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Abstract

In this thesis we present a new approach to the Snake-In-the-Box (SIB) problem using Ant

Colony Optimization (ACO). ACO refers to a class of algorithms that model the foraging

behavior of ants to find solutions to combinatorial optimization problems. SIB is a well-

known problem, that involves finding a Hamiltonian path through a hypercube which follows

certain additional constraints. This domain suffers from severe combinatorial explosion and

has been the subject of various search techniques which include genetic algorithms [Potter

et al., 1994; Casella, 2005], exhaustive search [Kochut, 1994], mathematical logic [Rajan

and Shende, 1999] and iterated local search [Brown, 2005]. After making certain problem

specific customizations a variation on the MIN-MAX Ant System, MMAS SIB, has shown

very promising results when applied to the SIB problem. The length of the longest known

snake in dimension 8 was matched, using much less computation and time than the best

known methods for this problem.
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Chapter 1

Introduction

The Snake-In-the-Box (SIB) problem consists of finding “snakes” and “coils” in a hypercube.

Snakes and coils are paths in a hypercube which share the two following properties: 1) there

are no repeated nodes in the path, 2) any two nodes that are not connected by an edge in

the hypercube cannot be adjacent in the path. While snakes are open paths (a snake cannot

travel to a node that is adjacent to any other node in the snake, except the previous node)

coils are closed paths (a coil starts and ends at the same node). The applications of this

problem range from electronic locking schemes [Kim, 2000] to error correction in analog to

digital codes [Klee, 1970]. The longer the snakes and coils, the more useful they are in the

application. Since the SIB problem was first introduced in 1958 [Kautz, 1958] it has been the

subject of a great deal of research. The search space for this problem grows at an exponential

rate with the increase in dimension of the hypercube. This makes it impractical to apply

traditional search techniques to this problem. As a result, different heuristic approaches have

been proposed by researchers to find the longest snakes in dimensions higher than 7.

1.1 Thesis Motivation

The most successful heuristic approaches for the SIB problem so far have been population

based evolutionary approaches like genetic algorithms [Potter et al., 1994; Bitterman, 2004]

and a population based stochastic hill climber [Casella, 2005]. This thesis attempts to move

away from the conventional wisdom regarding this problem and focuses on applying Ant

Colony Optimization (ACO) to the SIB problem. This is with the objective of gaining addi-

tional insight into the problem as well as developing a problem-specific ACO algorithm. The

1
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ACO framework refers to algorithms which solve combinatorial optimization problems by

simulating the foraging (food gathering) behavior of an ant swarm. The term ACO is used

in the remainder of this thesis to refer to properties, techniques and algorithms that belong

to this framework. We chose to apply ACO to this problem for two reasons: 1) ACO models

the path finding behavior of ants and thereby lends itself naturally to path finding prob-

lems like the SIB problem. 2) We also expect that ACO will offers certain computational

advantages (like less time and memory requirements) over the population based evolutionary

approaches that have been used before.

1.2 Creating an ACO Framework for the SIB Problem

In this thesis, the SIB problem has been tackled using three different ACOs: 1) The Ant

Colony System (ACS) [Dorigo and Gambardella, 1997], 2) The Min-Max Ant System

(MMAS) [Stützle and Hoos, 1997] and 3) our variation on the MMAS, which we will call

MMAS SIB. Due to the similarities between the Traveling Salesman Problem (TSP) and

the SIB problem we chose to focus on the ACS and the MMAS; which are currently the

most experimentally successful ACO algorithms [Dorigo and Stützle, 2004:150] for the TSP.

Subsequently, we created MMAS SIB to combine the best features of the two. To improve

the performance of the algorithms a seeding strategy (which used the longest snake in the

previous dimension as a starting point) was employed in dimensions higher than 7. Testing

done with all three algorithms in dimension 5-9 yielded encouraging results. Our empirical

evaluation proves that MMAS SIB is the most successful ACO algorithm across all the

dimensions that were tested.

1.3 Contributions and Outline

The contributions of this thesis are as follows: 1) To the best of our knowledge, this is the

first research work to address the SIB problem using ACO. 2) It introduces a new ACO

algorithm, MMAS SIB, which combines the best features of the ACS and the MMAS. 3)
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Two of the algorithms presented in this paper have matched world records for the maximum

length snakes in dimensions 5-8 found by other computing and time intensive approaches.

4) Results from this research prove the feasibility of an ACO approach to the SIB problem.

The rest of this thesis is organized as follows: Chapter 2 explains the SIB problem and its

domain in greater detail, Chapter 3 provides a detailed explanation of the biological basis

of ACO and the computational components of the ACO algorithm, Chapter 4 describes our

implementations of ACO and problem specific changes that were made, Chapter 5 presents

results for all three ACOs and Chapter 6 discusses conclusions and future work.



Chapter 2

Snake-In-the-Box

2.1 Snakes and Coils

A snake is an acyclic achordal path in a hypercube. A snake of length 4 in dimension 3 is

shown in Figure 2.1. A hypercube usually refers to an undirected graph on dimensions greater

Figure 2.1: A snake of length 4 in dimension 3

than 3, which has 2d vertices (nodes), d(2d−1) edges and each vertex has exactly d neighbors.

An achordal path through this undirected graph means a path which does not repeat nodes;

has the property that any two nodes that are adjacent in the path are necessarily adjacent

in the hypercube and; cannot visit a node that is adjacent to any previously visited nodes,

except the node it just came from. A coil is a cyclic path which which does not repeat nodes;

has the property that any two nodes that are adjacent in the path are necessarily adjacent

in the hypercube and; whose last node is adjacent to its first node. The SIB problem refers

to the open problem of finding longest length snakes and coils in dimensions greater than

4
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7. Henceforth we will refer to a hypercube in dimension d as Qd, the length of the longest

snake in dimension d as s(d) and the length of the longest coil in dimension d as c(d).

2.2 Hypercube Representation

From the definition of a hypercube it follows that all nodes within a hypercube can be

represented by binary numbers from 0 to 2d−1, using a maximum of d bits to represent each

node. Gray codes are binary number labels used for nodes, where adjacent nodes differ by

only 1 bit. This property proves to be very helpful in determining adjacencies and thereby

Figure 2.2: A 4-D hypercube with Gray code node representation

the validity of a path through a hypercube. Using Gray code all 16 nodes in a hypercube of

dimension 4 (Q4) are represented as follows:

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Notice in Figure 2.2 that nodes 1, 2, 4 and 8 are adjacent to node 0, as they differ by one

bit. Similarly nodes 0, 3, 5 and 9 are adjacent to node 1. So a valid snake through Q4 can

be represented as:
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[0000, 0001, 0011, 0111]

When the binary numbers are converted to integers we get the node sequence of this snake.

[0,1,3,7]

Node sequences have been used in several construction techniques for snakes [Casella, 2005;

Brown, 2005]. Another type of representation that is commonly used to denote a snake is a

transition sequence [Potter et al., 1994]. A transition sequence denotes the bit position that

has to be flipped in the binary representation of a node to get to the next node in the snake.

The length of a transition sequence is always one less than the length of the corresponding

node sequence. The advantage of using a transition sequence to represent a snake is that a

single transition sequence can represent many different snakes, depending upon the starting

node of the snake. Due to this property, transition sequences have been widely used in snake

hunting [Potter et al., 1994; Bitterman, 2004].

2.3 Related Research

The body of work about the SIB problem can be divided into two categories. The first would

include the theoretical and analytical work based upon graph theory and logic. Some of

this work was aimed at getting a better understanding of the problem, and some presented

new lower and upper bounds for the problem [Kautz, 1958; Deimer, 1985; Abbott, 1991;

Snevily, 1994; Paterson, 1998; Rajan and Shende, 1999]. The lower bound refers to the

longest snake or coil found in a particular dimension which serves as a benchmark for future

research. The upper bound refers to the longest snake that in theory can be found in that

dimension. Bridging the gap between snake lengths that mark the bounds, until the lower and

upper bound are the same, constitutes solving the problem for that particular dimension.

The second type of research focused on finding new snakes and tightening the previously

proposed upper and lower bounds on the problem. This was done using exhaustive search
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[Kochut, 1996], and by using heuristic search [Potter et al., 1994; Bitterman, 2004; Casella,

2005].

Table 2.1: Longest known snakes and coils dimensions 3-7.

d s(d) c(d)
3 4 6
4 7 8
5 13 14
6 26 26
7 50 48

Table 2.2: Lower (lb) and upper (ub) bounds for dimension 8-11

d lb s(d) ub s(d)
8 97 [Rajan and Shende, 1999] 123 [Snevily, 1994]

9 186 [Casella, 2005] 250 [Snevily, 1994]

10 358 [Casella, 2005] 504 [Snevily, 1994]

11 680 [Casella, 2005] 1012 [Snevily, 1994]

Table 2.1 shows the maximum lengths of snakes and coils found in dimensions 3 through

7. The exhaustive search in dimension 7 took over a month on 5 SUN Microsystems Sparc

1000’s with two processors each [Kochut, 1996]. Scaling this up to dimension eight or higher

poses very serious practical issues. This is the primary reason why heuristic searches have

proved to be much more effective in this area as compared to traditional techniques. [Potter

et al., 1994] used a genetic algorithm to find a snake of length 89 in dimension 8. [Bitterman,

2004] matched the record of 97 in dimension 8 by [Rajan and Shende, 1999] and found a

new lower bound of 182 in dimension 9, using genetic algorithms with the narrowest path

heuristic. A population based stochastic hill climber was used by [Casella, 2005] to improve

these bounds further as shown in Table 2.2. Both [Casella, 2005] and [Bitterman, 2004] used

a seeding scheme of longest1 snakes from the previous dimension based on the conjecture

1Longest snake refers to the maximum length snake that can be found in a dimension.
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[Rajan and Shende, 1999] that there exists a longest snake in dimension d that contains a

maximal snake2 from dimension d − 1. This conjecture was later disproved by the authors

themselves, but led to the construction of many new snakes.

2.4 Search Space for the SIB Problem

The search space for the SIB problem has proved to be a challenge for traditional as well

as heuristic searches. The size of the search space is so enormous that examining every

possibility is virtually impossible, thereby ruling out using traditional search techniques.

