities in a site, then

monitor and classify activities based on these learned patterns. �is method can handle

lighting changes by slowly adapting the values of the Gaussians.

Siddiqi et al. [2014] proposed a method that has higher accuracy rates compared to

other state-of-art vision-basedHARmethods. �ey propose an accurate and robustHAR

system, calledWS-HAR that has high recognition rate. A�er the preprocessing stage they

have images which have normalized intensity, size and shape. Symlet wavelet has been

to extract the features from the activity frames. Features are selected by technique called

stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized

features from the activity frames and discriminating their class based on regression val-

ues. Finally, Hidden Markov Model (HMM) is used to classify the activities. To validate

the performance of their method, two publicly available standard datasets was used to

show the e�ectiveness of each approach.�e average recognition rate for the WS-HAR

was 97%.

Image In Image-baseHAR systems, the image is actually a stack of video frames which

demonstrates the 
ow of movement. Dobhal et al. [2015] have extended this method for

3-D depth maps. �ey remove the background of each frame using Gaussian Mixture

Model, to obtain the foreground that contains the image of the individual. A�er com-

bining these frames the Binary Motion Image (BMI) is calculated. Finally they use Con-

voluted Neural Network for training and testing their system. �e importance of binary

images is that it allows their method to be independent of the dress style worn by the

individuals as well as the speed they perform their actions.
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Infrared One of the low cost non-wearable sensors that is broadly used for activity

recognition are Infrared-based motion sensors. �e advantages of using such sensors

are general versatility (available in darkness), low cost, small size, privacy protection (low

resolution) and availability Mashiyama et al. [2015]. �ese sensors are very powerful in

location-based activity recognition for indoor spaces such as GPS are for outdoor loca-

tionsKrishnan andCook [2014]. In recentworkMashiyama et al. Mashiyama et al. [2015]

have introduced a fall detection system that uses an array of infrared sensors. Each sen-

sor has two or more infrared detectors inside, and the temperature is achieved on a two

dimensional area. �ey used the data from the temperature distribution, and classi�ed

activities as fall or non-fall. In their paper they mention that, knowing daily fundamen-

tal activities of elderly people is also important to prevent future fall incidents. In an-

other published work the same authors Mashiyama et al. [2015] propose a novel activity

recognition using a low resolution infrared array sensor. �ey analyze the temperature

distribution obtained from the sensor and classify activities into �ve classes: no event,

stopping, walking, sitting and falling. Figure 5.2 shows the algorithm of their method

is divided into three steps: body detection, feature extraction, and classi�cation. First,

in human body detection, activities are classi�ed into two classes based on the temper-

ature di�erence between a person and the background. Second, in feature extraction

phase, four features of humanmotions are extracted from temperature distribution data.

Finally, in classi�cation, support vector machine, nearest neighbor search or neural net-

works are used to classify the activity. Although they report their system to have very

high accuracy (100% accuracy for most activities), but they have many false positives for

no activity and fall classes.

91



Figure 5.2: System model of Infrared HAR. Courtesy of Mashiyama et al. [2015].

Kinect (RGBD) RGB-D sensors combine RGB color information with per-pixel depth

information. Sensors that provide such data have existed for years, however Microso�1

released the Kinect RGB-D sensor as a new Natural User Interface (NUI) for its XBOX

360 gaming platform. �e Kinect, like other RGB-D sensors, provides color information

as well as the estimated depth for each pixel. �e Kinect is much cheaper than simi-

lar sensors therefor it has attracted the interest of researchers in HAR domain. Sung

et al. [2011] use a supervised learning approach in which collected ground-truth labeled

data is used for training their model. �e input is RGB image as well as depths for each

point collected by Kinect device. To compute the human pose features, each subject is

described by a rigid skeleton that can move at ��een joints. �e skeleton is described

by two features, three-dimensional Euclidean coordinates and the orientation matrix for

each joint with respect to the sensor. Information extracted from these features are fed
1www.xbox.com/en-US/kinect
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as input to the classi�cation algorithms. A two-layered Markov model is trained which

captures di�erent properties of human activities, their hierarchical nature, transitions

between activities, and the correspondence between activities and the skeletal features.

In a more recent work, Jalal and Kamal [2014] use RGBD cameras and extract depth

silhouettes to create a real-time life log for elder individuals. �eir system includes train-

ing routines and real-time recognition for life logging. In the training phase, depth sil-

houettes of human activities are captured using a depth camera. �en, body points are

extracted from these depth silhouettes and computed using a set of magnitude and direc-

tion angle features which are used for training the HAR classi�er. Finally, a�er training,

the system is used to recognize learned activities via the trained Hidden Markov Models

(HMMs) for activities and stores life log information in a database.

Sensor-based HAR

One of the visions of Weiser, father of ubiquitous computing, has been the prospect of

disappearing technologies that “weave themselves into the fabric of everyday life until

they are indistinguishable from it” [Weiser, 1999]. Sensors have made a breakthrough in

the �eld of Ubiquitous Computing by making a shi� from low-level data collection and

transmission towards high-level information integration and context processing [Chen

et al., 2012]. Since late 90’s, various sensors have been used to monitor human activities.

Since then, extensive research has been carried out to investigate the use of sensors in var-

ious application scenarios of ubiquitous and mobile computing, and considerable work

has been done in the �eld of context awareness, smart appliances, and activity recogni-

tion [Chen et al., 2012]. Sensors used in such systems can either be attached to human
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body or onto objects that human interact with such as mobile devices or smart objects

in the house. Before we give more details on Sensor-based HAR system, we would like

to highlight that such systems can better address sensitive issues in activity recognition

compared to Vision-based HAR. �e main concerns in vision-based systems are pri-

vacy and obtrusiveness, which are not a problem in sensor-based systems. Traditionally

Sensor-based HAR have been divided into two main subgroups in terms of the way they

are deployed.�ese are Wearable Sensors and Dense Sensors and are described in detail

in the following sections.

