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ABSTRACT 

Modern mixed model methods for analyzing longitudinal data require researchers to 

select a covariance structure for the data to fully specify the model and obtain statistical tests of 

the fixed effects. The current study is a Monte Carlo simulation with primary purposes to 1) 

identify surrogate covariance structures for seven known models and estimate the severity of 

committing an error in covariance specification in terms of empirical Type I error rates and 

statistical power, 2) estimate accuracy rates of five information criteria in selecting appropriate 

covariance structures, and 3) estimate the empirical Type I error rates and power for models 

chosen by each information criterion.   

Data were generated corresponding to a single group repeated measures design with N = 

10, 30, or 60 subjects and a quantitative response variable measured over t = 3 or 6 occasions. 

Other salient variables included the magnitude of serial correlation, presence of non-constant 

variance, and so forth.  Data were generated under 72 conditions with 10,000 replications per 



condition. Statistical Analysis System (SAS) version 9.1 and R version 2.4.0 were used to 

generate and analyze the data.  

A preliminary investigation demonstrated that the Kenward-Roger degrees of freedom 

approximation yields F-tests for the mixed models with superior Type I error control compared 

to the Between/Within method, Satterthwaite approximation, and the sandwich estimator.  

Results corresponding to the primary research questions demonstrated 1) seven 

covariance structures were found to be acceptable approximations of a given true model in 14 

instances, 2) rates of selecting appropriate covariance structures for information criteria were 

found to be substantially influenced by accounting for surrogate structures with a rate of 69% for 

both AIC and BIC, 3) empirical Type I error rates were found to be slightly conservative and 

therefore well controlled and power estimates comparable when models were selected by AIC, 

AICC, HQIC, BIC, and CAIC. 

Secondary investigations compared the performance of mixed models with classical 

methods and evaluated the empirical Type I error control of the Group x Time interaction test. 

The implications of these findings are discussed and heuristics for applied researchers 

working with this variety of data are suggested.  
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CHAPTER I: INTRODUCTION 
 

Background 
 

 Historically, applied researchers have collected and analyzed longitudinal data for 

two main purposes. First, researchers are often interested in individual changes over 

time. Second, researchers wish to increase the statistical power of their analyses. One way 

of achieving the second goal is by having each subject serve as his/her own control.  For 

these purposes, multiple observations are collected from each subject through time1. 

Classical approaches to analyzing data of this sort originated out of the analysis of split-

plot designs, becoming known as the Repeated Measures Analysis of Variance (RM 

ANOVA) as well as a multivariate approach based on the Multivariate Analysis of 

Variance (MANOVA).   

 While the univariate RM ANOVA approach retains the statistical assumptions of 

the general linear model (including normality, constant population variances, etc.), it also 

requires one additional assumption, known as sphericity.  The sphericity assumption 

requires that the variances of differences of all possible pairs of measurements be 

constant. That is, in the context of longitudinal data, the sphericity assumption requires 

the relationships of measurements spaced further apart in time to equal those spaced 

                                                 
1 By definition, longitudinal data are collected through time; however, more general sampling designs may 
collect multiple observations from each subject through a different dimension, such as space. 
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closer in time. Unfortunately, this assumption is rarely if ever met in applied longitudinal 

data analysis (Everit, 2001, p.209; Rogan, Keselman, & Mendoza, 1979).  Furthermore, it 

has been shown that if the assumption of sphericity is violated, RM ANOVA test of the 

null hypothesis of no Time effect is positively biased, or, that is, liberal – the test tends to 

reject the null hypothesis at a greater rate than that specified by the nominal significance 

level (αn) (Everitt, pp. 139-141; Rogan et al.).  This is a serious dilemma that calls into 

question the validity of the statistical inferences drawn from a RM ANOVA via classical 

methods. 

 In attempts to ameliorate this problem, statisticians such as Box, Greenhouse and 

Geisser, Huynh and Feldt, etc. developed correction procedures that entail adjusting the 

degrees of freedom of the affected F-tests by a quantity that measures the extent of the 

sphericity violation, known as ε (epsilon) (Keppel, 1991, pp. 351-353).  While it has been 

demonstrated that such corrections are able to hold the empirical Type I error rates (αe’s) 

close to nominal levels (Rogan et al., 1979), reviews of the applied literature in 

psychology, education, and other social sciences show that researchers often fail to utilize 

these procedures (Keselman, Huberty, et al., 1998; Kowalchuk, Lix, & Keselman, 1996).  

Furthermore, the entire approach is somewhat flawed.  Basically, the method is to fit a 

model to the data known to be unrealistic, or even incorrect, and then adjust for the extent 

of “incorrectness” post hoc in hopes to neutralize the effects of misspecifying the model 

in the first place. 

 The other classical approach to longitudinal data analysis is the multivariate or 

MANOVA approach.  Here the t measurement occasions are treated as separate outcome 

variables and expressed as a vector of t-1 contrasts (where t = the number of 
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measurement occasions). It is this vector of mean contrasts that the MANOVA approach 

analyzes.  The advantage of this approach is that it does not require the restrictive 

sphericity assumption.  On the contrary, unlike the RM ANOVA, the multivariate 

approach makes no assumptions concerning the relationships of measurements across 

time.  Thus, the multivariate approach may over-generalize the situation. It assumes no 

structure to the covariances of the measurement occasions, and, as a result, estimates each 

of the t variances and each of the t(t-1)/2 covariances separately.  While this degree of 

flexibility may be appropriate in some cases, it is often not needed and may have a 

serious disadvantage.  The number of variance components to be estimated in the 

MANOVA approach increases markedly with the number of measurement occasions. 

The estimation of a large number of variance components requires substantial degrees of 

freedom and consequently reduces the statistical power of the analysis.  If a large sample 

size has been obtained for the analysis, this may not be problematic.  However, repeated 

measures designs are often used because of their economical use of small or moderate 

sample sizes and, if this is the case, then the MANOVA analysis may subvert the main 

advantage of the design. 

 An alternative approach to modeling longitudinal data within a univariate 

conceptualization using modern mixed model (MM) methods is somewhat different than 

RM ANOVA.  Here, the necessity to meet the sphericity assumption is obviated by 

modeling the covariance structure of the data with respect to time instead of assuming the 

form of that structure.  That is, the idea is to fit a more correct model to the data initially, 

by using the data or some a priori knowledge of the data collection mechanism to 

estimate an appropriate covariance structure. Inferences are then made directly from this 
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model, thereby precluding the need to make any corrections for initial implausible 

assumptions. 

 Moreover, the modern MM approach uses a number of parameterized structures 

for common covariance patterns found in longitudinal data.  The use of these 

parameterized structures reduces the number of estimates needed to approximate the 

overall covariance matrix (sometimes to a substantial degree) and thereby circumvents 

the loss of statistical power often encountered when using the MANOVA approach 

(Wolfinger, 1996). 

Additionally, if the univariate assumption of sphericity has been met and the 

covariance of the data is compound symmetric2 (CS), this covariance structure can be 

specified in the modern MM approach for longitudinal data.  That is, the MM for 

longitudinal data is a generalization of the split-plot model, which, in turn is an extension 

of the classical linear model (CLM). Therefore, the typical CLM assumptions of 

independence of observations and homogeneity of population variances are relaxed in the 

MM for longitudinal data and the variables may be both fixed and random (Fitzmaurice, 

Laird, & Ware, 2004, pp. 187-197; Rencher, 2000, pp. 426-429; Vallejo & Livacic-Rojas, 

2005). As a result, the modern MM may be specified so that the MM F-test reduces to the 

typical CLM F-test3 (Vallejo & Livacic-Rojas). Furthermore, when the modern MM is 

specified with the CS covariance structure, the MM F-test4 reduces to the RM ANOVA 

conventional F-test. (Schaalje, McBride, & Fellingham, 2002; Wright & Wolfinger, 

                                                 
2 Technically, compound symmetry is a subset of sphericity; however, the two conditions are often used 
interchangeably. 
3 MM conditions under which this is true include the specification of an independence model for the 
covariance of the response, unadjusted degrees of freedom for the F-test, and the exclusion of any random 
effects other than the usual error term.  
4 This is true when using unadjusted degrees of freedom for the F-test  [i.e., the exact degrees of freedom 
method (Between/Within)  implemented in SAS]. 
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1997, p. 150). Likewise, if the variance components are suspected to be substantially 

different and not conforming to any known pattern, the modern MM can be specified 

with an unstructured covariance model with respect to time and therefore estimate each 

variance component separately, like the MANOVA approach.  In this situation, the MM 

F-test is related to the Lawley-Hotelling multivariate statistic (Wright & Wolfinger).  As 

a result, the modern MM approach not only provides modeling alternatives between the 

two extremes of the univariate and multivariate ANOVA approaches, it also subsumes 

both (Wolfinger, 1993).  In addition, the modern MM approach can be used in situations 

where the data are not balanced over measurement occasions and where missing values 

and time-varying covariates are present. 

 

The Problem 

While the modern MM approach may constitute a more modern and flexible 

alternative to modeling longitudinal data than the classical methods, it is not a panacea.  

Instead of concerning oneself with correcting for non-sphericity or with the ramifications 

of insufficient statistical power, one is now faced with the challenge of selecting an 

appropriate covariance structure for the modern MM.  While modeling the covariance 

structure is not typically of central interest in its own right, it is considered to be an 

important feature in obtaining valid tests and inferences for the fixed effects in the model 

(Littell, Milliken, Stroup, & Wolfinger, 1996, p. 171). 

Methodologists have suggested a few methods for selecting an appropriate 

covariance structure for a given dataset (Davis, 2002, pp. 130-156; Diggle, 1988; Ferron, 

Dailey, & Yi, 2002; Tonidandel, Overall, & Smith, 2004; Verbeke & Molenbergs, 2000, 
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p. 74-76). The overwhelmingly preferred option, however, entails choosing an 

appropriate covariance structure from a set of plausible alternatives based on information 

criteria (Davis; Lindsey, 1999, p. 44; Pinheiro & Bates, 2000, pp. 253-256; Verbeke & 

Molenbergs, pp. 74-76).  

 Information criteria are a group of quantitative indicators that combine a measure 

of the overall model fit (some function of the maximized likelihood function) and a 

penalization based on model complexity. This penalization is usually some function of 

the number of parameters to be estimated in the model and other characteristics of the 

data (e.g., sample size).  In this way, information criteria summarize both fit and 

parsimony for any given fitted model.  These criteria are especially useful in choosing 

appropriate covariance structures in the context of modern MMs because candidate 

structures are often not nested and therefore Likelihood Ratio Tests (LRTs) are not 

applicable.  However, information criteria for candidate or competing non-nested models 

are comparable.   

The most common information criteria are the Akaike Information Criterion 

(AIC) and the Baseyian Information Criterion (BIC; or Schwarz Baseyian Criterion, 

SBC); however, many other formulations have been proposed (Akaike, 1974; Bozdogan, 

1987; Burnham & Anderson, 2002; Hannan & Quin, 1979; Schwarz, 1978).  AIC and 

BIC differ in the penalization with AIC only penalizing for increasing complexity of the 

model (increasing explanatory variables) and BIC incorporating information concerning 

the size of the sample in the amount to be penalized. 

 There are two main reasons why information criteria are not a perfect solution to 

the problem of covariance structure modeling.  First, it is possible to obtain different 



 7

preferred covariance models for the same data depending on which information criterion 

is used (that is, depending on the type of penalization that is applied to the likelihood 

function, which is a subjective choice left up to the researcher).  This is especially 

disconcerting because there is no consensus in the research literature as to which criterion 

is most appropriate in covariance modeling situations (Ferron et al., 2002; Gomez, 

Schaalje, & Fellingham, 2005; Keselman, Algina, Kowalchuk, & Wolfinger, 1998; 

Vallejo & Livacic-Rojas, 2005).   

Second, Monte Carlo simulations studying the performance of information criteria 

report widely varying accuracy of these criteria in selecting the correct covariance 

structure (Ferron et al., 2002; Gomez et al., 2005; Keselman, Algina, et al., 1998; Vallejo 

& Livacic-Rojas, 2005). Keselman, Algina, et al. (1998) evaluated the accuracy of AIC 

and BIC selecting the correct covariance structure among 15 candidate structures for data 

that had been generated from six population or correct structures.  The authors reported 

relatively low estimates of accuracy for both criteria: AIC selected the correct covariance 

structure only 47% of the time and BIC only 35% of the time.  Ferron et al. (2002) 

reported accuracy rates of 79% and 66% for AIC and BIC, respectively, when only two 

candidate models were considered.  Like Keselman, Algina, et al., Gomez et al. (2005) 

investigated the accuracy of AIC and BIC under many different simulated conditions 

(including varying samples sizes, varying degrees of design imbalance, etc.); however, 

the authors did not report marginal accuracy rates across those conditions.  They did note 

that accuracy rates ranged anywhere from 3% to 79% for particular conditions and rates 

were most influenced by sample size and covariance structure (15 candidate models were 

evaluated). Moreover, these authors found that AIC outperformed BIC for modeling 
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more complex structures whereas BIC outperformed AIC for simpler structures.  Finally, 

as a side note to their comparison of αe’s between the Brown-Forsythe test and the MM 

approach, Vallejo and Livacic-Rojas (2005) noted that AIC accuracy rates ranged from 

23% to 87% depending on the complexity of the structure being modeled.  

This has been a brief presentation of the issues involved in the use of information 

criteria, covariance structure modeling, and the use of modern MM methods in the 

analysis of longitudinal data. The current study was designed to address many of these 

issues. The specific purposes of the current study are outlined in detail next. 

 

Purposes of the Study 

The current study was multifaceted with preliminary, primary, and secondary 

purposes that relate to the analysis of longitudinal data using modern MMs and classical 

methods. Briefly, the preliminary purpose was to evaluate four test statistic options 

within the modern MM framework with respect to αe’s. Next, the three primary purposes 

were to 1) identify comparable or surrogate covariance structures, 2) estimate information 

criteria selection rates of appropriate covariance structures, and 3) estimate the αe’s of 

modern MM test statistics whose covariance models were selected by a given information 

criterion. Finally, two secondary purposes were to 1) compare between modern MM 

methods and classical methods in analyzing longitudinal data with respect to αe’s and 

statistical power estimates, and 2) investigate the αe’s of the interaction test when both 

within-subjects and between-subjects factors are present in the design. These purposes 

and the problems they address are delineated in greater detail below. 
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Preliminary Research Question 
 

 The CLM F-statistics follow the F-distribution exactly and their degrees of 

freedom are well defined and can be obtained via straightforward calculations. In 

contrast, MM Wald-type F-statistics are available for inference; however, these statistics 

are only approximately F-distributed. Furthermore, in longitudinal data analysis, multiple 

observations from the same experimental unit are often correlated. This association 

among the observations complicates the estimation of the number of independent pieces 

of information available for statistical inference. As a result, the calculation of the 

degrees of freedom for test statistics becomes more complicated. Further complications 

arise when the data exhibit multiple random effects and/or are not balanced (Littell, 

Milliken, Stroup, Wolfinger, & Schabenberger, 2006, p. 152). 

A number of methods for obtaining valid test statistics under these conditions 

have been developed. Some of these methods estimate the degrees of freedom for test 

statistics under these conditions. Other methods rely on the estimation of empirical or 

robust variances for use in the computation of statistical tests.  

A comparison of several of these methods is a preliminary interest in the current 

study. More specifically, known problems exist with the default manner (the 

Between/Within method5) in which SAS’s PROC MIXED computes degrees of freedom 

for test statistics for MMs (Littell et al., 2006, p. 188)6. Statisticians have suggested the 

use of either the Satterthwaite or the Kenward/Roger (KR) approximations in order to 

address this problem (Fitzmaurice et al., 2004, pp. 98-99; Gomez et al., 2005; Keselman 

                                                 
5 In SAS version 9.1, the Between/Within method is the default for calculating degrees of freedom for 
models specified with the REPEATED statement, as was the case in the current study. See Chapter 3 for 
more details. 
6 See page 47 for further explanation. 
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et al., 1999; Littell et al., p. 188). Furthermore, Fitzmaurice et al. (p.177) have suggested 

the use of the “sandwich” estimator in order to obtain standard errors for parameter 

estimates and test statistics for the fixed effects. The use of the sandwich estimator 

addresses problems of covariance model misspecification in general. Therefore, the 

preliminary research question is: 

 
i) How do test statistics for the fixed effects of the mixed model compare 

with respect to αe’s when the SAS PROC MIXED default (the 

Between/Within method), the Satterthwaite or KR approximations, or the 

sandwich estimator options are used? 

 

Primary Research Questions 

As mentioned above, accuracy rates for information criteria estimated in previous 

investigations were found to be substantially low and highly variable. It is suspected that 

these unfortunate qualities can be attributed to two main features of these studies.  First, 

studies like Ferron et al. (2002) that considered only a modest number of candidate 

models were found to report higher accuracy rates than those studies that considered 

many candidate models, such as Keselman, Algina, et al. (1998).  Therefore, the number 

of candidate models that one is willing to entertain influences the accuracy of information 

criteria to a substantial degree. Second, some statisticians have mentioned that accuracy 

rates may be biased due to the fact that under certain conditions some “incorrect” 

covariance structures may in fact serve as surrogates or acceptable approximations of the 

correct structures (Gomez et al., 2005; Keselman, Algina, et al).   While a specific 
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definition of a surrogate was not provided by these authors, it is obvious from their usage 

of the term that a surrogate model is one that is comparable to the correct model in 

obtaining relatively good fit to the data, and consequently providing statistical tests that 

closely approximate those of the correct model. Thus, in the context of information 

criteria accuracy, even though a given information criterion did not select the correct 

covariance structure, there is the possibility that it did select a comparable covariance 

structure that in fact obtains results that closely approximate those of the correct model. 

By not accounting for the possibility of surrogate covariance structures, previous 

estimates of the accuracy rates of these information criteria may drastically underestimate 

their usefulness in covariance modeling. These results may discourage the use of the 

modern MM approach by applied researchers.   

In an attempt to investigate and neutralize the effect of this bias in the 

performance of information criteria, the current study generated data via a Monte Carlo 

simulation to identify covariance structures that may serve as surrogates for a correct 

structure. Moreover, the accuracy rates of information criteria are reported more precisely 

with these structures taken into account. That is, rates of selecting appropriate covariance 

models are reported, where appropriate covariance models are defined as a set of models 

including the correct model and any surrogate models that have been identified for the 

correct model. The primary research questions in the current study are: 

 

1) Do surrogate covariance structures exist? If so, which structures serve 

as acceptable approximations for a given population or correct structure 

and under what conditions? 
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2) What are the selection rates of a particular information criterion with 

respect to selecting a) the correct model, b) a surrogate model, and c) an 

appropriate model? What are the selection rates with respect to a) 

underfitting or b) overfitting the data? 

 

3) Will the analysis be statistically valid if one uses a particular 

information criterion to select a covariance model? That is, under what 

conditions are the αe’s controlled for models selected by a given 

information criterion? 

 

Secondary Research Questions  

Review of the current research literature in the areas of longitudinal data analysis 

in psychology, education, and the social sciences in general, has demonstrated the 

continued wide-spread use of the classical methods of analysis (Keselman, Huberty, et 

al., 1998; Kowalchuk et al., 1996). Therefore, a comparison of αe’s and power estimates 

among classical and modern MM methods was a secondary interest of the current study. 

More specifically, the RM ANOVA conventional F-test, the Greenhouse-Geisser (G-G) 

and Huynh-Feldt (H-F) corrected F-tests, and the MANOVA Wilks’ Λ test statistic were 

compared to the modern MM methods with respect to αe’s and power estimates.  

 Furthermore, the robustness of the interaction test was also of interest when a 

between-subjects factor was present in the design. Therefore, a two level between-
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subjects factor (Group) was added to the design in order to facilitate investigation into 

this question. These two secondary research questions are: 

 

4) How does the mixed model approach compare to the classical methods 

of repeated measures analysis in the context of covariance model 

misspecification? More specifically, how does the mixed model Wald-type 

F-statistic compare to the RM ANOVA conventional F-statistic, the G-G 

or H-F corrections, or the MANOVA Wilks’ Λ test statistic with respect to 

αe’s? 

 

5) What are the mixed model αe’s for the test of the interaction in repeated 

measures data with a between-subjects factor?   

 

For these purposes, data were generated and analyzed under three distinct phases 

of the current study using a Monte Carlo simulation. The purpose of phase I was to obtain 

αe’s for the test of the Time main effect for various modern MMs7 as well as the classical 

methods of analysis. In contrast, the purpose of phase II was to obtain estimates of 

statistical power for the test of the Time main effect. Therefore, data for both phases I and 

II were generated from the single-group repeated measures design with one within-

subjects factor (Time)8. Finally the purpose of phase III was to obtain αe’s for the Group 

x Time interaction test for mixed and classical models when a between-subjects factor 

(Group) was added to the design.  

                                                 
7 Mixed models with various covariance models specified. 
8 No between-subjects factors were present in this design. 
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In the first two phases, data were generated for one homogenous group of N 

subjects with a quantitative response variable measured over multiple occasions. Five 

design features were manipulated: 1) population (or correct) covariance structure (with 

seven levels9), 2) the number of measurement occasions (with two levels: t = 3 & 6), 3) 

the magnitude of serial correlation (with two levels: r = .3 & .5), 4) the presence of non-

constant variances over time (with two levels: either constant or non-constant variances), 

and 5) sample size (with three levels: N = 10, 30, & 60). Furthermore, the number of 

replications was set to 10,000 for both of these phases.  

Phase I and II differed in the following ways. As mentioned above, the purpose of 

phase I was to evaluate αe’s. Consequently, data in phase I were generated so that the null 

hypothesis of no Time effect was known to true. As a result, data were generated under 

72 conditions10 for phase I. In contrast, the purpose of phase II was to estimate statistical 

power. Therefore, data in phase II were generated so that the alternative hypothesis of a 

Time effect was known to be true. In order to coerce the data appropriately for the 

alternative hypothesis to be true, an additional experimental factor was added in the phase 

II data generation process: Mean Effect. Mean Effect was specified with three levels 

corresponding to small, medium, and large effect sizes as defined by Cohen (1977, pp. 

284-288). Thus, data were generated under the 72 conditions delineated by phase I for 

each of the three levels of Mean Effect. That is, data were generated under 216 

conditions11 in phase II. Other than these differences, phases I and II were identical. 

                                                 
9 See section Explication of Experimental Factors, p. 62, for details. 
10 See Table 3.1 for a summary of the number of conditions. 
11 While data were generated in all 216 conditions, power estimates were only interpreted for those 
conditions where acceptable levels of αe’s were found.  
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In contrast, the purpose of phase III was to investigate αe’s for the interaction test 

of Group x Time for both mixed and classical models. As a result, phase III involved data 

generation where one between-subjects factor was added to the single-group repeated 

measures design of phases I and II. Similar to phase I, however, data were generated so 

that the null hypothesis was known to be true. Under these data generation conditions, all 

experimental factors remained the same as phase I except sample size. Levels of sample 

size for phase III were nj = 5, 15, 30. For example, under the first level of the sample size 

factor, data were generated for groups 1 and 2 with five subjects each. Thus, group 

sample sizes were always held equal in the current study. Finally, due to time constraints, 

only 5,000 replications were performed for phase III. Otherwise, phase III procedures 

followed those of phase I closely.  

This has been a brief discussion of the design of the current simulation study and 

how it relates to the research questions of interest. In summary, data were generated 

under three distinct phases: 1) phase I, a single-group repeated measures design with the 

null hypothesis known to be true, 2) phase II, a single-group repeated measures design 

with the alternative hypothesis known to be true, and 3) phase III, a design with one 

within-subjects and one between-subjects factors with the null hypothesis known to be 

true. A discussion of the significance of the current study follows. 

 

Significance of the Study 

 The current study is judged to be significant because it addresses a number of 

limitations in the existing research literature. To date, the current author is unaware of 

any reported studies that take into account the potential effect of covariance model 
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comparability on the accuracy rates of information criteria. In order to address the issue 

of surrogate influence on the accuracy rates of information criteria, rates of selecting 

appropriate covariance models are reported.  

A second limitation in the existing literature is the influence of the number of 

candidate covariance models in information criteria accuracy rate estimation. Previous 

studies have used widely varying number of candidate models ranging from two to 

fifteen, and have reported highly variable marginal accuracy rates ranging from 35% to 

79% (Ferron et al., 2002; Gomez et al., 2005; Keselman, Algina, et al., 1998; Vallejo and 

Livacic-Rojas, 2005). While the effect of this extraneous factor can not be neutralized 

completely, an attempt to minimize its influence was made in the current study. Based on 

a review of this literature (Davis, 2002, pp. 130-156; Diggle, 1988; Ferron et al., 2002; 

Littell et al., 1996, pp. 177-187; Tonidandel, Overall, & Smith, 2004; Verbeke & 

Molenbergs, 2000, pp. 98-101), nine covariance structures were identified as being those 

most commonly espoused by methodologists and used by applied researchers. These 

structures were targeted for use in the current study12 to minimize the effect of being 

overly restrictive or overly nondiscriminatory in the number of candidate models one 

might realistically consider in a real-world modeling situation. 

Finally, the existing research literature comparing accuracy of information criteria 

has highly favored comparisons of AIC and BIC.  As mentioned previously, there are a 

number of other information criteria that have been proposed by methodologists that have 

not received equal treatment in the literature base.  For example, Hurvich and Tsai (1989) 

have developed a finite sample version of the AIC statistic known as Akaike Information 
                                                 
12 While the data were generated under only seven of these covariance structures, all nine structures were 
used as the candidate model set. 
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Criterion - Corrected (AICC).  In order to arrive at the best possible estimate of the 

accuracy of information criteria in general, five information criteria were included for 

comparison in the current study:  AIC, AICC, Hannan and Quin Information Criterion 

(HQIC), BIC, and Consistent Akaike Information Criterion (CAIC) (Akaike 1974; 

Hannan & Quin, 1979; Hurvich & Tsai; Schwarz; Bozdogan, 1987). Therefore, the 

current investigation is considered significant because it meets and addresses these 

limitations of the previous research.  

 

Summary 

 In conclusion, classical statistical modeling of longitudinal data is often 

problematic because either 1) the RM ANOVA assumption of sphericity is untenable, or 

2) the MANOVA approach suffers from insufficient power. As a modeling alternative, 

many methodologists suggest using modern MM methods. These methods obviate many 

of the problems of the classical approaches; however, new challenges arise with their use. 

Specifically, the researcher is faced with the task of selecting an appropriate covariance 

structure for the model in order to obtain valid tests of the fixed effects. While many 

methodologists suggest the use of information criteria to guide the selection process, 

problems with the accuracy of these criteria have been documented. Therefore, the 

current study was primarily concerned with 1) identifying comparable or surrogate 

covariance structures, 2) estimating the selection rates of appropriate covariance 

structures, and 3) estimating the αe’s of statistical tests whose covariance models were 

selected by a given information criterion. 
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 The next chapter provides a review of research studies and published works that 

address information criteria development and use, the accuracy of information criteria, 

and investigations into αe’s and/or power estimates of methods for analyzing longitudinal 

data. Next, Chapter III outlines the specific methods employed in the current study to 

generate and analyze the data as well as criteria and methods for evaluating results and 

answering the research questions of interest. Finally, Chapter IV reports the results and 

Chapter V provides a discussion of those results and their implications in longitudinal 

data analysis in applied social science research.   
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CHAPTER II: LITERATURE REVIEW 
 

 

 As discussed in the previous chapter, modern mixed model (MM) methods have 

been suggested by many methodologists as a modern and flexible approach to analyzing 

longitudinal data. These methods obviate some of the potential pitfalls of the classical 

approaches to modeling data of this variety and therefore may appear attractive to applied 

researchers. However, new issues arise.  

One of these issues is the selection of a covariance model. A covariance model 

must be chosen in order to obtain valid statistical tests of the fixed effects. The modern 

MM approach allows the researcher to use information from the data to guide the choice 

of the covariance model. This information includes the sample covariance/correlation 

matrix with respect to time, various graphical tools, and indicators of model fitness.  

Researchers and methodologists alike generally favor the use of a specific class of 

model fit indicators: information criteria. However, recent literature has brought into 

question the accuracy of these indicators. It is the primary purpose of the current study to 

investigate the comparability of certain covariance models, the accuracy of a specific set 

of information criteria in choosing the correct and surrogate covariance models, and the 

empirical Type I error rates (αe’s ) and statistical power estimates of models selected by a 

given information criterion. 
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For these purposes, literature covering the following four topics was reviewed: the 

use and development of information criteria; the accuracy of information criteria; 

empirical Type I error rates and statistical power estimates; and the comparison of 

modern MM and classical methods. These four topics provide a foundation for what is 

currently known regarding covariance modeling for MMs within the research 

community. Therefore, the current survey distinguishes the present boundaries of the 

literature, and further demonstrates the relevance of the current study.  

The literature for this review was identified by using the ERIC, PyschInfo, and 

Web of Science databases as well as analysis of references from relevant published 

works. Keywords used in these searches included: repeated measures, longitudinal 

studies, ANOVA, MANOVA, mixed models, mixed effects model, information criteria, 

AIC, BIC, AICC, CAIC, HQIC, Type I error rates, statistical power, covariance 

misspecification, covariance surrogate, Huynh-Feldt, Greenhouse-Geisser, etc. 

 

Information Criteria 

 This section reviews the use of information criteria in general and, specifically, 

the five different criteria that have been evaluated in the current study. This is intended to 

serve as an introduction to the history, theory, use, and differences among the five 

criteria.  

As mentioned in the previous chapter, the general form of the information criteria 

is some function of the maximum likelihood function (usually negative two times the 

maximum likelihood) plus some penalty. The penalty term, in general, is a measure of 

model complexity; however, the actual realization of that measure is different among the 
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differing information criteria. The penalty typically includes the number of parameters 

required to estimate the model and many times incorporates some measure of the sample 

size.  

The general use of information criteria for model selection purposes begins with 

the fitting of multiple candidate models using a likelihood-based estimation method. It is 

important at this step of the process to systematically and logically vary only one aspect 

of the model (usually either the mean or covariance model) while keeping other 

dimensions of the model constant. This is important because only by varying one aspect 

of the model at a time is the researcher able to isolate the effects of a particular change in 

the model to model fitness.13 The next step in the model selection process is to obtain the 

values of a preferred information criterion for each candidate model fit. Finally, these 

values are compared and the model with the most favorable value14 is selected as the best 

model in terms of balancing model fit and parsimony. The five information criteria 

intended for inclusion in the current study are briefly presented below in historical order.  

 In the early seventies, Akaike (1974) introduced AIC which came to be known as 

Akaike’s Information Criterion. The AIC was originally proposed to aid in model 

selection in the context of time series analysis (Akaike). The original formulation of this 

statistic is as follows: 

 

AIC = -2(maximum likelihood function) +2k,             (2.1) 

   where k = the number of parameters in the model. 

                                                 
13 Because the current study is primarily interested in the specification of the covariance model, the model 
for the mean was held constant across all model fits so that changes can be attributed to only the covariance 
model. 
14 “Smaller is better” parameterizations are currently used in SAS, therefore the candidate model with the 
smallest value is selected as the best model (Littell et al., 2006, pp. 183-184). 



 22

Equation (2.1) is the “smaller-is-better” parameterization, meaning that models that yield 

smaller values for this statistic are considered to provide better fit to the data; however, 

other parameterizations are in use (Littell et al., 2006, pp. 183-184). As one can see from 

(2.1), AIC is a function of the maximum likelihood and the number of parameters 

estimated in the proposed model.  

In the 1974 article, Akaike references the sensitivity of the likelihood function in 

regard to deviations of model parameters from the true values in order to justify the use 

of the likelihood function to this end. Akaike further presented AIC as a mathematical 

realization of the principle of parsimony. He explicitly points out that if two models with 

an identical likelihood function were evaluated using this method, AIC would select the 

model with fewer parameters. That is, of two models with identical fit to the data, AIC 

selects the more parsimonious of the two. 

Akaike demonstrated the use and performance of the statistic through several 

simulations, showing how the method selected between autoregressive (AR) and moving 

average models of various orders. Throughout the article and in closing, Akaike mentions 

the AIC method can be applied without subjective judgment. It is ironic that with the 

development of information criteria procedures (including, most notably, the 

development of other information criterion themselves), that the method has become 

more subjective. That is, with the development of more information criteria, researchers 

are forced to make a rather subjective choice as to which one to use in a given situation. 

Additionally, as was mentioned earlier, the performance of information criteria 

(specifically, the probability of selecting the correct model) is suspected to be affected by 

the number of candidate models initially entertained by the researcher. This adds another 
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dimension of subjectivity to the process because the choice of the number and the identity 

of the candidate models to include is ultimately a subjective one left up to the individual 

researcher.  

Schwarz (1978) presented a second information criterion, based on Bayesian 

statistics, as an alternative to AIC. This criterion has come to be known as the Bayesian 

Information Criterion (BIC) [or Schwarz’s Bayesian Criterion (SBC)]. BIC is presented 

in the original article as a method to choose the appropriate dimensionality of a model to 

fit a given set of collected data. Schwarz derives BIC by finding the Bayes solution for a 

model in generality and then evaluating the maximum likelihood estimator (the leading 

term of the Bayes solution) in terms of its asymptotic properties. Because BIC is 

ultimately not dependent on the a priori distribution, Schwarz states that the resulting 

criterion is applicable in large-sample situations beyond a Bayesian context.  

In the original article, Schwarz (1978) presents BIC in a “larger is better” 

parameterization. Because SAS15 implements all information criteria in the “smaller is 

better” parameterizations, this formulation is presented below: 

 

BIC = -2(maximum likelihood) +klog(N)16   (2.2) 

where  k = the number of parameters in the model and  

N = the sample size. 

 

Schwarz mentions that BIC differs from AIC only in the penalty term. As can be 

seen from above, the BIC penalty is not as great in terms of the number of parameters 

                                                 
15 Version 9.1. 
16 All references to the log() function in the current document refer to the natural logarithm unless 
otherwise specified. 
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estimated in the model; however, the penalty also incorporates a new term: the natural 

logarithm of the sample size. Schwarz states that BIC tends to select lower dimensional 

models (or, in other words, more parsimonious models) than AIC when N, the sample 

size, is greater than 8. Along the same lines, differences in model selection using AIC and 

BIC become greater with large sample sizes. 

 Later, Hannan and Quinn (1979) introduced their version of an information 

criterion which came to be known as the Hannan-Quinn Information Criterion (HQIC). 