Heuristic techniques face challenges in this domain due to the lack of knowledge about the

search space for the SIB problem. It is difficult to foresee which operators will perform well

in a search space without knowing the charachteristics of the search space. Some of the

difficulties with this domain are:

• Neighbourhood structure: Not only is it impossible to judge what the length of the

optimal solution would be, but it is also difficult to decide the neighborhood structure.

This refers to all the problem states that lie next to a given problem state, meaning all

the states that could lead to the current state and all the states that the current state

can lead to. For example [Stützle and Hoos, 2000] comment about the search space

for the TSP by stating that better solutions can be found close to good solutions.

Making this type of assertion for the SIB problem would be impossible. The notion of

a problem state can be better illustrated if the search space is imagined as a graph that

contains all the partial and complete solutions to a problem. The problem consists of

achieving certain values for say x number of criteria. A problem state is a point in the

graph that has a certain set of values on all x criteria. An operator is defined as a set

of operations to be performed on a problem state that changes the values of some or

all of the criteria. A goal can be imagined as a point in the graph that has the desired

2Maximal snakes are snakes that cannot be extended in either direction. Using this definition

longest snakes are also maximal snakes.
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values of all x criteria. How close a problem state is to a goal state is determined by

how many times the operator has to be applied in order to reach the goal state from

the problem state. Establishing this sort of detail for the SIB problem poses several

issues. Firstly, in dimensions above 7 the goal state of the problem is not known since

the length of the longest snakes in these dimensions is not known. Secondly, even if the

length to be achieved was known there is no way to tell for sure whether a particular

snake can make it from its current length to the goal length, unless the entire snake is

constructed. Thirdly, even if the effort was taken to construct the entire snake we could

not always choose the correct operator to get closer to the goal (it would essentially be

trial and error to see which nodes take us to the longest snake). Therefore in the case

of the SIB problem we cannot establish a neighborhood structure (this refers to the

proximity map of the various problem states and solutions in relation to each other).

• Local optimum: Local optimum refers to a solution that is considerably better than

other solutions in its surrounding area but might not be the globally best solution.

Knowledge of local optima is important to keep a search from converging on a sub-

optimal solution. Due to the difficulty with establishing a neighborhood structure spec-

ulating about the presence or location of local optima is also a lost cause.

• Local search: Designing local search procedures3 for the SIB problem is tedious and

computationally intensive. Unlike local searches for the TSP, which change a specified

number of edges to get a better solution, any local search for the SIB problem will

essentially have to rebuild the snake from the first node that was changed. This is

because changing a node will change the validity of all future nodes in the snake. Also,

the benefit of the procedure would come not from rebuilding the snake, but only from

extending it which will require further computation.

3A local search procedure takes a complete solution and either alters or adds to the solution to

make it better.
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• Heuristic look ahead: An important component of heuristic searches is estimating the

potential of solution components for guiding future search efforts. In searches for the

SIB problem nodes cannot be assigned a static heuristic value.4 This is due to two

reasons. Firstly, every snake is different, in terms of the nodes in its previous path and

choices of nodes it will encounter in the future. This necessitates that a node have

different heuristic values for different snakes. Secondly, even after dealing with the first

stipulation, the choices of nodes the snake makes in the future can change the heuristic

value of the node. This means that the search techniques can evaluate snakes that are

already built but cannot put an estimated measure of goodness on the snakes that will

be constructed in the future using the same nodes.

Our choices of algorithms and modifications made to them were governed to a large extent

by the constraints that were just discussed.

4The term heuristic value is used here to mean a numerical value on the potential of a node to

produce good solutions in the future. This choice of terminology roots from the literature on ACO,

which uses the same term.



Chapter 3

The ACO Meta-heuristic

3.1 Overview of Ant Colony Optimization

Ant colonies demonstrate various group behaviors like foraging (food gathering), sorting

dead bodies and nest building. The self-governed complex organizational patterns these ants

demonstrate were studied by researchers to gain a better understanding of how ant colonies

work. An experiment run by [Deneubourg et al., 1990] showed that foraging in a swarm of

Argentine ants was a self-organizing behavior. When a swarm of real ants are given access

to a food source by different paths of varying length the traffic of ants quickly converges on

the shortest path from the nest to the food source [Goss et al., 1989].

Figure 3.1 shows the convergence of ants on the shorter path. This and such other orga-

nized behaviors of ant swarms have inspired various heuristic search techniques which have

been loosely termed “ant algorithms”. Ant algorithms are multi-agent systems in which the

behavior of each agent (artificial ant) is modeled by the behavior of real ants [Bonabeau et al.,

1999]. Ant Colony Optimization (ACO) which is the subject of this work is an umbrella term

for a family of ant algorithms inspired by the foraging behavior of ants, that have been used

to solve discrete combinatorial optimization problems. ACO algorithms have been applied

to a variety of problems like the TSP [Dorigo and Gambardella, 1997], the job shop problem

(JSP) [Colorni et al., 1994], the capacitated vehicle routing problem (CVRP) [Bullnheimer

et al., 1999], the quadratic assignment problem (QAP) [Stützle and Hoos, 2000], and the

resource constrained project scheduling (RCPSP) [Merkle et al., 2002].

11
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Figure 3.1: Double bridge experiment. (a) Ants start exploring the double bridge. (b) Even-
tually most of the ants choose the shortest path. (c) Distribution of the percentage of ants
that selected the shorter path. After [Goss et al., 1989]

3.2 Autocatalysis, Differential Path Length and Stigmergy

So the question arises, how do small creatures like ants, exhibit such intelligent behavior

when put in swarms? The emergence of this problem solving behavior can be attributed to

stigmergy, autocatalysis and differential path length. The ants explore until they find the food

source. Once they find the source they lay a chemical substance called pheromone on their

way back to the nest, to let other ants know where the food is. This indirect communication

is called stigmergy. Other ants follow the path with the strongest pheromone. This positive

feedback that encourages other ants to follow the pheromone is called autocatalysis. The

ants taking the shorter path can make more trips in the same amount of time as compared

to other ants. This leads to a build up of pheromone on the shorter path which causes more

ants to follow, thereby adding more pheromone and attracting more ants [Deneubourg et
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al., 1990]. Differential path length (different path lengths) between the available paths is

what makes one particular path better than the others. While stigmergy, autocatalysis and

differential path length help find the shortest path, there is also a need to avoid longer paths

and abandon bad paths that have been explored before. Depending upon the species, the

mechanism used to avoid longer paths could differ. Most species use more than one type of

pheromone. Some pheromones signal positive reinforcement, and some dissuade other nest

mates from following a path. Lasius niger, another type of ant makes U-turns on long paths

when it realizes that it is going almost perpendicular to the source of food [Beckers et al.,

1992]. However, the most important factor which influences the abandoning of bad paths is

the evaporation of pheromone. This happens naturally just like the dissipation of scents in

air. Evaporation guarantees that over a course of time ants forget paths which have not been

reinforced. Thus the swarm collectively moves away from the longer paths. The experimental

model [Deneubourg et al., 1990] illustrated in Figure 3.1 consisted of a swarm of ants, which

was given access to a food source by a double bridge (two different paths). The two paths are

referred to as “the upper branch” and “the lower branch”. An interesting pattern occurred

when the two branches were of different lengths. Over time the ants converged on the shorter

path. The choice equation which shows the probability of an ant choosing one branch over

the other [Goss et al., 1989] is shown in Equation 3.1. Equation 3.1 does not consider the

evaporation of pheromone, since the experiments were run over the period of an hour, which

is not long enough for evaporation to take place.

PU(m) =
(Um + k)h

(Um + k)h + (Lm + k)h
(3.1)

where,

Lm = Number of ants that have taken the lower branch

Um = Number of ants that have taken the upper branch , m = Lm + Um

PU(m) = Probability that the (m+ 1)th ant will choose the upper branch

PL(m) = 1− PU(m), probability that the (m+ 1)th ant will choose the lower branch

The ant choice rule then becomes Um+1 = Um + 1 if ψ < PU(m), else Um+1 = Um, where ψ
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is a random variable uniformly distributed over [0,1]. The variables h and k allow to fit the

model. Equation 3.1 shows that the probability of choosing a branch is positively correlated

to the number of ants that have chosen that path before, which in turn is positively correlated

to the pheromone on the path. Equation 3.1 provided the biological basis for the ACO choice

rules which will be discussed in Chapter 4.

3.3 Algorithm for the ACO

The computational equivalent of the model discussed in Chapter 3.2 consists of artificial ants,

which we will call ants. Since this work deals specifically with Ant Colony Optimization, we

will discuss the general procedure followed by ACO. Ants travel from the starting state

of a problem to the goal state while incrementally building a solution. Each ant uses a

probabilistic rule similar to the one in Equation 3.1 to choose its next step. The choice rule

can take different forms and will be discussed in detail in Chapter 4.1. This process models

the search for the food source, which real ants undertake. The return journey of real ants

is implied in a computational framework. However, pheromone laying which happens on

the return journey is accounted for. Once all the ants construct a solution, pheromone is

deposited on the steps that comprise the good solutions. The pheromone from all steps is

also evaporated to simulate the effect of time. Once the solution construction and pheromone

functions have been executed, other functions that might be necessary to ensure the proper

functioning of the program are done. The steps mentioned above are repeated until one of the

stopping criteria for the problem is fulfilled (these can include finding an optimal solution,

no improvement for a considerable time, or completion of the specified number of program

iterations). This ACO algorithm is outlined in Figure 3.2. It will serve the dual purpose

of supporting the discussion about ACO in the following chapters as well as presenting the

algorithm for all three ACOs (ACS, MMAS and MMAS SIB) implemented during the course

of this work. Different authors might follow different naming conventions for the procedures,
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but the algorithm presented here includes all the necessary components of ACO. For a more

detailed version of the ACO meta-heuristic refer to [Dorigo and Di Caro, 1999].