Wearable Sensing Systems In the past couple of years there has been an exceptional

development of microelectronics and computer devices in a small size with high compu-

tational power enabling it to be the perfect sensor for attachment to human body. Wear-

able sensors have helped ubiquitous computing research area by allowing researchers to

extract knowledge acquired by body worn wearable devices. We can group the sensors

used in wearable sensing systems into three categories as Lara and Labrador [2013] have

explained in their survey. �e three groups of attributes measured by these wearable sen-

sors in a HAR context are : Acceleration, Location, Physiological Signals. We provide a

description of each sensor used in Wearable Sensing Systems below.

Accelerometer Without doubt, accelerometers are the most commonly used sensors

in Activity Recognition. Triaxial accelerometers are particularly e�ective in recognizing

ambulation activities such as walking, running, climbing stairs, lying and etc. �ese sen-

sors are very inexpensive and require low power, therefore they have been embedded in

smart phones in the recent couple of years. Several papers have been published using
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accelerometers to detect human daily activities, in the majority a very high accuracy is

reported , as well as real-time or near real-time activity recognition. Accuracy rates have

been as high 98% in Khan et al. [2010]’s work where the system is capable of recognizing

a broad set of daily physical activities. �eir proposed work only includes a single tri-

axial accelerometer, therefore it is feasible to be used by free-living subjects throughout

the day. Khan et al. [2010] report that their system is able to distinguish between sitting

and standing postures and their transitions, walking-upstairs and downstairs. A main

issue in accelerometer sensing systems is that they get confused for non-ambulatory ac-

tivities, such as brushing teeth, talking on the phone, eating, working at the desk and

etc. Becuase of similar motions in many of the non-ambulatory type of activities, accu-

racy rates may decrease noticeably when they are included in the activity set. Lara and

Labrador [2013]mention that the placement of sensors is also an important factor inHAR

systems, however there is not an optimal position where to place the sensor. Depending

on the application and the type of activities being performed the optimal accelerometer

position can vary. In another similar work, Naja� et al. [2003] use Gyroscope in addition

to Accelerometers to detect body postures (sitting, standing, and lying) and periods of

walking in elderly people. �e principle operation of the gyroscope is the measurement

of the rotational angular velocity. �e purpose of their study is to test the performance

of their system, based on one kinematic sensor and to classify body postures (sitting,

standing, and lying) and locomotion (walking).

Global Positioning Systems (GPS) GPS sensors are another widely used wearable

device for monitoring location-based activities. A variety of applications have used GPS

sensors to recognize human behavior at a certain location, as an example Patterson et al.
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[2003] useGPS sensor stream for detecting human activities like boarding a bus or travel-

ing. Current smart phones are equipped with GPS sensors, making them an ideal device

to track human activities and transportation mode. Using a GPS sensor in HAR systems

along with the accelerometer sensor can help infer the users activity using ontological

reasoning [Riboni and Bettini, 2011]. In order to make this concept more clear, if GPS

shows the location of a user in a mall, we are sure that that person is not taking a shower,

instead they are probably walking or sitting. �erefor we can limit the number of rec-

ognizable activities depending on the location of the user, increasing the accuracy of the

system. Although GPS sensors have a huge impact on activity recognition but they also

have a few drawbacks as well. One disadvantage of this sensor is the energy consump-

tion which is relatively high compared to other sensors like accelerometer. GPS sensors

do not work at indoor locations or in places that there are high surrounding buildings

or mountains that can block the signal, so it would not be very useful to use this sensor

when the user is indoors. At last but not least there has been a lot of concern about the

privacy issues for GPS, because it can constantly track the location of the users. �ere

has been some work done to encrypt the location of the user as discussed by Christin

et al. [2011].

Bio-sensors Vital signs of human body could be very helpful in detecting the type of

activity the individual is performing. A wide range of bio-sensors exist that could mea-

sure vital signs such as blood pressure, heart rate, heart sound, respiratory information,

oxygen saturation, body temperature, blood glucose, skin conductivity, ECG and EEG.

Just as GPS sensors, bio-sensors would need to be combined with other sensors in order

to be able to make more accurate recognitions of human activities. Tapia et al. [2007]
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mention in their paper that using heart rate individually is not helpful in detecting activ-

ities because the heart rate may remain high for some time a�er the user has performed

an exhaustive activity. Smart Garment is a new interesting �eld of research being car-

ried out by Material Scientists and Computer Scientists. It is the most pervasive HAR

among all the existing since the user will not need to wear any extra device other than

the shoes or garment they already have on. Harms et al. [2008] use a smart shirt, the

shirt is equipped with acceleration sensors in order to determine the posture of human

body. �eir classi�cation performance is analyzed on data from 8 users, with 12 postures,

relevant for shoulder and elbow joint rehabilitation.�ey report accuracy rates of 89% for

a user-independent evaluation.

Limitations

Wearable Sensor-based HAR systems su�er from limitations that is currently the focus

of many researchers. One of the main issues with wearable sensors is that they need to

be run continuously and in hands-free mode [Chen et al., 2012]. �is would cause some

di�culties for some individuals who have to wear them and not all people are willing to

accept to wear a sensing device. �ismay be because the device is invasive and interrupts

with their daily activities, or that they just feel they are giving up their privacy while

having the sensing device on them. I believe educating the users of how such systems

function would assure them of the privacy and more people would be willing to have

them on. A part from the acceptability issues there also exists technical limitations for

such systems. Below we describe some of the possible limitations:

• Size: Although there has been technological advances in reducing the size of sen-
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sors, many HAR systems use multiple sensors and other peripherals and attach

them to the human body, making the device relatively large in size. Shrinking the

size of the wearable device and limiting it to a single small sensor would be more

attractive for users to try out. However, the more sources of information the more

accurate the system would operate.

• Ease of Use: HAR systems that do not require the user to wear many sensors or

to interact too much with the device are more successful. . As a general principle,

there is always a trade-o� between reducing the complexity of the system and the

accuracy of HAR system.

• Battery life: Energy consumption is an important feature in wearable HAR sys-

tems because the devices used are energy constrained. Processing, communication

and visualization are the most power draining tasks in activity recognition. Limit-

ing the data process, aggregating data to be sent and omitting visualized reports on

the device are a few e�orts that could be made to reduce the energy consumption.

• E�ectiveness in real life: �ere is an open debate on whether or not the projects

and research on wearable HAR systems are e�ective in real life scenarios. Becuase

of all the limitations discussed above, it may not be applicable to wear these de-

vices at all times during the day. Some devices are not water resistant, some need

to be recharged every couple of hours and some may be intrusive for the human

subject to be willing to wear at all times. All these limitations may interrupt the

e�ectiveness of these approaches in real life.

