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Abstract

Towards a better understanding of multi-strangeness physics, various aspects of Ξ hyperon pro-

duction are investigated in the reactions K̄ + N → K + Ξ and γ + N → K + K + Ξ. First

K̄ + N → K + Ξ(Ξ∗) is treated in a model-independent manner and a minimum set of spin ob-

servables is established that will determine the spin-parity of the produced Ξ(Ξ∗), two of the basic

quantum numbers that specify a baryon. In addition, a calculation for all observables is done within

a simple effective lagrangian model in an effort to learn about the reaction dynamics. Here S = −1

hyperon resonances contributions are reported which are important production mechanisms for Ξ

baryons. The γ +N → K +K + Ξ reaction has a more complicated spin structure and we derive

the most general spin structures consistent with basic symmetry principles. The effect of parity

conservation on spin observables is investigated. A gauge-invariant model is described which is

consistent with the calculation for the K̄ +N → K + Ξ reaction.

Index words: Baryon spectroscopy, S = −2 baryons, K̄-induced reactions, Cascade
photoproduction
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Chapter 1

Introduction and Motivation

1.1 Standard Model of Particle Physics

The Standard Model of Particle Physics is founded on the belief that all fundamental interactions

are mitigated via an exchange of gauge bosons. The four fundamental forces are the strong nuclear

force, weak nuclear force, electromagnetic force and gravity. It is common to separate gravity

from the discussion of the other forces for at least three reasons: gravity is nearly 40 orders of

magnitude weaker than the electromagnetic force, and thus has a very small effect at the level of

particle interactions, the gauge boson associated with gravity, the graviton, has not been observed

and a testable quantum theory of gravity that agrees with the theory of General Relativity has

not yet been formally developed. String theory may be a possible candidate theory which unifies

the four fundamental interactions. The three remaining forces each have gauge bosons which

result in demanding the quantum field theory describing the free fermions be invariant under local

U(1)Y × SU(2) and SU(3)c. This U(1)Y × SU(2) symmetry unifies the electromagnetic and the

weak interaction into the electroweak interaction and the formal theory was developed by Glashow,

Weinberg, and Salam for which they were awarded the Nobel Prize in 1979. The U(1)Y × SU(2)

invariance reduces to U(1)em symmetry after spontaneous symmetry breaking caused by the Higgs

mechanism. This U(1)em symmetry of fermions with electromagnetic charge results in the photon.

The remaining gauge particles after the symmetry breaking are the three gauge bosons, Z0, W+
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and W−. The photon is massless while the other three have masses over 80 GeV. The SU(3)c

is the color charge symmetry of the quarks. The formal theory of quarks and the color-charge

carrying gluons is Quantum Chromodynamics (QCD) is generally believed to be the correct theory

explaining the strong interaction. The SU(3)c symmetry results in eight massless gluons which

interact with the quarks as well as each other. This self interaction is a feature of any non-Abelian

gauge theory and is also seen in the weak sector of the electro-weak interaction. This self interaction

is an important reason why fundamental calculations of processes involving the strong interaction

are very difficult.

The other difficulty is due to the growing coupling of the interaction as distance becomes larger.

This means that the strong interaction is inherently non-perturbative in the low-energy regime.

Add this to the self-interacting aspect of QCD and you have a very difficult problem to solve. One

place to study this non-perturbative regime of QCD is hadronic systems: color neutral systems

of quarks. The statement of color neutrality is a statement of confinement. Confinement is seen

experimentally as the lack of isolated quarks, i.e., a single quark which is not part of a hadronic

system has never been observed. Confinement is seen theoretically as the requirement that closed

systems of quarks must form color neutral objects or, put another way, they must be invariant

under SU(3)c transformations, i.e., color singlets. These statements actually extend to any state

made of particles with color charge. This means that physical states of single gluons have not been

observed either and predicted states of multiple gluons, or glueballs, must be color singlets as well.

This concept of color charge has been introduced in [1], and is a vital addition to the quantum

description of baryons because it allows {qqq} states to exist when all three quarks are identical

and occupy the ground state. Without color charge, three identical spin-1/2 fermions would not be

allowed in the same state due to the Pauli Exlusion Principle. The discoveries of the ∆++ {uuu},

∆− {ddd}, and Ω− {sss} confirm the existence of these states and demand that quarks must carry

an additional quantum number (color). The possible color-neutral states are usually grouped in 2 or

3 categories. Systems containing a quark {q} carrying color charge and and anti-quark {q̄} carrying

anti-color charge can form a color singlet state and are called mesons {qq̄}. Systems containing

three quarks can be created so that they are color singlets and are called baryons {qqq}. Quark
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configurations not included in these two possibilities fall into an exotic category which contains

states such as the tetraquark {qqq̄q̄}, pentaquark {qqqqq̄}, and states made from coupled hadronic

states into hadronic ’molecules’, amongst others. A non-trivial quark state, say {qqq̄q̄}, may have

the same quark content as a hadronic molecule, {qq̄ + qq̄}. The distinction between a non-trivial

quark state and a hadronic molecule is not clear but it has been confirmed that these exotic quark

states exist. Recently, two new four-quark states were discovered, Zb(10610) and Zb(10650) [2–4].

One of the purposes of hadron physics is to investigate the quark structure of hadrons. A review

of heavy quarkonia can be found in Ref. [5]

Quarks come in 6 varieties. The up (u), down (d) and strange (s) quarks have relatively low

mass, approximately 2.3, 4.8 and 95 MeV respectively [6]. The charm (c) quark, bottom (b) quark

and top (t) quark are all much more massive. Their masses are listed as approximately 1.3, 4.2,

and 173 GeV respectively [6]. The three lightest quarks have a mass which is comparable to zero on

the hadronic scale of ∼ 1 GeV. This mass structure leads to two near symmetries, chiral symmetry

and iso-spin symmetry. If the masses of the quarks are zero, the lagrangian for the quarks can be

separated into left and right handed spinor fields.

L0 =
∑

a=u,d,s,c,t,b

Ψ̄ai /DΨa =
∑

a

(

Ψ̄L,ai /DΨL,a + Ψ̄R,a /DΨR,a
)

(1.1)

ΨR,L =
1± γ5

2
Ψ (1.2)

The lagrangian now has SU(6)L×SU(6)R symmetry because the L and R portions of the fields are

decoupled. This chiral symmetry can be written as a vector, V = L+R, and axial-vector, V = L−R,

symmetry. While the ground state, vacuum, does have the vector symmetry, it does not share the

axial-vector symmetry and thus spontaneously breaks the chiral symmetry. There should appear

massless Nambu-Goldstone bosons (NGBs) as a result of this spontaneous symmetry breaking and

they should have JP = 0− due to the ground state breaking the axial symmetry. Though a set of

very low mass 0− mesons do exist and are considered to be the Nambu-Goldstone bosons predicted,

they have non-zero mass and do not have an SU(6) symmetry. The non-zero mass is a result of

the mass terms in the original lagrangian. While the mass of the quarks explicitly breaks chiral
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symmetry, the three least massive quarks, {u,d,s}, are light enough that the chiral symmetry is

nearly realized and therefore the NGBs are seen with a near SU(3) structure.

As just mentioned, the other near symmetry that is seen is SU(3) iso-spin symmetry. This

symmetry can be seen from the free lagrangian of the {u,d,s} quarks

L0 =
∑

a=u,d,s

Ψ̄ai /DΨa −maΨ̄aΨa . (1.3)

The mass terms are included here and the lagrangian has SU(3) symmetry when the masses of

{u,d,s} are all equal. The masses of u and d are nearly equal and this leads to a very good SU(2)

symmetry which is expressed in the meson sector as the quark structures {uū, dd̄, ud̄, dū} splitting

into iso-spin singlet and iso-spin triplet states. The SU(2) 0− singlet is the η8 state and the triplet is

{π+,π0,π−} with all four having equal masses. The mass difference, ∆m = ms−mu ≈ ms−md ̸= 0,

does explicitly break the SU(3) symmetry but because it is still small compared to the hadronic

scale, the symmetry is nearly conserved. The full, nearly realized, SU(3) symmetry results in eight

states with similar masses. The 0− octet contains {η8,π+,π0,π−,K+,K0, K̄0,K−}. The states

containing s quarks are more massive than states composed of only u and d, and the quite good

SU(2) symmetry is contained within this SU(3) octet, i.e., us̄ states and ds̄ states have nearly

equal mass. The observed SU(3) 0− states number nine due to the SU(3) singlet state, η0, and are

{η,π+,π0,π−,K+,K0, K̄0,K−, η′}. The physical η and η′ states are mixtures of the octet, η8, and

singlet, η0, states. Here we note that the peculiarly high mass of the physical η′ (∼ 958 MeV) is

a consequence of QCD U(1)A axial vector anomaly [7–10,12–14]. This 8-fold(+1) grouping of the

low-mass mesons is often referred to as the ’8-fold way’ [15]. This SU(3) iso-spin symmetry is seen

in the baryonic sector as well, where states organize themselves into octets and decuplets. Fig. 1.1

is a visualization of this SU(3) organization scheme.

1.2 Motivation for Studying Hadronic Systems

The SU(3) organization scheme described above has been very successful in predicting and classi-

fying the light hadrons. Unfortunately, it is incapable of explaining the mass discrepancy between

4



Figure 1.1: Meson 0− octet, 1
2
+
baryon octet and 3

2
+
baryon decuplet. Image from [16]

the current quarks of the QCD lagrangian and the mass of the observed hadrons. The lightest

baryons, the nucleons, have a mass of over 900 MeV while the up and down quark masses com-

posing the nucleon are ∼ 15 MeV. Even the lightest NGB, the pion, has a mass of ∼ 14 times

the mass of its quarks. Clearly most of the energy of the hadrons is not contained in the valence

quark’s mass but in the quark-gluon ’soup’ inside the hadron. If one wishes to study this mixture

or the valence quarks, a high energy scattering experiment must be conducted to probe this inter-

nal structure. But, as the energy is increased, the strong interaction becomes weaker and can be

described perturbatively. This effect is referred to as asymptotic freedom and means that quarks

are only free at very high energies, or very small separations. Fig. 1.2 shows this feature by αS

approaching zero as momentum transfer, Q, becomes larger than 100 GeV. Therefore, to examine

the nonperturbative nature of the strong interaction, one must study systems where the quarks

have low energies, i.e., low-energy hadrons. Fig. 1.2 again shows the strong coupling content, αS ,

5
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Figure 1.2: The figure on the left are values for the strong coupling constant, αs at an energy scale
of Q = MZ found using different channels. The figure on the right is a graph of αs as a function of
energy scale Q. Image from Ref. [17]

growing quickly as energy or momentum transfer drop below ∼ 10 GeV. For a sense of scale, the

process K̄ +N → K + Ξ lives in the Q < 10 GeV region for the energies considered in this work.

In particular, hadron spectroscopy is an essential part of the investigation to understand the

non-perturbative regime of QCD. The non-perturbative nature of QCD allows for poles in scatter-

ing amplitudes, i.e., resonances. In principle, an ab-initio approach to hadron resonance physics

can be provided by lattice QCD (LQCD) simulation. Instead of a continuum gauge theory, a dis-

crete statistical mechanical system is applied on a four-dimensional Euclidean lattice while exact

gauge invariance is preserved [18]. The spectra of excited baryons observed in the recent lattice

simulations [19,20] hold the promise of explaining the rich dynamics in the resonance energy region

in the near future. Once quark masses drop towards the physical limit and finite volume effects are

fully under control, a close comparison to experimental data will be possible [21–29]. Constituent

quark models [30,31] have been developed to describe the resonance structure of hadrons. Some of

these models organize hadrons in terms of SU(6) × O(3) supermultiplets [32] and some attempts
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are made at adding relativistic effects [33]. Other relativistic and non-relativistic quark models

calculate resonance features. Other approaches such as the dynamical Dyson-Schwinger [34] and

the Skyrme model [35] also generate resonance spectra. Unitarized Chiral Perturbation Theory

also provides a complementary picture of some of the low-lying resonances [36, 37]. Some of these

attempts have been directed at the Ξ spectra and are discussed below.

These theoretical results must be compared with resonance parameters extracted from exper-

imental data. This is no easy task and a quick glance at a list of nucleon resonances shows why.

There are 11 N∗ states below 2 GeV with a 3- or 4-star status and several more have been seen with

less confidence [6]. Although resonances can be seen as peaks in cross section data, they are often

much more difficult to discern. Because such resonances are so close in energy and many have large

widths, extracting them from scattering data almost always requires a robust reaction theory. Such

reaction theories, based on a coupled-channel approach, have been developed to various degree of

sophistication and are being improved. So far, most of the experimentally extracted baryon reso-

nances come from the pion-induced reaction experiments, especially the πN scattering, and about

16 nucleon resonances and 11 ∆ resonances have been identified [6]. A number of Λ and Σ baryons,

which are particles with strangeness quantum number S = −1, have been also discovered [6]. A

review on the status of baryon spectroscopy is given, e.g., in Ref. [38, 39].

Effective field theories (EFTs) are a powerful tool to describe the strong interaction in the non-

perturbative regime of QCD. EFTs are based on the assumption that the low-energy behavior of a

theory should not strongly depend on the high energy dynamics. These omitted dynamics of the

high-energy portion of the full theory are absorbed into the EFT’s parameters, known as the low

energy constants. The goal then is to find the most general lagrangian, involving only the low-energy

degrees of freedom, that retains all of the symmetries of the full theory [40]. Below 1 GeV, the

only degrees of freedom for a QCD EFT are the 0− mesons and the nucleons. Chiral Perturbation

Theory (χPT) is this QCD effective theory with pions and nucleons and is an expansion in terms

of mπ/ΛQCD or mπ/mN . These expansions are not unitary. Unitarity is satisfied by solving the

Bethe-Salpeter equation. Such an approach is known as Unitarized Chiral Perturbation Theory

(UχPT). This approach generates resonances dynamically, i.e., resonances are generated through
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the Bethe-Salpeter equation. Currently, both χPT and UχPT are only able to describe resonances

for s- partial waves thus limiting their applicability [41], though there are efforts to include the

p-wave [42,43].

There are many different reaction theories which are applied in the extraction of resonances from

scattering data. In K-matrix appraoches, the Bethe-Salpeter equation is solved but the real portion

of the 2-body propagator is neglected. Though unitarity is preserved, the omission of the real

dispersive parts of the two-body intermediate states leads to a violation of analyticity. The K-matrix

approach is unable to dynamically generate resonances and the lack of analyticity renders pole

extraction impossible in the complex plane. The usefulness of this approach comes from its ability

to incorporate large amounts of data across many channels in the resonance analysis. The most

promising reaction theories may be dynamical coupled-channel (DCC) approaches. The difficulties

of overlapping resonances and broad widths described above is best solved with a DCC formalism.

These models use effective lagrangians, which reflect the symmetries of QCD at tree level, and

explicit resonances are contained in the models as s-channel diagrams while the background can be

explicitly calculated with t- and u-channel diagrams. In this approach, unitarity is preserved via

the Beth-Salpeter equation and thus resonances can be generated dynamically. This is extremely

important if one wishes to discern the nature of these resonances. DCC approaches are also well

suited for answering the ’missing resonance’ problem. This is because resonances may couple to

different channels and a DCC approach treats these simultaneously.

1.3 Multi-strangeness Baryon Systems

Although the multi-strangeness baryons (S < −1) have played an important role in the development

of our understanding of strong interactions, and thus, should be an integral part of any baryon spec-

troscopy program, the current knowledge of these baryons is still extremely limited. For example,

the prediction and discovery of the Ω baryon [44], with strangeness S = −3, has been a spectacular

confirmation of how well the SU(3) flavor symmetry works in strong interactions. Nevertheless,

more than a half century passed before the spin of Ω−(1672) was recently confirmed [45,46]. Further

gaps in our knowledge is shown by undiscovered Ξ resonances. The SU(3) flavor symmetry allows
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as many S = −2 baryon resonances, Ξ, as there are N and ∆ resonances combined (∼ 27); however,

until now, only eleven Ξ baryons have been discovered [6]. Among them, only three [ground state

Ξ(1318)1/2+ , Ξ(1538)3/2+ , and Ξ(1820)3/2−] have their quantum numbers assigned.1 This situa-

tion is mainly due to the fact that multi-strangeness particle productions have relatively low yields.

For example, if there are no strange particles in the initial state, Ξ is produced only indirectly and

the yield is only of the order of nb in the photoproduction reaction [47], whereas the yield is of the

order of µb [55] in the hadronic, K̄-induced reaction, where the Ξ is produced directly because of

the presence of an S = −1 K̄ meson in the initial state. The production rates for Ω baryons with

S = −3 are even lower [49].

The study of multi-strangeness baryons has started to attract a renewed interest recently. In-

deed, the CLAS Collaboration at Thomas Jefferson National Accelerator Facility (JLab) plans to

initiate a Ξ spectroscopy program using the upgraded 12-GeV machine, and measure the exclusive

Ω photoproduction for the first time [52]. Some data for the production of the Ξ ground state,

obtained from the 6-GeV machine, are already available [47]. They were analyzed in Ref. [53, 54].

J-PARC is going to study the Ξ baryons via the K̄N → KΞ process (which is the reaction of choice

for producing Ξ) in connection to its program proposal for obtaining information on Ξ hypernuclei

spectroscopy. It also plans to study the πN → KKΞ reaction as well as Ω production [56,57]. At

the FAIR facility of GSI, the reaction p̄p → Ξ̄Ξ will be studied by the PANDA Collaboration [58].

While many upcoming experiments will be providing plenty of new results, theoretical studies

of the Ξ baryons are hampered mainly by the scarcity of currently available experimental data.

The existing theoretical models cannot be well constrained and, as a consequence, there is strong

model-dependence in predictions of the Ξ spectrum. In particular, one of the current open issues

in the Ξ spectrum concerns the low mass of the Ξ(1690) and Ξ(1620), i.e., the nature of the third

lowest Ξ state [35]. Here, different approaches, such as the non-relativistic and relativistic quark

models [33,59,60], one-boson-exchange model [61], large Nc model [62–66], QCD sum rules [67,68],

and Skyrme model [35], yield contradictory predictions for the nature of these resonances. The

planned new experimental studies as mentioned above are expected to play a key role in addressing

1The parity of the ground state Ξ has not been measured explicitly yet, but its assignment is based on quark
models and SU(3) flavor symmetry.

9



such open problems. Quite recently, lattice QCD calculations of the baryon spectra, including those

of Ξ and Ω baryons, have been reported [19,20].

Like the other research mentioned, this work is part of the global effort to ultimately understand

confinement. Our part of this effort is trying to find evidence of resonances in scattering data,

determine these resonances’ properties such as mass, decay width, and various decay modes, and

determine their quantum numbers, JP . This work takes on these tasks on two fronts. First,

we investigate the model-independent aspects of the Ξ baryon resonance production reactions,

K̄ + N → K + Ξ(Ξ∗) and γ + N → K + K + Ξ(Ξ∗). The second is to investigate the dynamics

of these reactions in a consistent model-dependent analysis. We investigate the available data

for the K̄ + N → K + Ξ reaction and extract S = −1 resonance contributions. We also give

predictions for yet-to-be-measured spin observables to assist in future experiment design. Chapter

2 is dedicated to these tasks for the K̄ reaction, while Chapter 3 focuses on Ξ photoproduction. The

γ +N → K +K + Ξ reaction is a much more complicated situation due to the 3-body final state,

the added spin complexity of the photon, and the important basic requirement of gauge symmetry

known as gauge invariance.
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Chapter 2

K̄ +N → K + Ξ

The reaction of choice for studying Ξ and Ξ∗ hyperons is K̄ +N → K + Ξ(Ξ∗). It is the simplest

reaction with open strangeness in the initial state. Reactions with S=-1 hyperon targets such as

Λ or Σ have never been performed and are experimentally impractical. The N + N̄ → Ξ + Ξ̄

reaction is also an interesting reaction to study. This reaction should be studied in parallel with

K̄ +N → K + Ξ as they both are expected to be dominated by the same reaction mechanism, Y ∗

production. There is already available cross section and recoil polarization data for the K̄-induced

reaction though it is very old and suffers from large uncertainties [69–82]. Luckily, new experiments

at J-PARC are planned and will include Ξ production using pion and anti-kaon beams [56,57]. Data

for the NN̄ reaction is virtually nonexistent with less than 10 ΞΞ̄ events recorded. Again, new

experiments are planned using the PANDA detector at HESR at FAIR [58]. The expected cross

sections are of the order of µb which is an order of magnitude higher than the γ+N → K +K+Ξ

reaction. This chapter will focus on K̄ +N → K + Ξ.

The purpose of theoretical and phenomenological calculations for these reactions is to identify

and extract information on baryon resonances from experimental data which allow for a comparison

with fundamental QCD calculations based on first principles, i.e., lattice QCD and/or QCD-based

models. Note that a direct comparison of the QCD calculations with experimental data is not

feasible at present. In this chapter, the task of resonance extraction is taken on in two ways.

In Section 2.1, a model-independent calculation is performed. This calculation decomposes the
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Ξ, or Ξ∗ of J ≤ 3/2, production amplitude into its most general form consistent with the most

basic of symmetries, rotational invariance and parity conservation. Once these symmetries are

taken into account, the reaction amplitude’s spin structures are reduced by half, from 2 ∗ (2J + 1)

to 2J + 1. From these spin-amplitudes, all observables can be calculated. Measurement of all

possible observables is a huge and unneeded task, so a smaller set of observables is listed which

can unambiguously determine these spin amplitudes. Further, these spin observables hold the key

to determining the spin and parity of the produced Ξ or Ξ∗, fundamentally important information

for comparing QCD computation results, and a set of measurements is listed which will determine

these quantum numbers.

In Section 2.2, a model-based analysis of existing data is performed. These model calculations

are important when trying to understand the production mechanisms. Due to the lack of exotic,

S=-2, meson exchange, our model only includes S = −1 hyperon contributions as well as a four-

point contact amplitude. Because this reaction is expected to be dominated by these hyperon

exchanges, it provides a useful place to study their resonance spectra. Our goal is to determine

if any Y ∗ resonances are indicated by the data and extract their masses, widths, and quantum

numbers.

This chapter contains published material and/or material that will be published which has

been reprinted with permission from [101,122]. Copyright 2014 and 2015 by the American Physical

Society.

2.1 Model-Independent Analysis

In this section, we derive the most general structure of the amplitude for the reaction of

K̄(q) +N(p) → K(q′) + Ξ(p′) , (2.1)

following the method used in Ref. [83]. In the present work, we consider the production of Ξ of

spin-1/2 and -3/2 with both positive and negative parities. The method is quite general and, in

principle, can be applied to extract the spin structure of any reaction amplitude. In the above
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equation, the arguments denote the four-momenta of the respective particles.

The reaction in Eq. (2.1) is described in its center-of-momentum (CM) frame, where q = −p

and q′ = −p′. For further convenience, we define the three mutually orthogonal unit vectors n̂i

(i = 1, 2, 3) in terms of the independent momenta available in the reaction, i.e.,

n̂1 ≡
(p× p′)× p

|(p× p′)× p|
, (2.2a)

n̂2 ≡
p× p′

|p× p′|
, (2.2b)

n̂3 ≡
p

|p|
, (2.2c)

where p and p′ denote the three-momenta of the nucleon and Ξ, respectively. Note that p and

p′ define the reaction plane, such that n̂2 is perpendicular to the reaction plane. The coordinate-

system setup is shown in Fig. 2.1. Throughout this work, the hat notation for vectors is used to

indicate unit vectors, i.e., â ≡ a/|a| for an arbitrary vector a. The quantization axis is chosen to

be along n̂3. We also use the alternative Cartesian notation i = x, y, z for the indices of the unit

vectors n̂i.

2.1.1 Production of Ξ with JP = 1

2

±

First, we consider spin-parity JP = 1
2
±
for the Ξ produced in reaction (2.1). Following the method

of Ref. [83], the most general spin structure of the reaction amplitude, consistent with basic sym-

metries, is

M̂ = M ′
0 +M ′

2 σ · (p̂× p̂′) , for JP = 1
2
+
, (2.3a)

M̂ = M ′
1 σ · p̂′ +M ′

3 σ · p̂ , for JP = 1
2
−
, (2.3b)

where σ = (σ1,σ2,σ3) stands for the vector built up of usual Pauli spin operators.1 Equations (2.3a)

and (2.3b) are direct consequences of the amplitude’s reflection symmetry about the reaction

plane [84, 85], which is further exploited in our analysis presented below. Note that the coeffi-

1Note that the spin structure for the positive-parity Ξ in Eq. (2.3a) is identical to the familiar structure of the
πN elastic scattering amplitude. However, obviously, the isospin structure is different.
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Boost to

Ξ rest frame

φ′Λ φΛ

Λ Λ

K̄ K̄

Ξ

Ξ

θ′Λ θΛ

θ

K̄

K

N

n̂′
3 ≡ p̂′

n̂′
2 ≡ n̂2

n̂′
1

n̂′
3 ≡ p̂′

n̂′
2 ≡ n̂2

n̂′
1

n̂1

n̂2

n̂3 ≡ p̂

Figure 2.1: Coordinate systems used in describing the Ξ production reaction and its subsequent
decay process. On the left, the production reaction K̄N → KΞ is shown in its center-of-momentum
(CM) frame. The corresponding reaction plane (indicated in dark gray) contains the nucleon and
Ξ momenta p and p′, respectively. The basis vectors {n̂1, n̂2, n̂3} are defined in Eq. (2.2), with n̂3

aligned with the nucleon momentum p and n̂2 perpendicular to the reaction plane; θ indicates the
Ξ emission angle. The (primed) frame {n̂′

1, n̂
′
2, n̂

′
3} is obtained from {n̂1, n̂2, n̂3} by rotating the

latter about the n̂2 axis by θ, which aligns n̂′
3 with p′ and leaves n̂′

2 ≡ n̂2. The (light gray) plane
tilted by the angle φ′Λ about the n̂′

3 ≡ p̂′ axis is spanned by the momenta of the decay products Λ
and K̄. The polar and azimuthal angles of the decay product Λ in the rotated (primed) CM frame
are indicated by θ′Λ and φ′Λ, respectively. In the boosted frame on the right, the decay process of
the produced Ξ at rest is described in the {n̂′

1, n̂
′
2, n̂

′
3} coordinate system. The polar and azimuthal

angles of the decay product Λ are indicated here by θΛ and φΛ, respectively. For the latter angle,
one has φΛ ≡ φ′Λ since the boost happens along the corresponding tilt axis.

cients M ′
1 and M ′

2 do not contain S-wave in the final state.

For further convenience, we rewrite Eq. (2.3) as

M̂ = M0 +M2 σ · n̂2 , for JP = 1
2
+
, (2.4a)

M̂ = M1 σ · n̂1 +M3 σ · n̂3 , for JP = 1
2
−
, (2.4b)

using p̂′ = cos θ n̂3 + sin θ n̂1 and n̂3 = p̂. The respective coefficients in Eqs. (2.3) and (2.4) are

related by

M ′
0 = M0 , M ′

2 =
1

sin θ
M2 , (2.5a)

M ′
1 =

1

sin θ
M1 , M ′

3 = M3 −
cos θ

sin θ
M1 . (2.5b)
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Following Ref. [83], one may also express these coefficients in terms of partial-wave matrix ele-

ments. The corresponding results are given in Appendix 2.4.1, which show, in particular, that

the coefficients M1 and M2 vanish identically for Ξ scattering angles θ = 0 and π, as can be seen

in Eq. (3.34). The partial-wave expansions will become particularly relevant once sufficient ex-

perimental data become available to permit their full-fledged partial-wave analysis. The isospin

structure of the amplitudes in Eq. (2.4) [or in Eq. (2.3)] is contained in the coefficients Mi as given

explicitly by Eq. (3.34) in Appendix 2.4.1.

