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Van der Waals forces play an important role in the interaction at large molecular

separation. It is responsible for the existence of liquid states. The interest in the van

der Waals complexes originates from the prospect of understanding the transition

from the gas phases to the condensed phases. Even though many van der Waals

complexes involving closed-shell atoms and molecules have been studied, only few

systems involving open-shell molecules have been studied. As a bench mark system

for the interaction of an open shell molecule with a closed shell atom, a great focus

has been on the NO-Ar system both experimentally and theoretically for the past

two decades. The major source of experimental information on the interaction of

NO with Ar relied on collision studies. So far, no spectroscopic information about

the rovibrational levels of the electronic ground state of the NO-Ar complex is avail-

able. It is a goal of this dissertation to investigate the interaction potential of the

electronic ground state of NO-Ar and NO-Ne complexes through IR spectroscopy.

As a state specific detection scheme of molecules, (2+1) resonance enhanced mul-

tiphoton ionization(REMPI) has been used to the Rydberg state spectroscopy of

van der Waals complexes, such as NO-Ar, NO-Ne, and CH3CHO-Ar. These studies

provide information about the structure of the potential surface correlating with

electronically excited NO. To explore the structure of the electronic ground state,

REMPI detection was combined with IR spectroscopy. For the first time, observed

are intermolecular vibration spectra of NO-Ar and NO-Ne built on the first overtone

transition of NO. For both complexes, the agreement with Alexander’s new results

(J. Chem. Phys. 111,7435 (1999); J. Phys. Chem. 114, 5588 (2001)) based on

his coupled-cluster (CCSD(T)) ab initio calculation of the two potential energy sur-

faces is excellent. Additional physical insight can be obtained by using a heuristic



Hamiltonian based on perturbation theory. The results of this thesis opens new

possibilities in exploring weak interactions involving van der Waals complexes using

IR-REMPI double resonace technique.
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Chapter 1

Introduction

Most elementary bimolecular reactions relevant to atmospheric or combustion

chemistry involve at least one free radical. While the dynamics at small inter-

molecular distance is clearly governed by chemical forces, at large intermolecular

separations the orientation of the approaching reactants can be influenced critically

by van der Waals forces. Great advances in the study of van der Waals systems have

been achieved over the past two decades. The chemistry of individual molecules is

generally dominated by covalent bonding. However, van der Waals forces not only

govern the interaction within collections of molecules, but they are also responsible

for the stability of intermolecular complexes and for the existence of the condensed

liquid states. Van der Waals clusters are very prolific model systems for the study

of the details and of the origin of intermolecular forces as well as for the study

of their effects on most fundamental chemical, physical, and biochemical processes

from a molecular point of view. Because all life-forms may be viewed as a matter

of supramolecular chemistry in which van der Waals forces play a central role, the

understanding of these interactions is important for any progress, for example, in

the synthesis of new drugs. Another interest in van der Waals complexes originates

from the prospect of understanding in detail the transition from the gas phase to

the condensed phase. Properties of clusters due to their finite size are of particular

interest. For many systems, cluster properties can be explained in terms of pairwise

interactions while three-body and other higher-order terms contribute only small

1
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corrections. Considerable progress has been made in understanding these interac-

tions and several excellent reviews on both experimental and theoretical works have

been reported [1, 2, 3].

During the past 15 years, rotationally resolved infrared (IR) spectra of many

complexes involving closed shell atoms and molecules have been recorded through

different absorption techniques in combination with IR sources like diode [4], color

center [5] or difference frequency lasers [6]. While continuous lasers allow us to detect

weak absorption signals, they provide only modest power, therefore limiting its appli-

cation to systems with relatively strong IR transitions. On the other hand, by

applying different nonlinear optical processes, pulsed lasers can provide high power

IR radiation over a wide spectral range. Although the large pulse-to-pulse fluctu-

ations prevent extremely sensitive direct absorption measurements, several groups

have succeeded in measuring IR absorption spectra of some aromatic molecules and

their complexes using ion-dip spectroscopy in combination with resonant two-photon

ionization [7, 8, 9]. Another possibility to overcome the poor signal-to-noise ratio

resulting from the large pulse-to-pulse fluctuations is the application of cavity ring

down spectroscopy. This technique has been used successfully by Liu et al. to mea-

sure the first overtone spectrum of the HCl dimer with rotational resolution [10].

Very recently, Infrared-ultraviolet(IR-UV) double resonance techniques have been

employed to measure rotationally resolved spectra for the open-shell complexes OH-

Ar using laser induced fluorescence (LIF) detection [11] and in this lab for the

NO-Ar and NO-Ne complex using (2+1) resonant enhanced multi-photon ionization

(REMPI) detection [12, 13, 14, 15].

The extreme sensitivity of the employed (2+1) REMPI process make it possible

to measure the IR spectrum associated with the very weak first overtone transi-

tion in NO of complexes with Ar [12, 13] and Ne [14, 15]. The high sensitivity is

achieved by detecting the IR absorption through a (2+1) REMPI process for the
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hot band transition to a low lying Rydberg state in the complex. An important

advantage of the REMPI approach over LIF detection is the ability to discriminate

against a possible large monomer background. This makes it an ideal candidate to

detect vibrationally excited van der Waals complexes in an IR-UV double resonance

experiment. In the case of NO containing complexes, the fact can be utilized that

the NO monomer is characterized by a rich UV and vacuum ultraviolet (VUV) elec-

tronic spectrum consisting of transitions to many different low lying Rydberg states

or valence states which can be accessed from the electronic ground state via strong

nonresonant two-photon absorption processes [16].

Many van der Waals complexes involving closed shell atoms and molecules have

been studied [3, 17, 18], but only a few systems involving open shell molecules

have been investigated. These complexes are of special interest since most of the

chemically active systems involve atoms or molecules with one or more unpaired

electrons. For example, van der Waals complexes comprising an open-shell diatomic

molecule and a rare gas atom have four sources of angular momentum: electron

orbital motion, electron spin, internal rotation of the diatomic molecule and overall

rotation of the complex. These systems are ideal for studying how these angular

momenta and their couplings influence the bound level structure or the collision

dynamics without interference from reactive interactions.

Systems involving the 2Π radicals OH(X 2Π) and NO(X 2Π) have emerged as

important benchmarks for the understanding and quantitative description of the

collision dynamics and the bound state structure. In these complexes, the electronic

degeneracy of the Π-state is lifted giving rise to two adiabatic potential surfaces

of A′ and A′′ symmetry with respect to reflection in the triatomic plane(see Fig.

??). In contrast to an isolated diatom open shell molecule, the electronic orbital

angular momentum is quenched giving rise to Renner-Teller type splittings. The

degree of quenching can be viewed as a measure for the extent of chemical bonding
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A

A

Figure 1.1: A′ and A′′ symmetry with respect to reflection in the triatomic plane.

involved in the formation of the complex. Mills et al. have developed a model for

various angular momentum couplings by treating the complex as a rigid rotor [19].

Fawzy and Hougen have extended a rigid rotor model to include transitions between

states with different electronic orbital angular momenta [20]. Their model involves

angular momenta due to three types of motions except internal rotation and hence

the complex is treated as a semirigid rotor. The Hamiltonian derived by these

authors includes a full treatment of the asymmetric top or linear molecule rotation

as well as the effects of spin-orbit interaction and Renner-Teller orbital angular

momentum quenching. On the other hand, the complex as a near-free rotor has

been studied theoretically by Dubernet et al. [21]. They considered three types of

coupling cases depending on the size of the anisotropy of the intermolecular potential.

In their work, they have established the relation between the bending energy level

and the intermolecular potential anisotropy. In this model, no treatment of the

effects of the van der Waals stretching motion, end-over-end rotation or electron

spin was included.
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The OH-Rg (Rg=rare gas atom) van der Waals complexes have been thoroughly

investigated over the last few years by experiment and theory. The OH radical has

a triply filled π-orbital. As a hydride, its rotational constant is comparable in mag-

nitude with the intermolecular interaction. To a first approximation, the OH can

be regarded as freely rotating in the complex with an approximately linear equi-

librium structure. The complexes with Ar or Ne have been detected through laser

induced fluorescence(LIF) spectroscopy in the vicinity of the respective monomer

transition A-X [22, 23, 24, 25, 26, 27, 28]. Endo et al. has reported the pure rota-

tional microwave spectrum of the OH-Ar complex [29, 30]. Chakravarty et al. have

calculated bound states for the electronic ground and the electronically excited states

[26, 31] using the ab initio potential energy surfaces of Degli-Eposti and Werner [32].

Complexes of OH with other closed shell molecules have been studied by Lester and

co-workers employing various spectroscopic techniques [33, 34].

Among the various complexes involving NO, the NO-Ar system has served as

the paradigm for understanding and characterizing the interaction of an open shell

diatom with a closed shell atom for more than two decades. The first theoretical

study of the van der Waals interaction in its electronic ground state was performed

by Nielson et al. [35, 36] who had applied the electron gas model to calculate the first

set of potential energy surfaces. They also emphasized the advantage of working with

two adiabatic potential surfaces and thus keeping the electronic degree of freedom

instead of introducing a single potential surface with an additional angle dependence

[37]. A similar approach was followed by Alexander who has shown that the poten-

tial surfaces relevant to the collision dynamics can be derived from the two Born-

Oppenheimer surfaces in the form of an average and a difference potential [38, 39].

Alexander and co-workers studied extensively the dynamics for collisions of NO with

different rare gas atoms and the applicability of different decoupling approximations

[40, 41, 42, 43, 44]. While most of these earlier studies relied on semiempirical
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potential surfaces, high-level ab initio calculations during the 1990s have produced

multi-dimensional surfaces for several NO-rare gas systems [42, 43, 45, 46, 47, 48].

Our recent spectroscopic studies have confirmed the great accuracy of these potential

surfaces [12, 15, 49].

Experimentally, the NO-Ar system has been studied in different collision exper-

iments. Integral cross sections without final state resolution for the scattering of

NO from different rare gas partners have been measured by Thuis et al. [50, 51].

Their measurements indicated a near T-shaped equilibrium structure of the com-

plex and gave the first quantitative information about the equilibrium distance.

Employing LIF detection in combination with IR excitation in the first overtone

region of NO, Sudbø and Loy were able to measure state-to-state relaxation rates

[52]. Joswig and co-workers determined state-resolved integral cross-sections for the

NO-Ar system for the first time [53, 54]. Jons et al. reported first state resolved

differential scattering cross sections [55, 56] which were later compared with the

results of a full quantum mechanical close coupling calculation by Alexander [42].

The new ab initio PES based on the correlated electron pair (CEPA) approximations

used in this study yielded better agreement with the experimental data. Recently,

Alexander calculated an improved ab initio PES at the CCDS(T) (coupled cluster

singlet doublet(triplet)) level of theory [45, 46]. At this level of theory, the disper-

sion energy is reproduced more reliably while features of the repulsive region are

affected only very little. Even with these latest improvements, the earlier discrepan-

cies with experimental scattering data are not completely resolved. The remaining

discrepancies are not likely related to deficiencies of the ab initio potential surfaces.

Another important test of the quality of the PESs will be the comparison of bound

states with spectroscopic information.

While numerous scattering experiments involving NO have been performed, until

recently very little information on the bound levels of the corresponding van der
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Waals complexes was known. Again, most attention has been focused on the NO-Ar

complex. The existence of the complex was first inferred from molecular beam deflec-

tion studies [57]. The first spectroscopic observation of the complex was reported

by Langridge-Smith et al. [58, 59]. In the LIF spectrum of an Ar molecular beam

expansion containing NO, these authors found a broad feature to the blue of the

band origin of the A − X transition in the monomer. This feature was attributed

to transitions from the electronic ground state of the complex terminating on the

repulsive wall of the excited state surface. Recently, REMPI and LIF spectra for

the A 2Σ+ − X 2Π transition terminating in the bound region of the Ã-state have

been reported by several groups for complexes with Ar [60, 61, 62, 63], Kr [64], and

Xe [64]. After the study of Levy and co-workers [58, 59], spectra correlating with

other low lying Rydberg states of NO have been observed by several groups. The

first spectrum for NO(C 2Π)-Ar was reported by Sato et al. applying (2+1) REMPI

detection [65]. Later, Miller and Cheng extended these experiments towards higher

vibrational levels of the C-state manifold and towards complexes with Ne, Kr, and

Xe [66, 67]. Complex spectra correlating with the NO Rydberg states D 2Σ+ [67, 68],

E 2Σ+ [69, 70, 71], F 2∆ [70, 72] and H 2Σ+,H ′ 2Π [70, 72] have been reported more

recently.

Since the complexes can only be generated in the extremely cold molecular beam

or jet environments, hot band transitions or combination bands involving internu-

clear vibrations are rarely observed. Thus, the electronic spectra provide mainly

information on molecular interactions in the electronically excited state. In the case

of OH-Ar, important structural information for the electronic ground state is derived

from microwave studies [29] while information on the electronic ground state poten-

tial surface has been obtained by combining laser induced fluorescence spectroscopy

with stimulated emission pumping [74], stimulated Raman pumping [33] or infrared

absorption [11, 75].
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The first direct observation of bound rotational levels of the electronic ground

state surface of NO-Ar was accomplished by Mills et al. in their pioneering study

using a molecular beam electronic resonance spectrometer [19, 73]. The rotational

structure of the observed spectrum was analyzed by these authors assuming a rigid

rotor Hamiltonian. This analysis provided precise structural information confirming

the near T-shaped structure of the complex originally deduced from collision studies

[50, 51]. As part of this thesis, bound levels of the complex involving intermolecular

vibrations for the electronic ground state have been observed for the first time in an

IR-REMPI double resonance experiment for NO-Ar [12, 13] and NO-Ne [14, 15] built

on the first overtone transition of the NO monomer. The positions of the observed

bands and their rotational structure are extremely sensitive to different features of

the potential surface.

This thesis is organized as follows: In Chapter 2, the different apparatus and

the experimental setups are described in detail. The theoretical background for

understanding of the spectroscopy of an open shell diatom and a van der Waals

complex is covered in Chapter 3. Chapter 4 describes the experimental results and

discussions. Finally, conclusions are given in Chapter 5.



Chapter 2

Experiments

2.1 Experimental Apparatus

This section describes the molecular beam machine and laser systems used in the

experiments.

2.1.1 Molecular Beam Machine

A schematic of the molecular beam machine is shown in Fig. 2.1 [76]. Two

chambers, the source chamber and the detection chamber, are differentially pumped

with two diffusion pumps. The 500 mm diameter source chamber is mounted on

top of a diffusion pump (P1) (BALZERS DIF 500) whose pumping speed is 11000

l/s. Inside the source chamber a 400 mm diameter cylindrical chamber is mounted

from the top of the 500 mm flange. Two sides of the inner chamber facing the

molecular beam source are flat walls with a skimmer opening. The other two sides

are connected to flanges with bellows. One flange has a window (CaF2) to give

access for the laser beam to the molecular beam. The other flange is connected

to one side of a T cross. On the other side is mounted a plexiglass flange with a

window which is used for the laser beam and visual alignment. The bottom flange of

the cross is connected to a water baffled 3000 l/s diffusion pump (P2) (LEYBOLD

3000). The upper flange is connected to a liquid N2 baffle. The detection chamber is

completely separated from the source chamber except for the skimmer openings. The

two diffusion pumps are backed by a roots-rotary pump combination (EDWARDS

9
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Figure 2.1: Cross-section of the molecular beam machine. SC=source chamber,
DC=detection chamber, PZ=piezoelectric valve, MCP=microchannel plate detector,
P1,P2=diffusion pumps, MP=molecular beam path, LP=laser beam path.

E2M40 as mechanical pump and EDWARDS EH250 as booster). The base pressure

in the source chamber is 5× 10−7 mbar and rises to 10−5 mbar when the molecular

beam is operating. The base pressure in the detection chamber is 5 × 10−7 mbar

and rises to 10−6 mbar when the molecular beam is operating. At the top of the 500

mm flange a liquid N2 trap is mounted to reduce oil contamination.

As a molecular beam source, a homebuilt piezoelectric valve is mounted in the

source chamber and is operated at 10 Hz. Beam pulses of about 70 µs duration are
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generated in the source chamber with this valve. When the molecules are delivered

into the vacuum by supersonic expansion, they are cooled to an extremely cold

temperature in an adiabatic process. Typical rotational temperatures are less than

2 K when the piezoelectric valve is operated at a backing pressure of 2 bar. Higher

rotational temperatures are measured when the valve is operated at other backing

pressures or when the laser beam probes the beginning or the end of the molecular

beam pulse. The molecules pass from the source chamber into the detection chamber

through a skimmer with 5 mm diameter. Due to the dimension of the molecular

beam machine, the 300 mm lens for the UV laser is mounted inside the molecular

beam machine. To facilitate the alignment of the laser beam two 5 mm guiding

apertures are mounted 10 cm before and after the expected focal spot. In order to

avoid oil contamination of the lens, a copper pipe is mounted to block the oil vapor

from the diffusion pump.

The schematic of the drift field arrangement of the time-of-flight (TOF) mass

spectrometer is depicted in Fig. 2.2 [77]. The constant electric field in the accel-

erating region is defined using seven metal electrodes (150 mm ×150 mm ×1.6

mm) with a circular opening of 100 mm in diameter. The electrodes are separated

by 16 mm and interconnected with 1 MΩ resistors. At the entrance of the drift

region, a metal plate is mounted with a 10 mm diameter hole to let the molecular

beam pass. On the other side of the drift region, an electrostatic mirror is mounted

so that it deflects the ions towards a 25 mm diameter microchannel plate (MCP)

detector (GALLILEO FTD2500). The mirror has two electrodes which are 20 mm

apart. The front electrode has a wire mesh of 90% transmission (WIRE WEAVING

CO NJ). The ions are deflected by 90◦ off the beam axis, pass another wire mesh

and are accelerated into the MCP. A dc power supply provides 100 V for the drift

voltage (Vd), 144 V for the front plate (Vf ), and 82 V for the mirror (Vm) (typically
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Figure 2.2: Schematic of the drift field arrangement. MCP=microchannel plate
detector, P=piezoelectric valve, FP=front plate, MB=molecular beam pulse,
S=skimmer.

Vf = 1.44Vd, Vm = 0.82Vd).

2.1.2 Ultraviolet Laser System

The ultraviolet laser system consists of two grazing incidence dye lasers (LASER

ANALYTICAL SYSTEM (LAS) LDL205 and RADIANT DYES RDP02N) pumped

by the second harmonic of a Nd:YAG laser (SPECTRA PHYSICS GCR170-10)

operated at a repetition rate 10 Hz. The 532 nm beam is generated from the 1064

nm fundamental. The effective linewidth of the Nd:YAG laser is about 1 cm−1 and its

polarization is horizontal. With type II doubling (see page 21), a vertically polarized

532 nm beam is generated by second harmonic generation in a KDP (potassium

dihydrogen phosphate) crystal.
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An optical layout of the dye laser is shown in Fig. 2.3. The cavity of the dye

lasers is composed of an output coupler (M1), an oscillator/preamplifier cell (C1),

a prism beam expander (PBE), a grating (G), and a tuning mirror (M2) [78]. The

532 nm beam is introduced into C1 where a dye solution is circulating. The lower

part of C1 is the active medium for the oscillator. C1 is tilted 6◦ from the vertical

direction so that undesired radiation due to lasing from the walls of C1 leaves the

normal beam path. M1 reflects the part of the light deriving from C1 and sends

it back towards C1. The beam travels through PBE, which magnifies the beam in

its vertical direction (by a factor of 12) and translates the beam downwards (by 11

mm). The beam hits the grating (G) which diffracts the first order towards the

tuning mirror (M2). M2 can be rotated around an axis which runs through the

center of the grating surface towards the grating grooves. The wavelength (λ) of the

outgoing laser beam is determined by the angle according to the grating equation:

λ = d(sin α + sin β). (2.1)

where α stands for the angle between the normal of the grating and M2 and β is the

angle of incidence on the grating. d is the spacing between grooves of the grating.

The light reflected by M1 travels the described path in reversed direction through G,

PBE, C1, and to M1, where the outcoupled part leaves the oscillator. The brewster

plates filter the proper polarization of the output beam. The pump beams for the

pre-amplifier and the amplifier stages are delayed before reaching the amplifier so

that the output of the previous stage overlaps with the pump beam in time. The

beam from the oscillator is pre-amplified once in C1 and amplified in a second cell

(C2). The lenses T1 and T2 shift the beam path.

The visible output of the dye lasers is frequency-doubled in a KDP crystal

resulting in tunable UV radiation. When DCM dye is being used with 30 mJ pump

power of 532 nm, typical output energies of the dye laser stages are 160 µJ, 1.5 mJ,
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Figure 2.3: Layout of the dye laser (LSL205 and RDP02N) oscillator cavity
and beam path. P=reflection prism, B=brewster plates, M1=output coupler,
M2=tuning mirror, G=grating, C1=oscillator/preamplifier cell, C2=main amplifier
cell, PBE=prism beam expander, T1,T2=telescope lenses.

and 10 mJ for the oscillator, the pre-amplifier, and the amplifier beam, respectively.

After doubling in KDP, a UV power of 1.5 mJ is obtained. The efficiency varies

depending on the dye used. With DCM dye, an efficiency of 30% is achieved. For

the present experiments, DCM, Pyridine 1, and Pyridine 2 are used as dyes.

2.1.3 Infrared Laser System

IR radiation is generated with an optical parametric oscillator pumped by an

injection seeded Nd:YAG laser.

Nd:YAG

The pump laser Nd:YAG (CONTINUUM POWERLITE 7010) is operated at

a repetition rate of 10 Hz. Typical pulse energies at 1064 nm are 145 mJ for the

oscillator output and 500 mJ for the amplified beam with unseeded operation. The
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linewidth is 1 cm−1 (FWHM) unseeded and the pulsewidth is 5-7 ns (FWHM). A

layout of the Nd:YAG laser system is shown in Fig. 2.4. The laser cavity consists of

a highly reflecting rear mirror (RM), a Pockel cell (Q-switch), a polarizer (P), three

quarter-wave (λ/4) plates, a Nd:YAG rod, and an output coupler (OC). The system

has one flash lamp but two Nd:YAG rods: one for the oscillator and the other for

the amplifier.

When the two λ/4 plates (before and after the laser head) are not present, the

lasing mechanism can be explained as follows (Fig. 2.5(a) and (b)) [79]. The beam

propagating within the oscillator cavity makes a double pass through the Q-switch

(QSW) and a λ/4 plate. With high voltage applied to the Pockel cell, the QSW adds

a phase shift of 45◦ and the λ/4 plate adds an additional phase shift of 45◦ with each

pass, giving a total phase shift of of 180◦. Thus, the horizontal beam transmitted

through the plate polarizer (P) is rotated vertical and back to horizontal so that it

is transmitted by the polarizer allowing oscillation to occur (Fig. 2.5(b)). Diagram

(a) illustrates the closed cavity where there is no lasing. When no voltage is applied

to the Pockel cell, only the λ/4 plate adds a phase shift of 45◦ with each pass giving

a total phase shift of 90◦. The horizontal beam is rotated to vertical and is rejected

by the polarizer preventing laser oscillation.

Additional two quarter-wave (λ/4) plates are mounted on each side of the oscil-

lator Nd:YAG rod so that they produce counter-rotating circularly polarized light

within the Nd:YAG rod suppressing spatial hole burning. The horizontal beam

passing through the polarizer becomes circularly polarized after L2. Then, L3 trans-

forms circular polarization into vertical polarization. The reflected beam from OC

travels in reversed direction. After L3, the beam becomes circularly polarized again,

but counter-rotating with respect to the incoming beam. After L2, it becomes hor-

izontally polarized again. The Nd:YAG laser has a resonator length of 60 cm which
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Figure 2.4: Layout of the Nd:YAG laser (POWERLITE 7010). AP=aperture,
FL=flash lamp, OC=output coupler, QSW=Q-switch, RM=rear mirror,
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Figure 2.5: Cavity diagrams for the Nd:YAG laser (POWERLITE 7010).
OC=output coupler, QSW=Q-switch, RM=rear mirror. L1,L2,L3=λ/4 plates,
C : circular polarization, H : horizontal polarizaton, V : vertical polarization. Part
(a) shows a diagram when the cavity is open whereas part (b) show one when the
cavity is closed. In part (c), the beams from left to right and from right to left
are both circularly polarized but they are counter-rotating in order to suppress the
spatial hole burning.



18

yields the spacing between adjacent longitudinal modes,

∆ν = c/2nL = 3× 1010/ 2× 1× 60 (cm) = 250 MHz.

Though the gain curve for the Nd:YAG is approximately 120 GHz (FWHM), due

to mode competition longitudinal modes closest to the center of the gain curve get

hold of most of the available energy at the expense of longitudinal modes further

from the gain center. This results in a typical unseeded linewidth of 1 cm−1 for

the host laser. In order to achieve single longitudinal mode output, a seed laser is

coupled to the Nd:YAG laser cavity.

Single Frequency Injection Seeding Laser

Injection seeding refers to the process of achieving single longitudinal mode opera-

tion of a pulsed laser by injecting radiation from a very narrow linewidth, continuous-

wave (cw) seed laser into the pulsed host (Nd:YAG) laser cavity during the time the

Q-switch opens. If the seed emission is near the frequency of a host laser longitudinal

mode, it will be resonantly amplified by the host when the Q-switch opens. The seed

emission is more than 6 orders of magnitude stronger than the spontaneous noise

and all the energy stored in a homogeneously broadened gain element is depleted

by the pulse developed from the seed laser emission resulting in single mode output

from the pulsed laser [80]. Furthermore, the Q-switched pulses build up sooner out

of the seeded emission than out of the spontaneous emission. The seed beam which

is introduced into the YAG cavity by a beam splitter polarizer needs to be aligned

along the YAG laser beam. The best way of aligning the seeder is by monitoring the

QBTR (Q-switch build-up time reduction) from a fast oscilloscope and keeping it as

large as possible. The voltage readout for the QBT (Q-switch build-up time) and the

voltage of the piezoelectric element are monitored during experiments. The lowest
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output of the QBT corresponds to the largest QBTR. Thus, it must be maintained

as low as possible. The voltage output of the piezo provides information about the

dither magnitude, the rate of host laser frequency drift, and the piezoelectric reset.

Optical Parametric Oscillator (OPO)

In this section, the theoretical background of an optical parametric oscillator is

given. Details relevant to the alignment and operation of each component of the

OPO (CONTINUUM MIRAGE 3000) are also described.

(1) Theoretical Background

Optical parametric oscillator (OPO) and optical parametric amplifier (OPA)

devices have long been recognized as useful sources of wide-range tunable, coherent

radiation for spectroscopic purposes yielding high peak and average powers in the

nanosecond regime [81, 82, 83, 84, 85, 86, 87, 88]. Their solid-state character and

high efficiency offer substantial advantages in several respects over the dye laser.

Moreover, the wide tuning range of many OPOs opens up the prospect for laser

spectroscopy in otherwise inaccessible spectral regions such as the near- and mid-

infrared. The intrinsic process which allows an OPO or an OPA to operate is a

nonlinear optical process.

In the process, coherent pump radiation interacts with the second-order

nonlinear-optical susceptibility tensor χ(2) of a suitable noncentrosymmetric crystal

and generates two additional radiation fields. These are referred to as the signal

and idler waves with frequencies ω1 and ω2, respectively. Here, it is customary to

take ω1 ≥ ω2. The pump, signal, and idler waves in an optical parametric device are

subject to two conservation conditions. The first condition corresponds to energy
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conservation:

ω3 = ω1 + ω2 (2.2)

where ω3 is the frequency of the pump wave. The second conservation condition

corresponds to momentum conservation and takes the form of a phase-matching con-

dition. This is expressed in terms of the three wave vectors kj, with j = 1, 2, and 3.

These have magnitude of kj = njωj/c = 2πnj/λj where nj is the refractive index

at vacuum wavelength λj and c is the speed of light. The wave vectors combine

vectorially,

k3 = k1 + k2 + ∆k (2.3)

where ∆k is a phase-mismatch increment. Although typically small, ∆k causes the

signal and idler waves to have an intrinsically broad bandwidth.

Phase-matching conditions can be fulfilled in birefringent crystals which have two

different refractive indices no and ne for the ordinary and the extraordinary waves,

respectively. While the ordinary index no does not depend on the propagation

direction, the extraordinary index ne depends on both directions of the electric field

E and k. In uniaxial birefringent crystals where two of the principal axes are equal

at a given wavelength, the ne is given by

1

n2
e(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
e(θ = 90◦)

. (2.4)

Here, θ is the direction of propagation with respect to the optic axis. If it is assumed

that the three waves are collinear and that ∆k is zero, then Eq. (2.3) becomes

ω3n3 = ω1n1 + ω2n2. (2.5)

Then, the signal frequency can be expressed simply in terms of the refractive indices

nj:

ω1 =
ω3(n3 − n2)

n1 − n2

. (2.6)
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By changing one or more of the refractive indices (for example, by rotating a birefrin-

gent crystal or by variation of the temperature), the signal and the idler wavelength

can be tuned. If the signal and the idler have the same polarization, the interaction

is referred to as a Type I interaction. On the other hand, if the signal and the

idler have different polarizations (by 90◦), the interaction is referred to as a Type II

interaction.

The polarization P of a dielectric medium with nonlinear susceptibility χ, subject

to an electric field E, can be written as an expansion in terms of powers of E

P = ε0

(
χ(1)E + χ(2)EE + χ(3)EEE · · · ) , (2.7)

where χ(k) is the k-th order susceptibility tensor of rank k. If the electric field

E = E1 cos(ω1t− k1z) + E2 cos(ω2t− k2z) (2.8)

is composed of two components incident on the nonlinear medium. The induced

polarization at a fixed position (z=0, for example) in the medium is generated by

the combination of the two components. The second order term is of interest giving

the contributions

P (2) = ε0χ
(2)E2(z = 0)

= ε0χ
(2)

{1

2
(E2

1 + E2
2) +

1

2
E2

1 cos 2ω1t +
1

2
E2

2 cos 2ω2t

+E1 ·E2

[
cos(ω1 + ω2)t + cos(ω1 − ω2)t

]}
. (2.9)

The second and third terms correspond to the second harmonics 2ω1, 2ω2 and the

last term corresponds to the sum or difference frequencies ω1±ω2. The second order

term is expressed in terms of tensor notation as

P
(2)
i = ε0

3∑

j,k=1

χ
(2)
ijkEjEk. (2.10)

The above equation depicts the fact that the components of the induced polariza-

tion P (2) are determined by the tensor components χijk and the components of the
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incident fields. The components χijk are written in the reduced Voigt notation in

order to reduce the number of indices, as χijk = dim [89]. Here,

(jk) = 11 22 33 23 13 12

m = 1 2 3 4 5 6.