�ere is an extensive amount of research being done to address these limitations.
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Figure 5.3: Stress monitoring using intrusive sensors.Courtesy of J. Choi [2010].

Smart Garments are becomingmore popular and have the ability to embed the sensors in

them so they would become less invasive [Harms et al., 2008]. Other ways to overcome

the mentioned limitations are to take advantage of the existing gadgets that are being

carried regularly by the users, such as Mobile Phones. Shoaib et al. [2015] provide an

outline of relevant research done on activity recognition using smart phone sensors. �ey

conclude in their paper that there are more than 30 study/projects dedicated to online

activity recognition onmobile phone, many of which have the capability to recognize the

human activity in real time with a relatively low cpu usage. �ey do not report directly

about accuracy rates for such systems.
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Dense Sensing Systems

In the previous section details about wearable HAR systems revealed that such systems

may not be suitable for complex physical activities consisting motions in multiple limbs

of the body. Another key weakness in such systems is the ability to distinguish between

similar activities, such as making tea and making co�ee. It is obvious that relying only

on wearable sensors would not be su�cient for detecting such simple physical daily ac-

tivities. �erefore recently a new �eld of research has became popular being known as

Dense Sensing. Dense Sensing-basedHAR refers to the practice that sensors are attached

to devices that human interact with in their daily actives like the refrigerator , the door

and etc. Simply said human activities are detected by the user-object interactions. �e

name Dense is used because there are many low-cost sensors attached to objects in a

location that is going to be monitored.

RFID An important application of Dense Sensing systems are in Smart Homes. In ear-

lier work on smart home environments, it was shown that with su�ciently accurate data a

reliable in-home activity can be acquired [Sung et al., 2011]. As Philipose et al. [2004] have

described in their paper, they tag objects of interest using radio frequency-identi�cation

(RFID) tags, which are small and can be easily attached to small objects as well. �e user

would wear an RFID reader �xed to a glove and could detect when users interact with

the objects that had tags attached to them. Asmentioned before, having this information

would be helpful in the the process of distinguishing between similar activities. Please

note that Wearable sensors discussed in the previous section is not mutually exclusive

with Dense sensing systems, rather they are complementary of each other to have an ac-
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curate system. In a very interesting work Patterson et al. [2005] have introduced a system

that can not only report the users activity (for example cooking), but also report the de-

tails of the activity being performed like the food that is being cooked by the user. �is

is done based on the interaction of the user with the RFID-tagged objects.

MotionDetectors Asmentioned in the limitation section of wearable devices, an im-

portant factor of HAR systems is that it must be economical to manufacture, install

and maintain. �e methodology must also be e�cient and scalable and most impor-

tantly privacy-sensitive. To address these requirements Wren and Tapia [2006] propose

a system based on passive infrared (PIR) motion detectors with an appropriate analy-

sis methodology, to detect human activities. As discussed in section 4.3, IR sensors are

inexpensive, reliable, and require very little bandwidth. Wren and Tapia [2006] report

accuracy rates of over 90% recognition. For more information on this method please

refer to section 5.1.1.

Audio Detectors In HAR research area, a large amount of attention has been focused

on using simple sensor data (wearable sensors, touch sensors, RFID tags) or camera in-

formation to detect the activities. �ere have been a few attempts to include audio in-

formation into the recognition process. In a very interesting study Hollosi et al. [2010]

describe a system for detection of acoustic events in various acoustic situations that uses

a voice activity detection mechanism to obtain low level information. Next the event

detection stage extracts a midlevel representation from the input audio data and �nally

this representation is interpreted to high-level semantics to notify the need for help when

necessary (eg. serious cough). �is system can be expanded to recognize abnormal voice
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occurring in an environment such as a human fall, or shout for help. �is would have

huge bene�ts in the health care-industry for patients.

5.1.2 Summary

In this section we discussed the current gadgets available for Human Activity Recogni-

tion with the focus on applications in the context of health and medical sciences. We

identi�ed a few of many real-life applications of HAR in two main categories namely as

Medical applications and Assisted Living applications. �e recognition of human activi-

ties can be approached in two di�erent ways: Vision-based and Sensor-based recognition

systems. In the former approach, visual sensing devices are used to monitor user behav-

ior and environmental changes and since they are usually �xed in predetermined points

of interest, recognition of actives is limited to speci�c locations or rooms. In Sensor-

based systems, sensors are either deployed on the users’s body or on the devices they

interact with. Finally, by reviewing a number of systems using both approaches we can

conclude that sensor-based HAR’s can better address important issues such as privacy,

obtrusiveness, 
exibility and cost.

5.2 Mobile-based Health Applications

�e creation of healthcare mobile applications, context-aware assistive devices, and ac-

tivity monitoring systems provide great opportunities to improve quality of life. Mobile

health systems encompass new types of sensing and communication of the users health

information and help integrate health monitoring to everyday lives, regardless of loca-
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tion and time. In the remainder of this chapter we discuss various technological and

applicability aspects of mobile health systems that make them a promising platform for

health applications. Furthermore we present critical challenges faced by the building and

development of mobile health systems.

�e ubiquitous nature of mobile phone devices, along with the embedded technol-

ogy and sensors, processing power and low cost of the device have lead the healthcare

industry to make a shi� towards replacing traditional medical and health solutions with

mobile health systems. MobileHealth also knownasmHealth is de�ned as “amedical and

public health practice supported bymobile devices, such as mobile phones, patient mon-

itoring devices, PDAs, and other wireless devices” [Kay and Misha, 2011]. If done right,

mHealth projects can enable better access to health services, raise the quality of care, and

reduce health costs. With the growing number of a�ordable mobile network plans, free

WiFi available in the community, and a�ordable smart mobile devices, mHealth has the

potential to become a medium for intervention that is extremely a�ordable and easily

adaptable [Shellmer et al., 2016]. In this section we will review Mobile-based health sys-

tems that are designed to enhance remote patient care in hospitals, care facilities or at

home. Each applications uses one or many of the embedded sensors in the mobile phone

then aggregate the collected data and send them to a remote server for further processing.