Once the spin structure of the reaction amplitude is determined, all the observables can be

readily expressed in terms of the amplitudes Mi multiplying each spin structure. For the reaction

under consideration, apart from the cross section (dσ/dΩ), a complete set of observables includes

the target asymmetry (T ), recoil Ξ polarization (P ), and the spin-transfer coefficient (K). For

arbitrary spin orientations along directions â and b̂, their coordinate-independent expressions are

dσ

dΩ
≡

1

2
Tr[M̂M̂ †] , (2.6a)

dσ

dΩ
Ta ≡

1

2
Tr[M̂ σ · â M̂ †] , (2.6b)

dσ

dΩ
Pa ≡

1

2
Tr[M̂M̂ †σ · â] , (2.6c)

dσ

dΩ
Kba ≡

1

2
Tr[M̂ σ · b̂ M̂ †σ · â] . (2.6d)

For Cartesian directions n̂i enumerated by i = 1, 2, 3 (= x, y, z), in particular, one obtains

dσ

dΩ
Ti =

1

2
Tr[M̂σiM̂

†] , (2.7a)

dσ

dΩ
Pi =

1

2
Tr[M̂M̂ †σi] , (2.7b)

dσ

dΩ
Kij =

1

2
Tr[M̂σiM̂

†σj] . (2.7c)

Of course, the T , P , and K observables for arbitrary directions in Eq. (2.6) can be expressed as

linear combinations of the specific Cartesian expressions given in Eq. (2.7).

Due to symmetries of the reaction, eight observables vanish identically, i.e., Ti = Pi = Kiy =

Kyi = 0 for i = x, z, and of the remaining eight, only four are independent for a given parity, which
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completely determine the amplitudes Mi in Eq. (2.4). Indeed, for a positive-parity Ξ, we have

dσ

dΩ
=

dσ

dΩ
Kyy = |M0|2 + |M2|2 , (2.8a)

dσ

dΩ
Kxx =

dσ

dΩ
Kzz = |M0|2 − |M2|2 , (2.8b)

dσ

dΩ
Ty =

dσ

dΩ
Py = 2Re [M2M

∗
0 ] , (2.8c)

dσ

dΩ
Kxz = −

dσ

dΩ
Kzx = 2 Im [M2M

∗
0 ] , (2.8d)

and for a negative-parity Ξ, we obtain

dσ

dΩ
= −

dσ

dΩ
Kyy = |M1|2 + |M3|2 , (2.9a)

dσ

dΩ
Kxx = −

dσ

dΩ
Kzz = |M1|2 − |M3|2 , (2.9b)

dσ

dΩ
Ty = −

dσ

dΩ
Py = 2 Im [M3M

∗
1 ] , (2.9c)

dσ

dΩ
Kxz =

dσ

dΩ
Kzx = 2Re [M3M

∗
1 ] . (2.9d)

The respective first two relations in the two equation sets determine the magnitudes of the ampli-

tudes M0, M2 and M1, M3, respectively, whereas the respective last two relations determine their

phase differences. Therefore, apart from an irrelevant overall phase, the observables in Eqs. (2.8)

and (2.9) determine the amplitudes Mi, i = 0, . . . , 3, unambiguously. These results reveal that

it is experimentally demanding to determine the reaction amplitude completely, for it requires

measuring both the single- and double-polarization observables.

Comparing Eqs. (2.8a) and (2.9a), one obtains

Kyy = πΞ , (2.10)

where πΞ stands for the parity of the produced Ξ. This result is actually a direct consequence

of reflection symmetry, as exploited in Bohr’s theorem [85, 86] and applied in Ref. [87]. It, there-

fore, provides a model-independent way of determining the parity of the Ξ resonance. Alternative
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expressions extracted from Eqs. (2.8) and (2.9) are [87]

Ty = πΞ Py , (2.11)

which involves only single polarization observables and

Kxx = πΞKzz and Kxz = −πΞKzx . (2.12)

These results are all consequences of the reflection symmetry about the reaction plane.

In Sec. 2.1.3, we will perform the analysis in terms of the spin-density matrix (SDM) elements,

which are equivalent to the observables discussed here. The SDM elements are convenient quantities

when dealing with spin observables, especially when higher-spin particles are produced in the

reaction. They can be extracted from the information on the subsequent decay processes of the

produced particles, in conjunction with the self-analyzing property of the decaying particles via a

weak decay, without the explicit measurement of the spin polarizations of these produced particles.

2.1.2 Production of Ξ with JP = 3

2

±

We now turn to the spin-parity JP = 3
2
±
. Again, following Ref. [83], the most general spin structure

of the reaction amplitude is given by

M̂ = F ′
1 T † · (p̂× p̂′) + F ′

2 T
† · p̂′ σ · p̂′ + F ′

3

[

T † · p̂σ · p̂′ + T † · p̂′ σ · p̂
]

+ F ′
4 T † · p̂σ · p̂

(2.13a)

for JP = 3
2
+
and

M̂ = G′
1

[

T † · p̂σ · (p̂× p̂′) + T † · (p̂ × p̂′)σ · p̂
]

+G′
2

[

T † · p̂′ σ · (p̂× p̂′) + T † · (p̂× p̂′)σ · p̂′
]

+G′
3 T

† · p̂′ +G′
4 T

† · p̂ (2.13b)

for JP = 3
2
−
. Here, T † stands for the (spin-1/2 → spin-3/2) transition operator. Its explicit

representation may be found in Appendix 2.4.1. In contrast to the spin-1/2 case, each parity of
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the spin-3/2 case has four independent amplitudes, F ′
i and G′

i (i = 1, . . . , 4), respectively, and one

needs at least eight independent observables to determine them completely apart from an irrelevant

overall phase. From the above equations, it is obvious that only F ′
4 and G′

4 contain an S-wave in

the final state. Also, F ′
2 and G′

2 contain only D- and higher-waves in the final state.

The amplitudes in Eq. (2.13) can be also rewritten as

M̂ = F1 T
† · n̂2 + F2 T

† · n̂1 σ · n̂1 + F3

[

T † · n̂3 σ · n̂1 + T † · n̂1 σ · n̂3

]

+ F4 T
† · n̂3 σ · n̂3

(2.14a)

for JP = 3
2
+
and

M̂ = G1

[

T † · n̂3 σ · n̂2 + T † · n̂2 σ · n̂3

]

+G2

[

T † · n̂1 σ · n̂2 + T † · n̂2 σ · n̂1

]

+G3 T
† · n̂1 +G4 T

† · n̂3 (2.14b)

for JP = 3
2
−
. The coefficients Fi and Gi are expressed in terms of the partial-wave matrix elements

as given in Appendix 2.4.1. They are also related to the corresponding coefficients F ′
i and G′

i in

Eq. (2.13) by

F ′
1 =

1

sin θ
F1 , G′

1 =
1

sin θ
G1 −

cos θ

sin2 θ
G2 , (2.15a)

F ′
2 =

1

sin2 θ
F2 , G′

2 =
1

sin2 θ
G2 , (2.15b)

F ′
3 =

1

sin θ
F3 −

cos θ

sin2 θ
F2 , G′

3 =
1

sin θ
G3 , (2.15c)

F ′
4 = F4 +

cos2 θ

sin2 θ
F2 − 2

cos θ

sin θ
F3 , G′

4 = G4 −
cos θ

sin θ
G3 . (2.15d)

The polarization observables for this case will be discussed in the next section in terms of the SDM

elements.
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2.1.3 Spin-Density Matrix Formalism

As mentioned before, when dealing with higher-spin Ξ (i.e., spins higher than 1/2) in particular,

it is more convenient to continue the analysis of the K̄N → KΞ reaction in terms of spin-density

matrix (SDM) elements. A similar (but not identical) analysis to the present one based on the

SDM formalism was performed in Ref. [88] for a general two-body reaction with unpolarized initial

state. Also, the reaction K̄N → ωΛ was analyzed within the SDM approach in Ref. [89].

In Secs. 2.1.1 and 2.1.2, we have exploited the mirror (or reflection) symmetry about the reaction

plane in our analysis, in particular, for the parity determination of the Ξ resonances. In fact, as

long as the production process conserves total parity, the reaction amplitude should have this

symmetry [84, 85]. This mirror operation is equivalent to doing a parity transformation followed

by a subsequent rotation by 180◦ about the n̂2-axis: P̂y = R̂y(180◦)P̂ . The resulting symmetry, in

terms of the spin matrix element, is

⟨Sf mf |M̂ |Simi⟩ = ⟨Sf mf |P̂†
yPyM̂P†

yPy|Simi⟩

= πfπi (−1)(Sf−mf )−(Si−mi) ⟨Sf −mf |M̂ |Si −mi⟩ , (2.16)

and holds as long as the quantization axis is in the production plane. Here, πi(f) is the intrinsic

parity of the initial (final) state.

Based on this symmetry, the JP = 1
2
±

Ξ production amplitude, M̂ given by Eq. (2.4), is

completely described by two complex helicity amplitudes, H1 and H2, given by the spin matrix

elements,

H1 ≡ ⟨λΞ = 1
2 | M̂ |λN = 1

2 ⟩

= πΞ ⟨λΞ = −1
2 | M̂ |λN = −1

2⟩ , (2.17a)

H2 ≡ ⟨λΞ = 1
2 | M̂ |λN = −1

2⟩

= −πΞ ⟨λΞ = −1
2 | M̂ |λN = 1

2⟩ , (2.17b)

where λN and λΞ denote the helicity of the initial nucleon and final Ξ, respectively. Here, reference
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to the spin quantum numbers SΞ = SN = 1/2 has been suppressed. The helicity amplitudes are

related to the coefficient amplitudes in Eq. (2.4) by

H1 = M0 cos
θ

2
+ iM2 sin

θ

2
, (2.18a)

H2 = −iM2 cos
θ

2
+M0 sin

θ

2
(2.18b)

for a positive parity Ξ, and by

H1 = M3 cos
θ

2
+M1 sin

θ

2
, (2.19a)

H2 = M1 cos
θ

2
−M3 sin

θ

2
(2.19b)

for a negative parity Ξ. Here, θ is the scattering angle, i.e., cos θ ≡ p̂ · p̂′.

Likewise, the production amplitude M̂ for a Ξ with JP = 3
2
±

determined by Eq. (2.14) is

completely described by four complex amplitudes given as

H1 ≡ ⟨λΞ = 3
2 |M̂ |λN = 1

2⟩

= πΞ ⟨λΞ = −3
2 |M̂ |λN = −1

2⟩ , (2.20a)

H2 ≡ ⟨λΞ = 3
2 |M̂ |λN = −1

2⟩

= −πΞ ⟨λΞ = −3
2 |M̂ |λN = 1

2⟩ , (2.20b)

H3 ≡ ⟨λΞ = 1
2 |M̂ |λN = 1

2⟩

= −πΞ ⟨λΞ = −1
2 |M̂ |λN = −1

2⟩ , (2.20c)

H4 ≡ ⟨λΞ = 1
2 |M̂ |λN = −1

2⟩

= πΞ ⟨λΞ = −1
2 |M̂ |λN = 1

2⟩ . (2.20d)
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These helicity amplitudes are related to the coefficient functions in Eq. (2.14) by

H1 =
1√
2

[

i cos
θ

2
F1 − cos θ sin

θ

2
F2 − cos

3θ

2
F3 + sin θ cos

θ

2
F4

]

, (2.21a)

H2 =
1√
2

[

i sin
θ

2
F1 − cos θ cos

θ

2
F2 + sin

3θ

2
F3 − sin θ sin

θ

2
F4

]

, (2.21b)

H3 =
1√
6

[

− i sin
θ

2
F1 + (2− 3 cos θ) cos

θ

2
F2 + 3 sin

3θ

2
F3 − (1− 3 cos θ) cos

θ

2
F4

]

, (2.21c)

H4 =
1√
6

[

i cos
θ

2
F1 + (2 + 3 cos θ) sin

θ

2
F2 + 3cos

3θ

2
F3 − (1 + 3 cos θ) sin

θ

2
F4

]

, (2.21d)

for a positive-parity Ξ and by

H1 =
1√
2

[

i (2− cos θ) cos
θ

2
G1 + 2i sin3

θ

2
G2 − cos θ cos

θ

2
G3 + sin θ cos

θ

2
G4

]

, (2.22a)

H2 =
1√
2

[

− i (2 + cos θ) sin
θ

2
G1 + 2i cos3

θ

2
G2 − cos θ sin

θ

2
G3 + sin θ sin

θ

2
G4

]

, (2.22b)

H3 =
1√
6

[

3i cos θ sin
θ

2
G1 + 3i sin θ sin

θ

2
G2 + (2 + 3 cos θ) sin

θ

2
G3 + (3 cos θ − 1) cos

θ

2
G4

]

,

(2.22c)

H4 =
1√
6

[

− 3i cos θ cos
θ

2
G1 − 3i sin θ cos

θ

2
G2 + (2− 3 cos θ) cos

θ

2
G3 + (3 cos θ + 1) sin

θ

2
G4

]

(2.22d)

for a negative-parity Ξ.

The SDM elements are defined by

ρΞ,iλλ′ ≡ ⟨λ|ρ̂N,i|λ′⟩ =
1

2
⟨λ|M̂σiM̂

†|λ′⟩ , (2.23)

for i = 0, . . . , 3, where λ and λ′ stand for the helicity of the produced Ξ baryon and σ0 = 1 is the

2× 2 unit matrix. For completeness, a relevant part of the SDM formalism for the present work is

presented in Appendix 2.4.2. The SDM elements are related by

ρΞ,iλ,λ′ = (−1)i+λ−λ
′
ρΞ,i−λ,−λ′ , (2.24a)

ρΞ,iλ,λ′ = ρΞ,i∗λ′,λ (2.24b)
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due to the symmetry of the spin matrix element (2.16) and the hermiticity of Eq. (2.23).

We now relate the SDM elements, ρΞ,iλ,λ′ , to the helicity amplitudes Hj given by Eqs. (2.17) and

(2.20) which determine the reaction amplitudes. The purpose is to find a set of SDM elements that

fixes those helicity amplitudes completely.

Ξ of JP = 1

2

±

Starting with J = 1
2 , there are sixteen possible SDM elements ρΞ,iλλ′ . However, only four of them

are independent for a given parity and they determine the amplitudes H1 and H2 apart from

an irrelevant overall phase. Inserting Eq. (2.17) into Eq. (2.23), a set of four independent SDM

elements can be determined as

2ρ01
2
, 1
2
= 2iπΞ ρ

2
1
2
,− 1

2
= |H1|2 + |H2|2 , (2.25a)

2ρ31
2 ,

1
2
= 2πΞ ρ

1
1
2 ,−

1
2
= |H1|2 − |H2|2 , (2.25b)

ρ21
2 ,

1
2
= iπΞ ρ

0
1
2 ,−

1
2
= Im [H1H∗

2] , (2.25c)

ρ11
2 ,

1
2
= −πΞ ρ31

2 ,−
1
2
= Re [H1H∗

2] , (2.25d)

where the superindex Ξ in ρΞ,iλλ′ was dropped for simplicity. A complete list of SDM elements ρiλ,λ′

in terms of helicity amplitudes Hi is given in Appendix 2.4.3.

The SDM elements are directly related to the observables defined by Eq. (2.6). For example,

from Eqs. (2.24) and (2.73d), we have

dσ

dΩ
= 2ρ01

2 ,
1
2
,

dσ

dΩ
Kyy′ = 2iρ21

2 ,−
1
2
, (2.26a)

dσ

dΩ
Ty = 2ρ21

2 ,
1
2
,

dσ

dΩ
Py′ = 2iρ01

2 ,−
1
2
, (2.26b)

dσ

dΩ
Kxx′ = 2ρ11

2 ,−
1
2
,

dσ

dΩ
Kzz′ = 2ρ31

2 ,
1
2
, (2.26c)

dσ

dΩ
Kxz′ = 2ρ11

2 ,
1
2
,

dσ

dΩ
Kzx′ = 2ρ31

2 ,−
1
2
, (2.26d)

where the primed Cartesian components correspond to the rotated frame (see Fig. 2.1; note that

y′ ≡ y).
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From Eqs. (2.10) and (2.26), we see, in particular, that

Kyy′ =
iρ21

2 ,−
1
2

ρ01
2 ,

1
2

= πΞ . (2.27)

More generally, in terms of the SDM elements, one obtains

(−1)
1
2−λ

′ iρ
2
λ,−λ′

ρ0λ,λ′
= (−1)

1
2−λ

′ ρ
1
λ,−λ′

ρ3λ,λ′
= πΞ . (2.28)

This result reveals that one needs to measure two SDM elements to determine the parity of the Ξ

baryon: either ρ0λ,λ′ with unpolarized target nucleon and ρ2λ,−λ′ with polarized target nucleon along

the direction n̂2 ≡ n̂′
2 perpendicular to the reaction plane, or ρ1λ,λ′ with transversally polarized

target along n̂1, and ρ
3
λ,−λ′ with longitudinally polarized target along n̂3 ≡ p̂. Note that ρ0λ,λ′ is

directly related to the cross section dσ/dΩ when λ = λ′.

23



Ξ of JP = 3

2

±

For J = 3/2, analogously to the J = 1/2 case, inserting Eq. (2.20) into Eq. (2.23), the SDM

elements are related to the four amplitudes Hi (i = 1, . . . , 4) by

2ρ03
2 ,

3
2
= |H1|2 + |H2|2 , (29a)

2ρ13
2 ,−

3
2
= πΞ

(

|H1|2 − |H2|2
)

, (29b)

−iρ03
2 ,−

3
2
= πΞ Im [H2H∗

1] , (29c)

ρ13
2 ,

3
2
= Re [H2H∗

1] , (29d)

2ρ01
2 ,

1
2
= |H3|2 + |H4|2 , (30a)

2ρ11
2 ,−

1
2
= πΞ

(

|H4|2 − |H3|2
)

, (30b)

−iρ01
2 ,−

1
2
= πΞ Im [H3H∗

4] , (30c)

ρ11
2 ,

1
2
= Re [H3H∗

4] , (30d)

2ρ13
2 ,−

1
2
= πΞ (H2H∗

4 −H1H∗
3) , (31a)

2ρ03
2
, 1
2
= H2H∗

4 +H1H∗
3 , (31b)

2ρ03
2 ,−

1
2
= πΞ (H1H∗

4 −H2H∗
3) , (32a)

2ρ13
2 ,

1
2
= H1H∗

4 +H2H∗
3 . (32b)

A complete list of SDM elements ρΞ,iλ,λ′ in terms of the helicity amplitudes Hi is given in Ap-

pendix 2.4.3.

As mentioned in the previous section, a set of eight independent SDM elements (e.g., ρ01
2 ,

1
2

,

ρ03
2
, 3
2

, Re[ρ03
2
, 1
2

], Im[ρ03
2
, 1
2

], Re[ρ03
2
,− 1

2

], ρ11
2
,− 1

2

, ρ13
2
,− 3

2

, Re[ρ13
2
, 1
2

]) determines all four helicity amplitudes

Hi, (i = 1, . . . , 4), apart from an irrelevant overall phase. The analysis here is analogous to the

one carried out in Ref. [90] for pion photoproduction.

Equations (2.24) and (2.76) can be used to calculate Kyy in terms of SDM elements involving
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Ξ of spin-3/2. This leads to

Kyy =
i
(

ρ23
2 ,−

3
2

− ρ21
2 ,−

1
2

)

ρ03
2 ,

3
2

+ ρ01
2 ,

1
2

= πΞ (2.33)

or, more generally,

(−1)
3
2−λ

′ iρ2λ,−λ′

ρ0λ,λ′
= (−1)

3
2−λ

′ ρ1λ,−λ′

ρ3λ,λ′
= πΞ . (2.34)

Equations (2.27), (2.28), (2.33), and (2.34) can be extended to an arbitrary spin J of the Ξ

baryon, i.e.,

Kyy =
i
∑

λ(−1)J−λρ2λ,−λ
∑

λ ρ
0
λ,λ

= πΞ (2.35)

and

(−1)J−λ
′ iρ

2
λ,−λ′

ρ0λ,λ′
= (−1)J−λ

′ ρ
1
λ,−λ′

ρ3λ,λ′
= πΞ . (2.36)

Note here that in the last expression two SDM elements are sufficient to determine the parity,

whereas one needs a whole sum of SDM elements to achieve the same in terms of Kyy.

2.1.4 Decay Measurement and Spin-Parity Determination

To extract SDM elements from experiment, following Chung [91] and Biagi et al. [92], one may

relate them to moments, H i, and weak decay-asymmetry parameters. Their definitions and further

full details are given in Appendix 2.4.4. Here, we only present some pertinent results.

For a spin-J Ξ undergoing a single weak decay process, one obtains the SDM element

ρΞ,iλΞ,λ
′
Ξ
=

∑

L

2L+ 1

2J + 1
⟨J λ′Ξ LM |J λΞ⟩ t

J,i
LM , (2.37)

where M = λΞ − λ′Ξ. The coefficients tJ,iLM can be determined from the ratio of the moments,

(

dσ

dΩ

)

H i(L,M)

H0(0, 0)
= ζL tJ,iLM ⟨J 1

2 L 0|J 1
2⟩ , (2.38)

where ζL = 1 for even L and ζL = αΞ for odd L, with αΞ denoting the Ξ decay-asymmetry
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parameter.

Note that since all moments vanish identically for L > 2J , Eq. (2.38) offers a way of determining

the spin of the Ξ undergoing a single (weak) decay by measuring the moments as a function of L.

In other words, the nonvanishing H i(L,M) with the largest L value for some i and M determines

J as J = L/2. Experimentally, of course, this may be challenging since it is not a priori clear how

small the measured values of the next higher moment H i(L + 1,M) would need to be for being

compatible with zero. And, moreover, one would need to confirm that the smallness of this moment

is not accidental.

Similar results are obtained for excited Ξ resonances, Ξ∗, undergoing a double decay process,

as discussed in Appendix 2.4.4. In this case, we have,

(

dσ

dΩ

)

H i(0, 0, L,M)

H0(0, 0, 0, 0)
= tJ,iLM ⟨J 1

2 L 0|J 1
2⟩ (2.39a)

for even L and

(

dσ

dΩ

)

H i(1, 0, L,M)

H0(0, 0, 0, 0)
=
αΛ

3
tJ,iLM ⟨J 1

2 L 0|J 1
2 ⟩ (2.39b)

for odd L. Here, αΛ denotes the Λ decay-asymmetry parameter for the decay chain Ξ∗ → Λ + K̄

followed by Λ → N + π. In the case of Ξ∗ → Ξ+ π followed by Ξ → Λ+ π instead, αΛ needs to be

replaced by αΞ.

For Ξ resonances decaying along the double decay chain specified in Eq. (2.87), the result of

the corresponding moments given by Eq. (2.106) leads to [92]

H0(1,±1, L,M)

H0(1, 0, L,M)
= πΞ(−1)J+

1
2

2J + 1
√

2L(L+ 1)
(2.40)

for an unpolarized target and for odd values of L(≤ 2J). This offers a way of determining the spin

and parity of the excited Ξ resonance simultaneously. A similar measurement was performed to

determine the parity of Λ(1405) in Ref. [93]
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2.2 Model Calculation of K̄ +N → K + Ξ

In this section, we present the results of our model for K̄ + N → K + Ξ. There have already

been attempts to analyse this data. To date, recent calculations are reported by Sharov et al. [94]

and by Shyam et al. [95]. The former authors have considered both the total and differential

cross sections as well as the recoil polarization data in their analysis, while the latter authors have

considered only the total cross section data, although they too have predicted the differential cross

sections, mentioning that they found it difficult to use the differential cross section data [76] for

several reasons. Although the analyses of Refs. [94, 95] are both based on very similar effective

Lagrangian approaches, the number of S = −1 hyperon resonances included in the intermediate

state are different. While in Ref. [94] only the Σ(1385) and Λ(1520) are considered in addition

to the above-threshold Σ(2030) and Σ(2250) resonances,2 in Ref. [95] eight of the 3- and 4-star Λ

and Σ resonances with masses up to 2.0 GeV have been considered. While the authors of Ref. [94]

pointed out the significance of the above-threshold resonances, the authors of Ref. [95] have found

the dominance of the sub-threshold Λ(1520) resonance. The reaction (2.1) has been also considered

quite recently by Magas et al. [41] within the coupled channels Unitarized Chiral Perturbation

approach in connection to the issue of determining the parameters of the next-to-leading-order

interactions. The authors of Ref. [41] have added the Σ(2030) and Σ(2250) resonances into their

calculation to improve the fit quality to the total cross section data. Just recently, a calculation by

the Argonne-Osaka group [96] within a Dynamical Coupled Channels approach to the K̄-induced

two-body reactions up to W = 2.1 GeV has been also reported.

In the present section, we perform a model-dependent analysis of the existing data based on the

effective Lagrangian approach that includes a phenomenological contact amplitude which accounts

for the rescattering contributions and/or unknown (short-range) dynamics that have not been

included explicitly into the model.

It should be restated that the present study is our first step toward building a more complete

reaction model capable of reliably extracting the properties of hyperons from the forthcoming

experimental data, in addition to providing some guidance for planning future experiments. The

2The production threshold energy for the reaction of K̄ +N → K + Ξ is about 1813 MeV.
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investigation of this reaction also impacts the study of Ξ hypernuclei, where the elementary process

of K̄ +N → K + Ξ is an input to the models of hypernuclei productions [97–100]. As mentioned

before, there is a proposed program at J-PARC and eventually at GSI-FAIR to obtain information

about the spectroscopy of Ξ hypernuclei through the anti-kaon induced reactions on nuclear targets.

Establishing the existence and properties of Ξ hypernuclei is of considerable importance for a

number of reasons and the study of this reaction is an essential step to this end.

2.2.1 Effective Lagrangian Model Description

The reaction amplitude T describing the two-body process like the reaction (2.1) is, in general,

given by the Bethe-Salpeter equation,

T = V + V GT , (2.41)

where V stands for the (two-body) meson-baryon irreducible (Hermitian) driving amplitude and

G the meson-baryon propagator. Note that the above equation represents, in principle, a coupled-

channels equation in meson-baryon channel space. It can be recast into the pole and the non-pole

parts as

T = TP + TNP , (2.42)

where the non-pole part TNP obeys

TNP = V NP + V NPGTNP (2.43)

with

V NP ≡ V − V P (2.44)

denoting the one-baryon irreducible (non-pole) part of the driving amplitude V . Here, V P stands

for the one-baryon reducible (pole) part of V in the form of

V P =
∑

r

|F0r⟩S0r ⟨F0r| , (2.45)
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where |F0r⟩ and S0r = (p2r − m2
0r + iη)−1 stand for the so-called bare vertex and bare baryon

propagator, respectively. The summation runs over the baryons in the intermediate state, each

specified by the index r. The four-momentum and the bare mass of the propagating baryon are

denoted by pr and m0r, respectively. It can be understood that V P is nothing other than the sum of

the s-channel Feynman diagrams corresponding to the bare baryon propagations in the intermediate

state as can be seen in Fig. 2.2. The pole part of the reaction amplitude TP in Eq. (2.42) is given

by

TP =
∑

r′r

|Fr′⟩Sr′r ⟨Fr| , (2.46)

where the so-called dressed vertex reads

|Fr′⟩ =
(

1 + TNPG
)

|F0r′⟩ ,

⟨Fr| = ⟨F0r|
(

1 +GTNP
)

, (2.47)

and the dressed propagator Sr′r is written as

S−1
r′r = S−1

0r δr′r − Σr′r , (2.48)

with

Σr′r = ⟨F0r′ |G |Fr⟩ (2.49)

denoting the self-energy.