ACO_snake_in_box (max_gen, num_ants)

Num_gens = 0

num_ants = m

Initialize_pheromone_table()

createAnts (num_ants)

Adjacency_table()

While (Num_gens < max_gen) //This is a generation

Do //This is an iteration

For each ant 1 to m

Next_ant_move(ant_id) //Uses Equation 4.1

Update_ant_path(ant_id)

Local_pheromone_update(ant_id) //Uses Equation 4.4

While some ant has not constructed a maximal snake

Global_pheromone_update() //Uses Equation 4.3

Reset_ant_paths()

End While

Figure 3.2: ACO algorithm for the SIB problem

Depending upon the nature of the problem and the search space various diversification

and intensification mechanisms are used to guide the search. Diversification opens up previ-

ously unexplored parts of the search space and introduces new solutions; while intensification

focuses the search around previously found good solutions. A balance of both these mecha-

nisms is necessary for the search to yield good results. Too much diversification means that

ants will continue their random walk forever and will not converge on a good solution. On

the other hand if the intensification of the search happens too fast then the search will stag-

nate. This means that it will not have enough time to find good solutions and all ants will

prematurely converge on a sub-optimal solution. The use of these mechanisms (to guide the

search) combined with some other parameters (which will be discussed in Chapter 4) make

for very different approaches towards exploring the search space. Various ACOs differentiate

themselves by how they use these factors to influence their searching capabilities. We devote
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Chapter 4.6 to comparing and contrasting these using the ACS, MMAS and MMAS SIB as

examples.

3.4 Properties of ACO

ACO is a relatively new meta-heuristic and thus much of the work for the theoretical basis of

ACO has just begun. [Gutjahr, 2000] proved the convergence in solution for an experimental

setup called GBAS (Graph Based Ant System). More relevant work comes from [Stützle and

Dorigo, 2002] in reference to a class of ACO’s called ACOgb, τmin. These are defined as ant

algorithms which use the global best pheromone update rule and have a lower bound on

the amount of pheromone. In short this refers to algorithms in which only the best solution

found so far is reinforced and the pheromone present on all nodes satisfies a minimum value

condition. The following properties were proved with regard to this class of algorithms:

• Convergence in result: “ACOgb, τmin is guaranteed to find an optimal solution with a

probability which can be made arbitrarily close to one if given enough time” [Stützle

and Dorigo, 2002]. What this really means is that the heuristic can find an optimal

solution to the problem but the time required to do so could be very large.

• Convergence in solution: “After a fixed number of iterations has elapsed since the

optimal solution was first found, the pheromone trails on the connections of the optimal

solution are larger than those on any other connection” [Stützle and Dorigo, 2002]. The

above result is also extended to give a lower bound on the probability of the optimal

solution being constructed.

Suffice it to say that these results apply to all three of the algorithms which will be discussed

during the course of this paper since the ACS, the MMAS and MMAS SIB all use the global

best pheromone update rule and have a lower limit on the pheromone trails.



Chapter 4

Adapting ACO to the SIB Problem

This chapter focuses on strategies and computational techniques used to build an ACO

framework for the SIB problem. Since there has been no prior work in this area; these

modifications were inspired by various ACO implementations for the TSP combined with

the problem specific knowledge for the SIB problem. [Bonabeau et al., 1999] state that it is

possible to apply ACO to any combinatorial problem as long as it is possible to define:

1. Problem representation which allows ants to incrementally build/modify solutions by

using a construction/modification probabilistic transition rule.

2. Heuristic desirability of edges.

3. Constraint satisfaction method which forces construction of feasible solutions.

4. Pheromone update rule.

All three of the ACO algorithms have been implemented keeping in mind these four criteria.

The following discussion which provides details of the ACOs is also structured around these

four components.

4.1 Problem Representation

In our implementation the ants build a sequential solution by traveling from one node of the

hypercube to an adjacent node. These nodes are represented by numbers ranging from 0 to

2n−1, where n is the dimension of the hypercube. For example, in dimension 8 the nodes are

numbered from 0 to 255. When the ant has no more feasible nodes left it returns a solution

17
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starting from node 0. When all ants have exhausted their feasible nodes the generation is

said to be over. The ants then reset their paths to start again at 0. The term generation in

Figure 3.2 has been introduced to maintain a distinction between the two main loops used in

the program and is closer in meaning to iteration. It should not be confused with the same

term used in reference with evolutionary techniques like genetic algorithms. At the end of

each generation every ant will return a feasible solution of varying length depending upon

the choices of nodes it has made through out its journey. Since paths of different lengths

are found the desirability of good solutions is established as per the differential path length

effect (discussed in Section 3.2). Solutions are represented as integer node sequences. The

most important part of this process of building a solution is the choice of the ant’s next step

which is referred to as Next_ant_move(ant_id) in Figure 3.2. Equation 4.1 [Dorigo et al.,

1996] shows the state transition rule which is also called the random-proportional rule.

pk(r, s) =



















[τ(r,s)]α·[η(r,s)]β
∑

u∈Jk(r)
[τ(r,u)]α·[η(r,u)]β

if s ∈ Jk(r)

0 otherwise

(4.1)

where,

Jk(r) = list of all feasible nodes at r, according to the problem constraints in Chapter 4.3

pk(r, s) = probability of choosing node s after node r for the kth ant

τ(r, s) = pheromone on edge (r, s)

η(r, s) = heuristic desirability of going from node r to s according to Chapter 4.2

α = intensity of the pheromone trail

β = visibility of the heuristic information

The pheromone is the memory of the past search efforts of the ants; it quantifies the quality

of the solutions explored so far using the node. The heuristic information provides a way

to measure the potential of a node to yield good solutions in the future. The desirability

of a node is the combination of its past contributions to good solutions (pheromone) and

an estimate of its future worth (heuristic value). The two parameters α and β control the
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relative importance of pheromone versus heuristic information. The selection of the next node

using Equation 4.1 is very much like roulette wheel selection in evolutionary computation. A

random number between [0,1] is generated and a node is chosen according to the probability

distribution in Equation 4.1. Nodes that have a higher probability pk(r, s) have a better

chance of being chosen. Equation 4.1 was used in our implementation of the MMAS. The

ACS and MMAS SIB use a different version of this rule which is shown in Equation 4.2

[Dorigo and Gambardella, 1997]

s =















argmaxu∈Jk(r)

{

[τ(r, u)]α · [η(r, u)]β
}

if q ≤ q0

S otherwise
(4.2)

where,

q is a random number uniformly distributed in [0, 1] and q0 is a parameter such that 0 <

q0 < 1. S is a random variable according to the distribution in Equation 4.1. In effect,

when q < q0 the best node will be chosen with the probability of one. This rule is called

the pseudo-random proportional rule [Dorigo and Gambardella, 1997]. This rule affords the

ACS and MMAS SIB a parameter that can be used to directly exploit good solutions. Fine

tuning of the exploitation parameter q0 is required to give the algorithm a balance between

“exploitation” and “biased exploration”. [Dorigo and Gambardella, 1997] refer to always

choosing the best node as “exploitation” and the probabilistic selection in Equation 4.1 as

“biased exploration”.

4.2 Heuristic Desirability of Edges

The evaluation of a solution/ solution component needs to be done twice during ACO. The

first is when the ant attributes an estimated value to each of its possible next steps; this

is referred to as the heuristic desirability of the edges. The second is when the quality of

the final solution is assessed at the end of each generation. Length, [Potter et al., 1994],

“tightness” [Casella, 2005] and narrowest path heuristic [Bitterman, 2004] are some of the

criteria that have been used before to determine the fitness of a snake. However, the step
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by step solution construction in ACO poses some difficulties in using these measures. The

heuristic desirability is associated with all possible future nodes of the same snake. This

means that any function of length or tightness associated with the same snake will have

the same value and hence cancel out for all nodes. The narrowest path heuristic works on

the assumption that the more valid nodes the snake has left, the better its chances are of

being a longer snake. Even though this is true to some extent, Figure 4.1 will illustrate that

it is not only important how many nodes are left but also whether the snake can get to

those nodes from the present node. Figure 4.1 graphs at every point through the snake the

number of unavailable nodes divided by the length of the snake. We will refer to this as

the average number of unavailable nodes per node. The figure includes 3 snakes of length

47, 74 and 97 in dimension 8. As shown in Figure 4.1, the shorter snakes never drop down

below an average of 4 unavailable nodes per node while the longest snakes drop down all

the way to 2.5 for every new node added. The longer snakes can effectively use many of the

available nodes, by “overlapping” many nodes and making node choices that allow access to

the remaining unvisited valid nodes. When a new node is visited, n− 1 other nodes become

invalid (assuming that one of the n neighbor nodes of that particular node is already on the

snake and thereby invalid), where n is the dimension. Overlapping refers to when a snake

marks some nodes invalid that are already invalid thereby saving valid nodes for further

expansion. The change in average unavailable nodes is a good measure of how promising

the next node is since it accounts implicitly for length and tightness. The change in average

unavailable nodes at node n is defined as the difference between average unavailable nodes

at length t and the average unavailable nodes at length (t+ 1), if n is the next node chosen.

It also suits ACO rather well, since ACOs have mostly been used for minimization problems,

and minimizing this change for every node corresponds to efficient use of the available nodes.

In most ACO implementations the heuristic value of each node is a static value that remains

unchanged during the course of the program. However in case of the SIB problem this value

is dynamic depending upon the previous part of the snake which requests the value.
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Figure 4.1: Change in average unavailable nodes as snake length increases. Data provided by
[Tuohy, 2005]

4.3 Constraint Satisfaction

To construct a valid solution it is important to ensure that the problem constraints are never

violated during solution generation. To achieve this in ACO, we need to make sure that every

step the ants take is a valid node for the snake. Each ant has a memory of the visited nodes

and uses this list to avoid constraint violation. As discussed in Chapter 2.1 in addition to

already visited nodes a snake cannot visit any nodes adjacent to a previously visited node.

This second constraint is checked using a look-up table which is called an adjacency table.

The ants can travel only to other nodes that have connections to the present node but not

any other node on its path. These conditions guarantee that a valid snake will be generated

by each ant.
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4.4 Pheromone Update Rule

Deposition and evaporation of pheromone are the two main reasons behind the functioning

of ACO. The deposition of pheromone guides the search from past experience while the

evaporation maintains dynamism (change in the desirability of edges) in the search space,

by erasing the pheromone trails for bad solutions found in the past. Figure 3.2 refers to

two pheromone update rules, the local_update() and the global_update() that deal with

pheromone. There are differences in the way these two rules are implemented and the role

they play in ACO.