Some applications have the capability to process the users data on the mobile device and

would only send periodic reports or notify the physician if an abnormal state is detected.

�e mHealth applications di�er in the technology they rely on, and also the algorithms

and methods they use to aggregate and process the data. We provide a brief overview of

the di�erent technology that are commonly used in such applications. Certainly, there
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are some challenges/issues regarding the use mobile phones in healthcare such as; fea-

sibility, reliability, stability, security and privacy, accuracy, user-friendliness and power

consumption. Some of these issues and challenges will be addressed by referencing re-

lated studies and papers.

5.2.1 mHealth Technology

�ere are a variety of hardware andmethods used in di�erentmobile health interventions

and some applications even rely on multiple types of technology. Now a days the smart

mobile phones have capabilities varying from voice and text messaging to the support

for third party applications, sensing, Internet access, and wireless connectivity [Klasnja

and Pratt, 2012]. Many of themobile health interventions take advantage of the hardware

technologies and technology capabilities available on the mobile phones that are popular

among people. In the following section, we brie
y review some of the technical features

of mobile phones and ways in which those features have been used in health andmedical

applications.

Text Messages

Text Messaging is broadly used for communication between twomobile phones. Since it

is supported by all phones text messaging has been widely used in many health applica-

tions as well. �emain reasons why text messaging is so popular in health-related apps is

�rstly because they have a push technology, allowing intervention messages to be deliv-

eredwithout any e�ort on the part of the recipient [Klasnja andPratt, 2012]. Such applica-

tions could be used for sending reminders about taking or applyingmedicine. Armstrong
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et al. [2009] designed a text messaging based system to remind individuals to apply sun-

screenwhen they are exposed to sunlight. Second, because textmessages are not just lim-

ited to phones as they can also be sent and received by computers. �erefor, users can log

their health-related activities and physiological parameters, maintain awareness of their

health goals and receive customized feedback based on these data. Franklin et al. [2006]

propose Sweet Talk, a text-messaging support system designed to enhance self-e�cinacy,

facilitate uptake of intensive insulin therapy and improve glycemic control in pediatric

patients with Type One diabetes by sending scheduled and tailored text messages. Text

messages can be processed automatically and this makes information exchange possi-

ble using text messages, so reminders would be sent to users to log relevant data. Users

can reply to the reminder messages with the requested information, and the system can

process the responses and re-send customized feedback, this process is known as SMS

information loop [Klasnja and Pratt, 2012]. �ere is a large variety of di�erent applica-

tions using text messaging and this provides evidence for how 
exible text messaging can

be as a part of a health application.

Mobile Camera

Cameras have become a standard in all smart phone devices. In the recent years the qual-

ity of the phones cameras has become comparable (in some cases better) with dedicated

digital cameras. Constant availability of cameras that are embedded in mobile phones

has made it a useful tool for creating health journals and collecting health related data.

Although images cannot be processed as easily as text messages can be, in some cases

the goal is supporting re
ection or learning through active engagement with the user’s
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data, so phone cameras can be a valuable tool for low-e�ort collection of health-related

information. Mamykina et al. [2008] have proposed a distributed mobile application

that individuals with diabetes use to record their blood sugar levels and diabetes-related

questions using phone’s camera and microphone and share their records with a diabetes

educator. Phone Cameras have been used in several di�erent ways for health related ap-

plications: Firstly as a health journal as presented by Lungu et al. [2015], secondly as a way

to provide the physician with additional information about a medical condition, such as

in [Schreier et al., 2008], where the patient can provide images of psoriasis lesions to

the health care provider for more accurate treatments. �ird way is for documenting for

self-management process, such as in [Smith et al., 2006] where images are used to self-

manage routines and augment glucometer data and facilitate the sharing of experiences

that a�ect long-term health.

Mobile Sensors

SmartMobile Phones havemany sensors embedded in themwhich can be a great bene�t

to health monitoring applications. A few number of these sensors are: GPS, accelerome-

ter, gyroscope, magnetometer, barometer, proximity and light sensor. Besides the built-

in sensors, mobile phones can connect to other external sensing devices such as digital

scales, blood pressure monitors, glucose meters, portable electrocardiograms(ECG), pe-

dometers, and gym equipment. Being able to store, analyze, receive and send data col-

lected from the mentioned sensors makes mobile phones a portable, easy to use , and

low cost device to monitor and improve user’s health status. �e application RunKeeper
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2 uses the phone’s embedded GPS to track how long users run or bicycle, and create maps

of their exercise routes, and calculates how many calories were burned during these pe-

riods [Klasnja and Pratt, 2012]. Fall Detection applications are mostly built based on ac-

celerometer, gyroscope and GPS. Such applications have been received a lot of attention

from elderly population to detect the occurrence of fall accidents and help the injured

person receive �rst aid. Shi et al. [2012] present a novel fall detection technique which

describes the state change of the user’s motion during the fall. Built-in sensors in mobile

phones has the advantage of freeing users from the need to wear an additional device

[Consolvo et al., 2008].

Native Applications

Most smartphone platforms like iOS, Android, Symbian, Blackberry, webOS, and Win-

dows Phone provide developers with application programming interfaces (APIs) that is

used to develop various applications. �eseAPIs can have access to various features of the

phone, giving the developer the power to access the phones hardware (e.g., accelerome-

ters, cameras) and to other data and applications on the phone. Having this ability would

lead to the creation of powerful health applications that researchers and industry com-

panies have leveraged. In section 3, we will provide a detailed review of Mobile Health

Application that are currently being used or are under study.
2 http://runkeeper.com
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Internet

Without doubt, Internet has played a key role in the advancement of health applica-

tions. Nowadays mobile phones have the ability to connect to the internet via cellular

network from nearly everywhere [Klasnja and Pratt, 2012], and this ubiquitous connec-

tivitymeans that users data can be sent or received on servers as soon as they are captured

via the device. �is phenomenon would lead to early detection of critical events such as

an occurrence of an elderly fall or an abnormal health status of a patient. �e data could

also be further analyzed and processed for yearly, weekly or daily reports when it is up-

loaded to servers. Lastly, always-on connectivity makes it possible to include web pages

and online audio and video as part of phone interventions. �e use of online resources

makes it easier to keep the content of an intervention up to date without requiring users

to repeatedly install updated versions of the application.