This criterion was developed in the context of estimating the order (or the 

dimensionality) of an AR model. According to the authors, the impetus behind 

developing HQIC was to address the established less than ideal asymptotic properties of 

AIC and BIC. In particular, AIC was found to be inconsistent and to overestimate the 

dimension of models in “large” samples. In contrast, BIC had been established as being 

highly consistent at that time, but Hannan and Quinn claimed that the BIC penalty term 

did not decrease fast enough as the sample size increased, thereby underestimating the 

dimension of models in large samples.  

Hannan and Quinn’s (1979) solution to this problem revolved around developing 

a penalty term in the equation that asymptotically decreased at a maximal rate. The SAS 

“smaller is better” parameterization appears below: 

 

HQIC = -2(maximum likelihood) +2klog(log(N))17.                   (2.3) 

 
The authors conclude their derivation of this statistic by comparing the 

performance of HQIC with that of AIC in simulation studies. These studies compared 

                                                 
17 Both k and N are defined in 2.2. 
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HQIC and AIC across varying samples sizes (N = 50, 100, 200, 500, & 1,000). Results 

were as expected by the authors: HQIC underestimated model dimension in smaller 

samples relative to AIC, but outperformed AIC in large sample situations. 

 Bozdogan (1987) introduced the Consistent Akaike’s Information Criterion 

(CAIC). This was an attempt to make AIC asymptotically consistent by adding a further 

adjustment to penalize more heavily for overparameterization and thereby reduce the 

probability of overfitting models. Bozdogan states explicitly the major issue with the 

information criteria approach: finding the optimal balance between risks of underfitting 

and overfitting. According to Bozdogan, the probability of underfitting or overfitting the 

correct model goes to zero for CAIC as the sample size approaches infinity. The SAS 

“smaller-is-better” parameterization appears below:   

 

CAIC = -2(maximum likelihood) +k(log(N) + 1).               (2.4) 

 

 Bozdogan reports results from two simulations which show that CAIC is more 

accurate than AIC in sample sizes ranging from 50 to 200 with 100 replications. 

Specifically, the first simulation demonstrated that AIC overfit the model 14% to 20% of 

the time across the three conditions while CAIC did so only 1% to 3% of the time. In the 

second simulation, the error variance was increased uniformly and held constant across 

the conditions of differing sample sizes (N = 50 to 200). Here, accuracy rates ranged from 

81% to 94% and 73% to 88% across the differing sample size conditions for CAIC and 

AIC, respectively.  
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Hurvich and Tsai (1989) introduced a finite sample version of the AIC criterion 

for regression and autoregression models. According to these authors, the trend of AIC 

overfitting models is a result of a substantial negative bias encountered when the 

dimension or complexity of a given candidate model increases in relation to N, the 

sample size.  That is, this bias causes AIC to select a more complex model than the 

correct model on average. To address this issue, the authors introduced AIC corrected 

(AICC). AICC is defined as the sum of AIC and an additional non-stochastic penalty 

term incorporating sample size. According to these authors, this formulation minimizes 

the aforementioned bias and results in less overfitting. The SAS “smaller-is-better” 

parameterization appears below: 

 
 AICC = -2(maximum likelihood) +2kN/(N-k-1).                   (2.5) 

 

 Hurvich and Tsai (1989) concluded by reporting the results of a few simulations 

they performed demonstrating the superiority of AICC in selecting the correct model in 

small sample situations. For example, the first simulation was designed to evaluate AICC 

performance in selecting the correct dimension of a regression model (that is, the correct 

number of predictors). The authors set the true model dimension to three and varied 

sample sizes between N = 10 & 20. Other information criteria such as AIC, HQIC, & BIC  

as well as criteria used in traditional regression model selection procedures such as 

Mallow’s Cp and the PRESS statistic were used to select models based on seven 

candidate variables18. One hundred replications were conducted. Results demonstrated 

that AICC selected the correct model 96 and 88 times out of 100 opportunities based on 

                                                 
18 Therefore, the dimensions of the candidate models ranged from m = 2 to 7. 
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sample sizes of 10 and 20, respectively. Other criteria tended to overfit the data: AIC 

selected the correct model 36 and 64 times out of 100; BIC, 41 and 84; and HQIC, 24 and 

70. The authors performed similar simulations for AR and moving average models. 

Based on these results, the authors conclude that AICC should be used routinely over 

AIC in regression and autoregression contexts. 

 This has been a brief review of five of the most common information criteria in 

current use in longitudinal data analysis (Davis, 2002, pp. 130-156;; Lindsey, 1999, p. 44; 

Pinheiro & Bates, 2000, pp. 253-256; Verbeke & Molenbergs, 2000, pp. 74-76). In 

summary, BIC, HQIC, and CAIC are all attempts to lessen the tendency of AIC to overfit 

models in large sample situations. Additionally, AICC was formulated to lessen 

overfitting by AIC in small sample situations.  

These five information criteria were considered important in the current study for 

three main reasons. First, social science research involving longitudinal data often 

involve widely varying sample sizes (Keselman, Huberty et al., 1998) and the effects of 

using these different criteria have not been studied in this particular context. Second, AIC 

and BIC have been thoroughly studied, however, not along with HQIC, CAIC, and 

AICC. Finally, all five criteria are easily accessible in SAS version 9.1.  Therefore, these 

five criteria were evaluated in terms of selection rates and αe’s in the current study. A 

review the literature specifically addressing the accuracy of these criteria follows. 

 

The Accuracy of Information Criteria 

There is a substantial literature base addressing the development, use, and 

accuracy of information criteria in general. However, there are far fewer published works 
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that address the accuracy of information criteria strictly within the context of covariance 

modeling for modern MM methods and their use in the analysis of longitudinal data. 

Keselman, Algina, Kowalchuk, and Wolfinger (1998) published results from a 

Monte Carlo simulation where they compared the performance of AIC and BIC in 

selecting covariance structures. The authors investigated the accuracy of these 

information criteria by simulating a repeated-measures-type study with three between-

subjects groups and one within-subjects factor (Time). Data were generated using six 

population (i.e., correct) covariance structures: unstructured (UN), autoregressive with 

heterogeneity present with respect to time (ARH), random coefficients with heterogeneity 

with respect to time (RCH), unstructured with heterogeneity with respect of group (UNj), 

autoregressive with heterogeneity with respect to both time and group (ARHj), and 

random coefficient with heterogeneity with respect to both time and group (RCHj). AIC 

and BIC were used to select a preferred model from a set of eleven candidate covariance 

structures. Four variables operative in the data generation and overall analysis of the 

simulation were: varying sample sizes, equal and unequal group sizes, positive and 

negative pairings of covariance matrices and group sizes, and normal and non-normal 

data. These variables defined 26 distinct conditions under which performance of the AIC 

and BIC information criteria were evaluated. One thousand replications were executed 

under each of the 26 experimental conditions. 

 The authors report that neither criterion performed adequately in selecting the 

correct covariance structure. Results showed that on average, across the 26 conditions of 

the study, AIC selected the correct covariance structure only 47% of the time. Moreover, 

AIC performed notably worse in identifying complex covariance structures (i.e., UN). 
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However, AIC performed remarkably better when the correct structure was either ARHj 

or RCHj and the data were normally distributed as well as when the correct structure was 

either UNj or ARHj and the data were log-normally distributed. Results for BIC showed 

that this criterion only selected the correct structure 35% of the time and failed to select 

the correct structure at all in 14 out of the 26 conditions.  The authors note that the BIC 

criterion more frequently selected an incorrect structure over the correct structure in all 

but a few cases. 

Keselman, Algina, et al. (1998) and other authors (Gomez et al., 2005) suggest 

that at least one reason for the poor performance of these information criteria may be due 

to certain incorrect structures serving as adequate approximations or surrogates for the 

correct structure. If this were the case, then the accuracy rates of AIC and BIC reported 

may substantially underestimate the performance of these criteria.  

Two unpublished works dealing with the effect of covariance model 

misspecification and the accuracy of information criteria in modern MM methods for 

longitudinal data analysis were also identified during the review of the literature. The first 

is an unpublished paper that was presented at the 12th annual conference on Applied 

Statistics in Agriculture by Guerin and Stroup (2000). The second is an unpublished 

master thesis completed in 1996 by J. M. Robertson at Brigham Young University. Both 

of these works are similar in purpose, design, and methods to both the Keselman, Algina, 

et al. (1998) article and the current study. 

Guerin and Stroup (2000) were mainly interested in the behavior of information 

criteria, the effect of covariance misspecification on statistical inference, the comparison 

of the various degrees of freedom options available in SAS’s PROC MIXED, and the 
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frequency of convergence problems among differing covariance structures for modern 

MMs. To these ends, the authors employed a Monte Carlo simulation to generate data for 

a design with one between-subjects factor (Treatment) with two levels and one within-

subjects factor (Time) with six levels and six subjects per group (nj = 6).  

The data were generated for three correct covariance models: AR, heterogeneous 

autoregressive (ARH), and antedependence (ANTE). These covariance models 

represented serial correlation in the generated data. In addition, the authors also included 

different levels of between-subjects random effects (see Methods section for more detail). 

For both the AR and ARH models, the AR parameter ρ was set to either .25 or .75. In 

addition, the between-subjects random effects were set to either 0.25, 1.00, or 4.00. As a 

result, there were six possible permutations for each of these structures. In contrast, only 

one permutation was specified for the ANTE model. Therefore, data were generated 

under a total of 13 conditions (six permutations of the AR model, six permutations of the 

ARH model, and one permutation of the ANTE model).  

The authors evaluated the accuracy of AIC, BIC, HQIC, and CAIC in selecting 

the correct model from eight candidate models: CS, CSH, AR, ARH, TOEP, TOEPH, 

ANTE, and UN. Moreover, three different degrees of freedom options were evaluated: 

the containment method (the SAS default for these models), the Satterthwaite 

approximation, and the Kenward-Roger (KR) approximation. As a result, 24 analyses 

were performed on each dataset.  

Similar to the models fit in the current study19, Guerin and Stroup (2000) fit 

models that estimated unconstrained means at each measurement occasion. That is, they 

fit ANOVA-type models (the profile analysis approach) that did not assume linearity in 
                                                 
19 Discussed in the third chapter. 
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the mean response over time. Further technical notes include the use of confidence 

intervals to evaluate the acceptability of αe’s. The authors evaluated robustness of the 

MM test statistics based upon αe’s for both Treatment and Time main effect tests and the 

interaction test. They also evaluated simple effect tests of Time at Treatment 1 and 

simple effect tests contrasting Treatment 1 and Treatment 2 at a given time point. The 

authors ran 500 replications for each condition due to time constraints. 

With regard to the performance information criteria, the authors did not report 

marginal accuracy rates for each information criterion, but they did report rates with 

respect to the correct model. For the AR data, the authors stated that all criteria tended to 

select the CS model when the autocorrelation coefficient was low (.25); however, when 

the autocorrelation was high, the correct model was chosen most often. Furthermore, 

accuracy rates were generally low for all information criteria when the correct model was 

ARH and there was a high level of between-subjects random effect present (σ2
s = 4.00). 

At lower levels of the between-subjects random effect, the correct model was selected 

most often by all information criteria. According to the authors, the ARH was most often 

chosen when the correct model was ANTE. Finally, BIC and CAIC were found to choose 

simpler models and AIC and HQIC more complex ones, as expected. 

With regard to the degrees of freedom options, the authors found that the KR 

approximation was superior or, at the least, equal to the other options in terms of 

controlling αe’s. They also reported that fitting more complex models without the KR 

approximation resulted in substantially inflated αe’s. They did note, however, that even 

the KR approximation did not effectively control αe’s when the covariance model was 

misspecified. 
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In summary, consumers of this research should remain mindful that these results 

were obtained under only small sample conditions (nj = 6). With this limitation in mind, 

the authors made several general statements. First, they suggest using the KR 

approximation in all similar applications of MMs. Second, they found αe’s to be severely 

out of control when models assuming constant variance were fit to data with 

heterogeneous variances. Therefore, they call for careful inspection of the sample 

covariance matrix with attention to possible heterogeneous variances. If such evidence 

exists, they suggest fitting a model that allows this heterogeneity. Even further, the 

authors suggest to err on the side of fitting more complex models, or overfitting, in order 

to minimize the chance of a liberal test. Finally, they point out that if one fails to model a 

between-subjects effect when one is in fact present, this may lead to inflated estimates of 

the covariance matrix. In order to minimize the impact of this problem, the authors 

suggest retaining any between-subjects random effects in the model that may be present 

and use both a covariance matrix for the random effects (G) and a covariance matrix for 

the association through Time (R) in order to model the covariance of y20. 

As with the Guerin and Stroup (2000) paper, the Robertson (1996) thesis 

consisted of a Monte Carlo simulation that closely parallels the Keselman, Algina, et al. 

(1998) article and the current study. The purpose of the thesis was to ascertain the effect 

of an optimal (correct) model for the covariance structure of MMs with respect to αe of 

tests for the fixed effects, the distributions of those test statistics, and the effect of 

covariance model misspecification on αe when the model was chosen by information 

criteria. Data were generated under a design with one between-subjects factor 

                                                 
20 See Chapter 3 for a full discussion of these modeling issues. 
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(Treatment) with four levels and one within-subjects factor (Time) with five levels and 

with ten subjects per group (nj = 10).  

Additionally, data were generated with three correct covariance models: CS, 

autoregressive plus common covariance (AR+CC), and UN. The author states that 

parameter values for these covariance models were chosen so that the determinants of 

each covariance matrix would be “similar”. For the CS structure, values of five and ten 

were chosen for σ2 and σ, respectively. The AR+CC model is a combination that 

introduces serial correlation in the data with respect to time and a between-subjects 

random effect that is the same for each subject. In order to fully specify this structure, 

values of 9.15, 0.60, and 10 were chosen for σ2, ρ (the AR parameter), and σ1 (the 

common covariance), respectively. Procedures for choosing the values of the UN 

structure were not discussed other than this matrix’s determinant was similar to the 

others. Finally, data were generated 10,000 times for each of these three conditions. 

The study evaluated AIC, HQIC, BIC, and CAIC in choosing potential covariance 

models for these data. The set of candidate models was the same as the set of correct 

models (CS, AR+CC, & UN). Like the Guerin and Stroup (2000) study, 95% confidence 

intervals were constructed and used for evaluation purposes. Finally, for the CS and UN 

fitted models, the containment method21 was used in order to calculate the denominator 

degrees of freedom of the F-tests. However, for the AR+CC fitted models, the 

                                                 
21 Although, not explicitly stated, it appears that the author used SAS version 6.11. The containment 
method was the default for these models in this release of SAS. 
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Between/Within method was used in order to achieve the minimum denominator degrees 

of freedom for these test statistics22. 

The author reported that AIC performed well for all correct models with accuracy 

rates of .97, .88, and .75 for CS, AR+CC, UN structures, respectively. In addition, the 

author reported that performance of HQIC, BIC, and CAIC was excellent for simpler 

models. Accuracy rates for HQIC were .99, .94, and .14 for CS, AR+CC, and UN 

structures, respectively. BIC obtained rates of .99 and .92 for CS and AR+CC structures, 

but only .09 for UN. Similarly, CAIC obtained rates of .99 and .90 for CS and AR+CC, 

while never correctly choosing the UN structure. 

In a similar fashion, the author reported the αe of the fixed effects when the 

covariance model was chosen by a particular information criterion. Overall, AIC obtained 

a αe value of .0816. In the same manner, HQIC, BIC, and CAIC obtained values of .0750, 

.0704, and .0694, respectively. For each fitted model (regardless of the correct model), 

AIC obtained values of .0524, .1299, and .1493 when CS, AR+CC, and UN models were 

chosen. Similarly, HQIC obtained values of .0485, .1308, and .4143 for CS, AR+CC, and 

UN chosen models. BIC obtained .0501, .0623, and .3333 for the same chosen models. In 

contrast, CAIC obtained values of .0495 and .0618 when CS and AR+CC were chosen, 

CAIC never chose the UN structure. 

As an extension of these results, the author states that the CS model approximated 

more complicated structures well. Furthermore, inflated αe were found for models fitted 

with AR+CC and UN even when these were the correct models. The author speculated 

                                                 
22 The author notes that the DDFM option was used because, unlike the CS and UN model fits, the AR+CC 
fit utilized both RANDOM and REPEATED statements in the call to PROC MIXED in order to model both 
the serial correlation and the between-subjects random effects that were present in the data. 
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that this may be due to the containment method not computing the degrees of freedom 

correctly for these models. 

Because the αe rates were found to be markedly inflated in relation to the nominal 

α level for the AR+CC and UN fitted models (regardless of the correct model), the author 

conducted a brief investigation into the distribution of these test statistics. This 

investigation is largely tangential to the purpose of the current study; however, it is worth 

noting. Specifically, the author used two methods in an effort to identify the denominator 

degrees of freedom that would best specify the distribution of these F-tests. One method 

involved the Anderson-Darling goodness of fit statistic, the other, the method of 

moments. In both cases, however, Robertson obtained denominator degrees of freedom 

for AR+CC and UN that were considered unreasonably small. Moreover, these 

adjustments did not improve the rejection rates of the test statistics. 

In conclusion, the author suggested that the different parameters for the structures 

be investigated and more correct structures included in future research. Additionally, the 

author suggested including a power analysis. Finally, the inclusion of the effect of 

missing data on αe and information criteria performance was suggested as well. 

Similar to the current study, the Keselman, Algina, et al. (1998), Guerin and 

Stroup (2000), and Robertson (1996) research were all primarily concerned with 

covariance model misspecification, αe’s, and the accuracy of information criteria in MMs 

used to analyze longitudinal data. Other articles that report the performance of 

information criteria in selecting covariance models for the modern MM approach often 

do so as a secondary point of interest. A brief review of this research is provided in the 

next section. 
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Empirical Type I Error Rates, Statistical Power Estimates, and the Accuracy of 

Information Criteria 

The following published works are principally concerned with comparing 

statistical methods for analyzing longitudinal data in terms of robustness to assumption 

violations (as measured by αe’s and power estimates). However, secondary objectives 

included the accuracy of information criteria. Consequently, these articles are considered 

especially relevant in both their principal endeavors as well as their secondary treatment 

of information criteria accuracy to the current study.  

 Gomez, Schaalje, and Fellingham (2005) investigated the αe’s of the MM Wald-

type F-tests for the fixed effects with the KR approximation. Of secondary interest, the 

authors evaluated the performance of AIC and BIC in selecting the correct covariance 

structure.  

These authors used a Monte Carlo simulation to generate data for an experimental 

design with one between-subjects factor (Treatment) with three levels, and one within-

subjects factor (Time) with three or five levels. Additionally, the data were generated 

with varying experimental conditions including correct covariance structure (with 15 

correct structures), sample size (three or five subjects per Treatment), number of 

measurement occasions (three or five), equal and unequal variances between Treatment 

groups (with unequal variances being specified as three and five times greater than an 

arbitrary base group), degree of group size imbalance, and positive or negative pairings 
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of covariance matrices and group sizes23. In all, the combinations of these experimental 

factors resulted in 60 conditions under which αe’s and information criteria accuracy were 

studied. 

The authors investigated the two statistical tests for the main effects of Treatment 

and Time, but did not evaluate the interaction test. The 15 correct covariance structures 

under which the data were generated also served as the candidate models for AIC and 

BIC selection. The authors fit the correct model and those models selected by AIC and 

BIC only.  Empirical Type I error rates were evaluated using a variation on the Bradley 

liberal criterion: if the empirical values fell within the interval [.022 - .080], they were 

deemed acceptable (Bradley, 1978). 

 Type I error rates for the correct model were close to the nominal α level for 

simple structures [compound symmetry (CS), Toeplitz (TOEP), and random coefficients 

(RC) (error rates ranging from .03 to .05)]. Error rates were reported to be fairly close to 

the nominal α level for more complex structures (mostly structures involving variance 

heterogeneity either with respect to Treatment or Time). However, error rates for more 

complicated structures such as the UN pattern and those that involved variance 

heterogeneity for both Treatment and Time were found to be much greater than the 

nominal level. Finally, the authors stated that error rates were best controlled when the 

correct model was fit and the correct structure was either CS or RC. 

Results with regard to the performance of AIC and BIC were reported as follows. 

The authors state that accuracy rates for both criteria were generally low with rates as low 

as 3% to 30% and as high as 73.9%. In accordance with the findings of Keselman, 

                                                 
23 A positive pairing occurs when the covariance matrix with the largest elements is associated with the 
largest group size. A negative pairing occurs when the covariance matrix with the largest elements is 
associated with the smallest group size.  
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Algina, et al. (1998), AIC was more accurate in the selection of complicated structures 

whereas the opposite was true for BIC. Moreover, αe’s were reported to be always higher 

than the nominal α value for both AIC and BIC; however, models selected by BIC 

obtained empirical error rates closer to the nominal value. Finally, the authors stated that 

accuracy of these information criteria depended mainly on sample size and the 

complexity of the correct covariance structure. Higher accuracy rates were obtained 

under conditions with larger sample sizes and simpler covariance structures.  

The authors also reported consistency in regard to a given correct structure. A 

structure was considered consistent if the correct structure was chosen more often than an 

incorrect one. The authors noted that consistency occurred more often with larger sample 

sizes and that the TOEP structures were not consistent. 

Finally, Gomez et al. (2005) reported convergence rates of the fitted models. As 

may be expected, convergence rates were found to be dependent upon the complexity of 

the true covariance structure. There was no mention of the influence of sample size on 

convergence rates; however, it should be noted that this study only dealt with small 

samples with sample size varying from N = 9 or 15 across the three between-subjects 

groups. The authors closed by mentioning the finite sample version of AIC (AICC) and 

suggested a similar investigation into the performance of this information criterion. 

Ferron, Dailey, and Yin (2002) investigated the effects of covariance 

misspecification in the first-level error structure24 for mixed-effects models. In the 

process, the authors also studied the accuracy of AIC and BIC as well as Likelihood 

Ratio Tests (i.e., LRTs) in identifying the correct structure. The primary interests of the 

                                                 
24 The first-level error structure corresponds to the covariance matrix (R) for the random errors in the 
mixed-model formulation offered in Chapter 3. 
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investigators were the ability of the information criteria to distinguish between the correct 

and an incorrect model, the effect of error misspecification on the variance parameter 

estimates, estimates of the fixed effects, and tests of the fixed effects.  

The authors generated data with one correct covariance structure: an AR structure. 

Furthermore, the authors only considered two candidate models: the AR model (correct) 

and the IN model (incorrect): σ2I. Data were generated under the following three 

experimental conditions: magnitude of autocorrelation (with two levels: ρ = .30 & .60), 

number of measure occasions (what the authors refer to as “series length”) (with five 

levels: 3, 4, 6, 8, & 12), and sample size (with three levels: 30, 100, & 500). As a result, 

10,000 replications were executed under the 30 different experimental conditions. 

Finally, the authors report using the Between/Within method for estimating the 

denominator degrees of freedom for the Wald-type F-statistic for the MM (the simulation 

was performed in SAS PROC MIXED with the option DDFW=BW). 

Ferron et al. (2002) reported relatively high estimates of the accuracy of AIC and 

BIC compared to the other existing literature (Gomez et al., 2005; Keselman, Algina, et 

al., 1998, Vallejo and Rivica-Rojas, 2005). The mean accuracy rate for AIC across all 

conditions was 79% (ranging from 3% to 100%). Mean accuracy rates for BIC and LRTs 

were 66% and 71%, respectively. Longer series lengths and larger sample sizes along 

with higher amounts of autocorrelation were associated with higher accuracy rates. The 

authors used eta-squared (η2) to partition the variability in these results and reported that 

series length was the most salient effect (η2
AIC

 = .71, η2
BIC

 = .77, & η2
LRT

 = .73). In like 

manner, accuracy rate results also varied with sample size and a non-negligible series 

length by sample size interaction was reported with sample size having a greater effect 
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when series length was short. These results coincided with the results from Singer (1998) 

where it was found that correctly specifying the covariance structure for the random 

errors is more difficult when fewer measurement occasions are available. 

In regard to their second primary interest, Ferron et al. found substantial bias in 

the estimates of the elements of the covariance matrix for the random effects when the 

first level error covariance matrix was misspecified. Specifically, the diagonal elements 

of the covariance matrix for the random effects (the variances of the random effects) were 

overestimated and the off-diagonal element was underestimated. This bias was found to 

depend on the amount of autocorrelation and the series length. In addition, σ2, the 

variance of the random errors, was found to be substantially underestimated when the 

first level error covariance was misspecified. 

The authors found that estimates of the fixed effects were robust to 

misspecification of the error covariance matrix. The authors evaluated αe’s by 

constructing interval estimates for each condition and then checking whether or not the 

nominal α value of .05 was contained with these intervals. Type I error rates were found 

to be within acceptable ranges from .05 in all but two conditions and, unlike Gomez et al. 

(2005), Ferron et al. concluded that the statistical tests of the fixed effects were robust to 

error covariance misspecification. However, these studies used different correct and 

candidate models as well as widely varying sample sizes.  

Keselman, Algina, Kowalchuk, and Wolfinger (1999) published research 

investigating the performance of the MM approach and the Welch-James-type 

multivariate test (WJ) in analyzing repeated measures data. Performance was compared 

based on Type I error rates and power analyses of both methods. In this simulation, the 
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authors generated data with both a three-level between-subjects factor (Group) and a 

four-level within-subjects factor (Time). Additionally, data were generated with three 

different population (or correct) covariance structures: ARH25, RCH, and UN. Other 

conditions under which the data were generated included sample size (with values of N = 

30, 45, & 60); equal and unequal between-group covariance matrices (with values of 

either 1, 1, & 1; or 1, 1/3, & 1/5), etc.). 

For the investigation of Type I error rates, AIC was used exclusively to select the 

covariance structure from eleven candidate structures. The authors referenced the 

findings of Keselman, Algina, et. al (1998) in regard to superior performance of AIC over 

BIC to support their exclusive use of AIC. Satterthwaite F-tests were used exclusively for 

the MM tests of the fixed effects.  The Satterthwaite approximation is appropriate 

because the conventional F-test is known to be liberal in the presence of non-spherical 

data. The Satterthwaite method approximates the denominator degrees of freedom so that 

the test statistic’s reference distribution more closely conforms to the F-distribution. 

Finally, to evaluate robustness, the authors adopted the Bradley liberal criterion by 

specifying the interval 0.5α ≤ α ≤1.5α  (Bradley, 1978). Thus, a given method was 

considered robust under a certain set of assumption violations if its αe over 10,000 

replications fell within this interval. 

The authors reported that the MM approach effectively controlled Type I error 

rates across conditions when AIC selected the correct covariance structure. They 

continued by stating that applied researchers should not expect AIC to select the correct 

structure. Results also demonstrated that the MM approach controlled Type I error rates 

less adequately when the data were generated with complicated covariance structures 
                                                 
25 In both of these case, heterogeneous indicates variance heterogeneity with respect to time. 
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(i.e., UN).  Furthermore, the authors reported that the heterogeneous AR and random 

coefficient models for the covariance structure controlled the error rates adequately, 

regardless of the true covariance structure. Consequently, the authors suggested that a 

possible alternative to relying on AIC would be to always fit one of these two models.  

For the power analysis, the authors chose a maximum range configuration for the 

vector of non-null main effect means. A maximum range configuration specifies two of 

the elements of the vector of means to be of magnitude μ; however, one is positive, the 

other negative. Moreover, all other elements are specified to be zero. The authors then 

used six permutations of this configuration that were possible with the four measurement 

occasions used in the study. Values of μ were selected so that an a priori target power 

value for the WJ test would be .50.  

For the sake of brevity, the authors only investigated the power of the MM tests 

when the correct covariance structure was specified. In addition, they report excessive 

execution times for the power simulation. As a result, they executed the simulation over 

only enough conditions to confidently determine the outcome. Results demonstrated that 

the MM Satterthwaite F-tests were more powerful than the WJ test; however, the 

differences in power never exceeded 6% and were on average as small as 3.1%. The 

authors concluded that the power advantage of the MM approach is small and therefore 

the WJ test is in contention as a viable alternative. 

 In like manner, Vallejo and Livacic-Rojas (2005) performed a Monte Carlo 

simulation designed to compare the MM approach using the KR approximation and a 

multivariate extension of the modified Brown-Forsythe (BF) test. Similar to the 

Satterthwaite technique, the KR approximation is another method to adjust the 
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distribution of MM test statistics to the F-distribution (Vallejo & Livacic-Rojas). More 

specifically, because the EGLS solution is derived using an estimate of the dispersion 

matrices of the random effects in the model, extra variability is introduced into the EGLS 

estimator. The KR approximation is used to correct the influence of this bias and account 

for the extra variability in the estimator and to provide denominator degrees of freedom 

for the resulting test statistics.  

 In many ways, the design of this study follows that of Keselman et al (1999). 

Vallejo and Livacic-Rojas generated comparable data with three between-subjects groups 

and a four-level within-subjects factor (Time), three population covariance structures 

(UN, AR, and random coefficients), and differing distributional shapes, etc. However, the 

authors used both AIC and BIC to select the covariance structure (at least initially) from a 

set of candidate models that included 15 alternatives as opposed to 11.  Two hundred 

sixteen conditions were specified overall with 1,000 replications per condition.  Unlike 

Keselman et al., who used the Bradley liberal criterion for evaluating robustness, Vallejo 

and Livacic-Rojas constructed and used a 95% confidence interval around the nominal 

alpha. 

 According to the authors, the results of the Type I error rate analysis demonstrated 

that MMs specified using AIC were occasionally liberal (especially for negative pairings 

of group size and covariance matrix magnitude and small sample sizes) and models 

selected by BIC were incapable of controlling Type I errors. 

 In terms of the performance of the information criteria, the authors reported the 

following. First, AIC accuracy rates ranged from 23% to 87% depending on the 

complexity of the structure being modeled. AIC correctly selected the random 
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coefficients structure 87% of the time, 56% of the time when a heterogeneous AR 

structure was the correct structure, and 23% of the time for the UN pattern. Second, 

models based on both AIC and BIC produced liberal tests of the fixed effects under the 

negative pairings condition where the between-subjects group with the smallest sample 

size was paired with the covariance matrix with the largest elements (the most 

variability). However, this liberalness became less severe as the sample size increased 

and the magnitude of group inequality lessened.  

 For the power analysis, the authors used two permutations of the maximum range 

configuration for the non-null mean vectors. The parameter for these vectors, μ, was 

chosen so that the power for the Scheffe univariate MM would equal .70. The authors 

only evaluated the BF test and MMs selected by AIC due to the poor performance of BIC 

in regard to Type I error rate control.  Results demonstrated that neither procedure was 

uniformly more powerful. Moreover, power estimates were found to be dependent on the 

mean configuration (permutation of the mean vector).  Finally, the authors identified 

circumstances when the MM approach did not perform optimally: when the correct 

model requires many parameters to be estimated (i.e., an UN covariance structure) and 

small sample sizes. In these situations, the authors suggest the use of the BF test. 

 

Comparing Mixed Model and Classical Methods 

 The review of the literature produced only one reported study that explicitly 

compared modern MM and classical methods. Wright and Wolfinger (1997) compared 

the RM ANOVA conventional F-test, the G-G and H-F corrections, the MANOVA, and 

the modern MM when all models were estimated within SAS’s PROC MIXED. That is, 
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RM ANOVA conventional model was specified in MIXED by fitting the CS covariance 

model and using the unadjusted degrees of freedom. Similarly, the G-G and H-F26 

corrected tests were obtained by fitting the CS model with the proper degrees of freedom 

adjustment, respectively. The MANOVA model was specified by fitting the UN structure 

with the unadjusted degrees of freedom. Finally, the modern MM was specified by fitting 

a number of correct covariance structures (e.g., CS, AR, TOEP, & UN) with the 

unadjusted degrees of freedom. Therefore, the modern MMs fit in this comparison were 

always specified with the correct model. 

 The authors compared these models across three estimation methods (i.e., REML, 

SSCP, & MIVQUE0) and three nominal α levels (αn = .01, .05, & .10). Sample size (N = 

15 or 60) and number of missing values (M = 0 or 3) were also systematically varied. 

Furthermore, the authors evaluated αe’s with respect to the test a Time main effect and 

the Group x Time interaction test; however, the authors state that results were similar and 

therefore only reported results for the test for Time. Nonetheless, the data were generated 

under a two-way repeated measures design with three groups and four measurement 

occasions. 

 Results showed the modern MM unadjusted F-test was liberal in small samples 

situations. More interesting, the authors found both the G-G and H-F adjustments to 

perform well under all estimation method by αn level conditions. The authors do note, 

however, that the G-G corrected tests were found to be slightly conservative and the H-F 

corrected test slightly liberal in small sample situations.  

                                                 
26 This was the Lecoutre corrected H-F adjustment. 
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 While Wright and Wolfinger (1997) provided this initial comparison, which 

included some consideration of missing values27, further research is needed. Specifically, 

this study only compared the modern MM approach with the classical methods when the 

correct covariance model was used in the modern MM. The effect of covariance model 

misspecification in modern MMs was not taken into account here. Moreover, this study 

did not evaluate the performance of the modern MM F-tests with the degrees of freedom 

approximations (i.e., Satterthwaite, Kenward-Roger) that are currently in common use in 

applied longitudinal data analysis. Because the modern MM F-tests are known to be 

liberal in small sample situations (Schaalje et al., 2002), evaluation of corrected MM F-

tests is needed. Furthermore, these authors close by stating that a study of power 

characteristics of these modeling alternatives is needed. 

   

Summary 

 This has been a brief review of the literature and introduction to the concepts 

central to the development and use of information criteria, the accuracy of information 

criteria in covariance model selection, and αe’s and power estimates for modern MM 

methods. This chapter began with a brief discussion of the general form of information 

criteria and their use with modern MMs in the longitudinal data context. Then, several 

research articles were reviewed. Many of these introduced their respective information 

criteria (AIC, AICC, HQIC, BIC, or CAIC) for the first time.  

 Next, three pieces of research28 were reviewed that addressed the accuracy of 

information criteria, covariance model misspecification, and αe’s. Keselman, Algina, et 
                                                 
27 The missingness conditions were either no missing values or 3 out of 15 x 4 = 60 observations. 
28 One published, two unpublished. 
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al. (1998) found AIC to be accurate in selecting the correct covariance model only 47% 

of the time when averaged across 26 experimental conditions. Furthermore, these authors 

found BIC to be accurate only 35% of the time, while not selecting the correct model at 

all in 14 out of 26 conditions. Finally, Keselman, Algina, et al. suggest these low rates 

may be affected by the existence of surrogate covariance models.  

In a similar investigation, Guerin and Stroup (2000) evaluated information criteria 

accuracy, αe’s, and degrees of freedom options available for computing MM test 

statistics. The authors reported that the KR degrees of freedom approximation provided 

superior Type I error control over the Containment and Satterthwaite methods; however, 

the KR approximation did not perform well when the covariance model was 

misspecified. Furthermore, the authors reported that Type I error control was especially 

poor when models assuming constant variances were fit to data that exhibited non-

constant variances. Finally, the authors suggest to overfit the data (i.e., fit a more 

complex model than what is perceived as being needed) to minimize the chance of a 

liberal test. 