And it is found that the effective nonlinear-optical coefficient deff is

deff = d31 sin θ − d22 sin 3φ cos θ (2.11)

where the optic axis (Z) of the crystal is at an angle θ to the propagation direction

of the phase-matched optical wave whereas the crystal’s X-axis is at the azimuthal

angle φ (which may be set to an optimal value by the cut of the crystal) [84, 90, 91].

Then, the second order polarizations are expressed as

P
(2)
1 = 2ε0deff E3E

∗
2

P
(2)
2 = 2ε0deff E3E

∗
1

P
(2)
3 = 2ε0deff E1E2. (2.12)

The generated polarization acts as a driving term in the wave equation

∇× (∇×Ej) +
∂

∂t
(σµ0Ej) + µ0ε

∂2Ej

∂t2
= −µ0

∂2P
(2)
j

∂t2
(2.13)

where

Ej(r, t) =
1

2

{
Ej(r) exp[i(k · r − ωt)] + E∗

j(r) exp[−i(k · r − ωt)]
}

(2.14)

and

P
(2)
j (r, t) =

1

2

{
P

(2)
j (r) exp[i(k · r − ωt)] + P

(2)∗
j (r) exp[−i(k · r − ωt)]

}
. (2.15)

Here, σi is the conductivity of the medium. The suffix j takes on the value of 1,2 or

3.
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The combination of Eqs. (2.14), (2.15), and (2.12) with Eq. (2.13) yields a set

of coupled equations for the three frequency parametric interaction,

d

dz
E1 + α1E1 = iκ1E3E

∗
2 exp(i∆kz)

d

dz
E2 + α2E2 = iκ2E3E

∗
1 exp(i∆kz)

d

dz
E3 = iκ3E1E2 exp(−i∆kz) (2.16)

where κj = ωjd/njc and αj = 1
2
µ0σjc is the round trip electric field loss [83].

Neglecting loss, the equations lead to a photon conservation relation

1

ω1

dI1

dz
=

1

ω2

dI2

dz
= − 1

ω3

dI3

dz
(2.17)

where

I(r, ω) =
1

2
ncε0|E(r, ω)|2

is the intensity and z is the direction of propagation.

For every photon converted from the pump field, a signal and a corresponding

idler photon are generated. For parametric generation in a crystal of length l, the

solutions of Eq. (2.16) can be assumed in the form

E∗
1 = E∗

1 exp
[
(Γ′ − 1

2
i∆k)z

]
and E2 = E2 exp

[
(Γ′ +

1

2
i∆k)z

]
. (2.18)

The solution of the equations

E∗
1

(
−iω2dE3

n2c

)
+ E2

(
Γ′ + α1 +

i∆k

2

)
= 0

E∗
1

(
Γ′ + α2 − i∆k

2

)
+ E2

(
iωdE

∗
3

n2c

)
= 0 (2.19)

is

Γ′± = −(α1 + α2)

2

±1

2

[
(α1 − α2)

2 +
i∆k

2
(α1 − α2)− 4

(
∆k

2

)2

+
4ω1ω2|d|2|E3|2

n1n2c2

]1/2

. (2.20)
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The parametric gain coefficient is defined as [92]

Γ =

∣∣∣∣
ω1ω2|d|2|E3|2

n1n2c2

∣∣∣∣
1/2

=

∣∣∣∣
2ω1ω2|d2|I3

n1n2ε0c3

∣∣∣∣
1/2

(2.21)

where I3 is the pump intensity. Therefore, the general solution is

E∗
1(z) = (E∗

1+egz + E∗
1−e−gz)e−αz exp(−i∆kz/2)

E1(z) = (E2+egz + E2−e−gz)e−αz exp(+i∆kz/2) (2.22)

where α1 = α2 = α and the total gain coefficient is defined as [86]

g =

[
Γ2 −

(
1

2
∆k

)2
]1/2

. (2.23)

There are several generic forms of optical parametric devices, all sharing the

same nonlinear-optical basis. In an optical parametric generator (OPG) there is suf-

ficiently high gain to amplify spontaneous optical noise to the level of the incident

pump radiation in the same sense as superfluorescent laser emission. The corre-

sponding optical parametric oscillator (OPO) requires an optical cavity to amplify

at least one of the generated waves, as in a conventional laser. The resulting output

beams have laserlike monochromaticity and coherence. An OPO cavity may be

operated as a doubly resonant oscillator (DRO) in which resonant optical feed back

occurs at both ω1 and ω2, a singly resonant oscillator (SRO) with feedback at only

one frequency (either ω1 or ω2), or a nonresonant oscillator (NRO) in which neither

ω1 nor ω2 are resonated in the cavity. The MIRAGE 3000 has an NRO in the first

amplification stage. An optical parametric amplifier (OPA) requires coherent input

at either ω1 or ω2 which is amplified by coherent interaction with the pump radiation

through the same form of a nonlinear optical process as in an OPG or an OPO.

As mentioned earlier, the frequency (or the wavelength) tuning in parametric

oscillation is achieved by rotating the nonlinear crystal. Theoretically the angle

tuning of the type II crystal can be calculated as follows (the calculation for the
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type I crystal is described in Ref. [93]). Consider a parametric oscillator pumped by

an extraordinary pump wave at ω3. ω1 is an ordinary wave and ω2 is an extraordinary

wave. At some crystal orientation θ0, oscillation takes place at ω10 and ω20 where

the indices of refraction are n10 and n20, respectively. At θ = θ0, according to Eq.

(2.5),

ω3n30(θ0) = ω10n10 + ω20n20. (2.24)

The crystal is rotated by ∆θ. This causes the index n3 to change so that the need

to satisfy the phase-matching condition causes ω1 and ω2 to change slightly. The

new oscillation takes place with the following changes relative to oscillation at θ0:

ω3 −→ ω3

n30 −→ n30 + ∆n3

n10 −→ n10 + ∆n1

n20 −→ n20 + ∆n2

ω10 −→ ω10 + ∆ω1

ω20 −→ ω20 + ∆ω2

∆ω2 = −∆ω1. (2.25)

Since the phase-matching conditions need to be satisfied at the new set of frequencies,

then

ω3(n30 + ∆n3) = (ω10 + ∆ω1)(n10 + ∆n1) + (ω20 −∆ω2)(n20 + ∆n2). (2.26)

Neglecting second-order terms ∆n∆ω and using the energy conservation condition

yields

∆ω1|θ=θ0 =
ω3∆n3 − ω10∆n1 − ω20∆n2

n10 − n20

. (2.27)



26

Since the pump and the idler are extraordinary, n3 and n2 are functions of θ. The

index n1 of the ordinary wave depends on frequency but not on θ. Then,

∆n1 =
∂n1

∂ω

∣∣∣∣
ω10

∆ω1

∆n2 =
∂n2

∂θ

∣∣∣∣
θ

∆θ

∆n3 =
∂n3

∂θ

∣∣∣∣
θ

∆θ (2.28)

∂ω1

∂θ
=

ω3
∂n3
∂θ

− ω20
∂n2
∂θ

n10 − n20 + ω10
∂n1
∂ω

. (2.29)

Using Eq. (2.3) and the differentiation relation d
dx

(
1
x2

)
= − 2

x3 , it turns out that

∂nj

∂θ
= −n3

j

2
sin 2θ

[(
1

n
(ωj)
e

)2

−
(

1

n
(ωj)
o

)2
]

(2.30)

where j = 2, 3. Then, the final result becomes
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(2) OPO Laser System: MIRAGE 3000

The MIRAGE 3000 has three stages: a single-frequency optical parametric oscil-

lator (or master oscillator), a nonresonant oscillator (NRO), and a parametric ampli-

fier (OPA) [95, 96]. The core of the OPO is the master oscillator(MO) which is

pumped by the second harmonic of the injection seeded Nd:YAG. A layout of the

OPO is shown in Fig. 2.6. The MO generates the near-infrared radiation in the

wavelength range between 710 nm and 840 nm. The mid-infrared radiation (1.45
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µm - 2.12 µm) is generated by two stages of optical parametric amplification. The

first amplification stage is an NRO seeded by the near-IR beam from the MO. It is

pumped by 532 nm and amplifies the injected near-IR radiation from the MO while

simultaneously producing an idler beam with wavelength 1.45 µm - 2.12 µm. Now,

the idler photons from the NRO act as seed radiation for the second stage which

is pumped by the Nd:YAG fundamental at 1064 nm. The second stage mixes the

idler from the NRO with the 1064 nm pump beam resulting in amplified output

between 2.12 µm to 1.45 µm (the signal) and a difference-frequency output between

2.12 µm to 4 µm (the idler). For the convenience, λ1, λ2, and λ3 denote photons of

wavelength 710 nm - 840 nm, 1.45 µm - 2.12 µm, and 2.12 µm - 4 µm, respectively.

In the following, each stage is described in detail.

The MO consists of a KTP (potassium titanyl phosphate) crystal, a near grazing-

incidence diffraction grating, a rear mirror, and a tuning mirror (see dotted box

in Fig. 2.6). The two mirrors define the optical resonator. The cavity length is

about 5cm yielding a free spectral range of 3 GHz. The grating of length 5 cm

has 1800 lines/mm. Wavelength tuning is achieved by simultaneously rotating the

tuning mirror and the KTP crystal. Rotating the tuning mirror selects a wave-

length from the grating whereas rotating the KTP crystal allows one to maintain

the phase-matching condition for the specific wavelength (Eq. (2.31)). The rear

mirror mounted on a piezo-driven translator allows the fine adjustment of the cavity

length. As described in the previous section, single frequency pump radiation of

the injection-seeded SLM Nd:YAG is required for single-frequency OPO operation.

Typically, 18 mJ of 532 nm pump radiation is introduced into the cavity producing

about 0.7 mJ of near-IR radiation. The threshold input pump energy for lasing is

about 12 mJ per pulse. Since the polarization of the near-IR beam is horizontal, less

than 1% of the MO beam output is reflected from window (W1) and injected into

the NRO. To attain single longitudinal mode (SLM) operation, it is important to
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Figure 2.6: Layout of the OPO laser. DM=dichorioc mirror, AT1,AT2=attenuators,
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(optical parametric oscillator).
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maintain the cavity length precisely. The reflection from a second window (W2) is

directed towards a split photodiode (SP) for feedback. Most of the near-IR radiation

from the MO is transmitted and is sent to an etalon for monitoring single frequency

operation. The NRO amplifies the signal radiation of the MO beam and generates

idler photons at the difference frequency while maintaining spectral properties of the

MO beam.

The NRO consists of three mirrors and a pair of KTP crystals (see dash-dot-

dash (− · −) box in Fig. 2.6), which are identical to the one in the MO. They are

mounted so that their optical axes are reversed in order to compensate for the beam

displacement as the crystals are angle-tuned. The three mirrors are differently coated

according to their purposes: M1 is highly reflective for λ2 and highly transmissive

for λ1, M2 is highly reflective for the 532 nm pump and transmissive for both λ1

andλ2, and M3 is highly transmissive for λ2 and highly reflective for both the 532

nm pump beam and λ1. The signal and idler (λ1 and λ2) exit to opposite ends of

the NRO. About 65 mJ of the 532 nm pump radiation is introduced into the NRO

cavity to generate about 15 mJ of the signal beam (λ1) in the experiment. The idler

beam of the NRO stage (λ2) is sent to the last stage (OPA). It is important to note

that the polarization of the signal (λ1) is horizontal with respect to the laser bench

and the polarization of the idler (λ2) is vertical.

The OPA pumped by the Nd:YAG fundamental beam amplifies the idler output

(λ2) of the NRO which acts as the signal beam and generates a new idler beam (λ3).

The OPA consists of a pair of KTP crystals and two dichroic mirrors (see dash-dot-

dot-dash (− · ·−) box in Fig. 2.6). 160 mJ of the 1064 nm radiation measured after

an aperture (AP) is introduced into the OPA yielding about 10 mJ of the signal

and 5 mJ of the idler radiation. The polarization of the signal (λ2) is vertical with

respect to the laser bench and that of the idler (λ3) is horizontal in this stage.



30

Since the first overtone transition of the NO monomer is at 3724 cm−1 (or 2.685

µm), from the energy conservation

1

1.064 µm
=

1

2.685 µm(λ3)
+

1

λ2

1

532 nm
=

1

λ1

+
1

λ2

λ1 = 762 nm and λ2 = 1.762 µm are obtained. In this wavelength region of the MO,

surface lasing due to normal incidence of the pump beam onto the KTP crystal which

is cut at θ = 57◦ makes it impossible for the OPO to operate in SLM. Although the

crystal is mounted slightly tilted at the factory (tan−1(0.5/15.2) = 1.88◦ slanted)

(see Fig. 2.7(a)), this off-horizontal configuration is not sufficient to enable single

mode operation in this wavelength range. For the best performance of the OPO, all

beams must be 50 mm above the laser bench everywhere in order for the pump beam

to be parallel to the grating. In other words, the pump beam must be perpendicular

to the grooves of the grating. In order to avoid normal incidence for the present

experiment, the pump beam is lowered on the translating pump steering mirror

(TPSM) and then directed up towards the rear mirror. The elevation is about 0.25◦

upward which results in an angle of 2.13◦ between the crystal and the pump beam

path (see Fig. 2.7(b)). Figure 2.7 is a side view of the MO cavity. Part (a) is

the configuration for normal horizontal alignment of the MO with the pump beam

horizontal to laser bench and grating. In part (b), the pump beam is pointing up.

The rear mirror is tilted so that the reflection coincides with the incoming beam.

This setup avoids the surface lasing under normal incidence of the pump beam.

(3) Frequency Stabilization

For the measurement of the hot band transition, the IR laser frequency is fixed

to a specific monomer line. Therefore, it is important to stabilize the OPO output to
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the pump beam. In part (b), the pump beam is pointing up to avoid severe surface
lasing. The rear mirror is tilted so that the reflection coincides with incoming beam.
The angle in (b) is exaggerated for clarity.
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this particular frequency. This is accomplished by a frequency stabilization feature

(LASER VISION). Active frequency stabilization of the OPO is achieved by the

addition of a piezoelectric element to the tuning mirror actuator for fine adjustment

of the tuning mirror angle with respect to the grating [97]. Shifts in frequency are

detected as drift of the fringes of an external etalon monitored with a CCD array.

The voltage applied to the piezo element is changed correspondingly to correct

the direction of frequency drift determined from the analysis of the etalon fringe

image. Furthermore, the accuracy is enhanced by stabilizing the temperature of the

external etalon.

2.2 Multiphoton Ionization Spectroscopy

To study the structure of the electronically excited state potential energy surface

of van der Waals complexes (e.g. NO-Ar, NO-Ne, acetaldehyde-Ar), (2+1) resonance

enhanced multiphoton ionization (REMPI) has been employed [70, 98]. In the (2+1)

REMPI process the molecule undergoes two-photon excitation to a sufficiently long-

lived intermediate electronic state (resonance) followed by the absorption of a third

photon resulting in the ionization of the molecule (see Fig. 2.8(a)). When one-

photon excitation is combined with ionization detection, the extraction of population

densities from the measured intensity is complicated often by partial saturation of

the resonant excitation step. Furthermore, electronic spectra of small molecules

lie frequently in the vacuum ultraviolet region which is not easily accessible using

commercially available laser systems. Two-photon spectroscopy is less troubled by

saturation phenomena and, using commercially available laser systems, even small

molecules can be detected with high sensitivity. Due to the reduced transition

probability in comparison to allowed one-photon transitions, it is necessary to focus
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for the (2+1) REMPI experiment and IR-REMPI double resonance experiment.
SK=skimmer, PZ=piezoelectric valve, PAC=photoacoustic cell.

the laser beam resulting in extremely small probe volumes, typically on the order

of 10−6 cm3. Since the product densities in molecular beam scattering experiments

are on the order of 106-1010 cm−3 per quantum state, only the strongest two-photon

transitions realizing detection efficiencies as high as 10% can be employed. This

enables us to use molecules with a strong two-photon resonance as a two-photon

chromophore in a van der Waals complex. Using this technique, complexes involving

NO have been studied as part of this thesis.

Figure 2.8(b) shows a schematic diagram of the molecular beam experiment.

The molecular beam machine was described in Section 2.1. For a single color (2+1)

REMPI excitation, a focused UV laser intersects the molecular beam at right angles
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Figure 2.9: Time-of-flight mass spectrum recorded at the indicated two-photon fre-
quency. The inset represents a spectrum taken with significantly increased sensitivity

in the acceleration region of a time-of-flight (TOF) mass spectrometer. Molecules

are excited and ionized via REMPI. The resulting ions are accelerated and mass

analyzed. Frequency spectra are recorded by monitoring the signal on a particular

ion mass. Figure 2.9 shows a typical TOF mass spectrum measured at the indicated

two-photon wavenumber. The spectrum is dominated by a sharp peak due to the

complex 14N16O-40Ar. In the region of the expected NO monomer arrival time,

two features are observed: A sharp peak due to the isotope 15N16O and a broad

distribution around the flight time expected for the regular 14N16O isotope. The

broad feature results from fragmentation processes of larger clusters. The inset
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Figure 2.10: Comparison of spectra for the NO-Ar complex recorded on mass 66 amu
and 70 amu in the wavelength region of the C̃ 2Π(v′ = 2)− X̃ 2Π(v′′ = 0) transition.

shows a mass spectrum recorded with significantly increased sensitivity. Small sig-

nals are attributed to the isotope 14N16O-36Ar and the NO dimer. While the dimer

spectrum does not show a frequency dependence, a typical NO-Ar C̃ 2Π(v′ = 2)

state spectrum is measured for the NO-36Ar isotope. The comparison of the spectra

for the complexes involving the two different isotopes of Ar is shown in Fig. 2.10.

Both spectra are dominated by a progression in the intermolecular stretching vibra-

tion labeled vs. On the low frequency side of the stretching progression, there is

a progression in the bending vibration denoted vb. The overall structure is almost

identical except for a small increase in the stretching frequency due to the isotope
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effect. Considering the fact that the natural abundance of 36Ar is only 0.36%, the

spectrum recorded for the isotopic complex demonstrates the extreme sensitivity of

the applied REMPI detection process.

2.3 Infrared-Ultraviolet Double Resonance Spectroscopy: I. The

NO monomer

In order to excite the first overtone transition of NO containing complexes, the IR

laser is used. In comparison with fundamental vibrational transitions, the intensity

of an overtone band is decreased by up to two orders of magnitude. Unlike a closed

shell molecule like HCl, the intensity per rotational line in NO(X 2Π) is reduced even

further because of the large number of rotational states due to the smaller rotational

constant and its open shell nature. With the IR laser alone, the transition cannot be

detected since the molecules cannot reach their ionization limit. In this case, the IR

absorption is detected via a (2+1) REMPI process with an accompanying UV laser.

In this IR-UV double resonance experiment, the UV laser acts like an IR absorption

detector. In this project, two variations of the double resonance experiment have

been performed. In a depletion experiment, the UV laser probes a ground state level

while the IR laser is scanned over an IR resonance. IR photons are absorbed by the

molecule depleting the UV signal. In a second type of experiment, a positive signal

is detected by the UV laser tuned to a hot band transition. When the lifetime of

the vibrational state is long enough, the UV laser probes the vibrationally excited

molecules promoting them to the excited electronic state. To compensate for the

small absorption cross section of the first overtone transition and to detect the IR

absorption efficiently, both laser beams are focused onto the molecular beam inside

the vacuum chamber rendering their alignment very difficult. In addition to these
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problems, the Nd:YAG laser system itself needs to be aligned, occasionally. After

each Nd:YAG alignment, the three stages of the OPO must be aligned as well. As

a consequence, all following optics including two Pellin-Broca prisms and the diode

laser need to be realigned. Besides the temporal and the spatial alignment, both

lasers must be tuned to the correct frequencies in order to find a double resonance

signal.

The feasibility of this type of experiment is tested by measuring a double reso-

nance spectrum for the NO monomer prior to an experiment with the NO-X (X=Ar,

Ne) complexes. Once the NO monomer double resonance signal is found, this signal

becomes an effective reference for the spatial and temporal alignment. Due to the

complicated alignment procedure, the verification of the optimum alignment is cru-

cial before searching for a resonance for the NO-X complexes. In verifying the align-

ment via a double resonance signal of the NO monomer, the following procedure is

adopted to minimize the number of unknown parameters at each step.

1. Photoacoustic Spectroscopy

In this experiment, a room temperature photoacoustic spectrum of the NO

monomer provides information on resonance frequencies for the IR absorption.

2. Discharge Source

With the help of a molecular beam discharge source, the UV frequencies for

probing vibrationally excited monomers are determined.

3. REMPI Cell Experiment

The first double resonance signal is recorded with the help of a REMPI cell.

In this case, the spatial and temporal alignment is achieved in a straightfor-

ward manner. These spectra confirm the UV frequencies for the hot band

transitions.
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4. Molecular Beam Experiment

With the IR and UV frequencies found from the previous steps, the spatial

and temporal alignment can be verified before searching for a signal due to the

NO-X complexes.

For a better understanding of the procedure, each step is described in detail in the

following subsections.

2.3.1 Photoacoustic Spectroscopy

This sensitive technique for measuring small absorptions is mainly applied when

minute concentrations of molecular species have to be detected in the presence of

other components at higher pressure. If the laser is tuned to the absorbing molec-

ular transition Ei → Ek, a fraction of the molecules in the lower level Ei will be

excited into the upper level Ek. In collisions with other molecules in the cell, these

excited molecules may transfer their excitation energy completely or partly into

translational, rotational, or vibrational energy of the collision partners, causing a

local increase of temperature and pressure [92].

This temperature change results in a pressure change which is detected with

a sensitive microphone placed inside the cell. Therefore, the output signal of the

microphone is proportional to the pressure change induced by the absorbed radia-

tion power. The signal decreases with increasing quantum efficiency for radiative

relaxation . Since the quantum efficiency is determined by the ratio of spontaneous

to collision-induced deactivation of the excited level, it decreases with increasing

spontaneous lifetime and gas pressure. Therefore, the photoacoustic method is par-

ticularly favorable to monitor vibrational spectra of molecules in the infrared region
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(because of the long lifetimes of excited vibrational levels) and to detect small con-

centrations of molecules in the presence of other gases at higher pressures (because

of the large collisional deactivation rate). With IR lasers, the molecules are generally

excited into higher vibrational levels of the electronic ground state. It is even pos-

sible to use this technique for measuring rotational spectra in the microwave region

and also electronic molecular spectra in the visible or ultraviolet range although the

sensitivity in these spectral regions is not quite as high and there are other superior

methods. Laser light reflected from the cell windows or scattered by aerosols in the

cell may partially be absorbed by the walls contributing to the temperature increase.

The resulting pressure is modulating at the laser repetition frequency and is there-

fore detected as background signal. Anti-reflection coatings on the cell windows or

a wedged window may reduce this background.

The photoacoustic cell used in the experiment is equipped with an electret micro-

phone (PANASONIC P9970-ND). Signals from the microphone are amplified with

an operational amplifier (op-amp). The circuit diagram of the microphone and the

op-amp is shown in Fig. 2.11. One of the windows of the photoacoustic cell is

a plane window made of CaF2 to ensure IR transmission. The other window is a

wedge to avoid the modulation described above. The cell is filled with 50mbar of

NO. The portion of the idler IR output (∼ 2.7 µm) of the OPO reflected from a

wedge (CaF2) is sent through the cell. The experimental arrangement is shown in

Fig. 2.12. Etalon fringes for the signal output of the NRO are recorded for frequency

calibration. An overview spectrum of the first overtone region of NO is displayed

in Fig. 2.13. The top part shows a room temperature photoacoustic spectrum while

the bottom part represents a calculated spectrum using the constants (Table 2.1)

from Amiot et al. with an effective linewidth of about 1 GHz [99]. Since the

spin-orbit splitting for the ground state is about 123 cm−1, at room temperature

both spin-orbit components (F1 and F2 with F1 having lower energy) are populated.
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Figure 2.11: Circuit diagram for the microphone and the operational amplifier(op-
amp).

The ratio of the population of the F2 component to that of the F1 component is

approximately 0.5 (exp(−∆E/kT ) = exp(−123 cm−1/ 203 cm−1) ' 0.5 ). The

spectrum which shows doublets in P - and R-branches with the intensity ratio of

0.5 confirms the ratio of the population estimates. Since the resolution of the OPO

linewidth is limited by pressure broadening, the λ-doubling (this will be discussed

theoretically later in Chapter 3) is only resolved for lines of the Q11 branch (Fig.

Table 2.1: Molecular constants (in cm−1) of NO for v = 0 and v = 2 level from Ref.
[99]. Av : spin-orbit constant, Bv : rotational constant.

v = 0 v = 2

ν0 0 3723.85256

Av 123.13361 122.63486

Bv 1.6961483 1.6609632
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Figure 2.12: Setup for the photoacoustic cell experiment.

2.14) when the scanning speed of the OPO is slow (0.00018 nm/s in Fig. 2.14 vs.

0.0018 nm/s in Fig. 2.13). As will be discussed in Section 3.1, the selection rule

for e/f levels is e ↔ f for Q-branches and e(f) ↔ e(f) for P - and R-branches.

Therefore, the spacing of λ-doublets is larger in the Q-branch than in the P - and R-

branches, especially for high j values (j is the total angular momentum of the NO

monomer). P - and R-branch lines are composed of unresolved doublets with a typ-

ical spacing of 300 MHz. The observed linewidth of 1 GHz well exceeds the Doppler

linewidth of 250 MHz. This indicates that the observed lines are actually unresolved

doublets. In the bottom part of Fig. 2.15, two center sticks with identical intensity

are separated by 0.01 cm−1. For reference, two additional sticks are located at ±0.3

cm−1. The top part shows the spectrum convoluted with a linewidth of a 400 MHz

Lorentzian component and a 250 MHz Gaussian component. Figure 2.15 shows how

two sticks with equal intensity separated by 0.01 cm−1 result in two unresolved lines.

The confirmation of the existence of two unresolved lines can also be seen in the UV

spectrum where the detection process is λ doublets specific (Fig. 2.16). The R11(
1
2
)
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Figure 2.13: Photoacoustic spectrum of the first overtone band in NO. The marked
IR transitions are used in different double resonance schemes. The top spectrum is
recorded in the cell and the bottom spectrum is calculated using the constants from
Ref. [99]. The spectrum is recorded without purging the laser beam path with N2.
The scanning speed is 0.0018 nm/s.

observed under molecular beam conditions is found to be displaced slightly from the

center of the corresponding photoacoustic lines.

In the region of the first overtone transition of NO, there is strong absorption due

to water vapor in the air. The missing lines in the measured spectrum in Fig. 2.13

are due to water absorption. This is consistent with the fact that the laser power

drops dramatically when it is measured just before the photoacoustic cell. These

problems are avoided by purging the entire beam path and the OPO system with dry
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Figure 2.14: Photoacoustic spectrum recorded with a reduced scanning speed of
0.00018 nm/s. The Q11 branch lines with j = 3

2
and j = 5

2
show λ-doublets. Lines

not assigned are due to water impurities in the photoacoustic cell.

N2. In the experimental spectrum, weak lines which do not appear in the calculated

spectrum of Fig. 2.13 are due to a small water impurity in the photoacoustic cell.

In Fig. 2.17, trace (b) shows a spectrum after several hours of purging. The purging

process recovers lines which are not detected in part (a) which is measured without

purging. On the other hand, the increased laser power results in even stronger

water signals (marked with asterisks). The photoacoustic spectrum and the well

matched simulated spectrum confirm the assignments of the various lines. In this

way the photoacoustic spectrum not only provides the IR frequency for the double
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Figure 2.15: Illustration of two unresolved lines by convoluting a stick spectrum.
In the bottom inset, the center sticks with identical intensity are separated by 0.01
cm−1. For reference, two additional sticks are located at ±0.3 cm−1. The top part
shows the convoluted spectrum with a linewidth of a 400 MHz Lorentzian component
and a 250 MHz Gaussian component.
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Figure 2.16: Double resonance spectrum of NO recorded under molecular beam
conditions. The IR laser is scanned over the R11(

1
2
) line while the UV laser is

fixed to the line Q21d(
3
2
) of the H −X hot band transition. Trace (a) shows etalon

fringes (top:measured, bottom:calculated), trace (b) and trace (c) display spectra
measured under molecular beam condition with and without focusing the IR laser
beam, respectively. The latter shows an effective linewidth (FWHM) of 420 MHz.
See page 56.
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resonance experiment but also serves as a fingerprint for the specific region in the IR.

Frequency Calibration

Due to mechanical imperfections of several motors and the piezo-driven stage

of the OPO, the frequency readouts from the OPO are not accurate and the scan

speed of the OPO is not constant. In order to measure accurate frequencies, the

readouts must be calibrated. In doing so, it is important to record etalon fringes and

a photoacoustic signal as well as the frequencies of the OPO output. A photoacoustic

signal is used to provide absolute frequencies while etalon fringes are used to produce

accurate relative frequencies. The latter requires the accurate measurement of the

free spectral range (FSR) of the etalon (see Fig. 2.16(a)). A photoacoustic spectrum

was recorded from 3685 cm−1 to 3778 cm−1 together with etalon fringes. Table 2.2

shows the data used for finding the FSR. Lines of the photoacoustic spectrum are

assigned to those from the literature [99] (see the first column of Table 2.2). Setting

Q11(
1
2
) at 3724.06693 cm−1 as a reference, the number of etalon fringes corresponding

to each photoacoustic line is counted from Q11(
1
2
) up to the second decimal point

(the second column). The third column represents the frequency relative to the

Q11(
1
2
) line.

The FSR of the etalon was determined by a least squares fitting method which

minimizes the quantity
∑

i

pi

[
ni∆ + b− νi

]
. (2.32)

Here, pi is a weight, ni is the number of etalon fringes relative to Q11(
1
2
), ∆ is

the FSR, b is an offset and νi is the relative frequency with respect to Q11(
1
2
). To

minimize the above quantity, Eq. (2.32) is differentiated with respect to ∆ and b,
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Table 2.2: Data table for finding the FSR. Assigned lines are calculated using the
constants from Ref. [99]. ni=number of etalons, νi=relative frequencies from Q11(

1
2
)

line, pi=weights.