In the present work we shall make the following approximations to the reaction amplitude in

Eq. (2.42). First, we approximate the pole part of the reaction amplitude TP by the s-channel

Feynman amplitude, Ms, specified by effective Lagrangians and phenomenological Feynman propa-

gators. Here, the dressed resonance coupling constants, dressed masses as well as the corresponding

widths are parameters either fixed from independent sources or adjusted to reproduce the exper-

imental data. The couplings of the resonances in the propagator are ignored in the pressnt work.
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K̄ K

N Ξ

Λ, Σ

Λ∗, Σ∗

(a) (b) (c)

Figure 2.2: Diagrams included in the present calculation. (a) s-channel Λ and Σ hyperon exchange
amplitude, Ms. (b) u-channel amplitude, Mu, including the same hyperon exchanges as in (a). (c)
contact amplitude, Mc, as discussed in this section.

More explicitly, we have

|Fr′⟩ → Γ̂†
MBr′ ,

⟨Fr| → Γ̂MBr ,

Sr′r → Ŝrδr′r , (2.50)

with the subscripts M and B denoting a meson and a baryon, respectively. The meson-baryon-

baryon vertices of MB → r′ and r → MB are denoted by Γ†
MBr′ and ΓMBr, respectively, and

can be obtained from the effective Lagrangians given in Appendix 2.4.5. The phenomenological

Feynman propagators for dressed baryon Ŝr are also given in Appendix 2.4.5.

Second, the non-pole part of the reaction amplitude TNP is approximated as follows.

(i) Since there is no meson-exchange t-channel process in the present reaction unless the ex-

changed meson is an exotic one with strangeness quantum number S = 2, V NP of the reaction

is approximated by the u-channel Feynman amplitude Mu constructed also from the same

effective Lagrangians and Feynman propagators used to construct the s-channel Feynman

amplitudes.

(ii) The rescattering term V NPGTNP in TNP of Eq. (2.43) and other effects not included explicitly

in the present approach are accounted for by a phenomenological contact term, Mc, which is
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specified below. This contact term will be discussed in more detail later.

With the approximations described above, the reaction amplitude in the present work is given

by

T = Ms +Mu +Mc , (2.51)

where Ms and Mu are the s- and u-channel Feynman diagrams with the ground state hyperons

as well as some of the S = −1 hyperon resonances in the intermediate state. Figure 2.2 shows a

diagrammatic representation of Ms, Mu, and Mc.

The contact amplitude Mc is decomposed in terms of the spin-flip and spin-non-flip amplitudes,

each expanded in partial-waves. The spin amplitude for the reaction of Eq. (2.1) can be expanded

in partial waves as3

M 1
2 ,

1
2
= M− 1

2 ,−
1
2

=
1

4π

∑

LT

[

(L+ 1)MTJ+
LL (p′, p) + LMTJ−

LL (p′, p)
]

PL(p̂ · p̂′) P̂T , (2.52a)

M 1
2 ,−

1
2
= −M− 1

2 ,
1
2

=
1

4π

∑

LT

[

MTJ−
LL (p′, p)−MTJ+

LL (p′, p)
]

P 1
L(p̂ · p̂′) P̂T , (2.52b)

where the indices s′ and (s) in Ms′s stands for the spin-projection quantum number of the final

(initial) state and J± ≡ L ± 1
2 . The Legendre and associated Legendre functions are denoted by

PL(x) and P 1
L(x), respectively.

4 The total angular momentum, orbital angular momentum, and

total isospin of the initial K̄N state are represented by J,L, and T , respectively. P̂T stands for the

isospin projection operator onto the total isospin 0 or 1 as T = 0 or T = 1, respectively. Explicitly,

P̂T=0 = (3 + τ1 · τ2)/4 and P̂T=1 = (1− τ1 · τ2)/4.

Following the essential idea of Ref. [83] for the phenomenological contact term, Mc, the spin

3There are in total four spin matrix elements to describe the reaction (2.1). However, only two of them, cor-
responding to the spin-non-flip and spin-flip processes, are independent due to the reflection symmetry about the
reaction plane for parity conserving processes. See Ref. [101] for more detailed discussions.

4Here, the phase convention for the associated Legendre function is such that P 1
1 (x) = − sin(x).
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amplitudes in the above equation corresponding to Mc are parametrized as

Mc 1
2

1
2

= Mc− 1
2−

1
2

=
∑

LT

gLT1

(

p′

ΛS

)L

exp

[

−αT
L
p′2

Λ2
S

]

PL(θ)P̂T ,

Mc 1
2−

1
2

= −Mc− 1
2

1
2

=
∑

LT

gLT2

(

p′

ΛS

)L

exp

[

−βTL
p′2

Λ2
S

]

P 1
L(θ)P̂T

(2.53)

with gLT1 ≡ aTL exp
(

i{φa}TL
)

, gLT2 ≡ bTL exp
(

i{φb}TL
)

, and αT
L, β

T
L being constants to be fitted. ΛS is

a typical scale parameter of the reaction at hand. The momentum dependence of the partial-wave

matrix elements given above is suited for hard processes, where one has a large momentum transfer

for, in those processes, the amplitude is expected to be independent of energy and nearly constant

apart from the centrifugal barrier effect. The reaction (2.1) is not a very hard process.5 Nonetheless,

the p′L-dependence captures the essence of the behavior of the amplitude at low momentum in the

final state. We refer the details to Ref. [83]. The exponential factor in Eq. (2.53) is simply a

damping factor to suppress the high momentum behavior introduced by p′L.

It should be noted that our phenomenological contact term Mc can only account for effects that

give rise to a smooth energy dependence. Effects such as due to dynamically generated resonances

and/or channel couplings [102–105] that give rise to a strong variation of the amplitude as a function

of energy cannot be taken into account by the contact term.

Before closing this section, we comment on a feature encountered in describing the reaction (2.1)

within a standard effective Lagrangian approach, like that in Refs. [94, 95], where only the (tree-

level) s-, u- and t-channel diagrams are included without the phenomenological contact term. The

existing data show backward peeking differential cross sections (see Sec. 2.2.2), which may indicate

a considerable contribution from the u-channel amplitude Mu. In fact, there are a number of Λ and

Σ resonances as can be seen in Table 2.1 that contribute, in principle, to this reaction. However, it

happens that the u-channel resonance contributions, especially, from many of those sub-threshold

5For example, the momentum transfer of this reaction at threshold is about 200 MeV.
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Table 2.1: The Λ and Σ hyperons listed by the Particle Data Group [6] (PDG) as three- or four-star
states. The decay widths and branching ratios of higher-mass resonances (mr > 1.6 GeV) are in a
broad range, and the coupling constants are determined from their centroid values. In the present
work, the masses (mr) and widths (Γr) of the hyperons as given in this table have been used, except
for the Σ(2250) resonance. For the latter resonance, see the text.

Λ states Σ states
State mr (MeV) Γr (MeV) Rating |g

NΛK
| State mr (MeV) Γr (MeV) Rating |g

NΣK
|

Λ(1116) 1/2+ 1115.7 **** Σ(1193) 1/2+ 1193 ****
Λ(1405) 1/2− 1406 50 **** Σ(1385) 3/2+ 1385 37 ****
Λ(1520) 3/2− 1520 16 ****
Λ(1600) 1/2+ 1600 150 *** 4.2 Σ(1660) 1/2+ 1660 100 *** 2.5
Λ(1670) 1/2− 1670 35 **** 0.3 Σ(1670) 3/2− 1670 60 **** 2.8
Λ(1690) 3/2− 1690 60 **** 4.0 Σ(1750) 1/2− 1750 90 *** 0.5
Λ(1800) 1/2− 1800 300 *** 1.0 Σ(1775) 5/2− 1775 120 ****
Λ(1810) 1/2+ 1810 150 *** 2.8 Σ(1915) 5/2+ 1915 120 ****
Λ(1820) 5/2+ 1820 80 **** Σ(1940) 3/2− 1940 220 *** < 2.8
Λ(1830) 5/2− 1830 95 **** Σ(2030) 7/2+ 2030 180 ****

Λ(1890) 3/2+ 1890 100 **** 0.8 Σ(2250) ?? 2250 100 ***
Λ(2100) 7/2− 2100 200 ****
Λ(2110) 5/2+ 2110 200 ***
Λ(2350) 9/2+ 2350 150 ***

resonances, also give rise to a total cross section which keeps increasing with energy, a feature that

is not supported by the data which reaches a peak and then falls off as a function of energy. Indeed,

our model calculation, when those hyperon resonances are considered but without the contact term,

exhibits exactly this feature owing to the increasing contribution of the u-channel diagrams with

energy. This means that the rescattering term (V NPGTNP) in the non-pole T -matrix TNP should

somehow cancel the increasing contribution from the u-channel resonance amplitudes. Or, perhaps,

one needs to consider the u-channel Regge trajectories instead of individual resonances. In the

present work, we do not attempt the difficult task of extracting the contributions of these many sub-

threshold resonances but, instead, we account for their combined effects with the phenomenological

contact term. In any case, it seems that the problem has two scales, one corresponding to the

long-range and the other to the short-range dynamics. The latter is, of course, sensitive to the

form factors used at the meson-baryon coupling vertices to account for the composite nature of the

hadrons and we somehow account for it through the phenomenological contact terms. Problems

with two scales have been addressed in the past, where some authors have introduced two form

factors, one soft and other hard, to account for such effects [106]. Also, in effective field theories

the unknown short-range dynamics is accounted for by contact terms.

33



We note that the recent calculations by other authors reported in Refs. [94, 95] within usual

effective Lagrangian approaches, have dealt with this problem by suppressing the high-energy u-

channel contributions. In Ref. [94], this is done by introducing an ad-hoc energy-dependent damping

factor in the u-channel resonance diagrams. In Ref. [95] (see, also Ref. [107]) the form factor used

in the u-channel diagrams is not an off-shell form factor in that it is not a function of the “off-

shellness” (p2r −m2
r) of the propagating hyperon. Moreover, by using a different form of the form

factor in the u-channel as compared to that in the s-channel amplitudes, it violates the crossing

symmetry already at the tree-level.

2.2.2 Results

In this section, we present our results for the reaction K̄+N → K+Ξ in different isospin channels.

More specifically, we investigate the reactions K− + p → K+ + Ξ−, K− + p → K0 + Ξ0, and

K−+n → K0+Ξ− considering all the available data on the total and differential cross sections as

well as recoil polarization asymmetries.

Before we present our results, we briefly remark on the experimental data considered in this

work on total cross sections, differential cross sections, and recoil polarization asymmetries. These

data come from different sources of Refs. [70–76, 82] and are available in various forms. Some of

them are not in the tabular (numerical) form that can be readily used but are given only in graphical

form or as parametrization in terms of the Legendre polynomial expansions. In Ref. [94], Sharov

et al. have carefully considered the data extraction from these papers. We have checked that the

extracted data are consistent with those in the original papers within the permitted accuracy of the

check. In the present work, we use these data and no cross sections resulting from the expansion

coefficients are considered here.

As mentioned before, there are a number of 3- and 4-star Λ and Σ resonances, including those

low-mass sub-threshold ones that contribute, in principle, to the reaction (2.1). A list for these

hyperon resonances and some of their properties is shown in Table 2.1. However, apart from the

ground state Λ(1116) and Σ(1193), for most of these resonances, the required information on the

resonance parameters such as the coupling strength (including their signs) to Ξ and/or N are
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largely unknown. Therefore, the strategy adopted in this work is to consider these parameters as

fit parameters and consider the minimum number of resonances required to reproduce the existing

data. In particular, we have considered only those resonances that give rise to a considerable

contribution to the cross section within a physically reasonable range of the resonance parameter

values. More specifically, during the fitting procedure, resonances were added one by one to the

model and the quality of fit was checked. It should be mentioned that we have also checked the

influence of various combinations of resonances at a time (and not just one by one) to the fit quality.

The resonances kept in the presented calculation were those that increased the quality of the fit

by a noticeable amount with the variation in χ2 per data points N , namely, δχ2/N > 0.1. An

example of this procedure is shown in Table 2.2 where the results of adding one more resonance

to the current model, as specified later, is shown. We see that some of these resonances improve

somewhat the fit quality of the total cross section but not much the other observables or even

worsen the fit quality slightly. We have not included these resonances into our model because the

total cross sections suffer from a relatively large uncertainties.
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Whenever appropriate, for each resonance considered in this work, the corresponding coupling

constants gKYN and gKY Ξ were constrained in such way that the sum of the branching ratios

βY→KN + βY→KΞ not to exceed unit. Because, within our model, the data are sensitive only to

the product of the coupling constants gKYNgKY Ξ, setting |gKYN | = |gKY Ξ| for the purpose of es-

timating the individual branching ratios, and only for this purpose, is a simple way of keeping our

coupling constant values within a physically acceptable range. Admittedly, the currently existing

data are limited and suffer from large uncertainties, thus an accurate determination of the reso-

nance parameters are not possible at this stage. For this, one needs to wait for new more precise

data, possibly including more spin polarization data. In this regard, the multi-strangeness baryon

spectroscopy program using the anti-kaon beam at J-PARC will be of particular relevance. For the

ground states Λ(1116) and Σ(1193), the corresponding coupling constants are estimated based on

the flavor SU(3) symmetry relations [53].

The phenomenological contact amplitude Mc contains two sets of free parameters, {gLT1 ,αT
L}

and {gLT2 ,βTL}, to be fixed by adjusting to reproduce the experimental data, for a given set of {L, T}

as shown in Eq. (2.53). In order to reduce the number of free parameters, we have assumed the

parameter αT
L to be equal to βTL and independent on T and L, i.e., αT

L = βTL = α. The scale param-

eter ΛS has been fixed as ΛS = 1 GeV. Note that the phenomenological contact amplitude can and

should be complex in principle, since it accounts for the rescattering contribution (V NPGTNP) of

the non-pole T -matrix which is complex in general. Accordingly, the coupling strength parameters

gLT1 and gLT2 are complex quantities. In order to reduce the number of free parameters, we take

their phases to be independent on L and T , so that, {φa}TL = φa and {φb}TL = φb for all the sets

{L, T}. Also, in the present calculation, we find that it suffices to consider partial waves up to

L = 2 in the contact amplitude to reproduce the existing data.

The resonances included in the present model calculations and the corresponding resonance

parameters are displayed in Table 2.3 as well as the parameters of the phenomenological contact

term Mc. We do not give the associated uncertainties here because they are not well constrained.

In the present calculation, resonances with J ≤ 7/2 were considered. The masses and the total

widths of the resonances are taken to be those quoted in PDG [6] and are given in Table 2.1, except
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Table 2.3: Fitted parameter values of the current model. For the details of the resonance param-
eters, see Appendix 2.4.5. For the contact amplitude, see Eq. (2.53). The entries in boldface are
taken from Ref. [53] and they are not fit parameters. Here, it is assumed that {φa}TL = φa and
{φb}TL = φb, in addition to αT

L = βTL = α.
Y g

NΛK
λ
NΛK

gΞΛK
λΞΛK

Λ (MeV)

Λ(1116) 1
2
+ −13.24 1.0 3.52 1.0 900

Σ(1193) 1
2
+

3.58 1.0 −13.26 1.0 900

g
NΛK

gΞΛK
λ
NΛK

– λΞΛK
Λ (MeV) L a0

L
a1
L

b0
L

b1
L

φ
a

φ
b

Λ(1890) 3
2
− -0.11 900 0 0.28 −1.18

Σ(1385) 3
2
+ 18.76 1.0 1.0 900 1 3.22 −4.84 3.40 −0.60

Σ(2030) 7
2
+ 0.49 900 2 3.06 21.08 −9.40 2.28

Σ(2250) 5
2
− −0.033 900 ΛS = 1 GeV α = 3.62 0.22 -0.16

for the mass of the Σ(2250) resonance. Currently, the Σ(2250) resonance is not well established

and have a three-star status [6]. In fact, the PDG doesn’t even assign the spin-parity quantum

numbers for this resonance. The analyses of Ref. [78], actually show as two possible resonances, one

with JP = 5/2− at about 2270±50 MeV and another with JP = 9/2− at about 2210±30 MeV. In

the present work we have assumed Σ(2250) to have JP = 5/2− with the mass of 2265 MeV. This

is motivated by the fact that the total cross section in K− + p → K+ + Ξ− shows a small bump

structure at around 2300 MeV, which is well reproduced in our model with the mass of Σ(2250)

adjusted to be at 2265 MeV. For the corresponding width, we have adopted the value quoted in

PDG as shown in Table 2.1.

All the parameters of the present model calculation are determined as described above and

we now present the results obtained in our model. The overall fit quality is quite good with

χ2/N = 1.49 as displayed in Table 2.2. There we also show the partial χ2
i /Ni evaluated for a given

type of observable specified by the index i as explained in the caption of Table 2.2. In Fig. 2.3 we

show the results for the total cross section in the charged Ξ production reaction from the proton

target, i.e., K− + p → K− + Ξ−, for the center-of-mass energies up to W = 3 GeV. Figure 2.3(a)

displays the total contribution which reproduces the data rather well. The dynamical content of

the present model is also shown in the same figure. We find that the contact term rises quickly from

threshold peaking at around 2.1 GeV and falls off more slowly as energy increases. It dominates

largely the cross section except for energies very close to threshold and above ∼ 2.7 GeV, where

the hyperon resonance contributions are comparable. The Λ hyperons contribution is strongest

38



1.8 2.0 2.2 2.4 2.6 2.8 3.0

W (GeV)

0

50

100

150

200

250
σ

 (µ
b)

K −+ p → K ++ Ξ−
(a)

0

10

20

30

40

σ
 (µ

b)

Total Λ
Λ(1116)
Λ(1890)

1.8 2.0 2.2 2.4 2.6 2.8 3.0
W (GeV)

0

10

20

Total Σ
Σ(1193)
Σ(1385)
Σ(2250)
Σ(2030)

K −+ p → K ++ Ξ  −
(b)

(c)

Figure 2.3: (Color online) Total cross section for theK−+p → K++Ξ− reaction. (a) The solid blue
line represents the result of the full calculation of the present model. The red dashed line shows the
combined Λ hyperons contribution. The magenta dash-dotted line shows the combined Σ hyperons
contribution. The brown dotted line shows the combined Λ and Σ hyperons contribution. The
green dash-dash-dotted line corresponds to the contact term. (b) The solid red line represents the
combined Λ hyperons contribution that is the same as the red dashed line in (a). The dotted and
dashed lines show the Λ(1116) and Λ(1890) contributions, respectively. (c) The solid magenta line
represents the combined Σ hyperons contribution that is the same as the magenta dash-dotted line
in (a). The dotted, dashed, dot-dashed, and dot-dot-dashed lines show the contributions from the
Σ(1193), Σ(1385), Σ(2250), and Σ(2030), respectively. The experimental data (black circles) are
the digitized version as quoted in Ref. [94] from the original work of Refs. [69–81].

near threshold and dies off very slowly as energy increases. The Σ contribution is relatively small

over the entire energy range considered, except in the interval of 2.0–2.3 GeV, where it becomes

comparable to the Λ contribution. Near threshold, there is a strong destructive interference between

the contact term and (mainly) the Λ hyperons contribution. At higher energies, the data indicates

an existence of a bump structure at W ∼ 2.3 GeV. Our model reproduces this feature due to a

delicate destructive and constructive interference of the contact term and the hyperon resonance

contributions as the energy increases. We also mention that we have explored the possibility

of a much smaller contact amplitude contribution than shown in Fig. 2.3(a) considering various

different sets of hyperon resonances from Table 2.1; however, we were unable to find a solution with

a comparable fit quality to that of Fig. 2.3(a).

Figure 2.3(b) displays the individual Λ hyperon contributions. We see that the ground state
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Figure 2.4: (Color online) Same as Fig. 2.3 for the K− + p → K0 +Ξ0 reaction. The experimental
data (black circles) are the digitized version as quoted in Ref. [94] from the original work of Refs. [70,
76–78,81,82].

Λ(1116) is, by far, the dominant contribution which is due to the tail of the corresponding u-channel

process. Analogously, the individual Σ hyperon contributions are shown in Fig. 2.3(c). Here, the

relatively small cross section near threshold is due to the destructive interference between the

Σ(1192) and Σ(1385). The enhancement of the cross section in the energy interval of 2.0–2.3 GeV

is basically due to the Σ(2030) resonance. The Σ(2250) leads to a little shoulder in the total Σ

contribution. We note that any non-negligible contribution from the hyperons for energies above

∼ 2.3 GeV is due to the u-channel processes.

In Fig. 2.4 we show the total cross section results for the neutral Ξ production process, K−+p →

K0 + Ξ0. Here, the data are of such poor quality that they impose much less constraint on

the model parameters than the corresponding data in the charged Ξ− production. Here, the

resulting dynamical content shown in Fig. 2.4(a) is similar to that for the charged Ξ− production

discussed above, i.e., it is largely dominated by the contact term. However, we see a quite different

feature in the Λ and Σ resonance contributions as compared to that for the charged Ξ− production

[cf. Fig. 2.3(a)]. One notable difference between the charged and neutral Ξ production reactions

considered here is that the u-channel Λ hyperon contribution is absent in the Ξ0 production case.

Also, the relative contribution of the Σ hyperons is much larger in the neutral Ξ0 production than
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Figure 2.5: (Color online) Total cross section results with individual resonances switched off (a) for
K−+p → K++Ξ− and (b) for K−+p → K0+Ξ0. The blue lines represent the full result shown in
Figs. 2.3 and 2.4. The red dashed lines, which almost coincide with the blue lines represent the result
with Λ(1890) switched off. The green dash-dotted lines represent the result with Σ(2030) switched
off and the magenta dash-dash-dotted lines represent the result with Σ(2250)5/2− switched off.

in the charged Ξ− production, especially, in the near threshold region.

Figures 2.4(b) and 2.4(c) show the individual hyperon contributions. As mentioned before, due

to the absence of the u-channel Λ exchange in the neutral Ξ0 production, the Λ(1116) contribution

is insignificant, leading to a negligible contribution of the Λ hyperons. Due to the isospin factors,

here, the Σ(1192) and Σ(1385) hyperons interfere constructively, especially, near the threshold.

Recall that, for charged Ξ− production, these hyperons interfere destructively [cf. Fig. 2.3(c)].

In Fig. 2.5 we illustrate the amount of the above-threshold resonance contributions of the

present model to the total cross sections by switching them off one by one with respect to the

full results shown in Figs. 2.3(a) and 2.4(a). We see in Fig. 2.5(a) that the Σ(2030) affects most

the cross sections in the range of W ∼ 2.0 to 2.4 GeV. This resonance is clearly needed in our

model to reproduce the data. It also affects the recoil polarization as will be discussed later. It

should be mentioned that this resonance also helps to reproduce the measured K+Ξ− invariant

mass distribution in γp → K+K+Ξ− [54], by filling in the valley in the otherwise double-bump

structured invariant mass distribution, a feature that is not observed in the data [108]. The Λ(1890)

affects the total cross section in the range of W ∼ 1.9 to 2.1 GeV and the Σ(2250)5/2− around
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Figure 2.6: Kaon angular distributions in the center-of-mass frame (a) for K−+ p → K++Ξ− and
(b) for K− + p → K0 + Ξ0. The blue lines represent the full model results. The red dashed lines
show the combined Λ hyperons contribution. The magenta dash-dotted lines show the combined
Σ hyperons contribution. The green dash-dash-dotted line corresponds to the contact term. The
numbers in the upper right corners correspond to the centroid total energy of the system W . Note
the different scales used. The experimental data (black circles) are the digitized version as quoted
in Ref. [94] from the original work of Refs. [71–76] for the K− + p → K+ + Ξ− reaction and of
Ref. [70, 74,76,82] for the K− + p → K0 + Ξ0 reaction.

W ∼ 2.2 GeV to reproduce the observed bump structure. A more accurate data set is clearly needed

for a more definitive answer about the role of the Λ(1890) and Σ(2250) resonances. Figure 2.5(b)

for the neutral Ξ0 production shows also a similar feature observed in the Ξ− case for the Σ(2030)

resonance. Here, the influence of the Σ(2250)5/2− is smaller and that of the Λ(1890) is hardly

seen. Recall that there is no u-channel Λ contribution in the neutral Ξ0 production.

The results for differential cross sections in both K− + p → K+ + Ξ− and K− + p → K0 + Ξ0

are shown in Figs. 2.6(a) and 2.6(b), respectively, in the energy domain up to W = 2.8 GeV for

the former and up to W = 2.5 GeV for the latter reaction. Overall, the model reproduces the

data quite well. There seem to be some discrepancies for energies W = 2.33 to 2.48 GeV in the

charged Ξ− production. Our model underpredicts the yield around cos θ = 0. As in the total cross

sections, the data for the neutral Ξ0 production are fewer and less accurate than for the charged
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Ξ− production. In particular, the Ξ0 production data at W = 2.15 GeV seems incompatible with

those at nearby lower energies and that the present model is unable to reproduce the observed

shape at backward angles. It is clear from Figs. 2.6(a) and 2.6(b) that the charged channel shows

a backward peaked angular distributions, while the neutral channel shows enhancement for both

backward and forward scattering angles (more symmetric around cos θ = 0) for all but perhaps

the highest energies. In the charged Ξ− production, both the resonance and contact amplitude

contributions are backward angle peaked and, as the energy increases, they get smaller and smaller

at forward angles. In Ξ0 production, both the Σ resonance and contact amplitude contributions

also exhibit an enhancement for forward angles. Note that the Λ resonance contribution here is

negligible due to the absence of the u-channel process. The interference pattern in the forward

angular region depends on energy. At lower energies the interfere is constructive and it becomes

destructive at higher energies. The behavior of the angular distributions in terms of the partial

waves will be discussed later in connection to the results of Figs. 2.7(b) and 2.9(b).

The partial-wave content in the cross sections for the charged Ξ− production process arising

from the present model is shown in Figs. 2.7(a) and 2.7(b). As can be seen in Fig. 2.7(a), the total

cross section is dominated by the P and D waves in almost the entire range of energy considered,

even at energies very close to threshold where one sees a strongly raising P -wave contribution. The

S-wave contribution is very small. This peculiar feature is caused by the ground state Λ(1116),

whose contribution cancels to a large extent the otherwise dominant S-wave contribution close

to threshold, in addition to enhancing the P -wave contribution. One way of probing the S-wave

content close to threshold in a model-independent manner is to look at the quantity σ/p′ as a

function of p′2, where p′ is the relative momentum of the final KΞ state. The reason to look at this

quantity is that, for hard processes, the partial wave reaction amplitude goes basically with p′L for

a given orbital angular momentum L as mentioned in Sec. 2.2.1. This leads to

σ

p′
= c0 + c1p

′2 + c2p
′4 + . . . , (2.54)

where cL’s are constants. Figure 2.8 illustrates this point. Although the existing experimental

data are of poor quality, they reveal the general features just mentioned. In particular, for the
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Figure 2.7: Partial wave decomposition of the total cross section and the angular distribution for
K− + p → K+ + Ξ−. (a) Total cross section sectioned by contributions from each partial wave L.
The red shaded area indicates the S-wave contribution, while the green area corresponds to the
P -wave. Magenta indicates the D-wave and maroon the F -wave. (b) K+ angular distribution: the
solid blue lines are the full results, while the dotted green lines represent the sum of S + P waves,
the red dashed lines represent the S + P +D waves and the dash-dotted magenta lines represent
the S + P +D+ F waves. For lower energies, the S + P +D waves already saturate the full cross
section results so that the F - and higher-wave contributions cannot be distinguished from the full
result.

charged Ξ− production process, the data indicate a linear dependence of σ/p′ close to threshold

implying a strong P -wave contribution. The present model result is consistent with this behavior.