In the Robertson (1996) thesis, high estimates of information criteria accuracy 

were reported, with estimates for simpler models as high as .97 for AIC and .99 for 

HQIC, BIC, and CAIC. However, these estimates are based on a selection situation 

where only three candidate models were used. Other results showed that αe’s were 

inflated when information criteria were used to select the covariance model. Values of αe 

ranged from.069 to .082, being most inflated when AIC was used to select the model. 

Finally, αe’s were inflated when the UN covariance model was fit to the data regardless 
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of the true structure and the CS model was found to be a good fit to the data regardless of 

the true structure. 

While comparing statistical methods in the context of longitudinal data, the 

following authors also investigated covariance model selection and information criteria 

accuracy. Gomez et al. (2005) found αe’s to always be higher than the nominal value 

when models were selected with either AIC or BIC. Furthermore, these authors report 

accuracy rates ranging from 3% to 79% for particular experimental conditions with 

accuracy greater under conditions where the sample size was large and the correct 

covariance model was simple. 

Ferron et al (2002) reported accuracy rates of 79% and 66% for AIC and BIC, 

respectively, when averaged across all experimental conditions. Once again, however, the 

data were generated with only a small set of candidate models: the correct model (AR) 

and the IN model. 

Unlike Robertson (1996), Keselman et al. (1999) found αe’s to be controlled when 

AIC was used to select the covariance model. However, these studies used different 

methods for computing the degrees of freedom for these test statistics: Robertson used 

the Containment method, while Keselman et al. used the Satterthwaite method. Even 

more importantly, these studies used different criteria for defining acceptable levels of 

αe’s: Robertson used the 95% confidence interval method (based on N = 10,000 

replications), while Keselman used the Bradley liberal criterion. In their analysis of 

statistical power, Keselman et al. found that MMs were uniformly more powerful than 

the Welch-James-type multivariate test (WJ); however, only by 3.1% on average and 

never more than 6%. 
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Vallejo and Livacic-Rojas (2005) found neither the MM nor the modified Brown-

Forsythe test to be uniformly more powerful. Furthermore, these authors note that the 

MM approach did not perform well in controlling Type I error rates when the sample size 

was small and the population covariance structure was complex.  

Finally, Wright and Wolfinger (1997) compared modern MM and CLASSICAL 

methods. These authors found the G-G and H-F corrected tests to perform adequately 

when compared to modern MMs specified with only the true covariance structure and 

unadjusted degrees of freedom for the modern MM F-test. Further research is needed in 

order to compare these methods when: 1) the modern MM is specified without prior 

knowledge of the true covariance structure, 2) the degrees of freedom for the modern 

MM F-test have been adjusted using methods currently in common use, 3) more extreme 

cases of missing values are encountered, and 4) when statistical power is considered. 

In light of this review, three issues concerning the use of information criteria and 

modern MMs in longitudinal data analysis are still unresolved. First, only the Guerin and 

Stroup (2000) paper evaluated degrees of freedom options (Containment, Satterthwaite, 

and Kenward/Roger) for the modern MM test statistics. Furthermore, their analysis was 

only performed in small sample situations (N = 12; nj = 6). Thus, test statistic options 

including three degrees of freedom options (Between/Within, Satterthwaite, and 

Kenward/Roger) as well as one option for estimating empirical or robust error variances 

for these statistics (i.e., the sandwich estimator) were compared in the current study under 

small, moderate, and large sample size conditions. Next, while several authors made 

casual statements concerning the relative good fit of certain models to data in general, no 

systematic investigation into the existence of surrogate covariance models has been 
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performed. Therefore, the current study systematically investigated the existence of 

surrogate covariance models and the accuracy of information criteria while accounting 

for these models. Finally, several authors have compared other statistical models with the 

modern MM approach; however, no simulation studies were identified that compared the 

modern MM methods with the classical univariate and multivariate approaches.  

This has been a review of the literature and a discussion concerning how the 

current study augments and expands the existing literature base. The next chapter outlines 

the methods that were used in the current study. 
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CHAPTER III: METHODS 

 

 

The current study is concerned with 1) comparing differing methods for 

computing test statistics for modern mixed models (MMs) with respect to empirical Type 

I error rates (αe’s), 2) identifying surrogate covariance structures, 3) estimating the rates 

of selecting appropriate covariance structures for five information criteria, 4) estimating 

the αe’s if a given information criterion is used to select covariance models, 5) comparing 

modern MM methods with classical methods in the analysis of longitudinal data, and 6) 

evaluating the αe’s for the interaction test of a within-subjects/between-subjects design. 

In order to address these research objectives, the current study was designed as a 

Monte Carlo computer simulation. A Monte Carlo study is one that involves generating 

data with a stochastic component adhering to a specified distribution to simulate the 

characteristics and/or behavior of a particular phenomenon under specified conditions 

(Hutchinson & Bandalos, 1997). In the current study, this equates to the investigation of 

the behavior of candidate covariance models in relation to the correct model and the 

accuracy of information criteria under conditions of varying sample sizes, magnitude of 

serial correlation, etc. 

Simulations of this type usually employ computer software that uses a pseudo-

random number generator. In the current study, data were generated and analyzed using a 
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combination of software packages including Statistical Analysis System (SAS) version 

9.1 and the statistical computing environment known simply as R version 2.4.029.  

Furthermore, data were generated under three distinct phases. The first phase was 

designed to evaluate αe’s of test statistics for data with one within-subjects factor, Time. 

In contrast, the second phase was designed to evaluate empirical statistical power of the 

same test statistics and experimental design evaluated in phase I. Finally, the third phase 

of the current study was designed to evaluate the αe’s of the interaction test for data with 

one repeated measures factor (Time) and one between-subjects factor (Group). Specific 

details concerning the design, statistical methods under evaluation, and the generation of 

data for these different phases are provided in this chapter. 

However, before describing the procedures to generate the data, obtain the 

outcome variables, and answer the research questions; a brief introduction to the classical 

linear model (CLM), the MM, and a discussion of their similarities and differences is 

warranted. Next, a full treatment of the experimental conditions in the current study is 

provided. Finally, specific details concerning the data generation and analysis procedures 

in all three phases are presented. 

 

The Classical Linear Model 

 The CLM has seen wide-spread use in statistical modeling in innumerable 

disciplines of science. The CLM is typically used to model the variation of a normally 

distributed continuous response or outcome variable (y) with respect to a single or 

                                                 
29 R is a freeware version of the computing language S-plus, originally developed by Bell Laboratories. 
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multiple explanatory variable(s) (X). The vector-valued formulation of the CLM appears 

below for the univariate case (Christensen, 1987, pp. 1-3): 

 

y = Xβ + ε             (3.1) 

 

where:  y = a vector of observed responses, 

  X  = a known model/design matrix , 

  β = a vector of unknown model parameters, and 

  ε = a vector of unobserved random errors, 

 

with the following mean, variance, and distributional assumptions: 

 

ε ~ iid N(0, σ2In) 

where  iid = independent, identically-distributed, 

  N = Normal, 

  0 = a mean vector of zero’s, 

  σ2 = a constant variance estimated from the data, and 

  In
 = the identity matrix of order (n x n). 

 

 Briefly, y is a column vector of response values, one response for each 

experimental unit. The matrix X is a known design matrix that assumes a different 

formulation depending on whether the regression or the analysis of variance approaches 

are adopted. In the regression case, X is composed of a column vector of 1’s and p 



 54

column vectors of values for each of the p explanatory variables. In the ANOVA case, X 

is composed of p column vectors30 of coded variables indicating group membership. In 

either case, β is a column vector of length p, containing unknown population-valued 

coefficients.  In the CLM, there is one random effect: ε, a vector of random errors. As 

mentioned earlier, the CLM is usually used to model data where the response variable is 

continuous and normally-distributed. Typically, however, these assumptions are 

expressed in terms of the distribution of the errors, ε. In the usual situation, the errors are 

assumed to be independent. That is, the errors are assumed to show no correlation or 

association among themselves. In addition, the errors are assumed to be identically-

distributed with a normal distribution. Finally, they are assumed to have a mean of zero 

and an unknown constant variance (that is estimated from the data). 

 This brief review of the CLM serves as a convenient referent with which to 

juxtapose the modern MM. The modern MM is a generalization of the split-plot model, 

which, in turn, is an extension of the CLM (Fitzmaurice, Laird, & Ware, 2004, pp. 187-

197; Rencher, 2000, pp. 426-429; Vallejo & Livacic-Rojas, 2005). The extension from 

the CLM to the split-plot model allows for the inclusion of more than one random effect 

in the split-plot model which facilitates the analysis of clustered or hierarchical (nested) 

data. Furthermore, certain assumptions concerning the independence of the observations 

are relaxed in such a way that observations are allowed to covary. The generalization 

from the split-plot model to modern MM allows for further flexibility in the manner in 

which observations are allowed to covary and also allows for the modeling of 

nonconstant variances. As is shown in the next section, the modern MM is able to 

account for these factors through the explicit modeling of the covariance matrix of the 
                                                 
30 Where p = J – 1; J = the number of groups. 
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errors (and also the covariance matrix of the random effects). Finally, it is shown that the 

increased flexibility of the MM in dealing with these factors is especially relevant and 

useful in the analysis of longitudinal data.   

 

The Mixed Model 

Mixed model is a general term that refers to an entire class of statistical models 

that are typically characterized by the inclusion of both fixed and random effects. These 

models are used in many disciplines and, as a result of this versality, are known under 

many different names, including mixed effects models and covariance components 

models in statistics, mixed linear models in biomedical research, random coefficient 

models in econometrics, and hierarchical linear models and multilevel models in 

psychology, sociology, education, and the social sciences in general (Bryk & 

Raudenbush, 2002, pp. 3-4; Littell et. al, 2006, p. 161). As mentioned above, the MM is 

an extension of the classical or general linear model that does not require standard 

assumptions concerning independence and homogeneity of error variances (Vallejo & 

Livacic-Rojas, 2005). As mentioned above, the model typically is composed of both 

fixed and random effects; that is, random effects beyond the usual stochastic error term in 

the CLM. The usual parameterization of the MM appears in vector-valued form below. 

 

y = Xβ + Zb + ε           (3.2) 

 

where:  y = a vector of observed responses, 

  X  = a known model/design matrix for the fixed effects, 
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  β = a vector of unknown model parameters, 

  Z = a known model/design matrix for the random  

effects, 

  b = a vector of unknown random effects, and 

  ε = a vector of unobserved random errors, 

 

with the following mean, variance, and distributional assumptions: 

 

  1) ε ~ iid N(0, R), 

  2) E(εij εkl) = cov(εij, εkl) = 0 for i ≠ k, j ≠ l, 

  3) b ~ iid N(0, G), and 

  4) E(biεij) = cov(bi,εij) = 0 for all i & j. 

 

 Briefly, the marginal or population mean of y is modeled by Xβ (Fitzmaurice et 

al., 2004, pp. 187-192). This is analogous to the CLM treatment of the mean for y. 

However, the MM also allows cluster or subject-specific random effects above and 

beyond the usual error term of the CLM to be incorporated in the model. This is achieved 

through the specification of the vector b and the design matrix Z. In this formulation, Z is 

a subset of X which links the vector of random effects to the conditional or subject-

specific mean of y (Fitzmaurice et al., pp. 192-197).  

Thus, β is a vector of unknown regression coefficients for the population of 

interest and is considered to be true for all individuals within that population when 

averaged across individual differences. On the contrary, the vector b is composed of 
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cluster or subject-specific deviations from β. Therefore, it follows that the conditional or 

subject-specific regression weights for the ith subject are β + bi and the conditional or 

subject-specific mean for the ith subject is Xiβ + Zibi (Fitzmaurice et al., 2004, pp. 192-

197). 

Moreover, the mean, variance, and distributional assumptions of the MM state the 

following. First, the errors are normally distributed with mean zero and variance that is 

modeled in a covariance matrix R, which is not required to take the form of a constant 

variance term times the identity matrix (σ2I). Second, the errors among experimental 

units are assumed to be independent. That is, the errors among units are assumed to be 

uncorrelated; however, the errors of multiple measurements on the same unit are allowed 

to covary. Third, the vector of random effects are distributed normally with mean zero 

and variance that is modeled in the covariance matrix G, which, like R,  is flexible and 

able to take different forms. Finally, the random effects specified in b are statistically 

independent of the random error term, ε. 

 In the MM, the variance of yi is modeled through Zi, G, and Ri (Fitzmaurice et al., 

2004; Wolfinger, 1993): 

 

 cov(yi) = Σi = ZiGZi’ + Ri.             (3.3) 

 

The possibilities present in the modeling of the variance of y through Z, G, and R 

constitute a substantial extension of the general linear model (Wolfinger, 1993). While 

these options provide remarkable flexibility and may be especially important when 

modeling data with complex clustered structures and repeated measurements over Time, 
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this flexibility is not always needed, may sometimes be redundant, and may also 

contribute to complications.  

Guerin and Stroup (2000) state that identifiability issues often cause 

nonconvergence when both G and R are used to model the covariance of y. This is 

especially true for situations when one uses G to model the covariance of the between-

subjects random effects and simultaneously specifies R to be UN. This is analogous to 

over-parameterizing the model. In order to avoid this problem, Guerin and Stroup state 

that researchers often drop the between-subjects random effects and use only R to model 

the covariance in y. However, they do mention that this may have an undesirable impact 

on the estimates of standard errors if there is a substantial between-subjects random effect 

present in the data. 

In similar fashion, Wolfinger (1993) mentions the Lindstrom and Bates (1988) 

approach where these authors set R = σ2I (the general linear model specification of the 

variance of the error term) and use only random effects to model variability. In similar 

fashion, Wolfinger uses Liang and Zeger (1986) as an example of authors who chose to 

model all variability through R. In this case, R becomes block-diagonal with blocks of Ri 

corresponding to measurements from the same subject (Wolfinger).  

Fitzmaurice et al. (2004, p. 195) discuss two complications of using both G and R 

to model the covariance of y. First, when ε is distributed with an independence 

covariance model (IN) (either R = σ2I or diag(σ2
1, σ2

2,…, σ2
t)), ε has the straightforward 

interpretation as being simply the sampling error. However, when the cov(ε) takes forms 

that allow dependence, the implication is that ε incorporates a certain amount of model 

misspecification. Consequently, the interpretation of ε is altered (Fitzmaurice et al., p. 



 59

195). Second, Fitzmaurice et al. (p. 195) mention the model identification issues that 

often arise when R takes a non-diagonal form31. Therefore, like Lindstrom and Bates 

(1988), Fitzmaurice et al. (p. 195) model the covariance of y through G exclusively and 

set R = σ2I.   

Because the data generated in the current study are of a single-group repeated 

measures format (with no other clustering and/or hierarchical structure present), the 

variability of y was modeled strictly through the R matrix (see Methods section Data 

Generation and Model Fitting Procedures Technical Notes: Phase I for more detail). 

Therefore, the term mixed model in the current document refers to a particular model 

within the mixed model methodology that accounts for the variance of y exclusively 

through the R matrix. Unlike the typical mixed model formulation, this model does not 

contain the random effect terms Z or b. The model is presented as a subset of (3.1) 

below: 

 

y = Xβ + ε           (3.4) 

where ε ~ iid N(0, R). 

 

The capacity of MM methods to account for correlated data exemplifies the 

increased flexibility of these methods over that of the CLM and makes them especially 

suitable for longitudinal data analysis. 

Model Estimation.  There are various methods available for estimating covariance 

parameters (Σ) like those associated with MMs. However, Littell et al. (2006, p. 747) 

identified Restricted (or Residual) Maximum Likelihood Estimation (REML) as the most 
                                                 
31 In other words, when R accounts for some dependence among the data. 
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important technique of MM estimation. REML is a likelihood-based method that attempts 

to address the deficiencies of regular maximum likelihood (ML) estimation. 

It is well known that ML estimators have good asymptotic properties. It is equally 

well known that ML estimators for σ2 are biased in finite samples. This bias is a function 

of using estimates for the fixed effects in the estimation of the covariance parameters 

without taking into account the extra variability (Fitzmaurice et al., 2004, pp. 99-102; 

Littell et al., 2006, pp. 746-750). 

REML addresses this problem by minimizing an objective function (known as the 

restricted, residual, or modified log-likelihood) where the fixed effects have been 

removed from the equation. Fitzmaurice et al. (2004, p. 99-102) state that this is 

analogous to estimating Σ using only information from the data that are independent of 

the fixed effects. Therefore, REML estimators lessen bias of Σ.  

For these reasons, REML estimates of Σ are commonly favored in MM 

estimation. However, REML does not provide for estimation of the fixed effects (β) in 

the model (Vallejo & Livacic-Rojas, 2005). For this reason, Generalized Least Squares 

(GLS) estimation is often used with the REML estimate of Σ substituted in for V matrix 

in the GLS equation, yielding Estimated Generalized Least Squares (EGLS) estimators 

(Vallejo & Livacic-Rojas). Previous authors have reported that EGLS parameter 

estimators of the fixed effects are unbiased with large sample sizes, even when the 

covariance structure of the data is misspecified (Fitzmaurice et al., 2004, pp. 90-91; 

Vallejo & Livacic-Rojas). These are the estimation methods implemented by SAS’s 

PROC MIXED (Littell et al., 2006, pp. 747-750), and therefore the ones used in the 

current study. 
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 Model Based Inference. Wald-type F-distributed statistics for testing hypotheses 

concerning the fixed effects (β) under the null hypothesis are available for MMs. Littell et 

al. (2006, p. 25) state, however, that the default option in SAS’s PROC MIXED (i.e., the 

Between/Within method) is to compute denominator degrees of freedom for these tests 

based on the traditional analysis of variance assumptions using an IN model for the error 

covariance structure32. Additionally, PROC MIXED computes naïve standard errors by 

using computations for deriving these standard errors that assume estimated covariance 

parameters are known. Kackar and Harville (1984) have shown that using estimated 

covariance parameters as if they were known quantities biases standard error estimates 

and test statistics. Specifically, these authors found estimates of standard errors to be 

underestimated and test statistics involving these results to be overestimated. 

In order to address these issues, many authors promote the use of the 

Satterthwaite degrees of freedom approximation (Fitzmaurice et. al., 2004, pp. 98-99; 

Keselman et al., 1999; Verbeke & Molenbergs, 2000, p. 57). In both repeated measures 

and split-plot models, the error variance estimator of the F-statistic is a linear 

combination of mean squares (Kutner, Nachtsheim, Neter, & Li, 2005, pp. 1130-1134). 

As a result, these statistics do not exactly follow the F-distribution. The Satterthwaite 

method is a technique to approximate the denominator degrees of freedom of these F-

statistics to adjust their reference distribution so as to more closely approximate the F-

distribution.  

As an alternative to the Satterthwaite method, many authors suggest the use of the 

Kenward-Roger (KR) approximation (Fitzmaurice et. al., 2004, pp. 98-99; Gomez et al., 

2005; Guerin & Stroup, 2000; Littell et al., 2006, pp. 188). Similar to the Satterthwaite 
                                                 
32 I.e., assuming independence of observations. 
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method, the KR approximation is a technique to adjust MM Wald-type F-statistics to 

more closely follow the F-distribution. The KR approximation achieves this by 1) 

providing improved standard errors for parameter estimates that account for the extra 

variability in their estimation and 2) providing denominator degrees of freedom so that 

the distributions of test statistics more closely conform to the F-distribution. Littell et al. 

strongly recommend the use of the KR approximation in the analysis of data with 

repeated measurements. 

 Fitzmaurice et al. (2004, p. 177) also discuss the use of the sandwich estimator 

with MMs and its effects on model based inference. Although the sandwich estimator is 

more often used in the analysis of discrete longitudinal data with generalized estimating 

equations (GEEs), it can be applied to MMs for continuous data (Fitzmaurice et al., p. 

177). The sandwich estimator is an attractive option for computing test statistics because 

it is widely known to produce estimates that are robust to covariance model 

misspecification (Fitzmaurice et al., p.177; Manor & Zucker, 2004). That is, the sandwich 

estimator produces asymptotically consistent estimates of the covariance matrix without 

distributional assumptions and when the covariance model is either misspecified or not 

specified at all (Kauermann & Carroll, 2001). However, some authors have reported poor 

performance of the sandwich estimator in small sample situations (Diggle et al., 2002, p. 

74; Manor & Zucker). 

  To date, the current author is aware of no reported study that compares the use of 

the Between/Within method (the PROC MIXED default setting), the Satterthwaite and 

KR approximations, and the sandwich estimator in obtaining test statistics for the Time 
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factor in repeated measures analysis33. Given the importance of these options in the 

context of computing test statistics and forming statistical inferences based on MMs, the 

current study investigates possible differences among these with respect to αe’s. 

Model Fitting Procedures. Many authors advocate similar procedures for fitting 

MMs using three or four distinct steps (Diggle, 1988; Fitzmaurice et al., 2004, pp. 173-

177; Littell et al., 2006, p. 161; Wolfinger, 1993). These steps typically are as follows. 

1) Fit a saturated or maximal model in terms of the mean structure to the 

data. That is, fit a model that is most flexible in the mean structure, 

even to the point of over-parameterization. 

2) Model the covariance of y using the methods described in the current 

document based on information criteria and/or those alternative 

methods. 

3) Revisit modeling the mean structure once a suitable model for the 

covariance of y has been selected. It is now appropriate to more 

parsimoniously model the mean structure, if desired. 

4) Estimate the final model and perform statistical inferences based on 

these model parameter estimates. 

 

Fitzmaurice et al. (2004, pp. 173-177) stress the importance of initially fitting a 

maximal model for the mean structure of the data. According to these authors, 

misspecifying the mean model can result in introduction of spurious covariance among 

the residuals of the model. Because the covariance model attempts to account for the 

                                                 
33 In certain situations, these options provide identical results. For example, all three methods produce 
identical results when applied to data with a CS population covariance model. Furthermore, the 
Satterthwaite and KR approximations produce the same results when applied to IN data. 



 64

association among and variability of these residuals, initial mean model misspecification 

may inflate the covariance and negatively impact the covariance modeling process 

through the introduction of this bias (Fitzmaurice et al.). Consequently, all potential 

candidate model fits in the current study incorporate a saturated or maximal model for the 

mean (see Methods section Data Generation and Model Fitting Procedures Technical 

Notes: Phase I for more details).    

This section has been a brief overview of the usual parameterization and 

distributional assumptions, estimation, inference, and model fitting procedures for the 

MM. Detailed descriptions of the experimental conditions and data generation procedures 

in the current study follow.  

Explication of Experimental Factors 

 There are five main experimental factors under which data were generated in the 

current study: 1) population covariance structure (with seven levels), 2) number of 

measurement occasions (two levels), 3) magnitude of serial correlation (two levels), 4) 

presence of non-constant variance (two levels), and 5) sample size (three levels). All 

permissible combinations of these factors34 determine 72 experimental conditions under 

which data were generated (see Table 3.1, p. 94). Further description of each factor and 

its levels follow.     

 

1) Population Covariance Structure  

The first experimental factor under which the data were generated is the 

population covariance structure. A survey of the applied and methodological literature in 
                                                 
34 The population covariance structure and non-constant variance factors can not be completely crossed. 
See Table 3.1 and the end of this section for explanation.  
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the area of longitudinal data analysis identified a number of structures that are commonly 

employed in the context of applied data analysis and are highly favored by 

methodologists (Davis, 2002, pp. 130-134; Fitzmaurice et al., 2004, pp. 166-173; 

Verbeke & Molenbergs, 2000, pp.98-101). For example, Wolfinger (1993) identified the 

diagonal (i.e., IN), compound symmetry (CS), UN, and AR structures as the most 

common in use. However, in order to focus on longitudinal data analysis where the 

variances are most often found to increase with time, covariance structures that allowed 

heterogeneity among the variances were identified as the most appropriate to include for 

data generation purposes.  

Therefore, the current study investigates the possibility of surrogate structures for 

seven population or correct covariance structures: independence (IN) (i.e., simple), 

variance components (VC), compound symmetry (CS), compound symmetry with 

heterogeneity present with respect to time (CSH), autoregressive with heterogeneity with 

respect to time (ARH), Toeplitz with heterogeneity with respect to time (TOEPH), and 

UN. The IN and VC structures were identified because they represent the situation where 

the data show little or no correlation (i.e., independent observations). The CS structure 

was identified because it represents the ideal situation for the classical univariate methods 

where the assumption of sphericity is met. The ARH and TOEPH structures were chosen 

because they represent situations that are especially typical of longitudinal data: 1) 

decreasing correlation among the data with increasing separation in time, and 2) 

increasing variances with time. Finally, the UN structure was selected because it 

represents the situation where the classical multivariate and the MM approaches may 

perform optimally.  
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Therefore, the data in the current study were generated with these seven 

covariance structures. However, it was of interest to evaluate the consequences of fitting 

models that assumed homogeneous variances to data that exhibit variance heterogeneity. 

Therefore, nine covariance structures were used as candidate models in the current study: 

the seven previously discussed plus the AR and TOEP structures. A brief description of 

each of these nine covariance structures follows. These structures are displayed 

pictorially and in generality in Table 3.2 (pp. 95 – 97). 

Independence (IN). This pattern is the covariance structure assumed by the 

general linear model with a constant variance value on the main diagonal elements of the 

matrix, and all off-diagonal elements set to zero. 

Variance components (VC). This is a generalization of the IN pattern that allows 

for unequal variances on the main diagonal with all off-diagonal elements still set to zero. 

Compound symmetry (CS). The CS structure is a covariance pattern where each 

main diagonal element is decomposed into σ2 + σ1 and all off-diagonal elements are set to 

the value of σ1. This covariance structure was originally adapted to the analysis of 

repeated measurements from the split-plot design analysis. It requires that the variances 

of differences of all possible pairs of measurements within clustered structures be 

constant. This assumption is generally considered tenable in the split-plot design where 

levels of the sub-plot are randomly assigned to units within main plots and the 

measurements are taken simultaneously. However, in the analysis of longitudinal data, 

this is equivalent to requiring that the relationships of measurements spaced further apart 

in time are equal to those spaced closer in time. This assumption is typically not 
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considered tenable in applied longitudinal data analysis. It should be noted that the CS 

pattern is generally synonymous with the RM ANOVA assumption of sphericity. 

Heterogeneous Compound Symmetry (CSH). This pattern is a simple 

generalization of the CS structure that allows for non-constant variances on the main 

diagonal. While the assumption of sphericity is met in the CS structure, sphericity is not 

met in CSH due to the introduction of variance heterogeneity. 

Autoregressive (AR). The AR structure was adapted from time series analysis 

where it is often used to account for the internal structure or autocorrelation of 

observations over time. It models the relationships of the measurement occasions 

parsimoniously by imposing a decreasing exponential trend between time lags. That is, 

adjacent measurement occasions (time lag 1) are specified to have the same covariance. 

Occasions that are two time points apart (time lag 2) are also all specified to have the 

same covariance; however, they are modeled as having exponentially decreased from the 

covariance at time lag 1. Thus, the AR structure is only appropriate for those instances 

where measurements are collected at equally spaced occasions. The AR structure has two 

parameters (k = 2): one for constant variance and ρ, a parameter governing the rate of 

exponential decrease between covariation at successive time lags. 

Heterogeneous autoregressive (ARH). This is a simple generalization of the AR 

pattern that allows for non-constant variances with respect to measurement occasions. 

Toeplitz (TOEP). The TOEP structure is akin to the AR structure in that the 

covariance between any two measurement occasions is constant for all at the same time 

lag. Therefore, all covariances at time lag 1 are equivalent; all covariances at time lag 2 

are equivalent, etc. This manifests itself in the physical appearance of the matrix so that 
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all diagonal elements are the same (see Table 3.2, pp. 95 - 97). In this respect, the TOEP 

structure shares the AR constraint of only being appropriate when the measurements are 

collected at equally spaced intervals in time. The TOEP structure is unlike the AR 

structure, however, in that it is less restrictive and allows the different covariances on 

each diagonal of the covariance matrix to be freely estimated instead of imposing the 

constraint that they decrease exponentially. As a result, the TOEP structure may fit data 

better when the covariances over time approach zero more slowly; however, it requires 

multiple parameters to be estimated. The number of parameter estimates needed (k) is 

equal to the number of measurement occasions (t) in the dataset (i.e., k = t).   

Heterogeneous Toeplitz (TOEPH). Once again, this pattern is a generalization that 

allows for non-constant variances with respect to measurement occasions. 

Unstructured (UN). The UN pattern imposes no constraints on the form of the 

covariance matrix and, as a result, requires a parameter estimate for each element of the 

matrix. Therefore, a total of k = [t(t+1)/2] parameters must be estimated requiring the 

same number of degrees of freedom. This resulting structure is the most flexible, and 

allows for the best possible fit, but at the expense of expending degrees of freedom and 

consequently loosing statistical power. This is the covariance pattern assumed by the 

MANOVA approach to the analysis of repeated measurements. 

This has been a brief review of some of the most commonly used covariance 

structures in longitudinal data analysis. Their inclusion in the current study is a direct 

result of their prevalence in both applied research contexts and methodological works 

dealing with the statistical analysis of repeated measurements. All population covariance 
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matrices that were used to generate data in the current study are displayed in tables A2 – 

A7 (pp. 190 – 195) in the Appendix. 

 

2) Number of Measurement Occasions 

The second experimental factor in the current study is the number of measurement 

occasions with two levels: three and six occasions. These values were chosen to reflect 

current trends in the analysis of repeated measurements data in the social sciences. In 

these situations only a few measurement occasions are typically available from multiple 

subjects. This is a distinct situation from time series data; for example, where only one 

independent observation is available with a large number of measurement occasions. 

Furthermore, in eight out of ten Monte Carlo studies reviewed dealing with αe’s and 

power estimates in longitudinal data, four to eight measurement occasions were selected 

for investigation by the authors. While these values were certainly in contention for use 

in the current study, it has been the experience of the author that much applied research in 

psychology involves repeated measurements with as few as three measurement 

occasions. For these reasons, the values of three and six were chosen.   

 

3) Magnitude of Serial Correlation 

 The magnitude of the serial correlation present in the data is the third 

experimental factor with two levels: .3 and .5. Although, of the ten simulation studies 

reviewed in this area, only one incorporated any measure of the amount of serial 

correlation present in the data, this factor is considered especially important in the current 

investigation. Specifically, it was suspected that certain candidate covariance structures 
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would closely approximate the correct structure when the amount of serial correlation 

was low. Moreover, while the true amount of serial correlation present in the population 

will always remain unknown, an applied researcher may estimate this value from their 

observed data as well as a rough estimate of the structure of the covariance matrix. 

Therefore, knowing which covariance structures behave alike under these conditions 

would be of interest. Ferron et al. (2002) generated data with an AR covariance structure 

while varying ρ, the autoregression parameter35 between .3 and .6. Values of .3 and .5 

were chosen in the current study because of their close proximity to the values used by 

Ferron et al. Above and beyond this precedent; however, it is well known that low 

correlations among variables suspected to be related are often encountered in the social 

sciences when human subjects are involved. Consequently, values of .3, and .5 were 

considered to realistically and adequately represent this situation. 

 

4) Presence of Non-Constant Variance 

The fourth experimental factor is the presence of non-constant variance present in 

the data with two levels: one and six. These values correspond to the presence of the 

variance at the final measurement occasion in proportion to the variance at the initial 

measurement occasion. For example, under the second level of this factor, the multiplier 

would be six. In this case, the variance at the last measurement occasion is proportional 

to six times the variance at the first measurement occasion, with the variances of the 

occasions in between increasing linearly from the value at time one to the last 

measurement occasion. Thus, a value of one for this factor implies constant variance; 

                                                 
35 The interpretation of the autoregressive parameter is the amount of correlation present at time lag 1, or, in 
other words, the amount of correlation present between any two responses collected at adjacent 
measurement occasions. 
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however, a value of six implies linearly increasing variances with a maximum variance at 

the last measurement occasion equal to six times the variance at the first time point. See 

Table 3.3 (p. 98) for a list of the multipliers used to achieve these increasing patterns of 

variances over time. 

 

 

5) Sample Size 

The fifth and final experimental factor in the current study is sample size with 

three levels: 10, 30, & 60. Keselman et al. (1999) and Vallejo and Livacic-Rojas (2005) 

have found that sample size influences the αe’s of MMs, and it is well known that sample 

size influences the power of statistical methods. Values less than 60 were chosen here 

based on a survey of repeated measurement analyses by Kowalchuk et al. (1996). In that 

survey, the authors found that out of 226 published studies in applied psychology and 

educational journals, the majority of those studies used 60 subjects or less. At the other 

end of the spectrum, Gomez et al. (2005) evaluated samples sizes as small as N = 9 with 

ni = 3 for each of three between-subjects groups (i = 1 to 3 groups). Additionally, ten was 

chosen as the smallest value for sample size based on the author’s own experience 

working in a statistical consulting center at a Research I university. 

In summary, for the investigation of Type I error rates, the current study 

generated data with regard to five experimental factors with seven, two, two, two, and 

three levels, respectively. However, all experimental factors were not completely crossed. 

For example, generating data for the IN structure precludes that the variance be constant. 

That is, crossing this true structure with the non-constant variance specification would 
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not be possible because, by definition, the IN structure consists of constant variance. As a 

result, all experimental factors were crossed except where a contradiction between true 

structure, magnitude of serial correlation, or nonconstant variance was encountered. This 

design resulted in a total of 72 experimental conditions under which the data were 

generated. 

 

Additional Factor for Empirical Power Estimation 

 For the estimation of empirical statistical power it is necessary to add a sixth 

factor to the design: Mean Effect. The Mean Effect factor was specified with three levels 

corresponding to effect sizes measured by ω2 = .01, .06, .14. These effect sizes relate to 

small, medium, and large effects as designated by Cohen (1977, pp. 284-288). Because 

an equally-spaced mean configuration was used in the current study so that the means 

were increasing linearly with time, mean effect is the only additional factor necessary to 

fully specify this factor. 

 The addition of this sixth factor would potentially increase the number of 

experimental conditions beyond a manageable number. Authors of previous research 

such as Keselman et al. (1999) and Vallejo and Livacic-Rojas (2005) have encountered 

similar situations, and chose to investigate empirical power for only those situations 

where αe’s were robust. Therefore, in order to keep the number of experimental 

conditions within a manageable range, this approach was adopted in the current study.  