Assigned line ni νi |ni| pi

3685.56307 -191.66 -38.50386 191.66 0.03417
3689.55825 -171.87 -34.50868 171.87 0.03064
3692.14795 -158.90 -31.91898 158.90 0.02833
3693.48484 -152.21 -30.58209 152.21 0.02714
3696.12122 -139.10 -27.94571 139.10 0.02480
3700.02432 -119.69 -24.04261 119.69 0.02134
3701.13224 -114.26 -22.93469 114.26 0.02037
3703.85696 -100.62 -20.20997 100.62 0.01794
3704.85308 -95.68 -19.21385 95.68 0.01706
3707.61889 -81.93 -16.44804 81.93 0.01461
3708.50536 -77.55 -15.56157 77.55 0.01383
3711.30985 -63.59 -12.75708 63.59 0.01134
3714.92955 -45.53 -9.13738 45.53 0.00812
3715.60434 -42.15 -8.46259 42.15 0.00752
3723.53005 -2.65 -0.53688 2.65 0.00047
3724.06693 0 0 0 0
3728.98004 24.48 4.91311 24.48 0.00436
3755.05885 154.30 30.99192 154.30 0.02751
3755.38959 155.90 31.32266 155.90 0.02781
3757.61142 166.98 33.54449 166.98 0.02977
3757.98714 168.84 33.92021 168.84 0.03010
3760.51032 181.42 36.44339 181.42 0.03235
3762.50798 191.34 38.44105 191.34 0.03412
3762.95903 193.59 38.89210 193.59 0.03452
3764.85164 203.00 40.78471 203.00 0.03619
3765.33312 205.38 41.26619 205.38 0.03662
3767.12528 214.24 43.05835 214.24 0.03820
3767.63250 216.75 43.56557 216.75 0.03864
3769.32874 225.21 45.26181 225.21 0.04015
3771.46180 235.83 47.39487 235.83 0.04205
3772.00675 238.58 47.93982 238.58 0.04254
3773.52427 246.10 49.45734 246.10 0.04388
3774.08143 248.84 50.01450 248.84 0.04437
3775.51593 256.00 51.44900 256.00 0.04564
3776.08103 258.82 52.01410 258.82 0.04615
3777.43656 265.56 53.36963 265.56 0.04735
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yielding the two equations:

[ ∑
i

pin
2
i

]
∆ +

[ ∑
i

pini

]
b =

∑
i

piνini

[∑
i

pini

]
∆ +

[∑
i

pi

]
b =

∑
i

piνi. (2.33)

After solving for ∆, the FSR was found to be 0.200917 cm−1.

A computer program was developed to determine relative frequencies of the

etalon fringes based on the measured value of the FSR. With this program the rel-

ative frequency scale for the measured spectra is determined by linear interpolation

between adjacent etalon fringes. This is shown in trace (a) of Fig. 2.16. The top line

within trace (a) represents the measured etalon fringes and the bottom spectrum

represents the calculated fringes using the program. With this method, the spectra

are reproducible within 0.015 cm−1 which is comparable to the effective resolution

of the OPO. Absolute frequencies are determined from the known resonances in the

photoacoustic spectrum of the NO monomer [99].

2.3.2 Discharge Source

The first attempt to find the UV frequencies for various hot band transitions in

NO under molecular beam conditions was performed in a newly designed molecular

beam apparatus in which a discharge molecular beam source is operated [100].

The discharge source generates vibrationally excited but rotationally cold species of

molecules. As an example, Fig. 2.18 shows the REMPI spectrum recorded in the

wavelength region for the hot band transitions E −X(v′′ = 1) and H −X(v′′ = 2).

Since the discharge source generates vibrationally excited species, it makes it pos-

sible to find the UV frequencies for the hot band transition without using the IR

laser. In this case, parameters such as the spatial alignment, the temporal alignment

and IR frequency are not critical.
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Figure 2.18: REMPI spectra from the discharge source. Trace (a) is a measured
spectrum with a backing pressure of 1.5 bar. Trace (c) and (d) are calculated spectra
of E −X(v′′ = 1) and H −X(v′′ = 2), respectively. Trace (b) is the superposition
of (c) and (d) with a population ratio of [NO(v′′ = 2)]/[NO(v′′ = 1) = 0.5].
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Figure 2.19: Setup of the REMPI cell experiment. M1-M4: gold mirrors, P1-P3:
infrasil prisms, P4,P5: CaF2 prisms. L1: 300mm focal length CaF2 lens, L2: 300 mm
focal length quartz lens, FP=focal point. When aligning the two counterpropagating
laser beams, a pin hole is placed in place of the REMPI cell.

2.3.3 REMPI Cell Experiment

Once IR and UV frequencies for the double resonance experiment are deter-

mined, the first double resonance experiment is performed using a REMPI cell.

A schematic of the REMPI cell experiment is shown in Fig. 2.19. Inside the

REMPI cell, two electrodes are mounted: one for detecting ions and the other for

applying a positive voltage. The resulting electric field accelerates the ions toward

the detection electrode. The REMPI cell is filled with 0.1 mbar of NO. As typical

voltages, 20 V - 70 V are applied to the electrode. In order to steer the IR beam,
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gold mirrors (EDMUND SCIENTIFIC) are used. A lens made of CaF2 is used for

focusing the IR beam. For spatial overlap of two counterpropagating laser beams,

a pinhole burned into a razor blade with the focused laser beam is prepared. The

pinhole is placed at the focal point of the two counterpropagating laser beams.

The UV laser focused with a 300 mm lens is aligned so that it passes through the

pinhole. The counterpropagating IR laser beam is focused with a 300 mm lens

(CaF2) and aligned through the same hole. The final OPO output consists of four

different frequencies: the signal (1.7 µm), the idler (2.7 µm), the residual 532 nm

beam, and the residual 1.064 µm beam. For rough alignment of the IR laser beam,

the residual 532 nm beam was used. Due to the imperfect alignment of the OPO

amplifier stage (in other words, the phase-mismatch (∆k) is not equal to zero in

Eq. (2.3)), the four different beams are not collinear. Therefore, it is important to

verify that the idler beam goes through the pinhole. For this verification, prism P5

is placed between lens L1 and prism P1 so that the IR beam which passes through

the pinhole can be directed to the photoacoustic cell. A photoacoustic signal on

the oscilloscope screen is optimized by adjusting the mirror M3. In this way, the

spatial alignment is verified. Although the lifetime of the vibrationally excited NO

is sufficiently long, it is important that the UV laser beam excites vibrationally

excited molecules before they move out of the focal region of the UV laser beam. By

using vrms =
√

2kT
m
' 400 m/s and the size of the two laser beam spots ('30 µm),

it is estimated that the delay between the two lasers must be at least within 75 ns

(= 30 × 10−6 m ÷ 400 m/s). The optimum delay is around 10 ns. The temporal

alignment is verified using two fast photodiodes with the same length BNC cables.

By monitoring the photodiode signals on the oscilloscope, the delay between the two

pulsed lasers is adjusted with two delay generators (STANFORD RESEARCH SYS-

TEMS DG535), each of which triggers one Nd:YAG laser. After the temporal and

spatial alignment is optimized, the pinhole is removed and the REMPI cell is placed
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Figure 2.20: Double resonance spectrum under cell conditions (top). The bottom
spectrum is a background spectrum taken without the IR laser beam. While the IR
laser frequency is fixed to the v′ = 2 R11(

1
2
) line, the UV laser is scanned over the

hot band region of the H −X transition.

so that the two laser beams are focused in the detection region inside the REMPI

cell. To measure the double resonance spectrum, the IR frequency is fixed to the

first overtone transition while the UV probe laser is scanned over the appropriate

hot band region in search of a positive double resonance signal. In Fig. 2.20, the

UV laser is scanned over the hot band region of the H 2Π − X 2Π transition while

the IR frequency is fixed to the R11(
1
2
) transition. The top spectrum is the double

resonance signal whereas the bottom spectrum is the background signal without the
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IR laser beam confirming that the signal results from the double resonance scheme.

2.3.4 Molecular Beam Experiment

The next step is to perform the double resonance experiment under molecular

beam conditions. For the double resonance experiment, two counterpropagating

laser beams are focused onto the molecular beam. While the temporal alignment

is easily optimized using two fast photodiodes, the spatial overlap of the two laser

spots inside the vacuum chamber is a difficult task. From the photoacoustic cell

and the discharge experiments, the correct IR and UV frequencies for the double

resonance experiment are obtained. For directing the IR beam into the molecular

beam machine, the residual green (532 nm) is used (later, the spatial alignment of

the IR beam is aided by the output of a red laser diode). Gold mirrors are used to

direct the IR beam. Other optical components like lenses and windows are made

of CaF2. In the double resonance experiment, the counterpropagating UV beam

exiting the molecular beam machine is likely to be focused onto one of the gold

mirrors causing damage. To avoid burning mirrors, one of the two beams is sent

slightly displaced from the collinear axis. In this way, the UV beam can be blocked

mechanically before reaching any gold mirror and without obstructing the IR beam.

To see if the idea of separating the two beams is possible, an algebraic calculation

was done using simple thin-lens equations. As shown in Fig. 2.21, the IR beam is

travelling from the right to the left along the lens-axis which connects the centers

of both lenses that are separated by fUV
1 + f IR

2 . Here, fUV
1 , fUV

2 , and f IR
2 denote

the focal length of lens L1 for the UV, the focal length of lens 2 (L2) for the UV,

and the focal length of lens L2 for the IR, respectively. Then, from the left the UV

beam enters lens L1 at height h1 parallel to the lens-axis. The beam is focused on

the UV focal point P of L1, making an angle θ between the lens-axis and the UV
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Figure 2.21: Configuration of lenses. The IR beam(solid line) follows the lens-axis
from the right to the left. The UV beam follows the dotted line from the left to the
right. fUV

1 : focal length of lens L1 for the UV, fUV
2 : focal length of lens L2 for the

UV, f IR
2 : focal length of lens L2 for the UV, P: focal point of both laser beams,

S: separation.

beam path. The relationship

h1 = fUV
1 θ.

holds if θ is sufficiently small. The focal point P becomes the object for the second

lens(L2). The position of the image will be determined by solving the thin-lens

equation:

1

f IR
2

+
1

i
=

1

fUV
2

,

=⇒ i =
fUV

2 f IR
2

f IR
2 − fUV

2

. (2.34)

The UV beam passes L2 slightly low (h2) with an angle θ′. If θ′ is the angle between

the lens-axis and the UV beam path after L2, then from

h2 = f IR
2 θ = iθ′ =

fUV
2 f IR

2

f IR
2 − fUV

2

θ′

θ′ becomes

θ′ =
f IR

2 − fUV
2

fUV
2

θ. (2.35)
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If the beam block is placed at a distance l from L2, the separation S between the

IR and the UV beam will be

S = θ′ (i− l)

=

(
f IR

2 − f IR
2 − fUV

2

fUV
2

l

)
θ. (2.36)

Finally, substituting h1 = fUV
1 θ into the above equation, then

S =
h1

fUV
1

(
f IR

2 − f IR
2 − fUV

2

fUV
2

l

)
(2.37)

As expected, to achieve a large separation S, h1 must be large. In the experiment, the

focal lengths are 280 mm, 600 mm, and 640 mm for fUV
1 , fUV

2 , and f IR
2 , respectively.

The distance l is about 1000 mm and h1 is estimated as 5 mm. Then, the estimated

separation S is 10.3 mm. In the experiment, a separation of about 7 mm was

achieved.

After the IR laser is aligned using the residual 532nm beam through the molecular

beam machine, the next step is to search for a double resonance signal. Since under

molecular beam conditions only the lowest rotational level of NO j = 1
2

is populated,

the IR laser is stabilized onto the R11(
1
2
) line and the UV laser probes the state

X(v′′ = 2, j = 1
2
) state. Even if both laser beams overlap only slightly, a small

signal can be detected when the MCP is operated at its maximum sensitivity (see

Fig. 2.22). This small signal can easily be optimized by steering the laser beams

and changing the delay between the two lasers. After the spatial and the temporal

alignment is optimized, typical signal-to-noise ratios in the order of 104-105 are

achieved.

In order to measure the linewidth of the OPO, the UV laser frequency was fixed

at the Q21d(
3
2
) line and the IR laser was scanned over the R11(

1
2
) line. In Fig.(2.16)

on page 45, trace (b) shows the molecular beam spectrum recorded using a 500

mm lens to focus the IR laser and a 300 mm lens for the UV beam while trace (c)
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Figure 2.22: IR-UV double resonance hot band spectrum. The IR laser excites the
R11(

1
2
) transition and the UV laser probes the H −X transition. The top spectrum

is measured under molecular beam conditions and the bottom one is a calculated
spectrum.
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Figure 2.23: Depletion spectrum recorded with the UV laser fixed to the H − X
transition without separating the signal and the idler. The top spectrum is a pho-
toacoustic signal whereas the bottom spectrum is an ion signal. Where there is no
water absorption, a depletion up to 75% is measured.

displays the molecular beam spectrum without the 500 mm lens. The measured

linewidth is about 420 MHz. In trace (b), the observed line is not symmetric and

there are small peaks on each side (around −0.4 cm−1 and 0.7 cm−1). These peaks

are not measurable without the 500 mm lens. It is reckoned that this may be

caused by not separating the signal and the idler beam. The strong signal beam

might have shifted the potential surface due to the AC Stark effect. This behavior

becomes more prominent for the corresponding depletion spectrum. Figure 2.23

shows a depletion spectrum where the depletion does not depend on the frequency.

The depletion occurs everywhere except at frequencies where there is strong water
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Figure 2.24: Pellin-broca prism. Part (a) shows ‘enter short side’ configuration and
part (b) displays ‘enter long side’ configuration

absorption. Furthermore, up to 75% of the REMPI signal is lost. In order to

avoid this, the idler output beam must be separated from the signal beam using a

pair of Pellin-Broca (PB) prisms. Although the PB prisms are single blocks, they

can be visualized as consisting of two 30◦-60◦-90◦ prisms and one 45◦-45◦-90◦ prism

[101]. When two beams with different wavelengths collinearly superimposed enter

a PB prism, the beams are deflected differently according to the wavelength and

depending on which side of the prism the laser beams enter. Figure 2.24 shows

‘enter short side’(a) and ‘enter long side’(b) configurations. The ‘enter short side’

configuration deflects the longer wavelength more while the reverse is true for the

‘enter long side’ configuration. In the experiment, one PB prism is used to separate

four outputs of the OPO (the signal beam, the idler beam, residual 532 nm beam,

and 1064 nm beam) and the other is used to compensate for the displacement of the
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Figure 2.25: The pair of Pellin-Broca prism configuration used to separate the signal
beam and the idler beam. A beam dump is placed just before the second prism to
block the signal beam.

beam during scans. In order to verify that a pair of PB prisms does not displace the

beam path during a scan, a calculation is done using Snell’s law. n and n′ denote

refractive indices of air and the prism, respectively. θ, θ′ and θ′′ denote the incident,

the refracted and the outgoing angles, respectively. Then, the relationship

n sin θ = n′ sin θ′

n sin θ′′ = n′ sin(
π

3
− θ′) (2.38)

is found. A schematic is shown in Fig. 2.25. This relationship also applies to the

second PB prism in the reverse way. A simple computer code proves that the beam

path does not move after passing through the pair of PB prisms when the wavelength

of the IR beam is scanned. In the experiment, the two PB prisms are separated by
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Figure 2.26: Double resonance spectrum to verify that a pair of Pellin-Broca prisms
does not displace the beam path during a scan over a range of 10 cm−1.

about 1 m yielding a 5 mm separation just before the second prism. A beam dump

is used to block the signal beam as well as the residual 532 nm and 1064 nm beams.

In order to verify this experimentally, a double resonance spectrum is measured with

a wide range scan of the OPO as shown in Fig. 2.26.

Since with the beam dump the residual green (532 nm) is blocked, it is desirable

to have a visible light source as a guide to align the IR beam into the molecular

beam machine. For this purpose, a visible laser diode beam (WS TECH LC3-3.5G-

650) operating at 650 nm is aligned parallel with the IR laser beam. This beam is

coupled onto the IR beam path with the help of a wedge (CaF2). Now, the UV laser

beam and the diode beam are aligned onto the molecular beam inside the molecular
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Figure 2.27: NO monomer depletion after the signal beam is blocked. The UV
laser probes the E −X transition while the IR laser is scanned over the R11(

1
2
) line

to measure a depletion signal. The top spectrum is a depletion signal of the NO
monomer while the bottom spectrum is the photoacoustic signal. The linewidth of
the IR laser is measured to be 720 MHz when it is focused with a 500 mm lens.

beam apparatus to achieve the double resonance. As described earlier, the UV beam

needs to be sent slightly displaced from the IR beam path to avoid damage of the

gold mirrors.

Figure 2.27 shows a NO monomer depletion spectrum recorded with only the

idler beam being present. As compared to Fig. 2.23, this spectrum shows clearly

a frequency dependent depletion up to 45% with a linewidth of 720 MHz. In the

spectrum, the UV laser probes the E −X transition and the IR pump laser is fired

10 ns earlier than the UV laser to deplete the population of the lower level. In

this case the IR laser acts as a hole-burning laser removing population of the lower
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Figure 2.28: Schematic of the experimental setup for the IR-REMPI double reso-
nance experiments. DG1,DG2: delay generators, DSO=digital storage oscilloscope,
PB1,PB2=Pellin-Broca prisms, BD=beam dump, PAC=photoacoustic cell.

level. Then, the UV laser probes the hole which manifests itself as a reduction in

the signal.

The final schematic diagram is displayed in Fig. 2.28. The setup is summarized

as follow. A delay generator (DG1) triggers the Nd:YAG laser which pumps the dye

laser. The UV radiation from the second harmonic generation is focused onto the

molecular beam. The second delay generator (DG2) triggers the injection seeded

Nd:YAG laser to pump the OPO. The OPO generates the IR radiation (the signal

and the idler) which are separated by a pair of PB prisms. The near-IR radiation

from the NRO output is sent to an etalon for the purpose of calibration. The

two reflections of the idler beam from a wedge are sent to a photoacoustic cell for
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reference and to a PbSe detector (CAL SENSORS MODEL BP25) for monitoring

the IR output power. For alignment purposes, a laser diode beam is introduced to

copropagate with the IR laser beam. The IR laser beam travelling anti-parallel to

the UV laser beam is focused onto the molecular beam. Signals from the MCP are

recorded with a gated integrator and transferred to a PC via an A/D converter.

The signals from the etalon, the PbSe detector, and the photoacoustic cell are also

recorded with box car integrators and stored in the PC. To avoid water absorption

in air, all optics are mounted inside a plexiglass housing which is purged with dry

N2. The dotted box in Fig. 2.28 indicates the plexiglass housing. In order to verify

the double resonance character of a signal, a mechanical shutter is used to block the

IR beam under computer control.

2.4 Infrared-Ultraviolet Double Resonance Spectroscopy: II. Appli-

cation to NO-X (X=Ar, Ne) Complex

So far, a technique has been developed to search for double resonance signals of

the NO monomer under molecular beam conditions. Now, this technique is applied

to measure spectra for the NO-X (X=Ar, Ne) complex. The detection gate is fixed

at the appropriate cluster mass (70 amu for NO-Ar, 50 amu for NO-Ne). In order

to find the IR resonance frequency for the first overtone transition of the complex, a

depletion signal must be detected first. In search of the depletion, the UV frequency

is fixed to a known cluster resonance while the IR laser is scanned. For example,

in the case of NO-Ar, the UV laser is fixed to the second feature (56624.7 cm−1)

of the C̃ 2Π(v′ = 2) − X̃ 2Π(v′′ = 0) transition as seen in Fig. 2.10 and the IR

laser is scanned over the wavelength region of the first NO overtone. For NO-Ar, a

resonance is discovered at 3723.4 cm−1. In this case, the cluster band is redshifted
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Figure 2.29: IR depletion spectrum of the NO-Ar complex in the vicinity of the
origin of the first overtone transition of the NO monomer. At 3723.4 cm−1 and
3727.2 cm−1, deletion features are detected.
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about 0.5 cm−1 from the corresponding origin band of the NO monomer. The

shift implies a small increase in the binding energy. As can be seen in Fig. 2.29,

the depletion signal has a poor signal-to-noise ratio. REMPI signals involving a

two-photon process suffer from large pulse-to-pulse fluctuations. In spite of that, a

depletion signal of about 20% is detected. This signal is greatly reduced as compared

to the NO monomer depletion. This reduction may be caused by the mismatch in

the linewidths of the two lasers. In the case of the monomer, the linewidth of the UV

laser is sufficiently small for detecting a single rovibronic level. On the other hand,

for the case of the complex, it covers several levels due to the higher level density

of the complex. Thus, the narrow linewidth of the IR laser causes only one level

to be depleted while the UV laser probes additional levels resulting in the reduced

depletion. If the lifetime of the vibrationally excited state of the NO-X complex is

comparable to or larger than the laser pulse duration of 5 ns, it should be possible

to detect vibrationally excited complexes. To check this, the IR frequency is tuned

to the observed depletion features while the UV laser is scanned over the region of

the second hot band transition.

For NO-Ar, a positive IR-REMPI double resonance spectrum is shown in Fig.

2.30. With the IR laser beam fixed to the depletion feature, the UV laser beam

is scanned over the Ẽ 2Σ(v′ = 0) − X̃ 2Π(v′′ = 2) band of the NO-Ar complex.

Trace (a) is a spectrum recorded with the IR fixed to the frequency of the maximum

depletion signal while trace (b) is recorded without the IR laser. To confirm that the

assignment is attributed to the hot band transition to the Ẽ state, the corresponding

spectrum for the origin band system is shown in trace (c) shifted by 3723.4 cm−1.

Lines marked with an asterisk result from baseline shifts due to strong monomer

resonances.

Once the hot band transition has been found, an IR absorption spectrum is

recorded to see rotational structures of the first overtone transition. In this case
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laser is scanned over the region of the hot band transition Ẽ 2Σ+(v′ = 0)−X̃ 2Π(v′′ =
2) of the complex while the IR laser is fixed to the maximum depletion signal. Trace
(b) is recorded without the IR laser. Signals in this range are assigned to the cluster
transition C̃ 2Π(v′ = 2)− X̃ 2Π(v′′ = 0). The spectrum in trace (c) shows the (2+1)
REMPI spectrum of NO-Ar for the excitation from the electronic ground state to
its Ẽ 2Σ+ state shifted by 3723.4 cm−1 to the lower frequency. Lines marked with
an asterisk are caused by a baseline shift due to strong monomer resonance.
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Figure 2.31: IR-REMPI double resonance spectra. The IR laser is scanned while
the UV laser is fixed to the indicated UV frequencies which are marked as arrows in
Fig. 2.30.

the mismatch in the linewidth acts as an advantage. The larger linewidth of the

UV laser makes it possible to detect a great number of rovibrational levels of the

complex populated by the IR laser during the scan. Figure 2.31 displays the IR

spectra measured with the UV laser tuned to the bands marked with arrows in Fig.

2.30. The top spectrum shows two bands while the bottom one shows only one band.

This difference is ascribed to the fact that the UV laser is kept fixed during the IR

scan. When the UV frequency is fixed to 56727.1 cm−1 (Fig. 2.31(b)), during the

IR scan the UV laser frequency is out of resonance with the levels populated for
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the second band. On the other hand, when the UV frequency is fixed to 56806.1

cm−1 (Fig. 2.31(a)), the UV laser frequency still remains within the resonance.



Chapter 3

Theoretical Background

3.1 Theory of the NO Monomer

3.1.1 Low-Lying Rydberg States

The ground state electron configuration of NO is given in terms of molecular

orbitals:

(1sσ)2 (1sσ∗)2 (2sσ)2 (2sσ∗)2 (2pσ∗)2 (2pπ)4 (2pπ∗)1.

14 electrons are in closed shells while the 15th electron is in an anti-bonding π∗

orbital. This contribution gives rise to the X 2Π ground state. The electronic

spectrum of the NO molecule has been studied in absorption and emission by many

authors [16, 99, 102, 103, 104]. Excitation of the electron in the anti-bonding π∗

orbital to a Rydberg orbital generates Rydberg states characterized by nl where

n is the principal quantum number and l is the orbital angular quantum number.

This leaves the remaining 14 electrons in the NO+ 1Σ+ state. This closed shell

configuration is little influenced by the Rydberg electron. Several Rydberg series

with different l converge to the Σ+ ground state of the cation NO+ located at about

9.6 eV. The vibrational frequencies and rotational constants for the Rydberg states

are almost identical with the ones of the cation: νNO+ = 2376 cm−1 and Bv = 2.06

cm−1 [105]. Atomic orbitals split into molecular orbitals characterized by λ which

is the projection of the orbital angular momentum l onto the diatom axis. The

energetic ordering of the low-lying Rydberg states is shown in Fig. 3.1. These are

70
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derived from orbitals like 3s, 3p, 3d, and 4s. An ns complex gives rise to a Σ+ state

such as A 2Σ+ (3s) and E 2Σ+ (4s). The 3p orbital splits into a non-degenerate

3pσ-orbital and a doubly degenerate 3pπ-orbital giving rise to the states D 2Σ+

and C 2Π, respectively. The 3d orbital splits into 3dσ (H 2Σ+), 3dπ(H ′ 2Π), and

3dδ (F 2∆) components.

The characteristics of the Rydberg orbitals depend on the effective quantum

number n∗ rather than n. n∗ can be calculated from the relative distance of the

observed energy level Tn to the ionization limit Ip:

n∗ = n− δ =

(
R∞

Ip − Tn

)1/2

(3.1)

Here, δ is the quantum defect, and R∞ is the Rydberg constant. The large quantum

defect of the orbitals (n+1)s is responsible for a near-degeneracy with the nd orbital

which have a small quantum defect. As a result, the ndσ orbitals are strongly mixed

with the (n + 1)sσ orbitals [104]. Excitation of an electron out of a closed shell

into the anti-bonding orbital π∗ leads to non-Rydberg (valence) states. These

valence states have significantly reduced vibrational frequencies and rotational con-

stants (see Table 3.1). Important homogeneous (∆Ω = 0) interactions have been

found between several Rydberg states and valence states (e.g. C 2Π ∼ B′ 2∆

and F 2∆ ∼ B 2Π). The strength of the interaction varies with the vibrational

level. For example, it reaches a maximum at C 2Π(v = 3) and B 2Π(v = 15) for

the C 2Π ∼ B′ 2∆ interaction. Furthermore, the degree of state mixing depends

on the rotational energy which tunes the overall energy in or out of resonance [106].

3.1.2 Diatomic Hamiltonian

In order to understand the NO monomer, the diatomic Hamiltonian is derived

in this subsection. In this derivation, the spin is first neglected. It will be included
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Table 3.1: Low-Lying Rydberg States and valence states [16]. Av: spin-orbit con-
stant, Bv: rotational constant, δ: quantum defect, rnl: radius of Rydberg orbital.

State T0 Av Bv δ rnl/Å

3dπ H ′2Π 62,721.1 -0.02 5.65

3dσ H 2Σ+ 62,705.3

3dδ F 2∆ 62,051.1 0.06 5.28

4sσ E 2Σ+ 60,862.8 1.19 6.27

Non-Rydberg B ′2∆ 60030. -2.2 1.321

3pσ D 2Σ+ 53,290.9 0.74 3.52

3pπ C 2Π 52,373.2 +3.0 0.78 3.38

Non-Rydberg B 2Π 45,482.0 +30 1.115

3sσ A 2Σ+ 44,198.9 1.987 1.10 2.86

X 2Π 0.0 +123.2 1.697

later when the energy eigenvalues are calculated in the next subsection. After the

derivation of the eigenenergies, ‘λ-doubling’ is derived theoretically.

The total energy of the diatom is comprised of the kinetic energy and the elec-

trostatic potential energy. The kinetic energy of the diatom is the sum of the kinetic

energies of all particles (two nuclei and Nbc electrons). The electrostatic potential

energy is the sum of the electron-electron, electron-nucleus, and nucleus-nucleus

Coulomb interaction energies. The total energy of the diatom is written as

H = T + V

=
1

2
mbṘ

2

b +
1

2
mcṘ

2

c +
1

2

Nbc∑

kbc=1

meṘ
2

kbc

+
ZbZce

2

|Rb −Rc| −
Nbc∑

kbc=1

Zbe
2

|Rb −Rkbc
| −

Nbc∑

kbc=1

Zce
2

|Rc −Rkbc
| +

∑

jbc<kbc

e2

|Rjbc
−Rkbc

| .

(3.2)
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In the above expression, the subscript b and c denote the two nuclei and the sub-

scripts jbc or kbc denote the electrons. Accordingly, Rb and Rc represent the position

vectors of the two nuclei and Rkbc
the position vector of an electron with respect

to an arbitrary laboratory frame. mb, mc, and me denote the masses of the nuclei

and an electron. Zbe and Zce are charges of the nuclei. In the absence of external

fields, the center-of-mass (cm) of a molecule moves along a straight line with con-

stant velocity. Then, the cm motion can be separated off by defining the following

new coordinates:

Rb = Rcm + rb, Rc = Rcm + rc, and Rkbc
= Rcm + rkbc

. (3.3)

Here, Rcm is defined as the cm of all particles:

MRcm = mbRb + mcRc +

Nbc∑

kbc=1

meRkbc
(3.4)

where M is the total mass of the diatom. The coordinates rb, rc, and rkbc
are

related according to the cm condition:

mbrb + mcrc +

Nbc∑

kbc=1

merkbc
= 0. (3.5)

Using Eq. (3.3) the kinetic energy is expressed as

T =
1

2
MṘ

2

cm +
1

2
mbṙ

2
b +

1

2
mcṙ

2
c +

1

2

Nbc∑

kbc=1

meṙ
2
kbc

. (3.6)

In these new coordinates, the potential energy becomes

V =
ZbZce

2

|rb − rc| −
Nbc∑

kbc=1

Zbe
2

|rb − rkbc
| −

Nbc∑

kbc=1

Zce
2

|rc − rkbc
| +

∑

jbc<kbc

e2

|rjbc
− rkbc

| . (3.7)

Since the potential does not depend on Rcm, the cm motion can be separated off

and its contribution to the kinetic energy will be discarded from now on:

T =
1

2
mbṙ

2
b +

1

2
mcṙ

2
c +

1

2

Nbc∑

kbc=1

meṙ
2
kbc

. (3.8)
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In the above expression, the variables are not completely independent of each other

since they are related by Eq. (3.5). In order to have a set of generalized coordinates,

it is convenient to define a space fixed (sf) frame whose origin is located at the cm

of the nuclei, rcm. The position of the electrons are determined with respect to the

nuclear cm:

mbcrcm = mbrb + mcrc, r = rb − rc and ξkbc
= rkbc

− rcm, (3.9)

where mbc is the total mass of the two nuclei. The kinetic energy and the potential

energy are expressed in terms of the sf frame:

T =
1

2
M ṙ2

cm +
1

2
µbcṙ

2 + ṙcm ·
Nbc∑

kbc=1

meξ̇kbc
+

1

2

Nbc∑

kbc=1

meξ̇
2

kbc
, (3.10)

and

V =
ZbZce

2

r
−

Nbc∑

kbc=1

Zbe
2

| mc

mbc
r − ξkbc

| −
Nbc∑

kbc=1

Zce
2

| mb

mbc
r + ξkbc

| +
∑

jbc<kbc

e2

|ξjbc
− ξkbc

| . (3.11)

Here, µbc is the reduced mass of two nuclei. It is clear that the potential energy

does not depend on rcm. On the other hand, the kinetic energy contains terms with

rcm. Since the third term in the kinetic energy couples the nuclear center of mass

motion to the electron motion, it is not possible to separate off the former motion.