The global_update() rule is an essential part of every ACO algorithm. It reinforces suc-

cessful solutions found in each generation by laying pheromone on the edges of the best solu-

tion while also evaporating pheromone from all edges. The amount of pheromone deposited

depends on the quality of the solution found but the evaporation is a constant amount deter-

mined by a trail evaporation parameter. Equation 4.4 shows the global_update() rule.

τ(r, s)← (1− α) · τ(r, s) + α ·∆τ(r, s) (4.3)

where,

α is a parameter of trail evaporation

∆τ(r, s) is the change in pheromone at edge (r, s)

To determine how much pheromone the best solutions should deposit, two different measures

of change were used. The first one was a function of the length of the snake and the second

one was the length of the snake multiplied by the inverse of average unavailable nodes. The

second measure would favor snakes that were tighter but also has an inherent advantage for

longer snakes. This is because the smaller the value of average unavailabe nodes the longer

the snake will be.

All three models of ACO that have been implemented here are elitist. This means that

only the best solution lays pheromone at the end of the generation. The best solution maybe

the global best (gb) or the iteration best (ib). The global best is the best solution the
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algorithm has found over all the past generations, while the iteration best is the best solution

found in the last generation. In MMAS and MMAS SIB, we use a schedule of oscillating

between the iteration best and global best which favors the global best towards the end. The

ACS by nature is built to exploit the best solutions and so performs slightly better when

the global best solution is chosen to lay pheromone, even though both gb and ib have been

used in trials.

The local_update() rule is specific to the ACS. This function is meant to ensure that

all ants do not repeat the same path. This is likely to happen if more than one ant is on the

same node. In such a case, they would all have to choose between the same neighbor nodes

(with the same pheromone value distribution) thereby increasing the likelihood of choosing

the same dominant node. The local_update() method is performed immediately after each

ant takes a step and it reduces pheromone on the node that has been chosen thereby making

it less attractive to other ants. This ensures diversification of the search effort. Equation 4.3

shows the local_update() rule

τ(r, s)← (1− ρ) · τ(r, s) + ρ ·∆τ(r, s) (4.4)

where,

ρ is a parameter of trail evaporation

∆τ(r, s) is the change in pheromone at edge (r, s)

Two variations on the local_update() rule were tried. The first one set the change in

pheromone (∆τ(r, s)) to 0, which meant that the only effect on pheromone was that of trail

evaporation. The second one was inspired by [Dorigo and Gamberdella, 1997] where ∆τ(r, s)

was equal to the pheromone at the node, when it was initialized. This makes the initialization

values of the pheromone very critical. Trials were conducted with random pheromone values

at every node and with pheromone equal to the optimal snake length in every dimension

at every node. Setting the change in pheromone to the initial pheromone value at the node

proved to be more successful, however there was not a significant difference between the
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random value versus the optimal snake length value. Therefore all the testing done with the

ACS uses the initial pheromone as ∆τ(r, s).

In addition to parameters discussed in Chapter 4.1 to 4.4 there are two more parameters

that need to be set for each ACO; the number of ants (num_ants) and the number of

maximum generations(max_gen). The number of ants determine how many solutions will

be simultaneously explored in each generation. Even though it is important to produce

several solutions in a generation the benefit of having many ants is lost when ants start

duplicating each others path. So even for large problems there is a definite number of ants

after which no incremental improvement is seen in solution quality. The number of maximum

generations used in an ACO should be enough to let the search converge. Convergence1 can

occur in different ACOs at different times for different problem sizes. As a general rule

for all algorithms the number of maximum generations increase with problem size. The

parameters for trail evaporation, number of ants, maximum generations and q0 for the ACS

were optimized during testing. Not surprisingly all three versions of ACO, namely the ACS,

the MMAS and MMAS SIB problem worked well on different parameters.

4.5 Optimizations for the SIB Problem

Some changes were made in our algorithms keeping in mind problem specific information for

the SIB problem. Most of these were aimed at reducing the size of the search space. A snake

starting at any node is equivalent to another snake with the same transition sequence. Since a

hypercube of dimension n has 2n nodes; fixing the starting point of a snake helps exploit the

symmetry of the hypercube to reduce the search space by a factor of 2n. Additional efficiency

can be gained by following the canonical2 snake scheme used in [Kochut, 1996] which reduces

1Convergence in an ACO refers to a state when all ants follow the same path because one node

at every step has more pheromone than the others.
2Canonical snakes have the constraint that the choice of the next node has to be made by

flipping the bits in the Gray code of the present node from least to greatest significant order. This

means that a bit in position 5 cannot be flipped unless the bit in position 4 has been flipped at

least once.
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the space by a factor of n!. This combined with fixing a start node reduced the search space

by a factor of n! ∗ 2n, where n is the dimension of the hypercube. The interesting thing to

note is that it also reduced the number of possible solutions by the same factor. In case of

ACO, this did not yield better results because it converted the population based search to

essentially a single point search. By restricting the node choices to canonical form the same

snake was produced by many ants especially in the earlier parts of the search. The choice of

retaining a fixed starting node but eliminating the canonical scheme was made.

Traditionally, all TSP applications of ACO use pheromone to reinforce the relative posi-

tions of the edges. This supports the notion that it is not important whether certain nodes

come earlier or later in the solution, as long as they have been reached through the least

cost path (other cities connected to it), they will make for a good solution. In the case of

the SIB problem an alternate reinforcement scheme was also tried. The absolute position of

a node within a snake was reinforced so as to encourage ants to pick certain nodes earlier

in the snake. It made more sense to use this in conjunction with the canonical version of

the algorithm since the first few nodes in a canonical snake are always fixed. For example

[0,1,3,7] will always be the first 4 nodes of any canonical snake in dimension higher than 3.

This alternate scheme significantly worsened the performance of ACO and was abandoned in

favor of the traditional scheme in which the edges connecting two nodes receive pheromone.

The best results for the SIB problem have been obtained by using seeding [Casella, 2005].

This can be done in two different ways. In a genetic algorithm, individuals that are longest

snakes in the previous dimension can be introduced into the population. In search techniques

that can “grow” the snake, the search can be started from a good node sequence which can be

a previously known longest snake in the lower dimension [Brown, 2005]. The benefit gained

from seeding in both of the above mentioned schemes is apparent. However, using seeding to

our advantage in ACO is a more tricky issue. A longest snake from a previous dimension can

be a good start for the first generation of ACO but once the ants finish solution construction

and reset their paths the seeding is lost. The pheromone trail will retain the path for some
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time and unless more long paths with the same nodes are found the trail will eventually

evaporate. On the other hand reinforcing the trail too strongly will cause the search to

stagnate. For these reasons the seeding scheme for ACO needs to be made more dynamic.

For dimensions 7 and higher all snakes were seeded with the longest snake from the previous

dimension at the start. Once ACO found a longer snake the seeding scheme was changed.

One third of the ants were started from node 0, one third were seeded with the original seed

and the remaining were seeded with two thirds of the length of the best snake found so far.

The original seeds from the previous dimension were canonical and had all of the bits flipped

at least once (the process of finding canonical snakes ends once every bit position has been

flipped at least once in the transition sequence of a snake. From then on whatever nodes are

added will produce distinct canonical snakes). Meaning that any snakes seeded with these

would produce canonical snakes. This provided a good way to exploit this property even

though previous efforts had not produced significantly better results. The search space being

explored by each set of ants was different after seeding and was only a subset of the entire

space. This increased the chances of finding longer snakes.

4.6 Techniques used for Intensification and Diversification

In Chapter 3.3 we discussed the role of diversification and intensification in ACO. We have

also discussed the implementation details and parameters of the ACS, the MMAS and

MMAS SIB. Let us now see what properties these algorithms gain due to the interaction

of all the components discussed earlier and how these factors can be controlled to get the

desired result.

• Trail persistence/evaporation: To prevent ants from converging on a sub-optimal solu-

tion, the pheromone trail dissipates much like scents do in air. This allows for the

exploration of new parts of the search space since ants resume their random walk in

the absence of differences in pheromone. How much pheromone to evaporate decides

how quickly the old paths are abandoned and new ones explored; this parameter is
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called trail evaporation. In the remainder of this paper the trail evaporation parameter

refers to the trail evaporation (α) in the global_update() rule (Equation 4.4). A very

low value of α is used in the ACS to retain memory of the past best solutions for a

longer time to exploit them. While a very high value of α is used in MMAS to keep new

best solutions in focus and quickly abandon old ones. MMAS SIB tries to achieve a

balance between direct exploitation and biased exploration and needs customized trail

evaporation parameters for each dimension.

• Reinforcement of pheromone: This is achieved by how much pheromone is deposited

by the good solutions. In the case of large amounts of pheromone being deposited,

the good solutions will quickly develop a big difference in the amount of pheromone

thereby drastically reducing the chances of other paths being chosen. The amount of

pheromone deposited by the best solutions uses the same function of length in all three

ACOs.

• Visibility of heuristic information: This parameter might be used advantageously to

give nodes that have good potential but have not been explored or reinforced a better

chance. The higher the visibility the more weight heuristic information has in the search

process. Due to the difficulty in accurately estimating heuristic value (reasons for which

are discussed in Chapter 2.4), we expect all three of the ACOs to perform well with

very low or no heuristic information.

• Trail strength: Trail strength can achieve the opposite effect of heuristic visibility. It

tells the search to rely heavily on the history of good solutions (amount of pheromone)

as opposed to the value of future solutions. Having values of trail strength (Equa-

tion 4.1) higher than 1, will lead to the differences in pheromone between edges

increasing exponentially. Due to the dangers of stagnation associated with this sit-

uation, no values other than 1 were tried. The differences in trail strength are expected

to make the most difference in the ACS and versions of MMAS SIB which have a
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high exploitation parameter(q0). Since for the SIB problem the importance of heuristic

information is expected to be very little, it is not expected to affect the probability of

a node being chosen. This gives the trail strength complete control over establishing

the dominant node (node with the highest probability of being chosen).