5.2.2 mHealth Applications

In the year 2012 they estimated that the number of health-related apps are about 40,000

[Boulos et al., 2014], and this number will increase signi�cantly in the years to follow.

Mobile health applications can be viewed in a number of di�erent ways, many categorize

them as applications for health care professionals and applications for patients. In this

review we would focus more on applications developed for patients, since they have a

broader utilization among the users. Although some patient health applications cover a

broad spectrum of general medical utilizations, others may be tailored to speci�c spe-

cialties. In the following sections we will brie
y review mobile health applications in

di�erent categories. We must note that issues such as cost, connectivity, coverage, low
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literacy, and high diversity of users exists in many of the current applications and we will

address these issues in section 5.2.3.

Daily Activity Monitoring

Mobile applications for activity monitoring are a very important and necessary �eld in

the improvement of health and medical care. Physical activity has a correlation with

overweight, obesity, and metabolic-related syndromes [Sherwood et al., 2013] therefor

daily activity monitoring provides physicians with the ability to monitor and diagnose

patients using continuously generated data and help detect if a patient has deviated from

a typical routine. Activity Recognition based on acceleration data enables the usage of

smart mobile phones for measurement and detection of physical activities performed by

the user who is carrying the phone in a pocket. �e mobile device can provide informa-

tion about the type, intensity and duration of the performed activity. �erefore, human

activity monitoring and recognition in mobile phones can have many applications such

as evidence for medical diagnosis, treatment of diseases and recognition of unhealthy

habits.

Khan et al. [2010] present a state-of-art recognition method which uses a hierarchi-

cal scheme. At the lower levels, the state of activity, i.e., static, transition, or dynamic,

is recognized by statistical signal feature analysis and arti�cial-neural networks. At the

upper level, autoregressive (AR) modeling of the acceleration signals is applied. Using

the AR-coe�cients with the signal-magnitude area and tilt angle results in a feature vec-

tor which is fed into a Neural Network to recognize a particular human activity. Using a

single triaxial accelerometer attached to the subject’s chest, their system recognizes three
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Figure 5.4: A general overview of a smartphone-based activity recognition for health
monitoring. Courtesy of Torres-Huitzil and Alvarez-Landero [2015].

states and ��een activities with an average accuracy of 97.9%. Gao et al. [2009] have pre-

sented a novel health-aware smart phone system named HealthAware, which utilizes the

embedded accelerometer to monitor daily physical activities and the built-in camera to

analyze food items. �e system is composed of an on-device database which holds the

user speci�c data and food item information.�e physical activity analysis system works

at background to obtain the users physical activity by analyzing the accelerometer data.

�e food item classi�cation system is responsible to take a food picture, extractmeta data

from the picture and index into the database for further use.

An existing challenge in Activity Recognition systems that are designed for health-

care domains is that they need realtime assistive feedback, and not many of the current

system have this feature. Limitations of mobile phone battery life, processing power and

connectivity are a few other reasons that realtime feedback is challenging and there is

room for further research in this area.
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Fall Detection

Fall Detection is another major challenge in the healthcare domain, especially for the

elderly population. Statistics in [Gri�ths et al., 2005] present that falls are the primary

reason of injury-related death for seniors aged 79 or more and also the second leading

cause of injury related (unintentional) death among all ages. �erefor the demand for

fall detection systems has increased rapidly. It has become very important to develop

mobile-based intelligent fall detection systems which can automatically monitor and de-

tect falls. �e maturity of cameras and sensors built-in mobile phones make it feasible

to deploy fall detection as they are available in both indoor and outdoor environment,

user-friendly, requires no extra hardware and service cost, it is lightweight and power

e�cient. An e�ective fall detection system is required to provide urgent support and to

signi�cantly reduce the medical care costs associated with falls [Mubashir et al., 2013]. It

is obvious that the medical consequences of a fall are dependent on the rescue response

time, therefor a highly-accurate and fast fall detection system is likely to have a signi�cant

role in raising the con�dence levels of supportive living for elder population. Fall detec-

tion approaches are divided into three main categories: wearable device based, ambience

device based and vision based. In this section we only focus on wearable fall detection

and more speci�cally on mobile-based fall detection systems.

Dai et al. [2010] proposed a fall detection application named PerFallID, which uti-

lizes mobile phones as a platform for pervasive fall detection using the phones built-in

accelerometer. Advantages of PerFallD is that it has has few false positives and false nega-

tives. �ey collect fall data in di�erent directions (forward, lateral and backward), di�er-

ent speeds (fast and slow) and in di�erent environments (living room, bedroom, kitchen
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and outdoor garden). Data of activities of daily living (ADL) including walking, jogging,

standing and sitting are also collected. In their system the user has a dedicated pro�le

which is loaded when the application starts. A user dependent pro�le contains basic fall

detection con�guration such as the default sampling frequency, default detection algo-

rithm, emergency contact list and etc. If information collected in real time satis�es a

certain preset condition, the pattern matching process begins to determine if a fall oc-

curs. If a fall is detected an alarm is triggered and starts a timer. If the user does not

manually turn o� the alarm within a certain time period, the system automatically calls

emergency contacts.

Wearable devices have their advantages as well as disadvantages. �e biggest advan-

tage remains the cost e�ciency of wearable devices. Mobile-based fall detection systems

are relatively easy to operate. �e disadvantages are that mobile phones are not �xed to

the human body and therefore may be disconnected to the body and cause false positives

detections. Also elder people may not remember to have their mobile phones with them

at all times this disadvantages make mobile devices an unfavorable choice for the elderly.

At last the battery life of the phone is a limitation and for long durations that the user

does not have access to a power source this may cause to phone to not be operable and

thus the fall detection would not work.

Location Tracking

Advances in location based services on mobile phones have lead to opportunities in real

time patient tracking for healthcare applications. Chew et al. [2006] present a mobile-

based location technique using the Global Positioning System (GPS) and cellular mo-
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Figure 5.5: Overview of patient location tracking system architecture. Courtesy of Chew
et al. [2006].

bile network infrastructure to provide the location tracking capability to assist caregivers

or family members in locating patients such as elderly or dependents. �eir model has

shown relatively good accuracy for position tracking and can potentially use wireless to

enhance the existing personal healthcare communication system through location based

services. Figure 2 shows an overview of their system.