However, from the condition in Eq. (3.5) the nuclear center of mass is balanced by

the electrons:

mbrb + mcrc = −
Nbc∑

kbc=1

merkbc
⇔ mbcrcm = −

Nbc∑

kbc=1

meξkbc
−Nbcmercm. (3.12)

Solving for rcm yields

rcm = −me

M

Nbc∑

kbc=1

meξkbc
. (3.13)

Substituting the above result into the Eq. (3.10), the kinetic energy takes on the

form [107]:

T =
1

2
µbcṙ

2 +
1

2

Nbc∑

kbc=1

meξ̇
2

kbc
− 1

2

m2
e

M

(
Nbc∑
j=1

ξ̇jbc

)2

. (3.14)
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Now, the kinetic energy is given in terms of a set of independent variables.

In classical mechanics, the Hamiltonian needs to be expressed in terms of gen-

eralized coordinates and their conjugate momenta. The momenta conjugate to the

generalized coordinates are found according to:

pr = ∇ṙT = µbcṙ, (3.15)

pkbc
= ∇ξ̇kbc

T = meξ̇kbc
− m2

e

M

Nbc∑
jbc=1

ξ̇jbc
. (3.16)

Then, the kinetic energy becomes

T =
1

2µbc

p2
r +

Nbc∑

kbc=1

1

2me

p2
kbc

+
1

2mbc

(
Nbc∑

kbc=1

pkbc

)2

. (3.17)

The first term in the above equation is the nuclear kinetic energy TN whereas the

second terms represents the electron kinetic energy Te. The third term is referred

to as the mass polarization.

In describing the rotational motion of the molecule, it is convenient to introduce

a molecule fixed (mf) frame which is defined in such a way that its z-axis coincides

with the direction of the internuclear axis (parallel to the vector r). In the sf frame

the orientation of the diatom axis is determined by two polar angles, α and β. The

components of r in these two frames are

rsf = r




sin β cos α

sin β sin α

cos β




and rmf = r




0

0

1




. (3.18)

The above coordinates are related by a matrix C(α, β):

rmf = C(α, β)rsf (3.19)

where

C(α, β) =




cos β 0 − sin β

0 1 0

sin β 0 cos β







cos α sin α 0

− sin α cos α 0

0 0 1




. (3.20)
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The electronic coordinates in the mf frame which are denoted ηjbc
will be transformed

in a similar way:

ηkbc
= C(α, β)ξkbc

. (3.21)

Since a rotation does not change the lengths of a vector, the potential energy does

not change appearance under the rotation:

V =
ZbZce

2

r
−

Nbc∑

kbc=1

Zbe
2

| mc

mbc
r − ηkbc

| −
Nbc∑

kbc=1

Zce
2

| mb

mbc
r + ηkbc

| +

Nbc∑

jbc<kbc

e2

|ηjbc
− ηkbc

| . (3.22)

Note that in the above expression, r represents the vector in the molecule fixed

frame and henceforth a vector without superscript is regarded as a vector in the mf

frame unless otherwise stated. An arbitrary velocity ȧ defined in the sf frame but

projected onto the mf frame is written as

C(α, β)ȧsf = ȧmf + C(α, β)Ċ†(α, β)amf

= ȧmf + ω × amf (3.23)

where

ω =




− sin β α̇

β̇

cos β α̇




. (3.24)

Using Eq. (3.23) the expression of the kinetic energy Eq. (3.14) is found to be

T =
1

2
µbc

(
ṙ + ω × ṙ

)2

+
1

2
me

Nbc∑

kbc=1

(
η̇kbc

+ ω × η̇kbc

)2
+

1

2

m2
e

M

(
Nbc∑

kbc=1

(
η̇kbc

+ ω × η̇kbc

)
)2

.(3.25)

In terms of the generalized coordinates (r, α, β, ηjbc
), the kinetic energy is rewritten

as

T =
1

2
µbc

(
ṙ2 + r2β̇2 + r2α̇2 sin2β

)

+
1

2
me

Nbc∑

kbc=1

(
η̇kbc

+ ω × η̇kbc

)2
+

1

2

m2
e

M

(
Nbc∑

kbc=1

(
η̇kbc

+ ω × η̇kbc

)
)2

.(3.26)
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Now, the kinetic energy must be expressed in terms of generalized coordinates

and their conjugate momenta. The momentum conjugate to ηkbc
is calculated as

pkbc
= ∇η̇kbc

T = me

(
η̇kbc

+ ω × ηkbc

)− m2
e

M

Nbc∑

kbc=1

(
η̇kbc

+ ω × ηkbc

)
. (3.27)

The momentum conjugate to r is determined as

pr =
∂T

∂ṙ
= µbcṙ. (3.28)

For the generalized coordinates α and β, the conjugate momenta are given by

jα =
∂T

∂α̇
=

∂TN

∂α̇
+

∑
i=x,y,z

∂Te

∂ωi

∂ωi

∂α̇
=

∂TN

∂α̇
+

(∇ωTe

) · ∂ω

∂α̇
(3.29)

and

jβ =
∂T

∂β̇
=

∂TN

∂β̇
+

∑
i=x,y,z

∂Te

∂ωi

∂ωi

∂β̇
=

∂TN

∂β̇
+

(∇ωTe

) · ∂ω

∂β̇
. (3.30)

jα and jβ are expressed using the gradient of the electronic part of the kinetic energy

with respect to the components of the vector ω. The gradient of the electronic kinetic

energy is found to be

∇!Te = me

Nbc∑

kbc=1

ηkbc
×

(
η̇kbc

+ ω × ηkbc
− me

M

∑
jbc

(
η̇jbc

+ ω × ηjbc

)
)

. (3.31)

Using Eq. (3.27), the above expression defines the electronic orbital angular

momentum:

∇!Te =

Nbc∑

kbc=1

ηkbc
× pkbc

= l. (3.32)

Now, the conjugate momenta jα and jβ take the form:

jα = µbcr
2 sin2β α̇− sin β lx + cos β lz, (3.33a)

jβ = µbcr
2β̇ + ly. (3.33b)

In order to avoid any confusion regarding the angular momentum vectors, it is

convenient to note that those of the diatom are expressed in terms of small letters
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such as j, l, and s. On the other hand, the angular momentum vectors of the

complex are expressed in terms of capital letters like J ,L, and S.

Solving the above equations for α̇ and β̇ gives

α̇ =
jα + sin β lx − cos β lz

µbcr2 sin2β
(3.34a)

β̇ =
jβ − ly
µbcr2

. (3.34b)

Substituting α̇ and β̇ into Eq. (3.26) yields the following expression for the kinetic

energy in terms of the generalized coordinates and their conjugate momenta:

T =
p2

r

2
+

1

2µbcr2

((
jβ − ly

)2
+

(
csc β jα + lx − cot β lz

)2
)

+
1

2me

Nbc∑

kbc=1

p2
kbc

+
1

2mbc

(
Nbc∑

kbc=1

pkbc

)2

. (3.35)

By introducing a rotating coordinate frame, the nuclear kinetic energy couples

the electronic coordinates and nuclear motion. This coupling involves the orbital

angular momentum vector of the electrons, l.

It is informative to calculate the total angular momentum of the diatom which

is conserved in the sf center of mass frame (of all particles) and to express the

Hamiltonian in terms of its components. From the definition of the total angular

momentum in the sf frame (of all particles), jsf is given by

jsf = mbrb × ṙb + mcrc × ṙc + me

∑

kbc

rkbc
× ṙkbc

. (3.36)

Introducing the nuclear center mass rcm as defined in Eq. (3.9), the total angular

momentum becomes

jsf = Mrcm × ṙcm + µbcr
sf × ṙsf +

∑

kbc

meξkbc
× ξ̇kbc

+

(∑

kbc

meξkbc

)
× ṙcm + rcm ×

(∑

kbc

meξkbc

)
. (3.37)
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Substituting Eq.(3.13) into the above equation, jsf becomes

jsf = µbcr
sf × ṙsf +

∑

kbc

meξkbc
× ξ̇kbc

− m2
e

M

(∑
jbc

ξjbc

)
×

(∑

kbc

ξ̇kbc

)
. (3.38)

Using Eq. (3.23), the total angular momentum in the mf frame, jmf , is obtained by

projecting jsf onto mf axes:

jmf = C(α, β)jsf = µbcr × (ṙ + ω × r) +
∑

kbc

meηkbc
× (

η̇kbc
+ ω × ηkbc

)

−m2
e

M

(∑

kbc

ηkbc

)
×

(∑
jbc

η̇jbc
+ ω × ηjbc

)

= µbcr × (ṙ + ω × r) +
∑

kbc

ηkbc
× pkbc

= µbcr
2




− sin β α̇

β̇

0




+ l

=




−µbcr
2 sin β α̇ + lx

µbcr
2β̇ + ly

lz




. (3.39)

In order to express the Hamiltonian in terms of jmf , it is necessary to substitute

Eq. (3.34) into Eq. (3.39) and to solve for jα and jβ:

jα = − sin β jmf
x + cos β lz, jβ = jmf

y , and jmf
z = lz. (3.40)

Then, the alternative form for the kinetic energy is

T =
p2

r

2me

+
1

2µbcr2

[
(jx − lx)

2 + (jy − ly)
2] +

1

2me

∑

kbc

p2
kbc

+
1

2mbc

(∑

kbc

pkbc

)2

.

(3.41)

The superscript ‘mf’ has been dropped in the above equation. Unless otherwise

stated, j represents the total angular momentum projected onto the axes of the mf

frame.
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The quantum mechanical Hamiltonian operator is obtained by applying the

Podolsky trick [108]. With this method, it is possible to use the classical Hamil-

tonian in terms of generalized coordinates qi and their conjugate momenta pi and

to replace the pi by h̄
i

∂
∂qi

to obtain the quantum mechanical Hamiltonian operator

[109]. The classical Hamiltonian can be written in the form as

Hcl =
1

2

∑
i,j

pi

(
G−1

)
ij

pj + V (· · · qi · · · ) (3.42)

Here, the matrix G−1 generates the quadratic form in the conjugate momenta pi and

pj. Podolsky showed that by rewriting the classical Hamiltonian in the form

Hqm =
1

2
s−1/2g−1/4

∑
i,j

pi g1/2
(
G−1

)
ij
pj g−1/4s1/2, (3.43)

the Hamiltonian operator is correctly obtained by replacing pi by h̄
i

∂
∂qi

. Here, g is the

determinant of the matrix G. s is the weight factor for the volume element involved

in the coordinate transformation from Cartesian to general coordinates. After a

straightforward algebra, the quantum mechanical Hamiltonian operator is obtained

in the following form:

H = − h̄2

2µbcr2

∂

∂r
r2 ∂

∂r
+

1

2µbcr2

[
(jx − lx)

2 +
1

sin β
(jy − ly) sin β (jy − ly)

]

− h̄2

2me

∑

kbc

∇2
kbc
− h̄2

2mbc

∑

jbc,kbc

∇kbc
· ∇jbc

+ V (r,ηkbc
) (3.44)

A diatom (or a linear molecule) has only two rotational degrees of freedom cor-

responding to the two Euler angles α and β required to specify the direction of the

diatom axis (z axis) in space. As a result of the absence of the third angle χ, the

components of the angular momentum operator in the molecule fixed frame obey

neither normal nor anomalous commutation relations. Furthermore, the rotational

kinetic energy operator for a linear molecule is more complicated than that of a non-

linear molecule due to the presence of the extra angular factors sin β [109]. A method
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has been devised for introducing the angle χ as an independent variable for a linear

molecule. This is done by defining an isomorphic Hamiltonian [110, 111, 112, 113].

Since the isomorphic Hamiltonian has one more degree of freedom than the actual

Hamiltonian, it has more eigenvalues which are not eigenvalues of the actual Hamil-

tonian. Therefore, a subset of the eigenfunctions to the isomorphic Hamiltonian

must be chosen in order to derive the eigenfunctions to the actual Hamiltonian. The

components of the angular momentum vector which appear in the mf axes follow

anomalous commutation rules and thus the rotational kinetic energy operator is

simplified. In this respect, the linear molecule can be treated in the same way as a

nonlinear molecule.

Assuming that ψ is an eigenfunction of the Schrödinger equation

Hψ = Eψ,

the isomorphic Hamiltonian is derived by transforming the wavefunction with a

unitary operator eiS:

ψ̃ = eiSψ with S =
1

h̄
lzχ. (3.45)

If the Hamiltonian commutes with lz, then the transformed wavefunction differs only

by a phase factor eiλχ. Substituting ψ̃ for ψ and using the property of a unitary

operator, a new Schrödinger equation is obtained:

He−iSeiSψ = Ee−iSeiSψ ⇐⇒ eiSHe−iSψ̃ = Eψ̃. (3.46)

In other words, the Hamiltonian is transformed to

H̃ = eiSHe−iS (3.47)

which defines a new Schrödinger equation

H̃ψ̃ = Eψ̃ (3.48)
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with the same energy eigenvalues. In order to determine a transformed operator Ã,

the operator eiS is expanded into a Taylor series:

Ã = eiSAe−iS

= A + i[S, A] +
i2

2!
[S, [S, A]] +

i3

3!
[S, [S, [S, A]]] + · · · . (3.49)

With the normal commutation relation for l and the unusual commutation relation

for the total angular momentum [109], it can be shown that the components of the

transformed angular momentum operator j̃ − l̃ have the following form:

(j̃x − l̃x) = cos χ(jx − lx) + sin χ(jy − ly),

(j̃y − l̃y) = − sin χ(jx − lx) + cos χ(jy − ly), (3.50)

(j̃z − l̃z) = (jz − lz).

The Hamiltonian is transformed by Eq. (3.50) to the isomorphic Hamiltonian in the

form of

H̃ = − h̄2

2µbcr2

∂

∂r
r2 ∂

∂r
+

1

2µbcr2

[ (
j̃x − l̃x

)2

+
(
j̃y − l̃y

)2 ]

− h̄2

2me

∑

kbc

∇2
kbc
− h̄2

2mbc

∑

jbc,kbc

∇kbc
· ∇jbc

+ V (r,ηkbc
). (3.51)

Remembering that the new mf frame is rotated by three angles (α, β, χ), it is safe

to drop the tildes on j, l, and H. The final diatomic Hamiltonian is

H = Hvib + Hrot + Hel (3.52)

where the electronic Hamiltonian, Hel, is defined as

Hel = − h̄2

2me

∑

kbc

∇2
kbc
− h̄2

2mbc

∑

jbc,kbc

∇kbc
· ∇jbc

+ V (r,ηkbc
), (3.53)

the vibrational Hamiltonian, Hvib, as

Hvib = − h̄2

2µbcr2

∂

∂r
r2 ∂

∂r
, (3.54)
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and the rotational Hamiltonian, Hrot, as

Hrot =
1

2µbcr2

[
(jx − lx)

2 + (jy − ly)
2
]

(3.55)

The rotational Hamiltonian can also be expressed as

Hrot =
1

2µbcr2

[ <2
x + <2

y

]
(3.56)

where < = j − l is the rotational angular momentum.

3.1.3 Energy Eigenvalues of NO

For an open shell diatom like NO, the spin must be included in the total angular

momentum. The total angular momentum is defined as the sum of the nuclear

rotational angular momentum, the electronic orbital angular momentum and the

electronic spin angular momentum: j = < + l + s. This is equivalent to replacing l

by l +s. The contribution to the energy caused by the nuclear rotation is expressed

as

Hrot =
1

2µbcr2

[ <2
x + <2

y

]

=
1

2µbcr2

[
(jx − lx − sx)

2 + (jy − ly − sy)
2
]
. (3.57)

Eigenvalues and eigenfunctions are determined by solving the Schrödinger equa-

tion. In doing so, one must first determine a basis set which defines a matrix

representation. Then, the complete solutions are determined by diagonalizing the

Hamiltonian matrix. The eigenfunctions are represented by a linear combination

of basis states. Within the validity of the Born-Oppenheimer approximation, the

complete wavefunctions are products of wavefunctions describing the electronic and

the nuclear motion. The nuclear motion involves the vibrational and the rotational
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motion. Then, the total wavefunction can be written as a product of wavefunctions

describing the electronic, vibrational, and rotational motion.

Ψ = ψelψvibψrot. (3.58)

The electronic part of the wavefunction ψel is obtained from the electronic

Schrödinger equation

Helψ
el = Eelψ

el. (3.59)

It can be shown that the z-component of the electron orbital angular momentum,

lz, commutes with the electronic Hamiltonian Hel. Then, it is possible to take a

wavefunction ψel which is a simultaneous eigenfunction of the operators Hel and lz.

The index λ which is the quantum number of the lz operator is added to the electronic

wavefunction as ψel
λ . And for |λ| > 0, there are two eigenfunctions corresponding to

λ and −λ which are degenerate.

The rotational part of the Hamiltonian is partitioned into a diagonal part H
(0)
rot

and a coupling term H
(1)
rot ,

Hrot =
1

2µbcr2

[
(jx − lx − sx)

2 + (jy − ly − sy)
2
]

= H
(00)
rot + H

(0)
rot + H

(1)
rot (3.60)

where

H
(00)
rot =

1

2µbcr2
(l2 − l2z), (3.61)

H
(0)
rot =

1

2µbcr2

[
(j2 − j2

z ) + (l2 − l2z) + (s2 − s2
z)

]
, (3.62)

H
(1)
rot =

1

2µbcr2

[
(l+s− + l−s+)− (j+l− + j−l+)− (j+s− + j−s+)

]
. (3.63)

Here, the raising (−sign) and lowering (+sign) operators are defined as

j± = jx ± ijy, l± = lx ± ily, s± = sx ± isy.



86

The basis set is chosen in such a way that the operator H
(0)
rot has only diagonal matrix

elements while the operator H
(1)
rot gives rise to the off-diagonal matrix elements.

For the term H
(00)
rot , the electronic wavefunctions are generally not eigenfunctions of

l2. But, the expectation value of l2 is a weakly R-dependent quantity for a given

electronic state. Therefore, the quantity

h̄2

2µbcr2

[
l(l + 1)− λ2

]
(3.64)

may be incorporated into the electronic energy. On the other hand, the zeroth order

rotational contribution H
(0)
rot commutes with the operators j2, jz, jsf

z and s2, sz.

The eigenvalue equation of H
(0)
rot defines the zeroth order rotational eigenfunctions:

H
(0)
rotψ

rot = Erotψ
rot. (3.65)

The normalized rotational eigenfunction including spin is

ψ̃rot(α, β, χ) =

√
2j + 1

8π2
D(j)∗

mω (α, β, χ) Γsσ =
∣∣jmω

〉∣∣sσ〉
. (3.66)

where D
(j)∗
mω (α, β, χ) is a Wigner D-function which represents an element of the

rotation matrix [114]. j, m, and ω denote the quantum numbers for the total

angular momentum and its projections onto the mf and sf z-axes, respectively. Now,

the basis states without the vibrational part can be written in the form:

Ψ̃j(α, β, χ, r, ηjbc) =

√
2j + 1

8π2
D(j)∗

mω (α, β, χ) ψel
λ Γsσ

=
∣∣jmω

〉∣∣nλ
〉∣∣sσ〉

. (3.67)

This basis set is used to set up the matrix representation of the isomorphic Hamil-

tonian resulting in only small off-diagonal elements. Basis states with well defined

symmetry are constructed as

Ψ̃j,|ω|,ε(α, β, χ, r, ηjbc) =
1√
2

√
2j + 1

8π2

[
D(j)∗

mω (α, β, χ) ψel
λ Γsσ

+εD
(j)∗
m−ω(α, β, χ) ψel

−λ Γs−σ

]
. (3.68)
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The eigenfunctions for the true Hamiltonian are found by imposing the following

restriction on the eigenfunctions of the isomorphic Hamiltonian:

jχΨ̃ =
h̄

i

∂

∂χ

[
e

i
h̄
(lz+sz)χ Ψ

]
= (lz + sz)e

i
h̄
(lz+sz)χ Ψ = (lz + sz) Ψ̃. (3.69)

Among the eigenfunctions of the isomorphic Hamiltonian only those are accepted

which satisfy the relation, ω = λ+σ, where σ is the projection of the spin s onto the

mf z-axis. The corresponding basis states to the original Hamiltonian are obtained

by transforming Eq. (3.68).

Ψj,|ω|,ε(α, β, r,ηjbc) =
1√
2

√
2j + 1

4π

[
D(j)∗

mω (α, β, 0) ψel
λ Γsσ

+εD
(j)∗
m−ω(α, β, 0) ψel

−λ Γs−σ

]
. (3.70)

Note that the normalization factor 1√
2π

has been left out due to the lack of the angle

χ. Using ket-vector notation, the basis functions can be written as

∣∣njm|ω|ε〉 =
1√
2

{∣∣jmω
〉∣∣nλ

〉∣∣sσ〉
+ ε

∣∣jm−ω
〉∣∣n−λ

〉∣∣s−σ
〉}

(3.71)

with ω = λ + σ. These basis states describe the dependence of the complete wave-

function on all coordinates except the radial distant r. It is possible to expand the

complete wavefunction in terms of the above basis set with an unknown, r-dependent

coefficient
∣∣v〉

. Hence, the complete basis states can be written in the form:

Ψtot =
1√
2

∣∣v〉{∣∣jmω
〉∣∣nλ

〉∣∣sσ〉
+ ε

∣∣jm−ω
〉∣∣n−λ

〉∣∣s−σ
〉}

. (3.72)

The eigenvalues of the rotational Hamiltonian are obtained from

1

2µbcr2

[
(j2 − j2

z ) + (s2 − s2
z)

]∣∣jmω
〉

= Erot(r)
∣∣jmω

〉
. (3.73)

This results in the r-dependent energy as

Erot(r) =
h̄2

2µbcr2

[
j(j + 1)− ω2 + s(s + 1)− σ2

]
. (3.74)
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After integration of the rotational eigenvalue equation over the vibrational coordi-

nate, the diagonal part of the rotational energy is found to be

Erot(r) = Bv

[
j(j + 1)− ω2 + s(s + 1)− σ2

]
(3.75)

where the rotational constant is defined as

Bv =
〈
v
∣∣ h̄2

2µbcr2

∣∣v〉
. (3.76)

The Hamiltonian described so far is the nonrelativistic one. A relativistic term

due to the interaction between the spin and the orbital angular momentum of an

electron, the so called spin-orbit operator, must be added to the Hamiltonian. For

a single-electron configuration as in the case of NO, the approximate spin-orbit

interaction is written as

HSO = A(r)l · s = A(r)lzsz +
1

2
A(r)

[
l+s− + l−s+

]
. (3.77)

The selection rules for the matrix elements of HSO are:

∆j = 0; ∆ω = 0; e 6↔ f ;

∆s = 0 or ∆s = ±1;

∆λ = ∆σ = 0 or ∆λ = −∆σ = ±1. (3.78)

If the two interacting states belong to the same configuration, the diagonal part

contributes (∆λ=∆σ=0). If the two states differ by one spin-orbital as will be seen

later for 2Π ∼ 2Σ interaction, then the off-diagonal terms of the spin-orbit operator

contribute (∆λ=−∆σ=±1). For diagonal matrix elements, the spin-orbit coupling

constant, Av, is defined as

〈
v, j m ω λ s σ

∣∣HSO
∣∣v, j mω λ s σ

〉
= Avλσ. (3.79)

The total Hamiltonian for NO takes the form:

H = Hel + Hvib + Hrot + HSO. (3.80)
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The off-diagonal terms of the rotational Hamiltonian H
(1)
rot are related to perturba-

tions between different electronic states

1. (1/2µbcr
2)[l+s− + l−s+] gives the spin-electronic perturbation between basis

states of the same ω(homogeneous) and s, but different λ and σ. The selection

rules for this perturbation are

∆ω = 0, ∆λ = −∆σ = ±1, ∆s = 0.

2. (1/2µbcr
2)[j+s− + j−s+] is the spin-uncoupling operator which is responsible

for the electronic-rotational perturbations between basis states of different ω

(heterogeneous) having the same values of s and λ, but different σ. The

selection rules for the spin-uncoupling operator are

∆s = 0, ∆ω = ∆σ = ±1, ∆λ = 0.

3. (1/2µbcr
2)[j+l− + j−l+] is the l-uncoupling operator which is responsible for

the electronic-rotational perturbations between basis states of different ω (het-

erogeneous) having the same values of s and σ, but different λ. The selection

rules for this operator are

∆s = 0, ∆ω = ∆λ = ±1.

These off-diagonal terms are responsible for the phenomenon of ‘λ-doubling’ which

is discussed in Section 3.1.3.1.

The ground state of NO is a 2Π state that is split by spin-orbit interaction into

2Π1/2 and 2Π3/2 components with a separation of about 123 cm−1. For NO the

2Π1/2 state is lower in energy. Since the spin-orbit splitting is much larger than the

rotational constant (B0 = 1.697 cm−1 for the ground state, B0 = 2.06 cm−1 for

Rydberg states), the wavefunction can be well described in terms of Hund’s case (a)
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basis functions. For this case, the good quantum numbers are j, s, ω, λ, and σ,

with ω = λ + σ. For a 2Π state, there are four possible basis functions:

∣∣2Π3/2

〉
=

∣∣n, λ = 1
〉 ∣∣v〉 ∣∣j,m, ω = 3

2

〉∣∣s = 1
2
, σ = 1

2

〉
(3.81a)

∣∣2Π1/2

〉
=

∣∣n, λ = 1
〉 ∣∣v〉 ∣∣j,m, ω = 1

2

〉∣∣s = 1
2
, σ = −1

2

〉
(3.81b)

∣∣2Π−1/2

〉
=

∣∣n, λ = −1
〉 ∣∣v〉 ∣∣j, m, ω = −1

2

〉∣∣s = 1
2
, σ = 1

2

〉
(3.81c)

∣∣2Π−3/2

〉
=

∣∣n, λ = −1
〉 ∣∣v〉 ∣∣j, m, ω = −3

2

〉∣∣s = 1
2
, σ = −1

2

〉
. (3.81d)

At this moment, only ω > 0 components are considered. The resulting Hamiltonian

matrix has the form:



〈
2Π3/2

∣∣H
∣∣2Π3/2

〉 〈
2Π3/2

∣∣H
∣∣2Π1/2

〉

〈
2Π1/2

∣∣H
∣∣2Π3/2

〉 〈
2Π1/2

∣∣H
∣∣2Π1/2

〉




. (3.82)

In calculating the matrix elements, it is assumed that the two substates 2Π1/2 and

2Π3/2 have the same potential curves and the same vibrational wavefunctions. The

matrix elements of the spin-orbit part are

〈
2Π3/2

∣∣HSO
∣∣2Π3/2

〉
=

Av

2
,

〈
2Π1/2

∣∣HSO
∣∣2Π1/2

〉
= −Av

2
, (3.83)

and
〈

2Π1/2

∣∣HSO
∣∣2Π3/2

〉
= 0. (3.84)

Then, the diagonal matrix elements are

〈
2Π3/2

∣∣H
∣∣2Π3/2

〉
= T v

Π +
Av

2
+ Bv[(j + 1

2
)2 − 2)] (3.85)

and
〈
2Π1/2

∣∣H
∣∣2Π1/2

〉
= T v

Π −
Av

2
+ Bv(j + 1

2
)2. (3.86)

where T v
Π represents the sum of Eel and Evib for the Π state. The only nonvanishing

off-diagonal element between these two substates is given by the spin-uncoupling
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part of the rotational Hamiltonian. The off-diagonal matrix element of the spin-

uncoupling operator is

〈
v, j, λ, s, σ + 1, ω + 1

∣∣∣
(
− 1

2µbcr2
j−s+

)∣∣∣v, j, λ, s, σ, ω
〉

= −〈
v
∣∣ 1

2µbcr2

∣∣v〉[
s(s + 1)− σ(σ + 1)

]1/2[
j(j + 1)− ω(ω + 1)

]1/2

= −Bv

[
(j + 1

2
)2 − 1

]1/2
. (3.87)

In the last line of the above equation, λ = 1, s = 1
2
, σ = −1

2
, and ω = 1

2
are used.

The other part of the spin-uncoupling operator j+s− acts between 2Π−1/2 and 2Π−3/2

and gives the same matrix element. There are no off-diagonal matrix elements of

the spin-uncoupling operator between ω > 0 and ω < 0 basis functions. The 2×2

Hamiltonian matrix is found to be


T v
Π − Av

2
+ Bv(j + 1

2
)2 −Bv

[
(j + 1

2
)2 − 1

]1/2

−Bv

[
(j + 1

2
)2 − 1

]1/2
T v

Π + Av

2
+ Bv

[
(j + 1

2
)2 − 2

]




. (3.88)

By diagonalizing the above matrix, the well known eigenvalues are found as [115,

116]

E = T v
Π + Bv

[
(j + 1

2
)2 − 1

]± Bv

2

[
Y (Y − 4) + 4(j + 1

2
)2

]1/2
(3.89)

where

Y = Av/Bv. (3.90)

It is customary to use F1 and F2 to label the different spin-orbit components with

F1 having lower energy. With this notation, the eigenvalues are

E(F1) = T v
Π + Bv

[
(j + 1

2
)2 − 1− X

2

]
, (3.91a)

E(F2) = T v
Π + Bv

[
(j + 1

2
)2 − 1 +

X

2

]
(3.91b)

where

X =
[
Y (Y − 4) + 4(j + 1

2
)2

]1/2
. (3.92)
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An identical matrix is obtained for the case ω < 0. Thus, the eigenvalues are the

same as Eq. (3.91). As a result, the 4×4 Hamiltonian matrix in the basis set of Eqs.

(3.81) is block-diagonal:

0BBBBBBBBBBBB@

T v
Π − Av

2 + Bv(j + 1
2 )2 −Bv [(j + 1

2 )2 − 1]1/2 0 0

−Bv [(j + 1
2 )2 − 1]1/2 T v

Π + Av
2 + Bv [(j + 1

2 )2 − 2] 0 0

0 0 T v
Π − Av

2 + Bv(j + 1
2 )2 −Bv [(j + 1

2 )2 − 1]1/2

0 0 −Bv [(j + 1
2 )2 − 1]1/2 T v

Π + Av
2 + Bv [(j + 1

2 )2 − 2]

1CCCCCCCCCCCCA
.