4.7 ACO Implementations for the SIB Problem

The following section outlines the three algorithms used for the SIB problem, and gives

reasons for the development of each algorithm. It explains the distinct features of each

algorithm and gives a synopsis of the performance of each algorithm by correlating it to

domain charachteristics.

4.7.1 Ant Colony System

The two main aspects of the ACS are: the state transition rule, which allows for both

the exploitation of the best edges in the past and exploration of new edges; and the local

updating rule which maintains the dynamism in the pheromone trail. However, with greedy

exploitation of the best solutions, the algorithm might stagnate. The pheromone on the best

solution might become so strong that all ants take the same path; this is remedied by the

local_update() rule. The function local_update() decreases pheromone on edges that

have been chosen before; thereby increasing the likelihood of each ant constructing a distinct

solution. To compensate for its voratious exploitation of the best edges the ACS provides

very fast change in their desirability, if they do not belong to another best tour. Work done

by [Dorigo and Gamberdella, 1997] proves this quality of the algorithm by doing an analysis

of the pheromone levels on the best3, recent best4 and uninteresting edges5. When applied

to the SIB problem the greedy exploitation characteristic of the ACS might keep it from

3Best edges are edges that belong to the best solution found in the last generation.
4Recent best edges are edges that have belonged to the best solution within the last two

generations.
5Uninteresting edges are edges that have not been part of a good solution for over two

generations.
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completely exploring the search space as the problem size increases. Another concern would

be that snakes which deposit pheromone are always maximal snakes (since ACO produces

only maximal snakes at the end of each generation).Therefore following these maximal snakes

too closely might lead the search down a dead end path. The exploitation parameter q0 will

need to be low especially in higher dimensions so that edges not belonging to the best

solution have a chance of being chosen. Previously known good results using the ACS for

the TSP have been obtained by combining the ACS with a local search procedure called

3-opt [Dorigo and Gambardella, 1997]. The 3-opt local search takes a complete solution and

by changing 3 connections (TSP involves connecting a set of cities with a least cost path)

produces a lower cost solution. Applying local search procedures to the SIB problem is not

a very practical approach (reasons for which are discussed in Chapter 2.4) and this might

hurt the performance of the ACS considerably. However, the seeding strategy is expected

to significantly boost the performance of the ACS since the algorithm is built to exploit

promising solutions.

4.7.2 Min Max Ant System

The Min-Max Ant System (MMAS) was explored as a possible solution to some initial

problems that the ACS was facing in this domain. The MMAS was introduced [Stützle and

Hoos, 1997] to provide a simple mechanism to prevent stagnation. Here is how it differs

from the ACS: it has explicit limits on the strength of the pheromone trail and; it oscillates

between reinforcing the global best and the iteration best solution so as to avoid only one

solution being reinforced in every generation. The MMAS monitors the trail limits 6 and

gradually increases them. This is done by having an explicit minimum (τmin) and maximum

(τmax) limit on the amount of pheromone at each node and then gradually increasing the

upper limit as better solutions are found. Stützle and Hoos point out that by dynamically

changing the maximum limit and setting it to the best solution found so far, convergence

6Trail refers to the amount of pheromone on each node.
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can be achieved. Convergence in terms of the MMAS means that at each step one node

has the pheromone value τmax, while all others have the value τmin . The effect of all these

strategies is that there is a constant increase in the pheromone on good edges and a constant

decrease in the pheromone on edges that have not been part of the best solution. However,

the trail limits ensure that no node ever has a zero probability of being chosen. The trail

limits are enforced by first initializing all edges to a very large number and then setting

them all to the max limit at the end of the first iteration. This ensures that the algorithm

focuses on exploration in the beginning. At the end of each iteration the edges that have less

pheromone than τmin are set to τmin and those that have more pheromone than τmax are set

to τmax. MMAS uses iteration best solution (ib) to reinforce pheromone in the beginning of

the search, and global best solution (gb) towards the end of the search. Since ib changes more

frequently than gb, this ensures diversity in the solutions being reinforced. Another strategy

to ensure changes in the best solution is a high trail evaporation parameter. This helps the

search forget old solutions, thereby producing iteration best solutions that are significantly

different from the global best. There were also some additional reasons for the choice of the

MMAS: 1) Local search operators have been known to improve MMAS performance but

its performance does not rely too heavily on them (unlike the ACS). 2) Initial tests with

the ACS revealed that heuristic or problem specific information, which helps ascertain the

potential of future solution components, was not very useful in case of the SIB problem. The

model for MMAS works on the assumption that the value of heuristic information is low

[Stützle and Hoos, 2000] making MMAS well suited to the problem. The expectation is that

the MMAS will make up for the shortcomings of the ACS in this domain. The exploratory

nature of the MMAS should give it good searching capability in the higher dimensions.

4.7.3 MMAS SIB

Initial testing indicated that while the ACS did well on some dimensions the MMAS was

better on others. The ACS found longer snakes, but the MMAS was far more consistent
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in the results it produced. By now it was clear that the search space in the SIB problem

worked differently for different dimensions. The search for an algorithm that worked well

on all the dimensions, led to MMAS SIB. This ACO combines the aggressive exploration

of the ACS with the more exploratory nature of the MMAS. Since the ACS and MMAS

have complimentary searching capabilities MMAS SIB should get the best of both worlds.

MMAS SIB uses the exploitation parameter (q0) from the ACS combined with the trail limits

(τmin and τmax) and reinforcement schedule (ib and gb) of the MMAS. The q0 parameter

of the ACS is used to gain a better chance of exploiting the best solutions while the trail

limits and reinforcement schedule avoid searching in the same area. We ascertained earlier

that heuristic information does not help too much in assessing what solutions to generate;

it follows that vast exploration is required. However, in the size of the search space we are

dealing with it is hard to undertake a comprehensive search effort. So exploring a variety

of carefully chosen solutions should be a good way to find longer snakes. Since we have

balanced the exploitation and exploration effort, it now becomes important for ants not to

not duplicate their search from generation to generation. This is done by having a high trail

evaporation to make way for newer solutions. Since it uses parameters from both the ACS

and MMAS we expect that the parameters for MMAS SIB will have to be fine tuned for each

dimension. MMAS SIB can mirror the searching capability of the ACS as well as the MMAS

with minor changes in its parameters. This should give it the advantage of performing well on

all dimensions. The performance results of all these algorithms are presented in the following

Chapter.



Chapter 5

Results

This section will present the test results of all three algorithms: ACS, MMAS and

MMAS SIB. The ACS was the first ACO to be implemented and experiments were con-

ducted with the two most important parameters, namely the exploitation parameter (q0)

and the trail evaporation parameter (α). This gave us a sense of which parameters affected

each dimension and provided insight about the best performing combination of parameters

for each dimension. The knowledge from experiments with the ACS was then used to design

experiments for the MMAS. We observed that α has to be set very high for the MMAS

(unlike the ACS which has a low α value). Hence, we test values for α ranging from [0.1 to

0.5] in the ACS and [0.5 to 0.8] for the MMAS (Note: MMAS does not use q0). Depending

upon which values of α and q0 had performed the best for the MMAS and the ACS respec-

tively, combinations of these were tried for each dimension in MMAS SIB . We present

parameter tuning results for the MMAS SIB. All three algorithms performed better with

the seeding scheme discussed in Chapter 4.6 and hence the testing results for dimension

higher than 7 presented in this chapter are from the seeded versions of the algorithms. The

chapter concludes with comparative results from all three algorithms in dimensions 5-9 and

some observations about timing results.

5.1 Parameters

All the test results in this section have been obtained by using some standard parameters in

each dimension. As initial tests showed much better performance without heuristic informa-

tion, the heuristic information parameter (β) is always set to 0. The results for all the trials
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have been averaged over 25 runs of the algorithm. Dimensions 5 and 6 were run for a 100

generations while dimensions 7-9 were run for 500 generations. Since initial testing suggested

that there was no incremental benefit to having more than 50 ants and that 25 ants also

produced comparable results in much less time, 25 ants were used for all the problem sizes.

5.2 ACS Results

Table 5.1: Performance results for the ACS with (1) q0 value from 0.5 to 0.9, with α constant
at 0.1 and (2) α values from 0.1 to 0.5, with q0 constant at 0.5. * denotes the length of the
worst snake found, ** denotes the average and *** denotes the best length found. The best
results in each of these categories is bolded for all dimensions, except dimension 5.

d q0=0.5 q0=0.7 q0=0.9 α=0.1 α=0.3 α=0.5
5 13∗ 13 13 13 13 12

13∗∗ 13 13 13 13 12
13∗∗∗ 13 13 13 13 13

6 24 23 22 24 23 22
24 24.38 24.19 24 24 23
26 26 25 26 25 25

7 43 43 40 43 43 41
44.26 44.53 42.46 44.26 44.76 44

46 46 45 46 47 46

8 90 89 81 90 89 87
94.23 93.54 87.23 94.23 94.23 94.03

97 97 93 97 97 97

9 159 162 152 159 160 158
166.23 168.7 164.26 166.23 167.03 167.13

173 175 169 173 180 175

Table 5.1 shows the results for two sets of experiments. The first set of experiments

involved changing the exploitation parameter (q0) while the second set of experiments con-

sisted of changing the trail evaporation (α). Seeding with a longest snake from the previous

dimension was used in dimensions 8 and 9. As α is typically very low in the ACS the value α
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= 0.1 [Dorigo and Gambardella, 1997] was chosen as a baseline for experiments with varying

q0. As Table 5.1 shows, the most successful overall value of q0 was 0.5, closely followed by

0.7. There was a marked drop in performance for α = 0.9. This was consistent with our

expectation that the over exploitation of solutions in the ACS can cause stagnation when

combined with a high q0 value. It can be prevented by using lower values of q0 (by lower

we refer to values that are lower than those typically used in the ACS for the TSP. [Dorigo

and Gambardella, 1997] use q0 = 0.9). This effect worsens with increase in problem size. In

Table 5.1 consider the differences between the lengths of best snakes found using varying q0

(consider only best values from column 2). The difference between the best length and the

length found using q0 = 0.9 is 1 in dimension 6 and 7, 4 in dimension 8, and 6 in dimension

9.