Another very recent and similar application is MedNav3, a location-based mobile

health application that bridges the gap between patients and clinics with real-time avail-

ability of information. �e application allows patients to view live wait times, review

veri�ed ratings and schedule appointments, while eliminating excess capacity and in-

creasing patient satisfaction for health care providers.
3http://www.mhealthnews.com/press-release/location-based-mobile-health-app-launches-

washington
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�e main drawback of location-based Mobile Health Applications is privacy. Loca-

tion tracking and monitoring aspects of such applications may have a negative e�ect on

the privacy of the user, and therefor would prevent many of the users to use these appli-

cations. To solve this issue, the location of the user can be encrypted at all times, except

when the application detects an unusual situation to report, or when the user agrees to

share their location. Another disadvantage of applications based on location sensor data

is that they consume a lot of the phones battery power therefor smart powermanagement

systems are required to allow the application to be operating on the phone throughout

the day.

Medication Intake

Medication adherence, or taking medications correctly, is de�ned by FDA4 as: “�e ex-

tent to which patients take medication as prescribed by their doctors. �is involves factors

such as getting prescriptions �lled, remembering to take medication on time, and under-

standing the directions”. �erefor there is a huge need for mobile applications that would

serve as a reminder, dosing monitor and management systems for prescribed medica-

tions. �is application could be further expanded and be deployed on an item (pill con-

tainer) that could visually remind people to take their medication. Pill bottle caps that

change color to indicate that a medication should be taken are now equipped with the

ambient technology. Smart medicine cabinets and pill bottles that work together to track

movement of bottles in and out of the cabinets to ensure medication compliance, detect

potential interaction hazards betweenmedications sharing the shelf, when a prescription
4 http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm164616.htm
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needs to be re�lled, or when it is nearing its expiration date, automatically notifying the

local pharmacy to enable delivery are under development [Coughlin and Pope]. More

creative applications use mobile phones as portals for drug safety advisory to avoid phar-

maceutical accidents as proposed by Ramaswamy et al. [2014]. In their work they present

a personalized, context-aware, and user-friendly drug safety advisory framework built on

mobile phones to provide timely advice to users whether themedicine they intend to take

is safe under current circumstances or not.

�ere are currently issues in Medicine Intake Management Applications that need to

be addressed. First, these applications are likely only to bene�t those willing to use such

reminders and who are already smart phone users, unless applications that are run on

a dedicated devices are developed. Second, we have to consider that users may provide

incorrect or incomplete data about their state or medications and thus the system has to

be able to detect such common mistakes.

Medical Status Monitoring

�e bene�ts of mobile health applications are clearly seen in most aspects of health care.

However we believe that medical state monitoring using mobile phones has had a wider

impact in this domain. With the high costs of health care services many people living in

developing and third world countries either do not have access to medical care or do not

have enough funds to use such services. With the emerge of mobile phones and its high

availability in most countries, Mobile-basedMedical StatusMonitoring systems can play

a signi�cant role in reducing medical costs, and providing service to patients in rural

areas that would not have access to clinics otherwise. In this section we will review a
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few of many state-of-art medical monitoring applications that have replaced expensive

devices in the hospitals and clinics.

Vital Signs Monitoring applications, refer to applications that monitor heart rate,

blood pressure, oxygen saturation, body temperature and respiratory rate. Airstrip Tech-

nologies5 have developed a patient monitoring solution which is compatible with mostly

all handheld smart phones and tablets. �is system is able to continuously monitor

the patients vital signs. In another work, Oresko et al. [2010] developed a smart phone

based cardiovascular disease detection system called “HeartToGo” by integrating Holter

monitor with mobile phone. Speci�cally, they developed two smart phone-based wear-

able Cardiovascular Disease (CVD)-detection platforms capable of performing real-time

ECG display, feature extraction, and beat classi�cation. In another recent work de Greef

et al. [2014] present “BiliCam”, a mobile phone application to detect newborn jaundice.

BiliCam uses the phone’s built-in camera to take an image of the newborn’s skin. A�er

con�rming that the images are usable, the systemuploads the relevant portions of the im-

ages to a server, which analyzes the newborn’s skin color to estimate the bilirubin level,

it then recommends a course of action. �is application is very low in cost compared to

other current medical devices and besides the smart phone and the calibration card, this

non-invasive solution requires no additional hardware.

5.2.3 Challenges and Open Problems

Aswe have tried to show in the previous sections of this chapter, mobile-based health and

medical applications would bene�t patients and physician by providing access to health
5http://www.airstrip.com/
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Figure 5.6: BiliCam smartphone application detects jaundice in newborns. Courtesy of
de Greef et al. [2014].

information especially in emergency situations. However, there are challenges that must

be addressed in such systems. Advantage of mobile-based monitoring has only been

proved for data capture and transferring, but data analysis on the mobile phone is still

a major concern because data processing on mobile devices has serious disadvantage in

terms of accuracy, delay and power/battery life [Donker et al., 2013]. Continuous data

transmission by mobile devices can signi�cantly reduce battery life. �e situation would

get more complex in case of low signal strength in rural areas or in case of data trans-

mission charges. Another important challenge in this domain is the security and privacy,

especially in remote monitoring systems where the patient or users data would be send

to a remote sever over any type of connection. Extra caution must be made to protect
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patient identi�cation and con�dentiality of medical information. �ese issues have not

been fully addressed yet and there is need for improvement in the design and structure of

these systems to complywithmedical and ethical standards [Baig et al., 2014]. Despite the

advantages of mobile phones in patient monitoring, education, and management there

are still some critical issues and challenges related to acceptability, reliability and cost that

need to be addressed. In the remainder of this section we will address some of the critical

challenges and open problems in mobile healthcare technology.