(3.93)

The upper left block of the matrix involves states with ω > 0 and the lower right

block involves states with ω < 0. The eigen energies are degenerate for ω > 0 and

ω < 0.

λ-doubling

It is well known that the interaction of 2Π states with electronic 2Σ+ states causes

each of the two spin-orbit components to be split into a doublet with a splitting of

about 10−2 cm−1. This splitting is called the ‘λ-doubling’. In order to calculate the

λ-doubling of the ground state, it is necessary to consider the levels of an isolated

2Σ+ state first. The energy levels of such a state also contain contributions due to

the spin-uncoupling operator. The Hund’s case (a) basis function that corresponds

to the ω = +1
2

component of this state is

∣∣2Σ+
1/2

〉
=

∣∣n, λ = 0
〉 ∣∣v〉 ∣∣j, m, ω = 1

2

〉∣∣s = 1
2
, σ = 1

2

〉
, (3.94)

while that corresponding to the ω = −1
2

component is given by

∣∣2Σ+
−1/2

〉
=

∣∣n, λ = 0
〉 ∣∣v〉 ∣∣j, m, ω = −1

2

〉∣∣s = 1
2
, σ = −1

2

〉
. (3.95)
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The diagonal matrix elements of both components are identical:

〈
2Σ+

±1/2

∣∣H
∣∣2Σ+

±1/2

〉

= T v
Σ + Bv

[
j(j + 1)− (1

2
)2 + (1

2
)(3

2
)− (1

2
)2

]

= T v
Σ + Bv(j + 1

2
)2 (3.96)

where T v
Σ is the sum of the electronic and the vibrational energy of the 2Σ+ state.

The off-diagonal matrix element is

〈
2Σ+

1/2

∣∣∣− 1

2µbcr2
J−S+

∣∣∣2Σ+
−1/2

〉
,

= −Bv

[
j(j + 1) + 1

4

]1/2

= −Bv

(
j + 1

2

)
. (3.97)

This term causes the two components to be mixed completely. Collecting the diag-

onal and the off-diagonal elements of the Hamiltonian matrix gives




T v
Σ + Bv(j + 1

2
)2 −Bv

(
j + 1

2

)

−Bv

(
j + 1

2

)
T v

Σ + Bv(j + 1
2
)2




. (3.98)

Although this matrix can be diagonalized as it is, the diagonalization can be avoided

by transforming the basis functions to symmetry adapted basis functions:

∣∣2Σ+e
〉

=
1√
2

{∣∣2Σ+
1/2

〉
+ ε

∣∣2Σ+
−1/2

〉}
(3.99a)

∣∣2Σ+f
〉

=
1√
2

{∣∣2Σ+
1/2

〉− ε
∣∣2Σ+

−1/2

〉}
. (3.99b)

The Hamiltonian matrix in the transformed basis set becomes [117]




T v
Σ + Bv

[
(j + 1

2
)2 − (j + 1

2
)
]

0

0 T v
Σ + Bv

[
(j + 1

2
)2 + (j + 1

2
)
]




. (3.100)
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And the eigen energies are just the diagonal terms:

E(2Σ+e) = T v
Σ + Bv

[
(j + 1

2
)2 − (j + 1

2
)
]
, (3.101)

and

E(2Σ+f ) = T v
Σ + Bv

[
(j + 1

2
)2 + (j + 1

2
)
]
. (3.102)

Or, in a more compact form

E(2Σ+e/f ) = T v
Σ + Bv

[
(j + 1

2
)2 − ε(j + 1

2
)
]

(3.103)

where ε = +1 (−1) corresponds to the e (f) component.

The two components differ by ∆ω = +1, they can interact via the spin-

uncoupling operator with the components of a 2Π state. This interaction is impor-

tant when the two components (ω > 0 and ω < 0) have the same energy. It is

possible to express the Hamiltonian of the 2Π states in terms of the symmetry

adapted basis set. Then, new basis functions are formed by linear combinations of
∣∣2Π|ω|

〉
and

∣∣2Π−|ω|
〉
:

∣∣2Π, |ω| = 1
2
, jmεv

〉

=
1√
2

{∣∣n, λ = 1
〉 ∣∣v〉 ∣∣j,m, ω = 1

2

〉∣∣s = 1
2
, σ = −1

2

〉

+ε
∣∣n, λ = −1

〉 ∣∣v〉 ∣∣j, m, ω = −1
2

〉∣∣s = 1
2
, σ = 1

2

〉}
(3.104)

and

∣∣2Π, |ω| = 3
2
, jmεv

〉

=
1√
2

{∣∣n, λ = 1
〉 ∣∣v〉 ∣∣j, m, ω = 3

2

〉∣∣s = 1
2
, σ = 1

2

〉

+ε
∣∣n, λ = −1

〉 ∣∣v〉 ∣∣j,m, ω = −3
2

〉∣∣s = 1
2
, σ = −1

2

〉}
. (3.105)

When the Hamiltonian matrix elements are calculated in terms of the symmetrized

basis wavefunctions, the matrix element becomes

〈
2Π, |ω| = 1

2
, jmε′v

∣∣∣ H
∣∣∣2Π, |ω| = 1

2
, jmεv

〉

=
1

2
(1 + εε′)

[
T v

Π −
Av

2
+ Bv(j + 1

2
)2

]
(3.106)
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and

〈
2Π, |ω| = 3

2
, jmε′v

∣∣∣ H
∣∣∣2Π, |ω| = 3

2
, jmεv

〉

=
1

2
(1 + εε′)

[
T v

Π +
Av

2
+ Bv[(j + 1

2
)2 − 2]

]
. (3.107)

The off-diagonal term is evaluated as

〈
2Π |ω| = 1

2
, jmε′v

∣∣∣H(1)
rot

∣∣∣2Π |ω| = 3
2
, jmεv

〉

= −(1 + εε′)
2

Bv

[
(j + 1

2
)2 − 1

]1/2

(3.108)

Since ε takes on the values of ±1, it is obvious that all matrix element are zero for

ε 6= ε′. Combining the diagonal and the off-diagonal terms, the matrix is the same

as that for the unsymmetrized basis set:

0BBBBBBBBBBBB@

T v
Π − Av

2 + Bv(j + 1
2 )2 −Bv

h
(j + 1

2 )2 − 1
i1/2

0 0

−Bv

h
(j + 1

2 )2 − 1
i1/2

T v
Π + Av

2 + Bv

h
(j + 1

2 )2 − 2
i

0 0

0 0 T v
Π − Av

2 + Bv(j + 1
2 )2 −Bv

h
(j + 1

2 )2 − 1
i1/2

0 0 −Bv

h
(j + 1

2 )2 − 1
i1/2

T v
Π + Av

2 + Bv

h
(j + 1

2 )2 − 2
i

1CCCCCCCCCCCCA
.

(3.109)

Now, the upper left block of the matrix is associated with ε = +1 and the lower right

block with ε = −1. Each block has identical elements. Diagonalizing the matrix

gives the eigen energies which are degenerate in the symmetry quantum number ε.

Results are the same as those calculated with only the ω > 0 component.

E(F1)
e/f = T v

Π + Bv

[
(j + 1

2
)2 − 1− X

2

]
,

E(F2)
e/f = T v

Π + Bv

[
(j + 1

2
)2 − 1 +

X

2

]
(3.110)

where

X =
[
Y (Y − 4) + 4(j + 1

2
)2

]1/2

.
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In order to take the interaction 2Σ+ ∼ 2Π into account, it is necessary to assume

that the potential curves of the 2Σ+ and 2Π are identical and that the configurations

of the 2Σ+ and 2Π are σ1 and π1, respectively. There are several types of interactions:

1. 2Π1/2 ∼ 2Σ+ interaction

(a) ∆ω = 0 interaction with 2Σ+ via spin-orbit coupling

(b) ∆ω = 0 interaction with 2Σ+ via spin-electronic coupling

(c) ∆ω = 1 interaction with 2Σ+ via l-uncoupling

2. 2Π3/2 ∼ 2Σ+ interaction with 2Σ+ via l-uncoupling

The matrix elements for each type of interaction are calculated as follows:

1. (a)
〈
λ = 1, σ = −1

2
, ω = 1

2
, vΠ

∣∣HSO
∣∣λ = 0, σ = 1

2
, ω = 1

2
, vΣ

〉

=
a+

2

〈
vΠ

∣∣vΣ

〉
(3.111)

where a+ =
〈
π
∣∣A(r)l+

∣∣σ〉
and

〈
vΠ

∣∣vΣ

〉
= δvΠvΣ

.

(b)
〈
λ = 1, σ = −1

2
, ω = 1

2
, vΠ

∣∣∣∣
l+s−

2µbcr2

∣∣∣∣ λ = 0, σ = 1
2
, ω = 1

2
, vΣ

〉

= BvΠvΣ
b (3.112)

where b =
〈
π
∣∣l+

∣∣σ〉
and BvΠvΣ

= BvδvΠvΣ
.

(c)
〈
λ = 1, σ =−1

2
, ω = 1

2
, vΠ

∣∣∣∣
j−l+

2µbcr2

∣∣∣∣ λ = 0, σ =−1
2
, ω =−1

2
, vΣ

〉

= −BvΠvΣ
b
(
j + 1

2

)
(3.113)



97

2.

〈
ω = 3

2
, λ = 1, σ = 1

2
, vΠ

∣∣∣∣
j−l+

2µbcr2

∣∣∣∣ ω = 1
2
, λ = 0, σ = 1

2
, vΣ

〉

= −bBv

[
j(j + 1)− (1

2
)(3

2
)
]1/2[

(1
2
)(3

2
)− (−1

2
)(1

2
)
]1/2

= −bBv

[
(j + 1

2
)− 1

]1/2
. (3.114)

For e/f symmetrized basis functions, the off-diagonal 2Π1/2 ∼ 2Σ+ elements are

〈
2Π

e/f
1/2

∣∣(HSO + H
(1)
rot

)∣∣2Σ+e/f
〉

=
1√
2

{〈
j, ω = −1

2
, λ = −1, σ = −1

2
, vΠ

∣∣

+ε
〈
j, ω = 1

2
, λ = 1, σ = −1

2
, vΠ

∣∣
}(

HSO + H
(1)
rot

)

× 1√
2

{∣∣j, ω = 1
2
, λ = 0, σ = 1

2
, vΣ

〉

+ε′
∣∣j, ω = −1

2
, λ = 0, σ = −1

2
, vΣ

〉}

=
1 + εε′

2

[a+

2
+ bBv − ε bBv

(
j + 1

2

)]

= δεε′

[a+

2
+ bBv − ε bBv

(
j + 1

2

)]
. (3.115)

And the e ∼ f matrix elements vanish,

〈
2Π

e/f
1/2

∣∣HSO + H
(1)
rot

∣∣2Σ+f/e
〉

= 0. (3.116)

The off-diagonal 2Π3/2 ∼ 2Σ+ elements are for the e/f symmetrized basis functions,

〈
2Π

e/f
3/2

∣∣H(1)
rot

∣∣2Σ+e/f
〉

= −bBv

[
(j − 1

2
)(j + 3

2
)
]1/2

. (3.117)

The e and f components are degenerate.

The matrix for the above interactions is as follows:

2Π1/2
2Π3/2

2Σ+

2Π1/2

2Π3/2

2Σ+

0BBBBBBBB@
T v
Π − Av

2
+ Bv

�
j + 1

2

�2 −Bv

h
(j + 1

2
)2 − 1

i1/2 a+
2

+ bBv

h
1− ε(j + 1

2
)
i

T v
Π + Av

2
+ Bv

h
(j + 1

2
)2 − 2

i
−bBv

h
(j − 1

2
)(j + 3

2
)
i1/2

T v
Σ + Bv

h
(j + 1

2
)2 − ε(j + 1

2
)
i

1CCCCCCCCA
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(3.118)

The difference of the 2Π ∼ 2Σ+ interaction for the e and f levels give rise to the

λ-doubling in a 2Π state. Since for NO the 2Σ+ state is sufficiently far from the 2Π

state, second-order perturbation theory can be applied to evaluate the λ-doubling.

Then, the 2Πe
1/2 level is lowered by

∆T e
1/2 =

[a+

2
− bBv(j − 1)]2

EΠ − EΣ

, (3.119)

while the 2Πf
1/2 level is lifted by

∆T f
1/2 =

[a+

2
+ bBv(j + 3

2
)]2

EΠ − EΣ

. (3.120)

Then, the splitting due to the λ-doubling for 2Π1/2 is calculated to be

∆νfe(
2Π1/2) = ∆T f

1/2 −∆T e
1/2

=
(a+bBv + 2b2B2

v)[(j + 3
2
) + (j − 1

2
)]

EΠ − EΣ

=
(2j + 1)(bBv)(a+ + 2bBv)

EΠ − EΣ

. (3.121)

Since 2bBv ¿ a+, ∆νfe(
2Π1/2) is approximated as

∆νfe(
2Π1/2) =

a+bBv

EΠ − EΣ

(j + 1
2
) = p(j + 1

2
). (3.122)

The 2Σ+ state e/f levels will be shifted by an equal amount but opposite to that of

the 2Π state e/f levels.

There is another mechanism by which the 2Π ∼ 2Σ+ interaction results in the

λ-doubling for levels of the 2Π3/2 component. The matrix element
〈

2Π3/2

∣∣H
∣∣2Π1/2

〉
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can be calculated using a Van Vleck transformation [116, 118]:

〈
2Πe

3/2

∣∣H̃
∣∣2Πe

1/2

〉

=
〈
2Πe

3/2

∣∣H
∣∣2Πe

1/2

〉
+

〈
2Πe

3/2

∣∣H
∣∣2Σ+

e

〉〈
2Σ+

e

∣∣H
∣∣2Πe

1/2

〉

EΠ − EΣ

= −Bv

[
(j + 1

2
)2 − 1

]1/2

− bBv[(j + 1
2
)2 − 1]1/2

{
a+

2
+ [1− (j + 1

2
)]bBv

}

EΠ − EΣ

= −
[
(j + 1

2
)2 − 1

]1/2{
Bv +

1

4

2a+bBv

EΠ − EΣ

− 1

2

2b2B2
v

EΠ − EΣ

(
j − 1

2

)}

= −
[
(j − 1

2
)(j + 3

2
)
]1/2{

Bv +
p

4
− q

2
(j − 1

2
)
}

(3.123)

where H̃ is the transformed Hamiltonian (see Section 3.2 in Ref. [116]). And,

p =
2a+bBv

EΠ − EΣ

, and q =
2b2B2

v

EΠ − EΣ

.

Similarly,

〈
2Πf

3/2

∣∣H̃
∣∣2Πf

1/2

〉

= −
[
(j − 1

2
)(j + 3

2
)
]1/2{

Bv +
p

4
+

q

2
(j + 3

2
)
}

. (3.124)

Now, using second-order perturbation theory to estimate the parity-dependent effect

of
〈
2Π

e/f
3/2

∣∣H̃
∣∣2Πe/f

1/2

〉
on λ-doubling in 2Π3/2,

∆νfe(
2Π3/2)

=

∣∣∣
〈

2Πf
3/2

∣∣H̃
∣∣2Πf

1/2

〉∣∣∣
2

−
∣∣∣
〈
2Πe

3/2

∣∣H̃
∣∣2Πe

1/2

〉∣∣∣
2

EΠ3/2
− EΠ1/2

=
(j − 1

2
)(j + 3

2
)
{[

Bv +
p

4
+

q

2
(j + 3

2
)
]2 − [

Bv +
p

4
− q

2
(j − 1

2
)
]2

}

EΠ3/2
− EΠ1/2

=
2(j − 1

2
)(j + 1

2
)(j + 3

2
)

Av − 2Bv

(
Bv +

p

4
+

q

2

)
q

' 2q
Bv

Av

(
j − 1

2

)(
j + 1

2

)(
j + 3

2

)
. (3.125)

From second-order perturbation theory, the 2Π1/2 λ-doubling transferred to 2Π3/2

due to spin-uncoupling is calculated as

p
(Bv

Av

)2(
j − 1

2

)(
j + 1

2

)(
j + 3

2

)
. (3.126)
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Finally, the total energies including λ-doubling in the symmetry adapted basis

set can be written as [119]:

E(2Π3/2, v, J, ε) = T v
Π +

Av

2
+ Bv

[
(j + 1

2
)2 − 2

]

+
ε

2

Bv

Av

(
2q + p

Bv

Av

)(
j − 1

2

)(
j + 1

2

)(
j + 3

2

)
, (3.127a)

E(2Π1/2, v, J, ε) = T v
Π −

Av

2
+ Bv

[(
j + 1

2

)2 − 2
]

+
ε

2
p
(
j + 1

2

)
. (3.127b)

The λ-doubling for the F1 component depends linearly on j while that for the F2

component varies with the third power of j. For low values of j, the splitting is

very small compared to that for the F1 component. Therefore, the λ-doubling can

only be observed in high resolution experiments. For NO, the observed λ-doubling

is shown in Fig. 2.14 on page 43. The λ-doubling for the Q11(
3
2
) line is so small that

it cannot be resolved with our experimental resolution whereas that for the Q11(
1
2
)

line is recognizable for j = 3
2

and j = 5
2
.

3.2 One- and Two-Photon Absorption Theory

3.2.1 Semiclassical Treatment and Time-dependent Perturbation

Theory

In classical electrodynamics, the electromagnetic field vectors can be expressed

in terms of a vector potential A(r, t) and a scalar potential φ(r, t) as

E = −∇φ− ∂A

∂t

B = ∇×A. (3.128)
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The classical Hamiltonian for a system of charged particles in an electromagnetic

field is given by

H =
∑

i

[ 1

2mi

(
P i − qi

c
A

)2

+ qiφ
]

+ V (3.129)

where V is the Coulomb potential. The term
(
P i − qi

c
A

)2
is expanded as

P 2
i −

qi

c
P i ·A− qi

c
A · P i +

q2
i

c2
A2. (3.130)

Since P i is an operator, it acts on the vector potential as well as on the wavefunction:

P i ·Aψ =
h̄

i
∇ ·Aψ =

h̄

i
ψ ∇ ·A +

h̄

i
A · ∇ψ. (3.131)

The E and B fields are invariant under gauge transformations. In free space, the

scalar potential can be set to zero. The Coulomb gauge ∇ · A = 0 is used for

the following. Then, the Hamiltonian for a molecular system interacting with an

electromagnetic field is written as

H =
∑

i

1

2mi

(
P 2

i −
2qi

c
A · P i +

q2
i

c2
A2

)
+ V. (3.132)

For the weak field limit, the term quadratic in A2 can be neglected. Furthermore,

it is assumed that the light wave interacts only with the electrons in the molecule.

This yields the following approximate Hamiltonian

H =
Nn∑
i

1

2mi

P 2
i +

Ne∑
j

[ 1

2me

P 2
j +

e

mec
A · P j

]
+ V

=
Nn∑
i

1

2mi

P 2
i +

Ne∑
j

1

2me

P 2
j + V +

Ne∑
j=1

e

mec
A · P j

= H0 + H ′ (3.133)

where

H ′ =
Ne∑
j=1

e

mec
A · P j. (3.134)
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The first term of the first line of Eq. (3.133) corresponds to the kinetic energy of the

nuclei and the second term corresponds to that of the electrons with the charge −e.

The perturbation term H ′ may be rewritten in terms of the commutator [P 2
j ,Rk]:

[P 2
j ,Rk] = P j[P j,Rk] + [P j,Rk]P j = −2h̄iP jδjk. (3.135)

Since the potential operator depends only on the position vectors, the potential

commutes with Rk. Then, the commutator [H0,Rk] becomes

[H0,Rk] = − h̄i

me

P k. (3.136)

The perturbation term H ′ is rewritten in terms of the commutator [107],

H ′ =
1

ch̄i
A ·

[
H0,

Ne∑
j=1

eRj

]
. (3.137)

Because the vector potential depends explicitly on time, the perturbation H ′

is time-dependent. Therefore, a perturbation theory based on the time-dependent

Schrödinger equation must be used to describe the interaction. Since the pertur-

bation involves the electron dipole operator µ =
∑Ne

j=1 eRj, transition probabilities

for one- and two-photon absorption processes are expressed in terms of transition

dipole matrix elements.

The treatment of time-dependent perturbation theory is summarized as follows

[107, 120]. The Hamiltonian consists of an unperturbed part H0 and a time depen-

dent perturbation H ′:

H = H0 + λH ′(t) (3.138)

where λ is a perturbation parameter. Later, λ will be set to 1. If u
(0)
k (r) is a solu-

tion to the time-independent Schrödinger equation associated with the unperturbed

Hamiltonian:

H0u
(0)
k (r) = E

(0)
k u

(0)
k (r), (3.139)
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then the solution to the time-dependent Schrödinger equation

HΨ(r, t) = − i

h̄

∂

∂t
Ψ(r, t) (3.140)

can be expanded in terms of the stationary states associated with the unperturbed

Hamiltonian:

Ψ(r, t) =
∑

k

ak(t)u
(0)
k (r)e−

i
h̄

E
(0)
k t (3.141)

where the coefficient ak(t) are found by an iterative procedure

am(t) = a(0)
m (t) + λa(1)

m (t) + λ2a(2)
m (t) + · · · .

Substituting Eq. (3.139) into the time-dependent Schrödinger equation yields

∑
m

(H0 + λH ′)am(t)u(0)
m (r)e−

i
h̄

E
(0)
m t =

∑
m

[
am(t)u(0)

m (r)E(0)
m − i

h̄
ȧm(t)u(0)

m (r)
]
e−

i
h̄

E
(0)
m t

(3.142)

m
∑
m

λH ′am(t)u(0)
m (r)e−

i
h̄

E
(0)
m t = − i

h̄

∑
m

ȧm(t)u(0)
m (r)e−

i
h̄

E
(0)
m t. (3.143)

Multiplying both sides with u
(0)∗
k (r)e

i
h̄

E
(0)
k t and integrating over the spatial coordinate

yields

ȧk(t) = − i

h̄

∑
m

λH ′
kmam(t)eiωkmt (3.144)

where

ωkm = (E
(0)
k − E(0)

m )/h̄ (3.145)

and

H ′
km =

∫
u

(0)∗
k (r) H ′ u(0)

m (r)d3r =
〈
k|H ′|m〉

. (3.146)

Assume that the molecular system is initially in the quantum state |i〉, the initial

condition is a
(0)
m = δmi. The successive corrections are found by solving the equations

d

dt
a

(s+1)
k (t) =

1

ih̄

∑
n

H ′
km(t)a(s)

m (t)e−iωkmt. (3.147)
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The first order result is

a
(1)
k (t) =

1

ih̄

∫ t

0

dt′H ′
ki(t

′)eiωkit
′
. (3.148)

Using the above result, it is easy to find the second order correction

a
(2)
f (t) =

1

(ih̄)2

∫ t

0

dt′
∫ t′

0

dt′′
∑

k

H ′
ki(t

′)H ′
fk(t

′′)ei(ωkit
′+ωfkt′′). (3.149)

The first correction term is responsible for the one-photon absorption process while

the second correction term is responsible for the non-resonant two-photon absorp-

tion process. The intensity of a spectral line involving the transition between two

nondegenerate states
∣∣i〉 and

∣∣f〉
is given by

I(f ← i; t) = C
∣∣am(t)

∣∣2 with am(0) = δmi. (3.150)

In the case of a degeneracy characterized by the quantum numbers Mi and Mf , the

intensity is given as a sum over the individual contributions:

I(f ← i; t) = C
∑

Mi,Mf

∣∣am(t)
∣∣2 with am(0) = δmi. (3.151)

3.2.2 One-photon Process

From the first order term, the intensity for a transition involving one-photon

absorption can be calculated. In the dipole approximation, the spatial variation of

the electromagnetic wave is neglected and the vector potential for a linearly polarized

electromagnetic plane wave of frequency ω is written as

A(r, t) ' A(t) =
1

2
A0ê

(
e+iωt + e−iωt

)
. (3.152)



105

Here, A0 is the magnitude of the vector potential and ê is the polarization vector.

H ′
kn can be calculated using the above vector potential:

H ′
ki =

i

ch̄
A(t) · 〈k

∣∣[H0,

Ne∑
j=1

eRj

]∣∣i〉

=
i

ch̄
A(t) ·

{〈
k
∣∣H0

Ne∑
j=1

eRj

∣∣i〉− 〈
k
∣∣

Ne∑
j=1

eRj H0

∣∣i〉
}

=
i

ch̄
A(t) · (E(0)

k − E
(0)
i )

〈
k
∣∣

Ne∑
j=1

eRj

∣∣i〉

=
iωki

c
A(t) · 〈k

∣∣µ
∣∣i〉. (3.153)

Substituting Eq. (3.153) into Eq. (3.148), the first order correction term becomes

a
(1)
k (t) =

1

ih̄

∫ t

0

dt′H ′
ki(t

′)eiωkit
′
=

ωin

ch̄

〈
k
∣∣µ

∣∣i〉 ·
∫ t

0

dt′A(t′)eiωkit
′

=
ωki

2h̄c

〈
k
∣∣µ

∣∣i〉 · A0ê

∫ t

0

dt′
[
ei(ωki+ω)t′) + ei(ωki−ω)t′)]

=
ωki

2ih̄c

〈
k
∣∣µ∣∣i〉 · A0ê

[ei(ωki−ω)t − 1

ωki − ω
+

ei(ωki+ω)t − 1

ωki + ω

]
. (3.154)

The coefficient becomes important only in the case of a resonance, i.e., for ω = ωki

or ω = −ωki. Averaging the coefficient over a time which is longer than the period

associated with the electromagnetic wave results in a contribution only from the

term which satisfies the resonance condition. In the case of one-photon absorption,

the intensity for a transition from state
∣∣i〉 to state

∣∣f〉
is given as

I(f ← i; t) = C

[
E0ωfi

2h̄ω

]2 ∑
Mi,Mf

∣∣〈f
∣∣ê · µ

∣∣i〉
∣∣2

∣∣∣∣
ei(ωfi−ω)t − 1

ωfi − ω

∣∣∣∣
2

(3.155)

where E0 = ωA0/c. The overall intensity of the spectral line is proportional to

the absolute square of the transition moment and to the intensity of the light wave

which is proportional to the square of the electric field strength E0.
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3.2.3 Two-Photon Process

In the case of the interaction with two laser fields of different frequencies(ω1 and

ω2), the corresponding first order result takes on the following form:

a
(1)
k (t) =

ωki

2ih̄c

〈
k
∣∣µ

∣∣i〉 ·
{

A10ê1

[ei(ωki−ω1)t − 1

ωki − ω1

+
ei(ωki+ω1)t − 1

ωki + ω1

]

+ A20ê2

[ei(ωki−ω2)t − 1

ωki − ω2

+
ei(ωki+ω2)t − 1

ωki + ω2

]}
(3.156)

where A10, A20 are the magnitude of the vector potential for the two laser fields

and ê1, ê2 are their polarization vectors. Since the interaction with the molecule

is assumed to be nonresonant with each of the individual photons, none of the

frequencies match the difference between any two energy levels of the molecule.

In this case the first order contribution will be very small while the second order

contribution can be significant. Using Eq. (3.156), it is found that

da
(2)
f

dt
= − i

h̄

∑

k

H ′
fk(t)a

(1)
k eiωfkt

= −i
∑

k

ωfkωki

2h̄2c2

〈
f
∣∣µ

∣∣k〉 ·
{

A10

2
ê1

[
ei(ωfk+ω1)t + ei(ωfk−ω1)t

]

+
A20

2
ê2

[
ei(ωfk+ω2)t + ei(ωfk−ω2)t

]}

×〈
k
∣∣µ

∣∣i〉 ·
{

A10ê1

[
ei(ωki−ω1)t − 1

ωki − ω1

+
ei(ωki+ω1)t − 1

ωki + ω1

]

+A20ê2

[
ei(ωki−ω2)t − 1

ωki − ω2

+
ei(ωki+ω2)t − 1

ωki + ω2

]}
. (3.157)

The constant terms in the last bracket (for example, −1
ωki−ω1

) are not important

because of the assumption that neither of the laser frequencies are resonant for a

single photon.

In the above result, the terms proportional to |A10|2 and |A20|2 are responsible

for single-color two-photon resonances:

da
(2)
f

dt
= −i|A10|2

4h̄2c2

∑

k

ωfkωki

〈
f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉
[
ei(ωfk+ω1)t + ei(ωfk−ω1)t

]
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×
[
ei(ωki−ω1)t

ωki − ω1

+
ei(ωki+ω1)t

ωki + ω1

]

−i|A20|2
4h̄2c2

∑

k

ωfkωki

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉
[
ei(ωfk+ω2)t + ei(ωfk−ω2)t

]

×
[
ei(ωki−ω2)t

ωki − ω2

+
ei(ωki+ω2)t

ωki + ω2

]

= −i|A10|2
4h̄2c2

∑

k

ωfi

〈
f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉
[
ei(ωfi−2ω1)t

ωki − ω1

+
ei(ωfi+2ω1)t

ωki + ω1

]

−i|A20|2
4h̄2c2

∑

k

ωfi

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉
[
ei(ωfi−2ω2)t

ωki − ω2

+
ei(ωfi+2ω2)t

ωki + ω2

]
.

(3.158)

In the last line of Eq. (3.158) the first term in each bracket represents a single-

color stimulated two-photon absorption while the second term represents two-photon

emission.

Similarly, two-color two-photon absorption is described by the contribution

involving the cross term A10A20:

da
(2)
f

dt

= − iA10A20

4h̄2c2

∑

k

ωfi

〈
f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉

×
[
ei(ωfi−(ω2+ω1))t

ωki − ω2

+
ei(ωfi+(ω2+ω1))t

ωki + ω2

+
ei(ωfi−(ω2−ω1))t

ωki − ω2

+
ei(ωfi−(ω1−ω2))t

ωki + ω2

]

− iA10A20

4h̄2c2

∑

k

ωfi

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉

×
[
ei(ωfi−(ω2+ω1))t

ωki − ω1

+
ei(ωfi+(ω2+ω1))t

ωki + ω1

+
ei(ωfi−(ω1−ω2))t

ωki − ω1

+
ei(ωfi−(ω2−ω1))t

ωki + ω1

]
.