The corresponding results for the neutral Ξ0 production are also shown in Fig. 2.8. There, the data

are scattered around but are consistent with the S-wave dominance and our model just shows this

feature [see also Fig. 2.9(a)]. In Fig. 2.7(a) we also see a small F -wave contribution above W ∼ 2.0

GeV and practically saturates the total cross section for energies considered. Note that since

our contact term includes the partial waves through the D waves only, the F -wave contribution

is entirely due to the hyperon resonances. The enhancement of the D-wave contribution around

W = 2.3 GeV as well as the little shoulder in the P -wave contribution are due to the Σ(2250)

hyperon. Of course, the partial wave contributions are constrained dominantly by the differential

cross section and they are shown in Fig. 2.7(b). As mentioned before, the shape of the angular

distribution is backward-angle peaked and that the cross section is very small at forward angles.
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This behavior is a direct consequence of the very significant interference between the P and D

waves. This can be seen by expanding the cross section in partial waves. Considering the partial

waves through L = 2 and following Ref. [101] and Appendix 2.4.1, the differential cross section may

be expressed as

dσ

dΩ
=

[

|α02|
2 +

(

|α1|
2 + α02α

∗
2

)

cos2 θ + |α2|
2 cos4 θ +

(

|β1|
2 +

∣

∣

∣β̃2

∣

∣

∣

2
cos2 θ

)

sin2 θ

]

+ 2Re
[

α02α
∗
1 + α1α

∗
2 cos

2 θ + β1β̃
∗
2 sin

2 θ
]

cos θ , (2.55)

where the coefficients αL (βL) denotes a linear combination of the partial-wave matrix elements

corresponding to the spin-non-flip (spin flip) process with a given orbital angular momentum L [see

Eq. (2.52)]. Here, α02 ≡ α0 −
1
3α2 and β̃2 ≡ 2β2. In the above equation, the last term on the right

hand side which involves an interference between the P and D waves is an odd function in cos θ,
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Figure 2.9: Same as in Fig. 2.7 but for K− + p → K0 + Ξ0.

while the other term (in big brackets) is an even function. These two terms cancel each other to

a large extent at forward angles while at backward angles they add up. Note that these partial

waves are comparable in strength as shown in Fig. 2.7(a) so that their interference term leading to

an odd function part can largely cancel the even term at forward angles.

Figures 2.9(a) and 2.9(b) display the partial wave content in the cross sections for the neutral

Ξ0 production process. In contrast to the charged Ξ− production, here one sees that the largest

contribution to the total cross section is the D-wave and that the P -wave is largely suppressed,

which is a direct consequence of the shape of the observed angular distribution whose partial

wave contributions are shown in Fig. 2.9(b). There, compared to that for charged Ξ−, one sees

a more symmetric angular shape about cos θ = 0 that is dominated by the D-wave. The present

model reproduces the observed behavior of the K0 angular distribution by suppressing the P -wave

contribution as can be easily understood from Eq. (2.55). The rather drastic suppression of the

P wave can be better seen in Fig. 2.9(a). For energies very close to threshold, the cross section is

dominated by the S-wave as seen also in Fig. 2.9(a).

The results for the recoil polarization asymmetry multiplied by the cross section are shown in

Fig. 2.10 in the energy interval of W = 2.1 to 2.5 GeV. Overall, we reproduce the data reasonably
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reactions. The blue solid lines represent the full results of the current model. Data are from
Refs. [73, 76].

well. We also find that the results shown at W = 2.11 GeV are still significantly affected by

Σ(2030). This corroborates the findings of Ref. [94]. We recall that the recoil asymmetry is

proportional to the imaginary part of the product of the non-spin-flip matrix element (Mss) with

the complex conjugate of the spin-flip matrix element (Ms′s with s′ ̸= s) [101], so that it vanishes

identically unless these matrix elements are complex with non-vanishing real and imaginary parts.

We can therefore expect the recoil polarization to be sensitive to the complex nature of the reaction

amplitude, in particular, to the phenomenological contact amplitude Mc introduced in the present

model. Indeed, if one forces the coupling strength parameters gLT1 and gLT2 in Eq. (2.53) to be

purely real during the fitting procedure, the χ2
P/NP deteriorates, e.g., from 1.85 to 2.25 for the

K− + p → K+ + Ξ− reaction, although the quality of fit for cross sections is nearly unchanged.

In Fig. 2.11 we show the present model predictions for the target-beam asymmetries Kxx and

Kxz multiplied by the unpolarized cross section, i.e., dσ
dΩKxx and dσ

dΩKxz for both the charged

Ξ− and neutral Ξ0 production processes. Note that these target-recoil asymmetries, together
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Figure 2.11: Target-recoil asymmetries Kxx (green dashed curves) and Kxz (blue solid curves) as
defined in Ref. [101] for the reactions (a) K− + p → K+ + Ξ− and (b) K− + p → K0 + Ξ0. The
numbers in the upper right corners represent the total energy of the system W in units of GeV.

with Kyy, are the only three independent double-spin observables in the reaction of Eq. (2.1)

as discussed in Ref. [101] and Section 2.1. Indeed, the only two other non-vanishing target-recoil

asymmetries are related by Kzz = Kxx and Kzx = −Kxz.6 We mention that dσ
dΩKxx is proportional

to the difference of the magnitude squared of the spin-non-flip and spin-flip matrix elements, while

dσ
dΩKxz is proportional to the real part of the product of the spin-non-flip matrix element with the

complex conjugate of the spin-flip matrix element. Therefore, unlike the recoil asymmetry, these

spin observables do not vanish even if the reaction amplitude is purely real or purely imaginary.

This means that they are, like the cross section, much less sensitive to the complex nature of the

phenomenological contact amplitude.

To gain some insight into the angular dependence exhibited by these target-recoil asymmetries

6Note that the symmetry of the reaction leads to Kyy = πΞ independent on the scattering angle θ [87, 101].
Here, πΞ stands for the parity of the produced Ξ which is taken to be πΞ = +1 for the ground state Ξ. Also,
Kxx = Kzz

∣

∣

cos θ=±1
= πΞ. The target asymmetry is identical to the recoil asymmetry in the present reaction.

Therefore, we exhaust all the independent observables available in the reaction processes considered here.
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in Fig. 2.11, we express them in terms of partial waves with L ≤ 2. We have

dσ

dΩ
Kxx =

[

|α02|
2 +

(

|α1|
2 + α02α

∗
2

)

cos2 θ + |α2|
2 cos4 θ −

(

|β1|
2 +

∣

∣

∣
β̃2

∣

∣

∣

2
cos2 θ

)

sin2 θ

]

+ 2Re
[

α02α
∗
1 + α1α

∗
2 cos

2 θ − β1β̃
∗
2 sin

2 θ
]

cos θ , (2.56a)

dσ

dΩ
Kxz = 2Re

[

α02β
∗
1 +

(

α1β̃
∗
2 + α2β

∗
1

)

cos2 θ +
(

α02β̃
∗
2 + α1β

∗
1

)

cos θ + α2β̃
∗
2 cos

3 θ
]

sin θ .

(2.56b)

Note that the only difference between dσ
dΩKxx given above and differential cross section given by

Eq. (2.55) is the sign change of the terms involving βL. These terms are, however, proportional to

sin2 θ. Therefore, this spin observable behaves like the differential cross section at very forward and

backward angles, where sin2 θ ≪ 1. At cos θ = 0, the difference is due to the term of ±|β1|2 which

is a P -wave contribution in the spin-flip amplitude. Now, if we ignore the P -wave contribution

— which is relatively very small in the neutral Ξ0 production over the nearly entire energy region

considered as seen in Fig. 2.9(a) — it is immediate to see that Eq. (2.56a) involves only terms that

are symmetric about cos θ = 0. We see in Fig. 2.11(b) that dσ
dΩKxx exhibits roughly this symmetry.

For dσ
dΩKxz, Eq. (2.56b) reveals a rather complicated angular dependence in general, and

no particular feature is apparent in the results shown in Fig. 2.11, especially for the charged

Ξ− production process. Neglecting the P -wave contribution, Eq. (2.56b) reduces to dσ
dΩKxz =

Re
[

(

α02 + α2 cos
2 θ

)

β̃∗2

]

sin 2θ, which is roughly the angular dependence exhibited in Fig. 2.11(b).

The present model predictions for the K− + n → K0 + Ξ− reaction are shown in Fig. 2.12.

Here, the experimental data are extremely scarce and they were not included in the present fitting

procedure. Nevertheless, the current model is seen to predict those few data quite reasonably. Both

the total and differential cross sections exhibit a very similar feature to those of the K− + p →

K+ + Ξ− reaction with a noticeable small enhancement in the differential cross sections as seen in

Fig. 2.12(b) for forward angles near cos θ = 0 in K−+n → K0+Ξ−. We see, however, some bigger

differences in the individual amplitude contributions, more clearly seen in the total cross sections

that are given in Fig. 2.12(a). There, the Σ hyperon contribution is larger than the Λ contribution

over the entire energy region up to W ∼ 2.3 GeV, in particular, at low energies near threshold.
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Figure 2.12: Same as Figs. 2.3(a) and 2.6 for the K− + n → K− + Ξ0 reaction. The experimental
data are from Refs. [70, 77].

This is due to the absence of the strong destructive interference between the Σ(1385) and Σ(1192)

(not shown), since the latter hyperon contribution is suppressed to a large extent compared to the

case of K− + p → K+ + Ξ−. Moreover, there is a constructive interference with the Λ hyperon,

which makes the sum of the hyperons contribution relatively large in the low energy region.

2.3 Chapter Summary

A model-independent analysis of the K̄ + N → K + Ξ reaction has been performed. Following

the method of Ref. [83], the most general spin structure of the reaction amplitude, consistent with

basic symmetries, for Ξ baryons of JP = 1
2
±
and 3

2
±
has been derived. The coefficients multiplying

each spin structure have been presented in partial-wave-decomposed form, thus permitting partial-

wave analyses, once sufficient data become available for these reactions. The method of Ref. [83] is

general, and can be applied, in principle, to derive the structure of the reaction amplitude involving

higher-spin Ξ production.

Furthermore, a minimal set of independent observables required to determine completely the

reaction amplitude has been identified. In addition to the unpolarized cross sections, one also needs

single- and double-spin observables, which poses a formidable experimental challenge, in particular,
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since one needs to measure the polarization of the outgoing Ξ. Note that, for the Ξ of spin-1/2,

there are two complex amplitudes to be determined, whereas for the Ξ of spin-3/2, there are four

complex amplitudes. We then formulated the problem using the SDM approach and expressed

the spin observables in terms of the SDM elements. Following Ref. [91, 92], it was shown that the

latter can be extracted from the moments associated with the Ξ decay processes in conjunction

with the self-analyzing nature of the hyperon (Λ or Ξ) resulting from the subsequent decay of the Ξ

produced in the primary reaction. The moments, in turn, can be extracted from the measurement

of the angular distribution of the decay products.

Since the determination of the spin and parity quantum numbers is a fundamental part of any

spectroscopy study, reflection symmetry about the reaction plane has been exploited, in particular,

to show that, apart from the spin-transfer coefficient Kyy, the ratio of the SDM elements given

by Eq. (2.36) determines the parity of a Ξ resonance with an arbitrary spin. Furthermore, the

moments given by Eq. (2.40) determine the spin and parity of the Ξ resonance simultaneously [92].

We also mention that the present analysis applies as given only to Ξ resonances that are suf-

ficiently narrow to permit them being treated like on-shell particles. For broad resonances, a

partial-wave analysis would be required to extract them from experimental data.

In summary, the present analysis provides the model-independent framework for developing

reliable reaction theories of Ξ production to help in the planning of future experimental efforts in

Ξ baryon spectroscopy. This will also help in analyzing the data to understand the production

mechanisms of Ξ baryons.

We have also presented our analysis on the reaction of K− + N → K + Ξ within an effective

Lagrangian approach that includes a phenomenological contact term to account for the rescattering

contribution of the non-pole part of the reaction amplitude in the Bethe-Salpeter equation and for

other possible (short-range) dynamics that are not taken into account explicitly in the model.

By introducing the phenomenological contact term, we avoid the problem of a strong u-channel

hyperon contribution which keeps growing as a function of energy leading to ever increasing cross

sections, a common feature of the effective Lagrangian approaches. The present model also includes

the Λ(1890), Σ(1385), Σ(2030), and Σ(2250) resonance contributions apart from the ground states
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Λ(1116) and Σ(1193).

The available total and differential cross sections, as well as the recoil asymmetry data, in both

the K−+p → K++Ξ− and K−+p → K0+Ξ0 processes are well reproduced by the present model.

We have found that the above-threshold resonances Λ(1890), Σ(2030), and Σ(2250) are required to

achieve a good fit quality of the data. Among them, the Σ(2030) resonance is the most critical one.

This resonance affects not only the cross sections but also the recoil asymmetry. In addition, it also

brings a model calculation of Ref. [54] into an agreement with the observed K+Ξ− invariant mass

distribution in Ξ photoproduction [108]. The Λ(1890) is also required to improve the fit quality in

the present model, especially in the energy dependence of the total cross sections of the charged

Ξ− production around W = 1.9 GeV. The total cross section data in the charged Ξ− production

seems to indicate a bump structure at around W = 2.3 GeV, which is accounted for by the Σ(2250)

resonance with JP = 5/2− and a mass of 2265 MeV in the present model. More accurate data

are required before a more definitive answer can be provided for the role of these two resonances.

In this regard, the multi-strangess hyperon production programs using an intense anti-Kaon beam

at J-PARC is of particular relevance in providing the much needed higher-precision data for the

present reaction.

Apart from the recoil asymmetry, we have also predicted the target-recoil asymmetries for which

there are no experimental data currently. In contrast to the recoil polarization — which are small

—- these observables are quite sizable and may help impose more stringent constraints on the

model parameters. In principle, one requires four independent observables to model-independently

determine the reaction amplitude for spin-1/2 Ξ production [101]. As said before, measurements

of these spin observables are challenging experimentally by any standard, but one can exploit the

self-analyzing nature of the produced hyperon to extract these observables [101, 124]. Of course,

for the target-recoil asymmetry measurements, one requires a polarized target in addition o spin

measurements of the produced Ξ. The measurement of the spin of the cascade is possible by

exploiting the self-analyzing nature of the cascade as mentioned before. The polarized targets are

nowadays available at some of the major laboratories worldwide. Combined with the availability of

intense beams, measuring these spin observables is no longer out of reach. In fact, various single-
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and double-polarization observables in photoproduction reactions are currently being measured at

the major facilities such as JLab, ELSA, and MAMI, aiming at the so-called complete experiments

in order to model-independently determine the photoproduction amplitudes.

There is some controversy about the role of particular resonances among the recent calculations

of the K−+N → K +Ξ reaction, in particular, those based on effective Lagrangians as mentioned

in the Introduction [94,95] and now including the present work. The common feature among these

calculations, including that based on the Unitarized Chiral Perturbation approach [41], is that some

S = −1 hyperon resonances seem to be required to reproduce the existing data. To pin down the

role of a particular resonance among them requires more precise and complete data, in addition

to a more complete theoretical model. Anyway, the present reaction is very suited for studying

S = −1 hyperon resonances.

Finally, the present work is our first step toward building a more complete reaction theory in

a DCC approach to help analyze the data and extract the properties of Ξ resonances in future

experimental efforts in Ξ baryon spectroscopy.
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2.4 Appendixes

2.4.1 Appendix A: Expansion of K̄ +N → K + Ξ Spin Coefficients

In this Appendix, we give the partial wave decomposition of the coefficients multiplying each spin

structure of the reaction amplitudes in Eqs. (2.4) and (2.14) for Ξ with spin-parity JP = 1
2
±

and

3
2
±
. The partial-wave expansion of the (plane-wave) matrix element M̂ in Eqs. (2.4) and (2.14) is

⟨S′MS′ |M̂(p′,p)|SMS⟩ =
∑

iL−L′ ⟨SMS LML|J MJ⟩ ⟨S′MS′ L′ML′ |J MJ⟩

×MTJ
L′L(p

′, p)YL′ML′ (p̂
′)Y ∗

LML
(p̂) P̂T , (2.57)

where S,L, J, T stand for the total spin, orbital angular momentum, total angular momentum,

and the total isospin, respectively, of the initial K̄N state. The corresponding projection quantum

numbers are denoted by MS , ML, and MJ . The primed quantities represent the corresponding

quantum numbers of the final KΞ state. The summation runs over all quantum numbers not

specified in the left-hand side of Eq. (3.33). The relative momenta of the initial K̄N and final KΞ

states are denoted by p and p′, respectively, and p = |p|, p′ = |p′|. In the following, without loss

of generality, we choose n̂3 along the momentum p of the nucleon in the CM system, i.e., n̂3 ≡ p̂

as specified in Fig. 2.1. In Eq. (3.33), P̂T stands for the total isospin projection operator onto the

isospin singlet (T = 0) and isospin triplet (T = 1) states,

P̂0 =
1

4
(1− τ1 · τ2) and P̂1 =

1

4
(3 + τ1 · τ2) , (2.58)

where the τi (i = 1, 2) are the usual vectors made out of isospin Pauli matrices.
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For a Ξ of JP = 1
2
±
, following Ref. [83], the coefficients Mi in Eq. (2.4) are given by

M0 =
1

4π

∑

L′,T

[

(L′ + 1)MTJ+
L′L′ (p

′, p) + L′MTJ−
L′L′ (p

′, p)
]

PL′(p̂ · p̂′) P̂T , (2.59a)

M2 =
i

4π

∑

L′,T

[

MTJ−
L′L′ (p

′, p)−MTJ+
L′L′ (p

′, p)
]

P 1
L′(p̂ · p̂′) P̂T , (2.59b)

M1 =
i

4π

∑

L′,T

[

MTJ−
L′ L′−1(p

′, p) +MTJ+
L′ L′+1(p

′, p)
]

P 1
L′(p̂ · p̂′) P̂T , (2.59c)

M3 =
i

4π

∑

L′,T

[

(L′ + 1)MTJ+
L′ L′+1(p

′, p)− L′ MTJ−
L′ L′−1(p

′, p)
]

PL′(p̂ · p̂′) P̂T , (2.59d)

where J± ≡ L′± 1
2 , and PL′(x) and P 1

L′(x) denote the Legendre and associated Legendre functions,

respectively.7 The amplitudes Mi here are operators in isospin space whose actions are specified

by the projectors P̂T defined in Eq. (2.58).

Likewise, for a Ξ of JP = 3
2
±
, following Ref. [83], the coefficients Fi and Gi in Eq. (2.14) are

given by

F1 = i
3

8π

∑

J,L′,T

(−1)L
′+J+ 3

2 [J ]2
[L′]

√

L′(L′ + 1)

⎧

⎪

⎨

⎪

⎩

1
2 L′ J

L′ 3
2 1

⎫

⎪

⎬

⎪

⎭

MJT
L′L′(p′, p)P 1

L′(p̂′ · p̂) P̂T , (2.60a)

F2 =
1√
2

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 2

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p) aL′L P̂T , (2.60b)

F3 =
1

2
√
2

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 2

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p) bL′L P̂T , (2.60c)

F4 =
1√
2

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 2

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p) cL′L P̂T , (2.60d)

7Here, the phase convention for the associated Legendre function is such that P 1
1 (x) = + sin(x).
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and

G1 =
1

2
√
2

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 2

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p) a′L′L P̂T , (2.61a)

G2 =
1

2
√
2

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 2

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p) b′L′L P̂T , (2.61b)

G3 =

√

3

2

1

4π

∑

J,L′,L,T

iL−L′
(−1)J+

1
2 [J ]2

[LL′]
√

L′(L′ + 1)
⟨L 0L′1 |1 1⟩

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 1

⎫

⎪

⎬

⎪

⎭

×MJT
L′L(p

′, p)P 1
L′(p̂′ · p̂) P̂T , (2.61c)

G4 =

√
3

8π

∑

J,L′,L,T

iL−L′
(−1)J+

3
2 [J ]2[LL′] ⟨L 0L′ 0|1 0⟩

⎧

⎪

⎨

⎪

⎩

1
2 L J

L′ 3
2 1

⎫

⎪

⎬

⎪

⎭

MJT
L′L(p

′, p)PL′(p̂′ · p̂) P̂T ,

(2.61d)

where we introduced the notation [J ] ≡
√
2J + 1 and [j1j2] ≡ [j1] [j2]. The summations extend over

all the quantum numbers J,L′, L and T . Note that total parity conservation imposes the condition

(−1)L
′+L = ±1 as the parity of the Ξ baryon is πΞ = ±1. The coefficients aL′L, bL′L, etc, are given

by

aL′,L = 2
[LL′]

4π
⟨L 0L′ 2 | 2 2⟩

√

(L′ − 2)!

(L′ + 2)!
P 2
L′(p̂′ · p̂) , (2.62a)

bL′,L = 2
[LL′]

4π
⟨L 0L′ 1 | 2 1⟩

√

(L′ − 1)!

(L′ + 1)!
P 1
L′(p̂′ · p̂) , (2.62b)

cL′,L =
[LL′]

4π

[

⟨L 0L′ 2 | 2 2⟩

√

(L′ − 2)!

(L′ + 2)!
P 2
L′(p̂′ · p̂) +

√

3

2
⟨L 0L′ 0 | 2 0⟩PL′ (p̂′ · p̂)

]

, (2.62c)

a′L′,L = ibL′,L , (2.62d)

b′L′,L = −iaL′,L . (2.62e)
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The T † matrices take the form

T †
1 =

1√
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0

0 − 1√
3

1√
3

0

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, T †
2 =

i√
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0

0 1√
3

1√
3

0

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, T †
3 =

√

2

3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0

1 0

0 1

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.63)

2.4.2 Appendix B: Details of the SDM Formalism

A density operator can be used to describe an ensemble of quantum states. It is defined as

ρ̂ ≡
∑

ψ

Iψ |ψ⟩ ⟨ψ| , (2.64)

where Iψ denotes the probability of finding an element of the ensemble in the state ψ, subject to

the condition
∑

ψ Iψ = 1. For the present application, the states |ψ⟩ are the spin states of the

initial state, N , or the final state, Ξ. For the initial nucleon state, the spin-density operator reads

ρ̂→ ρ̂N ≡
∑

ψN

IψN
|ψN ⟩ ⟨ψN |

=
1

2
(1 + P · σ) , (2.65)

where σ = (σ1,σ2,σ3) denotes the vector formed of Pauli spin matrices and P is the polarization

vector of the nucleon which is the difference between the probability of finding the nucleon in the

mN = +1
2 spin state and the probability of finding the nucleon in the mN = −1

2 state (mN is the

spin projection quantum number along the P direction) or symbolically |Iψ+ − Iψ− | = |P |.

An unpolarized ensemble has P = 0. The trace of this spin-12 density matrix is normalized to

1. By introducing the notation σ0 ≡ 1 and P0 ≡ 1, the nucleon SDM in Eq. (2.65) can be rewritten

as

ρ̂N =
1 + P · σ

2
=

3
∑

i=0

Pi ρ̂
N,i (2.66)
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with

ρ̂N,i ≡
1

2
σi (2.67)

for i = 0, . . . , 3.

The spin-density operator for a produced Ξ particle, ρ̂Ξ, can be expressed in terms of the

production amplitude M̂ which is an operator that maps the initial nucleon spin state ψN into a

spin-state of the Ξ. In the helicity basis for the produced Ξ, the corresponding spin-density matrix

elements read

ρΞλλ′(ψN ) ≡ ⟨λ| M̂ |ψN ⟩ ⟨ψN | M̂ † |λ′⟩ , (2.68)

where λ and λ′ enumerate the Ξ’s helicities.

When the beam of anti-Kaons scatters off an ensemble of nucleons, one needs to average over

all nucleon spin states with their appropriate probability weights, i.e.,

ρΞλ,λ′ ≡
∑

ψN

IψN
ρΞλλ′(ψN )

=
∑

ψN

IψN
⟨λ| M̂ |ψN ⟩ ⟨ψN | M̂ † |λ′⟩

= ⟨λ| M̂ ρ̂NM̂ † |λ′⟩

= ⟨λ| ρ̂Ξ |λ′⟩ , (2.69)

where Eq. (2.64) was used to show that the Ξ spin-density operator is given by [109]

ρ̂Ξ = M̂ ρ̂NM̂ † . (2.70)

Using Eq. (2.66), we may write

ρ̂Ξ =
3

∑

i=0

Pi ρ̂
Ξ,i , (2.71)

where

ρ̂Ξ,i ≡
1

2
M̂σiM̂

† , (2.72)

for i = 0, . . . , 3. Here, ρ̂Ξ,0 and ρ̂Ξ,j (j = 1, 2, 3) provide the respective contributions for unpolarized
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and polarized initial nucleons.

For a Ξ baryon of spin-1/2, comparing Eqs. (2.7) and (2.72) gives

dσ

dΩ
=

1

2
Tr

[

M̂M̂ †
]

= Tr
[

ρ̂Ξ,0
]

, (2.73a)

dσ

dΩ
Ti =

1

2
Tr

[

M̂σiM̂
†
]

= Tr
[

ρ̂Ξ,i
]

, (2.73b)

dσ

dΩ
Pi =

1

2
Tr

[

M̂M̂ †σi

]

= Tr
[

ρ̂Ξ,0σi
]

, (2.73c)

dσ

dΩ
Kij =

1

2
Tr

[

M̂σiM̂
†σj

]

= Tr
[

ρ̂Ξ,iσj
]

. (2.73d)

When a Ξ baryon of spin-3/2 (or higher-spin) is involved, there will be many more possible

degrees of polarization than the spin-1/2 case. For the particular case of the spin-transfer coefficient,

Kij , discussed in connection to the parity of Ξ, its definition given in Eq. (2.6d) has to be generalized.

For this purpose, we first introduce the operator Ω(J · n̂) as

Ω(J · n̂) ≡
+J
∑

M=−J

(−1)
1
2−M

P
J,M
n̂

, (2.74)

where P
J,M
n̂

denotes the spin-projection operator onto an arbitrary direction n̂ for an arbitrary

half-integer spin J . It can be explicitly calculated as

P
J,M
n̂

=

+J
∏′

m=−J

m− J · n̂
m−M

, (2.75)

where the prime indicates that the factor with m = M is omitted. Here, J ≡ (J1, J2, J3) stands

for the generator of spin-J rotation. This expression provides a rotationally invariant polynomial

of order 2J in J · n̂ that is a generalization to arbitrary spin of the usual (1 ± σ · n̂)/2 projectors

for spin-1/2.