Interoperability

Because of the multiple clinical needs of patients at the same time, interoperability has

became a critical issue for mobile health applications. Medicine [2013] de�ne interop-

erability as: “Interoperability refers to those properties of systems (whether so�ware,

communications, or other systems), that enable the exchange of data among systems in

common formats, the use of common protocols, and ultimately the ability to work to-

gether.” Althoughmanymobile health applications may appear simple (such as medicine

or appointment reminder systems), however, they can have potential for broader appli-

cations if they have the ability to easily and accurately exchange information with other

systems. �is would only become possible when we create standards that govern health

data concepts, patient identity, data processing protocols, and mechanisms for secure

sharing of patient data that preserve con�dentiality [Medicine, 2013]. �is is challenging

becuase many of these common standards do not yet exist, therefore with the devel-

opment of open standards the lack of interoperability between systems can be solved.

Closed standards create a knowledge barrier for system developers in low- and middle-
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income countries [Estrin and Sim, 2010]. Without access to the open standards, it would

be very unlikely to understand how the mobile health systems work and to develop the

technical capacity. Figure 5 shows the narrow waist of the open hourglass that will in-

clude health-speci�c syntactic and semantic data standards; patient identity standards;

core data processing functions such as feature extraction and analytics; and data stores

that allow for selective, patient-controlled sharing.

Energy Consumption

It is very important to have a low energy consumption device for battery operated sys-

tems, such as mobile phones. �erefor it is critical to reduce energy consumption for

achieving a longer battery life. In order for the mobile phone to send large amounts of

rawdata captured from the phone sensors to remote servers for processing and analyzing,

a considerable amount of energy is required that is supplied by the phones battery. Some

applications need to send continuous data to servers, activity recognition applications

may be in this category. Another example is blood pressure measurement, applications

which would need to transmit blood pressure measurements of the user to a server ev-

ery 10 minutes, this means that every 10 minutes the application requires 35 mA/h for

data transmission. Because of the need of sending high quality of data in real-time to

multiple devices long term use of such systems can pose a serious threat to mobile de-

vice’s battery life and seriously compromise the transmission of essential data [Ren et al.,

2010]. �ere is a need for mobile applications and sensors that would be low-power and

low-energy consumption which can be used in long time monitoring and gives more

battery life. �ere has been a large amount of research carried out to develop such sen-
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sors and algorithms that would reduce the energy consumption [Bayilmis and Younis,

2010], these algorithms could be modi�ed to be used in the mobile applications as well.

Other attempts have been made to overcome the mobile power barrier such as where

Pathak et al. [2012] present ePROF, a �ne tuned energy pro�ler. �eir system captures

asynchronous power behavior of modern smartphone components in mapping energy

activities to the responsible program entities. �is research highlights the fact that most

of the energy in smartphone apps is spent in I/O, and I/O events are clustered, o�en due

to a few routines, therefor 20% to 65% energy consumption can be achieved by control-

ling I/O events within application.

Security & Privacy

Perhaps one of the most important aspects of Mobile Health Systems is security and pri-

vacy and unfortunately the importance of this aspect is underestimated and usually le�

behind. Mobile health application deals with personal information therefore there is a

huge need for data protection in order to have a safe and secure system. It can be said

that security in such systems is as important as safety, and because transmission of data

in mHealth based application is wireless, it may result in various security threats [Baig

et al., 2014]. In the recent years many researchers have focused on the security of wire-

less sensor networks and more speci�cally have addressed security issues with respect to

healthcare applications. Carrion et al. [2011] have studied the need for psychological ac-

ceptability in privacy and security protection mechanisms for mobile health application

users. �ey state that any privacy and security mechanismmust be acceptable from a us-

ability perspective, thus some improvements could be made to current privacy policies
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to enhance the management of users health and personal data.

Mainly security issues can be classi�ed into two categories: system security and in-

formation security. System security includes administrative, physical and technical level

security, and information security includes data encryption, data integration, authenti-

cation and freshness protection [Ameen et al., 2010]. Kargl et al. [2008] state in their

paper that attacks in health monitoring can be: modi�cation of medical data, forging of

alarms on medical data, denial of service, location and activity tracking of users, physi-

cal tampering with devices and jamming attacks. In order to preserve privacy in mobile

health systems it is essential to consider policymakers, certi�cation bodies, manufactur-

ers, public-key infrastructure, distribution and management [Baig et al., 2014].

Some of the successful steps toward more secure mobile health systems include the

following work; Ren et al. [2010] use encryption and decryption to create secure mobile

health applications. In another work a two tier architecture is used to secure mobile

wireless-networked sensors [Mughal et al., 2010]. FinallyDeng et al. [2006] build a robust

and secure system using three main key elements: data protection on the device, secure

authentication and data encryption. Such a secure system can be adopted for a mobile

health application so it could be considered to have basic security standards and therefore

get high acceptance in the general public.

Data Communication

Smart mobile devices mostly support 3G, 4G and LTE mobile networks for data trans-

port and communication and therefore mobile devices are known to be better than other

devices (i.e. laptop, desktop) in mobile health applications because they can enable doc-
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tors to get up-to-date information from the patients situation, and vice-versa, the patient

can get up-to-date feedback from the physician. However, the adoption of wireless net-

working as the normal method in healthcare is slow and limited because of a number

of reasons. In emergency situations when patient needs to communicate with health

provider network communication may not be available. Although most mobile phones

are able to support network connection but the infrastructure is still not available in some

rural areas, hence the application would not be of any use to users who live in those areas.

Communication could be both costly and energy consuming on a mobile phone, espe-

cially when the data needs to be sent to a server frequently throughout the day. One way

to reduce the data being transmitted is to o�oad some of the data processing to the mo-

bile phone. Today’s smartphones have considerably high computing power and memory

which could be compared to desktop PCs from only 10 years ago or less. �erefor many

of the simple processing tasks of the users data could be done on the mobile platform.

�ere has been a considerable amount of research done on machine learning services

that are executed on mobile platform [Aradhye et al., 2013]. Another way to reduce data

transmission and communication costs is to partially rely on the mobile device for data

processing and transmit the portion of data that could not be processed on the mobile

device, to a server. By balancing the amount of data being transferred and the processing

done on themobile platform, the battery power of the device could be used in an e�cient

way , while reducing the costs of data communication and relying less on remote sources.