 



 73

Additional Factor for the Comparison of Between-Subjects Groups 

 As mentioned in Chapter I, a secondary interest of the current study was to assess 

the Type I error control of the interaction test when a between-subjects factor was present 

in the design. Therefore, data were generated for a third phase where an additional factor 

was added to the single-group repeated measures design used in phase I: a between-

subjects variable (Group) with two levels (i.e., j = 1, 2). For these purposes, the two 

group data were generated with sample sizes nj = 5, 15, or 30. Also, group population 

covariance matrices were specified to be equal. Finally, data were generated where the 

null hypotheses for all factors (interaction, Group, Time) were true. That is, no 

interaction effect or main effects of Group or Time were specified. 

Other aspects of the experimental design remained constant across phases 

including: the number of population covariance structures (seven), the number of 

measurement occasions (t = 3 or 6), the magnitude of serial correlation (r = .30 or .05), 

and the presence of non-constant variance (constant or non-constant). 

Also, where 10,000 replications were obtained for both phases I and II, only 5,000 

replications were performed for this secondary investigation due to time constraints. Data 

were also generated for only those degrees of freedom options in SAS that proved to be 

robust in the single-group repeated measures design (phase I; see Chapter IV for these 

results). Other than these exceptions, the data generation, model fitting, and analysis of 

these data followed the procedures for phase I. 
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Data Generation and Model Fitting Procedures Overview: Phase I 

Phase I procedures correspond to data generation when the null hypothesis for the 

test of Time is known to be true in order to obtain αe’s. For this first phase of the study, 

the SAS macro generated correlated normally-distributed random variables under a given 

experimental condition (with particular values for the sample size, number of 

measurement occasions, magnitude of the serial correlation, etc.). At this phase, the data 

are generated so that the null hypothesis of no Time main effect is known to be true.  The 

macro then fit eight candidate covariance models and the correct model to the same 

dataset. From these model fits, the five information criteria, likelihood function, 

convergence status, and information concerning the statistical tests for the main effect of 

Time were extracted for each fit and saved to a permanent SAS dataset for final analysis 

(see Appendix, Table A1, p. 186 - 189 for an example of a SAS dataset).  

 As mentioned earlier in this chapter, a saturated or maximal mean model was 

specified in all model fits. This is analogous to an ANOVA treatment-effects 

parameterization of the model (or profile analysis approach) where indicator variables are 

used to specify separate means at each time point as opposed to modeling Time 

continuously with a growth curve approach. Once again, this is important to minimize the 

chance of introducing spurious covariance in the data during the covariance modeling 

process due to mean model misspecification Fitzmaurice et al. (2004, pp. 173-177). 

The diagram provided below displays the general form of the design matrix of 

these models based on SAS PROC MIXED36 fitting procedures. In this example, there 

                                                 
36 The SAS code is provided later in this section. 
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are ten subjects (i = 1 to N; N = 10) with six measurement occasions (j = 1 to t; t = 6). 

Therefore, the following model holds for yij. 

 

y = * β + ε

y11 1 1 0 0 0 0 e11

y12 1 0 1 0 0 0 e12

y13 1 0 0 1 0 0 e13

y14 1 0 0 0 1 0 e14

y15 1 0 0 0 0 1 e15

y16 1 0 0 0 0 0 e16

y21 1 1 0 0 0 0 e21

y22 1 0 1 0 0 0 β0 e22

. . . . . . . β1 .

. = . . . . . . * β2 + .

. . . . . . . β3 .
y95 1 0 0 0 0 1 β4 e95

y96 1 0 0 0 0 0 β5 e96

y101 1 1 0 0 0 0 e101

y102 1 0 1 0 0 0 e102

y103 1 0 0 1 0 0 e103

y104 1 0 0 0 1 0 e104

y105 1 0 0 0 0 1 e105

y106 1 0 0 0 0 0 e106

X

 

 
 
 A model with a grand mean and six deviation parameters from that grand mean 

for each of the six measurement occasions is over-parameterized. In order to remedy this 

situation, SAS automatically sets the estimate of the final measurement occasion to zero. 

Therefore, the ‘intercept term’ (β0) in the model displayed above takes on the value of the 

final measurement occasion (the 6th, in this example) and β1 – β5 are deviations from that 

mean. This is often called a reference-group parameterization (Fitzmaurice et al., 2004, p. 

113). In this example with six measurement occasions, then, the estimate of the 

population mean at the final or sixth measurement occasion is β0; however, the estimate 

of the population mean at the kth measurement occasion for k = 1 to 5 is (β0+ βk) (see 

diagram below).  
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μ1 β0 + β1

μ2 β0 + β2

μ3 = β0 + β3

μ4 β0 + β4

μ5 β0 + β5

μ6 β0  
 
 
 Notice that this parameterization corresponds directly to Xi, the subset of the 

design matrix X for the ith subject.  

 

 
 1 1 0 0 0 0

1 0 1 0 0 0
Xi 1 0 0 1 0 0

1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

=

 
 

 

The first five rows of this matrix determine the first five parameter estimates by 

adding a value determined by indicators in the second through sixth columns to the β0 

value (the first column). The sixth row is simply set to the β0 value without any further 

adjustment and therefore defines the sixth measurement occasion as the reference group. 

 

Data Generation and Model Fitting Procedures Technical Notes: Phase I 

 For every dataset generated by the simulation, a unique seed value for the SAS 

random number generator was used. These seed values were generated by the 

“SEEDGEN” macro developed by Fan, Felsovalyi, Sivo, and Keenan (2001, p. 38). 
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SEEDGEN is a SAS macro that generates seed values insured to select unique or non-

overlapping streams of quasi-random numbers. As a consequence, the seed values used in 

the current study guarantee the following: 1) the results of the current study can be 

reproduced at a later time with a subsequent execution of the simulation macro, and 2) no 

duplicate random numbers are used in data among replications of the simulation.    

 Technical details concerning the data generation and manipulation and general 

steps of the simulation are as follows.  For each condition i and each replication j, a 

unique (N x t) data matrix of standard normal random variables (Dij)37 was generated 

using SAS’s PROC IML (where N = the sample size of the one homogeneous group 

which varies across experimental conditions taking on values of 10, 30, & 60, and t = the 

number of time points or measurement occasions also varying across experimental 

conditions and taking on values of 3 & 6). Thus, the number of rows in the data matrix 

(Dij) represent the number of subjects (N) and the number of columns of Dij represent the 

number of measurement occasions (t): 

 

Dij(Nxt) ~ N(0,I).         (3.5) 

 

At this point, there is no relationship or correlation among the data with respect to 

the t measurement occasions. In order to introduce the desired correlation in the data, a 

correlation matrix (Ri) consistent with the parameters of each experimental condition (i) 

was specified. That is, the correlation matrix (Ri) was systematically varied between 

conditions using SAS macro conditional statements. This matrix was dependent on three 

parameters: the general structure of the correct covariance matrix, the number of 
                                                 
37 Dij is the data matrix of standard normal variates for the ith condition and the jth replication. 
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measurement occasions, and the maximum magnitude of the serial correlation for a given 

experimental condition (see Methods section Generation of Correlation Matrices for more 

details).  

For example, one condition of the current study entailed generating data for a 

correct model with an IN covariance structure and three measurement occasions38. The 

R1 matrix is specified as follows for this condition. 

 

1 0 0
R1 = 0 1 0

0 0 1  

 

However, for the condition where the correct model is specified to be compound 

symmetric with six measurement occasions and the magnitude of serial correlation set to 

.3, R2 takes the following form. 

 

1 0.3 0.3 0.3 0.3 0.3
0.3 1 0.3 0.3 0.3 0.3
0.3 0.3 1 0.3 0.3 0.3
0.3 0.3 0.3 1 0.3 0.3
0.3 0.3 0.3 0.3 1 0.3
0.3 0.3 0.3 0.3 0.3 1

R2 =

 

 

Thus, Ri is systematically varied in order to meet the differing conditions under 

which the data were generated. Because Ri entirely specifies the covariance structure of 

                                                 
38 It should be noted that the independence model is a special case where no serial correlation is present by 
definition of the structure of the covariance model. 
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the data to be generated in the ith condition, the subsequent steps for generating the data 

in the current study can be expressed in generality as a function of Ri. 

In order to induce the desired amount and pattern of serial correlation in the raw 

data matrix, a variation on Ripley’s (1987, p. 98) method was used. Ripley’s method 

entails pre-multiplying a matrix of standard normal variates by a lower triangular 

decomposition (the Cholesky decomposition) of the desired correlation matrix (Ri) for 

the ith condition. However, the SAS PROC IML function HALF(), which performs the 

Cholesky factorization, returns the upper triangular decomposition of the Ri matrix. 

Consequently, the upper triangular decomposition of Ri was post-multiplied by the data 

matrix Dij (see 3.4):  

 

Kij(Nxt) = Dij(Nxt) * HALF(Ri(txt)).        (3.6) 

 

These operations yield identical results: the resulting matrix (Kij(Nxt)) is a matrix 

of standard normal variates with the desired correlation structure (Ripley, 1987, pp. 98): 

 

Kij(Nxt) ~ N(0,Σi).        (3.7) 

 

The correlated data matrix Kij was then transformed to the familiar t-scaling with 

a mean of 50 and a variance of 100. This was accomplished by post-multiplying Kij by a 

diagonal matrix with the standard deviations on the main diagonal, and then adding a 

comparably-sized matrix of population mean values of 50.  Thus, the data generated 

under the condition of constant variances were post-multiplied by a Vi(txt) matrix = 
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diag(10, 10, …, 10). However, the data generated under the condition of non-constant 

variances were post-multiplied by a Vi(txt) matrix = diag(10, 10√2, …, 10√6) so that the 

variances were linearly increasing to where the variance at the final measurement 

occasion was proportional to six39: 

 

Lij(Nxt) = Kij(Nxt)  *  Vi(txt) + μ(Nxt)        (3.8a) 

 where Vi(txt) = diag(10, 10√f(λ2), …, 10√λt), 

  μ(Nxt) = 50 * J(Nxt), and 

  J(Nxt) = a (N x t) matrix of ones. 

 

The resulting data matrix (Lij(Nxt)) represents t measurements on N subjects with a 

t-scaling and with the desired amount and pattern of serial correlation and variance 

pattern present. Subsequent steps in the SAS macro simply transposed this matrix to a 

column vector (i.e., from wide data format to long; necessary for model fitting using 

SAS’s PROC MIXED procedure) and fit differing modern MMs corresponding to the 

differing covariance structures of interest using PROC MIXED.  

An example of the SAS code is given below. The call to PROC MIXED was 

executed with a SAS macro named TEST. In this example, PROC MIXED is being called 

to fit the saturated mean model with a different mean estimate at each time point (hence, 

TIME is specified as a class variable). In addition, the KR approximation is being 

requested (hence, the DDFM=KR option in the REPEATED statement). Finally, 

&STRUC in the REPEATED statement is a SAS macro variable that takes on different 

values corresponding to the different covariance models to be fit.  
                                                 
39 See Methods section “Explication of Experimental Factors” and Table 3.3, p. 98 for more detail. 
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The SAS macro processor reads the code between the %MACRO and %MEND 

statements and then generates SAS code for each %TEST statement read while 

substituting in the value of the &STRUC macro variable in the code (Delwiche & 

Slaughter, 2003, pp. 200-201). For example, the first %TEST statement directs the SAS 

macro processor to write code for PROC MIXED while substituting in “SIMPLE” for 

&STRUC in the TYPE option in the REPEATED statement and thereby fitting the model 

with an IN covariance structure. 

 
 

%MACRO TEST(STRUC=);  
 
PROC MIXED DATA=DA4 IC; 
 CLASS TIME ID; 
 MODEL RESPONSE = TIME / DDFM=KR; 
 REPEATED TIME / TYPE=&STRUC SUBJECT=ID; 
 ODS OUTPUT MIXED.MODELINFO=INFO; 
 ODS OUTPUT Mixed.InfoCrit=IC; 
 ODS OUTPUT MIXED.TESTS3=OUTDATA2; 
 ODS OUTPUT Mixed.ConvergenceStatus=CON1; 
RUN; 

 
%MEND TEST; 
 
%TEST(STRUC=SIMPLE); 
%TEST(STRUC=CS); 
. 
. 
. 
%TEST(STRUC=UN); 

 

 

Other modern MMs were fit in like manner. For example, the models fit without 

the KR approximation were done using the similar code, but without the DDFM=KR 

option. Furthermore, the models with the sandwich estimator were also fit using similar 
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code, however, without the DDFM=KR option and with the EMPIRICAL option in the 

PROC MIXED statement (Fitzmaurice et al., 2004, p. 184). 

As a result, a total of nine modern MMs (with varying covariance models: one 

correct and eight candidate models) by four test statistic options were fit to each 

generated dataset. Four classical models were fit to each dataset as well using PROC 

GLM. The SAS Output Delivery System (ODS) was then used within each call to PROC 

MIXED (or PROC GLM) in order to save relevant information concerning each model fit 

to a permanent SAS dataset for subsequent analysis. Information considered relevant here 

included a variable identifying the covariance structure used in the model fit; degrees of 

freedom, F-statistic, and associated p-value for the test of Time; the negative two log-

likelihood statistic; the number of covariance parameters used to fit the model; values for 

the five information criteria of interest; and indicator variables and a description of the 

convergence status of the model. This information was then merged with all information 

needed to uniquely identify the conditions under which the data were generated. See 

Appendix, Table A1 (pp. 186 - 189) for an example of this dataset. 

 
 

Data Generation Overview: Phase II 

The second phase involved data generation for the investigation of empirical 

power estimates for all nine potential candidate covariance models and all four classical 

models. To this end, data were generated under the condition that the alternative 

hypothesis for the test of Time was known to be true in order to obtain empirical power 

estimates. As before, a SAS macro was used to generate normally-distributed random 

variates under each experimental condition.  During this phase, however, each generated 
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dataset had a Time mean effect imposed upon it corresponding to small, medium, and 

large ω2 values (Cohen, 1977, pp. 284-288). The mean effects in Time for all conditions 

have been derived based on data meeting the assumptions of the CLM: independent 

observations and constant variance across time. These mean effects are displayed in 

Table 3.4 (p. 99). The SAS macro then proceeded by fitting each of the eight candidate 

models, the correct model to the data, and the four classical models. 

 

Data Generation Technical Notes: Phase II 

As mentioned previously, only those conditions where the test for Time was 

found to be robust were evaluated during the power phase of the study. Up to the 

transformation involving the t-scaling (Equation 3.8a), data generation for phase II 

proceeded exactly as described for phase I. At this stage, however, the phase II procedure 

deviated from the aforementioned by imposing a mean effect in Time onto the generated 

data. This was done by including the matrix αi(Nxt) in the transformation of Kij(Nxt):  

 

Lij(Nxt) = Kij(Nxt)  *  Vi(txt) + μi*(Nxt)        (3.8b) 

 where Vi(txt) matrix = diag(10, 10√f(λ2), …, 10√λt), 

  μi*(Nxt) = 50 * J(Nxt) + αi(Nxt), 

  J(Nxt)  = a (N x t) matrix of ones, and 

αi(Nxt) = a (N x t) matrix of mean effects for the ith condition (see Table 3.4, 

p. 99, for actual values). 

The matrix αi(Nxt) introduced the desired amount of difference in the means with 

respect to Time depending on the specified effect size for a given experimental condition. 
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See Table 3.4 (p. 99) for the different values of αi(Nxt) corresponding to ω2 values. These 

mean effects were chosen to closely approximate the Cohen (1977, pp. 284-288) effect 

size interpretations of small, medium, and large. As demonstrated in Table 3.4, the actual 

ω2 values obtained by these mean configurations do closely approximate the target values 

of .01, .06, and .14. 

 An example of the composition of αi(Nxt) for a particular condition of the power 

analysis appears below. In this example, the condition is characterized by a sample size 

of ten, three measurement occasions, and a small effect size. The αi(Nxt) matrix takes on 

the following form. 

0.00 1.75 3.50
0.00 1.75 3.50

α1(10x3) . . .

. . .

. . .

0.00 1.75 3.50

=

 

 

 Notice that the matrix has ten rows and three columns corresponding to the size of 

the Kij matrix for this condition with a sample size of ten and three measurement 

occasions. The numerical values for this condition and all other variations are displayed 

in Table 3.4 (p. 99).  

The SAS macro for phase II then executed the same steps as the phase I macro, 

most notably including those to call PROC MIXED and PROC GLM and fit the 

appropriate models, extract the pertinent information, and save that information to a 

permanent SAS dataset for further analysis. 
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Generation of Correlation and Covariance Matrices 

 This section is designed to provide further explication concerning the procedure 

and matrices involved in inducing the desired amount of serial correlation in the data. 

Five out of the seven covariance structures serving as population covariance patterns 

from which data were generated are fully specified by the general structure of the 

covariance matrix (IN, VC, CS, etc.), the number of measurement occasions, and the 

magnitude of the serial correlation for a given experimental condition. These five 

structures are the IN, VC, CS, CSH, and ARH models.  

The remaining two structures require more information to be fully specified. 

The following is provided in order to explain how these structures were obtained. First, 

the TOEPH structure allows for differing rates of decreasing (or increasing) correlation 

by estimating a unique covariance parameter for each time lag. Consequently, in order to 

fully specify these structures in the current study, an arbitrary rate of decreasing 

population correlation was specified by the multipliers {1, 0.65, 0.50, 0.35, 0.20} for the 

five distinct time lags. For example, at time lag 1, the magnitude of serial correlation for 

a given condition (i.e., .50) is multiplied by 1 in order to obtain the serial correlation at 

time lag 1 (r = .50). In like manner, in order to obtain the serial correlation present at time 

lag 2, the magnitude of serial correlation for a given condition (.50) was multiplied by 

0.65 to obtain a serial correlation at time lag 2 of r = .325. This rule was applied 

uniformly to all TOEPH matrices with only the first three elements used when the 

number of measurement occasions was specified as three {1, 0.65, 0.50}. Because both 

the AR and TOEPH structures model the correlation as a function of time lag, these 

specific multipliers were chosen to create distinct matrices from the AR structure where 
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the serial correlation is modeled as decreasing exponentially with increasing time lags. 

These population correlation matrices are displayed in Table 3.5 (p. 100). Furthermore, 

all population covariance matrices are displayed in tables A2 – A7 (pp. 190 – 195) in the 

Appendix. 

 The UN covariance model also requires further information in order to be fully 

specified. Because this structure more or less implies a random pattern of covariances 

among the measurement occasions, the SAS uniform random number generator was used 

to generate random numbers. These numbers were then transformed so that they had a 

mean of the magnitude of serial correlation specified for a given experimental conditions 

(either r = .30 or .50) and fell within the interval (r +/- 0.20, where r  = .30 or .50). For 

example, if r = .30, then uniform random numbers were generated with a mean of .30 and 

a range of (.10, .50). These numbers were then randomly assigned elements with the 

correlation matrix to be used to induce serial correlation. As a result, there were two 

unique correlation matrices (Ri) used for the UN matrix: one for each of the two levels of 

serial correlation. Like Gomez et al. (2005), matrices for three time points were subsets 

of those created for six time points. For example, the R matrix for the UN pattern with a 

serial correlation of .30 and number of time points equal to three was a sub-matrix of the 

corresponding R matrix for six time points. These population correlation matrices are 

displayed in Table 3.6 (p. 101). The specific population covariance matrices for all 

structures used in the generation of the data are provided in tables A2 – A7 (pp. 190 – 

195) in the Appendix. 
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Analysis & Results 

As mentioned earlier, a computer macro program was developed using a desktop 

personal computer with SAS for Windows. However, the final executions of this program 

were submitted to the AMD Opteron SAS server at the University of Georgia Research 

Computing Center (RCC) for greater efficiency. The SAS server is composed of two 

Opteron CPUs operating with 4 Gigabytes of RAM and the Linux operating system. 

Therefore, the macro was developed with SAS for Windows; however, the final 

executions of the program were performed by SAS for UNIX. 

The SAS datasets generated by the macro were exported to a comma-delimited 

data file from which they were imported into R for further analysis. R was chosen as a 

superior environment for subsequent analyses because it facilitates comparisons between 

cases (or rows) in the data matrix where this is more difficult to accomplish in SAS. 

  

The Evaluation of Empirical Type I Error Rates 

 As mentioned previously, the 95% confidence interval method for evaluating αe’s 

was chosen over the Bradley liberal criterion at the onset of the current study. 

Additionally, it also was decided at the onset to report αe’s at the thousandths level of 

precision. Thus, for both phases I and II, where the number of replications was 10,000, 

the 95% confidence interval for evaluating αe’s for a single condition was .050 +/- .004 or 

(.046, .054). For phase III, where the number of replications was 5,000, the 95% 

confidence interval for a single condition was .050 +/- .006 or (.044, .056). 

However, the majority of results reported in the next chapter are aggregated 

across conditions in order to arrive at αe’s for seven marginal conditions: low or high 
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correlation, t = 3 or 6 measurement occasions, and N = 10, 30, or 60 sample sizes. As a 

result, estimates of αe’s for these marginal conditions are based on varying numbers of 

replications from 240,000 to 420,000. In addition, estimates for an eighth overall 

marginal condition were based on 720,000 replications. Because the number of 

replications differed among these marginal conditions, varying confidence interval widths 

were necessary in order to evaluate the results at the 95% confidence level. However, 

because the αe’s were reported to the nearest thousandth, these differing confidence 

intervals reduced to the same interval after rounding. Therefore, the 95% confidence 

interval for evaluating αe’s in the majority of tables provided in the next chapter is .050 

+/- .001 or (.049, .051)40. 

To further aid in the description and evaluation of αe’s, the current author 

proposed a criterion of “close proximity.” This criterion was used in the next chapter to 

distinguish between those αe’s that are extreme (i.e., substantially conservative or liberal) 

and those that, while they do not fall within the limits of the appropriate 95% confidence 

interval, they still fall within close proximity of the nominal α level. Therefore, αe’s that 

fall within the intervals (.046, .048) and (.052, .054) were considered only slightly 

conservative or liberal and therefore within close proximity of the nominal α value. 

 

The Evaluation of Empirical Power Estimates 

 As mentioned previously, a review of the research literature produced no previous 

rules or heuristics in place for evaluating the comparability of statistical power. 

Therefore, the current author proposed a criterion for comparing the empirical power of 

                                                 
40 Exceptions to this rule are noted when applicable. 
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two different statistical methods based on the same dataset. Specifically, one method was 

considered comparable to an arbitrary base method if its empirical power estimate was 

within .10 of the other methods power estimate. 

 In the context of identifying surrogate covariance models, this general rule takes 

on the following form. First, a lower bound for the true model was constructed by 

subtracting .10 from the true model’s empirical power estimate. Then, a given candidate 

model’s power estimate was compared to this lower bound. The candidate model was 

declared a surrogate if its power estimate was greater than that of the true model’s lower 

bound. Otherwise, the candidate model was not considered to produce sufficiently 

comparable power in order to be considered a surrogate. 

  This section has been a brief discussion of the criteria used in the current study to 

evaluate αe’s and empirical power estimates. When analysis of both of these measures 

was appropriate41, evaluation of αe’s was conducted first. Then, empirical power 

estimates were evaluated for only those methods and only those conditions where 

acceptable Type I error control was observed. 

 

Limitations 

 Longitudinal data analysis often constitutes a potentially complex statistical 

modeling situation. Therefore, it is not reasonable to expect any one simulation study to 

address all potential variables operative in this context. As a result, the current study was 

designed to only address a finite number of the relevant issues in order to remain within a 

manageable scope. Some of the issues that were not addressed include the analysis of 
                                                 
41 Evaluation for both αe’s and statistical power were not proposed for all investigations in the current study 
(e.g., phase III).  
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longitudinal data with unequal measurement occasions, missing values, and categorical 

responses. Also, the current study focuses on data with one repeated measures factor 

(Time) and, to a lesser extent, data with one repeated measures factor and one between-

subjects factor (Group). However, many permutations of these designs are possible 

including multiple within- and between-subjects factors. Finally, the current study 

evaluates continuous response data that are normally-distributed. Investigations of non-

normally distributed data may be of interest in the future. 

In addition, some methodologists in the field promote a theoretical model for the 

variance in longitudinal data (Diggle, Heagerty, Liang, & Zeger, 2002; Fitzmaurice et al., 

2004, pp. 36-43). This model partitions the variance of the responses over time into three 

types: serial correlation, between-subject random effects, and measurement error. 

However, primary interest of the current study was to investigate how well candidate 

models approximate correct models of serial correlation. Therefore, the data generated in 

the current study do not exhibit between-subjects random effects. Further research may 

concern itself with introducing the existence and magnitude of between-subjects random 

effects and how these factors influence the modeling of serial correlation. 

As previously demonstrated, modern MM methods are a flexible class of 

statistical models. Consequently, there are many different options for modeling the mean 

response over time such as profile analysis and growth curve analysis approaches. 

Therefore, another limitation of the current study is that only one approach to modeling 

the mean response was used: the profile analysis approach. Other options are possible. 

Furthermore, care has been taken here to simulate conditions that often occur in 

the analysis of applied longitudinal data in the social sciences (including small sample 
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sizes, low and moderate serial correlation, etc.); however, every possible variable that 

may be operative in applied analysis cannot be included.  For example, in phase III of the 

current study, data were generated with variance heterogeneity with respect to Time, 

however, not with respect to Group. Previous research has shown that group variance 

heterogeneity, unequal group sample sizes, and positive or negative pairings of these two 

factors have a substantial effect on αe’s (Gomez et al., 2005; Keselman, Algina et al., 

1998; Vallejo & Livacic-Rojas, 2005). This may reduce the external validity of the 

current study for researchers working with data under these conditions or with highly 

unusual datasets.  

Finally, criteria currently used in order to define acceptable and comparable levels 

of αe’s and power estimates are not orthodox. Many alternative definitions are possible. 

Even with these limitations in mind, the current investigation yields important and 

substantial information regarding the analysis of longitudinal data. 

 

Summary 

 This chapter outlined the methods employed in the current study to answer the 

research questions of interest through the evaluation of αe’s and statistical power 

estimates. The chapter began by identifying the current study as a Monte Carlo 

simulation that was executed and analyzed using both SAS and R. Next, a brief review of 

the CLM was provided. Following that, the MM was introduced and issues regarding 

model parameter estimation, model-based inference, and model fitting procedures were 

discussed. 
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 Next, the design of the current study was outlined with respect to the three distinct 

phases under which data were generated. The first phase of the current study was 

designed to evaluate αe’s. Therefore, data were generated so that the null hypothesis was 

known to be true. Furthermore, five design features were identified: 1) population 

covariance structure, 2) number of measurement occasions, 3) magnitude of serial 

correlation, 4) presence of non-constant variances, and 5) sample size. Finally, the 

number of replications was set to 10,000 and the 95% confidence interval method was 

chosen for evaluating αe’s.  

 The second phase of the current study was designed to evaluate empirical 

statistical power. Therefore, data were generated in this phase so that the alternative 

hypothesis was known to be true. For these purposes, the five experimental factors for 

phase I were retained and an additional factor was added: the magnitude of the mean 

effect. The Mean Effect factor was designed with three levels corresponding to values of 

ω2 delineated as small, medium, and large effects by Cohen (1977, pp. 284-288). Finally, 

the number of replications was set to 10,000 and a criterion was proposed for evaluating 

empirical power estimates. 

 The third and final phase of the study was designed to evaluate the αe’s of the 

interaction test for data with one repeated measures factor and one between-subjects 

factor. Therefore, like phase I, data were generated here so that the null hypothesis was 

known to be true. The design of this phase closely approximates the design of phase I; 

however, the sample size factor changed slightly in order to reflect the two group case. 

Therefore, sample sizes in phase III were nj, = 5, 15, or 30. Finally, the number of 
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replications was set to 5,000 and, like phase I, the 95% confidence interval method was 

chosen for evaluating αe’s. 

 This has been a summary of the methods that were employed in the current study. 

The next chapter reports the results with respect to each of the research questions of 

interest. General discussion and implications of these results follow in Chapter V. 
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Table 3.1 

Number of Experimental Conditions 

Structures 

Number 
of 

Structures 

Number of 
Measurement 

Occasions 

Magnitude 
of Serial 

Correlation 

Presence of 
Non-constant 

Variance 
Sample 

Size 
Number of 
Conditions

       
Independence (IN) 1 2 . 1 3 6 
Variance Components (VC) 1 2 . 1 3 6 
Homogeneous Variance Structures 
(CS) 1 2 2 1 3 12 

Heterogeneous Variance Structures 
(CSH, ARH, TOEPH, UN)* 

4 2 2 1 3 48 

       
Total      72 
              

*CSH=Heterogeneous Compound Symmetry, ARH=Heterogeneous Autoregressive, TOEPH=Heterogeneous Toeplitz, 
UN=Unstructured
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Table 3.2  

Structures of Parameterized Covariance Matrices 

                  
         
         
   σ2 0 0 0 0 0 
     σ2 0 0 0 0 

    σ2 0 0 0 Independence 
(IN)      σ2 0 0 
        σ2 0 
         σ2 
         
         
         

   σ2
1 0 0 0 0 0 

     σ2
2 0 0 0 0 

    σ2
3 0 0 0 Variance 

Components 
(VC)      σ2

4 0 0 

        σ2
5 0 

         σ2
6 

         
         
         

   σ2+σ1 σ1 σ1 σ1 σ1 σ1 

     σ2+σ1 σ1 σ1 σ1 σ1 

    σ2+σ1 σ1 σ1 σ1 Compound 
Symmetry (CS)      σ2+σ1 σ1 σ1 

        σ2+σ1 σ1 

         σ2+σ1 
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Table 3.2 (continued) 

                  
         
         

   σ2
1 σ1σ2ρ σ1σ3ρ σ1σ4ρ σ1σ5ρ σ1σ6ρ 

   σ2
2 σ2σ3ρ σ2σ4ρ σ2σ5ρ σ2σ6ρ 

    σ2
3 σ3σ4ρ σ3σ5ρ σ3σ6ρ 

     σ2
4 σ4σ5ρ σ4σ6ρ 

Heterogeneous 
Compound 
Symmetry (CSH) 

      σ2
5 σ5σ6ρ 

         σ2
6 

         
         
         
   σ2 ρ ρ2 ρ3 ρ4 ρ5 
     σ2 ρ ρ2 ρ3 ρ4 

    σ2 ρ ρ2 ρ3 Autoregressive 
(AR)      σ2 ρ ρ2 
        σ2 ρ 
         σ2 
         
         
         

   σ2
1 σ1σ2ρ σ1σ3ρ2 σ1σ4ρ3 σ1σ5ρ4 σ1σ6ρ5

   σ2
2 σ2σ3ρ σ2σ4ρ2 σ2σ5ρ3 σ2σ6ρ4

    σ2
3 σ3σ4ρ σ3σ5ρ2 σ3σ6ρ3

     σ2
4 σ4σ5ρ σ4σ6ρ2

Heterogeneous 
Autoregressive 
(ARH) 

      σ2
5 σ5σ6ρ 

         σ2
6 
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Table 3.2 (continued) 

                  
         
         

   σ2 σ1 σ2 σ3 σ4 σ5 

     σ2 σ1 σ2 σ3 σ4 

    σ2 σ1 σ2 σ3 Toeplitz (TOEP) 
     σ2 σ1 σ2 

        σ2 σ1 
         σ2 
         
         
         

   σ2
1 σ1σ2ρ1 σ1σ3ρ2 σ1σ4ρ3 σ1σ5ρ4 σ1σ6ρ5

   σ2
2 σ2σ3ρ1 σ2σ4ρ2 σ2σ5ρ3 σ2σ6ρ4

    σ2
3 σ3σ4ρ1 σ3σ5ρ2 σ3σ6ρ3

     σ2
4 σ4σ5ρ1 σ4σ6ρ2

Heterogeneous 
Toeplitz 
(TOEPH) 

      σ2
5 σ5σ6ρ1

         σ2
6 

         
         
         

   σ2
1 σ21 σ31 σ41 σ51 σ61 

   σ2
2 σ32 σ42 σ52 σ62 

    σ2
3 σ43 σ53 σ63 

     σ2
4 σ54 σ64 

Unstructured 
(UN) 

      σ2
5 σ65 

         σ2
6 
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Table 3.3 

Variance multipliers for Data Transformation 

  Time = 3  Time = 6 
  Variance multiplier at the final measurement occasion 

Time   1  6   1  6 
         
1  10  10  10  10 
2  10  10√3  10  10√2 
3  10  10√6  10  10√3 
4      10  10√4 
5      10  10√5 
6      10  10√6 
                
         

* Each column represents a vector of multipliers which constitutes the main 
diagonal of the Vi(txt) matrix that is to be post-multiplied to Kij(Nxt) in (3.8a & 
3.8b) in order to obtain the desired amount of variance at each measurement 
occasion. 
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Table 3.4 

Mean Configuration Values for Power Analysis 

  Time = 3  Time = 6 
  Cohen's (1977) interpretation of effect size 

Time   Small Medium Large   Small Medium Large 
         
1  0.00 0.00 0.00  0.00 0.00 0.00 
2  1.75 2.95 4.95  0.60 1.50 2.35 
3  3.50 5.90 9.90  1.20 3.00 4.70 
4      1.80 4.50 7.05 
5      2.40 6.00 9.40 
6      3.00 7.50 11.75 
         

Target ω2 
value  .0100 .0600 .1400  .0100 .0600 .1400 

Actual ω2 
value  .0200 .0548 .1404  .0104 .0616 .1387 

                  
         

* Each column represents the variations of the row composition of αi(Nxt) for conditions 
differing in number of measurement occasions and effect size. 
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Table 3.5 

Population Correlation Matrices for the Toeplitz Pattern 

Correlation 3 measurement occasions 6 measurement occasions 
            
            

 1 .300 .195  1 .300 .195 .150 .105 .060 
  1 .300   1 .300 .195 .150 .105 
   1    1 .300 .195 .150 
        1 .300 .195 
         1 .300 

.3 

          1 
            

            
 1 .500 .325  1 .500 .325 .250 .175 .100 
  1 .500   1 .500 .325 .250 .175 
   1    1 .500 .325 .250 
        1 .500 .325 
         1 .500 

.5 

          1 
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Table 3.6 

Population Correlation Matrices for the Unstructured Pattern 

Correlation 3 measurement occasions 6 measurement occasions 
            
            

 1 .272 .434  1 .272 .434 .427 .285 .220 
  1 .147   1 .147 .177 .179 .205 
   1    1 .394 .455 .395 
        1 .285 .129 
         1 .286 

.3 

          1 
            

            
 1 .609 .572  1 .609 .572 .657 .473 .449 
  1 .370   1 .370 .581 .395 .428 
   1    1 .510 .403 .519 
        1 .455 .382 
         1 .495 

.5 

          1 
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CHAPTER IV: RESULTS 
 

 
 

 

 This chapter presents the following results that correspond directly to the research 

questions of interest in the current study: i) empirical Type I error rates (αe’s) for four modern 

mixed model (MM) test statistic options; 1) αe’s and power estimates of all true model by 

potential surrogate model combinations as well as identification of surrogate models; 2) selection 

rates of the a) correct, b) surrogate, and c) appropriate models as well as the rates of a) 

underfitting, and b) overfitting the true model for five information criteria; 3) αe’s and power 

estimates for models selected by each of the five information criteria; 4) αe’s and power 

estimates for both modern MMs and classical methods; 5) αe’s for the interaction test of modern 

MMs when a between-subjects factor is added to the single-group repeated measures design. 