(3.159)

It can be noticed that resonances occur for transitions in which the sum or differ-

ence frequency corresponds to an energy difference in the molecule. The difference

frequency process is referred to as a stimulated Raman pumping process and the

sum frequency process is referred to as two-color two-photon absorption process.
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When the two-photon absorption process is only considered, the time derivative of

the second order coefficient is given by

da
(2)
f

dt
= −iA10A20

4h̄2c2

∑

k

ωfi

[〈
f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉ei(ωfi−(ω2+ω1))t

ωki − ω2

+
〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉ei(ωfi−(ω1+ω2))t

ωki − ω1

]
. (3.160)

Integration over time yields

a
(2)
f = − iA10A20

4h̄2c2

ei(ωfi−(ω1+ω2))t − 1

ωfi − (ω1 + ω2)

∑

k

ωfi

×
[〈

f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉

ωki − ω2

+

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉

ωki − ω1

]
. (3.161)

The resonance condition is ωfi = ω1 + ω2. A similar result is found for stimulated

Raman pumping.

a
(2)
f = − iA10A20

4h̄2c2

ei(ωfi−(ω2−ω1))t − 1

ωfi − (ω2 − ω1)

∑

k

ωfi

×
[〈

f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉

ωki − ω2

+

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉

ωki + ω1

]
. (3.162)

For simplicity, consider only terms with ωfi < 0, ω2 > ω1. The expression for

both two-photon absorption and stimulated Raman excitation can be written in a

simplified form when the two-photon transition operator Tab is introduced:

∑

k

〈
f
∣∣ê1 · µ

∣∣k〉〈
k
∣∣ê2 · µ

∣∣i〉

ωki − ω2

+

〈
f
∣∣ê2 · µ

∣∣k〉〈
k
∣∣ê1 · µ

∣∣i〉

ωki ± ω1

=
〈
f
∣∣∑

abk

ê∗1aê
∗
1b

µa

∣∣k〉〈
k
∣∣µb

ωki − ω2

∣∣i〉 +
〈
f
∣∣∑

abk

ê∗1bê
∗
1a

µb

∣∣k〉〈
k
∣∣µa

ωki ± ω1

∣∣i〉

=
〈
f
∣∣∑

ab

ê∗1aê
∗
1bTab

∣∣i〉 (3.163)

where

Tab =
∑

k

{
µa

∣∣k〉〈
k
∣∣µb

ωki − ω2

+
µa

∣∣k〉〈
k
∣∣µb

ωki ± ω1

}
. (3.164)

Here, the + sign refers to the stimulated Raman process and the − sign to the

two-photon absorption process. Since the line strength of a particular transition is
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proportional to the square of the second order coefficient, the intensity is proportional

to

I ∝
∣∣∑

ab

Tabê
∗
1aê

∗
1b

∣∣2. (3.165)

The quantity ê∗1aê
∗
1b is denoted as the polarization tensor Pab.

3.2.4 Application to NO

In this subsection, the theory is applied to derive the rotational structure of one-

and two-photon spectra.

One-photon absorption process

As an example of a one-photon absorption process, the first overtone transition of

NO X 2Π in the electronic ground state is considered. From the results of Section 3.1,

the energy eigenvalues of the unperturbed NO molecule are given by Eqs.(3.127a)

and (3.127b). The eigenfunction will be a linear combination of Eq.(3.104) and

Eq.(3.105) with coefficients

A± =

√
1± ZU

2
(3.166)

where

Z = Y − 2

and

U =
1

X
=

[
Y (Y − 4) + 4(j + 1

2
)2

]−1/2

.

These coefficients describe the mixing of states with |ω| = 1
2

and |ω| = 3
2
. The

eigenfunctions of the vibrational ground state (v′′ = 0) are written as

Ψi(F1 : 2Π)

= Ai
+

∣∣∣2Π, |ω| = 1
2
, JiMiεivi

〉
+ Ai

−
∣∣∣2Π, |ω| = 3

2
, JiMiεivi

〉
(3.167)
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and

Ψi(F2 : 2Π)

= Ai
+

∣∣∣2Π, |ω| = 3
2
, JiMiεivi

〉
− Ai

−
∣∣∣2Π, |ω| = 1

2
, JiMiεivi

〉
. (3.168)

The same types of wavefunctions are used for the vibrationally excited state with

v′ = 2. The line strength for the one-photon absorption is calculated using Eq.

(3.155). It is important to realize that the dot product (ê ·µ) is defined with respect

to the sf frame while the electronic wavefunction is usually specified in a mf frame.

In order to express the dipole moment operator as a transformed mf operator, one

needs to express the operator in terms of spherical tensor components. For a given

Cartesian vector a = (ax, ay, az), the spherical tensor components are defined as

a
(1)
0 = az and a

(1)
± = ∓ 1√

2

(
ax ± iay

)
. (3.169)

With this definition, the dot product ê · µ takes the form:

ê · µ = e
(1)∗
0 µ

(1)
0 + e

(1)∗
+1 µ

(1)
+1 + e

(1)∗
−1 µ

(1)
−1 =

∑
m

e(1)∗
m µ(1)

m (sf). (3.170)

The great advantage of the spherical tensor representation is that its components

transform under rotation of the coordinate frame in a simple way:

a(1)
m (sf) =

∑

k

D
(1)∗
mk (α, β, χ)a

(1)
k (mf) (3.171)

with the inverse transformation

a
(1)
k (mf) =

∑
m

D
(1)
mk(α, β, χ)a(1)

m (sf). (3.172)

Assuming that the laser field is polarized along the z direction in the space

fixed frame, ê · µ becomes simply E
(1)∗
0 µ

(1)
0 (sf) which in turn can be expressed

as E
(1)∗
0

∑
k D

(1)∗
0k µ

(1)
k (mf) where µ

(1)
k refers to the mf frame. Using the transformed

mf operator, the transition matrix elements 〈Ψf | ê · µ |Ψi〉 are evaluated. There are

four types of transitions: (F1 → F1), (F1 → F2), (F2 → F1), and (F2 → F2).



111

For an (F1 → F1) transition, the transition matrix element is

〈Ψf | ê · µ |Ψi〉(F1→F1)

=
{

Af
+

〈
2Π, |ω| = 1

2
, JfMfεfvf

∣∣ + Af
−

〈
2Π, |ω| = 3

2
, JfMfεfvf

∣∣
}

×
∣∣∣
∑

k

D
(1)∗
0k (α, β, χ)µ

(1)
k

∣∣∣

×
{

Ai
+

∣∣2Π, |ω| = 1
2
, JiMiεivi

〉
+ Ai

−
∣∣2Π, |ω| = 3

2
, JiMiεivi

〉 }
. (3.173)

The evaluation of Eq. (3.173) yields four contributions proportional to Af
+Ai

+,

Af
+Ai

−, Af
−Ai

+, and Af
−Ai

−. The Af
+Ai

+ term is calculated as

〈
2Π, |ω| = 1

2
, JfMfεfvf

∣∣D(1)∗
00 (α, β, χ)µ

(1)
0

∣∣2Π, |ω| = 1
2
, JiMiεivi

〉

=
1

2

{〈
+ 1,−1

2
, vf

∣∣〈Jf ,
1
2
,Mf

∣∣ + εf

〈− 1, +1
2
, vf

∣∣〈Jf ,−1
2
,Mf

∣∣
}

×
∣∣D(1)∗

00 (α, β, χ)µ
(1)
0

∣∣
{∣∣ + 1,−1

2
, vi

〉∣∣Ji,
1
2
, Mi

〉
+ εi

∣∣− 1, +1
2
, vi

〉∣∣Ji,−1
2
,Mi

〉}

=
1

2

{〈
vf

∣∣µ(1)
0

∣∣vi

〉〈
Jf ,

1
2
,Mf

∣∣D(1)∗
00 (α, β, χ)

∣∣Ji,
1
2
,Mi

〉

+εfεi

〈
vf

∣∣µ(1)
0

∣∣vi

〉〈
Jf ,−1

2
,Mf

∣∣D(1)∗
00 (α, β, χ)

∣∣Ji,−1
2
,Mi

〉}

= (−)Mi− 1
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2

×

 Jf 1 Ji

Mf 0 −Mi





 Jf 1 Ji

1
2

0 −1
2


 . (3.174)

Here, for brevity
∣∣−1, +1

2
, vi

〉∣∣Ji,−1
2
,Mi

〉
denotes

∣∣Λ=−1, Σ=+1
2
, vi

〉∣∣Ji, Ω =

−1
2
,Mi

〉
.

(
· · ·

)
is a 3j symbol defined in Ref. [121]. And, the relation

〈Λf |µ(1)
k |Λi〉 = 〈Λi + k|µ(1)

k |Λi〉 δΛf ,Λi+k (3.175)

is used. Since Λi, Λf = ±1 and k is restricted to values of 0,±1 due to the property

of the spherical tensor components, the only possible k value is 0 in combination with

Λi = Λf . ∆S must be equal to 0. Thus,
〈
Λf , Σf , vf

∣∣µ(1)
k

∣∣Λi, Σi, vi

〉
is abbreviated as

〈
vf

∣∣µ(1)
k

∣∣vi

〉
δk0
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Similarly, the term with Af
−Ai

− is calculated as

〈
2Π, |ω| = 3

2
, JfMfεfvf

∣∣∣D(1)∗
00 (α, β, χ)µ

(1)
0

∣∣∣2Π, |ω| = 3
2
, JiMiεivi

〉

=
1

2

{〈
+ 1, +1

2
, vf

∣∣〈Jf ,
3
2
,Mf

∣∣ + εf

〈− 1,−1
2
, vf

∣∣〈Jf ,−3
2
,Mf

∣∣
}

∣∣D(1)∗
00 (α, β, χ)µ

(1)
0

∣∣
{∣∣ + 1, +1

2
, vi

〉∣∣Ji,
3
2
,Mi

〉
+ εi

∣∣− 1,−1
2
, vi

〉∣∣Ji,−3
2
,Mi

〉}

=
1

2

{〈
vf

∣∣µ(1)
0

∣∣vi

〉〈
Jf ,

3
2
, Mf

∣∣D(1)∗
00 (α, β, χ)

∣∣∣Ji,
3
2
,Mi

〉

+εfεi

〈
vf

∣∣µ(1)
0

∣∣vi

〉〈
Jf ,−3

2
,Mf

∣∣∣D(1)∗
00 (α, β, χ)

∣∣Ji,−3
2
,Mi

〉}

= (−)Mi− 3
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2

×

 Jf 1 Ji

Mf 0 −Mi





 Jf 1 Ji

3
2

−0 −3
2


 . (3.176)

Terms with Af
+Ai

− and Af
−Ai

+ vanish due to the selection rule, ∆S = 0. As a result,

the transition matrix element for two levels of the F1 component takes on the form:

〈Ψf | ê · µ |Ψi〉(F1→F1)

= (−)Mi− 1
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2


Jf 1 Ji

Mf 0 −Mi




×


Af

+Ai
+


 Jf 1 Ji

1
2

0 −1
2


− Af

−Ai
−


 Jf 1 Ji

3
2

0 −3
2






 . (3.177)

The evaluation of the other transition matrix elements (F1 → F2), (F2 → F1),

and (F2 → F2) yields:

〈Ψf | ê · µ |Ψi〉(F1→F2)

= (−)Mi− 1
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2


Jf 1 Ji

Mf 0 −Mi




×


−Af

−Ai
+


 Jf 1 Ji

1
2

0 −1
2


− Af

+Ai
−


 Jf 1 Ji

3
2

0 −3
2






 , (3.178)
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〈Ψf | ê · µ |Ψi〉(F2→F1)

= (−)Mi− 1
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2


Jf 1 Ji

Mf 0 −Mi




×


−Af

+Ai
−


 Jf 1 Ji

1
2

0 −1
2


− Af

−Ai
+


 Jf 1 Ji

3
2

0 −3
2






 , (3.179)

and

〈Ψf | ê · µ |Ψi〉(F2→F2)

= (−)Mi− 1
2

√
2Jf + 1

√
2Ji + 1

〈
vf

∣∣µ(1)
0

∣∣vi

〉 [1 + εfεi(−)Jf+Ji ]

2


Jf 1 Ji

Mf 0 −Mi




×


Af

−Ai
−


 Jf 1 Ji

1
2

0 −1
2


− Af

+Ai
+


 Jf 1 Ji

3
2

0 −3
2






 . (3.180)

By denoting the quantity in the bracket {· · · } as SFj→Fk
(Ai

+, Ai
−, Af

+, Af
−; Ji, Jf ),

from Eq.(3.155) the intensity for the transition (Fj → Fk) is obtained as

IFj→Fk
(f ← i) = C

[
E0ωfi

2h̄ω

]2

(2Jf + 1)(2Ji + 1)
[1 + εfεi(−)Jf+Ji

2

]2∣∣∣
〈
vf

∣∣µ(1)
0

∣∣vi

〉∣∣∣
2

×
∑

Mi,Mf


 Jf 1 Ji

Mf 0 −Mi





 Jf 1 Ji

Mf 0 −Mi




×
∣∣∣SFj→Fk

(Ai
+, Ai

−, Af
+, Af

−; Ji, Jf )
∣∣∣
2

=
C ′

3
(2Jf + 1)(2Ji + 1)

[1 + εfεi(−)Jf+Ji ]

2

∣∣∣
〈
vf

∣∣µ(1)
0

∣∣vi

〉∣∣∣
2

×
∣∣∣SFj→Fk

(Ai
+, Ai

−, Af
+, Af

−; Ji, Jf )
∣∣∣
2

. (3.181)

where the orthogonality property of 3j symbols has been used [121]:

∑
Mi,Mf


 Jf 1 Ji

Mf 0 −Mi





 Jf 1 Ji

Mf 0 −Mi


 =

1

3
. (3.182)
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Since Jf + Ji = ∆J + 2Ji and Ji is an half integer, [1 + εfεi(−)Jf+Ji ]/2 becomes

[1− εfεi(−)∆J ]/2 resulting in the selection rule

εi 6= εf for Q-branch, (3.183)

εi = εf for P- and R-branch. (3.184)

The intensity is proportional to the square of the vibronic transition moment which

depends on the internuclear distance r. In order to investigate this dependence, the

transition moment is expanded in terms of a Taylor series,

µ
(1)
0 (r) = µ

(1)
0 (0) +

∂µ
(1)
0

∂r
r +

1

2

∂2µ
(1)
0

∂r2
r2 + · · · . (3.185)

Remembering that the intensity is calculated for the first overtone transition, the

second order term which represents the curvature of the transition moment is respon-

sible for the nonvanishing matrix elements with ∆v = ±2. Thus, by taking only this

term into account the intensity of the first overtone transition becomes

IFj→Fk
(f ← i) =

C

3
(2Jf + 1)(2Ji + 1)

[1 + εfεi(−)Jf+Ji ]

2

×
∣∣∣
〈
vf

∣∣r2
∣∣vi

〉∣∣∣
2[∂2µ

(1)
0

∂r2

]2

×
∣∣∣SFj→Fk

(Ai
+, Ai

−, Af
+, Af

−; Ji, Jf )
∣∣∣
2

. (3.186)

Using the energy eigenvalues given in Eq. (3.127) with the set of constants

(neglecting λ doubling) by Amiot et al. [99] and the line strength calculated

according to Eq. (3.186), a spectrum is calculated and displayed in the bottom

trace of Fig. 2.13.

Two-photon absorption process

As a second example, consider two-photon absorption in NO involving two dif-

ferent electronic states. The two photon line strength I is related to the matrix
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elements of the components of the two-photon transition operator T and a polariza-

tion tensor P. Expressing both terms as spherical tensors with components T
(j)
m and

P
(j)
m defined in a laboratory frame, Sif is defined as

Sif =
∑
j,m

〈
f
∣∣T (j)

m P (j)
m

∣∣i〉. (3.187)

Assuming that the molecular ensemble is isotropic, it is appropriate to identify

the z-axis of the sf frame with the direction of the linear laser polarization. The

components of the polarization tensor can be written as

P (j)
m =

√
4π


 1 1 j

0 0 0


 Yjm(0, 0), (3.188)

where Yjm is a spherical harmonic. The resulting polarization tensor has only nonva-

nishing components for m = 0. Due to the properties of the 3j symbol, j can take on

only values j=0 and j=2. Therefore, only zeroth or second rank tensor components

of the transition moment operator can contribute to the two-photon line strength.

Since the wavefunctions are described in the mf frame, the tensor components must

be expanded in terms of mf components.

Sif = 〈f
∑

j

|P (j)
0 T

(j)
0 (sf)|i〉 =

∑

j,k

P
(j)
0 〈f |T (j)

k (mf)D
(j)∗
0k (α, β, χ)|i〉. (3.189)

Using the wavefunction from Eq. (3.72), then Sif becomes

Sif =
∑

j,k

〈
nfJfMfωfεf

∣∣T (j)
k D

(j)∗
0k (α, β, χ)P

(j)
0

∣∣niJiMiωiεi

〉

=
1

2

〈
vf

∣∣vi

〉 ∑

j,k

P
(j)
0

[{〈
nfΛfΣf

∣∣〈JfMfωf

∣∣ + εf

〈
ηf−Λf−Σf

∣∣〈JfMf−ωf

∣∣
}

×
∣∣T (j)

k D
(j)∗
0k (α, β, χ)

∣∣

×
{∣∣niΛiΣi

〉∣∣JiMiωi

〉
+ εi

∣∣ηi−Λi−Σi

〉∣∣JiMi−ωi

〉}]

=
1

2

〈
vf

∣∣vi

〉
(−)Mi [Ji][Jf ]

∑

j,k

P
(j)
0
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×
{

(−)−ωi−k
〈
Λf

∣∣T (j)
k

∣∣Λi

〉

 Jf j Ji

Mf 0 −Mi





Jf j Ji

ωf −k −ωi




+εiεf (−)ωi−k
〈−Λf

∣∣T (j)
k

∣∣−Λi

〉

 Jf j Ji

Mf 0 −Mi





 Jf j Ji

−ωf −k ωi




+εf (−)−ωi−k
〈−Λf |T (j)

k |Λi

〉

 Jf j Ji

Mf 0 −Mi





 Jf j Ji

−ωf −k −ωi




+εi(−)ωi−k
〈
Λf

∣∣T (j)
k

∣∣−Λi

〉

 Jf j Ji

Mf 0 −Mi





Jf j Ji

ωf −k ωi




}

=
1

2

〈
vf

∣∣vi

〉
(−)Mi [Ji][Jf ]

∑

j,k

P
(j)
0


 Jf j Ji

Mf 0 −Mi




×
{

(−)−ωi−k〈Λf |T (j)
k |Λi〉


 Jf j Ji

ωf −k −ωi




+(−)ωi−k+Jf+j+Jiεiεf〈−Λf |T (j)
k |−Λi〉


 Jf j Ji

ωf −k −ωi




+(−)−ωi−k+Jf+j+Jiεf〈−Λf |T (j)
k |Λi〉


 Jf j Ji

ωf k ωi




+(−)ωi−kεi〈−Λf |T (j)
k |Λi〉


 Jf j Ji

ωf −k ωi




}

=
[1− εiεf (−)Ji+Jf

2

]〈
vf

∣∣vi

〉
(−)Mi−ωi [Ji][Jf ]

∑

j,k

P
(j)
0 (−)−k


 Jf j Ji

Mf 0 −Mi




×
{
〈Λf |T (j)

k |Λi〉

Jf j Ji

ωf −k −ωi




+(−)Ji+Jf εf〈−Λf |T (j)
k |Λi〉


Jf j Ji

ωf k ωi




}
(3.190)
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where [j] denotes
√

2j + 1. From the selection rule

εi = εf (−)∆J , (3.191)

the rotational lines of the Q-, O-, or S-branches can be probed via a specific λ

doublet component εi of a rotational level of the electronic ground state (εi = εf ).

The other components (εi 6= εf ) must be probed on the lines of P- or R-branches.

The intensity of the two-photon transition becomes

I = C
∑

MiMf

[
E01E02

4h̄2

]2

|Sif |2

= C ′
[
1− εiεf (−)Ji+Jf

2

]2

(2Ji + 1)(2Jf + 1)
∣∣〈vf

∣∣vi

〉∣∣2

×
∑

jj′
P

(j)
0 P

(j′)
0

∑
MiMf

(−)2Mi


 Jf j Ji

Mf 0 −Mi





 Jf j′ Ji

Mf 0 −Mi




×
∣∣∣∣∣〈Λf |T (j)

k |Λi〉

Jf j Ji

ωf −k −ωi




+(−)Ji+Jf εf〈−Λf |T (j)
k |Λi〉


Jf j Ji

ωf k ωi




∣∣∣∣∣

2

. (3.192)

Using the orthogonality of the 3j-symbols, the summation over Mi and Mf yields

1
3
δjj′ . Then, the intensity is calculated as

I = C

[
1− εiεf (−)Ji+Jf

2

]2

(2Ji + 1)(2Jf + 1)
∣∣〈vf

∣∣vi

〉∣∣2 ∑
j

[
P

(j)
0

]2

×
∣∣∣∣∣〈Λf |T (j)

k |Λi〉

Jf j Ji

ωf −k −ωi




+(−)Ji+Jf εf〈−Λf |T (j)
k |Λi〉


Jf j Ji

ωf k ωi




∣∣∣∣∣

2

= C

[
1− εiεf (−)Ji+Jf

2

]2

(2Ji + 1)(2Jf + 1)
∣∣〈vf

∣∣vi

〉∣∣2 ∑
j
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×
{

1

3

∣∣∣∣∣〈Λf |T (0)
0 |Λi〉


Jf 0 Ji

ωf 0 −ωi




+(−)Ji+Jf εf〈−Λf |T (0)
0 |Λi〉


Jf 0 Ji

ωf 0 ωi




∣∣∣∣∣

2

+
2

15

∣∣∣∣∣〈Λf |T (2)
k |Λi〉


Jf 2 Ji

ωf −k −ωi




+(−)Ji+Jf εf〈−Λf |T (2)
k |Λi〉


Jf 2 Ji

ωf k ωi




∣∣∣∣∣

2}
. (3.193)

In the last line of the above equation, from Eq. (3.188)

P
(0)
0 =

1√
3

and P
(2)
0 =

√
2

15
(3.194)

are used. From Eq. (3.193), it follows that the spectrum consists of the sum of two

independent spectra due to T
(0)
0 and T

(2)
k . As in the case of a one-photon transition,

the two-photon transition matrix elements determine the selection rules for the total

angular momentum and its projection. Moreover, they specify the nonvanishing

tensor component related to the electronic matrix elements
〈 ± Λf

∣∣T (j)
k

∣∣Λi

〉
for the

specific states. If the electronic wave function is approximated by a single electron

wave function, it can be shown that T
(j)
k ∼ eikφ. Approximate selection rules for

the orbital angular momentum projection can be obtained as follows:

〈
Λf

∣∣T (j)
k

∣∣Λ〉
=

〈
Λf + k

∣∣T (j)
k

∣∣Λ〉
δΛf ,k+Λi

,

〈−Λf

∣∣T (j)
k

∣∣Λ〉
=

〈
Λf + k

∣∣T (j)
k

∣∣Λ〉
δΛf ,−(k+Λi). (3.195)

Since the orbital angular momentum quantum number is positive, the condition for

a nonvanishing contribution of a tensor component is found to be k = Λf − Λi or

k = −(Λf + Λi). For NO, the possible two-photon transitions from the ground state

(X 2Π) to the low lying Rydberg state are listed in Table 3.2 [122]. The transitions
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Table 3.2: Non-vanishing spherical tensor components T
(j)
k of the two-photon tran-

sitions from the X2Π to various Rydberg states [122].

ω Λ j k T
(j)
k

X2Π 1
2
, 3

2
1

D,H2Σ 1
2

0 2 -1 T
(2)
−1

0 0 T
(0)
0

C, H ′2Π 1
2
, 3

2
1

2 0,-2 T
(2)
0 , T

(2)
−2

F 2∆ 3
2
, 5

2
2 2 +1 T

(2)
1

2Φ 3
2
, 5

2
3 2 +2 T

(2)
2

to Σ, ∆, or Φ states are carried by a single component of the second rank tensor

while transitions to Π states involve contributions from different tensor components.

3.3 Theory of NO-X (X=Ar, Ne)

In this section, the theoretical description of van der Waals complexes including

an open shell diatom will be discussed.

3.3.1 Correlation Diagram: Energy levels for Bending Motions

The interaction for an NO-X complex depends on the Jacobi coordinates R, r, θ

as defined in Fig. 3.2(a). R represents the length of R which describes a vector

from the cm of the nuclei of the diatom to the atom nucleus. r represents the

distance between the nuclei of the diatom. And, θ denotes the angle between R
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and r. For the following discussion, it is assumed that the vibration of the diatom

is neglected. In order to describe the electronic structure of the interaction, it is

important to distinguish three different coordinate frames as shown in Fig. 3.2(b):

a space fixed(sf) frame, a body fixed(bf) frame and a molecule fixed(mf) frame. In

the sf frame, the origin is located at the cm of all three nuclei. The bf(2) frame is

defined by rotating the z axis of the sf frame through two Euler angles α and β onto

the direction of R. Note that the diatom does not lie in the xz nor yz planes. In

this frame, the orientation of the diatom vector r is represented by the polar angles

θ and φ. The mf frame is defined by rotating the bf frame through the angles θ and

φ so that the vector r lies along the z axis of mf frame. In this frame, all nuclei

lie in the xz plane. For clarity, the total angular momentum of the atom-diatom

system and its projections as well as those of the diatom must be defined carefully.

As shown in Fig. 3.2(c), J is the total angular momentum of the atom-diatom

system and M and P are its projections onto the z-axes of the sf and bf(2) frames,

respectively. And, j is the total angular momentum of the diatom and P and ω are

its projection onto the z-axes of the bf(2) and mf frames, respectively. Since the

end-over-end rotational angular momentum of the complex, L, is perpendicular to

the triatom plane, P is the projection of both J and j onto the z-axes of the bf(2)

z-axis. Finally, l is the electron orbital momentum of the diatom.

The energy level pattern of the complex can be understood by defining the fol-

lowing bender Hamiltonian

Hbend = B(J2 + j2 − J2
z − j2

z ) + H
(0)
BC + Vint (3.196)

where B is the rotational constant of the NO-X complex. H
(0)
BC is the zeroth order

term of the HBC in Eq. (3.51). The total wavefunction is approximated as a product

of functions describing the overall rotation of the complex, the rotation of the diatom
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Figure 3.2: (a) Jacobi coordinates, (b) definition of the coordinate frames, (c) total
angular momenta and their projections onto the bf(2) and mf frames.
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within the complex, and the electronic structure of the diatom including spin:

ΨJM
Pjω(α, β, φ, θ, r,ρkbc

) =

√
2J + 1

4π
D

(J)∗
MP (α, β, 0)

√
2J + 1

4π
D

(j)∗
Pω (φ, θ, 0) ψel

nλ Γsσ.

(3.197)

Details are discussed in Section 3.3.4. The matrix elements of the intermolecular

potential between different electronic states are obtained by integrating over the

electronic wavefunction:

Vλλ′(R, r, θ) =
〈
nλ

∣∣Vint

∣∣nλ′
〉

(3.198)

The potential energy surfaces Vλλ′(R, θ) may be expanded in terms of rotation

matrices:
〈
nλ

∣∣Vint

∣∣nλ′
〉

= D
(l̃)∗
0 λ−λ′(0, θ, 0)Vl̃ λ−λ′(R, r). (3.199)

For Π states, λ and λ′ are equal to either 1 or −1. Π states have off-diagonal terms

Vl̃2 for l̃ ≥ 2 as well as diagonal Vl̃0 terms. The off-diagonal terms do not exist

for Σ states. Since the off-diagonal terms cause only higher order perturbations,

they are neglected in a first approximation. Though the potential terms depend on

the coordinate r and R, at this point only the rotational and the angular motion

are of interest. As a zeroth order approximation the bender Hamiltonian may be

considered vibrationally averaged over r and R. The coefficient of the first potential

term, V00 simply shifts all levels of the complex by a constant amount relative to

the levels of the free diatom. The anisotropic terms, V10, V20 etc., cause additional

shifts and splittings of the observed levels.

According to Hutson [123], the anisotropy of the diagonal terms of the interaction

potential play an important role in determining the energy level structure of the

complex. Depending on the relative magnitudes of B, b (the rotational constant of

the diatom) and Vaniso (dominant anisotropic term), there are three different cases

labeled 1, 2, and 3 in order of increasing anisotropy. For case 1, the anisotropy
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is so small that Vaniso < B ¿ b. The diatom is almost rotating freely within

the complex. The orbital angular momentum L associated with the end-over-end

rotation is well defined and the total angular momentum of the diatom is conserved.

In this situation, it is convenient to use a space fixed(sf) description.

For case 2, the anisotropy is larger than B but still smaller than b ( B<Vaniso <b).

The orbital angular momentum is not conserved whereas the angular momentum

of the diatom is still a good quantum number. Thus, it is appropriate to use the

eigenfunctions of the diatom. In this case, it is necessary to consider Coriolis coupling

terms which connect states of the same J and j but with ω differing by ±1. For

this purpose, it is convenient to use two angle embedding of the body fixed frame

(bf(2)) defined by two Euler angles α and β with respect to a sf frame.

For real van der Waals molecules, it is necessary to go beyond the case 2 limit.

The case 2 may break down if the anisotropy is high enough to cause significant

mixing of states with different j. An odd-order anisotropy can be effective in

causing the change over from case 2 to case 3. The case 3 occurs when the potential

anisotropy is large compared to b, so that the complex is a nearly rigid molecule

executing torsional oscillations. While P is still nearly conserved, j and l are no

longer good quantum numbers. Different diatom rotor states will be coupled by the

interaction potential, but it is still feasible to expand the wavefunction in terms of

a bf(2) basis set. A basis set of vibrational wavefunctions located at the equilibrium

geometry may be used. Appropriate basis sets are different for linear and T-shaped

configuration.

As the anisotropy increases, the complex becomes more rigid. In the limit,

Vansio À b > B, the rotational level structure can be approximated by that of

a rigid rotor Hamiltonian. In this case, the Hamiltonian is derived using three angle

embedding (bf(3)). The bf(3) frame is defined with the vector R along the z-axis

and the complex lies in the xz plane. This approach has been successfully applied to
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the analysis of the rotational structure of the NO-X complexes in various strongly

bound Rydberg states [69, 70].

In order to understand the couplings between the overall rotation and the bending

motion, a Hamiltonian H ′
bend involving an effective anisotropy is considered:

H ′
bend = bj2 + V10D

(1)∗
00 (0, θ, 0) + V20D

(2)∗
00 (0, θ, 0)

= b
{ 1

sin θ

θ

∂θ
sin θ +

1

sin2 θ

∂2

∂φ2

}
+ V10D

(1)∗
00 (0, θ, 0) + V20D

(2)∗
00 (0, θ, 0).