The next phase of experiments, which was aimed at understanding the effect of changing

α, used the optimized value of q0 = 0.5 as a constant for all dimensions. The lower values

of α (0.1 and 0.3) combined with q0 = 0.5 work the best. There is such a deterioration

in performance for α = 0.5 that the algorithm failed to even find the longest snake in

dimension 5. The exploitation of the best solutions is hampered with high trail evaporation.

Since the evaporation is a fraction of the pheromone present on an edge the edges with

higher pheromone are affected more by it. Hence the trail of best solutions is lost quicker

with high evaporation. Of special interest is the fact that different values of α work for

different dimensions. α = 0.1 works the best for dimensions 6 and 8, while α = 0.3 gave

the best results for dimension 7. This dimension specific information is used to advantage

when fine tuning MMAS SIB to suit every dimension. Since the ACS is designed for rapid

exploitation of promising solutions, it gained significantly in performance from the seeding

scheme that was used. The ACS found the longest snakes in dimensions 5-7, matched the

record in dimension 8 and came very close to the record in dimension 9.
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5.3 MMAS Results

The MMAS does not use an exploitation parameter (q0), therefore the evaporation parameter

α and trail limits become the most important part of its functioning. Experiments were

conducted with α while the trail limit function was held at a constant. The trail limit

function refers to the relationship between the τmax and τmin values for the MMAS. The

initialization of the τmax and τmin values which correspond to the upper and lower trail limit

respectively depends on the problem. The tighter the bound, (i.e. the lesser the difference

between the τmax and τmin) the lesser the worst case time estimate on finding the optimal

solution [Stützle and Dorigo, 2002]. The tradeoff is that the tighter the bound the lesser is

the number of distinct paths explored thereby reducing the chances of finding a very good

solution. We chose the ratio τmin = τmax/3n (which is inspired by [Stützle and Dorigo, 2002]),

where n is the dimension. Experiments were conducted to ascertain the best α values for

the MMAS in dimensions 5-9 and the results are presented in Table 5.2. Seeding was used

in dimensions higher than 7.

Even though there is very little differentiation in the results, α values of 0.7 and 0.8

seemed to work better than 0.5, especially in dimensions 7 and 8. The higher values of

α = 0.7 and α = 0.8 yielding better results is expected, because the MMAS is designed

to have better performance with high trail evaporation (reasons for which are discussed in

Chapter 4.8.2). The MMAS showed no change in worst performance for the different values

of α. In fact there was no significant fluctuation in the average and best results either.

MMAS found the longest snake in dimension 6 for every set of parameters, unlike the ACS.

The overall results for the MMAS could not match the performance of the ACS in longest

snakes found. However, it performed more consistently than the ACS. This is due to the

fact that MMAS explores the search space more thoroughly than the ACS. Unfortunately,

due to the immense size of the search space most of the snakes found are not the longest in

that dimension. The MMAS withstood changes in parameters better than the ACS which

showed immediate changes in performance. This quality of the MMAS combined with the
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Table 5.2: Performance results for the MMAS with varying trail evaporation( α).* denotes
the length of the worst snake found ** denotes the average and *** denotes the best length
found. The best results in the average and best category are bolded for all dimensions, except
dimension 5.

D α=0.5 α=0.7 α=0.8
5 13∗ 13 13

13∗∗ 13 13
13∗∗∗ 13 13

6 24 24 24
25.15 24.88 24.88

26 26 26

7 41 41 41
42.3 42.57 42.34

43 44 45

8 89 89 89
92 91.53 92.15

94 95 95

9 155 155 157

159.93 159.23 160.73

167 169 165

good results found using ACS should give MMAS SIB the robustness and improved search

capability to tackle all dimensions.

5.4 MMAS SIB Results

Since MMAS SIB has been introduced in this paper there was no prior literature to guide

the parameter tuning for MMAS SIB. Hence the knowledge about parameters gained from

testing done with the ACS and the MMAS was instrumental in developing MMAS SIB for

each dimension. The best parameters from both algorithms were used and different combi-

nations of these were tried for dimensions 7-10. We illustrate this process using dimensions
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7 and 9 as an example since we have not been able to find very good results for either of

these using the ACS or the MMAS. We do not show similar results for dimension 8 because

the ACS found a snake of length 97 (which is the current lower bound for the dimension).

Table 5.3 shows the results for experiments to fine tune α and q0 for MMAS SIB in dimension

7. Since we expect the MMAS SIB to work well on exploitation parameter values from ACS,

q0 values from 0.5 to 0.9 are used. Similarly α values from 0.5 to 0.8 which are characteristic

of the MMAS are used. Seeding is used in dimensions higher than 7.

Table 5.3: Performance results for MMAS SIB in dimension 7, with values of q0 from 0.5 to
0.9 and α from 0.5 to 0.8. * denotes the length of the worst snake found, ** denotes the
average and *** denotes the best length found. The best results in each of these categories
is bolded.

α=0.5 α=0.7 α=0.8
q0=0.5 42∗ 41 43

43.58∗∗ 43.3 43.92

46
∗∗∗

46 45

q0=0.7 42 43 43

43.96 44.92 44.38
46 47 46

q0=0.9 42 44 43
44.8 45 44.73
47 47 47

q0 values of 0.7 and 0.9 combined with the α value of 0.7 proved to be the best performing

parameters in dimension 7. The q0 value of 0.7 and the α value of 0.7 were expected to

do well as they had in the ACS and the MMAS respectively. An unexpected result of the

interactions between the various parameters was the emergence of the α value of 0.9 as a good

parameter. The MMAS SIB for dimension 7 combined the length results of the ACS with

the consistency of the MMAS. This is evident from the fact that the best lengths found for

almost all the parameter combinations are 46 and 47. Even though the MMAS SIB displayed

the characteristics of both the ACS and the MMAS, it did not better their performance. A
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strategy of seeding the longest snake from dimension 6 had to be used, in order to find

the longest snake in the dimension. This yielded the longest snake of length 50 for all the

parameter combinations shown in Table 5.3.

Table 5.4: Performance results for MMAS SIB in dimension 9, with values of q0 from 0.5 to
0.9 and α from 0.5 to 0.8. * denotes the length of the worst snake found, ** denotes the
average and *** denotes the best length found. The best results in each of these categories.
is bolded.

α=0.5 α=0.7 α=0.8
q0=0.5 159∗ 161 162

167.81
∗∗ 166.182 167.27

177
∗∗∗ 174 173

q0=0.7 164 160 162
172.9 170.27 168

179 178 175

q0=0.9 166 164 162
167 169.4 171.09
169 174 184

Similar experiments were conducted in dimension 9, based on the best performing param-

eters for the ACS and the MMAS. α values of 0.7 and 0.8 were expected to do well, when

combined with a q0 value of 0.7. Table 5.4 shows that the q0 value of 0.9 combined with an

α value of 0.8 found the longest snake in dimension 9. The same occurrence was observed

in dimension 7, where the q0 value of 0.9 had the best performance when combined with

good α parameters from the MMAS. In the testing done with the ACS we had estimated

that the lower α values would do better due to the size of the search space. When combined

with the exploration effort introduced by the trail limits from the MMAS, the ACS needs a

higher q0 value to perform well. A snake of length 184 is found with an α value of 0.8 and

a q0 value of 0.9, which is better than the longest snake found using the ACS. However, the

shortest snake found for this combination of parameters is 162 which is not characteristic of

the consistency of the MMAS. The complete opposite of this is observed for the q0 value of
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0.9 combined with the α value of 0.5. The worst, average and best snake found are within

3 edges of each other, but the overall performance is sort of lackluster. We can say that in

MMAS SIB for dimension 9 qualities of either the ACS or the MMAS dominate depending

upon which parameter combinations are considered. To gain better control over the perfor-

mance of MMAS SIB it is necessary to understand how q0 and α interact when implemented

with trail limits. As for the goal of obtaining a better performance by combining the ACS

and the MMAS, it was certainly achieved in dimension 9.

5.5 Comparative Results

Table 5.5: Overall best time and length results for dimensions 5-9. Times are denoted in
milliseconds.

d Best length Best time Algorithm

5 13 30 ACS
13 30 MMAS
13 30 MMAS SIB

6 26 790 ACS
26 1640 MMAS
26 590 MMAS SIB

7 50 16940 ACS
50 13390 MMAS
50 14010 MMAS SIB

8 97 64290 ACS
95 75270 MMAS
97 83340 MMAS SIB

9 180 225980 ACS
169 209220 MMAS
184 667300 MMAS SIB

Table 5.5 presents the overall best results for all three algorithms in dimensions 5-9.

Seeding was used in dimensions greater than 6. Dimension 5 was run for 10 generations, 6
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for 100 and 7-9 for 500 generations each. The best times shown in the table are run times

for the specific trial in which the best length was found. It might be worth mentioning

that increase in times as dimension goes up, can be attributed to the size of the search

space increasing as well as the number of generations. The parameters used in each of the

algorithms were the best performing parameters for each dimension. We found the longest

snakes in dimensions 5-7 and matched the world record in dimension 8. In dimension 9 the

result obtained was 184, while the current lower bound rests at 186. The results for dimension

8 were found in 64290 milliseconds (which is approximately 64.2 seconds), while the results

in dimension 9 took 667300 milliseconds (which is approximately 11 minutes). MMAS SIB

performed as well (dimension 5-8) or better (dimension 9) than the ACS and the MMAS, as

shown in Table 5.5.

The performance of ACO on the SIB problem was very encouraging. The overall results

clearly indicate that a search strategy for one dimension cannot be generalized for a higher

dimension. Different qualities of the search algorithm might be needed in different dimen-

sions to achieve successful results. After initial testing it was decided that there were some

parameters of ACO that would not affect performance very much and hence were not tested.

Different trail limit functions for the MMAS could be tried to see if improvements in length

are found. Successful α values from the ACS might be tried for the MMAS SIB, instead

of using only the successful α values from the MMAS. Even if the results from the cur-

rent versions of the algorithms are not bettered, these trials might shed some more light on

the interplay between the various parameters of ACO, especially those in the newly built

MMAS SIB.