As described in Chapter III, raw data were generated, the appropriate statistical models 

fit, and model fit information was coerced and saved in permanent SAS datasets. Once these 

datasets were obtained, they were imported into R and the analysis phase of the study began. R 

programs that analyzed the data were run on both PC and IBM pcluster machines.  

This chapter uses a set of tables to summarize the results of the current study. These 

tables are located both at the end of the current chapter as well as in the Appendix. An attempt 

was made to construct these tables so that they are as uniform as possible for ease of reading and 

interpreting the results. However, at least two comments are worthy of note. 
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First, most tables reporting αe’s and power estimates summarize these results with 

respect to eight marginal conditions: low correlation, high correlation, 3 measurement occasions, 

6 measurement occasions, small sample size, moderate sample size, and large sample size, as 

well as the overall marginal summary42. Tables of this variety for power estimates report results 

aggregated across the Mean Effect factor. In addition, tables that summarize results with respect 

to the twelve combinations of correlation, measurement occasions, and sample size are provided 

when appropriate (usually when an interaction was observed and further explanation is offered). 

Second, the high correlation condition for both the independence (IN) and the variance 

components (VC) true structures is non-applicable because, by definition, no correlation is 

present in these structures.  For ease of reading the tables, however, the IN and VC data are 

summarized under the low correlation condition. In actuality, there is no correlation present in 

the IN and VC population covariance matrices (see Table 3.1, p. 94). This affects the format of 

the tables because, as a result, the number of replications may vary among columns. For 

example, in Table 4.i.1 (p. 133), column 1 estimates are based on N ≈ 420K replications, while 

column 2 estimates are based on N ≈ 300K replications.  

Therefore, in tables reporting αe’s, the number of replications used in the calculation of 

confidence intervals varied among columns. However, αe point estimates are reported to the 

nearest thousandth43. As a consequence of this level of precision, the limits of respective 95% 

confidence intervals were also rounded to the nearest thousandth. As a result, the 95% 

confidence interval of (.049, .051) was used in all instances, except where otherwise noted. Point 

estimates of αe’s that fell within the limits of this interval are presented in bold print in all tables. 

The criterion of close proximity proposed in Chapter III was also used in order to evaluate results 

                                                 
42 The overall marginal summary aggregates data across all twelve conditions. 
43 In contrast, empirical power estimates are reported to the nearest hundredths. 
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summarized in these tables: (.046, .048) & (.052, .054). However, no special formatting was used 

in the summary tables in order to identify values that met this criterion. 

Before addressing the research questions outlined in the first several chapters of this 

document, an analysis of nonconvergence rates of the modern MM methods is provided.  

 

Nonconvergence Rates 

 Mixed models fit in SAS’s PROC MIXED are estimated using restricted maximum 

likelihood (REML) methods. REML is an iterative estimation procedure that requires a 

convergence criterion to be met in order to produce a final set of model parameter estimates. As 

a result of this estimation method, it is possible that some models will not meet the convergence 

criteria, and therefore will not arrive at final model parameter estimates. Model fitting attempts 

that do not meet the convergence criterion may provide estimates that are unstable. Results 

obtained under these conditions are generally considered unreliable. Nonconvergence usually 

occurs when the data do not conform to the model to be fit. 

 Convergence-related issues are summarized in Table A8 (see Appendix, p. 196). In order 

to facilitate ease in reading this table, nonconvergence rates are reported as opposed to 

convergence rates. Table A8 reports frequencies of models that did not converge for each of the 

true covariance structures under which the data were generated (aggregated across the nine fitted 

models). Empty cells indicate that all models obtained convergence for a given condition.   

 Inspection of Table A8 (p. 196) demonstrates that nonconvergence was not prevalent 

enough to be problematic in the current study. For all but one true structure, counts of 

nonconvergence ranged from 11 to 14 out of either 540,000 or 1,080,000. The exception to these 

figures is the VC true structure where 161 models did not converge. Further investigation 
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demonstrated the existence of a 3-way interaction: true model by fitted model by sample size. 

That is, all 161 incidents of nonconvergence occurred when the heterogeneous compound 

symmetry (CSH) model was fit to the VC data (true model) and the sample size was small. In 

this instance, the rate of nonconvergence was 0.81% (161 models out of 20,000). Furthermore, 

approximately only three tenths of a percent of the CSH models fit to the VC data did not 

converge (regardless of sample size).  While these rates are elevated with respect to 

nonconvergence rates in all of the other conditions, they are still a very small percent of the total 

number of models attempted to be fit under these conditions. Therefore, this problem is unlikely 

for the typical applied researcher who may be using these methods under these conditions. 

 In conclusion, Table A8 (p. 196) demonstrates that the overwhelming majority of MMs 

fit to the data generated in the current study successfully obtained convergence status as 

evaluated by the PROC MIXED default settings. Therefore, non-convergence related issues were 

not considered to be a threat to validity of the results of the current study. Nonetheless, all 

subsequent results were calculated conditionally on model convergence. That is, only those 

models that met the convergence criteria were used in the calculations44 to answer the research 

questions of the current study. In light of these findings, the remainder of this chapter reports and 

discusses the results that specifically address each of the research questions initially presented in 

Chapters I and II. 

 

                                                 
44 That is, calculations of αe’s, power estimates, selection rates, etc. 
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Preliminary Research Question i 

 

i) How do test statistics for the fixed effects of the mixed model compare with 

respect to αe’s when the SAS PROC MIXED default (the Between/Within option), 

the Satterthwaite approximation, the Kenward-Roger approximation, and the 

sandwich estimator options are used? 

 

The main objective of this question was to investigate the relative robustness of the 

modern MM test statistics when differing methods of obtaining those statistics are used. This 

was accomplished by investigating αe’s under the differing conditions implemented in the current 

study. 

Tables 4.i.1 (p. 133) and 4.i.2 (p. 134) report αe’s with respect to the four test statistic 

options under each of the eight marginal conditions. In Table 4.i.1, only the correct model fit was 

used from the seven true structures from which the data were generated. These seven αe’s were 

then averaged across true structure in order to obtain an aggregated αe point estimate for each test 

statistic option for a given marginal condition. In contrast, Table 4.i.2 aggregates the αe’s across 

the eight incorrect candidate models for each of the seven true models and then across all seven 

true models in order to obtain estimates for each of the four test statistic options.  

Inspection of Table 4.i.1 (p. 133) shows that the Kenward-Roger (KR) approximation 

obtained αe’s within the limits of the 95% confidence interval for six out of the eight marginal 

conditions. The two marginal conditions where point estimates did not fall within these limits 

were the high correlation and the small sample size marginal conditions. However, the KR test 

statistics obtained values of .048 in both of these cases. Therefore, these estimates were not 



 

 107

liberal, only slightly conservative, and still within close proximity of the nominal α value of .05. 

In fact, when comparing across test statistic options, the KR value of .048 for the small sample 

marginal average is more desirable than the estimates from the other test statistic options, which 

were liberal in all cases, and were excessively liberal for both the Between/Within and sandwich 

estimator options. Finally, Table 4.i.1 shows that the KR approximation was the only option that 

obtained an overall marginal mean that fell within the 95% confidence interval limits. 

Further investigation demonstrated that αe’s for the KR approximation were within the 

95% confidence interval limits in six out of the twelve conditions studied (see Appendix, Table 

A9, p. 197). Of the other test statistic options, only two point estimates fell within the confidence 

interval limits for the Satterthwaite approximation, one for the Between/Within option, and none 

for the sandwich estimator. Finally, all twelve of the KR point estimates fell within close 

proximity of the nominal value45.  

Further analysis under all twelve conditions also revealed that the Between/Within option 

did not perform well, with the majority of αe’s in the neighborhood of .063 with a range of .053 

to .115. Furthermore, this option proved especially problematic in instances where both a large 

number of measurement occasions (6) were used and the sample size was small. Under these 

conditions, the Between/Within option obtained an αe estimate of .115. The Satterthwaite 

approximation obtained elevated αe’s under the same conditions. However, the Satterthwaite 

approximation provided more control over these errors (.088 was the largest estimate). 

As expected from the available literature (Fitzmaurice et al., 2002, p. 303-305), the 

sandwich estimator did not perform well under small sample conditions and obtained values 

ranging from .112 to .399. Similar to the Between/Within and Satterthwaite results, there does 

appear to be a two-way interaction operative between the number of measurement occasions and 
                                                 
45 That is, all estimates met the close proximity criterion used in this study (0.046, 0.048) & (0.052, 0.054). 
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sample size. This interaction manifests itself through excessive Type I errors for the sandwich 

estimator under small sample conditions with a large number of measurement occasions. 

Specifically, the difference between αe’s at measurement occasions t = 3 & 6 at the N = 10 factor 

level of sample size (.290) is 7.18 times greater than the average difference between t = 3 & 6 

for N = 30 & 60 levels (.040). However, because N = 10 is an extremely low sample size 

condition and the existing literature has already documented the poor performance of the 

sandwich estimator under these conditions (Fitzmaurice et al., 2002, p. 303-305), it may be of 

more interest to note the effect of this interaction on moderate sample sizes. Results show the 

sandwich estimator obtained inflated αe’s of the magnitude of .124-.125 under conditions with as 

many as 30 subjects (considered a moderate sample size in many social science statistical 

applications) when a large number of measurement occasions are analyzed. 

Because the sandwich estimator is resistant to covariance model misspecification, it may 

be inappropriate to compare it with the other options when only the correct covariance model 

was fit to the data as is the case in Table 4.i.1 (p.130). Therefore, a separate table (4.i.2, p. 134) 

was constructed that aggregates the αe’s across the eight incorrect candidate models for each of 

the seven true models and then across all seven true models in order to obtain estimates for each 

of the four test statistic options. These estimates provide information to the approximate αe’s 

across a number of modeling circumstances including when the covariance model was both 

underfit and overfit. Table 4.i.2 demonstrates that while none of the KR αe’s fell within the 95% 

confidence interval limits, none of them exceed the upper limit and the majority met the criterion 

of close proximity. In contrast, the sandwich estimator continued to obtain excessively inflated 

estimates for small sample cases and substantially inflated estimates for N = 30 moderate sample 

cases when the number of measurement occasions was large (t = 6). Furthermore, both the 
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Between/Within and Satterthwaite methods do not appear to be in contention as they continue to 

obtain inflated αe’s for small sample/large measurement occasion conditions. Therefore, the KR 

approximation still appears to provide superior error rate control, even when the covariance 

model is misspecified. 

Overall, these results demonstrate that the KR approximation provides superior Type I 

error control when compared to the other options investigated in the current study. Even when 

the KR αe’s did not fall within the 95% confidence interval limits, they never exceeded the upper 

limit of that interval and therefore never obtained results suggesting a liberal test. Furthermore, 

the majority of αe’s fell within close proximity to the nominal α value of .05, providing further 

evidence of superior Type I error rate control.  Because no other option came close to the KR 

level of control, a comparison of empirical power estimates among these test statistic options 

was considered unnecessary. As a result of these findings, the KR approximation is used in all 

modern MMs in subsequent analyses.  

 

Primary Research Question 1 

 

1) Do surrogate covariance structures exist? If so, which structures serve as 

acceptable approximations for a given population or correct structure? 

 

 The objective of this research question was to assess the comparability of different 

covariance structures in the modeling of longitudinal data using modern MM methods. This was 

considered important for three main reasons. First, the existence of surrogate covariance 

structures was hypothesized has having an impact on the accuracy rates of information criteria 
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within the context of modeling covariance patterns. Second, an investigation into surrogate 

structures was expected to yield information regarding the severity of covariance model 

misspecification in modern MM use. Third, results from this investigation were expected to yield 

helpful heuristics for applied researchers employing modern MM methods in similar contexts. 

 As mentioned previously, surrogate-hood was based on two criteria: 1) Type I error 

control as measured by the 95% confidence interval method with αn = .05, and 2) a potential 

candidate model’s comparability to the correct model in terms of empirical power estimates. 

Once again, a candidate model was considered comparable in statistical power if its empirical 

power estimate was greater than the lower bound (LB) formed by the correct model’s power 

estimate:  

 

LB = (1 - β)correct model - .10. 

 

Table 4.1.1 (p. 135) reports overall marginal αe’s and power estimates46 for each of the 

63 true model by candidate model combinations. Table 4.1.2 (p. 136) reports surrogate status of 

the candidate models with respect to each of the true models. Table 4.1.3 (p. 137) displays values 

of the multivariate index of distance, u. Tables 4.1.4 (p. 138) and 4.1.5 (p. 139) report αe’s and 

power estimates, respectively, that have been aggregated across the seven true structures in order 

to provide further insight into how well each candidate model performs when applied to 

longitudinal data on average. If further inspection of αe’s and power estimates is desired, 

fourteen tables are provided in the Appendix that report this information in disaggregated form. 

(see Appendix, tables A10 – A23, pp. 198 - 211). 

                                                 
46 These αe’s and power estimates are averaged over all twelve conditions delineated by crossing the correlation, 
measurement occasion, and sample size factors. 
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The format of tables 4.1.1 (p. 135) and 4.1.2 (p. 136) are very similar. Both tables list the 

seven true covariance structures by row and the nine candidate models by column. The main 

diagonal47 represents the situation where the correct model was fit to the data. Empirical Type I 

error rates (αe’s) are presented in each cell with power estimates immediately below the αe’s and 

in parentheses. For both tables, cells below the intersection (the lower triangle) represent 

situations were the data were underfit. Cells in the upper triangle represent situations where the 

data were overfit. In Table 4.1.1, both αe’s and power estimates that met their respective criteria 

are printed in bold. When both of these criteria were met, the candidate model was identified as a 

surrogate for that particular true model. These cells are shaded in Table 4.1.1 for improved 

interpretability. 

Table 4.1.1 (p. 135) demonstrates that only in five of the seven instances when the 

correct model was fit to the data was the αe criterion for surrogate-hood met. This phenomenon 

may be a reflection on the level of strictness of the αe criterion or the level of precision (i.e., the 

number of replications) used in the current study. Or, this may be an indication of the modern 

MM methods’ inability to properly model data under these conditions. This issue is discussed 

further in the next chapter. 

 Further inspection of Table 4.1.1 (p. 135) shows that 14 surrogates were identified in all. 

First, 13 of the 14 surrogates identified overfit the data; that is, these were situations where the 

modeled covariance structure overfit the true covariance structure. The exception was where the 

CSH model was found to be a surrogate for the UN true model. Second, models that overfit the 

variance structure typically demonstrated acceptable levels of Type I error control and 

comparable power (no substantial loss of power). In contrast, candidate models that underfit the 

                                                 
47 Table 4.1.1 is not a square matrix and, therefore, technically does not have a main diagonal. However, the cells 
appearing on the diagonal running from the top left to the bottom right do have a special interpretation. 
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variance structure were typically rejected as surrogates due to inflated αe’s. Third, the number of 

surrogates for each true structured differed. Three surrogates for the IN model were identified: 

CS, AR, and TOEP. For the VC model, four surrogates were identified: CSH, ARH, TOEPH, 

and UN. Next, the TOEP and UN structures were identified as surrogates for the CS model. The 

TOEPH and UN structure were identified as surrogates for the ARH true model. In contrast, only 

the UN structure was identified as a surrogate for the TOEPH true model. Finally, as previously 

mentioned, the CSH model was identified as a surrogate for the UN structure. Implications of 

these results are addressed in the next chapter. 

 Table 4.1.2 (p. 136) identifies surrogate relationships in a more readable format. 

Candidate models that met the requirements for surrogate-hood for a given true model are 

identified as such by a “1” in the appropriate cell of the table. All other cells are left blank. 

 To further investigate the comparability of candidate models with true population 

structures, a measure of the multivariate distance between the mixed model-estimated and 

sample-based covariance matrices was obtained using the index u (Rencher, 2002, p. 248-249): 

 
u = v[ln|S| - ln|M| + tr(MS-1) – p]      (4.1) 

 
 where  v = degrees of freedom of M, 
  S = sample covariance matrix, 
  M = model estimated covariance matrix, and 
  p = the number of variables = the number of time points. 
 

Therefore, u was considered a measure of how well the MM estimated or reproduced the sample 

covariance matrix. Specifically, smaller values of u indicate that the estimated covariance matrix 

more closely approximated the sample matrix while larger values indicate more “distance” 

between the two matrices, and therefore greater lack of fit. 
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 Mean values of u are presented in Table 4.1.3 (p. 137) for each of the 63 true model-by-

candidate model combinations48. Combinations where a candidate model was found to be a 

surrogate for a given true model are identified with corresponding shaded cells. Inspection of this 

table demonstrates that the behavior of u met a priori expectations. For example, the table shows 

that when the IN model was fit to simpler data (IN & VC), mean values of u were relatively low. 

However, when this highly restrictive covariance structure was fit to more complex structures, it 

was unable to adequately approximate the sample covariance matrix as indicated by higher mean 

values of u. Specifically, mean values of 4.27 and 6.89 were obtained for u when the IN model 

was fit to the IN and VC data, respectively. In contrast, values of 9.73 and 11.62 were obtained 

when the IN model was fit to the TOEPH and UN data.  

It is worth noting that the UN structure obtained the lowest values of u, even when 

compared to situations when the correct covariance model was fit to the data. Under these 

circumstances (i.e., when the correct model was fit to the data), values of u ranged from 2.92 to 

4.27. However, when the UN structure was fit to these same structures, lower values of u were 

obtained that ranged from 1.91 to 1.92. These results demonstrate the UN structure’s ability to 

approximate other covariance structures and further support its role as a universal surrogate for 

the true structures evaluated in the current study.   

Furthermore, lower values of u were found to correspond with surrogate-hood. This is the 

general trend, but not the case in every instance. For example, when the TOEPH candidate model 

was fit to data generated from each of the seven true models, mean values of u were tightly 

clustered and obtained a range from 2.90 to 3.33. In fact, TOEPH obtained the same value of 

2.91 when fit to both the VC and CS data. However, the TOEPH model was only found to be a 

surrogate for the VC true structure. In general, however, values of u support the conclusions 
                                                 
48 That is, 63 sample-by-estimated matrix combinations. 
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concerning surrogate-hood drawn from the comparison of αe’s and power estimates. That is, 

lower values of u were observed for combinations where the candidate model was found to be a 

surrogate for a given true model. 

 Tables 4.1.4 (p. 138) and 4.1.5 (p. 139) provide some insight as to the general 

applicability of the nine candidate models averaged across true model with respect to the eight 

marginal conditions. Table 4.1.4 demonstrates that, on average, αe’s were controlled when the 

CSH model was used in moderate and large sample size situations, regardless of the true model. 

Additionally, power estimates for this model under these conditions demonstrate a reasonable 

degree of statistical power ranging from .40 to .94 (see Table 4.1.5). Tables 4.1.4 and 4.1.5 also 

show that the AR model controlled αe’s in five of the eight marginal conditions; however, power 

estimates were considerably lower than the CSH model fits with differences as great as 12%. 

Finally, the UN structure provided superior Type I error control, obtaining αe’s within the 95% 

confidence limits in all eight marginal conditions. Furthermore, the UN structure demonstrated 

comparable power to the CSH model with estimates only 1 to 3% lower than the CSH model. 

 These results identified 14 surrogate covariance models. Moreover, results suggest that 

both the CSH and UN structures may serve as acceptable approximates to any one of the seven 

true models with both of these structures providing reasonable Type I error control and 

comparable power estimates. These results are discussed further in the next chapter. 

 

Primary Research Question 2 

 

2) What are the selection rates of a particular information criterion with respect 

to selecting a) the correct model, b) a surrogate model, c) and an appropriate 
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model? What are the selection rates with respect to a) underfitting or b) 

overfitting the data? 

 

 The objective of this question was to provide information concerning the accuracy of 

information criteria in selecting appropriate covariance models for modern MM methods in the 

analysis of longitudinal data. For purposes in the current study, appropriate covariance models 

were defined as both the correct model and any surrogate models that had been identified. This 

objective was achieved by first identifying surrogate covariance structures (see previous section) 

and then estimating the accuracy of these criteria by accounting for the frequency with which 

they selected the correct model or a surrogate model. 

 Table 4.2.1 (p. 140) displays the selection rates of the correct model, all surrogate 

models, and appropriate models (a total of both correct and surrogates models) for each of the 

seven true covariance structures for the five information criteria under investigation in the 

current study. Marginal rates of selecting the correct model averaged across the seven true 

structures ranged from .51 to .54 for all information criteria. However, these selection rates were 

higher for simpler models (IN, VC & CS), with a mean of .70 and a range of .62 to .91; less so 

for moderately complex models (CSH & ARH), with a mean of .64 and a range of .64 to .75; 

and, as expected, even lower for more complex models (TOEPH & UN), with a mean of .13 and 

a range of .01 to .34. 

 Further inspection of Table 4.2.1 (p. 140) demonstrates that across the five ICs and the 

seven true models, selection rates for surrogates ranged from .11 (CAIC) to .19 (HQIC) with a 

mean of approximately .16. Trends for surrogate selection were similar to those observed for 
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correct models: rates were higher for the simpler models (IN & VC), ranging from .06 to .3149; 

and less so for more complex models (CS, CSH, ARH, & TOEPH), ranging from .01 to .11. The 

exception to this rule was the UN structure: a complex structure that obtained relatively high 

rates of surrogate selection across the five information criteria: mean of .52 and a range from .39 

to .62. This is no doubt explained by the fact that the one surrogate for UN (CSH) underfit the 

data and all five information criteria were observed to select simpler models than more complex 

ones, on average. 

 Finally, Table 4.2.1 (p. 140) also displays accuracy rates for selecting appropriate 

covariance models. Over all conditions studied, these results suggestion that one can expect to 

select an appropriate covariance model .68 of the time across the five information criteria, 

approximately .16 higher than the percent of selecting the correct model alone. The rates of 

selecting an appropriate model ranged from .64 to .71 across the five information criteria. As 

expected, the introduction of surrogate model selection into these accuracy rates exhibited the 

most impact on accuracy rates with respect to simpler models (especially IN & VC) where a 

larger number of surrogate models were identified. The impact was also high for the UN 

structure where a surrogate with a less complex structure was identified. 

 Similar to Table 4.2.1 (p. 140), Table 4.2.2 (p. 141) displays the selection rates with 

respect to underfitting and overfitting. A total incorrect selection rate (the sum of the underfitting 

and overfitting rates) is also included in this table. Marginal rates of underfitting the covariance 

structure ranged from .24 (HQIC) to .37 (CAIC) across the seven true models. The mean rate of 

underfitting across the five criteria was .29. In contrast, marginal rates of overfitting ranged from 

.05 to .11 with a mean of .08.  

                                                 
49 Inspection of Table 4.1.1 shows that the simpler models obtained more surrogates and; therefore, information 
criteria had a greater chance of selecting surrogates for these true models.  
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In summary, selection rates for the correct, surrogate, appropriate models as well as rates 

of underfitting and overfitting the covariance structure do not provide evidence that one IC is 

superior to others in this context. Specifically, no substantial differences among ICs were 

observed in regard to these rates. Further discussion of these results and their impact on the use 

of information criteria is provided in the next chapter. 

 

Primary Research Question 3 

 

3) Will the analysis be statistically valid if one uses a particular information 

criterion to select a covariance model? That is, under what conditions are the αe’s 

controlled for models selected by a given information criterion? 

 

 The objective of this question was to assess how reliable the five information criteria are 

in selecting modern MMs that produce robust test statistics under certain conditions. This 

question was considered especially important for two reasons. First, in applied research settings, 

researchers never know the true covariance structure of the data. Therefore, it was considered 

important to provide information concerning the robustness of modern MM test statistics when 

information regarding the true model was not available. Second, the articles reviewed in Chapter 

II that addressed this issue did so only with degrees of freedom methods other than the KR 

approximation and only with respect to the interaction test, not the test for the main effect of 

Time (Keselman et al., 1999; Robertson, 1996). 

 In order to answer this question, αe’s were obtained for the average selection of each of 

the five information criteria. These values were computed by transposing the column vector of 
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selection rates of the nine candidate models for a given true model and multiplying by the vector 

of αe’s for that true model for each information criteria and each particular condition. This was 

repeated seven times for each of the true models and then the mean of these values was 

computed for each of the eight marginal conditions. These results are reported in Table 4.3.1 (p. 

142). This table also presents αe’s for each of the four classical method tests to facilitate 

comparison among information criteria selected modern MMs and the classical methods. 

 Table 4.3.1 (p. 142) displays these results by each of the five information criteria and 

classical methods (rows) and each of the eight marginal conditions (columns). Table 4.3.1 

reveals that only three of the information criteria obtained αe’s that fell within the 95% 

confidence interval limits: AIC, AICC, and HQIC. Moreover, these instances only occurred in 

large sample cases. However, closer inspection shows that none of the models chosen by the five 

information criteria obtained inflated αe’s and the most conservative estimate was only slightly 

so with a value of .045. That is, on average, all five information criteria selected models that 

produced αe’s that fell within close proximity of the nominal α value the large majority of the 

time. Under none of the conditions studied were the αe’s greater than αn = .05. Results for the 

classical methods demonstrate that the conventional F-test was liberal and the G-G corrected test 

was conservative under these circumstances. However, both the H-F corrected test and the 

MANOVA test provided exceptional Type I error control under these conditions with all αe’s 

falling within their respective 95% confidence interval limits. 

 Further, Table 4.3.2 (p. 143) displays empirical power estimates by information criteria. 

This table was constructed in a similar manner as Table 4.3.1 (p. 142); however, power estimates 

were averaged across the three levels of the Mean Effect factor. Inspection of Table 4.3.2 

demonstrates that very little variation among the statistical power of models selected by the five 
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information criteria was observed. Differences under any given condition were not greater than 

.01. Therefore, the statistical power of selected models does not appear to be an issue when 

choosing which information criterion to use. Results for the G-G showed that differences in 

power between it and the modern MMs as well the H-F and MANOVA approaches were 

negligible even though it was found to be conservative with respect to αe’s. Results further 

demonstrated that both the H-F and MANOVA tests provide power comparable to the modern 

MM approach under these circumstances.  

 In order to further investigate αe’s, two additional tables were constructed for the two 

most common information criteria: AIC and BIC. Tables 4.3.3 (p. 144) and 4.3.4 (p. 145) report 

αe’s for models selected by AIC and BIC, respectively. These tables show a disaggregation of the 

information summarized in Table 4.3.1 (p. 142) by reporting the observed αe’s for each true 

structure. This format is important for two reasons. First, it demonstrates that these estimates are 

stable across true covariance structures of differing degrees of complexity. Second, due to this 

stability, it appears reasonable to aggregate these data across true structure, as was done in Table 

4.3.1. 

 Indeed, both tables 4.3.3 (p. 144) and 4.3.4 (p. 145) demonstrate that αe’s are remarkably 

stable across true covariance structures of differing complexity with the majority of estimates 

falling within close proximity of the nominal α value of .05. Furthermore, these tables provide 

additional evidence to conclude that the information criteria tend not to select models that 

produce inflated αe’s. For example, Table 4.3.3 shows that the most excessive αe value for 

models selected by AIC was .054. This value was only observed once (the VC true model and 

three measurement occasions condition) and still fell within the criterion of close proximity used 

in the current study. Similar trends are evident in Table 4.3.4 for BIC. 
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 In conclusion, results from the current study demonstrate that, on average, when 

information criteria are used to select modern MMs, the models chosen will produce αe’s that 

closely approximate the nominal α value. Further, there does not appear to be any substantial 

difference in the statistical power of the models selected by these information criteria. These 

results will be discussed further in the next chapter. 

 

Secondary Research Question 4 

 

4) How does the modern MM approach compare to the classical methods of 

repeated measures analysis in the context of covariance model misspecification? 

More specifically, how does the modern MM F-statistic compare to the classical 

methods: RM ANOVA conventional F-statistic, the Greenhouse-Geisser (G-G) or 

Huynh-Feldt (H-F) corrections, or the MANOVA Wilks’ Λ test statistic with 

respect to αe’s and empirical power estimates? 

 

 The objective of this question was to compare the performance of the modern MM 

methods with the classical methods in the analysis of longitudinal data. The KR test statistic for 

the modern MM methods was compared to the RM ANOVA conventional F-test, the G-G and 

H-F corrected univariate statistics, and the MANOVA Wilks’ Λ statistic in terms of αe’s and 

power estimates. 

 As discussed in earlier chapters, longitudinal data often exist with covariance structures 

that are not spherical in nature. However, the RM ANOVA conventional F-test assumes 

sphericity. Furthermore, both the RM ANOVA G-G and RM ANOVA H-F adjustments are 
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attempts to correct for the degree of non-sphericity in a given set of data. Therefore, it may be 

problematic to use these classical methods depending on the degree of non-sphericity of the data 

and/or the performance of the G-G and H-F adjustments. The modern MM methods have been 

suggested as a practical modeling alternative to these classical methods because they do not 

require sphericity and therefore may be more powerful. For these reasons, the extent of non-

sphericity in the data is a critical factor in the comparison of these methods. Consequently, it was 

considered important to assess the degree of non-sphericity in the data generated in the current 

study. 

 

Assessing Non-sphericity 

 Initially, two measures of non-sphericity were collected during the data generation and 

modeling phases of the study: the G-G and H-F ε statistics. For both of these, values in the 

proximity of 1.0 indicate that the data are spherical in nature. Lower values indicate greater 

departure from sphericity.  

According to Maxwell and Delaney (2000, pp. 476-477), the H-F ε statistic tends to 

underestimate the degree of non-sphericity, while the G-G statistic slightly over-estimates it. 

Because the objective here was to demonstrate the degree of non-sphericity in the data, the H-F ε 

statistic was chosen for further analysis. These values provide an upper limit for the degree to 

which sphericity was violated in the data generated in the current study. 

The H-F ε statistic was aggregated and inspected across the seven true covariance 

structures and the eight marginal conditions. The H-F ε overall marginal means for the two true 

covariance models where the assumption of sphericity was met (those being the IN and CS 
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models) were both 1.013. As expected, these values indicate that the sample data are nearly 

spherical under these conditions. 

 However, H-F ε statistic means for more complex structures failed to demonstrate an 

extreme departure from sphericity. While mean estimates did fall to values as low as 0.795, this 

value does not suggest a great degree of non-sphericity. Furthermore, the range of values for the 

non-spherical data was not much different from those of the spherical data. For example, the UN 

true covariance model data have the greatest potential to be non-spherical. However, the overall 

marginal range of those H-F ε values was (0.32, 1.69). This interval is not substantially different 

from the range for the IN model where sphericity was met (0.43, 1.89). This trend proved to be 

the rule based on further inspection.  

Furthermore, histograms of the H-F ε values were obtained and inspected. These graphics 

showed substantial differences in the distributional shapes of the H-F ε values among the levels 

of sample size50. However, distributions were relatively homogeneous across the non-spherical 

true covariance structures (i.e., VC, CSH, ARH, TOEPH, UN). Evidently, sampling error seems 

to influence these values to a greater degree than expected and the true covariance model to a 

lesser degree.  

 To further investigate this issue, ε, the parameter that the H-F ε statistic estimates, was 

obtained for each of the population covariance matrices used in the current study (Huynh & 

Feldt, 1976). Values of ε appear in Table 4.4.1 (p. 146) as well as tables A2 – A7 (see Appendix, 

pp. 190-195). The ε parameter was considered an indicator of non-sphericity of the population 

covariance matrices that is independent of the effect of sampling error. Table 4.4.1 shows that ε 

values ranged from .693 to 1.000. The population covariance matrix demonstrating the most non-

                                                 
50 Distributions were relatively homogeneous across two other design features: magnitude of correlation and, 
surprisingly, number of measurement occasions. 
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sphericity was the ARH structure with six measurement occasions and a high correlation (r = 

.50) with ε = .693.  As expected, the IN and CS structures obtained ε values of 1.00 regardless of 

the number of measurement occasions and the magnitude of correlation present. That is, these 

population covariance matrices were perfectly spherical.  

Based on these findings, another phase of the current study was added in order to allow 

for the comparison of the modern MM and classical methods under extremely non-spherical 

conditions. Results of analyses based on these data appear in the section entitled: Comparing 

Methods: Extremely Non-Spherical Data. 

 In conclusion, the ε values and H-F ε statistics suggest that extremely non-spherical data 

were not generated in the original phases of the current study. Furthermore, the moderately non-

spherical data that were generated appear to be more of a function of sampling error rather than 

non-spherical population covariance structures. Results of analyses based on these data appear in 

the next subsection.  

 

Comparing Methods: Moderately Non-Spherical Data 

 While remaining mindful of the caveats provided in the last section concerning the 

degree of non-sphericity of the data, Table 4.4.2 (p. 147) presents αe’s and power estimates for 

the modern MM KR test statistic when only the correct covariance model was fit to the data. 

Table 4.4.2 also presents this information for the classical methods (i.e., RM ANOVA 

conventional F-test, the RM ANOVA G-G and H-F corrected F-tests, and the MANOVA Wilks’ 

Λ test statistic) when these models were fit to the correct data. That is, the RM ANOVA 

conventional F-test, G-G and H-F corrected tests were fit to the CS data and the MANOVA 

models was fit to the UN data.  
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As mentioned in the first chapter, the modern MM for longitudinal data is a 

generalization of the split-plot model, which, in turn, is a generalization of the CLM 

((Fitzmaurice et al., 2004, pp. 187-197; Rencher, 2000, pp. 426-429; Vallejo & Livacic-Rojas, 

2005). As a result, the mixed model with the compound symmetry covariance structure 

[MM(CS)] F-test reduces to the RM ANOVA conventional F-test under certain conditions51 

(Schaalje et al., 2002; Wright & Wolfinger, 1997). Similarly, the F-test associated with the 

unstructured [MM(UN)] covariance model is related to the MANOVA Lawley-Hotelling statistic 

(Wright & Wolfinger). Therefore, these models produce highly similar results in Table 4.4.2 (p. 

147).  