(3.200)

This Hamiltonian does not include the end-over-end rotation of the complex which

allows one to determine correlation diagrams that scale only with the diatom rota-

tional constant b [21]. Using the basis set of Eq. (3.197) the matrix elements of

H ′
bend are found as

〈
jPω

∣∣H ′
bend

∣∣j′Pω
〉

= bj(j + 1)δjj′

+V10(2j + 1)(−)P−ω


 j 1 j′

−P 0 P





 j 1 j′

−ω 0 ω




+V20(2j + 1)(−)P−ω


 j 2 j′

−P 0 P





 j 2 j′

−ω 0 ω


 .(3.201)

The value of ω is chosen as the lowest value: ω = 1
2

for 2Π1/2 states and ω = 0 for 1Σ

states. In order to determine the eigenvalues the matrix H ′
bend is diagonalized using

a basis set involving different diatom states. For 1Σ states the matrix is diagonalized

for each value of P (= 0− 4) and includes j values from 0 up to 11 while for 2Π1/2

states the matrix is diagonalized for each value of P (= 1
2
− 9

2
) and includes j values

from 1
2

up to 21
2
. Correlation diagrams are plotted in Figs. 3.3 and 3.4 as a function

of V20 with V10 = 0 (part (a)), V10 = 2b (part (b)) for a 1Σ state and a 2Π1/2 state,

respectively.
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For a 1Σ state, Fig. 3.3(a) corresponds to a homonuclear diatom (V10 = 0)

while Fig. 3.3(b) refers to a heteronuclear diatom with V10 = 2b. For a large

negative value of V20, the energy levels are those of a linear triatomic molecule with

potential minima at θ = 0◦ and θ = 180◦. For V10 = 0, all levels are doubly

degenerate since the potential well has two identical minima. For example, for

V20 = −50b in the correlation diagram Fig. 3.3(a) the energies for j = 0 and

j = 1 are degenerate. Probabilities of finding the complex in each well are equal.

Figure 3.5(a) shows the associated probabilities for these two energy levels with

symmetric(II) and antisymmetric(I) wavefunctions. But, as soon as a V10 term is

introduced, the well depths are no longer identical resulting in the lifting of the

degeneracy. In order to show this, the wavefunctions for V10 6= 0 (V10 = 0.01b, 2b)

are plotted in Fig. 3.6. Even with a small value of V10, the degeneracy is lifted,

locating the system in one well.

For only small deviations from the linear geometry, the angular part of H ′
bend can

be approximated as

b
{ ∂2

∂θ2
+

1

θ

∂

∂θ
+

1

θ2

∂2

∂φ2

}
+ V10D

(1)∗
00 (0, θ, 0) + V20D

(2)∗
00 (0, θ, 0). (3.202)

The quantity in brackets is just the two dimensional Laplacian in polar coordinates.

By transforming θ and φ to Cartesian coordinates defined as

x = sin θ cos φ

y = sin θ sin φ, (3.203)

the Hamiltonian becomes

b
{ ∂2

∂x2
+

∂2

∂y2

}
+ V10D

(1)∗
00 (0, θ, 0) + V20D

(2)∗
00 (0, θ, 0). (3.204)

For small amplitude motion, the potential can be approximated by a quadratic term

in θ. In this case, the bending vibrational levels are equally spaced with the vth level
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having a degeneracy of (v+1) corresponding to the states with vibrational quantum

number K = v, v − 2, · · · ,−v.

For a large positive value of V20, the energy levels correspond to those of a

T-shaped complex. The wavefunction and the probability distribution for this con-

figuration are shown in Fig.(3.5a). Depending on the values of V10 the maximum

probability is found near θ = 90◦. The bending Hamiltonian for values near 90◦

decouples into a purely vibrational and a purely rotational term.

b
{ ∂2

∂θ2
+

∂2

∂φ2

}
+ V10D

(1)∗
00 (0, θ, 0) + V20D

(2)∗
00 (0, θ, 0). (3.205)

Since the potential matrix elements do not depend on φ, the contribution to the

rotational energy is found to be approximately given by bP 2. Within the rigid rotor

model, this term represents the energy associated with the a-axis rotation. For

V10 = 0, the A rotational constant of the complex is equal to the diatom rotational

constant b. But, when the V10 term is large, its effect is to tip the equilibrium

geometry away from θ = 90◦ so that the A rotational constant of the complex

is larger than b. Figure 3.5(a)I-IV shows how the maximum in the probability

distribution deviates from the T-shaped geometry depending on different values of

V10 = −25b, 0, 25b, 50b, respectively.

For a 2Π1/2 state, the V20 anisotropy splits each state into j + 1
2

components

with different values of P . For the 1Σ state, the first 3j symbol in Eq. (3.201) is

zero if j = j′ and the V10 anisotropy does not make a contribution to the diagonal

matrix elements. On the other hand, for a 2Π1/2 state this argument is no longer

valid. Now, the V10 anisotropy causes first order splittings even for V20 = 0 shifting

the +ω and −ω level by equal amounts but in opposite directions. Regarding the

geometry of the complex, a similar argument may be applied as in the case of the 1Σ

state: a large negative value of V20 corresponds to the linear geometry and a large

positive value of the V20 corresponds to the T-shaped geometry. In the T-shaped
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geometry, the degree of deviation from the θ = 90◦ depends on the value of V10.

The correlation diagram for 2Π3/2 state is essentially identical to that of a 2Π1/2

state, except that the lowest allowed j value is now 3
2
. Examples of open shell

complexes with linear and T-shaped geometries are the rare gas complexes of OH

(2Π3/2 ground state) and NO (2Π1/2 ground state), respectively.

3.3.2 Hamiltonian of NO-X (X=Ar, Ne)

The position vectors of the particles in the sf frame are given by Ra, Rb, Rc

(nuclei), and Rka , Rkbc
(electrons). The kinetic energy of the complex is written as

T =
1

2
maṘ

2

a +
1

2

Na∑

ka=1

meṘ
2

ka
+

1

2
mbṘ

2

b +
1

2
mcṘ

2

c +
1

2

Nbc∑

kbc=1

meṘ
2

kbc
. (3.206)

The atom (denoted a) contains Na electrons while the diatom (denoted bc) contains

Nbc electrons. In order to partition the kinetic energy into contributions due to the

two fragments and due to the relative motion of the two fragments, the position of

the particles must be described with respect to two sf frames centered in the cm of

the atom and the diatom, respectively:

Ra = Ra
cm + ra, and Rka = Ra

cm + rka ,

Rb = Rbc
cm + rb, Rc = Rbc

cm + rc, and Rkbc
= Rbc

cm + rkbc
. (3.207)

The relative position of the cm of the two fragments is defined as

R = Ra
cm −Rbc

cm. (3.208)

Using the definitions in Eq. (3.207) and (3.208) and the cm condition, the kinetic

energy is separated into three contributions:

T =
1

2
maṙ

2
a +

1

2

Na∑

ka=1

meṙ
2
ka

+
1

2
mbṙ

2
b +

1

2
mcṙ

2
c +

1

2

Nbc∑

kbc=1

meṙ
2
kbc

+
1

2
µṘ

2
(3.209)

= TA + TBC + Trel.
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Note that the kinetic energy associated with the cm motion of the complex is ignored

here. The first and second term in Eq. (3.209) represent the kinetic energy of the

atom, TA. The next three terms correspond to the kinetic energy of the diatom, TAB.

The last term represents the kinetic energy associated with the relative motion of

the two fragments. µ denotes the reduced mass of the complex. Note that the

coordinates used so far are not completely independent. In order to express the

kinetic energy in terms of a set of independent generalized coordinates a sf nuclear

cm frame is introduced for each fragment. The transformation of the coordinates

for the diatom becomes

rb = − me

M bc
tot

Nbc∑

kbc

ξkbc
+

mc

mbc

r, rc = − me

M bc
tot

Nbc∑

kbc

ξkbc
− mb

mbc

r (3.210)

and rjbc
= − me

M bc
tot

Nbc∑

kbc

ξkbc
+ ξjbc

. (3.211)

Similarly, for the atom

ra = − me

Ma
tot

Na∑

ka

ξka
and rja = − me

Ma
tot

Na∑

ka

ξka
+ ξja

. (3.212)

ξka
and ξkbc

represent the electron coordinates of the atom and the diatom in the sf

nuclear cm frame, respectively. The kinetic energy in the nuclear cm frames takes

the form of

T =
1

2
µṘ

2
+

1

2
µbcṙ

2 +
1

2

Nbc∑

kbc=1

meξ̇
2

kbc
− 1

2

m2
e

M tot
bc

(
Nbc∑

jbc=1

ξ̇jbc

)2

+
1

2

Na∑

ka=1

meξ̇
2

ka
− 1

2

m2
e

M tot
a

(
Na∑

ja=1

ξ̇ja

)2

. (3.213)

µbc denotes the reduced mass of the diatom. Due to the mass ratio, the mass

polarization terms which are the fourth and sixth terms in Eq. (3.213) are very

small, and will be neglected henceforth. The kinetic energy is reduced to

T =
1

2

Na∑

ka=1

meξ̇
2

ka
+

1

2
µbcṙ

2 +
1

2

Nbc∑

kbc=1

meξ̇
2

kbc
+

1

2
µṘ

2
(3.214)

= TA + TBC + Tint.
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The second and third term correspond to the kinetic energy of the diatom.

The potential energy is the sum of the Coulomb interaction energy between all

particles (including nuclei and electrons). After successive transformations using

Eqs. (3.207), (3.210)-(3.212), the potential energy is given by

V =
ZbZce

2

|rb − rc| −
∑

kbc

Zbe
2

|rb − rkbc
| −

∑

kbc

Zce
2

|rc − rkbc
| +

∑

kbc<jbc

e2

|rkbc
− rjbc

| (3.215a)

−
∑

ka

Zae
2

|ra − rka|
+

∑

ka<ja

e2

|rka − rja|
(3.215b)

+
ZaZbe

2

|R + ra − rb| +
ZaZce

2

|R + ra − rc| −
∑

kbc

Zae
2

|R + ra − rkbc
|

−
∑

ka

Zbe
2

|R + rka − rb| −
∑

ka

Zce
2

|R + rka − rc| +
∑

ka,kbc

e2

|R + rka − rkbc
| (3.215c)

= VBC + VA + Vint.

The first four terms, Eq. (3.215a), represent the potential energy of the diatom.

The fifth and sixth terms, Eq. (3.215b), are the potential energy of the atom. The

remaining terms define the interaction potential. The interaction potential will be

described in detail in Section 3.3.2.

The bf(2) representation of the Hamiltonian is derived by transforming all coor-

dinates to the bf(2) frame as follows:

Rbf = C(α, β)Rsf =




0

0

R




, rbf = C(α, β)rsf = r




sin β cos α

sin β sin α

cos β




,

and

ηka
= C(α, β)ξka

, ηkbc
= C(α, β)ξkbc

. (3.216)

Velocity vectors projected onto the bf(2) axes are calculated using Eq. (3.23):

C(α, β)ṙsf = ṙbf + ω × rbf , (3.217)

C(α, β)ξ̇ka
= η̇ka

+ ω × ηka
, (3.218)
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C(α, β)ξ̇kbc
= η̇kbc

+ ω × ηkbc
. (3.219)

The kinetic energy in terms of the generalized coordinates (R, α, β, rbf , ηka
,ηkbc

) is

written as

T =
µ

2

(
Ṙ2 + R2β̇2 + R2α̇2 sin2 β

)
+

µbc

2

(
ṙbf + ω × rbf

)2

+
me

2

Nbc∑

kbc

(
η̇kbc

+ ω × ηkbc

)2
+

me

2

Na∑

ka

(
η̇ka

+ ω × ηka

)2
. (3.220)

In order to derive the classical Hamiltonian, it is necessary to find the momenta

conjugate to the generalized coordinates. The conjugate momenta P R, pr, pka
, and

pkbc
are found easily:

P R = ∇ṘT = µ
(
Ṙ

bf
+ ω ×Rbf

)
, (3.221a)

pr = ∇ṙT = µbc

(
ṙbf + ω × rbf

)
, (3.221b)

pka
= ∇�̇ka

T = me

(
η̇ka

+ ω × ηka

)
, (3.221c)

pkbc
= ∇�̇kbc

T = me

(
η̇kbc

+ ω × ηkbc

)
. (3.221d)

The total angular momentum projected onto the bf(2) frame, J bf , is given by the

gradient of the kinetic energy with respect to ω. For an arbitrary position vector

abf , the following relationship holds:

∇!
[m

2

(
ȧbf + ω × abf

)2
]

= mabf × (
ȧbf + ω × abf

)
= abf × pa. (3.222)

Using Eq. (3.222), the gradient of the kinetic energy with respect to ω is calculated

as

∇!T = Rbf × P R + rbf × pr +
∑

ka

ηka
× pka

+
∑

kbc

ηkbc
× pkbc

= Lbf + jbf
bc + jbf

a . (3.223)

The orbital angular momentum and the internal angular momentum are defined

as L and jbf
bc , respectively. jbf

a represents the orbital angular momentum of the
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atom. In order to verify that the above expression is equivalent to the total angular

momentum calculated for the sf frame but projected onto the bf(2) frame, it is

necessary to evaluate the total angular momentum. The total angular momentum

is defined in the sf frame as

J sf = mbRb×Ṙb+mcRc×Ṙc+me

∑
jbc

Rjbc
×Ṙjbc

+maRa×Ṙa+me

∑
ja

Rja×Ṙja .

(3.224)

After the transformations of the coordinates using Eqs. (3.207), (3.210)-(3.212), J sf

becomes

J sf = µRsf × Ṙ
sf

+ µbcr
sf × ṙsf + me

Nbc∑

kbc

ξsf × ξ̇
sf

+ me

Na∑

ka

ξsf × ξ̇
sf

. (3.225)

When J sf is transformed to the bf frame, J bf is

J bf = CJ sf

= µCRsf × CṘ
bf

+ µCrsf × Cṙbf + me

∑

ka

Cξka
× Cξ̇ka

+ me

∑

kbc

Cξkbc
× Cξ̇kbc

= Rbf × P R +
(
rbf × pr +

∑

ka

ηkbc
× pkbc

)
+

∑

kbc

ηka
× pka

. (3.226)

This result is exactly the same as Eq. (3.223) meaning that ∇!T = J bf .

In the same way as Eqs. (3.29) and (3.30) for the diatom, the momenta conjugate

to α and β are obtained by applying the chain rule,

Jα =
∂T

∂α̇
= µR2α̇ sin2 β − sin β

(
jbf
bc x + jbf

a x

)
+ cos β

(
jbf
bc z + jbf

a z

)
(3.227a)

and

Jβ =
∂T

∂β̇
= µR2β̇ + jbf

bc y + jbf
a y. (3.227b)

Using Eqs. (3.226) and (3.227), the components of the total angular momentum

projected onto the bf(2) frame are

J bf
x = − csc β Jα + cot β

(
jbf
bc z + jbf

a z

)
,
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J bf
y = Jβ,

J bf
z = jbf

bc z + jbf
a z. (3.228)

The kinetic energy in terms of the generalized coordinates and their conjugate

momenta is expressed as

T =
1

2µ
P 2

R +
1

2µR2

[ (
J bf

x − jbf
bc x − jbf

a x

)2

+
(
J bf

y − jbf
bc y − jbf

a y

)2 ]

+TBC +
1

2me

∑

ka

p2
ka

(3.229)

where

TBC =
1

2µbc

p2
r +

1

2me

∑

kbc

p2
kbc

.

Since the atom of interest is a rare gas atom such as Ar and Ne, it is appropriate to

assume that the atom is structureless, i.e., jbf
a = 0. In order to derive the quantum

mechanical Hamiltonian, the Podolsky trick [108] is applied yielding

H = TR +
1

2µR2

[
(J bf

x − jbf
bc x)

2 +
1

sin β
(J bf

y − jbf
bc y) sin(J bf

y − jbf
bc y)

]

+HA + HBC + TBC + Vint(R, θ, r,ηkbc
,ηka

) (3.230)

where

TR = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
,

HBC = − h̄2

2µbc

∇2
r −

∑

kbc

h̄2

2me

∇2
kbc

+ VBC(r, ηkbc
), (3.231)

HA = −
∑

ka

h̄2

2me

∇2
ka

+ VA(ηka
).

To describe the bound state levels of the NO-X (X=Ar, Ne) complex, it is con-

venient to expand the complete wavefunction in terms of products of wavefunc-

tions which describe the electronic-rotational states of the NO molecule and angular

momentum functions which describe the orbital (end-over-end) rotation of the NO-

X complex. Since the Hamiltonian of the diatom in Eq. (3.230) is given in terms
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of bf(2) coordinates, it is not possible to use the diatomic wavefunctions which are

given in a mf frame as discussed in Section 3.1. To remedy this situation, a mf

frame is introduced by rotating the bf(2) frame through angles θ and φ. These

angles describe the orientation of the internuclear axis of the diatom with respect to

the bf(2) frame. The transformation is described by a matrix Cd(θ, φ):

rmf = Cd(φ, θ)rbf =




0

0

r




, ρkbc
= Cd(φ, θ)ηkbc

. (3.232)

The kinetic energy of the diatom in the mf takes the form of

TBC =
µbc

2

[
ṙmf +(ωd +Cdω)×rmf

]2

+
me

2

Na∑

kbc

[
ρ̇kbc

+(ωd +Cdω)×ρkbc

]2

. (3.233)

The effect of the second transformation is to replace the original angular velocity ω

by ωr = ωd + Cdω. The projection of the body fixed diatomic angular momentum

onto the molecule fixed frame is given by the expression

jmf
bc = Cdj

bf
bc = ∇!rTBC = rmf × pr + l (3.234)

where l =
∑

kbc
ρkbc

× pkbc
defines the orbital angular momentum of the electrons in

terms of the mf frame. In complete analogy to Eq. (3.227), the conjugate momenta

are

jφ = sin θ
(
jmf
x − lx

)− sin θ lx + cos θ lx,

jθ = jmf
y . (3.235)

Then, the expression for the kinetic energy TBC in the mf frame becomes

TBC = − h̄2

2µbcr2

∂

∂r
r2 ∂

∂r
+

1

2µr2

[ (
jmf
x − lx

)2
+

1

sin θ

(
jmf
y − ly

)
sin θ

(
jmf
y − ly

) ]

−
Nbc∑

kbc

h̄2

2me

∇2
kbc

. (3.236)
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In this form, the eigenfunctions of the diatom can be used to describe the NO-

X complex. However, this Hamiltonian involves nonstandard angular momentum

operators. In order to derive an isomorphic Hamiltonian, it is necessary to apply

two unitary transformations:

U = exp

(
i

h̄
jbf
bc zχ

)
for the triatom (3.237)

Ud = exp

(
i

h̄
lzχd

)
for the diatom. (3.238)

After some algebra, the final expression for the isomorphic triatomic Hamiltonian is

obtained as

H = TR +
1

2µR2

[
(J bf

x − jbf
bc x)

2 + (J bf
y − jbf

bc y)
2
]

+Vint(R, θ, r,ρkbc
,ηka

) + HBC + HA (3.239)

where

TR = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
,

HBC = − 1

2µbcr2

∂

∂r
r2 ∂

∂r
+

h̄2

2µr2

[(
jmf
x − lx

)2
+

(
jmf
y − ly

)2
]

−
∑

kbc

h̄2

2me

∇2
kbc

+ VBC(r,ηkbc
),

HA = −
∑

ka

h̄2

2me

∇2
ka

+ VA(ηka
).

3.3.3 The Interaction Potential

In this section, the interaction potential, Vint(R, θ, r,ρkbc
, ηka

) (see Eq. (3.215c)),

is described in detail [107, 124]. As a representative term of the interaction, let us

consider the repulsive term between an electron kbc and an electron ka in the bf(2)
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frame at a distance: |R + rka − rkbc |. The inverse distance can be expanded in

terms of unnormalized spherical harmonics, Cl̃m(X̂) [125]:

1

|R + rka − rkbc |
=

∑

l̃,l1,l2

∑
m,m1,m2

Al1l2(R, ηka , ηkbc
)〈l̃ml1m1 | l2m2〉

×Cl̃m(η̂kbc
)Cl1m1(η̂ka)C

∗
l2m2

(R̂) (3.240)

where 〈l̃ml1m1 | l2m2〉 is a Clebsch-Gordan coefficient [121]. The quantities with

hats designate the orientation of the vectors. Since R̂ = (0, 0) in the bf(2) frame,

only terms with m2=0 contribute to the expansion due to the property Ylm(0, φ) =
√

(2l + 1)/4π × δm0. In the case that the electron ka belongs to an atom in a 1S

state, only contributions with m1 = 0 terms survive. Eq. (3.240) is averaged over

the electronic coordinates of the atom:

1

|R + rka − rkbc |
=

∑

l̃,l1,l2

Al1l2(R, ηka , ηkbc
)〈l̃0l10 | l20〉Cl̃0(η̂kbc

)Cl10(η̂ka). (3.241)

The coordinates of the electrons in the diatom ηkbc
must be expressed in terms of the

mf coordinates in order to be able to use the wavefunctions of the diatom discussed

in Section 3.1.2. The coordinates are transformed by use of Eq. (3.232). Using

the transformation properties of spherical tensors under the rotation through angles

(θ, φ, 0), the unnormalized spherical harmonics are transformed as

Cl̃0(η̂kbc
) =

∑
p

D
(l̃)∗
0p (φ, θ, 0)Cl̃p(ρ̂kbc

) = D
(l̃)∗
0p (0, θ, 0)Cl̃p(ρ̂kbc

). (3.242)

Substituting the above result into Eq. (3.241), the interaction potential becomes

Vint =
1

|R + rka − rkbc|
+ · · · · · ·

=
∑ ∑

l̃,l1,l2,p

Al1l2(R, ηka , ρkbc
)〈l̃0l10 | l20〉Cl10(η̂ka)D

(l̃)∗
0p (0, θ, 0)Cl̃p(ρ̂kbc

).

(3.243)

It can be shown that the interaction potential does not depend on the azimuthal

angle φ. The matrix elements of the interaction potential involving the diatomic



141

wavefunctions |nλ〉 are

V int
λλ′ (R, r, θ) = 〈nλ|Vint|nλ′〉 =

∑

l̃

D
(l̃)∗
0 λ−λ′(0, θ, 0)Vl̃ λ−λ′(R, r). (3.244)

Since the diatom wavefunctions with λ and −λ are degenerate, it is more convenient

to use wavefunctions with a well defined parity:

∣∣n|λ|ε〉 =
1√
2

{
|n λ〉+ ε|n−λ〉

}
. (3.245)

Using the symmetrized wavefunctions as basis set, the potential matrix which is

diagonal in ε is found to be

V int
|λ|εε′ =

〈
n|λ|ε

∣∣∣Vint

∣∣∣n|λ|ε
〉

= δεε′
∑

l̃

(
D

(l̃)∗
00 (0, θ, 0)Vl̃0(R, r) + εD

(l̃)∗
0 2λ(0, θ, 0)Vl̃ 2λ(R, r)

)
. (3.246)

The eigenvalues of the electronic Hamiltonian define two potential surfaces of

A′(ε = +1) and A′′(ε=−1) reflection symmetry (see Fig. ??): V int
|λ| (A′; R, r, θ) and

V int
|λ| (A′′; R, r, θ), respectively. The diagonal elements in λ represent the average of

the two adiabatic potentials of A′ and A′′ reflection symmetry which are given in

terms of Legendre polynomials:

Vave =
1

2

[
V int
|λ| (A′; R, r, θ) + V int

|λ| (A′′; R, r, θ)
]

=
∑

l̃

D
(l̃)∗
00 (0, θ, 0)Vl̃0(R, r). (3.247)

The off-diagonal elements are related to the difference of the potentials which are

given in terms of associated Legendre polynomials:

Vdiff =
1

2

[
V int
|λ| (A′; R, r, θ)− V int

|λ| (A′′; R, r, θ)
]

=
∑

l̃

D
(l̃)∗
0 λ−λ′(0, θ, 0)Vl̃ λ−λ′(R, r).

(3.248)

As will be discussed below, the odd-expansion terms of the average potential, Vave ,

are closely related to the ω splitting while the difference potential, Vdiff , is respon-

sible for the P -type doubling.
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3.3.4 Close Coupled Equations

The complete eigenfunctions of the total Hamiltonian in Eq. (3.239) can be

expanded in terms of products of diatom states and total angular momentum eigen-

functions:

ΨJM
Pjω(α, β, φ, θ, r,ρkbc

) =

√
2J + 1

4π
D

(J)∗
MP (α, β, 0)

√
2j + 1

4π
D

(j)∗
Pω (φ, θ, 0) ψel

nλ Γsσ

(3.249)

or, in a shorthand form

|JMPjω〉 = |JMP 〉|jPω〉|nλ〉|sσ〉 with ω = λ + σ. (3.250)

In Eq. (3.249), D
(J)∗
MP (α, β, 0) and D

(j)∗
Pω (φ, θ, 0) represent a total angular momentum

eigenfunction of the complex and the diatom, respectively. ψel
nλ represents the elec-

tronic wavefunction while Γsσ represents the spin wavefunction. Here, the eigen-

function of the atom, |1S 〉, is not included explicitly.

The levels corresponding to (P, ω) and (−P,−ω) are degenerate when the first

order energy correction due to the electrostatic potential is considered (see below

in Eq. (3.265)). Thus, it is convenient to combine these states into two new basis

states with a well defined parity:

ΨJM
Pζjω(α, β, φ, θ, r, ρkbc

) = |JMPζjω〉

=
1√
2

{
|JMP 〉|jPω〉|nλ〉|sσ〉+ ζ|JM −P 〉|j −P −ω〉|n−λ〉|s−σ〉

}
(3.251)

where the symmetry quantum number ζ takes on the values ±1. It is related to

the overall parity of the basis state: η = ζ(−)J−s. The degeneracy in ζ is removed

by Coriolis interaction involving states with P = 1
2
. This lifting of the degeneracy

is called the P -type doubling in analogy to the λ-doubling in the diatom discussed

in Section 3.1.3. For linear complexes such as OH-Ar, ω is a nearly good quantum

number and the energy levels are split into different P -components. In this case, ω
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is restricted to positive values and P takes on signed values. On the other hand, for

T-shaped complexes such as NO-Ar, the main contribution of the rotational energy

is determined by P 2 while the splitting of the different (P, ω)-states is small. In this

case, it is more appropriate to restrict the quantum number P to positive values and

to treat ω as a signed quantum number.

Assuming that the intramolecular distance r does not change, the total wave-

function is expanded in terms of the basis set defined in Eq. (3.251):

ΨJMvζ
tot =

∑

P ′j′ω′

1

R
XJvζ

P ′j′ω′(R)|JMP ′ζj′ω′〉. (3.252)

The matrix representation of the complete Hamiltonian in this basis contains several

important off-diagonal contributions.

Htot = TR + H
(0)
rot + H

(0)
BC + HA + H

(1)
rot + H

(1)
BC + Vint (3.253)

where

TR = − h̄2

2µR2

∂

∂R
R2 ∂

∂R
,

H
(0)
rot =

1

2µR2
(J2 + j2 − J2

z − j2
z ),

H
(1)
rot = − 1

2µR2
(j+J− + j−J+),

H
(1)
BC = − 1

2µbcr2
(jmf

+ s− + jmf
− s+). (3.254)

Here, the identity

(J bf
x − jbf

bc x)
2 + (J bf

y − jbf
bc y)

2

= (J2 + j2 − J2
z − j2

z )− (j+J− + j−J+) (3.255)

has been used. For a structureless atom, HA contributes a constant energy shift and

will be neglected. By substituting the wavefunction into the Schrödinger equation

and integrating over all coordinates except the R-dependent part, a set of close
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coupled equations for the radial coefficient XJvζ
P ′j′ω′(R) is obtained:

{
− h̄2

2µ

d2

dR2
+ B(R)

(
J(J + 1) + j(j + 1)− 2P 2

)
−

[
EJvζ

tot − E
(BC)
jω

]}
XJvζ

P ′j′ω′(R)

=−
∑

P ′j′ω′
XJvζ

P ′j′ω′(R)
〈
JMPζjω

∣∣H(1)
rot + H

(1)
BC + V e.s

int

∣∣JMPζjω
〉
. (3.256)

The off-diagonal terms due to Coriolis coupling, the spin-uncoupling, and the inter-

action potential are collected on the right hand side of Eq. (3.256).

Since jbf represents the transformed mf operator, it obeys normal commutation

rules. The operator jbf
+ (or jbf

− ) acts as a raising (or lowering) operator. On the other

hand, the operator J bf obeys anomalous commutation rules. This means that the

operator J bf
− (or J bf

+ ) acts as a raising (or lowering) operator. When the Coriolis

coupling terms are evaluated, three contributions are found:

〈
JMPζjω

∣∣H(1)
rot

∣∣JMP ′ζ ′j′ω′
〉

= −δjj′δζζ′B(R)
{

F (P ′)δP,P ′+1δωω′ + F (P ′ − 1)δP,P ′−1δωω′ + ζF (P ′)δP,1−P ′δω,−ω′

}

(3.257)

where

F (P ) =
√

[J(J + 1)− P (P + 1)][j(j + 1)− P (P + 1)].

The matrix representation of H
(1)
rot is diagonal in j. The first two terms in Eq. (3.257)

are responsible for coupling of states with ∆P = ±1, ∆ω = 0 while the third term is

only possible for P = P ′ = 1
2

ω′ = −ω. This term depends on the quantum number

ζ giving rise to the P -type doubling.

The spin-uncoupling operator only acts on the diatom part of the wavefunction.

The matrix elements of this operator are calculated as

〈
JMPζjω

∣∣H(1)
BC

∣∣JMP ′ζ ′j′ω′
〉

= −δjj′δPP ′δζζ′δλλ′ b
{

f(ω′ − 1)δω,ω′−1δσ,σ′−1 + f(ω′)δω,ω′+1δσ,σ′+1

}
(3.258)
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where

f(ω) =
√

[j(j + 1)− ω(ω + 1)].

Its matrix representation is diagonal in j, P, ζ, and λ. The off-diagonal terms only

exist for states which differ in ω and σ by one unit: ∆ω = ∆σ = ±1.

The third off-diagonal term is due to the interaction potential whose matrix

elements are evaluated as

〈
JMPζjω

∣∣Vint

∣∣JMP ′ζ ′j′ω′
〉

= δPP ′δζζ′ [j][j
′]

∑

l̃

(−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω λ−λ′ ω


 Vl̃ λ−λ′(R).

(3.259)

The interaction potential matrix is diagonal in P and ζ and its elements do not even

depend on J, M , and ζ. The average potential mixes different diatom rotor states

(∆j 6= 0) with the same projection quantum (∆ω = 0) while the difference potential

mixes states with ∆j 6= 0 and ∆ω = ±2. The latter terms contribute to the P -type

doubling.