With the spin-projection operator defined above, the spin-transfer coefficient involving a Ξ

baryon with an arbitrary spin J is now generalized to

dσ

dΩ
Kba =

1

2
Tr

[

M̂ σ · b̂ M̂ †Ω(J · â)
]

, (2.76)
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where b̂ and â are the spin directions. For J = 1/2, in view of Ω(J · â) → σ · â, this reduces to the

familiar expression (2.6d), of course. For Cartesian directions b̂ = n̂i and â = n̂′
j, in particular,

Eq. (2.76) may be written as

dσ

dΩ
Kij′ = Tr

[

ρ̂Ξ,iΩJ
j′
]

, (2.77)

where ΩJ
j′ ≡ Ω(J · n̂′

j).

For the Cartesian frame {n̂′
1, n̂

′
2 ≡ n̂2, n̂

′
3 ≡ p̂′} aligned with the momentum p′ of the outgoing

Ξ (see Fig. 2.1), explicit expressions for ΩJ
j′ are found as

Ω
3
2
x′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Ω
3
2
y′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Ω
3
2
z′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.78a)

which were derived with the help of the spin-3/2 generators in their spinor representation,

J1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
√
3
2 0 0

√
3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, J2 = i

√
3

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 0 0

1 0 −2√
3

0

0 2√
3

0 −1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, J3 =
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(2.79a)

For arbitrary spin of Ξ, Kba of Eq. (2.76) becomes

Kba =
Σeven
ba − Σodd

ba

Σeven
ba + Σodd

ba

, (2.80)

where

Σeven/odd
ba =

∑

ma,mb

dσmb,ma

dΩ
, ma −mb = even/odd , (2.81)

denotes the sum of all polarized differential cross sections such that the differences of all possible

combinations of initial and final spin projections ma and mb along â and b̂, respectively, are an
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even or odd number.

2.4.3 Appendix C: Explicit form of the SDM’s

In this section, we list the SDM elements of each ρi (i = 0, . . . , 3) in terms of the helicity amplitudes,

Hi. The Hermitian ρi matrices are arranged according to

ρ̂i =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρiJ,J ρiJ,J−1 . . . ρiJ,−J

ρiJ−1,J ρiJ−1,J−1 . . . ρiJ−1,−J

...
...

. . .
...

ρi−J,J ρi−J,J−1 . . . ρi−J,−J

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.82)

For J = 1
2 , the matrices read explicitly

ρ̂0 =
1

2

⎛

⎜

⎝

|H1|2 + |H2|2 2iπΞ Im [H2H∗
1]

−2iπΞ Im [H2H∗
1] |H1|2 + |H2|2

⎞

⎟

⎠
, (2.83a)

ρ̂1 =
1

2

⎛

⎜

⎝

2Re [H2H∗
1] πΞ

(

|H1|2 − |H2|2
)

πΞ

(

|H1|2 − |H2|2
)

−2Re [H2H∗
1]

⎞

⎟

⎠
, (2.83b)

ρ̂2 =
1

2

⎛

⎜

⎝

−2 Im [H2H∗
1] −iπΞ(|H1|2 + |H2|2)

iπΞ(|H1|2 + |H2|2) −2 Im [H2H∗
1]

⎞

⎟

⎠
, (2.83c)

ρ̂3 =
1

2

⎛

⎜

⎝

|H1|2 − |H2|2 −2πΞ Re [H2H∗
1]

−2πΞRe [H2H∗
1] − |H1|2 + |H2|2

⎞

⎟

⎠
, (2.83d)

where πΞ is the parity of the Ξ.
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F
or

a
J
=

3 2
re
so
n
an

ce
,

ρ̂0
=

1 2

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

|H
2
|2
+
|H

1
|2

H
2
H

4
∗
+
H

1
H

3
∗

π
Ξ
(H

1
H

4
∗
−
H

2
H

3
∗
)

2i
π
Ξ
Im

[H
2
H

1
∗
]

H
4
H

2
∗
+
H

3
H

1
∗

|H
4
|2
+
|H

3
|2

2i
π
Ξ
Im

[H
3
H

4
∗
]

π
Ξ
(−

H
3
H

2
∗
+
H

4
H

1
∗
)

π
Ξ
(H

4
H

1
∗
−
H

3
H

2
∗
)

−
2i
π
Ξ
Im

[H
3
H

4
∗
]

|H
4
|2
+
|H

3
|2

−
H

4
H

2
∗
−
H

3
H

1
∗

−
2i
π
Ξ
Im

[H
2
H

1
∗
]

π
Ξ
(−

H
2
H

3
∗
+
H

1
H

4
∗
)

−
H

2
H

4
∗
−
H

1
H

3
∗

|H
2
|2
+
|H

1
|2

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

,
(2
.8
4a

)

ρ̂1
=

1 2

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

2
R
e
[H

2
H

1
∗
]

H
1
H

4
∗
+
H

2
H

3
∗

π
Ξ
(H

2
H

4
∗
−
H

1
H

3
∗
)

π
Ξ

(

−
|H

2
|2
+
|H

1
|2
)

H
4
H

1
∗
+
H

3
H

2
∗

2
R
e
[H

4
H

3
∗
]

π
Ξ

(

|H
4
|2
−
|H

3
|2
)

π
Ξ
(−

H
4
H

2
∗
+
H

3
H

1
∗
)

π
Ξ
(H

4
H

2
∗
−
H

3
H

1
∗
)

π
Ξ

(

|H
4
|2
−
|H

3
|2
)

−
2
R
e
[H

4
H

3
∗
]

H
3
H

2
∗
+
H

4
H

1
∗

π
Ξ

(

−
|H

2
|2
+
|H

1
|2
)

π
Ξ
(−

H
2
H

4
∗
+
H

1
H

3
∗
)

H
2
H

3
∗
+
H

1
H

4
∗

−
2
R
e
[H

2
H

1
∗
]

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

,
(2
.8
4b

)

ρ̂2
=

1 2

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

2
Im

[H
1
H

2
∗
]

i(
−
H

1
H

4
∗
+
H

2
H

3
∗
)

iπ
Ξ
(H

2
H

4
∗
+
H

1
H

3
∗
)

−
iπ

Ξ

(

|H
2
|2
+
|H

1
|2
)

i(
H

4
H

1
∗
−
H

3
H

2
∗
)

2
Im

[H
3
H

4
∗
]

iπ
Ξ

(

|H
4
|2
+
|H

3
|2
)

−
iπ

Ξ
(H

4
H

2
∗
+
H

3
H

1
∗
)

−
iπ

Ξ
(H

4
H

2
∗
+
H

3
H

1
∗
)

−
iπ

Ξ

(

|H
4
|2
+
|H

3
|2
)

2
Im

[H
3
H

4
∗
]

i(
H

3
H

2
∗
−
H

4
H

1
∗
)

iπ
Ξ

(

|H
2
|2
+
|H

1
|2
)

iπ
Ξ
(H

2
H

4
∗
+
H

1
H

3
∗
)

i(
−
H

2
H

3
∗
+
H

1
H

4
∗
)

2
Im

[H
1
H

2
∗
]

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

,
(2
.8
4c
)

ρ̂3
=

1 2

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

−
|H

2
|2
+
|H

1
|2

−
H

2
H

4
∗
+
H

1
H

3
∗

π
Ξ
(H

1
H

4
∗
+
H

2
H

3
∗
)

−
2π

Ξ
R
e
[H

2
H

1
∗
]

−
H

4
H

2
∗
+
H

3
H

1
∗

−
|H

4
|2
+
|H

3
|2

2π
Ξ
R
e
[H

4
H

3
∗
]

π
Ξ
(−

H
3
H

2
∗
−
H

4
H

1
∗
)

π
Ξ
(H

4
H

1
∗
+
H

3
H

2
∗
)

2π
Ξ
R
e
[H

4
H

3
∗
]

|H
4
|2
−
|H

3
|2

−
H

4
H

2
∗
+
H

3
H

1
∗

−
2π

Ξ
R
e
[H

2
H

1
∗
]

π
Ξ
(−

H
2
H

3
∗
−
H

1
H

4
∗
)

−
H

2
H

4
∗
+
H

1
H

3
∗

|H
2
|2
−
|H

1
|2

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

.
(2
.8
4d

)

62



2.4.4 Appendix D: Measuring the SDM Elements

In Sec. 2.1.3, we identified a set of SDM elements that determines the reaction amplitude completely.

A standard way of measuring the SDM elements is via the subsequent decay of the produced particle

in a primary reaction by exploiting the self-analyzing property of the decay-product particle.

In the present work, the reaction in Eq. (2.1) is the primary (or production) reaction, where

the Ξ baryon is produced. If the produced Ξ is a ground state Ξ, then, it decays via a single weak

decay process into

Ξ → Λ+ π, (2.85)

whose associated Ξ decay-asymmetry parameters, αΞ, are known to be [46]

αΞ0 = −0.406 ± 0.013 , (2.86a)

αΞ− = −0.458 ± 0.012 . (2.86b)

An excited Ξ resonance, Ξ∗, on the other hand, may undergo a double-decay process

Ξ∗ → Ξ+ π or Ξ∗ → Λ+ K̄

!

Λ+ π ,

!

N + π . (2.87a)

The associated Λ decay-asymmetry parameter for the second-step process Λ → N + π is [46]

αΛ− = +0.642 ± 0.013 (Λ0 → p+ π−) ,

αΛ0 = +0.650 ± 0.015 (Λ0 → n+ π0) . (2.88)

The Ξ production process (2.1) is described in the CM frame of the reaction. The Ξ decay

processes of Eqs. (2.85) and (2.87), on the other hand, are described in the rest frame of the

produced Ξ, whose right-handed Cartesian coordinate system {n̂′
1, n̂

′
2 ≡ n̂2, n̂

′
3 ≡ p̂′} is fully

specified in Fig. 2.1.

In the double-decay processes (2.87), the subsequent Λ decay process is described in the rest
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frame of the decaying Λ denoted by {n̂′′
1, n̂

′′
2 , n̂

′′
3}, with n̂′′

3 ≡ p̂Λ, where pΛ describes the direction

of the Λ’s momentum in the {n̂′
1, n̂

′
2, n̂

′
3} frame (see Fig. 2.1); the other two axes are given by

n̂′′
2 = (n̂′

3 × p̂Λ)/|n̂′
3 × p̂Λ| and n̂′′

1 = n̂′′
2 × n̂′′

3.

Single-decay process: Ground state Ξ

The ground-state Ξ decays weakly almost entirely into Λ+ π. We define the amplitude describing

the Ξ production process K̄+N → K+Ξ, followed by the subsequent weak decay of the produced

Ξ, Ξ → Λ+ π, as [91,92]

A ≡ A(ΩΞ,ΩΛ,λΞ,λΛ,λN )

= ⟨ΩΛ,λΛ| M̂D |λΞ⟩ ⟨ΩΞ,λΞ| M̂ |λN ⟩ (2.89)

with ⟨ΩΞ,λΞ| M̂ |λN ⟩ denoting the production reaction amplitude (in the corresponding CM frame)

and

⟨ΩΛ,λΛ| M̂D |λΞ⟩ ≡
√

2J + 1

4π
FΞ
λΛD

J∗
λΞ,λΛ(ΩΛ), (2.90)

denoting the subsequent Ξ decay amplitude (in the rest frame of Ξ). Here, ΩΞ and ΩΛ are short-

hand notations, respectively, for the polar and azimuthal angles of the produced Ξ in the CM frame

of the production, ΩΞ = (θ,φ = 0), and for the polar and azimuthal angles of the Λ in the rest frame

of the produced Ξ, ΩΛ = (θΛ,φΛ). λΞ(λΛ) is the helicity of the Ξ(Λ) in the respective frame, while J

denotes the spin of the decaying Ξ. FΞ
λΛ

stands for the helicity Ξ-decay amplitude and DJ
λΞ,λΛ

(ΩΛ)

is the usual Wigner rotation matrix. Here, the argument ΩΛ in DJ
λΞ,λΛ

(ΩΛ) is to be understood as

the set of Euler angles {α,β, γ}, such that, DJ
λΞ,λΛ

(ΩΛ) ≡ DJ
λΞ,λΛ

(α = φΛ,β = θΛ, γ = 0) in the

conventions defined in Ref. [110].

The angular distribution of the Λ hyperon, I(ΩΛ), in the Ξ → Λ + π decay (for fixed Ξ angle

ΩΞ) is given by

I(ΩΛ) =
3

∑

i=0

Pi I
i(ΩΛ) , (2.91)
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where

Ii(ΩΛ) ≡
∑

all λ′s

A(ΩΞ,ΩΛ,λΞ,λΛ,λN ) ρN,i
λN ,λ′N

A∗(ΩΞ,ΩΛ,λ
′
Ξ,λΛ,λ

′
N )

=
(2J + 1)

4π

∑

all λ′s

FΞ
λΛF

Ξ∗
λΛ MλΞ,λN ρ

N,i
λN ,λ′N

M∗
λ′Ξ,λ

′
N
DJ∗
λΞ,λΛ(ΩΛ)D

J
λ′Ξ,λ

′
Λ
(ΩΛ)

=
(2J + 1)

4π

∑

all λ′s

FΞ
λΛF

Ξ∗
λΛ ρ

Ξ,i
λΞ,λ′Ξ

DJ∗
λΞ,λΛ(ΩΛ)D

J
λ′Ξ,λ

′
Λ
(ΩΛ), (2.92)

Here, ρN,i
λN ,λ′N

= ⟨λN |ρ̂N,i|λ′N ⟩ denotes the target nucleon SDM element with ρ̂N,i given by Eq. (2.66),

and Eq. (2.70) was used in the last step. Also, we note that the explicit reference to the ΩΞ

dependence of the angular distribution Ii in Eqs. (2.91) and (2.92) has been suppressed for the

sake of simplicity of notation. The same holds for the angular distribution in Eqs. (2.103) and

(3.46) in the next subsection.

We now define the moments, H i(L,M), of this distribution as

H i(L,M) ≡
∫

dΩΛ Ii(ΩΛ)D
L
M,0(ΩΛ)

= tJ,iLM

∑

λΛ

FΞ
λΛF

Ξ∗
λΛ ⟨J λΛ L 0|J λΛ⟩ , (2.93)

where dΩΛ ≡ sin θΛ dθΛ dφΛ. The quantity tJ,iLM here is related to the SDM elements of the Ξ by [91]

tJ,iLM ≡
∑

λΞ,λ′Ξ

ρΞ,iλΞ,λ′Ξ
⟨J λ′Ξ LM |J λΞ⟩ , (2.94)

whose inversion produces

ρΞ,iλΞ,λ′Ξ
=

∑

L

2L+ 1

2J + 1
⟨J λ′Ξ LM |J λΞ⟩ tJ,iLM , (2.95)

where M = λΞ − λ′Ξ.

Introducing further the quantities

gΞ± ≡ FΞ
± 1

2
FΞ∗
± 1

2
, (2.96)
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we can re-express the moments in Eq. (2.93) as

H i(L,M) = tJ,iLM ⟨J 1
2 L 0|J 1

2 ⟩
[

gΞ+ + (−1)LgΞ−
]

. (2.97)

We note that gΞ± introduced in Eq. (2.96) are related to the Ξ decay-asymmetry parameter, αΞ,

given in Eq. (2.86) by [111,112]
gΞ+ − gΞ−
gΞ+ + gΞ−

= αΞ . (2.98)

Then, taking the ratio of the moments H i(L,M) (i = 1, 2, 3) and H0(0, 0), we obtain

H i(L,M)

H0(0, 0)
= ζL

tJ,iLM

tJ,000

⟨J 1
2 L 0|J 1

2⟩ , (2.99)

where ζL = 1 for even L and ζL = αΞ for odd L.

Now, from Eq. (2.94) and the definition of ρ̂Ξ,0 in Eq. (2.72), we get

tJ,000 = Tr
[

ρ̂Ξ,0
]

=
dσ

dΩ
. (2.100)

One can now use Eq. (2.99) to extract tJ,iLM . Once tJ,iLM is known, the SDM elements ρΞ,iλΞ,λ′Ξ
are

obtained by making use of Eq. (2.95). Note that the non-vanishing moments H i(LM) are restricted

to L ≤ 2J and |M | ≤ L.

Double-decay process: Excited Ξ resonance

The double-decay processes shown in Eq. (2.87) are treated analogously to the single-decay process

of the previous subsection. Here, we discuss the decay chain with the subsequent decay of the Λ

hyperon, Λ → p+ π−, but the results apply to any decay chain that is a strong decay followed by

a weak decay and containing a single pseudoscalar meson at each step of the decay.

As for the single-decay process case discussed in the previous subsection, we begin by defining

the amplitude describing the Ξ∗ production process K̄+N → K+Ξ∗, followed by the strong decay
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of the produced Ξ∗, Ξ∗ → Λ+K, and the subsequent weak decay of Λ, Λ → N + π, as [91,92]

A ≡ A(ΩΞ,ΩΛ,Ωp,λN ,λΞ,λΛ,λp)

= ⟨Ωp,λp|M̂ ′
D|λΛ⟩ ⟨ΩΛ,λΛ|M̂D|λΞ⟩ ⟨ΩΞ,λΞ|M̂ |λN ⟩ , (2.101)

where ⟨ΩΞ,λΞ| M̂ |λN ⟩ stands for the Ξ∗ production amplitude and

⟨ΩΛ,λΛ| M̂D |λΞ⟩ ≡
√

2J + 1

4π
FΞ
λΛD

J∗
λΞ,λΛ(ΩΛ) , (2.102a)

⟨Ωp,λp| M̂ ′
D |λΛ⟩ ≡

√

2

4π
FΛ
λpD

1
2∗
λΛ,λp

(Ωp) , (2.102b)

denote the subsequent Ξ∗ strong-decay and Λ weak-decay amplitudes, respectively. We note that

the Ξ production and decay amplitudes are calculated in the CM frame of the production reaction

and the rest frame of the produced Ξ, respectively, exactly in the same way as for the single-decay

case discussed in the previous subsection. The subsequent Λ-decay amplitude, ⟨Ωp,λp| M̂ ′
D |λΛ⟩, is

calculated in the rest frame of the decaying Λ denoted by {n̂′′
1 , n̂

′′
2, n̂

′′
3} [cf. the second paragraph

just below Eq. (2.88)], where Ωp = (θp,φp) is a short-hand notation for the polar and azimuthal

angles θp and φp, respectively, of the decay-product proton measured in the Λ rest frame.

The angular distribution of the entire double decay process (for fixed Ξ production angle ΩΞ)

is given as

I(ΩΛ,Ωp) =
3

∑

i=0

PiI
i(ΩΛ,Ωp) , (2.103)

where

Ii (ΩΛ,Ωp) ≡
∑

all λ′s

A(ΩΞ,ΩΛ,Ωp,λN ,ΛΞ,λΛ,λp) ρ
N,i
λN ,λ′N

A∗(ΩΞ,ΩΛ,Ωp,λ
′
N ,λ′Ξ,λ

′
Λ,λp)

=
2(2J + 1)

16π2

∑

all λ′s

ρΞ,iλΞ,λ′Ξ
gΛλp g

Ξ
λΛ,λ′Λ

D
1
2∗
λΛ,λp

(Ωp)D
1
2
λ′Λ,λp

(Ωp)D
J∗
λΞ,λΛ(ΩΛ)D

J
λ′Ξ,λ

′
Λ
(ΩΛ) ,

(2.104)

with

gΛλp ≡ FΛ
λp F

Λ∗
λp and gΞλΛ,λ′Λ

≡ FΞ
λΛ FΞ∗

λ′Λ
. (2.105)
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To arrive at the last equality in Eq. (3.46), we have made use of Eq. (2.70).

We now define the moments H i(l,m,L,M) as

H i(l,m,L,M) ≡
∫

dΩΛdΩpI
i(ΩΛ,Ωp)D

L
M,m(ΩΛ)D

l
m,0(Ωp)

= tJ,iLM

∑

λΛ,λ′Λ

gΞλΛ,λ′Λ
⟨J λ′Λ Lm|J λΛ⟩ ⟨12 λ

′
Λ l m|12 λΛ⟩

∑

λp

gΛλp ⟨
1
2 λp l 0|

1
2 λp⟩ , (2.106)

with tJ,iLM given by Eq. (2.94).

The different gΞλΛ,λ′Λ
are related to each other by

gΞ−− = gΞ++ , (2.107a)

gΞ+− = gΞ−+ = πΞ (−1)J+
1
2 gΞ++ . (2.107b)

The gΛλp terms can be related to the Λ decay asymmetry parameter, αΛ, by [111,112]

gΛ+ − gΛ−
gΛ+ + gΛ−

= αΛ . (2.108)

Note that the non-vanishing moments H i(l,m,L,M) are restricted to |m| ≤ l, l ≤ 1, |M | ≤ L

and L ≤ 2J , as can be read off from Eq. (2.106). The moments H i(0, 0, L,M) and H i(1,m,L,M)

vanish identically for odd and even L, respectively, due to Eqs. (2.106) and (2.107). Analogously

to the single-decay case, the ratios of the moments

H i(0, 0, L,M)

H0(0, 0, 0, 0)
=

tJ,iLM

tJ,000

⟨J 1
2 L 0|J 1

2⟩ (2.109a)

for even L and

H i(1, 0, L,M)

H0(0, 0, 0, 0)
=
αΛ

3

tJ,iLM

tJ,000

⟨J 1
2 L 0|J 1

2 ⟩ (2.109b)

for odd L allow us to determine tJ,iLM . Since tJ,000 = dσ/dΩ, once tJ,iLM is extracted, the SDM elements

ρΞ,iλΞ,λ′Ξ
can be determined via Eq. (2.95).

68



2.4.5 Appendix E: Lagrangians, Propagators

In this Appendix, we give the effective Lagrangians and phenomenological dressed baryon propaga-

tors from which the s- and u-channel amplitudes Ms and Mu discussed in Sec. 2.2.1 are constructed.

We follow Refs. [53,54,113–115] and consider not only the spin-1/2 ground state Λ and Σ but also

their respective excited states with spin up to 7/2. In the following we use the notations for the

iso-doublet fields

N =

⎛

⎜

⎝

p

n

⎞

⎟

⎠
, Ξ =

⎛

⎜

⎝

Ξ0

−Ξ−

⎞

⎟

⎠
, K =

⎛

⎜

⎝

K+

K0

⎞

⎟

⎠
, Kc =

⎛

⎜

⎝

K̄0

−K−

⎞

⎟

⎠
, (2.110)

and for the iso-triplet fields

Σ =

⎛

⎜

⎜

⎜

⎜

⎝

Σ+

Σ0

Σ−

⎞

⎟

⎟

⎟

⎟

⎠

. (2.111)

We also introduce the auxiliary operators in Dirac space

D1/2(±)
B′BM ≡ −Γ(±)

[

±iλ+
1− λ

mB′ ±mB
/∂

]

, (2.112a)

D3/2(±)
ν ≡ Γ(∓)∂ν , (2.112b)

D5/2(±)
µν ≡ −iΓ(±)∂µ∂ν , (2.112c)

D7/2(±)
µνρ ≡ −Γ(∓)∂µ∂ν∂ρ , (2.112d)

where Γ(+) ≡ γ5 and Γ(−) ≡ 1. Here, mB stands for the mass of the baryon B. The parameter λ

has been introduced to interpolate between the pseudovector (λ = 0) and the pseudoscalar (λ = 1)

couplings. Note that in the above equation the order of the subscript indices inD1/2(±)
B′BM is important,

i.e., D1/2(±)
B′BM ̸= D1/2(±)

BB′M .

The effective Lagrangians for spin-1/2 hyperons Λ and Σ (or their resonances) are, then, given
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by

L1/2(±)
ΛNK = gΛNK Λ̄

{

D1/2(±)
ΛNK K̄

}

N +H.c. , (2.113a)

L1/2(±)
ΣNK = gΣNK Σ̄ ·

{

D1/2(±)
ΣNK K̄

}

τN +H.c. , (2.113b)

L1/2(±)
ΞΛKc

= gΞΛKc
Ξ̄
{

D1/2(±)
ΞΛK Kc

}

Λ+H.c. , (2.113c)

L1/2(±)
ΞΣKc

= gΞΣKc
Ξ̄ τ

{

D1/2(±)
ΞΣK Kc

}

·Σ+H.c. , (2.113d)

where the superscripts ± refer to the positive (+) and negative (−) relative parity of the baryons.

Flavor SU(3) symmetry relates the coupling constants among the members of the octet JP = 1/2+

ground state baryons and JP = 0− pseudoscalar mesons and we have

gΛNK = −g8
1 + 2α√

3
, (2.114a)

gΣNK = g8(1− 2α) , (2.114b)

gΞΛKc
= −g8

1− 4α√
3

, (2.114c)

gΞΣKc
= −g8 , (2.114d)

where g8 = gNNπ = 13.45 empirically and the D/F mixing parameter α = 2/5 from SU(6)

considerations.

For spin-3/2 hyperons, we have

L3/2(±)
ΛNK =

gΛNK

mK
Λ̄ν

{

D3/2(±)
ν K̄

}

N +H.c. , (2.115a)

L3/2(±)
ΣNK =

gΣNK

mK
Σ̄ν ·

{

D3/2(±)
ν K̄

}

τN +H.c. , (2.115b)

L3/2(±)
ΞΛKc

=
gΞΛKc

mK
Ξ̄
{

D3/2(±)
ν Kc

}

Λν +H.c. , (2.115c)

L3/2(±)
ΞΣKc

=
gΞΣKc

mK
Ξ̄τ

{

D3/2(±)
ν Kc

}

·Σν +H.c. , (2.115d)
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where mK denotes the kaon mass. For spin-5/2 hyperons [54,116],

L5/2(±)
ΛNK =

gΛNK

m2
K

Λ̄µν
{

D5/2(±)
µν K̄

}

N +H.c. , (2.116a)

L5/2(±)
ΣNK =

gΣNK

m2
K

Σ̄µν ·
{

D5/2(±)
µν K̄

}

τN +H.c. , (2.116b)

L5/2(±)
ΞΛKc

=
gΞΛKc

m2
K

Ξ̄
{

D5/2(±)
µν Kc

}

Λµν +H.c. , (2.116c)

L5/2(±)
ΞΣKc

=
gΞΣKc

m2
K

Ξ̄τ
{

D5/2(±)
µν Kc

}

·Σµν +H.c. . (2.116d)

And for spin-7/2 hyperons we have [54,116]

L7/2(±)
ΛNK =

gΛNK

m3
K

Λ̄µνρ
{

D7/2(±)
µνρ K̄

}

N +H.c. , (2.117a)

L7/2(±)
ΣNK =

gΣNK

m3
K

Σ̄µνρ ·
{

D7/2(±)
µνρ K̄

}

τN +H.c. , (2.117b)

L7/2(±)
ΞΛKc

=
gΞΛKc

m3
K

Ξ̄
{

D7/2(±)
µνρ Kc

}

Λµνρ +H.c. , (2.117c)

L7/2(±)
ΞΣKc

=
gΞΣKc

m3
K

Ξ̄τ
{

D7/2(±)
µνρ Kc

}

·Σµνρ +H.c. . (2.117d)

The coupling constants in the above Lagrangians corresponding to Λ and Σ resonances are free

parameters adjusted to reproduce the existing data. For those resonances considered in the present

work, they are given in Table 2.3.

The MBr vertices Γ̂†
MBr(Γ̂MBr) in Eq. (2.50) are obtained from the above Lagrangians. In

addition, each MBr vertex is multiplied by an off-shell form factor given by

f(p2r,mr,Λr) =

(

nΛ4
r

nΛ4
r + (p2r −m2

r)
2

)n

, (2.118)

where p2r and mr are the square of the 4-momentum and mass of the exchanged hyperon, respec-

tively. The cutoff parameter Λr is chosen to have a common value Λr ≡ Λ = 900 MeV for all

the MBr vertices in order to keep the number of free parameters to a minimum. Also, we choose

n = 1.