Inspection of Table 4.4.2 (p. 147) shows that the MM(CS)/RM ANOVA conventional F-

test, MM(UN)/MANOVA models obtained αe’s with the 95% confidence interval limits52 in all 

cases. This, of course, coincides with expectations because the assumptions of these models have 

been met under these circumstances. Further inspection shows that the majority of the other 

modern MMs (i.e., with IN, VC, CSH, ARH, & TOEPH) controlled Type I errors well with only 

three instances of inflated rates. However, αe’s were found to be slightly conservative in small 

sample situations in general. The G-G correction was found to be slightly to moderately 

conservative when the covariance structure was CS. However, the loss in statistical power53 was 

only substantial (5% or greater) for small sample situations. In contrast, the H-F correction was 

found to approximate the nominal α level more closely and loss in statistical power was 

negligible even in small sample situations. 

                                                 
51 Those conditions being design balance and F-test statistic degrees of freedom based on the independence model 
(i.e., unadjusted degrees of freedom). 
52 95% confidence interval for columns 1-7 of Table 4.4.2: (.048, 0.52); interval for column 8: (.049, .051). 
53 That is, when the G-G power results are compared to the RM ANOVA conventional F-test. 
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 Table 4.4.3 (p. 148) presents αe’s for the modern MM KR test statistic54 and the classical 

method test statistics when results were aggregated across all seven true models. Inspection of 

Table 4.4.3 shows that both the H-F corrected univariate test statistic and the 

MM(UN)/MANOVA statistic were found to be robust under the conditions simulated in the 

current study with all αe values falling within the 95% confidence interval limits.  

 Results for the modern MMs were previously discussed in section 4.1. Briefly, the CSH 

and AR models appear to perform well when αe’s are aggregated across true model with four and 

five estimates falling within the acceptable 95% confidence interval criterion, respectively. In 

addition, other αe’s for these models fell within the close proximity criterion. On average, 

however, the modern MM F-statistic obtained αe’s ranging from .042 to .047 across the eight 

marginal conditions. 

The MM(CS)/conventional F-test results show that this test statistic is liberal under the 

conditions studied here with αe’s ranging from .057 to .061. Table 4.4.3 (p. 148) demonstrates 

that the G-G corrected test statistic is conservative under the eight marginal conditions with 

values ranging from .037 to .048. Further investigation demonstrated that the G-G corrected test 

statistic provided better Type I error control than initially suggested by Table 4.4.3. In fact, the 

G-G test statistic was substantially conservative only in conditions where the sample size was 

small and the number of measurement occasions was large. Under these conditions the G-G 

corrected statistic obtained αe’s as conservative as .028. Otherwise, the αe’s for the G-G test 

statistic are only moderately to slightly conservative ranging from .041 to .049. 

Therefore, αe’s suggest that four models are in contention as superior methods for 

analyzing data under these conditions: MM(CSH), MM(AR), H-F corrected F-test, and 

MM(UN)/MANOVA. An investigation into empirical power estimates for these models follows. 
                                                 
54 The mixed model information in Table 4.4.3 is a duplicate of information initially presented in Table 4.1.2. 
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 Power estimates among the models in contention are presented in tables 4.4.4 (p. 149) & 

4.4.5 (p. 150). Table 4.4.4 reports empirical power estimates for the modern MMs and classical 

methods across conditions relating to magnitude of correlation and number of measurement 

occasions. As expected, Table 4.4.4 shows that these conditions did not have a substantial impact 

on statistical power as estimates are relatively homogeneous across these conditions (columns). 

Furthermore, the MM(CSH) obtained higher power estimates under all conditions, however, by a 

negligible amount in some cases. Nonetheless, the MM(CSH) model obtained the highest 

marginal power estimate of .401 and was .078 greater than the MM(AR) power estimate of .323. 

Strictly speaking, the criterion for comparing power estimates proposed earlier is not directly 

applicable here because these estimates have been averaged across all true models. Therefore, 

the power of the correct model is irrelevant. However, if one were to apply this criterion in this 

instance, it may be concluded that all of these models provide comparable statistical power. 

However, there is evidence to support the conclusion that the MM(CSH) provides substantially 

greater statistical power than MM(AR). 

 To further investigate power issues, Table 4.4.5 (p. 150) reports power estimates by 

sample size and the magnitude of mean effect. Similar trends are evident, with MM(CSH) 

obtaining higher power estimates in the majority of conditions as well as the highest value for the 

overall marginal condition. However, differences in power were found not to be greater than .09. 

Additionally, MM(AR) consistently obtained the lower power, suggesting that the other models 

may be preferred. 

In summary, the MM(CSH), H-F corrected test, and the MM(UN)/MANOVA models 

provide superior Type I error control compared to the other models considered here, although in 

many cases the difference in αe’s was quite small. Furthermore, these models provide 
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comparable statistical power under these conditions. Implications of these findings are discussed 

in the next chapter. 

 

Extremely Non-Spherical Data 

As mentioned earlier, another phase of the current study was added in order to allow for 

the comparison of the modern MM and classical methods under extremely non-spherical 

conditions.  

In order to induce a greater degree of non-sphericity, the structures that demonstrated the 

most non-sphericity55 in the original data generation were chosen for inclusion: the ARH and UN 

patterns. As expected, greater non-sphericity was observed with more measurement occasions as 

well as higher degrees of correlation. Therefore, data for this phase were generated with only six 

measurement occasions and r = .50. Additionally, the heterogeneity of the variance with respect 

to Time was increased from 6 to 12 times greater at the final measurement occasion than the 

initial occasion. Thus, previous experimental variables of the number of measurement occasions, 

the degree of serial correlation, and the presence of non-constant variances were held fixed for 

this phase. Data were generated under the three differing sample size conditions (N = 10, 30, 60). 

Due to time constraints, 5,000 replications were generated. 

These two new population covariance matrices obtained ε values of .670 and .492 for the 

ARH and UN structures, respectively. Sample-based H-F ε statistics for these structures were as 

follows: the ARH data obtained H-F ε values with a mean of 0.709 and a range of 0.306 – 1.700. 

The UN data obtained H-F ε values with a mean of 0.524 and a range of 0.237 – 1.330. Table 

A23 (p. 211) displays these two additional covariance matrices.  

 
                                                 
55 As measured by ε. 
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Comparing Methods: Extremely Non-Spherical Data 

 Table 4.4.6 (p. 151) reports αe’s for both the extremely non-spherical ARH and UN data 

across the three sample size conditions and a marginal condition. Values of αe’s for the modern 

MM have been aggregated across all nine fitted models. Estimates in columns 1-3 of Table 4.4.6 

are based on 5,000 replications. Consequently, the corresponding 95% confidence interval is 

(.044, .056). In contrast, column 4 estimates are based on 15,000 replications, and, as a result, the 

corresponding 95% confidence interval is (.047, .053).  

For the less non-spherical ARH true model, the modern MMs, the H-F univariate 

statistics, and the MANOVA approach all produced results demonstrating acceptable Type I 

error control across all conditions. As expected, the conventional F-test obtained consistently 

liberal results and the G-G statistic was consistently conservative (especially so in the small 

sample size condition). 

 Table 4.4.6 (p. 151) also reports results for the extremely non-spherical UN data. Under 

these conditions, the modern MM αes are inflated ranging from .057 to .062. Furthermore, the H-

F statistic also obtained inflated rates except in the large sample situation. The G-G statistic, 

while found conservative under previous conditions, demonstrated acceptable levels of Type I 

error control, however, these results were not as stable as the MANOVA results. As expected, 

the MANOVA test provides consistent error control, even under these extreme conditions. 

 In order to further investigate the performance of the modern MMs in these extreme non-

spherical conditions (for the UN data only), Table 4.4.7 (p. 152) reports a dissaggregation of the 

modern MMs so that the performance of specific fitted covariance matrices can be assessed. As 

expected, both models that assume independence of observations (IN & VC), obtained 

excessively conservative αe’s ranging from .014 to .032. In addition, the MM(CS)/RM ANOVA 
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conventional F-test demonstrated excessively inflated αe’s under these extreme non-spherical 

conditions with rates ranging from .080 to .099. Further inspection of Table 4.4.7 demonstrates 

that only the G-G corrected test statistic and the MM(UN)/MANOVA approaches provided 

consistent Type I error control under these extreme conditions. 

 Table 4.4.8 (p. 153) reports power estimates for these non-spherical conditions. While 

results are ambiguous for the moderately non-spherical ARH data, the MM(UN)/MANOVA 

models are clearly more powerful under the extreme conditions. Specifically, the 

MM(UN)/MANOVA model was found to be 2.5 times more powerful than the G-G univariate 

test with a difference of .28 (the G-G test being the only other that obtained acceptable αe’s under 

these conditions)56.  

 In summary, the MM(CSH), H-F corrected test, and the MM(UN)/MANOVA model 

provide superior Type I error control and comparable statistical power under moderately non-

spherical conditions. In contrast, when the data are extremely non-spherical (ε = .492), both the 

G-G corrected test and the MM(UN)/MANOVA approaches control Type I errors, however, the 

MM(UN)/MANOVA was found to be clearly more powerful. Implications of these findings will 

be discussed in the next chapter. 

  

Secondary Research Question 5 

 

5) What are the modern MM αe’s for the test of the interaction in repeated 

measures data with a between-subjects factor? 

 
                                                 
56 One should be mindful that under this extreme non-spherical condition, the MM(UN)/MANOVA is the correct 
model for the population covariance structure used to generate the data. 
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 The objective of this question was to ascertain the effect of the conditions 

considered in the current study on the αe’s of the interaction test when a between-subjects 

factor is present in the design. It is well known that the main effect test for Group in a 

design including both within and between-subjects factors is not dependent on the 

covariance structure of the data with respect to Time (Keppel, 1991, p. 378). In contrast, 

it has been demonstrated that the covariance structure of the data with respect to Time 

has an impact on the Group x Time interaction test in these designs. 

 Table 4.5.1 (p. 154) reports αe’s for the interaction test for data with two groups 

and a variable number of measurement occasions (t = 3 or 6) and group sample sizes (nj = 

5, 15, & 30). These results have been aggregated across the seven true covariance 

structures for all models appearing in the table. Results show that the 

MM(UN)/MANOVA model provided acceptable Type I error control across all 

conditions studied. Most other covariance structures for the modern MM did not perform 

well, except for the AR pattern. The AR model obtained acceptable αe’s under all but one 

of the eight marginal conditions57. Furthermore, the G-G and H-F univariate tests, which 

were found to be in contention under conditions discussed earlier, were found not to 

perform as well here. Specifically, the G-G statistic proved to be substantially 

conservative under many of the conditions. Furthermore, while the H-F statistic closely 

approximated the nominal α level under all conditions, it only met the confidence interval 

criterion for robustness used in the current study under the large sample condition. 

 Thus, results from Table 4.5.1 (p. 154) demonstrate that the MM(AR) and 

MM(UN)/MANOVA models provide acceptable Type I error control for the interaction 

                                                 
57 It is very possible that the inflated αe value for the AR model in the moderate sample size condition (αe = 0.052) is 
the result of sampling error because the same model obtained an acceptable αe value in small sample conditions. 
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test under these conditions. Alternatively, results suggest that the H-F corrected test 

would be statistically valid in large sample situations. These results are discussed in the 

next chapter. 

 

Summary 

 This chapter presented the results of the current simulation study with respect to 

the one preliminary, three primary, and two secondary research questions of interest. 

Briefly, the preliminary investigation demonstrated that the KR option for computing test 

statistics was found to provide superior Type I error control over the Between/Within 

method, Satterthwaite approximation, and the sandwich estimator.  

Results from primary investigations identified 14 surrogate covariance structures; 

at least one for each of the seven true models. Further, results suggested that the either the 

CSH or UN structures may be the best models to fit to data in applied settings when the 

true covariance structure is unknown. Next, rates of information criteria selecting an 

appropriate covariance model were estimated and reported. Overall, these rates were 

found to be higher than “naïve” accuracy rates58 reported in many previous studies that 

entertained a comparable number of candidate models (Gomez et al., 2005; Guerin & 

Stroup, 2000; Keselman, Algina, et al., 1998; Keselman et al., 1999; Vallejo & Livacic-

Rojas, 2005). Finally, αe’s were estimated by information criteria. These values were 

found to be slightly conservative under small and moderate sample conditions, however, 

within close proximity of the nominal α level. Perhaps more importantly, though, none of 

these αe’s were found to be inflated beyond the upper limit of the 95% confidence 

                                                 
58 “Naive” accuracy rates being those that do not consider the impact of surrogate covariance models. 
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intervals used to evaluate robustness in the current study. Furthermore, empirical power 

estimates were found to be comparable among models selected by the five information 

criteria. 

Results from secondary investigations demonstrated that the MM(CSH), H-F corrected 

test, and the MM(UN)/MANOVA model provide superior Type I error control and comparable 

statistical power under moderate non-sphericity conditions. However, with extremely non-

spherical data, only the G-G corrected test and the MM(UN)/MANOVA approaches provided 

acceptable Type I error control, however, the MM(UN)/MANOVA approach was found to be 

clearly more powerful. Finally, results showed that the MM(AR) and MM(UN)/MANOVA 

models provided acceptable levels of Type I error control for the interaction test of the Group x 

Time design. These results and their implications for statistical modeling of longitudinal data in 

applied settings are discussed in the next chapter. 
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Table 4.i.1 

Empirical Type I Error Rates by Test Statistic Option and Marginal Conditions 

Test statistic Option 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal
Overall 

Marginal
         

N ≈ 420K 300K 360K 360K 240K 240K 240K 720K 
         
Between/Within .068 .072 .057 .079 .089 .060 .054 .068 
         
Satterthwaite .060 .062 .053 .066 .072 .055 .052 .060 
         
Kenward/Roger .050 .048 .050 .049 .048 .050 .050 .049 
         
Sandwich Estimator .141 .139 .080 .202 .256 .097 .071 .141 
                  

 
(a) Error rates when only the correct model was fit to the data and then aggregated across all true models 
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Table 4.i.2 

Empirical Type I Error Rates (b) by Test Statistic Option and Each Individual Condition 

Test statistic Option 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal
Overall 

Marginal
         

N ≈ 420K 300K 360K 360K 240K 240K 240K 720K 
         
Between/Within .062 .056 .052 .070 .080 .054 .049 .061 
         
Satterthwaite .056 .050 .050 .060 .066 .050 .048 .055 
         
Kenward/Roger .047 .041 .046 .045 .045 .046 .045 .045 
         
Sandwich Estimator .143 .143 .081 .204 .259 .098 .071 .143 
                  

 
(b) Empirical Type I error rates aggregated across all eight incorrect candidate models and then all seven true models 
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Table 4.1.1 

Empirical Type I Error Rates and Power Estimates for All True by Potential Surrogate Combinations 

 Potential Surrogate Structures 
True 

Covariance 
Structure 

IN VC CS CSH AR ARH TOEP TOEPH UN 

          
IN .049 .048 .049 .048 .049 .048 .050 .047 .048 

 (.54) (.52) (.53) (.52) (.53) (.52) (.52) (.50) (.49) 
VC .061 .051 .060 .051 .061 .050 .058 .049 .051 

 (.28) (.31) (.28) (.30) (.27) (.30) (.27) (.30) (.29) 
CS .008 .008 .050 .047 .039 .041 .051 .048 .051 

 (.49) (.48) (.65) (.63) (.52) (.52) (.63) (.61) (.59) 
CSH .016 .012 .059 .046 .048 .043 .056 .047 .049 

 (.22) (.25) (.36) (.35) (.25) (.28) (.32) (.34) (.33) 
ARH .032 .027 .065 .052 .057 .049 .056 .049 .050 

 (.24) (.27) (.32) (.32) (.26) (.28) (.25) (.28) (.27) 
TOEPH .024 .020 .062 .048 .053 .046 .056 .048 .050 

 (.23) (.26) (.33) (.33) (.26) (.28) (.27) (.29) (.28) 
UN .020 .013 .065 .049 .052 .043 .061 .046 .051 

 (.22) (.25) (.35) (.35) (.25) (.27) (.33) (.34) (.37) 
                    

* IN=Independence, VC=Variance Components, CS=Compound Symmetry, CSH=Heterogeneous Compound Symmetry, 
AR=Autoregressive, ARH=Heterogeneous Autoregressive, TOEP=Toeplitz, TOEPH=Heterogeneous Toeplitz, UN=Unstructured 
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Table 4.1.2 

Surrogate Covariance Structures 

 Potential Surrogate Structures 
          
 

True Covariance 
Structure 

IN VC CS CSH AR ARH TOEP TOEPH UN 

          
IN NA  1  1  1   

          
VC  NA  1  1  1 1 

          
CS   NA    1  1 

          
CSH    NA     1 

          
ARH      NA  1 1 

          
TOEPH        NA 1 

          
UN    1     NA 

                    
 * IN=Independence, VC=Variance Components, CS=Compound Symmetry, CSH=Heterogeneous Compound Symmetry, 
AR=Autoregressive, ARH=Heterogeneous Autoregressive, TOEP=Toeplitz, TOEPH=Heterogeneous Toeplitz, UN=Unstructured 
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Table 4.1.3 

Mean Multivariate Distance (u) between the Model-Estimated and Sample-Based Covariance Matrices 

 Potential Surrogate Structures 
True 

Covariance 
Structure 

IN VC CS CSH AR ARH TOEP TOEPH UN 

          
IN 4.27 3.62 4.12 3.49 4.12 3.47 3.57 2.93 1.92 

          
VC 6.89 3.60 6.72 3.47 6.69 3.45 6.18 2.91 1.91 

          
CS 8.10 7.46 4.10 3.78 5.32 4.59 3.56 2.91 1.91 

          
CSH 11.06 7.47 7.42 3.79 8.24 4.59 6.78 2.92 1.91 

          
ARH 9.58 5.98 8.15 4.74 6.82 3.46 6.31 2.90 1.91 

          
TOEPH 9.73 6.13 7.71 4.28 6.96 3.55 6.36 2.92 1.91 

          
UN 11.62 8.01 8.32 4.39 9.11 5.28 7.66 3.33 1.91 

                    
* IN=Independence, VC=Variance Components, CS=Compound Symmetry, CSH=Heterogeneous Compound Symmetry, 
AR=Autoregressive, ARH=Heterogeneous Autoregressive, TOEP=Toeplitz, TOEPH=Heterogeneous Toeplitz, UN=Unstructured 
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Table 4.1.4 

Empirical Type I Error Rates for Mixed Models Aggregated Across the Seven True Models 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .035 .013 .031 .028 .032 .029 .028 .030 
Variance Components .029 .011 .027 .024 .027 .025 .025 .026 
Compound Symmetry .058 .061 .057 .060 .059 .059 .058 .058 
Heterogeneous 
Compound Symmetry .049 .048 .049 .048 .046 .050 .050 .049 

Autoregressive .052 .049 .052 .051 .051 .051 .051 .051 
Heterogeneous 
Autoregressive .046 .045 .048 .044 .045 .047 .046 .046 

Toeplitz .056 .055 .055 .056 .056 .056 .056 .056 
Heterogeneous 
Toeplitz .048 .047 .048 .047 .044 .049 .049 .048 

Unstructured .050 .050 .051 .049 .050 .050 .050 .050 
         
Mean .047 .042 .046 .045 .046 .046 .046 .046 
                  

* 95% confidence interval: (.049, .051), except for the overall marginal condition: (.050, .050) 
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Table 4.1.5 
 
Empirical Power Rates for Mixed Models Aggregated Across the Seven True Models 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .04 .10 .24 .07 .29 .59 .13 .50 .86 .31 
Variance Components .04 .09 .23 .07 .30 .66 .14 .56 .92 .33 
Compound Symmetry .08 .17 .34 .14 .40 .71 .23 .62 .92 .40 
Heterogeneous 
Compound Symmetry .07 .14 .31 .13 .40 .73 .23 .65 .94 .40 

Autoregressive .06 .12 .25 .11 .31 .61 .17 .52 .87 .34 
Heterogeneous 
Autoregressive .06 .11 .24 .10 .32 .66 .17 .57 .91 .35 

Toeplitz .07 .14 .28 .13 .36 .65 .22 .57 .89 .37 
Heterogeneous 
Toeplitz .06 .12 .26 .13 .38 .70 .22 .62 .93 .38 

Unstructured .07 .11 .23 .13 .37 .69 .22 .62 .93 .38 
           
Mean .06 .12 .26 .11 .35 .67 .19 .58 .91 .36 
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Table 4.2.1 

Information Criteria Selection Rates for Correct and Surrogate Models 

True Model Selection  AIC AICC HQIC BIC CAIC 
       

Correct .63 .67 .67 .82 .91 
Surrogate .23 .23 .20 .13 .08 Independence 
Appropriate .86 .90 .87 .95 .99 

       
Correct .62 .65 .67 .74 .72 
Surrogate .31 .23 .28 .15 .06 Variance 

Components 
Appropriate .93 .88 .95 .89 .78 

       
Correct .63 .67 .66 .73 .75 
Surrogate .11 .08 .11 .04 .01 Compound 

Symmetry 
Appropriate .74 .74 .77 .78 .76 

       
Correct .64 .66 .67 .70 .66 
Surrogate .07 .03 .09 .03 .01 

Heterogeneous 
Compound 
Symmetry Appropriate .72 .69 .75 .73 .66 
       

Correct .61 .62 .64 .65 .60 
Surrogate .07 .03 .08 .03 .01 Heterogeneous 

Autoregressive 
Appropriate .68 .65 .72 .68 .60 

       
Correct .11 .08 .07 .03 .01 
Surrogate .07 .03 .08 .03 .01 Heterogeneous 

Toeplitz 
Appropriate .18 .11 .15 .06 .02 

       
Correct .34 .23 .26 .12 .06 
Surrogate .39 .46 .50 .62 .62 Unstructured 
Appropriate .73 .69 .76 .74 .68 

       
Correct .51 .51 .52 .54 .53 
Surrogate .18 .15 .19 .15 .11 Marginal 
Appropriate .69 .67 .71 .69 .64 
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Table 4.2.2 

Information Criteria Selection Rates for Incorrect Models 

True Model Selection AIC AICC HQIC BIC CAIC 
       

Underfit NA NA NA NA NA 
Overfit .14 .10 .13 .05 .01 Independence 
Total Incorrect .14 .10 .13 .05 .01 

       
Underfit .06 .09 .03 .09 .19 
Overfit .02 .03 .02 .02 .02 Variance 

Components 
Total Incorrect .07 .12 .05 .11 .22 

       
Underfit .07 .08 .06 .09 .13 
Overfit .20 .18 .17 .14 .11 Compound 

Symmetry 
Total Incorrect .26 .26 .23 .22 .24 

       
Underfit .09 .13 .07 .12 .21 
Overfit .20 .18 .18 .15 .13 

Heterogeneous 
Compound 
Symmetry Total Incorrect .28 .31 .25 .27 .34 
       

Underfit .22 .28 .20 .28 .38 
Overfit .10 .07 .08 .04 .02 Heterogeneous 

Autoregressive 
Total Incorrect .32 .35 .28 .32 .40 

       
Underfit .82 .89 .85 .94 .98 
Overfit .00 .00 .00 .00 .00 Heterogeneous 

Toeplitz 
Total Incorrect .82 .89 .85 .94 .98 

       
Underfit .27 .31 .24 .26 .32 
Overfit NA NA NA NA NA Unstructured 
Total Incorrect .27 .31 .24 .26 .32 

       
Underfit .25 .30 .24 .30 .37 
Overfit .11 .09 .10 .07 .05 Marginal 
Total Incorrect .31 .33 .29 .31 .36 
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Table 4.3.1 

Empirical Type I Error Rates by Information Criteria 

Information Criteria / 
Classical model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal 

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal 
         

AIC .047 .047 .047 .048 .045 .049 .049 .047 
         

AICC .047 .047 .046 .048 .045 .049 .049 .047 
         

HQIC .048 .047 .047 .048 .045 .049 .049 .047 
         

BIC .047 .047 .046 .048 .045 .048 .049 .047 
         

CAIC .046 .046 .045 .048 .045 .048 .049 .047 
         

RM ANOVA 
Conventional F-test .058 .061 .057 .060 .059 .059 .058 .058 

RM ANOVA G-G .043 .043 .048 .039 .037 .045 .047 .043 
RM ANOVA H-F .051 .051 .051 .050 .051 .051 .050 .050 
MANOVA - Wilks' Λ .050 .050 .051 .049 .050 .050 .050 .050 
                  

* 95% confidence interval: (.049, .051), except for the overall marginal condition: (.050, .050) 
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Table 4.3.2 

Empirical Power Estimates by Information Criteria 

Information Criteria / 
Classical model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal 

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal 
         

AIC 0.38 0.39 0.37 0.39 0.16 0.41 0.60 0.39 
         

AICC 0.37 0.39 0.37 0.39 0.16 0.41 0.60 0.39 
         

HQIC 0.38 0.39 0.37 0.39 0.16 0.41 0.59 0.39 
         

BIC 0.37 0.39 0.36 0.39 0.16 0.40 0.59 0.39 
         

CAIC 0.37 0.39 0.36 0.39 0.16 0.40 0.59 0.39 
         

RM ANOVA 
Conventional F-test 0.38 0.43 0.38 0.43 0.20 0.42 0.60 0.41 

RM ANOVA G-G 0.35 0.39 0.36 0.38 0.15 0.39 0.57 0.37 
RM ANOVA H-F 0.37 0.40 0.36 0.41 0.18 0.40 0.58 0.39 
MANOVA - Wilks' Λ 0.36 0.38 0.38 0.37 0.14 0.40 0.59 0.37 
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Table 4.3.3 

Empirical Type I Error Rates for Fitted Models Selected by AIC by True Model  

True Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .049 NA .050 .048 .053 .047 .047 .049 
Variance Components .052 NA .054 .050 .051 .053 .052 .052 
Compound Symmetry .045 .047 .044 .049 .041 .048 .050 .046 
Heterogeneous 
Compound Symmetry .044 .046 .044 .046 .040 .048 .048 .045 

Heterogeneous 
Autoregressive .050 .048 .047 .049 .045 .051 .051 .048 

Heterogeneous 
Toeplitz .045 .047 .045 .046 .043 .048 .047 .046 

Unstructured .047 .048 .046 .048 .044 .049 .050 .047 
         
Mean .047 .047 .047 .048 .045 .049 .049 .047 
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Table 4.3.4 
 
Empirical Type I Error Rates for Fitted Models Selected by BIC by True Model  

True Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .049 NA .050 .048 .053 .047 .047 .049 
Variance Components .052 NA .054 .050 .052 .054 .052 .052 
Compound Symmetry .044 .046 .042 .049 .039 .047 .049 .045 
Heterogeneous 
Compound Symmetry .043 .045 .042 .046 .039 .047 .047 .044 

Heterogeneous 
Autoregressive .049 .048 .046 .050 .045 .050 .051 .048 

Heterogeneous 
Toeplitz .044 .046 .044 .046 .042 .047 .046 .045 

Unstructured .046 .047 .045 .047 .043 .047 .049 .046 
         
Mean .047 .046 .046 .048 .045 .048 .049 .047 
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Table 4.4.1 

ε Values for Population Covariance Matrices 

   
Number of Measurement 

Occasions 
Covariance 
Structure 

Amount of 
Correlation   3  6 

      
IN NA  1.000  1.000 

      
VC NA  .840  .840 

      
.3  1.000  1.000 
     CS 

.5  1.000  1.000 
      

.3  .850  .851 
     CSH 

.5  .854  .854 
      

.3  .835  .787 
     ARH 

.5  .807  .693 
      

.3  .845  .823 
     TOEPH 

.5  .824  .742 
      

.3  .785  .791 
     UN 

.5  .750  .773 
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Table 4.4.2 

Empirical Type I Error Rates and Statistical Power: Correct Model Fit Only 

True/Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal

.049 NA .050 .048 .053 .046 .047 .049 Independence 
(.54) NA (.51) (.57) (.28) (.59) (.74) (.54) 
.051 NA .053 .049 .048 .054 .052 .051 Variance Components 
(.31) NA (.27) (.34) (.11) (.30) (.50) (.31) 
.051 .049 .049 .050 .049 .050 .051 .050 Compound Symmetry 
(.61) (.68) (.63) (.67) (.40) (.70) (.83) (.65) 
.047 .046 .047 .046 .042 .049 .048 .046 Heterogeneous 

Compound Symmetry (.34) (.37) (.33) (.37) (.13) (.36) (.56) (.35) 
.051 .048 .050 .049 .046 .052 .051 .049 Heterogeneous 

Autoregressive (.28) (.28) (.28) (.28) (.10) (.27) (.47) (.28) 
.048 .048 .049 .047 .044 .051 .049 .048 Heterogeneous 

Toeplitz (.29) (.29) (.29) (.28) (.10) (.28) (.49) (.29) 
.051 .051 .051 .051 .052 .050 .051 .051 Unstructured 
(.35) (.39) (.38) (.36) (.12) (.39) (.60) (.37) 
.051 .049 .049 .050 .049 .050 .051 .050 RM ANOVA 

Conventional F-test (.61) (.68) (.63) (.67) (.40) (.70) (.83) (.65) 
.041 .039 .044 .036 .031 .042 .047 .040 RM ANOVA G-G 
(.58) (.66) (.62) (.63) (.35) (.69) (.83) (.62) 
.049 .047 .047 .048 .045 .049 .050 .048 RM ANOVA H-F 
(.60) (.68) (.62) (.66) (.39) (.70) (.83) (.64) 
.051 .051 .051 .051 .052 .050 .051 .051 MANOVA - Wilks' Λ 
(.35) (.39) (.38) (.36) (.12) (.39) (.60) (.37) 
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Table 4.4.3  

Empirical Type I Error Rates for Comparing Mixed Models with Classical Methods under Marginal Conditions 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .035 .013 .031 .028 .032 .029 .028 .030 
Variance Components .029 .011 .027 .024 .027 .025 .025 .026 
Compound Symmetry .058 .061 .057 .060 .059 .059 .058 .058 
Heterogeneous 
Compound Symmetry .049 .048 .049 .048 .046 .050 .050 .049 

Autoregressive .052 .049 .052 .051 .051 .051 .051 .051 
Heterogeneous 
Autoregressive .046 .045 .048 .044 .045 .047 .046 .046 

Toeplitz .056 .055 .055 .056 .056 .056 .056 .056 
Heterogeneous 
Toeplitz .048 .047 .048 .047 .044 .049 .049 .048 

Unstructured .050 .050 .051 .049 .050 .050 .050 .050 
         
Mean .047 .042 .046 .045 .046 .046 .046 .046 
         
RM ANOVA 
Conventional F-test .058 .061 .057 .060 .059 .059 .058 .058 

RM ANOVA G-G .043 .043 .048 .039 .037 .045 .047 .043 
RM ANOVA H-F .051 .051 .051 .050 .051 .051 .050 .050 
MANOVA - Wilks' Λ .050 .050 .051 .049 .050 .050 .050 .050 
                  

* Values appearing in bold print fall within the 95% confidence interval of (.049, .051) 
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Table 4.4.4 

Empirical Power Estimates for Comparing Mixed Models with Classical Methods under  

Marginal Conditions 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal Marginal

      
Independence .32 .27 .30 .33 .29 
Variance Components .34 .29 .31 .35 .32 
Compound Symmetry .38 .43 .38 .41 .41 
Heterogeneous 
Compound Symmetry .39 .41 .38 .41 .40 

Autoregressive .33 .31 .34 .33 .32 
Heterogeneous 
Autoregressive .35 .33 .35 .35 .34 

Toeplitz .36 .38 .36 .37 .37 
Heterogeneous 
Toeplitz .37 .38 .37 .38 .38 

Unstructured .37 .39 .38 .37 .38 
      
Mean .36 .35 .35 .36 .36 
      
RM ANOVA 
Conventional F-test .38 .43 .38 .41 .41 

RM ANOVA G-G .35 .39 .35 .37 .37 
RM ANOVA H-F .37 .40 .36 .39 .39 
MANOVA - Wilks' Λ .37 .39 .38 .37 .38 
            



 

 150

Table 4.4.5 

Empirical Power Estimates for Comparing Mixed Models with Classical Methods under Marginal Conditions 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .04 .10 .24 .07 .29 .59 .13 .50 .86 .31 
Variance Components .04 .09 .23 .07 .30 .66 .14 .56 .92 .33 
Compound Symmetry .08 .17 .34 .14 .40 .71 .23 .62 .92 .40 
Heterogeneous 
Compound Symmetry .07 .14 .31 .13 .40 .73 .23 .65 .94 .40 

Autoregressive .06 .12 .25 .11 .31 .61 .17 .52 .87 .34 
Heterogeneous 
Autoregressive .06 .11 .24 .10 .32 .66 .17 .57 .91 .35 

Toeplitz .07 .14 .28 .13 .36 .65 .22 .57 .89 .37 
Heterogeneous 
Toeplitz .06 .12 .26 .13 .38 .70 .22 .62 .93 .38 

Unstructured .07 .11 .23 .13 .37 .69 .22 .62 .93 .38 
           
Mean .062 .122 .264 .112 .349 .667 .193 .581 .909 .362 
           
RM ANOVA 
Conventional F-test .08 .17 .34 .14 .40 .71 .23 .62 .92 .40 

RM ANOVA G-G .05 .12 .27 .12 .37 .67 .21 .59 .91 .37 
RM ANOVA H-F .07 .15 .32 .13 .38 .68 .22 .59 .91 .38 
MANOVA - Wilks' Λ .07 .11 .23 .13 .37 .69 .22 .62 .93 .38 
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Table 4.4.6 

Empirical Type I Error Rates for Extremely Non-Spherical Data 

True 
Structure Information Criteria 

Small 
Sample 

Marginal 

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal 
      

Mixed Model (KR 
Approximation) .048 .051 .049 .049 

     
RM ANOVA 
Conventional F-test .073 .073 .070 .072 

RM ANOVA G-G .035 .042 .044 .041 

RM ANOVA H-F .054 .050 .048 .051 

ARH       
(ε = .670) 

MANOVA - Wilks' Λ .049 .053 .048 .050 

 
 
     
Mixed Model (KR 
Approximation) .060 .062 .057 .060 

     
RM ANOVA 
Conventional F-test .096 .099 .080 .092 

RM ANOVA G-G .047 .054 .044 .048 

RM ANOVA H-F .063 .058 .046 .056 

UN        
(ε = .492) 

MANOVA - Wilks' Λ .051 .048 .053 .051 

            
*ARH = Heterogeneous Autoregressive; UN = Unstructured 
**RM ANOVA = Repeated Measures Analysis of Variance; G-G = Greenhouse-Geisser;  
H-F = Huynh-Feldt; MANOVA = Multivariate Analysis of Variance 
***   N ≈ 5,000 for columns 1-3; 95% confidence interval = (.044, .056) 
**** N ≈ 15,000 for marginal condition; 95% confidence interval = (.046, .054) 
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Table 4.4.7 
 
Empirical Type I Error Rates for Extremely Non-Spherical Data: Expanded View  

of UN 

Fitted Model 

Small 
Sample 

Marginal 

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal 
     
Independence .032 .024 .020 .025 
Variance Components .017 .014 .014 .015 
Compound Symmetry .097 .097 .078 .091 
Heterogeneous 
Compound Symmetry .068 .082 .072 .074 

Autoregressive .079 .076 .069 .075 
Heterogeneous 
Autoregressive .059 .068 .062 .063 

Toeplitz .086 .084 .082 .084 
Heterogeneous 
Toeplitz .051 .068 .064 .061 

Unstructured .051 .048 .054 .051 
     
Mean .060 .062 .057 .060 
     
RM ANOVA 
Conventional F-test .096 .099 .080 .092 

RM ANOVA G-G .047 .054 .044 .048 
RM ANOVA H-F .063 .058 .046 .056 
MANOVA - Wilks' Λ .051 .048 .053 .051 
          

* Columns 1-3: N = 5,000; 95% confidence interval = (.044, .056) 
**Columns 4:  N = 15,000; 95% confidence interval = (.047, .053) 
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Table 4.4.8 

Empirical Power Estimates for Models Fit to Extremely Non-Spherical Data 

  Small Mean Effect Moderate Mean Effect Large Mean Effect  
True 

Structure Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

Mixed Model (KR) .05 .06 .08 .07 .14 .27 .10 .31 .59 .19 

RM ANOVA 
Conventional F-test .07 .10 .11 .11 .20 .34 .16 .40 .67 .24 

RM ANOVA G-G .04 .06 .07 .06 .14 .27 .09 .31 .59 .18 

RM ANOVA H-F .05 .07 .08 .09 .16 .28 .13 .33 .61 .20 

ARH       
(ε = .670) 

MANOVA - Wilks' Λ .05 .06 .08 .06 .13 .26 .07 .28 .59 .18 

            

Mixed Model (KR) .06 .08 .10 .08 .20 .35 .13 .40 .70 .23 

RM ANOVA 
Conventional F-test .10 .11 .13 .13 .23 .39 .20 .46 .81 .28 

RM ANOVA G-G .04 .06 .07 .06 .14 .27 .10 .30 .65 .19 

RM ANOVA H-F .06 .07 .08 .08 .15 .27 .13 .32 .67 .20 

UN        
(ε = .492) 

MANOVA - Wilks' Λ .06 .12 .22 .12 .59 .93 .25 .95 1.00 .47 
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Table 4.5.1 

Empirical Type I Error Rates for the Test of Interaction (Aggregated across all seven true models) 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .035 .013 .031 .029 .033 .030 .028 .030 
Variance Components .029 .011 .026 .024 .027 .025 .024 .025 
Compound Symmetry .058 .061 .057 .060 .059 .059 .058 .059 
Heterogeneous 
Compound Symmetry .049 .048 .048 .048 .046 .050 .049 .048 

Autoregressive .051 .050 .051 .051 .050 .052 .051 .051 
Heterogeneous 
Autoregressive .045 .045 .047 .044 .044 .046 .046 .046 

Toeplitz .056 .056 .054 .058 .056 .056 .056 .056 
Heterogeneous 
Toeplitz .048 .047 .047 .048 .045 .050 .049 .048 

Unstructured .051 .049 .050 .051 .051 .051 .049 .050 
         
Mean .047 .042 .046 .046 .046 .047 .046 .046 
         
RM ANOVA 
Conventional F-test .058 .061 .057 .060 .059 .059 .058 .059 

RM ANOVA G-G .042 .043 .047 .038 .036 .045 .046 .042 
RM ANOVA H-F .052 .053 .052 .052 .054 .052 .050 .052 
MANOVA - Wilks' Λ .051 .049 .050 .051 .051 .051 .049 .050 
                  

* 95% confidence interval: (.049, .051)
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CHAPTER V: DISCUSSION 

 

  

 This chapter provides a synopsis of the current study, a discussion of the results, 

acknowledgement of the limitations and suggestions for future research, and recommendations 

for applied researchers working with longitudinal data. The synopsis revisits the motivation, 

purpose, and the design and methods of the study as well as providing a summary of the results. 