Chapter 6

Conclusion and Future Work

In this thesis we have presented an approach to the SIB problem using Ant Colony Opti-

mization. As part of our research we explored two existing ACO algorithms: the ACS and the

MMAS. We also proposed a new algorithm, MMAS SIB, which combines the best features

of the two. Our results show that MMAS SIB is an effective searching algorithm across all

dimensions of the SIB problem. The performance of ACO for the SIB problem was very

encouraging. The longest known snakes in dimension 5-8 were matched. In dimension 9 the

MMAS SIB found a snake of length 184 which was two edges shy of the world record of 186.

The MMAS SIB performs very well on the time criteria, but leaves room for improvement

with consistency and predictability.

The ACO framework offered certain advantages over population based evolutionary

methods, when it came to path finding problems like the SIB problem. This helped the

algorithm achieve the following computational efficiencies:

1. Preserving the validity of the solution: In case of the SIB problem the complete solution

to the problem is a sequence of nodes, which together form the snake. The validity and

length of the snake depends upon the specific node order. Genetic algorithms (which

have been a popular approach to the SIB problem) work on the assumption that

preserving high quality node sequences will lead to a better solution. However this

is hard to do after the crossover and mutation operators in the Genetic Algorithm

(GA) have been applied. Both, crossover and mutation, make chnages to the node

sequence, with the hope of finding a better solution. Changing a node within a snake

might violate the validity of the snake. Specialized operators like XOR mutation or the
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enhanced edge recombination crossover used by [Bitterman, 2004] can be used to try

and maintain good node sequences. Another approach is to avoid crossover altogether

[Casella, 2005]. ACO provides a better alternative. The sequence of promising nodes is

retained as the strength of pheromone on their respective edges instead of actual node

sequences in the solution, thereby circumventing the issue altogether. This also means

that ACO always produces only valid solutions.

2. Complexity of evaluating solution quality: The fitness evaluation of an individual in

most population based evolutionary methods is based on finding the longest snake

within a node sequence of a certain length [Potter et al., 1994; Bitterman, 2004; Casella,

2005]. This type of fitness evaluation can be very computationally expensive and have

time complexity to the order of O(n2), where n is the length of the sequence to be

evaluated. In the ACO, each ant maintains the cost of the path from the first node to

the present node. When a new node is added, the cost of this new node is added to

the total path cost 1 without recalculating the cost so far. This gives the evaluation

function a time complexity of O(1).

3. Extending snakes: In population based searches for the SIB problem there might be

the need to use a local search procedure to make sure that the longest snake found in a

sequence is not extendable past the last node or before the first node. In short, there is

no inherent guarantee of finding maximal snakes, i.e. snakes that cannot be extended

any further in either direction. Single point searches (searches which have one candidate

solution and try to improve it) for the SIB problem [Brown, 2005] are better suited to

finding maximal snakes, because they continually improve the solution, until no further

improvement is possible. However, single point searches are incapable of generating and

evaluating several solutions simultaneously. ACO combines the advantages of both

1Path cost is a measure of evaluating a solution. It can be any function depending upon the

problem representation and implementation.
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these types of searches by developing several solutions in parallel and continuing the

search until each solution can not be extended any further.

4. Scaling up for problem size: To scale up ACO to bigger instances of a problem does not

require the number of ants to be increased drastically, but only the number of iterations.

In fact most implementations use 10-25 [Dorigo and Gamberdella, 1997; Stützle and

Hoos, 2000] ants as compared to several thousand individuals used in other population

based searches ([Casella, 2005] used 10,000 individuals). This means that run times

are not multiplied on the scale of individuals times iterations, but stay proportional

to the number of iterations. Other implementation like the memory adaptive iterated

local search [Brown, 2005] depends on the memory available to implement them. The

memory requirements of ACO are very reasonable and seldom exceed system resources.

So, in theory ACO seems to enjoy some of the best features of both, population based and

single point searches for the SIB problem.

In the literature, ACO has been applied to problems that have been represented as least

cost, shortest path, minimization problems [Birattari, 2002]. Our problem representation

makes the longest path the most optimal. To successfully adapt ACO to a maximization

problem was an interesting challenge. The reason that ACO lends itself to minimization

problems is due to the nature of ant foraging. The shorter paths gain an advantage because

it takes less time for ants to travel on them, resulting in more trips and an increased amount

of pheromone. In a program time is not continuous but is measured in discrete intervals that

are decided by the flow of the program. This means that while in nature ants are constantly

making trips back and forth, bringing food to their nest, in ACO all ants complete only one

trip in each program cycle.2 After the completion of each program cycle, the effect of more

trips being made on the shorter path is simulated by depositing more pheromone on the

2By program cycle we refer to the process of each ant sequentially building a complete solution

and then resetting their path to start building a new solution. This corresponds to real ants finding

a food source and bringing food back to the nest.
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shorter path. This led us to believe that extending ACO to a maximization problem should

yield fruitful results. We tested this hypothesis successfully through our work.

The most important lesson learnt about ACO through this research, is that it is very

important to understand the shape of the search space when designing an ACO tailored to

a specific problem. The search space for the SIB problem has not been very well defined by

work done so far. However, from the way the search effort had to be customized for every

dimension in the SIB problem, it is apparent that the size and shape of the search space

is different in every dimension. Another disadvantage ACO faces in the SIB domain is that

heuristic information for look ahead (look ahead means deciding how promising a solution

component is before the entire solution is constructed) is not easy to acquire. Due to these

factors a detailed understanding of the SIB problem would definitely help the performance

of ACO.

Future work could include improvements in the ACO for the SIB, by studying how

combining the parameters from the ACS and MMAS (like we did with MMAS SIB ) affects

the properties of the algorithm. Detailed analyses of the MMAS SIB can be conducted using

criteria like pheromone levels, edge desirability [Dorigo and Gambardella, 1997] and the

number of distinct solutions explored. We conclude that the potential of this new algorithm

can be utilized better only after developing a deeper understanding of it.
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T. Stützle and M. Dorigo, “A Short Convergence Proof for a Class of ACO Algorithms”,

IEEE Transactions on Evolutionary Computation, 6(4):358-365, 2002.

D. Tuohy, Personal Communication, June 2005.



Appendix

Program flow chart and code for ACOs

Figure A.1: Program flow chart for ACO algorithms
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/*********************************************************

**This is a sample .h file for all three algorithms.

**Variations for each algorithm are marked as comments for each parameter

*********************************************************/

#include<iostream>

using namespace std;

#include "ulist.h"

#include<math.h>

const double ALPHA = 0.7; //[0,1]importance of pheromone

const double BETA = 0.0; //[0,1]importance of heuristic

const int DIMENTION = 10;

const int NUM_ANTS = 25;

const double GLOBAL_STEP = 0.5; //Exploitation probability

//GLOBAL_STEP is always 0 for MMAS, MMAS_SIB

const int MAX_GEN = 1000;

class swarm

{

class Ant //ant class

{

public:

UList path; //Holds ant path

int length;

int ant_id; //you initialize with this

int generation; //increase this with each generation

double fitness; //fitness=available nodes/length

int overlap; //This is a count of overlapped nodes

Ant(int num)

{

ant_id = num;

generation = 1; //when you create generation is 1

path.Insert(0);

length=1;

overlap=0;

double nodes = static_cast<double>(pow(2.0,DIMENTION));

fitness=(double)(DIMENTION+1); //No of available nodes

node=new int[(int)(nodes)];

}

};

int **x; //adjacency table

int canon[NUM_ANTS]; //canonical bit for each ant

public:

double PHER_MAX;
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double PHER_MIN;

Ant *MAX_SNAKE; //Iteration best snake found

Ant *GLOBAL_MAX; //longest snake found

UList MAX_SNAKES_HIST[NUM_MAX_SNAKES];

double **pher_table; //Pheromone table

double **initial_pher; //Initial pheromone at each node

int paths[NUM_ANTS][400]; // table that holds paths of all ants

//Adjust size for every dimension

time_t seed;

Ant *baby[NUM_ANTS];

int flip(int a,int b);

void adj_table();

void pheromone_table(); //initializes pheromone table

void generate_ants(); //generates NUM_ANTS with first node 0

int next(int id); //takes ant_id and returns next node

void traverse(); //control method for whole program

int valid(int node, int id); //returns validity of node

void kill(int id); //resets all ant paths

int anyAntAlive(); //does any ant has feasible nodes left

int scheck(UList& id);

void take_step(int id, int next_node); //adds node to snake

void transition(UList& id); // transition sequence of snake

int iter_best(); //Returns iteration best snake

void global_update(int gen); // Global update rule

void local_update(int id, int node); //Local update rule

void reset_fit(int id);

double heuristic(int id, int next_node);

};

/************************************************************************

**This creates the adjacency table for hypercube of dimension:DIMENTION.

**This method is common to all algorithms.

************************************************************************/

void swarm::adj_table()

{

seed = time(NULL);

cout<<"seed is: "<<seed<<endl;

srand(seed);

int nodes = static_cast<int>(pow(2.0,DIMENTION));

cout<< "power result is "<<nodes<<endl;

int a,i,j,b,c;

x = new (int*)[nodes];

for(i=0;i < nodes;i++)

{

x[i] = new (int)[DIMENTION+1];
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x[i][0] = i;

for(j=1;j< DIMENTION+1;j++)

{

a = flip(i,j); //generate neighbors

x[i][j]= a; //put them in columns of row i

}

}

}

/************************************************

** Takes dimention and intializes all places in

** pheromone table to a random pher value

** In ACS use the length of longest snake

***********************************************/

void swarm::pheromone_table()

{

double random=10000.0;

int i,j;

int nodes = static_cast<int>(pow(2.0,DIMENTION));

pher_table = new (double*)[nodes];

initial_pher = new (double*)[nodes];

for(i=0;i<nodes;i++) //Need to have only adj nodes

{

pher_table[i] = new (double)[nodes];

initial_pher[i] = new (double)[nodes];

for(j=0;j<nodes;j++)