�is would also lead us to applications that could be used in rural areas where there is no

reliable network connections available.
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Chapter 6

Conclusions

In this thesis, we present approaches for robust o�ine and online human activity recogni-

tion usingwearable sensors. We show that human activities can be automatically detected

in real-world settings by leveraging sensors embedded in practical, low-priced wearable

devices such as mobile phones. �e work in this thesis spans around a variety of research

contributions in activity recognition using accelerometer sensors. We propose two sys-

tems, one robust o�ine systemusing a number of features in time and frequency domain,

and another online real-time method which is based on time series shapelets. In total,

we conducted 2 major studies and several experiments on a dataset with 77 participants,

which has resulted in 3 conference publications so far [Yazdansepas et al., 2016; Niazi

et al., 2017, 2016].

First, we presented an o�ine multi-featured approach for recognition of various ev-

eryday activities using a single tri-axial accelerometer under real-world conditions. In

this system features were extracted from the combination of time and frequency domain.
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Next, we adopt several feature selection methods, as well as an expert-de�ned feature

selection method to the datasets to extract a number of the most e�ective features for

detecting di�erent activities. To examine the potential of the proposed system we used

a variety of machine learning classi�ers for evaluating recognition performance. As the

primary focus of this study, we show the e�ect of di�erent feature sets on each of the

machine learning classi�ers. We further demonstrate the impact of decreasing the size

of the training set on the accuracy of the classi�er by downsampling the sensor readings.

We show that despite the fact that decreasing the dataset size would negatively impact the

accuracy, but may be worth disregarding since the smaller datasets are more e�cient in

terms of space and computational time. �us the algorithms that are trained on smaller

datasets can be implemented on devices with lower computational power such as mobile

phone devices. In addition we also analyze time and frequency domain features and the

e�ect of their combination on the accuracy of the classi�ers. As a secondary contribution

in this study we tested our system on age based training data. We observed that train-

ing on speci�c age groups would be e�ective in increasing the accuracy of the activity

recognition system, therefore training the classi�ers based on the participants age would

result in more accurate HAR models. Despite promising results, a limitation of this sys-

tem is that it requires complex features to be extracted. �is would prevent the system

to be used in realtime and therefore would not have many real-world applications. Also

the classi�ers would need to be ran on a strong server, and therefore a mobile phone’s

operating system would not be capable of running such systems.

Leveraging shapelet based time series classi�cation motivated the study of an alter-

native system that would be capable of detecting and classifying human activities in real-

124



time. In the second study of this thesis, we introduce an online human activity recogni-

tion system to detect activities in real time based on a single accelerometer sensor time

series. �e system’s training phase is o�ine, a�er training is completed, it detects human

activities near real-time using time series shapelets. �e proposed system is a person-

alized activity recognition system, therefore the system would be trained on each indi-

vidual user’s motion data. We train and test our proposed system on motion data from

�ve users, while performing a variety of activities. Activities performed by the users are

similar in nature, as they are all walking activities. However they are performed under

di�erent conditions with di�erent speed, and di�erent footwear. We have presented with

extensive experiments that we �nd the most representative shapelet for each class, which

can then provide accurate and fast classi�cation decisions in activity time series. �e re-

sults validate that it is possible to detect human activities based on time series shapelets.

�e results obtained were promising for the following reasons. First, they represent a

baseline for practical realtime activity recognition using a device with with a single ac-

celerometer sensor. Second, this study explored using a single sensor for activity recog-

nition, butmany other sensors could also be utilized to improve activity recognition such

as blood pressure sensor, gyroscope and GPS. And third, this work suggests that it may

be possible to build systems that would be capable for recognizing more complex hu-

man movements while minimizing the computation overhead and time complexity to

achieve promising results in real-world conditions. Despite the promise of this method,

it is worth considering that the data was gathered under controlled settings. �e sensor

was secured to the users hip and an student research assistant monitored the users to

make sure the activities are being recorded correctly. We would expect a slightly lower
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performance in real-world conditions. One of the challenges of such a HAR system is

that the device may not be properly attached to the body. If the device is placed in a bag

or pocket, it will have additional movements that would generate noise in the recorded

data. �e existence of such noise will block the movement patterns in the data that cor-

respond to the activities and decrease the system’s accuracy.

6.1 FutureWork

In this section, we outline opportunities and ideas that we have identi�ed for potential

future work. By expanding and improving upon the current proposed Human Activity

Recognition work we can achieve a HAR system that addresses many of the limitations

described above.

We presented results showing how a single hip-worn accelerometer sensor can help

detect human daily activities. We showed how the x-axis data can be used successfully

to detect activities. However, one direction we did not explore in our work, which rep-

resents a large opportunity to improve HAR systems, is to use multiple sensors. In other

words, combining data recorded by multiple accelerometer sensors attached to di�erent

parts of the body, such as wrist, ankle and chest is likely to result in prediction accuracies

that exceed those obtained with a single sensor. Although one may suggest HAR sys-

tems be designed in a simple fashion with fewer sensors, but there is also a great amount

of interest in understanding how to detect activities in light of multiple streams of data.

It would be promising to incorporate more sensors in HAR systems to recognize more

complex human activities. �ere is an enormous variability in the pattern of how indi-
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viduals move, despite it seeming similar. �is infers that di�erent movement patterns

that di�er from user to user but are unique for an individual, require building a HAR

model that is personalized. We have proposed a personalized HAR system that is imple-

mented at the level of one individual. However, we can further generalize the system by

training it at the level of a group of users. �is would require us to cluster users based

on their body features, or by their activity patterns. Expanding this study, we observe

that individuals that have similar body features typically adopt movement habits that are

similar. We can therefore take advantage of this and reduce the necessary training time

for each individual, by assigning them to a group of users and adopting the model of

that particular group. Clearly, one of the challenges of such a semi-personalized system

is acquiring a variety of data for di�erent groups of individuals with di�erent movement

patterns and body characteristics.

Building a system for automatic human activity recognition represents signi�cant

challenges. We believe such systems would provide the foundation for a new tier of ap-

plications in health, security and many more domains. By continuing this research and

overcoming the limitations of current HAR systems, we hope this work would bene�t

individuals and health researchers. Despite the limitations and opportunities for im-

provement, we believe the work outlined in this thesis provides evidence that a fast and

practical HAR system based on low-costing sensors can play an important role towards

achieving a variety of novel applications which were not possible in past.
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