The discussion of the results is organized by each of the research questions. The limitations and 

suggestions for future research summarize the shortcomings of the current study and offer 

suggestions for further scientific inquiry of this topic. Finally, recommendations for applied 

researchers are provided.   

  

Synopsis  

 Collecting data from the same subjects through time is attractive to researchers for two 

main reasons. First, research designs of this nature allow investigators to evaluate individual 

changes over time. Second, data collection mechanisms of this type reduce the error variance as 

subjects serve as their own control. These sampling designs produce “repeated measures” or 

“longitudinal” data. 
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 The analysis of longitudinal data represents a departure from many traditional statistical 

analysis approaches where observations are assumed to be independent. In contrast, longitudinal 

data are often related through time as a function of being collected from the same subjects 

repeatedly. Therefore, special statistical models have been developed in order to evaluate these 

data. 

 Classical univariate methods for analyzing longitudinal data assume independence of 

subjects, but allow observations within subjects to be dependent. However, a restrictive 

assumption is placed on the quality of those associations, known as sphericity. In longitudinal 

data analysis, this most often equates to assuming that data collected further apart in time have 

the same relationship as data collected closer in time. Unfortunately, this assumption is often 

found to be untenable in applied longitudinal data analysis. Further, when sphericity is violated, 

the conventional F-test for the Time effect in the repeated measures analysis of variance (RM 

ANOVA) has been shown to be excessively liberal (Everitt, 2001, pp. 139-141; Rogan et al., 

1979). In order to address this problem, corrections have been developed to adjust the F-test and 

lessen the rates of falsely rejecting the null hypothesis (Huynh & Feldt, 1976). Also, a 

multivariate approach for analyzing longitudinal data based on the classical linear model (CLM) 

is available that does not require sphericity. However, this approach may require many 

parameters to be estimated and therefore may lack statistical power in these situations. 

 Another univariate conceptualization for analyzing longitudinal data is based on modern 

mixed model (MM) methods. These methods obviate the sphericity issue by modeling the 

covariance of the data with respect to time instead of imposing a specific form upon it. 

Therefore, these methods seem more appropriate for longitudinal data analysis where the 

sphericity assumption is typically not met. Furthermore, proponents of this approach claim that it 
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is more powerful than the MANOVA approach because modern MM methods are able to more 

parsimoniously model the covariance structure of the data. 

 However, if one chooses to use the modern MM approach, one faces new challenges. 

Specifically, the researcher is required to select a model for the covariance of the data. While 

many tools are available to help guide this choice, most methodologists suggest the use of 

information criteria. Information criteria are a set of quantitative indicators that incorporate a 

form of the maximized model likelihood function and a penalty for model complexity59. Thus, 

these criteria measure the goodness of fit of the model to the data. 

 Unfortunately, the existing research literature suggests that information criteria are not 

very accurate in selecting the correct covariance model among a set of possible candidate models 

(Ferron et al., 2002; Gomez et al., 2005; Keselman, Algina, et al., 1998; Vallejo & Livacic-

Rojas, 2005). Marginal accuracy rates have been reported as low as 47% and 35% correct for 

two of the most common information criteria (i.e., AIC and BIC) (Keselman, Algina, et al., 

1998). Some authors have suggested that these low accuracy rates may be negatively influenced 

by the existence of surrogate models that approximate the true model well (Gomez et al., 2005; 

Keselman, Algina, et al.). 

 The current study was multifaceted with preliminary, primary, and secondary objectives. 

The preliminary investigation was concerned with comparing four test statistic options in modern 

MMs through examination of empirical Type I error rates (αe’s). The three primary purposes 

were to 1) investigate the possible existence of surrogate covariance models as measured by αe’s 

and statistical power of the tests of the fixed effects in MMs, 2) estimate the rates of five 

information criteria in selecting appropriate covariance models, and 3) investigate the αe’s and 

statistical power of models selected by the five information criteria. The two secondary purposes 
                                                 
59 Among other things (e.g., sample size). 
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were to 1) compare modern MM methods with classical methods of analyzing longitudinal data 

by examining αe’s and statistical power estimates and 2) investigate the αe’s of the Group x Time 

interaction test when a between-subjects factor was added to the design. 

 The current study addressed these objectives by performing a Monte Carlo computer 

simulation that generated data, fit the appropriate models, and obtained outcome measures (e.g., 

αe’s, power estimates, selection rates, etc.). The computer simulation was performed in three 

phases. In all three phases, normally-distributed longitudinal data were generated. In phases I and 

II, data were generated with a single-group repeated measures design60. Specifically, the purpose 

of phase I was to obtain αe’s. Thus, data were generated so that the null hypothesis of the Time 

main effect was known to be true. In phase II, the purpose was to obtain statistical power 

estimates. Consequently, data were generated for phase II where the alternative hypothesis was 

known to be true. In contrast, phase III data were generated from a design with one within-

subjects factor (Time) and one between-subjects factor (Group). The purpose here was to obtain 

αe’s for the Group x Time interaction test. As a result, phase III data were generated so that the 

null hypothesis of a Group x Time interaction was known to be true61. 

 Results demonstrated that the Kenward-Roger (KR) approximation provided superior 

Type I error control when compared to the Between/Within and Satterthwaite methods as well as 

the use of the sandwich estimator. Next, 14 surrogate covariance models were identified for 

seven true models (each true model obtained at least one surrogate). Further, rates for selecting 

appropriate covariance models were estimated to be approximately 16% greater than rates of 

selecting only the correct model across both the seven true models and the five information 

criteria. Differences in performance among these five information criteria were negligible. When 

                                                 
60 That is, one within-subjects factor and no between-subjects factors. 
61 The null hypotheses of the Group and Time main effects were also specified to be true. 
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αe’s were compared for models selected by the five information criteria, reasonable Type I error 

control was found with no αe’s indicating inflated rates of falsely rejecting the null hypothesis. 

Additionally, differences in statistical power of models selected by each of the criteria were 

slight. Next, the MM(CSH), Huynh-Feldt (H-F) corrected RM ANOVA test, and the 

MM(UN)/MANOVA models were found to perform comparably under moderately non-

spherical circumstances. Further analysis demonstrated that only the MM(UN)/MANOVA 

models performed at acceptable levels when the data were extremely non-spherical. Finally, the 

MM(AR) and MM(UN)/MANOVA models were found the provide superior Type I error control 

for the Group x Time interaction test. 

 

Discussion 

 This section provides a discussion of the results organized by research question. 

 

Preliminary Research Question 

 

i) How do test statistics for the fixed effects of the mixed model compare with 

respect to αe’s when the SAS PROC MIXED default (the Between/Within method), 

the Satterthwaite or KR approximations, or the sandwich estimator options are 

used? 

 

The objective of this research question was to assess the effectiveness of four test statistic 

options in controlling αe’s in modern MMs. Each one of these options is readily available in 
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SAS, version 9.1; therefore, accessibility of these methods is not an issue for the typical 

researcher. 

Results demonstrated that the KR approximation provided superior Type I error control 

over the Between/Within, Satterthwaite, and sandwich estimator options. These results agreed 

with the conclusions of Guerin and Stroup (2000), who found the KR approximation to out 

perform the Containment and Satterthwaite methods. However, the Guerin and Stroup 

comparison was only made in small sample situations (N = 12, nj =6). The results of the current 

study extend the findings of Guerin and Stroup to both moderate and large sample conditions62 

(N = 30 & 60). Under these larger sample size conditions, the KR approximation was still found 

to provide superior Type I error control. 

Furthermore, Guerin and Stroup (2000) found that the KR approximation did not provide 

acceptable levels of Type I error control when the covariance model of the modern MM was 

misspecified. In contrast to their findings, the current study found that, on average, the KR 

approximation provided slightly conservative Type I error control when the incorrect covariance 

model was fit to the data (i.e., αe = .045, on average; see Table 4.i.2, p. 134 and tables A2 – A7, 

pp. 190-195). Compared to the other methods evaluated in the current study, these results were 

deemed desirable and ultimately acceptable. Obvious exceptions to this general rule are: 1) 

fitting IN or VC models to data that exhibit autocorrelation yields consistently conservative test 

statistics with αe = .018, on average, and 2) fitting the CS model to non-spherical data (i.e., 

essentially fitting the RM ANOVA conventional F-test model) results in consistently liberal tests 

with an mean αe = .060. Empirical Type I error rates were not held to the nominal α level under 

these circumstances, even with the use of the KR approximation. 

                                                 
62 Moderate and large sample sizes with respect to social science longitudinal research (Keselman, Huberty et al., 
1998). 
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In conclusion, results of the current study support the recommendations of both Guerin 

and Stroup (2000) and Littell et al. (2006): the KR approximation should be used in modeling 

situations involving repeated measures data using modern MM methods. Furthermore, the SAS 

degrees of freedom default63 (the Between/Within method) should be avoided as it produces test 

statistics with inflated αe’s of the magnitude of .06464. The Satterthwaite method was found to 

provide more control than that of the Between/Within method; however, still slightly liberal with 

αe = .057, on average.  

Finally, the sandwich estimator was found to produce comparable αe’s regardless of 

whether the correct or incorrect covariance model was fit to the data. This supports the claims 

that the sandwich estimator is robust to covariance model misspecification (Fitzmaurice et al., 

2004). On the surface, this makes the sandwich estimator seem like an attractive alternative to 

many of the covariance modeling issues discussed here. Unfortunately, results from the current 

study demonstrated that the sandwich estimator does not provide acceptable levels of Type I 

error control with sample sizes that are typical of social science longitudinal data analysis. This 

is not to say that it is not effective in larger sample situations. 

 

Primary Research Questions 

 

1) Do surrogate covariance structures exist? If so, which structures serve as 

acceptable approximations for a given population or correct structure and under 

what conditions? 

 
                                                 
63 The Between/Within method is the default for models fit in PROC MIXED using only a REPEATED statement. 
64 Aggregated across situations where both the correct and incorrect models were fit to the data. 
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 The objective of this question was to identify covariance structures that are comparable to 

others, if they exist. Surrogate models of this type could then serve as substitutes for the correct 

model. It was hypothesized that the existence of surrogate models would have a substantial 

impact on the rates of selecting an appropriate covariance model using information criteria. 

Furthermore, the current investigation was expected to yield valuable information regarding the 

severity of covariance misspecification on αe’s and statistical power. 

 Table 4.1.1 (p. 135) demonstrated that the CSH and TOEPH models did not obtain 

acceptable levels of αe’s when these were the correct models. That is, the CSH model was found 

to be conservative and the TOEPH model to be liberal, even when each was the correct model. 

This is consistent with the findings of both Gomez et al. (2005) and Robertson (1996) who found 

lack of Type I error control for complex models even when the correct model was fit to the data. 

This may indicate an inability of the modern MM approach to properly model data of these 

types. Conversely, it is possible that a sufficient level of precision of these Monte Carlo 

simulations was not obtained. Furthermore, the Robertson study used the Containment degrees of 

freedom method which has been shown to be problematic (Gomez et al.). 

Overall, 14 surrogate covariance models were identified; at least one for each of the 

seven true covariance models used in the current study. As expected, simpler models (IN and 

VC) obtained more surrogates than more complex models. That is, most surrogates overfit the 

true model with only one occurrence of a surrogate underfitting the data (i.e., the surrogate CSH 

model for UN).  Further, variance homogeneity/heterogeneity appears to have a substantial 

impact on which models are considered comparable. For example, the IN model (a homogeneous 

variance model) obtained four surrogates, all of which exhibited homogeneous variances. 

Similarly, the VC model (a heterogeneous variance model) obtained three surrogates, all of 
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which exhibited heterogeneous variances. In fact, no surrogates were identified in the current 

study that did not match the variance structure of the true model. However, this is not surprising 

because it has been documented that homogeneous variance models that are fit to heterogeneous 

variance data produce test statistics with inflated αe’s (Guerin & Stroup, 2000). Results from the 

current study provide further evidence of this phenomenon. For example, when the IN model 

was fit to the VC data, αe = .061. Similarly, when the CS model was fit to the CSH data, αe = 

.059. More generally, all homogenous variance models65 fit to the VC data obtained inflated αe’s 

ranging from .058 to .061. 

In contrast, when heterogeneous variance models are fit to homogeneous variance data 

(i.e., overfitting the variance structure and therefore overfitting the covariance structure as a 

whole), we would generally expect acceptable Type I error control, but a loss of statistical 

power. Therefore, if a candidate model was not found to be a surrogate in this situation, one 

would expect the lack of comparability to be due to insufficient statistical power. However, this 

was not observed in the current study. Instead, results demonstrated in these situations that αe’s 

became slightly conservative and, on average, power decreased to a small extent, but this 

decrease was minor. Counter-intuitively, candidate models were rejected as surrogates in the 

majority of these cases because of conservative αe’s and not power issues. This, of course, may 

simply be an artifact of the criteria used in the current study to identify surrogates. 

Results from this investigation also demonstrate that fitting models assuming 

independence of observations to data that exhibit autocorrelation result in substantially 

conservative tests. For example, fitting either the IN or VC models to data that exhibit 

autocorrelation results in αe’s of .018, on average. In these cases, substantial loss of statistical 

power may occur. For example, the most extreme case found in the current study took place 
                                                 
65 That is, all homogeneous variance models that allowed for autocorrelation (i.e., excluding the IN model). 
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when the VC model was fit to the CS data. In this situation, the difference in power was .17. 

Thus, it is important to account for autocorrelation in the data in order to obtain tests that adhere 

to the nominal α level and exhibit reasonable statistical power. 

Robertson (1996) concluded that the CS model was a good approximation for others. 

This conclusion was not supported by the results of the current study. This discrepancy is most 

likely attributable to two reasons. First, Robertson only generated data under three true models: 

CS, autoregressive plus a common covariance (AR+CC), and UN. While the AR+CC model was 

not included in the current investigation, results demonstrated that fitting the CS model to UN 

data66 produced inflated αe’s of the magnitude of .06567. It is possible that the UN data in the 

Robertson study were less non-spherical than those generated in the current study. If this were 

the case, it may explain this discrepancy in results. Second, Robertson used the Containment 

degrees of freedom method exclusively. As mentioned earlier, problems with this method are 

suspected (Gomez et al., 2005). Results from the current study using the KR approximation 

demonstrate that the CS model does not in fact serve as a good approximation of other structures 

unless the true structure is IN. Otherwise, the CS model obtained inflated αe’s as great as .065. 

Therefore, the CS model should be avoided unless especially convincing evidence of the 

tenability of sphericity is available68. 

Keselman et al. (1999) found the ARH model to be a good approximation for others 

when the Satterthwaite method was used to obtain test statistics. While the ARH model did not 

result in inflated αe’s when fit to data with other covariance structures in the current study, αe’s 

were moderately conservative in some cases and loss in statistical power was as great as .13. 

                                                 
66 Once again, this is analogous to assuming sphericity and using the RM ANOVA conventional F-test. 
67 However, power estimates were found to be comparable with the true model (UN): (1-β)CS = .35; (1-β)UN = .37. 
68 Because the MM(CS) model and the RM ANOVA conventional F-test are synonymous, this recommendation is 
the same offered by many other methodologist concerning the use of the conventional F-test when the assumption of 
sphericity is suspect. 
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Keselman et al. did not investigate statistical power and therefore may not have been aware of 

the loss of power when making this recommendation. Therefore, results from the current study 

demonstrate that the ARH model is only a surrogate for the VC model due largely to power 

issues. 

Results from the current study suggest that the CSH, but especially the UN model may 

serve as an acceptable approximation to any one of the seven true structures studied. 

Specifically, the UN model produced either acceptable or slightly conservative αe’s when applied 

to data with any other true covariance structure. That is, the UN model never produced inflated 

αe’s. Furthermore, while the UN model uses the most degrees of freedom to estimate parameters, 

the average loss in statistical power observed in the current study was only .03. Of course, it is 

expected that the UN model would not perform as well in situations with a larger number of 

measurement occasions. That is, a greater loss in power is expected with designs incorporating a 

larger number of measurement occasions. However, these situations are not typical in applied 

social science research. Therefore, in modeling situations that resemble those simulated in the 

current study, the UN structure is considered the best overall covariance structure for modeling 

data with an unknown covariance structure. 

  

2) What are the selection rates of a particular information criterion with respect 

to selecting a) the correct model, b) a surrogate model, c) and an appropriate 

model? What are the selection rates with respect to a) underfitting or b) 

overfitting the data? 
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The main objective of this research question was to re-assess the performance of 

five information criteria in selecting appropriate covariance models for modern MMs 

taking into account the influence of surrogate models. It was hypothesized that 

information criteria select appropriate covariance models at higher rates than their 

accuracy rates reported in previous research. If this was found to be the case, it was 

suspected that applied researchers may opt to use both information criteria and the 

modern MM approach more often69. 

The current study found that the five information criteria selected the correct 

model approximately 52% of the time, on average. Estimates ranged from 51% for AIC 

and AICC to 54% for BIC. Therefore, only negligible differences in accuracy among the 

five information criteria were observed. These results appear contradictory to those of 

Robertson (1996) and Ferron et al. (2002) who found accuracy rates to range from 75% 

to 95% and 66% to 79% for differing information criteria, respectively. However, in both 

of these investigations only a small number of candidate models were considered (3 and 

2, respectively).  

Rates found in the current study for AIC are comparable to those reported by 

Keselman, Algina et al. (1998): 51% in the current study and 47% in the Keselman, 

Algina et al. study. However, a large discrepancy was observed between the results for 

BIC. The current study found BIC to select accurately 54% of the time, while BIC was 

found to do so only 35% of the time in the Keselman, Algina et al. study. Because BIC is 

a function of the sample size of the data to be fit, it is possible that the differences in 

sample sizes between the two studies accounts for the differences in reported accuracy 

                                                 
69 Reviews of longitudinal data analysis in the social sciences report that the majority of applied researchers use 
classical methods of analysis (Keselman, Huberty et al., 1998; Kowalchuk et al., 1996). 
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rates. However, samples sizes in the two studies were roughly comparable: N = 10, 30, & 

60 in the current study and N = 30, 45, & 60 in the Keselman, Algina et al. study. 

Furthermore, these differences may be explained by the difference in the size of the set of 

candidate models: 9 in the current study and 11 in the Keselman, Algina, et al. study. 

Similar to previous studies, the current investigation found that AIC tended to 

select more complex models, while BIC and CAIC tended to select more parsimonious 

models (Gomez et al., 2005; Guerin & Stroup, 2000; Robertson, 1996). Further, like 

Guerin and Stroup, information criteria were found to be more accurate for simpler true 

models, becoming less and less accurate as the structure of the true model became more 

complex. 

Beyond “naïve” accuracy rates, the current study found that, on average, the five 

information criteria selected a surrogate model that controlled Type I errors and provided 

comparable statistical power to the true model .16 of the time. These rates ranged from 

.11 to .19 with CAIC selecting surrogates the least and HQIC and AIC selecting 

surrogates .19 and .18 of the time, respectively. As a result, the five information criteria 

were found to select appropriate covariance models .68 of the time, on average. 

In contrast to selection rates of correct and appropriate covariance models, the 

current study also estimated the rates of these information criteria in underfitting and 

overfitting the data. The marginal rate of underfitting the data across the five information 

criteria was approximately .29, ranging from .24 to .37 for HQIC and CAIC, respectively. 

The marginal rate of overfitting the data was approximately .08, ranging from .05 to .11 

for CAIC and AIC, respectively.  
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Guerin and Stroup (2000) found that underfitting the data generally results in 

inflated αe’s. Therefore, the fact that the five information criteria were found to underfit 

data approximately 3.5 times more often than overfitting the data is especially 

problematic. In contrast, however, the current study provided evidence to suggest that not 

necessarily underfitting the data, but rather not accounting for heterogeneous variances 

was a major source of inflated αe’s. Perhaps underfitting is not as problematic as 

previously expected.  

In conclusion, the current study found that, on average, information criteria select 

an appropriate covariance model 68% of the time. While this is a substantial increase 

over many “naïve” accuracy estimates found in the literature, these rates are still low. 

Keselman, Algina, et al. (1998), Guerin and Stroup (2000), and Gomez et al. (2005) 

conclude that one can not expect to select the correct covariance model based on 

information criteria alone. Ultimately, results from the current study provide further 

support of this conclusion; however, in terms of applied research, a more interesting issue 

is discussed next. 

 

3) Will the analysis be statistically valid if one uses a particular information 

criterion to select a covariance model? That is, under what conditions are the 

αe’s controlled for models selected by a given information criterion? 

 

The objective of this research question was to ascertain the statistical properties of tests 

based on models selected by the five information criteria in terms of αe’s and statistical power 

estimates. This question was considered especially relevant because researchers working in 



 

 169

applied settings never know the true/population covariance structure. In this context, it is of less 

interest that a given information criterion chooses the true model. Rather, it is more important 

that a given information criteria selects a model that provides acceptable Type I error control and 

reasonable statistical power. 

 The current study found that while information criteria can not be relied on solely to 

select the correct model or even an appropriate model for a given set of data, on average, the five 

information criteria evaluated will select a model that provides acceptable Type I error control. 

This was found to be true for all five information criteria with very little variation among them 

(see Table 4.3.1, p. 142). Furthermore, very little variation with respect to statistical power was 

found among the five information criteria.  

 In previous research, investigators have explored these issues with regard to the αe’s of 

the interaction test in a within-and between-subjects design (Gomez et al., 2005; Robertson, 

1996). However, no reported studies were found that evaluated the αe’s and power of the main 

effect test for Time. Nonetheless, Robertson found αe’s for the interaction test of models selected 

by AIC, HQIC, BIC, and CAIC to exhibit inflated αe’s ranging from .069 to .082 (i.e., CAIC and 

AIC, respectively). Once again, the difference in these findings may be attributed to the 

difference in statistical tests being evaluated or to Robertson’s use of the Containment method. 

Similarly, Gomez et al., who evaluated the performance of the KR approximation, reported that 

αe’s were always higher than the nominal α value when models were selected by AIC or BIC. 

Once again, however, these results were based on an evaluation of the Group x Time interaction 

test. 

 In conclusion, researchers can be assured that the αe’s will be adequately controlled, on 

average, for the main effect test for Time. Furthermore, there is evidence to suggest that all five 
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information criteria select models that provide comparable Type I error control and statistical 

power under these circumstances. 

 
 
 

Secondary Research Questions  

 

4) How does the mixed model approach compare to the classical methods of 

repeated measures analysis in the context of covariance model misspecification? 

More specifically, how does the mixed model Wald-type F-statistic compare to the 

RM ANOVA conventional F-statistic, the G-G or H-F corrections, or the 

MANOVA Wilks’ Λ test statistic with respect to αe’s? 

 

 The objective of this question was to compare the modern MM methods with the classical 

methods in terms of αe’s and statistical power. As mentioned previously, there is some near 

overlap here with the MM(CS) model and conventional F-test as well as the MM(UN) model 

and the MANOVA approach fitting similar models. Nonetheless, this investigation was deemed 

important because only one study was found in the literature review that systematically 

compared the G-G and H-F corrected F-tests with the modern MM approach. 

 Results from the current study demonstrated that MM(CSH), H-F corrected test, and the 

MM(UN)/MANOVA approach all provided acceptable Type I error control and comparable 

statistical power when modeling moderately non-spherical data. Furthermore, only the 

MM(UN)/MANOVA approach demonstrated acceptable control Type I error control when 

modeling extremely non-spherical data. 
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 These results suggest that the MM(UN)/MANOVA model is most appropriate for 

analyzing data when the degree of non-sphericity is unknown. Alternatively, one could initially 

fit the RM ANOVA model, obtain either the G-G or H-F ε statistic, and make a decision 

concerning the degree of non-sphericity in the data. With this information, one could then select 

the MM(CSH), H-F corrected test, or the MM(UN)/MANOVA models if the data are only 

moderately non-spherical; or, otherwise, select the MM(UN)/MANOVA model if the data are 

extremely non-spherical. Ultimately, however, results from the current study show that the loss 

in statistical power from choosing the MM(UN)/MANOVA at the onset, regardless of the degree 

of non-sphericity, is only 5% to 6%. 

 On the surface, results from the current study seem to suggest that the classical methods 

perform just as well as the modern MM methods, and, indeed, under the conditions studied in 

this simulation there is evidence to support this conclusion. However, the modern MM approach 

allows for the economical analysis of missing data, the use of time-varying covariates, and the 

use parameterized growth curve models for the mean response70 that allow for the analysis of 

data with unequal measurement occasions. These options are not possible in classical methods 

for analyzing longitudinal data. Therefore, the current study has laid the foundation for the 

comparison of these models by demonstrating that certain methods within both frameworks are 

comparable with respect to αe’s and statistical power. However, further research is needed in 

order to compare the methods under more general situations that often arise in longitudinal data 

analysis involving missing data, time-varying-covariates, unequal measurement occasions, etc. 

 

5) What are the mixed model αe’s for the test of the interaction in repeated 

measures data with a between-subjects factor?   
                                                 
70 As well as profile analysis models for the mean response, like those used in the current study. 
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 The objective of this question was to ascertain whether the mixed model test statistics 

provided acceptable Type I error control for the Group x Time interaction test. This was 

considered important because many of longitudinal studies in psychology and the social sciences 

in general involve at least one between-subjects factor and, in these cases, differential trends 

through time among groups is often of primary interest. 

 Results from the current study demonstrated that the MM(AR) and MM(UN)/MANOVA 

models provide acceptable Type I error control for the interaction test, regardless of the true 

model. Alternatively, results suggest that the H-F corrected test would be statistically valid in 

large sample situations. 

 While no reported studies were found that reported results in this manner, a few studies 

did investigate the use of AIC and the Satterthwaite or KR approximation in the modern MM 

Group x Time interaction test (Keselman et al., 1999; Vallejo & Livacic-Rojas, 2005). Keselman 

et al. investigated the αe’s of the interaction test for AIC selected MMs71 under the following 

conditions: sample size inequality, variance heterogeneity with respect to Time, variance 

heterogeneity with respect to Group, positive and negative pairings of sample size inequality and 

Group variance heterogeneity, normal and lognormal data, etc. These researchers found αe’s to 

range from .054 to .099 when AIC was used and the data were normally-distributed. Further, 

these αe’s were found to be highly influenced by pairing: αe’s under positive pairing conditions 

were closer (yet still inflated) to the nominal α value while highly inflated αe’s were encountered 

for negative pairings. 

                                                 
71 With the Satterthwaite approximation. 
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 Vallejo and Livacic-Rojas (2005) also investigated the Group x Time interaction test72 

for MMs under similar circumstances to Keselman et al. (1999). These authors found that BIC 

was unable to select models that produced satisfactory Type I error control. Therefore, they 

preferred AIC even though AIC was found to select MMs that produced inflated αe’s in small 

sample situations (N = 30). In general, Type I error control was acceptable for AIC selected 

MMs when analyzing normal data. Results were similar for the lognormal data generated; 

however, the authors stated that conservative values of αe’s were encountered under conditions 

with extreme values of skewness and kurtosis (i.e., γskew = 3.00, γkurtosis = 21.00). 

  

Limitations and Suggestions for Future Research 

 The limitations of the current study were initially discussed at the end of the third 

chapter. Some of the most salient limitations follow. First, the current study was primarily 

concerned with data generated from a single-group repeated measures design with only one 

within-subjects factor (Time). There are, of course, many variations of this design including 

multiple within and between-subjects factors. Further investigations into the properties of these 

test statistics may be warranted. Second, the current study generated normally-distributed data. 

While research investigating the effect of non-normally distributed data on the Group x Time 

interaction test from similar designs is available (Gomez et al., 2005; Guerin & Stroup, 2000; 

Keselman et al. 1999; Vallejo & Livacic-Rojas, 2005), the effect of non-normally distributed 

data on the main effect of Time may be of interest. Third, the current study did not focus on data 

                                                 
72 With the KR approximation. 
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that exhibited between-subjects random effects73. A more in-depth investigation into this type of 

data is warranted.  

Limitations of the current study are especially important for the last research question. It 

has been well documented that group size heterogeneity, variance heterogeneity, and the pairing 

of these two factors has a profound impact on αe’s (Gomez et al., 2005; Keselman et al., 1999; 

Vallejo & Livacic-Rojas, 2005). Specifically, positive pairings are known to produce slightly 

inflated αe’s, while negative pairings are known to produce excessively inflated αe’s. Therefore, 

this phase of the current study is only a preliminary investigation and further research including 

these operative experimental factors is needed. 

More generally, the identification of surrogates in the current study is largely a result of 

which criteria for evaluating αe’s and statistical power were chosen. While the current author 

performed a review of the existing literature, and therefore made an informed decision, the 

results would have most certainly been different if other criteria were chosen for use in the 

current study. A more standardized definition of conservative and liberal test statistics and 

corresponding criteria are needed. Furthermore, development of statistical power criteria may be 

of interest as well.  

Next, the current study found that many of the modern MM and classical methods are 

comparable in terms of αe’s and statistical power. However, this is only the first step in the 

comparison of these methods. As mentioned earlier, comparison of these methods with missing 

data, time-varying covariates, etc. is needed.  

Finally, longitudinal data in the current study were analyzed solely in SAS’s PROC 

MIXED routine with REML74 estimation. However, many researchers in the social sciences use 

                                                 
73 Data generated under the CS population covariance matrix exhibit subject-specific random effects. 
74 Restricted Maximum Likelihood. 
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the HLM software available from Scientific Software International, Inc. HLM 6 incorporates 

Bayesian estimation procedures. The current author is unaware of any research that compares 

these estimation procedures. Further research may investigate whether or not the HLM Bayes 

estimates are subject to the same bias problems of REML estimates that make adjustments like 

that of the KR approximation necessary. 

 

Recommendations for Applied Researchers 

 This section offers some basic recommendations and suggestions for applied researchers 

working with longitudinal data. First, research study design is always critically important in any 

well-informed and systematic research endeavor. The same is true for longitudinal studies. 

Specifically, avoid studies with a small number of subjects and a large number of measurement 

occasions as much as possible. Results from the current study demonstrate that αe’s are often 

inflated in these situations. Second, results from the current study support the recommendations 

of Guerin and Stroup (2000) and Littell et al. (2006) to use the KR approximation when fitting 

modern MMs to repeated measures or longitudinal data. Next, during model fitting procedures, 

researchers need to pay special attention to properly fitting the variance structure of the data. It is 

especially important not to fit models that assume homogeneous variances to data that exhibit 

variance heterogeneity. Results from the current as well as previous studies demonstrate that  

αe’s are likely to be inflated in these situations (Guerin & Stroup). Various tools can be used in 

order to evaluate the existence of heterogeneous variances in a given dataset. Obvious examples 

include simply inspecting the sample covariance matrix as well as various graphical tools like 

residual plots with respect to Time, etc. Fourth, researchers need to account for autocorrelation 

in the data, if it exists. If models that assume independence of observations are fit to data that 
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exhibit autocorrelation, test statistics are likely to be substantially conservative and statistical 

power drastically reduced. Next, results from the current study support the recommendation of 

Guerin and Stroup (2000) to err on the side of overfitting the data as opposed to underfitting. 