{

/** UNCOMMENT THIS FOR ACS, COMMENTED FOR MMAS and MMAS_SIB

if(DIMENTION>9||DIMENTION<6)

random= (double)(rand()%(DIMENTION+1));

if(DIMENTION==6)

random=26;

if(DIMENTION==7)

random=50;

if(DIMENTION==8)

random=97;

if(DIMENTION==9)

random=186;

*/

pher_table[i][j]=random;

initial_pher[i][j]=random;

}

}

}
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/*****************************************************

**generates ants needed for population based on NUM_ANTS

*********************************************************/

void swarm::generate_ants()

{ int i,j,n;

int nodes = static_cast<int>(pow(2.0,DIMENTION));

for(i=0;i < NUM_ANTS;i++)

{

baby[i] = new Ant(i);

for(j=0;j<nodes;j++)

{

baby[i]->node[j]=0;

}

for(j=1;j<DIMENTION+1;j++)

{

n=x[0][j];

baby[i]->node[n]=1;

}

baby[i]->node[0]=2;

}

MAX_SNAKE=new Ant(10);

GLOBAL_MAX=new Ant(10);

//The following loop seeds all paths with the given array

int koc12[]=

{0, 1, 3, 7, 15, 31, 63, 55, 51, 49, 48, 56, 60, 28, 20, 22, 18, 26, 10, 42,

46, 38, 36, 37, 45, 41, 105, 104, 72, 88, 80, 81, 83, 91, 123, 122, 126,

118, 116, 117, 125, 93, 77, 69, 68, 70, 66, 98, 99, 103, 111};

int kl=98;

for(int b=0;b<NUM_ANTS;b++)

{

for(int d=0;d<kl;d++)

{

paths[b][d]=koc12[d];

take_step(b,koc12[d]);

}

baby[b]->length=kl;

for(int f=kl;f<400;f++)

{
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paths[b][f]=0;

}

}

/* UNCOMMENT THIS PART IF NOT USING A SEED

for(int b=0;b<NUM_ANTS;b++)

{

for(int c=0;c<400;c++)

{

paths[b][c]=0;

}

}

*/

}

/***********************************************************

**Each ant takes one step, adds node to path, and keeps going until it

**has no more nodes. This is repeated until all generations are over.

*********************************************************/

void swarm::traverse()

{

Ant *l;

UList list;

int next_node,length1=0;

int last_max_gen=0;

int step_counter=0;

int iter_max=0;

int i=0;

int j=0;

l= baby[0];

while(l->generation < MAX_GEN+1 )

{

for(i=0;i<NUM_ANTS;i++ )

{

l= baby[i];

next_node = next(i); //find next node, return 0 if no node left

if(next_node !=0)

{

step_counter++; //total number of valid steps taken
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take_step(i,next_node); // inserts next node in ants path

}//if next_node not 0

else

{

list.Insert(l->ant_id);

if(list.length()==NUM_ANTS)

{

for(int gb=0;gb<NUM_ANTS;gb++)

{

l=baby[gb];

if(l->length > GLOBAL_MAX->path.length())

{

//replace all stats of global best snake

l->path.CopyList(GLOBAL_MAX->path);

GLOBAL_MAX->ant_id = l->ant_id;

GLOBAL_MAX->overlap= l->overlap;

GLOBAL_MAX->fitness = l->fitness;

GLOBAL_MAX->length = l->length;

GLOBAL_MAX->generation=l->generation;

last_max_gen=l->generation;

/***************CHANGE MIN AND MAX WHEN GLOBAL BEST FOUND*******/

PHER_MAX=GLOBAL_MAX->length;

PHER_MIN=PHER_MAX/(double)(DIMENTION*2);

/**COMMENT LAST TWO LINES FOR ACS **/

}

}

iter_max=iter_best(); //finds the best snake in last gen

//replace all stats of iteration best snake

baby[iter_max]->path.CopyList(MAX_SNAKE->path);

MAX_SNAKE->ant_id =baby[iter_max]->ant_id;

MAX_SNAKE->length = baby[iter_max]->length;

MAX_SNAKE->overlap= baby[iter_max]->overlap;

MAX_SNAKE->fitness = baby[iter_max]->fitness;

global_update(l->generation);

for( j=0;j<NUM_ANTS;j++)

{

kill(j); //reset all ants stats

}

list.DeleteList();
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break;

}

}

}//for iterate through all ants

if(i>=NUM_ANTS-1)

{

i=0;

}

}//while true

}

//*******************************************************/

//Valid returns 0 if node is valid ie: not visited and

//not adjacent to something which has been visited for not valid

//*******************************************************/

int swarm::valid(int node, int id)

{

int isValid = 1;

int code;

int i,neigh,length,previous;

length=baby[id]->path.length();

previous=paths[id][length-1]; //the node which was last added to the path

//becasue it will always be adj to this one

if(baby[id]->path.Find(node)==1)

{

isValid = 0;

code = 0;

}

else

{

for(i=1;i<DIMENTION+1;i++)

{

neigh= x[node][i];

if (baby[id]->path.Find(neigh)==1 && neigh != previous)

{

isValid = 0;

code = 1;

break;

}

}

}

return isValid;
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}

/********************************************************

**returns next node, with highest pheromone uses GLOBAL_STEP in ACS

** But not in MMAS and MMAS_SIB

**********************************************************/

int swarm::next(int id)

{

double random=0.0;

double node_pher=0.0;

double cumulative=0.0;

double r=0.0;

double r1=0.0;

while(r==0.0)

{

r=(double)rand();

}

while(r1==0.0)

{

r1=(double)rand();

}

if (r1 > r )

random = r/r1;

else

random = r1/r;

double max_pher = 0.0;

double heur, total_pher = 0.0;

int i,node;

int count=0;

int counter=0;

int max_node=0;

int size=0;

int line=0;

int l = baby[id]->path.length();

int overlap=baby[id]->overlap;

int row = paths[id][l-1]; //find the last visited node

double fit=baby[id]->fitness;

double table[DIMENTION][4]={0};

for(i=1;i<DIMENTION+1;i++)

{

node= x[row][i]; //get the neighbor node from adjacency table

if (valid(node,id)==1) //returns validity of node

{
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table[line][0]=node; //store it as feasible node

table[line][3]=i; //store bit position flipped to get node

size++; //keep track of array size

heur=heuristic(id,node);

node_pher = pher_table[row][node]*(pow(1,1/fit));

table[line][1]=node_pher;

total_pher = total_pher+node_pher;

line++;

}//if valid

}//for DIMENTION

if(size!=0 && total_pher==0)

{

random = rand() % size;

int rint= (int)(random);

max_node = static_cast<int>(table[rint][0]);

}

// IF EXPLOITATION, GLOBAL_STEP=0 in MMAS,MMAS_SIB

if(random < GLOBAL_STEP && size!=0)

{

while(counter<size)

{

if(table[counter][1] > max_pher) //find if max is more

{

max_pher = table[counter][1];

max_node = static_cast<int>(table[counter][0]);

}//if

counter++;

}//while

}//if random<global EXPLORATION

else

{

if(size!=0 && total_pher!=0)

{

while(count<size) //end of array

{

cumulative=cumulative+table[count][1];

table[count][2]=cumulative/total_pher;

count++;

}

r=r1=0.0; //set these back to 0.0

while(r==0.0)

{

r=(double)rand();

}

while(r1==0.0)

{
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r1=(double)rand();

}

if (r1 > r )

random = r/r1;

else

random = r1/r;

for(int k=0;k<size;k++)

{

if(random<table[k][2])

{

max_node= static_cast<int>(table[k][0]);

break;

}

}

}//if size not 0

}//else exploration

return max_node;

}

/*******************************************************

**This is a local pheromone update which takes one node and ant_id.

**This function has to be called after the next node is added.

**This function is used only in the ACS.

*******************************************************/

void swarm::local_update(int id, int node)

{

double pher, change;

int *array=baby[id]->path.returnArray();

int length=baby[id]->path.length();

pher=pher_table[array[length-2]][array[length-1]];

//change is set to intial pher

change= initial_pher[array[length-2]][array[length-1]];

pher_table[array[length-2]][array[length-1]]=

((1-ALPHA)*pher)+(ALPHA*PHER_MAX);

if(pher_table[array[length-2]][array[length-1]]<0)

pher_table[array[length-2]][array[length-1]]=0;

}

/*******************************************************

**Global update includes adding pheromone to the iteration best

**and evaporation for other edges
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**The following method is for the MMAS and MMAS_SIB

**For the ACS always use only the global best snake to deposit pheromone

*******************************************************/

void swarm::global_update(int gen)

{

int j,i,node,next,length;

int *l;

cout<<"***********GLOABL UPDATE**************gen is"<<gen<<endl;

int nodes = static_cast<int>(pow(2.0,DIMENTION));

for(i=0;i<nodes;i++)

{

for(j=0;j<nodes;j++)

{

pher_table[i][j]=(1-ALPHA)*pher_table[i][j];

if(pher_table[i][j]<PHER_MIN)

pher_table[i][j]=PHER_MIN;

if(pher_table[i][j]>PHER_MAX)

pher_table[i][j]=PHER_MAX;

}

}

l=MAX_SNAKE->path.returnArray();

length = MAX_SNAKE->path.length();

if( gen>=25 && gen<75 && gen%5==0)

{

l=GLOBAL_MAX->path.returnArray();

length = GLOBAL_MAX->path.length();

}

if(gen>=75 && gen<125 && gen%3==0)

{

l=GLOBAL_MAX->path.returnArray();

length = GLOBAL_MAX->path.length();

}

if(gen>=125 && gen<250 && gen%2==0)

{

l=GLOBAL_MAX->path.returnArray();

length = GLOBAL_MAX->path.length();

}

else

{

if(gen>=250)
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{

l=GLOBAL_MAX->path.returnArray();

length = GLOBAL_MAX->path.length();

updated GB_SNAKE"<<endl;

}

}

for(i=0;i<length-1;i++)

{

node=l[i];

next=l[i+1];

pher_table[node][next]= pher_table[node][next]+ (0.1*length);

if(pher_table[node][next]>PHER_MAX)

pher_table[node][next]=PHER_MAX;

}

}
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