For the propagators of the dressed hyperons in Eq. (2.50), we could in principle adopt the
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forms used in our previous work [54,113–115]. However, in view of the limited amount of currently

available data for the present reaction and the rather poor quality of these data, here we adopt the

simpler forms as given in the following. For a spin-1/2 baryon propagator, we use

Ŝ1/2
r (pr) =

1

/pr −mr + iΓr
2

, (2.119)

where Γr is the baryon width assumed to be constant, independent of energy. For a stable (ground

state) baryon, Γr → ϵ with ϵ being positive infinitesimal.

For spin-3/2, the dressed propagator reads in a schematic matrix notation

Ŝ3/2
r (pr) =

1

/pr −mr + iΓr
2

∆ , (2.120)

where ∆ is the Rarita-Schwinger tensor given by

∆ ≡ ∆µν = −gµν +
1

3
γµγν +

2pµpν

3m2
r

+
γµpν − pµγν

3mr
. (2.121)

Similarly, the propagator for a spin-5/2 resonance is given by

Ŝ5/2
r (pr) =

1

/pr −mr + iΓr
2

∆ , (2.122)

where [116]

∆ ≡ ∆
β1β2
α1α2

=
1

2

(

ḡ
β1
α1
ḡ
β2
α2

+ ḡ
β2
α1
ḡ
β1
α2

)

−
1

5
ḡα1α2

ḡβ1β2

−
1

10

(

γ̄α1
γ̄β1 ḡ

β2
α2

+ γ̄α1
γ̄β2 ḡ

β1
α2

+ γ̄α2
γ̄β1 ḡ

β2
α1

+ γ̄α2
γ̄β2 ḡ

β1
α1

)

(2.123)

with

ḡµν ≡ gµν −
pµpν

m2
r

, γ̄µ ≡ γµ −
pµ/p

m2
r
. (2.124)
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The propagator for a spin-7/2 resonance is given by

Ŝ7/2
r (pr) =

1

/pr −mr + iΓr
2

∆ , (2.125)

where [116]

∆ ≡ ∆
β1β2β3
α1α2α3

=
1

36

∑

P (α),P (β)

{

ḡ
β1
α1
ḡ
β2
α2
ḡ
β3
α3

−
3

7
ḡ
β1
α1
ḡα2α3

ḡβ2β3 −
3

7
γ̄α1

γ̄β1 ḡ
β2
α2
ḡ
β3
α3

+
3

35
γ̄α1

γ̄β1 ḡα2α3
ḡβ2β3

}

,

(2.126)

and the summation runs over all possible permutations of {α1,α2,α3} and of {β1,β2,β3}.
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Chapter 3

γ +N → K +K + Ξ

Because resonances couple differently to different channels, studying the Ξ, Ξ∗, and Y ∗ mass spec-

tra requires measurements involving different reaction processes. Different reaction channels also

expand our experimental reach to different kinematic regions. Indeed, studying γ+N → K+K+Ξ

alone may lead to erroneous conclusions concerning the contribution from the hyperon resonances,

Y ∗, due to the large kinematic region surveyed and the more complicated description required to

explain a 3-body process. For example, at tree level, K resonances and K∗ exchanges contribute

to the γ + N → K + K + Ξ amplitude. Disentangling these ’background’ amplitudes from Y ∗

contributions can become very difficult. Only when we study different production processes, for

Ξ in this work, using a consistent approach, can we begin to gain confidence that we are truly

understanding the reaction mechanisms that are responsible for the observed results.

The photoproduction reaction may not be the most ideal place to produce Ξ because of the

lack of strangeness in the initial state. But because of advancements in detection techniques and

the availability of machines capable of delivering intense beams, this reaction has been measured

and new experiments are planned for the very near future. Currently available data include total

and differential cross sections, as well as KK and KΞ invariant mass distributions, for the γ+ p →

K++K++Ξ− channel [47]. New data for some spin observables was recently released as well [50,51].

In addition to studying Ξ and Ξ∗ these new experiments plan to study exclusive Ω− photoproduction

for the first time [52].
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In this chapter we first show how to build a gauge invariant amplitude, Mµ, for γ + N →

K + K + Ξ from the N → K + K + Ξ amplitude. Gauge-invariance requires Mµ to satisfy the

Ward-Takahashi Identity (WTI) [117,118]. In our formulation, we employ full local gauge-invariance

as demanded by generalized WTI, in contrast to the global gauge-invariance used by many authors.

This procedure is shown in Section 3.1. In Section 3.2, the most general spin-structure is derived

and the issue of parity determination of the Ξ via photoproduction is explored. Our model for

γ +N → K +K + Ξ is derived in Section 3.3. Such an approach will provide a consistent model

which to study both the K̄- and photon-induced reactions. Cross section formulas in terms of the

amplitude Mµ above are derived in Appendix 3.5.5.

3.1 Gauge-Invariant Photoproduction Amplitude

To obtain the amplitude for the photoproduction reaction γ(k) +N(p) → K(q1) +K(q2) + Ξ(p′),

we attach the photon everywhere in the amplitude T̄ of the N → K +K +Ξ process. This is done

by means of gauge derivative technique introduced in Ref. [119]. Using the notation Gi for the

propagator of the particle i, we have

Mµ ≡
∑

i

(

−G−1
i {GiT̄GN}µG−1

N

)

=
∑

i

(

−G−1
i {Gi}µT̄

)

− T̄{GN}µG−1
N − {T̄}µ

=
∑

i

[

−G−1
i {Gi}µG−1

i

]

Gi T̄ + T̄GN
[

−G−1
N {GN}µS−1

N

]

− {T̄}µ

= Γµ
ΞΞγGΞT̄ + Γµ

K1K1γ
GK1 T̄ + Γµ

K2K2γ
GK2 T̄ + T̄GNΓµ

NNγ + T̄ µ , (3.1)

where Γµ
iiγ ≡ −G−1

i {Gi}µG−1
i denotes the iiγ vertex (i = N,Ξ,K). Note that the first four terms

on the right-hand-side of the above equation correspond to the photon attaching to the external

four legs of T̄ . T̄ µ ≡ −{T}µ is the interaction current where the photon is attached to the internal

structure of T̄ . Each term on the right-hand-side of Eq. (3.1) is represented diagrammatically in

Fig. 3.1.
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T̄GNΓ
µ
NNγ T̄ µT̄GΞΓ

µ
ΞΞγT̄GK2Γ

µ
K2K2γT̄GK1Γ

µ
K1K1γ

Figure 3.1: Diagrammatic representation of each term on the r.h.s. of Eq. (3.36). The blob
represents the interaction T̄ = T̄r + T̄c of Eq. (3.32). Symmetrization of the two kaons is implied.

Now, the gauge invariance condition of the two-meson photoproduction amplitude is given by

the generalized Ward-Takahashi identity

kµM
µ = G−1

Ξ Q̂ΞGΞT̄ +G−1
K1

Q̂K1GK1 T̄ +G−1
K2

Q̂K2GK2T̄ − T̄GN Q̂NG−1
N , (3.2)

where Q̂i stands for the charge operator of particle i and, at the same time, changes the momentum

argument of the propagator Gi and of T̄ to its left by +k. For Gi and T̄ appearing on its right,

the charge operator changes their momentum arguments by −k.

Taking the four-divergence of the photoproduction amplitude given by Eq. (3.1), we have

kµM
µ = kµΓ

µ
ΞΞγGΞT̄ + kµΓ

µ
K1K1γ

GK1 T̄ + kµΓ
µ
K2K2γ

GK2 T̄ + T̄GNkµΓ
µ
NNγ + kµT̄

µ

=
{

[G−1
Ξ Q̂Ξ − Q̂ΞG

−1
Ξ ]GΞT̄ + [G−1

K1
Q̂K1 − Q̂K1G

−1
K1

]GK1 T̄ + [G−1
K2

Q̂K2 − Q̂K2G
−1
K2

]GK2 T̄

+ T̄GN [G−1
N Q̂N − Q̂NG−1

N ]
}

+ kµT̄
µ

=
{

G−1
Ξ Q̂ΞGΞT̄ +G−1

K1
Q̂K1GK1T̄ +G−1

K2
Q̂K2GK2 T̄ − T̄GN Q̂NG−1

N

}

−
{

Q̂ΞT̄ + Q̂K1T̄ + Q̂K2T̄ − T̄ Q̂N

}

+ kµT̄
µ , (3.3)

where we have made use of the Ward-Takahashi identity for the three-point vertex

kµΓ
µ
iiγ = G−1

i Q̂i − Q̂iG
−1
i . (3.4)
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T̄ µ = +Λ, Σ

T̄ µ
C1

T̄ µ
C2

+ +

T̄ µ
Y T̄ µ

c

Figure 3.2: Details of the interaction current T̄ µ (last diagram in Fig. 3.1). The first three terms
comprise the interaction current arising from T̄r. T̄

µ
C1

and T̄ µ
C2

are the generalized four-point contact
currents due to the presence of hadronic form factors in T̄r; they also include the usual Kroll-
Ruderman contact currents. T̄ µ

Y is the intermediate-state hyperon resonance current. The last
term is the five-point contact current arising from T̄c. Symmetrization of the two kaons is implied.

Comparing Eqs. (3.2,3.3), we see that the interaction current T̄ µ should obey

kµT̄
µ = Q̂ΞT̄ + Q̂K1T̄ + Q̂K2T̄ − T̄ Q̂N . (3.5)

The major difficulty in deriving a full two-meson photo production amplitude, Mµ, lays on

the derivation of the interaction current T̄ µ for its determination requires the knowledge of the

underlying microscopic structure of the amplitude T̄ . Note that the reaction N → K + K + Ξ

involves three bodies in the final states and as such, it should obey the (three-body) Faddeev

equation. An exact determination of the interaction current, T̄ µ, is therefore impractical and one

needs to resort for some approximation(s) to determine it [120,121].

In this work, we derive the interaction current, T̄ µ, consistently with our model presented in

Section 2.2.1 for the reaction K̄ +N → K + Ξ. This is done in Section 3.3.

3.2 Spin structure

In this section we derive the most general structure of the reaction amplitude for two scalar meson

production in the photon-induced reaction,

γ +N → M +M ′ +B . (3.6)
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We consider B to be a J=1/2 baryon and do distinguish the two mesons, M and M ′. We use

this notation to emphasis that this is a general procedure but this calculation will be applied to

a K +K + Ξ final state. With those considerations, there are four reaction channels to consider,

γ+p → K++K++Ξ−, γ+p → K++K0+Ξ0, γ+n → K0+K0+Ξ0, and γ+n → K++K0+Ξ−,

and two of them have identical Kaons in the final state, K = K ′ = K+ orK0. Symmetrization of

the two Kaons is required for these cases .

Here, we follow Ref. [83] closely. We start by making a partial-wave expansion of the reaction

amplitude

⟨S′MS′ | M̂(q⃗, p⃗ ′; k⃗) |SMS⟩ =
∑

iL−L′−lMS′J ′SJ
lL′L (q, p′; k)Ylml

(q̂)YL′ML′ (p̂
′)Y ∗

LML
(k̂)

× (SMSLML|JMJ)(S
′MS′L′ML′ |J ′MJ ′)(J ′MJ ′lml|JMJ) , (3.7)

where S,L, J stand for the total spin, total orbital angular momentum and the total angular

momentum, respectively, of the initial γN state. MS , ML and MJ denote the corresponding

projection quantum numbers. The primed quantities stand for the corresponding quantum numbers

of the final MM ′B state. l and ml denote the orbital angular momentum of one of the emitted

mesons, M , and its projection, respectively, relative to the center-of-mass of the other meson and

baryon (M ′B) subsystem. The summation runs over all quantum numbers not specified in the

l.h.s. of Eq.(3.7). k⃗ and p⃗ ′ denote the relative momenta of the γN and M ′B in the initial and final

states, respectively. q⃗ denotes the momentum of the other emitted meson (M) with respect to the

center-of-mass of M ′B in the final state. We note that, in Eq.(3.7), apart from the restrictions on

the quantum numbers encoded in the geometrical factors, total parity conservation imposes that

(−)l+L+L′
= −1 in the case of a positive parity baryon B and (−)l+L+L′

= +1 in the case of a

negative parity B if the mesons M and M ′ have the same parity, i.e., they both are either scalar

or pseudoscalar mesons. If they have opposite parities, then, (−)l+L+L′
= +1 for a positive parity

baryon B and (−)l+L+L′
= −1 for a negative parity B.
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Eq.(3.7) can be inverted to solve for the partial-wave matrix element MS′J ′SJ
lL′L (q, p′; k). We have

MS′J ′SJ
lL′L (q, p′; k) =

∑

iL
′+l−L 8π2

2J + 1

√

2L+ 1

4π
(SMSL0|JMJ )

× (S′MS′L′ML′ |J ′MJ ′)(J ′MJ ′ lml|JMJ)

×
∫

dΩp′Y
∗
L′ML′

(p̂′)

∫ +1

−1
d(cos(θq))Y

∗
lml

(θq, 0) ⟨S′MS′ |M̂ (q⃗, p⃗ ′; k⃗)|SMS⟩ , (3.8)

where, without loss of generality, the z-axis is chosen along k⃗ and q⃗ in the xz-plane; cos(θq) ≡ q̂ · k̂.

The summation is over all quantum numbers not specified in the l.h.s. of the equation.

The most general structure of the reaction amplitude can be extracted from Eq.(3.7) as

M̂ (q⃗, p⃗ ′; k⃗) =
∑

S′SMSMS′

|S′MS′⟩ ⟨S′MS′ |M̂ (q⃗, p⃗ ′; k⃗)|SMS⟩ ⟨SMS | . (3.9)

Inserting Eq.(3.7) into Eq.(3.9) and re-coupling gives 1

M̂(q⃗, p⃗ ′ ;⃗k) =
∑

iL−L′−l(−)L
′+l+2J+2S′

[J ′][J ]2MS′J ′SJ
lL′L (q, p′; k)

×
∑

αβ

[β]

⎧

⎪

⎨

⎪

⎩

S′ L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β S′ α

⎫

⎪

⎬

⎪

⎭

[BS ⊗AS′ ]α · [XL (L′l)β ]
α , (3.10)

where we have used the notations BS−MS ≡ (−)S+MS ⟨SMS |, AS′MS′ ≡ |S′MS′⟩, and [J ] ≡
√
2J + 1. Also, [XL (L′l)β]

α is defined as

[XL (L′l)β ]
α ≡

[

YL(k̂)⊗DL′l
β (p̂′, q̂)

]α
, (3.11)

where

DL′l
βM = DL′l

βM (p̂′, q̂) ≡ [YL′(p̂′)⊗ Yl(q̂)]
β
M , (3.12)

and contains all the information on the angular dependence of the reaction amplitude.

The outer summation in Eq. (3.10) is over the quantum numbers S, L, L′, l, and J . In the

1In Eq. (50) of Ref. [83], a factor of [β] is missing. The following equations are, however, correct. Also, the
difference in the phase factors is due to the different coupling scheme adopted here for convenience [(J ′MJ′ lml|JMJ )
as compared to (lmlJ

′MJ′ |JMJ ), [BS⊗AS′ ]α as compared to [AS′⊗BS]
α, and [XL (L′l)β ]

α as compared to [X(lL′)β L]
α.
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above equation S is either 1/2 or 3/2 so that α takes the values 0, 1, and 2, and denotes the rank of

the corresponding tensor. In the above equation it should be understood that the matrix elements

of the meson creation and photon annihilation operators have already been taken.

The rest of this calculation is done for the J = 1/2 Ξ which means S′ = 1/2, but the procedure

extends to Ξ of any spin. We now expand [BS ⊗ A 1
2
]α, for each tensor of rank α, in terms of the

complete set of available spin operators in the problem, i.e., the photon polarization vector ϵ⃗ and

the Pauli spin matrix σ⃗ together with the identity matrix. The result is [83]

[BS ⊗A 1
2
]0 =

1√
6
σ⃗ · ϵ⃗ ,

[BS ⊗A 1
2
]1 =

1√
6
δS, 12

{−ϵ⃗+ i(σ⃗ × ϵ⃗)}−
1√
3
δS, 32

{

ϵ⃗+
i

2
(σ⃗ × ϵ⃗)

}

,

[BS ⊗A 1
2
]2 =

1√
2
[σ⃗ ⊗ ϵ⃗]2 , (3.13)

where the numerical factors are uniquely determined such that the spin matrix elements of the

right-hand side (r.h.s.) in the above equations equal the corresponding matrix elements of the l.h.s.

Analogously, [XL (lL′)β]
α can be expressed in terms of the three momenta available in the prob-

lem, namely, the photon-nucleon relative momentum k⃗, meson momentum q⃗, and the K ′Ξ relative

momentum p⃗ ′. Here a remark is in order concerning the choice of the set of momenta to form

a basis. Since there exist three momenta in the problem, we have a choice of taking any two of

them to form a basis of three momentum-vectors. Here, we choose the pair (k⃗, q⃗) with k⃗ in the

+z-direction and q⃗ in the xz-plane, such that,

n̂1 ≡
(k̂ × q̂)× k̂

|(k̂ × q̂)× k̂|
= n̂2 × k̂ = x̂ , n̂2 ≡

k̂ × q̂

|k̂ × q̂|
= ŷ , (3.14)

and k̂ = ẑ form a basis of mutually orthogonal vectors. Of course, in principle, any choice of the

pair of available momenta to form a basis is equally valid. In practice, however, the suitability of

the choice to define the basis vectors depends on the particular kinematical situation of the problem

at hand. If we are looking at the limit of p⃗ ′ → 0, then, the choice of the pair (k⃗, q⃗), as above,

is the appropriate one, while for q⃗ → 0, the appropriate choice would be the pair (k⃗, p⃗ ′). As we
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discuss in Sec. 3.2.3, the transformation from one choice to another is straightforward and trivial.

When q⃗ = p⃗ ′ = 0 or both of them are non-vanishing, either of the choices is equally suited. As

mentioned above, in this section we consider the choice (k⃗, q⃗). From Eq. (3.11), we, then, have

[XL (L′l)β ]
0 = aβ0L(L′l) ,

[XL (L′l)β ]
1 = aβ1L(L′l) k̂ + bβ1L(L′l) n̂1 + cβ1L(L′l) n̂2 ,

[XL (L′l)β ]
2 = aβ2L(L′l) [k̂ ⊗ k̂]2 + bβ2L(L′l) [n̂1 ⊗ n̂1]

2 + cβ2L(L′l) [k̂ ⊗ n̂1]
2

+ a′β2L(L′l) [k̂ ⊗ n̂2]
2 + b′β2L(L′l) [n̂1 ⊗ n̂2]

2 , (3.15)

where the coefficients aβ0L(L′l), aβ1L(L′l), bβ1L(L′l), and cβ1L(L′l) are derived in Appendix 3.5.1 and the

coefficients aβ2L(L′l), b
β2
L(L′l), etc, in Appendix 3.5.2. Note that [n̂2 ⊗ n̂2]2 is not independent from

those appearing in the last equality above.

Inserting Eqs.(3.13,3.15) into Eq.(3.10) we have

M̂(q⃗, p⃗ ′; k⃗) = M1ϵ⃗ · σ⃗ +M2ϵ⃗ · k̂ +M3ϵ⃗ · n̂1 +M4ϵ⃗ · n̂2

+ M̃2ϵ⃗ · (k̂ × σ⃗) + M̃3ϵ⃗ · (n̂1 × σ⃗) + M̃4ϵ⃗ · (n̂2 × σ⃗)

+M8[σ⃗ ⊗ ϵ⃗]2 · [k̂ ⊗ k̂]2 +M9[σ⃗ ⊗ ϵ⃗]2 · [n̂1 ⊗ n̂1]
2 +M10[σ⃗ ⊗ ϵ⃗]2 · [k̂ ⊗ n̂1]

2

+M11[σ⃗ ⊗ ϵ⃗]2 · [k̂ ⊗ n̂2]
2 +M12[σ⃗ ⊗ ϵ⃗]2 · [n̂1 ⊗ n̂2]

2 . (3.16)

Using the identity

3[ σ⃗ ⊗ ϵ⃗ ]2 · [ â⊗ b̂ ]2 =
3

2
[ σ⃗ · âϵ⃗ · b̂+ σ⃗ · b̂⃗ϵ · â ]− (â · b̂)σ⃗ · ϵ⃗ , (3.17)

where â and b̂ stand for arbitrary unit vectors, Eq. (3.16) can be rewritten as

M̂(q⃗, p⃗ ′; k⃗) = F1 σ⃗ · ϵ⃗+ F2 ϵ⃗ · k̂ + F3 ϵ⃗ · n̂1 + F4 ϵ⃗ · n̂2 + F5 σ⃗ · k̂ ϵ⃗ · k̂ + F6 σ⃗ · n̂1 ϵ⃗ · n̂1

+ F7 [σ⃗ · k̂ϵ⃗ · n̂1] + F8 [σ⃗ · n̂1ϵ⃗ · k̂] + F9 [σ⃗ · n̂2ϵ⃗ · k̂] + F10 [σ⃗ · k̂ϵ⃗ · n̂2]

+ F11 [σ⃗ · n̂1ϵ⃗ · n̂2] + F12 [σ⃗ · n̂2ϵ⃗ · n̂1] , (3.18)
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where

F1 ≡ M1 −
1

3
(M8 +M9) ,

Fi ≡ Mi (i = 2, 3, 4) ,

F5,6 ≡ M8,9

F7,8 ≡
1

2
M10 ± M̃4

F9,10 ≡
1

2
M11 ± M̃3

F11,12 ≡
1

2
M12 ± M̃2

(3.19)

Equation (3.18) is the most general form of the two spinless-meson production amplitude in

photon-induced reaction, consistent with symmetry principles. It is valid for both real and virtual

photons. The coefficients Fi(F̃i) are functions of the energy of the system and scattering angle θq of

one of the two mesons (K) relative to the photon direction, in addition to the relative momentum p⃗ ′

of the other meson with baryon, K ′Ξ. These coefficients are different for a positive- and negative-

parity Ξ as seen in Appendix 3.5.4. For certain scattering angles, half of these amplitudes are

identically zero and the parity of the produce Ξ can be deduced.

3.2.1 Two-meson photoproduction

For photoproduction, due to the transversality of the photon, the amplitude in Eq. (3.18) reduces

to eight structures with eight independent amplitudes,

M̂ = F1 σ⃗ · ϵ⃗+ F3 ϵ⃗ · n̂1 + F4 ϵ⃗ · n̂2 + F6 σ⃗ · n̂1 ϵ⃗ · n̂1

+ F7 [σ⃗ · k̂ϵ⃗ · n̂1] + F10 [σ⃗ · k̂ϵ⃗ · n̂2] + F11 [σ⃗ · n̂1ϵ⃗ · n̂2] + F12 [σ⃗ · n̂2ϵ⃗ · n̂1] , (3.20)
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For a linearly polarized photon with ϵ⃗ = ϵ⃗⊥ ≡ n̂2, we have

M̂⊥ = F4 + F11 σ1 + F1 σ2 + F10 σ3 ≡
3

∑

i=0

M⊥
i σi (3.21)

with four independent amplitudes. σ0 ≡ 1, σ1 = σx, etc.

For ϵ⃗ = ϵ⃗∥ ≡ n̂1,

M̂∥ = F3 + (F1 + F6)σ1 + F12 σ2 + F7 σ3 ≡
3

∑

i=0

M∥
i σi (3.22)

with five amplitudes. Here, one cannot measure F1 and F6 individually, only F1 + F6 without

using different photon polarization. Combining both M̂⊥ and M̂∥ results in eight of the original

twelve amplitudes being measurable. In electro-production with a virtual photon with longitudinal

polarization would be able to access the other four amplitudes in Eq. 3.18.

From the amplitudes in the form given by Eqs. (3.21,3.22), we can calculate all the observables

in this reaction straightforwardly with the help of the results in Appendix 3.5.5. We have (λ =⊥, ∥)

dσλ

dΩ
= |Mλ

0 |2 + |Mλ
1 |2 + |Mλ

2 |2 + |Mλ
3 |2 ,

dσλ

dΩ
Kλ

xx = |Mλ
0 |2 + |Mλ

1 |2 − |Mλ
2 |2 − |Mλ

3 |2 ,

dσλ

dΩ
Kλ

yy = |Mλ
0 |2 − |Mλ

1 |2 + |Mλ
2 |2 − |Mλ

3 |2 ,

dσλ

dΩ
Kλ

zz = |Mλ
0 |2 − |Mλ

1 |2 − |Mλ
2 |2 + |Mλ

3 |2 ,

dσλ

dΩ
(T λi + P λ

i ) = 4Re[Mλ
0 M

λ
i
∗
] ,

dσλ

dΩ
(T λi − P λ

i ) = 4Im[Mλ
j M

λ
k
∗
] ,

dσλ

dΩ
(Kλ

jk −Kλ
kj) = 4ϵjkiIm[Mλ

0 M
λ
i
∗
] ,

dσλ

dΩ
(Kλ

jk +Kλ
kj) = 4Re[Mλ

j M
λ
k
∗
] , (3.23)

where i, j, k can be any of (x, y, z) = (1, 2, 3).

The above results reveal that one is required to measure the single- and double-spin observables

for each of the two photon polarization states (⃗ϵ⊥ and ϵ⃗∥) in order to determine the amplitudes

Mλ
i . This is, of course, an extremely difficult task experimentally.
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3.2.2 Parity Determination

Here we will discuss the consequences of the Ξ parity on the spin structure, Fi. Eqs. 3.11, 3.15,

3.16, and 3.19 show that Fi depends on DL′l
βM . The tensor DL′l

βM is complex in general but each

Fi only depends on Re
[

DL′l
βM

]

or Im
[

DL′l
βM

]

, and never on both. In fact, for each possibility of

the parity of the Ξ, πΞ, half the Fi depend on Re
[

DL′l
βM

]

and the other half on Im
[

DL′l
βM

]

. See

Appendix 3.5.4 for more detail. Table 3.1 displays the dependence of each spin structure coefficient.

There are now two cases to consider, identical kaon production and non-identical kaon production.

Non-identical Kaons

We first discuss the case with non-identical kaons. Here, Im
[

DL′l
βM

]

= 0 when all three final particles

are produced in the same plane, i.e., the scattering plane. To make this more explicit, p̂′ · n̂2 = 0,

or φp′ = 0. The result is that all the Fi’s which depended on Im
[

DL′l
βM

]

are identically zero. This

means that

M̂⊥ = F11 σ1 + F10 σ3 ≡
3

∑

i=0

M⊥
i σi (3.24)

and

M̂∥ = F3 + F12 σ2 ≡
3

∑

i=0

M∥
i σi (3.25)

for πΞ = +1. Here it is obvious to see that M̂⊥ and M̂∥ have the same spin structure as K̄ +N →

K + Ξ for J =1/2 Ξ. Here, M̂∥ and M̂⊥ share the spin structure of πΞ = +1 and −1 respectively,

i.e., M⊥
2 = M⊥

0 = M∥
1 = M∥

3 = 0. This can be seen in Eqs. 2.4.