Furthermore, results demonstrate that AIC is more likely to overfit the data when compared to 

the other four information criteria. Therefore, the current author recommends the use AIC over 

other information criteria because it overfits data. Sixth, loss in statistical power is not crippling 

if one fits a completely saturated model for the covariance structure of data when the true 

covariance structure is unknown to the researchers. That is, if one fits either the MM(UN) or 

MANOVA models as a safe bet to guard against inflated αe’s, results from the current simulation 

suggest a loss in power in the neighborhood of 5 to 6%. Finally, fit either MM(UN) or 

MANOVA models when extreme non-sphericity is encountered. That is, the current study 

suggests if H-F ε values are encountered less than or equal to .65, fit one of these two models. 
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Table A1 

Example of Permanent SAS Dataset 

                  
         

PROGRAM SET CONDITION REPLICATE SEED_INDEX TRUE_STRUC MO N SIGMASQ
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
1 1 1 1 1 UN 3 10 6 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
1 1130 5 130 1130 UN 6 30 6 
1 1130 5 130 1130 UN 6 30 6 
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Table A1 (continued) 

                  
         

CORR FITTED_MOD STDERR Neg2LogLik Parms AIC AICC HQIC BIC 
.3 Independence Between/Within 247.1 1 249.1 249.2 248.7 249.4 
.3 Independence Satterthwaite 247.1 1 249.1 249.2 248.7 249.4 
.3 Independence Kenward/Roger 247.1 1 249.1 249.2 248.7 249.4 
.3 Independence Sandwhich 247.1 1 249.1 249.2 248.7 249.4 
.3 Variance Components Between/Within 233.4 3 239.4 24.4 238.4 24.3 
.3 Variance Components Satterthwaite 233.4 3 239.4 24.4 238.4 24.3 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
.3 Unstructured Kenward/Roger 228 6 240 244.2 238 241.8 
.3 Unstructured Sandwhich 228 6 240 244.2 238 241.8 
.3 RM ANOVA CON-F NA NA NA NA NA NA NA 
.3 RM ANOVA G-G NA NA NA NA NA NA NA 
.3 RM ANOVA H-F NA NA NA NA NA NA NA 
.3 MANOVA - Wilks NA NA NA NA NA NA NA 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
.3 Unstructured Satterthwaite 1474.6 21 1516.6 1522.7 1526 1546 
.3 Unstructured Kenward/Roger 1474.6 21 1516.6 1522.7 1526 1546 
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Table A1 (continued) 

                      
           

CAIC NumDF DenDF FValue ProbF EPSILON_GG EPSILON_HF PDR PDR_S PDR_M U_P_S 
25.4 2 18 .52 .6030 NA NA 1 1 1 1.7895 
25.4 2 27 .52 .6002 NA NA 1 1 1 1.7895 
25.4 2 27 .52 .6002 NA NA 1 1 1 1.7895 
25.4 2 18 .37 .6945 NA NA 1 1 1 1.7895 
243.3 2 18 .31 .7385 NA NA 1 1 1 1.7895 
243.3 2 12.7 .31 .7400 NA NA 1 1 1 1.7895 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 
247.8 2 8 .30 .7505 NA NA 1 1 1 1.7895 
247.8 2 9 .37 .6995 NA NA 1 1 1 1.7895 
NA 2 18 .63 .5464 NA NA NA NA NA NA 
NA 1 1.3 .63 .4677 .5708 .599 NA NA NA NA 
NA 1 1.8 .63 .4744 .5708 .599 NA NA NA NA 
NA 2 8 .30 .7505 NA NA NA NA NA NA 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 
1567 5 29 .72 .6128 NA NA 1 1 1 4.0155 
1567 5 25 .62 .6845 NA NA 1 1 1 4.0155 
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Table A1 (continued) 

            
      

U_P_M U_S_M Reason Status pdG pdH 
6.4592 -3.2008 Convergence criteria met. 0 1 1 
6.4592 -3.2008 Convergence criteria met. 0 1 1 
6.4592 -3.2008 Convergence criteria met. 0 1 1 
6.4592 -3.2008 Convergence criteria met. 0 1 1 
1.6119 -.1604 Convergence criteria met. 0 1 1 
1.6119 -.1604 Convergence criteria met. 0 1 1 

. . . . . . 

. . . . . . 

. . . . . . 
1.7895 1.0456 Convergence criteria met. 0 1 1 
1.7895 1.0456 Convergence criteria met. 0 1 1 

NA NA NA NA NA NA 
NA NA NA NA NA NA 
NA NA NA NA NA NA 
NA NA NA NA NA NA 

. . . . . . 

. . . . . . 

. . . . . . 
4.0155 3.7355 Convergence criteria met. 0 1 1 
4.0155 3.7355 Convergence criteria met. 0 1 1 
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Table A2 

Population Covariance Matrices for both Independence & Variance Components 

Structures 

Structure 3 measurement occasions 6 measurement occasions 
            
            

 100 0 0  100 0 0 0 0 0 
  100 0   100 0 0 0 0 
   100    100 0 0 0 
        100 0 0 
         100 0 

IN 

          100 
  ε = 1.000  ε = 1.000 
            

            
 100 0 0  100 0 0 0 0 0 
  300 0   200 0 0 0 0 
   600    300 0 0 0 
        400 0 0 
         500 0 

VC 

          600 
  ε = .840  ε = .840 
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Table A3 

Population Covariance Matrices for the Compound Symmetry Structure 

Correlation 3 measurement occasions 6 measurement occasions 
            
            

 100 30 30  100 30 30 30 30 30 
  100 30   100 30 30 30 30 
   100    100 30 30 30 
        100 30 30 
         100 30 

.3 

          100 
  ε = 1.000  ε = 1.000 
            

            
 100 50 50  100 50 50 50 50 50 
  100 50   100 50 50 50 50 
   100    100 50 50 50 
        100 50 50 
         100 50 

.5 

          100 
  ε = 1.000  ε = 1.000 
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Table A4 

Population Covariance Structure for the Heterogeneous Compound Symmetry Structure 

Correlation 3 measurement occasions 6 measurement occasions 
            
            

 100 51.96 73.48  100 42.43 51.96 60.00 67.08 73.48 
  300 127.28   200 73.48 84.85 94.87 103.92
   600    300 103.92 116.19 127.28
        400 134.16 146.97
         500 164.32

.3 

          600 
  ε = .850  ε = .851 
            

            
 100 86.60 122.47  100 7.71 86.60 100.00 111.80 122.47
  300 212.13   200 122.47 141.42 158.11 173.21
   600    300 173.21 193.65 212.13
        400 223.61 244.95
         500 273.86

.5 

          600 
  ε = .854  ε = .854 
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Table A5 

Population Covariance Matrices for the Heterogeneous Autoregressive Structure 

Correlation 3 Measurement Occasions 6 Measurement Occasions 
            
            

 100 51.96 22.05  100 42.43 15.59 5.40 1.81 0.60 
  300 127.28   200 73.48 25.46 8.54 2.81 
   600    300 103.92 34.86 11.46 
        400 134.16 44.09 
         500 164.32

.3 

          600 
  ε = .835  ε = .787 
            

            
 100 86.60 61.24  100 70.71 43.30 25.00 13.98 7.65 
  300 212.13   200 122.47 70.71 39.53 21.65 
   600    300 173.21 96.82 53.03 
        400 223.61 122.47
         500 273.86

.5 

          600 
  ε = .807  ε = .693 
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Table A6 

Population Covariance Matrices for the Heterogeneous Toeplitz Structure 

Correlation 3 Measurement Occasions 6 Measurement Occasions 
            
            

 100 51.96 47.77  100 42.43 33.77 30.00 23.48 14.70 
  300 127.28   200 73.48 55.15 47.43 36.37 
   600    300 103.92 75.52 63.64 
        400 134.16 95.53 
         500 164.32

.3 

          600 
  ε = .845  ε = .823 
            

            
 100 86.60 79.61  100 70.71 56.29 50.00 39.13 24.49 
  300 212.13   200 122.47 91.92 79.06 60.62 
   600    300 173.21 125.87 106.07
        400 223.61 159.22
         500 273.86

.5 

          600 
  ε = .824  ε = .742 
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Table A7 

Population Covariance Structures for the Unstructured Pattern 

Correlation 3 Measurement Occasions 6 Measurement Occasions 
            
            

 100 47.11 106.31  100 38.47 75.17 85.40 63.73 53.89 
  300 62.37   200 36.01 50.06 56.60 71.01 
   600    300 136.49 176.22 167.58
        400 127.46 63.20 
         500 156.65

.3 

          600 
  ε = .785  ε = .791 
            

            
 100 105.48 140.11  100 86.13 99.07 131.40 105.77 109.98
  300 156.98   200 90.63 164.33 124.91 148.26
   600    300 176.67 156.08 22.19 
        400 203.48 187.14
         500 271.12

.5 

          600 
  ε = .750  ε = .773 
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Table A8 

Frequencies of Nonconvergence 

True Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal 

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal
Overall 

Marginal 
         

11 NA 3 8 11   11 Independence 
(540,000) NA (270,000) (270,000) (180,000)   (540,000) 

161 NA 73 88 161   161 Variance Components 
540,000 NA (270,000) (270,000) (180,000)   (540,000) 

        Compound Symmetry 
        

10 2 10 2 12   12 Heterogeneous 
Compound Symmetry (540,000) (540,000) (540,000) (540,000) (360,000)   (1,080,000)

9 2 5 6 11   11 Heterogeneous 
Autoregressive (540,000) (540,000) (540,000) (540,000) (360,000)   (1,080,000)

8 4 8 4 12   12 Heterogeneous 
Toeplitz (540,000) (540,000) (540,000) (540,000) (360,000)   (1,080,000)

12 2 12 2 14   14 Unstructured 
(540,000) (540,000) (540,000) (540,000) (360,000)   (1,080,000)

         
211 10 111 110 221   221 Marginal 

(3,240,000) (2,160,000) (2,700,000) (2,700,000) (1,800,000)   (5,400,000)
                  

 
* Total number of models fit for a given condition in parentheses 
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Table A9 

Empirical Type I Error Rates (a) by Test statistic Option and Each Individual Condition 

Correlation .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 .5 
Time Points 3 3 3 6 6 6 3 3 3 6 6 6 
Sample Size 10 30 60 10 30 60 10 30 60 10 30 60 

 Condition 
Test statistic Option 1 2 3 4 5 6 7 8 9 10 11 12 

             
N ≈ 70K 70K 70K 70K 70K 70K 50K 50K 50K 50K 50K 50K 

             
Between/Within .063 .055 .053 .114 .065 .057 .063 .055 .050 .115 .064 .057 
             
Satterthwaite .057 .054 .052 .087 .058 .054 .056 .053 .049 .088 .056 .054 
             
Kenward/Roger .049 .052 .051 .047 .050 .050 .048 .051 .048 .047 .048 .050 
             
Sandwich Estimator .114 .069 .059 .398 .125 .082 .112 .069 .058 .399 .124 .083 
                          

 
(a) Error rates when only the correct model was fit to the data and then aggregated across all true models
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Table A10 

Empirical Type I Error Rates for the Independence True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .049 NA .050 .048 .053 .046 .047 .049 
Variance Components .048 NA .049 .047 .050 .047 .047 .048 
Compound Symmetry .049 NA .050 .048 .052 .047 .047 .049 
Heterogeneous 
Compound Symmetry .048 

NA 
.049 .047 .049 .047 .047 .048 

Autoregressive .049 NA .049 .049 .053 .047 .048 .049 
Heterogeneous 
Autoregressive .048 NA .049 .047 .050 .048 .047 .048 

Toeplitz .050 NA .050 .050 .055 .047 .047 .050 
Heterogeneous 
Toeplitz .047 NA .048 .046 .047 .047 .047 .047 

Unstructured .048 NA .049 .048 .050 .048 .047 .048 
         
Mean .048 NA .049 .048 .051 .047 .047 .048 
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Table A11 

Empirical Type I Error Rates for the Variance Components True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .061 NA .062 .060 .063 .060 .059 .061 
Variance Components .051 NA .053 .049 .048 .054 .052 .051 
Compound Symmetry .060 NA .061 .059 .061 .060 .059 .060 
Heterogeneous 
Compound Symmetry .051 

NA 
.053 .049 .048 .053 .052 .051 

Autoregressive .061 NA .061 .060 .061 .061 .060 .061 
Heterogeneous 
Autoregressive .050 NA .053 .048 .048 .052 .051 .050 

Toeplitz .058 NA .060 .057 .057 .059 .059 .058 
Heterogeneous 
Toeplitz .049 NA .052 .046 .045 .052 .051 .049 

Unstructured .051 NA .053 .049 .050 .052 .050 .051 
         
Mean .055 NA .056 .053 .053 .056 .055 .055 
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Table A12 

Empirical Type I Error Rates for the Compound Symmetry True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .013 .003 .010 .005 .009 .007 .007 .008 
Variance Components .013 .003 .010 .006 .010 .007 .007 .008 
Compound Symmetry .051 .049 .049 .050 .049 .050 .051 .050 
Heterogeneous 
Compound Symmetry .049 .045 .047 .046 .042 .049 .050 .047 

Autoregressive .040 .039 .043 .036 .039 .040 .040 .039 
Heterogeneous 
Autoregressive .040 .041 .044 .038 .041 .041 .041 .041 

Toeplitz .052 .050 .050 .052 .052 .050 .051 .051 
Heterogeneous 
Toeplitz .049 .047 .047 .048 .045 .048 .050 .048 

Unstructured .051 .050 .051 .051 .051 .050 .051 .051 
         
Mean .040 .036 .039 .037 .037 .038 .039 .038 
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Table A13 

Empirical Type I Error Rates for the Heterogeneous Compound Symmetry True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .023 .009 .020 .011 .019 .015 .014 .016 
Variance Components .018 .007 .016 .009 .014 .012 .011 .012 
Compound Symmetry .059 .059 .058 .060 .058 .060 .058 .059 
Heterogeneous 
Compound Symmetry .047 .046 .047 .046 .042 .049 .048 .046 

Autoregressive .048 .048 .050 .047 .047 .050 .049 .048 
Heterogeneous 
Autoregressive .041 .044 .045 .040 .041 .044 .043 .043 

Toeplitz .056 .056 .055 .058 .054 .057 .057 .056 
Heterogeneous 
Toeplitz .047 .046 .047 .047 .043 .049 .049 .047 

Unstructured .049 .049 .048 .050 .047 .051 .049 .049 
         
Mean .043 .041 .043 .041 .041 .043 .042 .042 
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Table A14 

Empirical Type I Error Rates for the Heterogeneous Autoregressive True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .039 .024 .028 .035 .034 .030 .031 .032 
Variance Components .033 .021 .024 .031 .027 .027 .027 .027 
Compound Symmetry .063 .066 .061 .069 .066 .064 .064 .065 
Heterogeneous 
Compound Symmetry .052 .052 .050 .055 .049 .053 .054 .052 

Autoregressive .060 .055 .055 .060 .056 .058 .058 .057 
Heterogeneous 
Autoregressive .051 .048 .050 .049 .046 .052 .051 .049 

Toeplitz .058 .054 .055 .058 .056 .056 .057 .056 
Heterogeneous 
Toeplitz .051 .047 .050 .048 .046 .050 .051 .049 

Unstructured .052 .049 .052 .049 .050 .050 .051 .050 
         
Mean .051 .046 .047 .050 .048 .049 .049 .049 
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Table A15 

Empirical Type I Error Rates for the Heterogeneous Toeplitz True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .030 .018 .023 .024 .027 .023 .022 .024 
Variance Components .024 .015 .020 .020 .022 .019 .018 .020 
Compound Symmetry .060 .063 .059 .065 .062 .064 .060 .062 
Heterogeneous 
Compound Symmetry .049 .048 .048 .049 .046 .051 .049 .048 

Autoregressive .053 .052 .052 .053 .051 .055 .053 .053 
Heterogeneous 
Autoregressive .046 .046 .048 .044 .045 .047 .046 .046 

Toeplitz .057 .056 .055 .058 .054 .058 .056 .056 
Heterogeneous 
Toeplitz .048 .048 .049 .047 .044 .051 .049 .048 

Unstructured .050 .050 .050 .050 .050 .052 .049 .050 
         
Mean .046 .044 .045 .046 .044 .047 .045 .045 
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Table A16 

Empirical Type I Error Rates for the Unstructured True Model 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .028 .012 .025 .015 .023 .020 .018 .020 
Variance Components .019 .006 .015 .010 .015 .012 .011 .013 
Compound Symmetry .064 .065 .064 .066 .066 .064 .065 .065 
Heterogeneous 
Compound Symmetry .050 .047 .050 .047 .046 .050 .050 .049 

Autoregressive .051 .052 .053 .050 .052 .051 .052 .052 
Heterogeneous 
Autoregressive .041 .045 .045 .041 .044 .044 .042 .043 

Toeplitz .060 .061 .060 .061 .059 .060 .062 .061 
Heterogeneous 
Toeplitz .048 .045 .045 .047 .042 .048 .049 .046 

Unstructured .051 .051 .051 .051 .052 .050 .051 .051 
         
Marginal .046 .043 .045 .043 .044 .044 .044 .044 
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Table A17 

Empirical Power Estimates for the Independence True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .09 .23 .53 .18 .63 .96 .32 .90 1.00 .54 
Variance Components .08 .20 .48 .17 .61 .96 .32 .90 1.00 .52 
Compound Symmetry .09 .22 .51 .17 .62 .96 .32 .90 1.00 .53 
Heterogeneous 
Compound Symmetry .08 .19 .46 .17 .61 .96 .32 .90 1.00 .52 

Autoregressive .08 .22 .50 .18 .62 .96 .32 .90 1.00 .53 
Heterogeneous 
Autoregressive .08 .19 .46 .17 .61 .96 .32 .90 1.00 .52 

Toeplitz .08 .20 .45 .17 .60 .95 .32 .89 1.00 .52 
Heterogeneous 
Toeplitz .07 .16 .39 .17 .59 .95 .31 .89 1.00 .50 

Unstructured .07 .14 .32 .16 .56 .94 .31 .89 1.00 .49 
           
Marginal .08 .19 .46 .17 .61 .96 .32 .90 1.00 .52 
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Table A18 

Empirical Power Estimates for the Variance Components True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .07 .09 .13 .10 .21 .39 .18 .49 .82 .28 
Variance Components .06 .09 .14 .10 .25 .47 .18 .58 .89 .31 
Compound Symmetry .07 .09 .12 .10 .21 .39 .18 .49 .82 .28 
Heterogeneous 
Compound Symmetry .06 .09 .14 .09 .24 .47 .17 .57 .89 .30 

Autoregressive .07 .09 .12 .10 .21 .39 .17 .49 .82 .27 
Heterogeneous 
Autoregressive .06 .09 .13 .09 .24 .47 .17 .57 .89 .30 

Toeplitz .06 .09 .12 .09 .20 .38 .16 .47 .81 .27 
Heterogeneous 
Toeplitz .06 .09 .13 .08 .24 .47 .15 .56 .88 .30 

Unstructured .06 .09 .13 .08 .22 .45 .14 .53 .88 .29 
           
Marginal .06 .09 .13 .09 .23 .43 .17 .53 .86 .29 
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Table A19 

Empirical Power Estimates for the Compound Symmetry True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .03 .08 .21 .12 .59 .93 .47 .98 1.00 .49 
Variance Components .03 .08 .21 .11 .57 .92 .40 .98 1.00 .48 
Compound Symmetry .11 .28 .52 .35 .84 .98 .75 1.00 1.00 .65 
Heterogeneous 
Compound Symmetry .09 .27 .51 .30 .83 .98 .70 1.00 1.00 .63 

Autoregressive .07 .15 .30 .17 .62 .95 .49 .99 1.00 .52 
Heterogeneous 
Autoregressive .07 .15 .30 .16 .61 .95 .44 .98 1.00 .52 

Toeplitz .11 .27 .51 .31 .82 .98 .67 1.00 1.00 .63 
Heterogeneous 
Toeplitz .09 .26 .51 .25 .81 .98 .59 .99 1.00 .61 

Unstructured .09 .25 .50 .22 .80 .98 .51 .99 1.00 .59 
           
Marginal .08 .20 .40 .22 .72 .96 .56 .99 1.00 .57 
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Table A20 

Empirical Power Estimates for the Heterogeneous Compound Symmetry True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .02 .03 .06 .05 .12 .31 .11 .43 .82 .22 
Variance Components .02 .03 .07 .04 .16 .40 .12 .52 .89 .25 
Compound Symmetry .07 .11 .17 .13 .31 .57 .25 .68 .93 .36 
Heterogeneous 
Compound Symmetry .06 .10 .16 .10 .30 .58 .22 .69 .95 .35 

Autoregressive .06 .08 .11 .08 .17 .35 .14 .46 .83 .25 
Heterogeneous 
Autoregressive .05 .08 .12 .07 .20 .41 .15 .52 .89 .28 

Toeplitz .07 .10 .15 .10 .26 .51 .19 .61 .91 .32 
Heterogeneous 
Toeplitz .06 .10 .16 .09 .29 .57 .19 .67 .95 .34 

Unstructured .06 .10 .16 .09 .28 .56 .17 .65 .94 .33 
           
Marginal .05 .08 .13 .08 .23 .47 .17 .58 .90 .30 
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Table A21 

Empirical Power Estimates for the Heterogeneous Autoregressive True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .04 .06 .09 .07 .16 .34 .15 .44 .78 .24 
Variance Components .04 .06 .10 .07 .20 .42 .15 .52 .86 .27 
Compound Symmetry .08 .11 .16 .12 .26 .47 .22 .58 .87 .32 
Heterogeneous 
Compound Symmetry .06 .10 .16 .10 .27 .51 .20 .61 .90 .32 

Autoregressive .06 .09 .13 .09 .19 .37 .16 .46 .80 .26 
Heterogeneous 
Autoregressive .06 .08 .13 .09 .21 .43 .16 .52 .86 .28 

Toeplitz .06 .09 .12 .09 .19 .36 .15 .44 .79 .25 
Heterogeneous 
Toeplitz .05 .08 .13 .08 .21 .42 .14 .51 .86 .28 

Unstructured .06 .08 .13 .08 .20 .41 .13 .49 .84 .27 
           
Marginal .06 .08 .13 .09 .21 .41 .16 .51 .84 .28 
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Table A22 

Empirical Power Estimates for the Heterogeneous Toeplitz True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .03 .05 .08 .06 .15 .33 .13 .43 .78 .23 
Variance Components .03 .05 .09 .06 .19 .41 .14 .51 .86 .26 
Compound Symmetry .07 .11 .17 .13 .28 .50 .23 .60 .89 .33 
Heterogeneous 
Compound Symmetry .06 .10 .16 .10 .28 .52 .21 .63 .91 .33 

Autoregressive .06 .08 .12 .09 .19 .36 .16 .46 .80 .26 
Heterogeneous 
Autoregressive .05 .08 .13 .08 .21 .42 .15 .52 .86 .28 

Toeplitz .06 .09 .13 .09 .20 .38 .15 .48 .82 .27 
Heterogeneous 
Toeplitz .05 .09 .14 .08 .22 .44 .15 .54 .87 .29 

Unstructured .06 .09 .14 .08 .21 .44 .14 .51 .87 .28 
           
Marginal .05 .08 .13 .09 .21 .42 .16 .52 .85 .28 
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Table A23 

Empirical Power Estimates for the Unstructured True Model 

 Small Mean Effect Moderate Mean Effect Large Mean Effect  
Fitted Model N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 N = 10 N= 30 N = 60 Marginal

           
Independence .03 .04 .06 .05 .13 .30 .11 .42 .82 .22 
Variance Components .02 .03 .06 .05 .15 .38 .11 .52 .91 .25 
Compound Symmetry .08 .11 .16 .13 .30 .55 .25 .66 .94 .35 
Heterogeneous 
Compound Symmetry .06 .09 .15 .10 .29 .57 .21 .69 .96 .35 

Autoregressive .06 .07 .10 .08 .17 .33 .14 .44 .83 .25 
Heterogeneous 
Autoregressive .05 .07 .10 .08 .18 .40 .14 .52 .90 .27 

Toeplitz .07 .10 .15 .11 .26 .50 .20 .62 .93 .33 
Heterogeneous 
Toeplitz .05 .09 .16 .09 .28 .57 .18 .68 .96 .34 

Unstructured .06 .11 .19 .10 .33 .64 .20 .74 .98 .37 
           
Marginal .05 .08 .12 .09 .23 .47 .17 .59 .91 .30 
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Table A24 

Population Covariance Matrices for both ARH & UN Structures for Follow-up Analysis 

Correlation   6 Measurement Occasions 
            
            

     100 89.44 58.09 34.46 19.57 1.83 
      320 207.85 123.29 70.00 38.73 
       540 32.31 181.87 10.62 
        760 431.51 238.75
         980 542.22

ARH 

          1200 
      ε = .670 
            

            
     102 128.95 164.92 49.72 174.30 30.61 
      399.7 196.01 41.56 218.74 423.53
       543.1 225.53 162.83 338.58
        785.8 215.81 184.35
         1016 971.62

UN 

          1253 
      ε = .492 
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Table A25 

Empirical Type I Error Rates for the Independence True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .050 NA .050 .050 .044 .056 .049 .050 
Variance Components .049 NA .050 .048 .043 .055 .049 .049 
Compound Symmetry .050 NA .051 .049 .045 .056 .050 .050 
Heterogeneous 
Compound Symmetry .048 NA .049 .048 .042 .054 .049 .048 

Autoregressive .049 NA .051 .048 .044 .055 .049 .049 
Heterogeneous 
Autoregressive .049 NA .050 .047 .043 .054 .049 .049 

Toeplitz .052 NA .052 .053 .052 .057 .049 .052 
Heterogeneous 
Toeplitz .049 NA .049 .049 .045 .054 .048 .049 

Unstructured .052 NA .051 .053 .054 .056 .047 .052 
         
Mean .050 NA .050 .050 .046 .055 .049 .050 
         
RM ANOVA 
Conventional F-test .050 NA .051 .049 .045 .056 .050 .050 

RM ANOVA G-G .040 NA .046 .035 .029 .047 .045 .040 
RM ANOVA H-F .049 NA .050 .048 .043 .055 .049 .049 
MANOVA - Wilks' Λ .052 NA .051 .053 .054 .056 .047 .052 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A26 

Empirical Type I Error Rates for the Variance Components True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .062 NA .061 .062 .066 .058 .062 .062 
Variance Components .048 NA .051 .046 .049 .047 .049 .048 
Compound Symmetry .061 NA .060 .062 .063 .058 .062 .061 
Heterogeneous 
Compound Symmetry .048 NA .050 .046 .048 .047 .049 .048 

Autoregressive .061 NA .058 .063 .063 .058 .061 .061 
Heterogeneous 
Autoregressive .049 NA .051 .046 .048 .048 .049 .049 

Toeplitz .058 NA .057 .060 .059 .056 .060 .058 
Heterogeneous 
Toeplitz .048 NA .050 .047 .048 .048 .049 .048 

Unstructured .049 NA .050 .048 .051 .048 .048 .049 
         
Mean .054 NA .054 .053 .055 .052 .054 .054 
         
RM ANOVA 
Conventional F-test .061 NA .060 .062 .063 .058 .062 .061 

RM ANOVA G-G .044 NA .049 .039 .039 .045 .048 .044 
RM ANOVA H-F .054 NA .054 .054 .058 .052 .052 .054 
MANOVA - Wilks' Λ .049 NA .050 .048 .051 .048 .048 .049 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A27 

Empirical Type I Error Rates for the Compound Symmetry True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .012 .003 .010 .005 .009 .008 .005 .007 
Variance Components .013 .003 .010 .006 .011 .008 .006 .008 
Compound Symmetry .050 .050 .051 .049 .049 .052 .048 .050 
Heterogeneous 
Compound Symmetry .048 .046 .048 .046 .042 .050 .049 .047 

Autoregressive .038 .040 .043 .035 .038 .040 .040 .039 
Heterogeneous 
Autoregressive .039 .041 .044 .036 .039 .041 .040 .040 

Toeplitz .051 .052 .051 .052 .052 .052 .049 .051 
Heterogeneous 
Toeplitz .047 .048 .048 .047 .043 .051 .049 .047 

Unstructured .050 .049 .050 .050 .049 .051 .049 .050 
         
Mean .039 .037 .039 .036 .037 .039 .037 .038 
         
RM ANOVA 
Conventional F-test .050 .050 .051 .049 .049 .052 .048 .050 

RM ANOVA G-G .040 .040 .045 .034 .030 .045 .044 .040 
RM ANOVA H-F .049 .049 .050 .048 .048 .051 .048 .049 
MANOVA - Wilks' Λ .050 .049 .050 .050 .049 .051 .049 .050 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A28 

Empirical Type I Error Rates for the Heterogeneous Compound Symmetry True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .023 .009 .021 .011 .020 .016 .013 .016 
Variance Components .017 .008 .016 .008 .016 .011 .010 .012 
Compound Symmetry .060 .057 .056 .060 .059 .058 .058 .058 
Heterogeneous 
Compound Symmetry .048 .045 .047 .046 .043 .048 .047 .046 

Autoregressive .049 .047 .049 .047 .048 .049 .048 .048 
Heterogeneous 
Autoregressive .043 .043 .045 .041 .043 .044 .042 .043 

Toeplitz .057 .055 .054 .058 .057 .056 .056 .056 
Heterogeneous 
Toeplitz .047 .045 .047 .045 .044 .047 .046 .046 

Unstructured .050 .048 .049 .049 .050 .050 .047 .049 
         
Mean .044 .040 .043 .041 .042 .042 .041 .042 
         
RM ANOVA 
Conventional F-test .060 .057 .056 .060 .059 .058 .058 .058 

RM ANOVA G-G .043 .041 .046 .037 .035 .044 .047 .042 
RM ANOVA H-F .054 .051 .052 .053 .054 .052 .051 .052 
MANOVA - Wilks' Λ .050 .048 .049 .049 .050 .050 .047 .049 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A29 

Empirical Type I Error Rates for the Heterogeneous Autoregressive True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .038 .025 .026 .037 .036 .029 .029 .031 
Variance Components .031 .022 .022 .031 .029 .026 .025 .027 
Compound Symmetry .063 .068 .060 .071 .068 .064 .064 .065 
Heterogeneous 
Compound Symmetry .050 .054 .048 .056 .051 .052 .053 .052 

Autoregressive .058 .057 .054 .061 .056 .057 .059 .057 
Heterogeneous 
Autoregressive .048 .049 .047 .050 .047 .048 .050 .048 

Toeplitz .058 .059 .054 .062 .059 .056 .058 .058 
Heterogeneous 
Toeplitz .049 .049 .047 .051 .048 .050 .050 .049 

Unstructured .050 .051 .050 .052 .052 .048 .051 .051 
         
Mean .049 .048 .045 .052 .050 .048 .049 .049 
         
RM ANOVA 
Conventional F-test .063 .068 .060 .071 .068 .064 .064 .065 

RM ANOVA G-G .044 .045 .047 .042 .040 .047 .047 .044 
RM ANOVA H-F .055 .055 .053 .057 .061 .054 .050 .055 
MANOVA - Wilks' Λ .050 .051 .050 .052 .052 .048 .051 .051 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A30 

Empirical Type I Error Rates for the Heterogeneous Toeplitz True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .030 .018 .024 .025 .029 .023 .021 .024 
Variance Components .026 .015 .020 .022 .023 .020 .019 .021 
Compound Symmetry .061 .063 .059 .065 .065 .061 .060 .062 
Heterogeneous 
Compound Symmetry .050 .047 .048 .049 .047 .049 .050 .049 

Autoregressive .054 .052 .053 .054 .053 .053 .053 .053 
Heterogeneous 
Autoregressive .046 .047 .048 .045 .045 .047 .047 .047 

Toeplitz .058 .054 .054 .058 .056 .056 .055 .056 
Heterogeneous 
Toeplitz .050 .047 .049 .048 .046 .050 .050 .049 

Unstructured .053 .050 .051 .051 .051 .052 .051 .051 
         
Mean .048 .044 .045 .046 .046 .046 .045 .046 
         
RM ANOVA 
Conventional F-test .061 .063 .059 .065 .065 .061 .060 .062 

RM ANOVA G-G .043 .043 .047 .039 .039 .045 .046 .043 
RM ANOVA H-F .053 .053 .052 .054 .059 .051 .049 .053 
MANOVA - Wilks' Λ .053 .050 .051 .051 .051 .052 .051 .051 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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Table A31 

Empirical Type I Error Rates for the Unstructured True Model: Test of the Interaction 

Fitted Model 

Low 
Correlation 
Marginal 

High 
Correlation 
Marginal 

Time 
Points = 3 
Marginal 

Time 
Points = 6 
Marginal 

Small 
Sample 

Marginal

Moderate 
Sample 

Marginal 

Large 
Sample 

Marginal Marginal
         
Independence .028 .013 .026 .015 .024 .019 .018 .020 
Variance Components .019 .007 .015 .010 .016 .012 .010 .013 
Compound Symmetry .060 .067 .062 .065 .063 .063 .064 .064 
Heterogeneous 
Compound Symmetry .050 .046 .048 .048 .046 .050 .049 .048 

Autoregressive .048 .053 .050 .050 .050 .050 .051 .050 
Heterogeneous 
Autoregressive .041 .046 .043 .044 .044 .043 .043 .043 

Toeplitz .058 .061 .058 .061 .057 .060 .062 .059 
Heterogeneous 
Toeplitz .046 .044 .043 .048 .042 .047 .047 .045 

Unstructured .051 .049 .050 .050 .051 .049 .050 .050 
         
Mean .045 .043 .044 .043 .044 .044 .044 .044 
         
RM ANOVA 
Conventional F-test .060 .067 .062 .065 .063 .063 .064 .064 

RM ANOVA G-G .042 .045 .047 .040 .037 .046 .048 .043 
RM ANOVA H-F .051 .056 .053 .054 .057 .052 .052 .054 
MANOVA - Wilks' Λ .051 .049 .050 .050 .051 .049 .050 .050 
                  

* 95% confidence interval = (.048, .052), except for sample size conditions: (.047, .053) 
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