The case for πΞ = −1 results in

M̂⊥ = F4 + F1 σ2 ≡
3

∑

i=0

M⊥
i σi (3.26)

and

M̂∥ = (F1 + F6) σ1 + F7σ3 ≡
3

∑

i=0

M∥
i σi . (3.27)

Again, the structures of Eqs. 2.4 are seen but now M̂∥ and M̂⊥ share the πΞ = −1 and πΞ result

respectively, i.e., M⊥
1 = M⊥

3 = M∥
0 = M∥

2 = 0 here.
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Table 3.1: Here we show which spin structure coefficients, Fi, depend on the real or imaginary part
of DL′l

βM for a given parity, πΞ, of the produced Ξ.

Re
[

DL′l
βM

]

Im
[

DL′l
βM

]

πΞ = +1 F2, F3, F9, F10, F11, F12 F1, F4, F5, F6, F7, F8

πΞ = −1 F1, F4, F5, F6, F7, F8 F2, F3, F9, F10, F11, F12

This means that the parity of Ξ can be analyzed in the same way that it was in Section 2.1.

For a photon beam with polarization λ = {⊥, ∥},

Kλ
yy =

T λy
P λ
y

=
Kλ

xx

Kλ
zz

= −
Kλ

xz

Kλ
zx

= ζλπΞ , (3.28)

where ζ∥ = 1 and ζ⊥ = −1. These results are the same as in Ref. [125] for one meson photopro-

duction. The spin-density matrix elements of Section 2.1 obey

(−1)
1
2−λ2

ρλ,1λ1,λ2
ρλ,3λ1,−λ2

= (−1)
1
2−λ2

iρλ,2λ1,λ2
ρλ,0λ1,−λ2

= ζλπΞ . (3.29)

Here ρλ,iλ1,λ2 represents the SDM elements associated with a photon beam of polarization ϵ⃗λ = ϵ⃗⊥ or

ϵ⃗∥ and the initial nucleon polarized in the n̂i direction. The set of subscripts λ1,λ2 represent which

SDM element you are dealing with and are related to the Ξ helicity. In fact, Eq. 2.36 applies here

as well for arbitrary J .

(−1)J−λ2
ρλ,1λ1,λ2
ρλ,3λ1,−λ2

= (−1)J−λ2
iρλ,2λ1,λ2
ρλ,0λ1,−λ2

= ζλπΞ . (3.30)

It should be restated that this spin structure and therefore these results are only valid when all

three particles in the final state are produced in the same reaction plane but are independent of

their direction in the plane. This structure is a direct result of the mirror symmetry discussed in

Section 2.1.
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Identical Kaons

If the reaction includes identical kaons in the final state, the amplitude should be symmetric under

their exchange. This added symmetry means that the findings for non-identical kaons can be

extended to production angles where the relative momentum of the two kaons is perpendicular to

the reaction plane, i.e., p̂′ · n̂2 = ±1. This symmetry is most clearly seen if one couples the kaons,

KK, in the final state instead of coupling the cascade with a kaon, KΞ. Once the amplitude has

been made symmetric, all terms with odd L′ must be zero. Because of this, Im
[

DL′l
βM

]

= 0 when

p̂′ · n̂2 = ±1 and the results of Eq. 3.28 are valid again. Note that Eq. 3.28 is still true for scattering

in the reaction plane, p̂′ · n̂2 = 0. Production of identical kaons is therefore more readily analyzed

in this way because it offers additional kinematic regions to employ these results.

3.2.3 Hard and soft meson photoproductions

In the previous section, we have considered two-meson photoproduction off a nucleon in its gen-

erality. In this section, we consider the case of a hard and a soft kaon production. Hard kaon

production means that one of the two kaons, K, carries most of the momentum and, consequently,

the (other) kaon-cascade pair (K ′Ξ) is in the S-wave (p⃗ ′ → 0). The soft meson production means

the other way around, i.e., one of the two kaons has low momentum (q⃗ → 0), basically in the

s-wave, and the kaon-cascade pair (K ′Ξ) carries most of the momentum. These correspond to the

low- and high-energy region, respectively, in the K ′Ξ invariant mass distribution.

Let’s first consider the hard meson production case. From the considerations in Appendix 3.5.4,

we see that the coefficients aβ0L(L′l) (Eq. (3.76)), cβ1L(L′l) (Eq. (3.83)) aβ2L(L′l), bβ2L(L′l) and cβ2L(L′l)

(Eq. (3.88)), all vanish when p⃗ ′ → 0, i.e., they contain no L′ = 0 partial waves. These lead to

Fi = 0 (i = 1, 4, 8, 9, 10) and F̃4 = 0 in Eq. (3.20). So, in this limit, the two-kaon photoproduction

amplitude reduces to

M̂ = F3 ϵ⃗ · n̂1 + F̃2 ϵ⃗ · (k̂× σ⃗)+ F̃3 ϵ⃗ · (n̂1× σ⃗)+F11 σ⃗ · k̂ϵ⃗ · n̂2+F12 [σ⃗ · n̂1ϵ⃗ · n̂2 + σ⃗ · n̂2ϵ⃗ · n̂1] , (3.31)
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and we are left with only four independent amplitudes {Fi} to be determined. 2

As discussed in Sec. 3.2, in the case of q⃗ = 0 and p⃗ ′ ̸= 0, we should use the vectors k⃗ and

p⃗ ′ to form a basis of three mutually orthogonal vectors instead of the vectors k⃗ and q⃗ as have

been used so far in the present note. This means that the soft kaon production amplitude is given

by Eq. (3.31) with the momenta q⃗ and p⃗ ′ interchanged everywhere (q⃗ ↔ p⃗ ′), including in the

definitions of n̂1 and n̂2 given by Eq. (3.14). Alternatively, we may just call p⃗ ′ the momentum of

one of the produced kaons (K) and, q⃗ the relative momentum of the other meson with the cascade

(K ′Ξ) in all the expressions in this note.

3.3 Modeling the Photoproduction Amplitude

3.3.1 Modeling the Reaction N → K +K + Ξ

In the present work, the amplitude, T̄ , for the reaction N(p) → K(q1) + K(q2) + Ξ(p′) is simply

obtained from the K̄-induced reaction process of the previous section, by first turning the K̄ leg

around in the amplitude given by Eq. (3.33) (cf. Fig. 3.4), in addition to reversing the direction of

the arrow. Then, the corresponding reaction amplitude is given as

T̄ = T̄r + T̄c . (3.32)

A diagrammatic representation of T̄ is given in Fig. 3.3.

The operation of turning one of the kaon legs and reversing the direction of the arrow corre-

sponds to |jm⟩ → (−)j−m ⟨j −m|, where j = 1/2 and m denote the isospin and its projection of

that kaon, so that, |K−⟩ → − ⟨K+| and |K̄0⟩ → ⟨K0|. In addition, one should reverse the direction

of the kaon momentum corresponding to the leg turned around. The amplitude T̄r may be obtained

directly by calculating the Feynman diagram of Fig. 3.3.

Let’s now derive explicitly the amplitude T̄ from T of the previous section. To this end we start

2The structure in Eq. (3.31) is equivalent (as it should be) to that given in Eq. (16) of Ref. [83] for a single
pseudoscalar-meson photoproduction when the final state baryon B has a negative parity. Note that, in Ref. [83],
the amplitude has been expanded using the set of momenta (k̂, q̂, n̂2) instead of the set (k̂, n̂1, n̂2) used in this work.
The two sets are related to each other by q̂ = cos θqk̂ + sin θqn̂1.
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= +

T̄cT̄

K(q1) K(q2)

N Ξ

Λ, Σ

T̄r

Figure 3.3: T̄r: Λ and Σ hyperon exchange amplitude obtained from Tr of Fig. 3.4. T̄c: contact
amplitude obtained from Tc of Fig. 3.4. Symmetrization of the two kaons are not shown but it is
implied.

with the reaction K̄ +N → K + Ξ and write the amplitude T as

T = Tr + Tc , (3.33)

where Tr stands for the sum of the s- and u-channel Feynman diagrams as depicted in Fig. 3.4 and,

Tc, for the phenomenological contact term also depicted in Fig. 3.4.

K̄ K

N Ξ

Λ, Σ

Tr Tc

Figure 3.4: Diagrams included in the model of Ref. [122] and Section 2.2.1. Tr : s- plus u-channel
Λ and Σ hyperon exchange amplitude. Tc: contact amplitude.

The partial wave decomposition of T in the center-of-momentum (c.m.) frame of the system is

⟨
1

2
ms′

∣

∣T (p⃗ ′, p⃗ )
∣

∣

1

2
ms⟩ =

∑

(
1

2
ms′L

′ML′

∣

∣JMJ)(
1

2
msLML

∣

∣JMJ ) YL′ML′ (p̂
′) Y ∗

LML
(p̂) T JT

L′L(p
′, p)P̂T ,

(3.34)

where the summation in Eq. (3.34) runs over all the quantum numbers not appearing on the

left-hand-side of the equation. It should be noted that L′ = L by symmetry, but we keep them
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distinguished for later convenience. P̂I stands for the total isospin projection operator. Explicitly,

P̂T=0 ≡
1

4
(3− τ⃗1 · τ⃗2) , P̂T=1 ≡

1

4
(1 + τ⃗1 · τ⃗2) , (3.35)

for the total isospin T = 0 and T = 1, respectively. Note that the spin matrix element given by

Eq. (3.34) is still an operator in isospin space. Now we perform the appropriate angular momenta

recouplings and reverse the sign of the K̄ momentum whose leg is turned around to obtain T̄ . We

begin by writing

T (p⃗ ′, p⃗ ) =
∑

ms′ ,ms

|
1

2
ms′⟩ ⟨

1

2
ms′

∣

∣T (p⃗ ′, p⃗)
∣

∣

1

2
ms⟩ ⟨

1

2
ms|

=
∑

|JMJ⟩T JT
L′L(p

′, p)⟨JMJ |P̂T , (3.36)

where

|JMJ ⟩ ≡
∑

ms′ ,ML′

(
1

2
ms′L

′ML′ |JMJ ) YL′ML′ (p̂
′) |

1

2
ms′⟩ ,

⟨JMJ | ≡
∑

ms,ML

(
1

2
msLML|JMJ ) Y

∗
LML

(p̂) ⟨
1

2
ms| . (3.37)

Using the identity

(l0l′0|L0)
√
4π

[L]
YLML(p̂) =

4π

[ll′]

∑

ml,ml′

(l,mll
′ml′ |LML) Ylml

(p̂) Yl′ml′
(p̂)

=
4π

[ll′]
(−)l

′ ∑

ml,ml′

(l,mll
′ml′ |LML) Ylml

(p̂) Yl′ml′
(−p̂) , (3.38)
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with [j1...jn] ≡
√
2j + 1...

√
2jn + 1, the last quantity in Eq. (3.37) can be rewritten as

⟨JMJ | ≡
√
4π

[L]

[ll′]

(−)l
′

(l0l′0|L0)
∑

ms,ML

(
1

2
msLML|JMJ ) ⟨

1

2
ms|

∑

ml,ml′

(l,mll
′ml′ |LML) Y

∗
lml

(p̂) Y ∗
l′ml′

(−p̂)

=
√
4π

[JL]

[ll′]

(−)−J+ 1
2

(l0l′0|L0)
∑

ML

(LMLL−ML|00)
[

∑

ml,ml′

(l,mll
′ml′ |LML) Ylml

(p̂) Yl′ml′
(−p̂)

]

×
∑

ms

(
1

2
msJMJ |L−ML) B 1

2ms
, (3.39)

where we have introduced the notation B 1
2ms

≡ (−)
1
2−ms ⟨12 −ms|.

Inserting Eq. (3.39) into Eq. (3.36), we obtain

T (p⃗ ′, p⃗ ) =
∑√

4π
[JL]

[ll′]

(−)−J+ 1
2

(l0l′0|L0)
T JT
L′L(p

′, p)P̂T

∑

ML

(LMLL−ML|00)

×
[

∑

ml,ml′

(l,mll
′ml′ |LML) Ylml

(p̂) Yl′ml′
(−p̂)

][

∑

ms,MJ

(
1

2
msJMJ |L−ML) B 1

2ms
|JMJ ⟩

]

.

(3.40)

The above form of T is suited for angular momenta recouplings. Performing the appropriate

recouplings, we have

T (p⃗ ′, p⃗ ) =
∑√

4π
[JL]

[ll′]

(−)−J−l′−j

(l0l′0|L0)
T JT
L′L(p

′, p)[jL]

⎧

⎪

⎨

⎪

⎩

l l′ L

J 1
2 j

⎫

⎪

⎬

⎪

⎭

∑

mj

(jmjj −mj |00)

×
[

∑

ml′MJ

(l′ml′JMJ |jmj) Yl′ml′
(−p̂) |JMJ ⟩

][

∑

mlms

(lml
1

2
ms|j −mj) Ylml

(p̂) B 1
2ms

]

P̂T

=
∑√

4π
[JL]

[jll′]

(−)−J+L+j

(l0l′0|L0)
T JT
L′L(p

′, p)[jL]

⎧

⎪

⎨

⎪

⎩

l l′ L

J 1
2 L

⎫

⎪

⎬

⎪

⎭

×
∑

mj

[

∑

ml′MJ

(l′ml′JMJ |jmj) Yl′ml′
(−p̂) |JMJ ⟩

][

∑

msml

(
1

2
mslml|jmj) Y

∗
lml

(p̂) ⟨
1

2
ms|

]

P̂T .

(3.41)

Finally, to obtain T̄ from T given above, we reverse the direction of the K̄ momentum (note

that in the c.m. frame of K̄N , p⃗ is the nucleon momentum and, −p⃗, the K̄ momentum). This is
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done by using the relation Yl′ml′
(−p̂) = (−)l

′
Yl′ml′

(p̂). We then have

T̄ (q⃗1, q⃗2, p⃗
′; p⃗ ) =

∑

[

|
1

2
ms′⟩ ⟨

1

2
ms|

]

P̂T (
1

2
ms′L

′ML′ |JMJ )YL′ML′ (p̂
′) (l′ml′JMJ |jmj)

× Yl′ml′
(q̂1) (

1

2
mslml|jmj)Y

∗
lml

(p̂) T̄ jJT
l′L′l(q1, q2, p

′; p) , (3.42)

with q⃗1 ≡ p⃗ denoting the momentum of the outgoing kaon (in the c.m. frame of the final KΞ

subsystem) obtained by turning the K̄ from the initial state to the final state. q⃗2 = −p⃗ ′ is the

momentum of the other kaon. We have also used Eq. (3.37) for |JMJ⟩. The partial-wave matrix

element T̄ jJI
l′L′l(q1, q2, p

′; p) in the above equation is given by

T̄ jJT
l′L′l(q1, q2, p

′; p) =
√
4π

∑

L

[JL]

[jll′]

(−)−J+l′+L+j

(l0l′0|L0)
T JT
L′L(p

′, p)[jL]

⎧

⎪

⎨

⎪

⎩

l l′ L

J 1
2 L

⎫

⎪

⎬

⎪

⎭

. (3.43)

Note that T JI
L′L(p

′, p) is non-vanishing only for L = L′, so the summation over L reduces actually

to a single term.

Taking the spin matrix element of T̄ in Eq. (3.42), we have

⟨
1

2
ms′

∣

∣T̄ (q⃗1, q⃗2, p⃗
′; p⃗ )

∣

∣

1

2
ms⟩ =

∑

(
1

2
ms′L

′ML′ |JMJ ) YL′ML′ (p̂
′) (l′ml′JMJ |jmj) Yl′ml′

(q̂1)

× T̄ jJT
l′L′l(q1, q2, p

′; p) (
1

2
mslml|jmj) Y

∗
lml

(p̂) P̂T . (3.44)

3.3.2 Current from T̄r

As discussed in Section 3.1, the photoproduction amplitude is found by attaching the photon

everywhere in the N → K+K+Ξ amplitude, T̄ . This amplitude was decomposed into T̄ = T̄r+ T̄c.

The process of attaching a photon everywhere in T̄r has been done in Ref. [54] and here we briefly

discuss what was done there.

Attaching to the external kaon legs is done via diagrams (a) and (b) in Figure 3.5. Attaching

to the external baryon legs is shown in diagrams (c) and (e) with N ′ = N and Ξ′ = Ξ. Attaching

the photon to the internal structure of T̄r is shown in diagrams (f), (g), and (d) with Y ′ = Y .

It should be pointed out that diagrams with N ′ ̸= N , Ξ′ ̸= Ξ, Y ′ ̸= Y , and K∗ exchanges can
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γ(k) K(q1) K(q2)

N(p) Y Ξ(p′)
(a)

γ K K

N Y Ξ

(b)

γ K K

N N′ Y Ξ

(c)

γ K K

N Y Y ′ Ξ

(d)

γ K K

N Y ΞΞ′
(e)

γ K K

N Y Ξ

K
*

(h)

γ K K

N Y Ξ

K
*

(i)

C1

γ K K

N Y Ξ

(f)

C2

γ K K

N Y Ξ

(g)

Figure 3.5: Diagrams included in Ref. [54]. The intermediate baryon states are denoted as N ′ for
the nucleon and ∆ resonances, Y , Y ′ for the Λ and Σ resonances, and Ξ′ for Ξ(1318) and Ξ(1530).
The intermediate mesons in the t channel are K [(a) and (b)] and K∗ [(h) and (i)]. The diagrams
(f) and (g) contain the generalized contact currents that maintain gauge invariance of T̄r. Diagrams
corresponding to (a)−(i) with K(q1) ↔ K(q2) are also understood.

not be obtained by the gauge derivative technique described in Section 3.1 but are transverse

amplitudes, kµMµ = 0, and therefore do not disturb the Ward-Takahashi identity. These diagrams
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are easily identifiable and are included by hand. The contact terms C1 and C2 of (f) and (g) are

the generalized 4-point contact terms which arise from form-factors used in the vertices and also

include the usual Kroll-Ruderman contact currents. For further detail, see Ref. [54].

3.3.3 External Current from T̄c

Here, we calculate the external currents arising from the photon attaching to the external legs of T̄c

(cf. Fig. 3.1). Since T̄c is obtained from a direct parametrization of the (physical) on-shell amplitude

Tc, there is no information on the matrix elements of T̄c involving wave functions corresponding to

negative-energy particle propagations. We therefore set those contributions to be identically zero

in the c.m. frame of the KΞ pair in the N → KKΞ subsystem. Note that this implies that we must

evaluate the photoproduction amplitude Mµ
c arising from T̄c in that frame, where we can drop the

negative-energy baryon and kaon propagations in their propagators.

The spin-1/2 baryon propagator can be decomposed into a positive- and a negative-energy

propagation part as

Sj(p) =

(

m

εj(p)

)

∑

ms

(

|uj(p⃗,ms)⟩ ⟨ūj(p⃗,ms)|
p0 − εj(p) + iη

+
|vj(−p⃗,ms)⟩ ⟨v̄j(−p⃗,ms)|

p0 + εj(p)− iη

)

. (3.45)

Analogously, the pseudoscalar-meson propagator can be decomposed as

∆(q) =
1

2ω(q)

(

1

q0 − ω(q) + iη
−

1

q0 + ω(q)− iη

)

. (3.46)

Using the above decomposition of the propagators, we have, for the external currents in the

c.m. frame of the KΞ pair in the N → KKΞ subsystem, the following:

T̄ µ
cN ≡ ⟨ūΞ(p⃗ ′,ms′)

∣

∣T̄c iSN Γµ
NNγ

∣

∣uN (p⃗,ms)⟩

= i
mN

εN (p′′)

∑

ms′′

⟨
1

2
ms′

∣

∣T̄c(q⃗1, q⃗2, p⃗
′; p⃗ ′′)

∣

∣

1

2
ms′′⟩

1

p′′0 − εN (p′′) + iη

× ⟨ūN (p⃗ ′′,ms′′)
∣

∣Γµ
NNγ(k)

∣

∣uN (p⃗,ms)⟩ , (3.47)

where the intermediate nucleon four-momentum is p′′ = p+ k. Note that, here, q⃗2 = −p⃗ ′.
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T̄ µ
cK1

≡ ⟨ūΞ(p⃗ ′,ms′)
∣

∣Γµ
K1K1γ

i∆K1T̄c

∣

∣uN (p⃗,ms)⟩

= i
1

2ω(q′′)
Γµ
K1K1γ

(q1, q
′′)

1

q′′0 − ω(q′′) + iη
⟨
1

2
ms′

∣

∣T̄c(q⃗
′′, q⃗2, p⃗

′; p⃗ )
∣

∣

1

2
ms⟩ , (3.48)

where the four-momentum of the intermediate kaon is q′′ = q1 − k. Here also, q⃗2 = −p⃗ ′.

T̄ µ
cK2

≡ ⟨ūΞ(p⃗ ′,ms′)
∣

∣Γµ
K2K2γ

i∆K2T̄c

∣

∣uN (p⃗,ms)⟩

= i
1

2ω(q′′)
Γµ
K2K2γ

(q2, q
′′)

1

q′′0 − ω(q′′) + iη
⟨
1

2
ms′

∣

∣T̄c(q⃗1, q⃗
′′, p⃗ ′; p⃗ )

∣

∣

1

2
ms⟩ , (3.49)

where the four-momentum of the intermediate kaon is q′′ = q2 − k. Note here that q⃗1 = p⃗.

T̄ µ
cΞ ≡ ⟨ūΞ(p⃗ ′,ms′)

∣

∣Γµ
ΞΞγ iSΞ T̄c

∣

∣uN (p⃗,ms)⟩

= i
mΞ

εΞ(p′′)

∑

ms′′

⟨ūΞ(p⃗ ′,ms′)
∣

∣Γµ
ΞΞγ(k)

∣

∣uΞ(p⃗
′′,ms′′)⟩

1

p′′0 − εΞ(p′′) + iη

× ⟨
1

2
ms′′

∣

∣T̄c(q⃗1, q⃗2, p⃗
′′; p⃗ )

∣

∣

1

2
ms⟩ , (3.50)

where the intermediate Ξ four-momentum is p′′ = p′ − k. Also, q⃗1 = p⃗.

Note that the T̄ µ
c i (i = N,K1,K2,Ξ) above is Lorentz invariant since T̄c is Lorentz invariant.

Thus, it can be readily obtained in any Lorentz frame once it is evaluated in the c.m. frame of the

KΞ pair in the N → KKΞ subsystem.

3.3.4 Phenomenological five-point contact current

In Ref. [53], T̄ µ
r has been constructed (see Fig. 3.1) which satisfies Eq. (3.5). To construct the five

point contact current T̄ µ
c – corresponding to the pure phenomenological contact amplitude T̄c –

94



that obeys Eq. (3.5), we follow Ref. [123] and make the ansatz

T̄ µ
c = −

[

T̄c(q1, q2, p
′; p+ k)−W (q1, q2, p

′; p, k)
]QN (2p + k)µ

(p+ k)2 − p2

−
QΞ(2p′ − k)µ

(p′ − k)2 − p′2

[

T̄c(q1, q2, p
′ − k; p)−W (q1, q2, p

′; p, k)
]

−
QK1(2q1 − k)µ

(q1 − k)2 − q21

[

T̄c(q1 − k, q2, p
′; p)−W (q1, q2, p

′; p, k)
]

−
QK2(2q2 − k)µ

(q2 − k)2 − q22

[

T̄c(q1, q2 − k, p′; p)−W (q1, q2, p
′; p, k)

]

, (3.51)

where Qi denotes the charge operator for particle i and W is a function to be chosen to ensure that

each term here is free of propagator singularities. It is trivial to verify that T̄ µ
c given above satisfies

Eq. (3.5) due to total charge conservation QN −QΞ −QK1 −QK2 = 0.

The simplest choice of the function W in Eq. (3.51) may be

W (q1, q2, p
′; p, k) =T̄c(q1, q2, p

′; p)

+
[

(p+ k)2 − p2
][

(p′ − k)2 − p′2
][

(q1 − k)2 − q21
][

(q2 − k)2 − q22
]

R(q1, q2, p
′; p, k) ,

(3.52)

where R(q1, q2, p′; p, k), except for symmetry constraints, is largely arbitrary (and may be equal to

zero).

Finally, we should mention that there are diagrams contributing to the photoproduction am-

plitude that cannot be obtained by the gauge derivative method employed here. However, those

diagrams are all transverse currents and, therefore, do not affect gauge invariance of the full am-

plitude. They are included in our model [53].

3.4 Chapter Summary

The Ward-Takahashi Identity must be satisfied for an amplitude to be gauge invariant. Because our

model for K̄+N → K+Ξ had several independent amplitudes, namely Tr and Tc, the corresponding

interaction currents are expected to satisfy the WTI individually for interaction currents and are
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thereby constrained by the gauge invariance condition. A general photoproduction model consistent

with the K̄+N → K+Ξmodel used in the previous chapter was presented. The interaction current

associated with Tr has been developed in Ref. [53] and this model was adopted here. Following

Ref. [123], an interaction current associated with the phenomenological contact amplitude, Tc, was

given.

It was shown in the previous chapter that spin observables are important in discerning the

spin and parity of produced Ξ or Ξ∗. To that end, we decompose the production amplitude for

γ +N → K +K + Ξ(Ξ∗) into it’s most general spin structures and derive the angular dependence

of each of these. Parity conservation puts a restriction on the angular dependence of each spin

amplitude. Because the reaction has a 3-body final state, this angular dependence is much more

complicated than the two-body K̄-induced reaction and the reflection symmetry is not as easily

exploited. Nonetheless, for certain production angles, this symmetry has serious consequences,

especially for the case where two identical Kaons are created. The spin observables are calculated

based on these spin amplitudes and a set of observables that is sensitive to the Ξ or Ξ∗ parity is

given. This analysis is only done for spin-1/2 Ξs but is a general procedure and may be extended

to higher spin resonances.
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3.5 Appendixes

3.5.1 Appendix F: aβ0L(L′l), a
β1
L(L′l), b

β1
L(L′l), c

β1
L(L′l)

The quantity aβ0L(L′l) in Eq. (3.15) can be calculated directly from the definition of [Xl(L′l)β]
α given

by Eq. (3.11). We have

aβ0L(L′l) = δβL(L0L0|00)
[L]√
4π

DL′l
L0 = δβL

(−)L√
4π

DL′l
L0 . (3.53)

To extract the coefficients aβ1L(L′l), b
β1
L(L′l) and cβ1L(L′l) in Eq.(3.55), we start by expanding [XL (L′l)β ]

1

in terms of the complete set of mutually orthogonal vectors {êm} (m = 0,±1), i.e.,

[XL (L′l)β ]
1 =

+1
∑

m=−1

am êm , (3.54)

where am = [XL (L′l)β]
1 · êm. It is, then, immediate that

[XL (L′l)β]
1 =

[L]√
4π

{

(L0β0|10)DL′ l
β0 ê0 − (L0β1|11)DL′ l

β1 ê−1 − (L0β − 1|1− 1)DL′l
β−1 ê+1

}

=
[L]√
4π

{

(L0β0|10)DL′ l
β0 ê0 − (L0β1|11)

[

DL′l
β1 ê−1 + (−)L+L′+lDL′l

β1
∗
ê+1

]}

=
[L]√
4π

{

(L0β0|10)DL′ l
β0 k̂ −

1√
2
(L0β1|11)

×
[(

DL′l
β1 − (−)L+L′+lDL′l

β1
∗)

n̂1 − i
(

DL′l
β1 + (−)L+L′+lDL′l

β1
∗)

n̂2

]

}

, (3.55)

where we have used the property

DL′l
β−M = (−)L

′+l−β+MDL′l
βM

∗
. (3.56)
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From Eq. (3.55), the coefficients aβ1L(L′l), b
β1
L(L′l) and cβ1L(L′l) in Eq. (3.15) can be identified as

aβ1L(L′l) =
[L]√
4π

(L0β0|10)DL′ l
β0 ,

=
[L]√
4π

(L0β0|10)
1

2

(

DL′l
β0 + πBD

L′l
β0

∗)
,

bβ1L(L′l) = −
[L]√
4π

(L0β1|11)
1√
2

(

DL′l
β1 − (−)L+L′+lDL′l

β1
∗)

,

= −
[L]√
4π

(L0β1|11)
1√
2

(

DL′l
β1 + πBD

L′l
β1

∗)
,

cβ1L(L′l) = −
[L]√
4π

(L0β1|11)
−i√
2

(

DL′l
β1 + (−)L+L′+lDL′l

β1
∗)

.

=
[L]√
4π

(L0β1|11)
i√
2

(

DL′l
β1 − πBD

L′l
β1

∗)
(3.57)

In Appendix 3.5.4, the above results are particularized for the case of a positive and negative

baryon B.

3.5.2 Appendix G: aβ2L(L′l), b
β2
L(L′l), c

β2
L(L′l), a

′β2
L(L′l), b

′β2
L(L′l)

Taking the scalar product of the last equality in Eq.(3.15) with [k̂⊗ k̂]2, [n̂1⊗n̂1]2, [k̂⊗n̂1]2, [k̂⊗n̂2]2

and [n̂1 ⊗ n̂2]2, respectively, and using the results

[k̂ ⊗ k̂]2 · [k̂ ⊗ k̂]2 = [n̂1 ⊗ n̂1]
2 · [n̂1 ⊗ n̂1]

2 =
2

3
,

[k̂ ⊗ k̂]2 · [n̂1 ⊗ n̂1]
2 = −

1

3
,

[k̂ ⊗ n̂1]
2 · [k̂ ⊗ n̂1]

2 =
1

2
,

[k̂ ⊗ n̂2]
2 · [k̂ ⊗ n̂2]

2 =
1

2
,

[n̂1 ⊗ n̂2]
2 · [n̂1 ⊗ n̂2]

2 =
1

2
, (3.58)
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with all the other scalar products vanishing identically (because they involve a pair of different

parity tensors), we have

aβ2L(L′l) = 2u+ v ,

bβ2L(L′l) = u+ 2v ,

cβ2L(L′l) = 2w ,

a′β2L(L′l) = 2r ,

b′β2L(L′l) = 2t ,

(3.59)

where

u ≡ [YL(k̂)⊗DL′l
β (p̂′, q̂)]2 · [k̂ ⊗ k̂]2 ,

v ≡ [YL(k̂)⊗DL′l
β (p̂′, q̂)]2 · [n̂1 ⊗ n̂1]

2

w ≡ [YL(k̂)⊗DL′l
β (p̂′, q̂)]2 · [k̂ ⊗ n̂1]

2

r ≡ [YL(k̂)⊗DL′l
β (p̂′, q̂)]2 · [k̂ ⊗ n̂2]

2 ,

t ≡ [YL(k̂)⊗DL′l
β (p̂′, q̂)]2 · [n̂1 ⊗ n̂2]

2

(3.60)

Choosing the quantization axis ẑ along k⃗ and q⃗ in the xz-plane, the quantities u, v, w, r and t

can be expressed without loss of generality as (using the relations given in the following subsection

in this Appendix)

99



u =
1√
4π

√

2

3
[L](L0β0|20)DL′ l

β0 ,

=
[L]√
4π

√

1

6
(L0β0|20)

(

DL′l
β0 − πBD

L′l
β0

∗)
,

v =

√

2

15
[L]

∑

M

(−)M (L0βM |2M)DL′l
βMY2−M (n̂1)

=

√

2

15
[L]

[

(L0β0|20)Y20(n̂1)D
L′l
β0 − (L0β1|21)Y21(n̂1)

(

DL′l
β1 + (−)L+L′+lDL′l

β1
∗)

+(L0β2|22)Y22(n̂1)
(

DL′l
β2 + (−)L+L′+lDL′l

β2
∗)]

,

=
[L]√
4π

[

−
1√
6
(L0β0|20)DL′ l

β0 +
1

2
(L0β2|22)

(

DL′l
β2 − πBD

L′l
β2

∗)
]

,

w =
[L]√
3

∑

M

(−)M (L0βM |2M)(101M |2M)DL′ l
βM Y1−M (n̂1)

=
[L]√
3

[

(L0β0|20)(1010|20)DL′ l
β0 Y10(n̂1)− (L0β1|21)(1011|21)

(

DL′l
β1 + (−)L+L′+lDL′l

β1
∗)

Y11(n̂1)
]

,

= −
[L]√
4π

1

2
(L0β1|21)

(

DL′l
β1 − πBD

L′l
β1

∗)
,

r =
[L]√
3

∑

M

(−)M (L0βM |2M)(101M |2M)DL′ l
βM Y1−M (n̂2)

=
[L]√
3

[

(L0β0|20)(1010|20)DL′ l
β0 Y10(n̂2)− (L0β1|21)(1011|21)

(

DL′l
β1 − (−)L+L′+lDL′l

β1
∗)

Y11(n̂2)
]

,

= i
[L]√
4π

1

2
(L0β1|21)

(

DL′l
β1 + πBD

L′l
β1

∗)
,

t =

√
4π

3
[L]

∑

M

(−)M (L0βM |2M)DL′ l
βM [Y1(n̂1)⊗ Y1(n̂2)]

2
−M

=

√
4π

3
[L]

[

(L0β0|20)DL′ l
β0 [Y1(n̂1)⊗ Y1(n̂2)]

2
0 − (L0β1|21)

(

DL′l
β1 − (−)L+L′+lDL′l

β1
∗)

[Y1(n̂1)⊗ Y1(n̂2)]
2
1

+(L0β2|22)
(

DL′l
β2 − (−)L+L′+lDL′l

β2
∗)

[Y1(n̂1)⊗ Y1(n̂2)]
2
2

]

= −i
[L]√
4π

1

2
(L0β2|22)

(

DL′l
β2 + πBD

L′l
β2

∗)
.

(3.61)

In Appendix 3.5.4, the above results are particularized for the case of a hyperon Ξ(Ξ∗) with

parity πB.
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3.5.3 Appendix H: Mi

The coefficients Mi in Eq. (3.16) are given by

M1 =
πB
2
√
3

∑

iL−L′−l(−)J+
1
2 [J ′][J ]2M

1
2J

′ 1
2J

lL′L (q, p′; k)

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J L

⎫

⎪

⎬

⎪

⎭

aL0L(L′l) , (3.62)

M2 =
∑

iL−L′−l(−)L
′+l+1[J ′][J ]2M

1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
+

1√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
aβ1L(L′l) , (3.63)

M3 =
∑

iL−L′−l(−)L
′+l+1[J ′][J ]2M

1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
+

1√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
bβ1L(L′l) , (3.64)

M4 =
∑

iL−L′−l(−)L
′+l+1[J ′][J ]2M

1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
+

1√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
cβ1L(L′l) , (3.65)

M̃2 =
∑

iL−L′−l(−)L
′+l+ 1

2 [J ′][J ]2M
1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
−

1

2
√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
aβ1L(L′l) , (3.66)

M̃3 =
∑

iL−L′−l(−)L
′+l+ 1

2 [J ′][J ]2M
1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
−

1

2
√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
aβ1L(L′l) , (3.67)

M̃4 =
∑

iL−L′−l(−)L
′+l+ 1

2 [J ′][J ]2M
1
2J

′SJ
lL′L (q, p′; k)

×
∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎡

⎢

⎣

1√
6

⎧

⎪

⎨

⎪

⎩

1
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 12
−

1

2
√
3

⎧

⎪

⎨

⎪

⎩

3
2 L J

β 1
2 1

⎫

⎪

⎬

⎪

⎭

δS, 32

⎤

⎥

⎦
cβ1L(L′l) , (3.68)
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M8 =
1√
2

∑

iL−L′−l(−)L+l[J ′][J ]2MJ ′SJ
lL′L (q, p′; k)

∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β 1
2 2

⎫

⎪

⎬

⎪

⎭

aβ2L(L′l) ,

(3.69)

M9 =
1√
2

∑

iL−L′−l(−)L+l[J ′][J ]2MJ ′SJ
lL′L (q, p′; k)

∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β 1
2 2

⎫

⎪

⎬

⎪

⎭

bβ2L(L′l) ,

(3.70)

M10 =
1√
2

∑

iL−L′−l(−)L+l[J ′][J ]2MJ ′SJ
lL′L (q, p′; k)

∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β 1
2 2

⎫

⎪

⎬

⎪

⎭

cβ2L(L′l) ,

(3.71)

M11 =
1√
2

∑

iL−L′−l(−)L+l[J ′][J ]2MJ ′SJ
lL′L (q, p′; k)

∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β 1
2 2

⎫

⎪

⎬

⎪

⎭

a′β2L(L′l) ,

(3.72)

M12 =
1√
2

∑

iL−L′−l(−)L+l[J ′][J ]2MJ ′SJ
lL′L (q, p′; k)

∑

β

[β]

⎧

⎪

⎨

⎪

⎩

1
2 L′ J ′

l J β

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

S L J

β 1
2 2

⎫

⎪

⎬

⎪

⎭

b′β2L(L′l) ,

(3.73)

where the coefficients aβαL(L′l), b
βα
L(L′l), etc, are derived in Appendices A and B, and particularized

for the case of a positive- and negative-parity baryon B in Appendix 3.5.4.

3.5.4 Appendix I: Coefficients for Positive and Negative Parity Ξ

In the following, we choose the quantization axis ẑ along k⃗ and q⃗ to be in the xz-plane, as have

been chosen in Eq. (3.8), without loss of generality.

As stated at the end of the paragraph below Eq. (3.7), for a positive parity baryon B, total

parity conservation demands that (−)L+L′+l = −1. Likewise, for a negative parity B, we have

(−)L+L′+l = +1. Let’s see what do these conditions imply for [XL (lL′)β ]
α in Eq. (3.11).

For α = 0 (Eq. (3.53)) :
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We see from Eq. (3.56) that DL′l
L0 must be purely imaginary for a positive parity baryon B.

Note that Ylml
(q̂) = Ylml

(θq,φq = 0) is real, so the complex nature of DL′l
L0 is determined solely by

YL′ML′ (p̂
′) alone. Now, YL′ML′ (p̂

′ = ẑ)
(

= δML′0[L
′]/

√
4π

)

, YL′ML′ (θp′ ,φp′ = 0) and YL′0(p̂′) are all

real. This implies that

DL′l
L0 =

∑

ML′

(L′ML′l −ML′ |L0)YL′ML′ (p̂
′)Yl−ML′ (q̂) , (3.74)

vanishes when p̂′ = ẑ, φp′ = 0 or ML′ = 0 for a positive parity baryon. For DL′l
L0 not to vanish

for φp′ ̸= 0, one should necessarily have ML′ ̸= 0 and, consequently, L′, l > 0. Note also that DL′l
L0

vanishes identically unless L > 0. These features of DL′l
L0 for a positive parity baryon can be made

explicit by rewriting it as

DL′l
L0 =

[

1

sin θp′ sinφp′
DL′l

L0

]

(p̂′ · n̂2) . (3.75)

On the other hand, for a negative parity baryon B, DL′l
L0 must be purely real, which implies just

the opposite conditions discussed above for a positive parity baryon. In particular, L,L′, l = 0 are

allowed. We, therefore, leave DL′l
L0 in the original form given by Eq. (3.74).

Summarizing, for a positive parity baryon B, we write

aβ0L(L′l) = δβL
(−)L√
4π

[

1

sin θp′ sinφp′
DL′l

L0

]

(p̂′ · n̂2) , (3.76)

and, for a negative parity baryon,

aβ0L(L′l) = δβL
(−)L√
4π

DL′l
L0 . (3.77)

For α = 1 (Eq. (3.55)) :

First, for the coefficient aβ1L(L′l) in Eq. (3.57), we see that (L0β0|10) ̸= 0 only for β = L ± 1.

Combining this with Eq. (3.56), it implies thatDL′l
β0 is purely real(imaginary) for a positive(negative)

parity baryon B. Therefore, for a positive parity B, DL′l
β0 in Eq. (3.57) is left in its original form,

while, for a negative parity B, it is rewritten in the form given by Eq. (3.76) (with L replaced by
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β), i.e.,

DL′l
β0 =

[

1

sin θp′ sinφp′
DL′l
β0

]

(p̂′ · n̂2) . (3.78)

Note that since β = L ± 1, one difference from DL′l
L0 discussed above for α = 0 is that, here, DL′l

β0

does allow L = 0.

Next, the coefficients bβ1L(L′l) and cβ1L(L′l) in Eq. (3.57) involve the terms of the form

1√
2

[

YL′ML′ (p̂
′) + Y ∗

L′ML′
(p̂′)

]

=
√
2NL′ML′P

ML′

L′ (cos θp′) cos(ML′φp′) ,

−i√
2

[

YL′ML′ (p̂
′)− Y ∗

L′ML′
(p̂′)

]

=
√
2NL′ML′P

ML′

L′ (cos θp′) sin(ML′φp′) , (3.79)

where

NL′ML′ ≡
[L′]√
4π

√

(L′ −ML′)!

(L′ +ML′)!
. (3.80)

Equation (3.79), then, can be rewritten as

1√
2

[

DL′l
β1 +DL′l

β1
∗]

= AL′l
β1 ,

−i√
2

[

DL′l
β1 −DL′l

β1
∗]

= SL′l
β1 (p̂′ · n̂2) , (3.81)

where

AL′l
βM ≡

√
2

⎡

⎣

∑

ML′ml

(L′ML′ lml|βM)Ylml
(q̂)NL′ML′P

ML′

L′ (cos θp′) cos(ML′φp′)

⎤

⎦ ,

SL′l
βM ≡

√
2

⎡

⎣

1

sin θp′ sinφp′

∑

ML′ml

(L′ML′lml|βM)Ylml
(q̂)NL′ML′P

ML′

L′ (cos θp′) sin(ML′φp′)

⎤

⎦ .

(3.82)
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Therefore, summarizing, for a positive parity baryon B, we have

aβ1L(L′l) =
[L]√
4π

(L0β0|10)DL′ l
β0 ,

bβ1L(L′l) = −
[L]√
4π

(L0β1|11)AL′ l
β1 ,

cβ1L(L′l) = −
[L]√
4π

(L0β1|11)SL′ l
β1 (p̂′ · n̂2) , (3.83)

and for a negative baryon B,

aβ1L(L′l) =
[L]√
4π

(L0β0|10)
[

1

sin θp′ sinφp′
DL′l
β0

]

(p̂′ · n̂2) ,

bβ1L(L′l) = −
[L]√
4π

(L0β1|11)SL′ l
β1 (p̂′ · n̂2) ,

cβ1L(L′l) = −
[L]√
4π

(L0β1|11)AL′l
β1 . (3.84)

We note that SL′l
β1 does allow both l = 0 and L = 0.

For α = 2 (Eqs. (3.59,3.61)) :

For u in Eq. (3.61), we see that (L0β0|20) ̸= 0 only for β = L,L ± 2. Combining this with

Eq. (3.56), it implies that DL′l
β0 is purely imaginary(real) for a positive(negative) parity baryon B,

like in the case of α = 0. Therefore, for a positive parity B, DL′l
β0 in Eq. (3.61) is rewritten in the

form given by Eq. (3.78), while for a negative parity B, it left in its original form. DL′l
β0 appears

also in v and t.

In Eq. (3.61), the same combinations of DL′l
β1 as given by Eq. (3.81) also appear in w and r,

while similar combinations of DL′l
β2 appear in v and t. They are

1√
2

[

DL′l
β2 +DL′l

β2
∗]

= AL′l
β2 ,

−i√
2

[

DL′l
β2 −DL′l

β2
∗]

= SL′l
β2 (p̂′ · n̂2) , (3.85)

where the quantities in the l.h.s. are defined in Eq. (3.82).
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Putting together, for a positive-parity baryon B, we have

u =
1√
4π

√

2

3
[L](L0β0|20)

[

1

sin θp′ sinφp′
DL′l
β0

]

(p̂′ · n̂2) ,

v = −
1

2

1√
4π

√

2

3
[L]

[

(L0β0|20)
[

1

sin θp′ sinφp′
DL′l
β0

]

− i
√
3(L0β2|22)SL′ l

β2

]

(p̂′ · n̂2) ,

w = i

√

3

4π

[L]√
10

(L0β1|21)SL′ l
β1 (p̂′ · n̂2) ,

r = i

√

3

4π

[L]√
10

(L0β1|21)AL′ l
β1 ,

t = −i
1√
4π

[L]√
2
(L0β2|22)AL′ l

β2 ,

(3.86)

and, for a negative-parity baryon,

u =
1√
4π

√

2

3
[L](L0β0|20)DL′ l

β0 ,

v = −
1

2

1√
4π

√

2

3
[L]

[

(L0β0|20)DL′ l
β0 −

√
3(L0β2|22)AL′ l

β2

]

,

w =

√

3

4π

[L]√
10

(L0β1|21)AL′ l
β1 ,

r = −
√

3

4π

[L]√
10

(L0β1|21)SL′ l
β1 (p̂′ · n̂2) ,

t =
1√
4π

[L]√
2
(L0β2|22)SL′ l

β2 (p̂′ · n̂2) .

(3.87)
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The respective coefficients aβ2L(L′l), b
β2
L(L′l), etc, are, then, (from Eq. (3.59))

aβ2L(L′l) =
1√
8π

[L]

[√
3(L0β0|20)

[

1

sin θp′ sinφp′
DL′l
β0

]

+ i(L0β2|22)SL′ l
β2

]

(p̂′ · n̂2) ,

bβ2L(L′l) = i
1√
2π

[L](L0β2|22)SL′ l
β2 (p̂′ · n̂2) ,

cβ2L(L′l) = i

√

3

4π

√

2

5
[L](L0β1|21)SL′ l

β1 (p̂′ · n̂2) ,

a′β2L(L′l) = i

√

3

4π

√

2

5
[L](L0β1|21)AL′ l

β1 ,

b′β2L(L′l) = −i
1√
2π

[L](L0β2|22)AL′ l
β2 ,

(3.88)

for a positive-parity baryon B, and

aβ2L(L′l) =
1√
8π

[L]
[√

3(L0β0|20)DL′ l
β0 + (L0β2|22)AL′l

β2

]

,

bβ2L(L′l) =
1√
2π

[L](L0β2|22)AL′ l
β2 ,

cβ2L(L′l) =

√

3

4π

√

2

5
[L](L0β1|21)AL′ l

β1 ,

a′β2L(L′l) = −
√

3

4π

√

2

5
[L](L0β1|21)SL′ l

β1 (p̂′ · n̂2) ,

b′β2L(L′l) =
1√
2π

[L](L0β2|22)SL′ l
β2 (p̂′ · n̂2) ,

(3.89)

for a negative-parity baryon.

The coefficients, aβαL(L′l), have been determined to be either purely real or purely imaginary

for a given πΞ. Eqs. 3.76(3.77), 3.83(3.84), and 3.88(3.89), for positive(negative) πΞ, along with

Eqs. 3.62-3.73 can be applied to Eq. 3.19 to determine which spin-structure coefficients, Fi, depend

on Re
[

DL′l
βM

]

or Im
[

DL′l
βM

]

. These results are shown in Table 3.1.
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3.5.5 Appendix J: Spin Observables

Using the photoproduction amplitude in the form

M̂λ ≡
3

∑

m=0

Mλ
mσm , (3.90)

with σ0 = 1, σ1 = σx, etc, any observable corresponding to the photon polarization ϵ⃗λ can be

calculated straightforwardly. The cross section with the polarization of the photon ϵ⃗λ incident on

an unpolarized target is given by

dσλ

dΩ
≡

1

2
Tr

[

M̂λM̂λ†
]

=
3

∑

m=0

|Mλ
m|2 . (3.91)

For a given photon polarization ϵ⃗λ, and target nucleon spin in the i-direction (i = x, y, z), the

corresponding spin-correlation coefficient T λi can be expressed as

dσλ

dΩ
T λi ≡

1

2
Tr[M̂λσiM̂

λ†]

= 2Re [Mλ
0 M

λ∗
i ] + 2Im[Mλ

j M
λ∗
k ] , (3.92)

where the subscripts (i, j, k) run cyclically, i.e., (1,2,3), (2,3,1), (3,1,2).

Similarly, the polarization, P λ
i , of the outgoing nucleon in the i-direction induced by a photon

beam with polarization ϵ⃗λ is given by

dσλ

dΩ
P λ
i ≡

1

2
Tr[M̂λM̂λ†σi]

= 2Re[Mλ
0 M

λ∗
i ]− 2Im [Mλ

j M
λ∗
k ] , (3.93)

where the subscripts (i, j, k) run cyclically.

Another spin observable is the spin transfer coefficient induced by a polarized photon beam,
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Kλ
ij , which is given by

dσλ

dΩ
Kλ

ij ≡
1

2
Tr[M̂λσiM̂

λ†σj ]

=

(

2|Mλ
0 |2 −

dσλ

dΩ

)

δij + 2Re [Mλ
i M

λ∗
j ]− 2ϵijkIm[Mλ

kM
λ∗
0 ] , (3.94)

where ϵijk denotes the Levi-Civita antisymmetric tensor and (i, j, k) may take any of the values

(1, 2, 3). The diagonal terms reduce to

dσλ

dΩ
Kλ

jj = |Mλ
0 |2 + |Mλ

j |2 −
∑

k ̸=j

|Mλ
k |

2 . (3.95)

In terms of the individual cross sections Kλ
jj may be written as

Kλ
jj =

[σλj (+,+) + σλj (−,−)]− [σλj (+,−) + σλj (−,+)]

[σλj (+,+) + σλj (−,−)] + [σλj (+,−) + σλj (−,+)]
, (3.96)

where σλj (+,−), for example, corresponds to the cross section induced by a photon beam with

polarization ϵ⃗λ on a target nucleon spin in the positive(+) j-direction and leading to the recoil

nucleon spin in the negative(−) j-direction. Given the spin structure of the amplitude, Eq. (3.96)

is often helpful in determining the characteristics of Kλ
jj.

Eqs. (3.91,3.92,3.93,3.94) exhaust all the possible observables in photoproduction with a polar-

ized photon beam. Other observables may be constructed by appropriate linear combinations of

them. The completely unpolarized cross section is given by

dσ

dΩ
≡

(

1

2
Tr

[

M̂M̂ †
]

)

=
∑

λ

dσλ

dΩ
=

∑

λ

3
∑

m=0

|Mλ
m|2 . (3.97)

The photon asymmetry is given by

dσ

dΩ
Σ ≡

dσλ1

dΩ
−

dσλ2

dΩ

=
3

∑

m=0

(

|Mλ1
m |2 − |Mλ2

m |2
)

, (3.98)
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where λ1 and λ2 stands for the two independent state of polarization of the photon, ϵ⃗λ1 and ϵ⃗λ2 ,

to be specified. Note that the factor 1/2 in the above equation is due to the fact that we have

multiplied the beam asymmetry Σ by the completely unpolarized cross section dσ/dΩ. The same

observation holds for the spin observables defined below. In Refs. [83,125] dσ/dΩ is defined without

the factor of 1/2.

The target nucleon asymmetry, Ti, obtained using an unpolarized photon beam on a target

nucleon polarized in the i-direction, is given by

dσ

dΩ
Ti ≡

1

2
Tr[M̂σiM̂

†]

=
∑

λ

dσλ

dΩ
T λi =

∑

λ

(

2Re [Mλ
0 M

λ∗
i ] + 2Im [Mλ

j M
λ∗
k ]

)

, (3.99)

where again, the subscripts (i, j, k) run cyclically.

Similarly, the polarization observable, Pi, of the recoil nucleon with an unpolarized photon

beam is given by

dσ

dΩ
Pi ≡

1

2
Tr[M̂M †σi]

=
∑

λ

dσλ

dΩ
P λ
i =

∑

λ

(

2Re [Mλ
0 M

λ∗
i ]− 2Im[Mλ

j M
λ∗
k ]

)

. (3.100)

The spin transfer coefficient using an unpolarized photon beam is given by

dσ

dΩ
Kij ≡

1

2
Tr[M̂σiM̂

†σj] ,

=
∑

λ

dσλ

dΩ
Kλ

ij =
∑

λ

{(

2|Mλ
0 |2 −

dσλ

dΩ

)

δij + 2Re [Mλ
i M

λ∗
j ]− 2ϵijkIm[Mλ

kM
λ∗
0 ]

}

,(3.101)

where (i, j, k) may take any of the values (1, 2, 3) as in Eq.(3.94). The diagonal terms reduce to

dσ

dΩ
Kjj = |M0|2 + |Mj |2 −

∑

k ̸=j

|Mk|2 , (3.102)

with |Mi|2 =
∑

λ |Mλ
i |2.
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Chapter 4

Summary and Outlook

There is a global effort to understand confinement. To that end, hadronic resonances offer a unique

opportunity to study the non-perturbative region of QCD. To compare scattering data with fun-

damental QCD-based quark calculations, a good reaction theory is needed. Such a reaction theory

should distill resonance properties, such as mass, width, spin, parity, among others, from scatter-

ing data. It is these properties that are compared with the QCD calculations. This work focuses

on the S = −2 hyperon sector. The K̄ + N → K + Ξ(Ξ∗) reaction was studied via a model-

independent analysis. This analysis allowed us to list a minimum set of spin observables which

determine the reaction amplitude completely and the JP of the produced Ξ or Ξ∗. A model calcu-

lation for this same reaction was conducted and contributions from Y ∗ hyperons were investigated.

A number of Y ∗ states were needed to reproduce the existing data and their parameters were

reported. In addition, yet-to-be-measured spin observables were predicted based on these results.

The γ + N → K +K + Ξ reaction was also investigated in a model-independent manner and its

spin structure analyzed. Again, the parity of the produced Ξ can be determined by analyzing the

spin observables in certain angular regions. Gauge-invariance of the photoproduction amplitude

was discussed and its constraints on our model were determined.

A continuation of this work would be the model calculation of the γ+N → K+K+Ξ according

to the model described in Section 3.3. Past work has concluded that high spin resonances were

necessary to fit existing photoproduction data [54]. While these results appear to be consistent
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with our findings for K̄ +N → K + Ξ, a simultaneous analysis of both reactions is called for and

underway. Also, new data is expected in the coming years for both these reactions and others,

and should be analyzed along the same lines described in this work. In addition, the simple

model described here violates unitarity. A general procedure for guaranteeing unitary within the

models based on Effective Lagrangian approaches has been developed by our group [126] and could

be implemented in the present model calculations. In this method, a complex phase would be

introduced in a systematic way to ensure unitarity and spin-observables will be very sensitive to

this phase. This will shed light on the contributions from coupled channels that we are currently

excluding. Because resonances couple to different channels, the ultimate goal should still be a full

dynamical coupled-channel (DCC) calculation.

In addition to improving our calculation toward a full DCC approach, new data is expected

soon in these reactions and others. K̄-induced reactions at J-PARC will offer new and improved

data for KΞ as well as other S = −1 channels. The newly upgraded facility at J-Lab will be

providing new data on γ+N → K+K+Ξ as well as K+K+K+Ω−. This new data for KΞ, πΛ,

πΣ, KKΞ, KKKΩ− and other final states should provide new insights into the multi-strangeness

hyperon physics.
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