The diagonal elements of the potential matrix are:

〈
JMPζjω

∣∣V e.s
int

∣∣JMPζjω
〉

= [j]2
∑

l̃=0

(−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω 0 ω


 Vl̃0(R)

= V00 + [j]2
∑

l̃=1

(−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω 0 ω


 Vl̃0(R). (3.260)

The leading term V00, which is the isotropic term, can be used to define a zeroth

order stretching Hamiltonian:

{
− h̄2

2µ

d2

dR2
+ V00(R)

}
Uvs(R) = E

(0)
vib vs

Uvs(R) (3.261)
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where the stretching vibrational energy is defined as

E
(0)
vib vs

= EJM
tot − E

(BC)
tot −B

(
J(J + 1) + j(j + 1)− 2P 2

)
. (3.262)

The eigenfunctions to the stretching Hamiltonian can be used to define a new basis

set which includes the dependence on the coordinate R:

ΨJMv
tot =

∑

P ′ζ′j′ω′v′s

CJMv
P ′ζ′j′ω′v′s

1

R

∣∣v′s
〉∣∣JMP ′ζ ′j′ω′

〉
. (3.263)

Using this basis set, the first order energy correction due to the higher order expan-

sion terms of the potential is obtained:

EJPvs
tot jω = E

(0)
vib vs

+ E
(BC)
jω + B

(
J(J + 1) + j(j + 1)− 2P 2

)

+(2j + 1)
∑

l̃=1

(−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω 0 ω


 〈

vs

∣∣Vl̃0(R)
∣∣vs

〉
.

(3.264)

The first three terms are degenerate in P and ω. The splitting of the degenerate

level is caused in first order by the electrostatic potential. Considering the leading

term of the potential anisotropy (l̃ = 1), it is found that the correction depends only

on the sign of the product P ×ω. When the signs of both P and ω are reversed, the

last term in Eq. (3.264) does not change:

(−)−P+ω


 j 1 j′

P 0 −P





 j 1 j′

ω 0 −ω




= (−)−P+ω+2P−2ω


 j 1 j′

−P 0 P





 j 1 j′

−ω 0 ω




= (−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω 0 ω


 . (3.265)
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3.3.5 Centrifugal Decoupling and Adiabatic Bender Approximation

In order to decouple the rotational motion from the bending vibration efficiently,

it is convenient to define a zeroth order bending Hamiltonian Hbend by retaining only

contributions from the rotational part, the diatomic Hamiltonian and the interaction

potential:

Hbend = H
(0)
rot + H

(0)
BC + V e.s

int . (3.266)

The matrix elements of Hbend are diagonal in P and independent of ζ whereas they

depend on the stretching coordinate R as a parameter. Therefore, the expansion

of the eigenfunctions of the bending Hamiltonian in terms of the Pω basis set is

restricted to states which differ only in the quantum number for j and ω:

ΨJMPζn
bend =

∑

j′,ω′
W JPn

j′ω′ (R)|JMPζj ′ω′〉. (3.267)

The coefficients W JPn
j′ω′ (R) are determined by diagonalizing the R-dependent matrix

associated with the following eigenvalue problem:

∑

j′ω′

{[
B(R)

(
J(J + 1) + j(j + 1)− 2P 2

)
+ E

(BC)
jw

]
δjj′δωω′

+ 〈JMPζjω|Vint|JMPζj ′ω′〉
}

W JPn
j′ω′ (R) = EJPn

bend(R)W JPn
j′ω′ (R). (3.268)

Although the contribution due to the end-over-end rotation of the complex depends

on J , the rotational energy is much smaller than the energy associated with the

internuclear vibrations of the fragments. It is neglected in a first approximation by

replacing J by l̄:

B(R)J(J + 1) = B(R)l̄(l̄ + 1). (3.269)

The eigenvalue EPn
bend(R) represents the total energy of the system minus the energies

associated with the stretching vibration and the end-over-end rotation. When R

approaches infinity, the bending vibration vanishes and the total energy approaches
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the energy of a free rotor state of the diatom. Then, it is convenient to define an

adiabatic bender potential as

V Pn
bend(R) = EPn

bend(R)− E
(BC)
jω −B(R)l̄(l̄ + 1). (3.270)

This adiabatic potential serves as the potential energy for the intermolecular

stretching vibration. The complete eigenfunctions are expanded in terms of the

bender eigenfunctions,

ΨJMvζ
tot =

∑
Pn

1

R
UJvζ

Pn (R)ΨJMPζn
bend

=
∑
Pn

∑

j′ω′

1

R
UJvζ

Pn (R)W Pn
j′ω′(R)|JMPζj′ω′〉. (3.271)

Substitution into the complete Schrödinger equation results in a set of close coupled

equations:

{
TR + Hbend + B(R)

(
J2 − l̄(l̄ + 1)

)
− EJvζ

tot

}
ΨJMvζ

tot = −H
(1)
rotΨ

JMvζ
tot

m

∑
Pn

{
TR

1

R
UJvζ

Pn (R)ΨJMPζn
bend

+
1

R
UJvζ

Pn (R)ΨJMPζn
bend

[
EPn

bend(R) + B(R)J(J + 1)−B(R)l̄(l̄ + 1)− EJvζ
tot

]}

= −
∑
pn

H
(1)
rot

1

R
UJvζ

Pn (R)ΨJMPζn
bend . (3.272)

The energy eigenvalue can be viewed as a sum of fragment energy plus the rovibra-

tional energy associated with the intermolecular mode

EJvζ
tot = EJvζ

r.v. + E
(BC)
jω .

When the adiabatic bender potential in Eq. (3.270) is introduced into Eq. (3.272):

∑
Pn

{
TR

1

R
UJvζ

Pn (R)ΨJMPζn
bend +

1

R
UJvζ

Pn (R)ΨJMPζn
bend

[
V Pn

bend(R)− EJvζ
r.v.

]}

= −
∑
pn

H
(1)
rot

1

R
UJvζ

Pn (R)ΨJMPζn
bend . (3.273)
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The Coriolis coupling term on the right hand side is responsible for mixing states

which differ in P . It is responsible for removing the degeneracy of levels which differ

in ζ. This coupling term is neglected in the centrifugal decoupling (CD) approxi-

mation. At this level of approximation, P is a good quantum number. Because the

P -type doubling is caused by the Coriolis coupling term, energy levels at the CD

level must be degenerate in the symmetry quantum number ζ. The complete CD

wavefunction takes the form:

ΨJMPvζ
tot =

∑
n

1

R
UJv

Pn(R)ΨJMPζn
bend

=
∑

nj′ω′

1

R
UJv

Pn(R)W Pn
j′ω′(R)|JMPηj ′ω′〉. (3.274)

Additionally, there are non-adiabatic couplings mediated by the kinetic energy oper-

ator for the stretching motion, TR. Since the bender wavefunctions depend on R,

non-adiabatic coupling terms are found in the form:

1

R
UJv

Pn(R)
〈
ΨJMPζn

bend

∣∣TR

∣∣ΨJMPζn′
bend

〉
θ,�kbc

. (3.275)

The matrix element represents integration over all coordinates (θ, ηkbc
) except the

stretching coordinate R. In an adiabatic bender (AB) calculation, these couplings

are neglected in addition to the Coriolis coupling term. In this case, the complete

wavefunction is approximated as a product of a bending and a stretching wavefunc-

tion.

ΨJMPvη
tot =

1

R
UJv

Pn(R)ΨJMPζn
bend . (3.276)

The stretching wavefunction is a solution to a one-dimensional Schrödinger equation:

− h̄2

2µ

d2

dR2
UJv

Pn(R) +
[
V Pn

bend(R) + B(R)J(J + 1)
]
UJv

Pn(R) = EJv
r.v.U

Jv
Pn(R). (3.277)

Since the bending potentials correlate with different diatom states, the energy

eigenvalues to this equation contain the energy due to intermolecular stretching
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vibration, bending vibration, and the overall rotation of the complex. For instance,

the potentials correlating with j = 3
2

and ω = ±1
2

split under the electrostatic

potential into bender potentials with P = 1
2

and P = 3
2
. Because the main portion

of the rotational energy is determined by J , the bender potentials corresponding to

a particular value of P are expected to lie close to each other as shown .

3.3.6 Perturbation Theory

Ideally, an experimental spectrum needs to be compared with the results of a

complete ab initio treatment. But, calculating an ab initio potential energy surface

(PES) is very complicated and for many systems potential energy surfaces (PESs)

are not available. In order to gain further insight into the energy level structure of

the complex and to calculate a spectrum without detailed information on the PESs,

an empirical Hamiltonian is introduced.

Perturbation theory is applied to construct this Hamiltonian. This approach was

developed by Green and Lester [23]. The first order energy correction was obtained

in Eq. (3.264).

EJPvs
tot jω = E

(0)
vib vs

+ E
(BC)
jω + B

(
J(J + 1) + j(j + 1)− 2P 2

)

+(2j + 1)
∑

l̃=1

(−)P−ω


 j l̃ j′

−P 0 P





 j l̃ j′

−ω 0 ω


 〈

vs

∣∣Vl̃0(R)
∣∣vs

〉
.

For a given P value the main contribution to the ω splitting comes from the

leading term V10(R). By replacing +ω by -ω,

(−)ω


 j 1 j

ω 0 −ω


 V10(R) = −(−)−ω


 j 1 j

−ω 0 ω


 V10(R). (3.278)

In first order, the two ω levels are shifted by the same amount but in opposite

directions. The splitting is proportional to 2
〈
vs

∣∣V10

∣∣vs

〉
. But, the contribution due
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to the term V20(R) is independent of the sign of P and ω, it cannot remove the

degeneracy of the ±ω levels.

Even though the degeneracy of the±ω levels is removed, each level is still two-fold

degenerate in the quantum number ζ. Also, the P -type doubling can be explained

within the framework of perturbation theory. Since the last term in Eq. (3.257)

for the Coriolis coupling is linear in ζ, this term must be responsible for the P -type

doubling.

For this term, the selection rule for ω is ω′ = −ω′′, which means that other

ω-changing perturbations such as spin uncoupling and the difference potential must

be implemented for the perturbation treatment. The lowest bound levels for NO-

Ar and NO-Ne involve basis states with ω = ±1
2

and P = 1
2
. The splitting can be

explained by a mechanism involving the difference potential and the spin uncoupling

operator.

〈J 1
2
ηj 1

2
|H(1)

rot |J 1
2
η′j′ − 1

2
〉〈J 1

2
ηj − 1

2
|Vdiff |J 1

2
η′j′ 3

2
〉〈J 1

2
ηj 3

2
|H(1)

BC |J 1
2
η′j′ 1

2
〉

= C1

(
J +

1

2

)
. (3.279)

In summary, the ω splitting is closely related to the odd expansion terms of the

average potential Vave while the P -type doubling requires contributions from the

difference potential Vdiff .

With this in mind, the energy levels of the NO-X complex are approximated by

the following formula:

EJPvs
tot ω = EPvvvs + BJ(J + 1)−D

[
J(J + 1)

]2
+ · · ·

− Pω

|Pω|
{

V0 + V1(J + 1
2
) + V2(J + 1

2
)2 + · · ·

+ζ
[
C0 + C1(J + 1

2
) + C2(J + 1

2
)2 + · · ·

]}
. (3.280)

According to Eq. (3.280), the main contribution to the individual levels is due

to an energy which represents the rotational energy of the complex around the
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a-axis and the intermolecular bending and stretching vibration. The next two terms

describe the end-over-end rotation of the complex and the centrifugal distortion.

The electrostatic intermolecular interaction causes two types of splittings: the ω-

splitting and the P -type doubling. Although the projection ω of the diatom total

angular momentum j is not a rigorously good quantum number, there is a constant

electrostatic splitting of the rotational lines into two ω components due to the

influence of the average potential which is proportional to V0. As can be seen in Eq.

(3.279), using third order perturbation theory, the P -type doubling is proportional

to C1 which in turn is related to the difference potential. All other terms in Eq.

(3.280) such as V1, V2 and C0 etc. are empirical constants introduced to increase

the flexibility of the model so that the ab initio results are reproduced more accu-

rately. Applications of the heuristic Hamiltonian are discussed in detail in Chapter 4.

3.3.7 One-Photon line strength

Simulation of IR spectra of the NO-X complex requires knowledge of the rovi-

brational energies and the transition line strengths. For the former the heuristic

Hamiltonian is used while the intensity is calculated using a procedure discussed

in this section. One-photon line strengths are calculated using Eq. (3.151). The

NO molecule acts as one-photon absorption chromophore. The wavefunctions of the

NO molecule depend on the electronic coordinates defined in the mf frame. There-

fore, the components of the dipole moment operator need to be expressed in terms

of its mf components. Using the transformation properties of the spherical tensor

operators, the dipole moment is transformed as follows:

µ(1)
m (lab) =

∑

k

µ
(1)
k (bf)D

(1)∗
mk (R̂) =

∑

kk̃

µ
(1)
k (bf)D

(1)∗
kk̃

(r̂)D
(1)∗
mk (R̂) (3.281)
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with

R̂ = (α, β, 0) and r̂ = (φ, θ, 0).

In the experiment, the direction of the laser polarization is chosen to lie along the

z-axis of the laboratory frame. In this case, the only non-vanishing component is

e
(0)
0 = Ez. Since the IR transition in NO involves two Π states, the transition

moment must be parallel to the internuclear axis contributing the only nonvanishing

components µ
(1)
0 (mf):

µ
(1)
0 (lab) =

∑

k

µ
(1)
0 (mf)D

(1)∗
k0 (r̂)D

(1)∗
0k (R̂). (3.282)

Using the transformed mf transition moment operator, it is found that

S̃if =
∑

n′j′ω′

∑

n′′j′′ω′′

∑

k

〈
J ′M ′P ′ζ ′j′ω′

∣∣µ(1)
0 (mf)D

(1)∗
k0 (r̂)D

(1)∗
0k (R̂)

∣∣J ′′M ′′P ′′ζ ′′j′′ω′′
〉

×〈
UJ ′v′

P ′n′(R)W P ′n′
j′ω′ (R)

1

R2
UJ ′′v′′

P ′′n′′(R)W P ′′n′′
j′′ω′′ (R)

〉
. (3.283)

The matrix elements contain an integral which involves electronic and angular coor-

dinates as wells as a Franck-Condon type integral over the stretching coordinate R.

The latter integral can only be evaluated after the different coefficients, UJv
Pn(R) and

W Pn
jω (R), are known. However, the angular integral can be calculated analytically.

Using the Pω signed basis set and λ = 1, the angular integral becomes

∑

k

〈
J ′M ′P ′ζ ′j′ω′

∣∣µ(1)
0 (mf)D

(1)∗
k0 (r̂)D

(1)∗
0k (R̂)

∣∣J ′′M ′′P ′′ζ ′′j′′ω′′
〉

= δM ′M ′′ [J ′][J ′′][j′][j′′](−)M ′−ω′µ
(1)
0


J ′ 1 J ′′

M ′ 0 −M ′′





j′ 1 j′′

ω′ 0 −ω′




×1 + ζ ′ζ ′′(−)J ′+J ′′

2

∑

k

{
δω′ω′′


J ′ 1 J ′′

P ′ −k −P ′′





j′ 1 j′′

P ′ −k −P ′′




+ζ ′′ δω′,−ω′′


J ′ 1 J ′′

P ′ −k P ′′





j′ 1 j′′

P ′ −k P ′′




}
. (3.284)
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For brevity, µ
(1)
0 denotes

〈
0
∣∣µ(1)

0 (mf)
∣∣2〉. The properties of the 3j symbol provide

the one-photon selection rule ∆J = 0,±1. Since the total parity of the wavefunction

is defined by η = ζ(−)J−1/2, the parity selection rule η′ = −η′′ is found from

1 + ζ ′ζ ′′(−)J ′+J ′′ = 1− η′η′′ (3.285)

as expected for a one-photon transition. The second term in the brackets in Eq.

(3.284) only contributes for k = 1 and P ′ = P ′′ = 1
2

resulting in a perpendicular

transition. On the other hand, the first term in the brackets gives rise to a parallel(‖)
transition (k = 0, ∆P = 0) or a perpendicular(⊥) transition (k = 1, ∆P =±1). The

parallel component is responsible for transitions between basis states with large

probability for ω′ = ω′′ while the perpendicular component connects states which

are dominated by expansion terms with ω′ = −ω′′. Since under molecular beam

conditions only the lowest level P = 1
2

is populated, transitions are restricted to

(P ′′ = 1
2
→ P ′ = 1

2
) and (P ′′ = 1

2
→ P ′ = 3

2
). For convenience, let us define an

R-dependent transition moment function:

µ
(1‖)
n′n′′(R) =

∑

j′ω′j′′
[j′][j′′](−)−ω


j′ 1 j′′

ω′ 0 −ω′





j′ 1 j′′

1
2

0 −1
2


 W P ′n′

j′ω′ W P ′′n′′
j′′ω′ , (3.286)

and

µ
(1⊥)
n′n′′(R) =

∑

j′ω′j′′
[j′][j′′](−)−ω


j′ 1 j′′

ω′ 0 −ω′





j′ 1 j′′

1
2
−1 1

2


 W P ′n′

j′ω′ W P ′′n′′
j′′−ω′ . (3.287)

Then, the intensity is given by a superposition of contributions due to two compo-

nents:

I(1
2
→ 1

2
) =

[J ′]2[J ′′]2

3

[
µ

(1)
0

]2 1 + ζ ′ζ ′′(−)J ′+J ′′

2

×
∣∣∣∣∣


J ′ 1 J ′′

1
2

0 −1
2


 ∑

n′n′′

〈
UJ ′v′

P ′n′(R)µ
(1‖)
n′n′′(R)UJ ′′v′′

P ′′n′′(R)
1

R2

〉

+ζ ′′


J ′ 1 J ′′

1
2

−1 1
2


 ∑

n′n′′

〈
UJ ′v′

P ′n′(R)µ
(1⊥)
n′n′′(R)UJ ′′v′′

P ′′n′′(R)
1

R2

〉
∣∣∣∣∣

2

. (3.288)
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Similarly, for the transition (P ′′ = 1
2
→ P ′ = 3

2
) an R-dependent transition moment

function is defined as

µ
(3)
n′n′′(R) =

∑

j′ω′j′′
[j′][j′′](−)−ω


j′ 1 j′′

ω′ 0 −ω′





j′ 1 j′′

3
2
−1 −1

2


 W P ′n′

j′ω′ W P ′′n′′
j′′ω′ . (3.289)

The intensity for this transition is given as

I(1
2
→ 3

2
) =

[J ′]2[J ′′]2

3

[
µ

(1)
0

]2 1 + ζ ′ζ ′′(−)J ′+J ′′

2


J ′ 1 J ′′

3
2

−1 −1
2




2

×
∣∣∣∣
∑

n′n′′

〈
UJ ′v′

P ′n′(R)µ
(3)
n′n′′(R)UJ ′′v′′

P ′′n′′(R)
1

R2

〉∣∣∣∣
2

. (3.290)

In order to simulate the rotational structure for transitions between different

vibrational levels without explicit knowledge of the complete wavefunction, an

approximate line strength is calculated based on the adiabatic bender treatment.

In this case the intensity is governed by a vibrational transition moment for the

stretching vibration and a purely rotational contribution. Then, the involved matrix

elements for the R-dependent transition moments µ
(1‖)
n′n′′ , µ

(1⊥)
n′n′′ , and µ

(3)
n′n′′ are simply

incorporated into overall scaling factors Cω′ω′′ :

I(1
2
→ 1

2
) =

[J ′]2[J ′′]2

3

[
µ

(1)
0

]2 1 + ζ ′ζ ′′(−)J ′+J ′′

2

×
∣∣∣∣∣


J ′ 1 J ′′

1
2

0 −1
2


 C

‖
ω′ω′′ + ζ ′′


J ′ 1 J ′′

1
2

−1 1
2


 C⊥

ω′ω′′

∣∣∣∣∣

2

. (3.291)

and

I(1
2
→ 3

2
) =

[J ′]2[J ′′]2

3

[
µ

(1)
0

]2 1 + ζ ′ζ ′′(−)J ′+J ′′

2


J ′ 1 J ′′

3
2

−1 −1
2




2

∣∣C(3)
ω′ω′′

∣∣2. (3.292)

These results are used to calculate several spectra discussed in Chapter 4.



Chapter 4

Results and Discussions

4.1 NO-Ne system

In order measure the rotationally resolved IR spectrum of the NO-Ne complex

associated with the first overtone transition in NO(X 2Π) in an IR-UV double

resonance experiment, (2+1) REMPI involving the Rydberg states C̃ 2Π, Ẽ 2Σ+,

F̃ 2∆, H̃ 2Σ+, H̃ ′ 2Π was used. To perform the IR-UV double resonance experiment,

understanding the above states spectroscopically is a prerequisite. In preparation

of the IR-UV double resonance experiment, a single color (2+1) REMPI experi-

ment was performed. Several band systems of the NO-Ne complex correlating with

the vibrational bands C̃ 2Π(v′ = 1 − 4) and with the vibrationless levels of the

states Ẽ 2Σ+, F̃ 2∆, and H̃ ′ 2Π [70] are found. In the first subsection, the above

states are described briefly. The second subsection will describe the experimental

results and analysis. Note that in order to distinguish states for the complex from

those of the monomer a tilde is put on top the state index (e.g. C̃ Π) for the complex.

4.1.1 REMPI spectroscopy of NO-Ne

C̃ 2Π− X̃ 2Π Transition

For the NO-Ne band systems, the vibrational assignments are consistent with

a dominant progression in the intermolecular stretching vibration and a T-shaped

156
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vibrationally averaged structure. The findings are also consistent with the results

obtained for other NO(C̃)-X complexes [70, 122, 126]. The dominance of the

stretching progression indicates a significant reduction in the NO-X bond distance.

Furthermore, the blue satellites which accompany the members of the stretching

progression are identified as partially resolved rotational structures rather than

hot bands or excitation to different bending levels. Additional weak bands are

assigned to members of a progression in the bending vibration. The weak intensity

of the members of this progression provides additional evidence for a near T-shaped

configuration resulting in unfavorable Franck-Condon factors for transitions with

∆vb 6= 0. Recorded REMPI spectra for the C̃ 2Π(v′ = 1 − 4) − X̃ 2Π transition of

the NO-Ne complex are displayed in Fig. 4.1 where the origins of the individual

band systems are aligned for clarity. The positions of the bands are listed in Table

4.1 together with a comparison of term values and spectroscopic constants. The

columns from the second to the fourth represent the term values of the monomer.

The second column refers to the position of the observed bands while the third

and the fourth columns represent the term value after applying a first-order and

second-order deperturbation procedure, respectively [106]. The frequency shift with

respect to the monomer value in the sixth column is listed together with the term

values for each observed cluster band in the fifth entry. Since the C 2Π − X 2Π

two-photon transition in the monomer is carried by two tensor components T
(0)
0 (mf)

and T
(2)
0 (mf) (see Table 3.2), the corresponding spectrum is a superposition of two

different spectra. The T
(0)
0 (mf) component consists of Q-branches which are not

resolved with the experimental resolution. Upon transformation to the principal

axis (PA) system, the second rank tensor component will be responsible for perpen-

dicular transitions with ∆P = 0,±1,±2. In the case of a perfect symmetric top,

it is expected that unresolved P-branches are located at positions (A − B)∆(P 2).

Since under molecular beam conditions only levels with P ′′ = 1
2

are populated,
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Figure 4.1: Spectra of the C̃ 2Π(v′ = 1 − 4) − X̃ transition in NO-Ne. Features
marked with an asterisk are artifacts caused by baseline shifts due to strong monomer
transitions. For clarity the origins of the individual band systems are aligned. The
correct positions of the band systems are listed in Table 4.1.
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Table 4.1: Comparison of term values and spectroscopic constants (in cm−1) for
vibrational bands of NO(C̃ 2Π(v′))-Ne with the corresponding monomer values. The
second column refers to the position of the observed bands while the third and the
fourth columns represent the term values after applying a first-order and a second-
order deperturbation procedure, respectively. The frequency shift (∆ν) with respect
to the monomer value in the sixth column is listed together with the term values for
each observed cluster band in the fifth entry. νs denotes the stretching frequency.

C̃(v′) NO(0)a NO(1)a NO(2)a NO-Ne ∆ν(1) νs

0 52373 52372 52380 52287b -85 34

1 54690 54697 54742 54612c -85 33

2 57081 56958 57108 57044c +86 ?

3 59208 59420 59378 59188d -232 ?

4 61732 61741 61677 61656c -85 31

aReference [106]
bReference [66]
cReference [70]
dReference [72]

two-photon transitions to the levels with P ′ = 1
2
, P ′ = 3

2
, and P ′ = 5

2
are possible.

Therefore, the unresolved rotational branches are predicted to be located on the

blue side of the rotationless origin at frequencies 2(A − B) and 6(A − B). Since

for a near T-shaped complex the a-inertial axis coincides approximately with the

internuclear axis, the rotational A constant is given approximately by the rotational

constant bNO of the monomer while the rotational constant B is very small and can

be neglected. Using typical values for the NO monomer Rydberg states, spacings of

about 4 cm−1 and 12 cm−1 are predicted. In Fig. 4.1, there are two small peaks at

5 cm−1 and 12.5 cm−1 for the v′=3 band system. For NO-Ar, the positions are at

4.8 cm−1 and 13 cm−1 [122].
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The slight increase in the experimentally observed values for the A constant

as compared to bNO reflects either a deviation from the T-shaped configuration

or a change in the rotational constant bNO in the complex. Although the latter

explanation seems to be unlikely at first, one must remember that in the monomer

the state C 2Π(v′) interacts strongly with the valence state B 2Π(v′). Therefore, the

observed excited monomer levels must be regarded as mixtures which contain at least

these two unperturbed states. The degree of mixing depends on the energy mismatch

between the two unperturbed states. It is conceivable that in the complex the energy

mismatch is changed causing a reduction in the B-state admixture. Since the B-

state is characterized by a much smaller rotational constant, the effective rotational

constant of NO, bNO, can actually increase.

Evidence for this state mixing upon complexation can be deduced from a com-

parison of the intermolecular vibrational frequencies with the observed frequency

shifts for the band origins. The frequency shifts and observed frequencies for the

bands with v′ = 0, 1, and 4 are very similar, indicating that the intermolecular inter-

action changes very little as function of NO vibration. On the other hand, the shift

found for the level v′ = 3 is further to the red and the shift found for the level v′ = 2

is even to the blue. This unusual behavior in the frequency shifts becomes clear

when the observed monomer band positions are examined assuming the validity of

the BO approximation. Within the BO approximation, the dissociation energy of

the complex in the excited state can be derived from the relation: D′
0 = D′′

0 − ∆ν

where ∆ν is the observed frequency shift. Alternatively, an estimate of the binding

energy of the complex can be obtained from the observed intermolecular stretching

frequencies. For example, ωe and χeωe can be estimated from the fundamental and

overtones. In terms of these parameters, the binding energy of a Morse potential is

given by De = ω2
e/4χeωe.
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Table 4.2: Comparison of term values (in cm−1 ) for the vibrational bands
NO(C̃ 2Π(v′))−X with the values for the monomer state B 2Π. The term values
of NO for the different vibrational levels of the B state obtained in a first-order
deperturbation procedure are listed in the second column while the term values of
NO-Ne for the different vibrational levels of the C̃-state obtained experimentally
are listed in the fourth column. The energy mismatch (∆E) is given in the third
column.

B(v′) NO(1)a ∆E NO-Ne C̃(v′)

6 51425 862 52287b 0

9 54203 409 54612c 1

12 56878 166 57044c 2

14 58564 624 59188d 3

17 61103 553 61656c 4

aReference [106]
bReference [66]
cReference [70]
dReference [72]

For the levels v′ = 0, 1, and 4, two stretching bands are observed while only the

first member of the intermolecular stretching progression is observed for v′ = 2 and

3 due to strong baseline shifts resulting from resonances associated with monomer

transitions. For the levels v′ = 0, 1, and 4, the vibrational frequencies for the

bending and stretching mode are 24 cm−1 and 33 cm−1, respectively. In Table 4.2,

the term values of NO for the different vibrational levels of the B state obtained

in the first-order deperturbation procedure are listed in the second column while

the term value of NO-Ne for the different vibrational levels of the C̃-state obtained

experimentally are listed in the fourth column. The energy mismatch (∆E) is given

in the third column. In the Table, there is a strong variation in the mismatch for

the different term values. The smallest value is found for the level C̃ 2Π(v′ = 2).



162

There is no evidence for strong predissociation for any of the detected NO-Ne band

systems while in the NO-Ar case predissociation behavior is evident when the energy

mismatch is small (see Section 4.2.1). In order to rationalize the predissociation

behavior for NO-Ne, it should be remembered that in the monomer the levels with

v′ = 2 and v′ = 3 are most strongly perturbed by the B-state. Therefore, upon

complexation there must be a strong effect on the state mixing in these levels.

Furthermore, the dissociation energy in the NO-Ne complex is comparable to the

magnitude of the perturbation matrix elements for the B − C state interaction.

Therefore, it is conceivable that the corresponding B̃-state level is shifted up in

energy, effectively closing this channel. This notion is consistent with the fact that

in the second-order deperturbation process the level B̃ 2Π(v′ = 12) is pushed up

further to 56899 cm−1.

H̃+ 2Σ, H̃ ′ 2Π− X̃ 2Π Transition

Overview spectra of the two-photon transitions to the Rydberg states F̃ 2Σ,

H̃ 2Σ, and H̃ ′ 2Π for NO-Ne (trace (b)) and NO-Ar (trace (a)) in the wavelength

region around 320 nm are shown in Fig. 4.2. These states are derived from an

electron configuration involving a 3d electron. Trace (c) in Fig. 4.2 shows the cor-

responding monomer spectrum recorded under similar molecular beam conditions.

The H̃-state spectrum is shifted by about 235 cm−1 to the red of the corresponding

monomer transition. The spectrum shows almost no rotationally resolved struc-

ture. This is consistent with the fact that the corresponding monomer transition is

dominated by a zeroth rank tensor component allowing only rotational Q-branches.

The absence of rotational structures indicates that the transition accesses mainly

the Π component [103]. The observed spectrum is dominated by a long vibrational

progression assigned to the stretching vibration, consistent with a shortening of
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the NO-Ne bond length. Except for the first and second member, small satel-

lites are seen to the red of the stretching vibration peaks. These are assigned as

combination bands having one quantum of stretching vibration and up to three

quanta of bending vibration. Assuming a Morse potential with harmonic constant

(ωe=74 cm−1) and anharmonic constant (χeωe=4.9 cm−1), the binding energy is

estimated to be approximately 280 cm−1 . This value is in good agreement with

the value 270 cm−1 calculated from the experimentally observed red shift combined

with the theoretical ground state dissociation energy De=35 cm−1 of Ref. [15].

The comparison of the measured energy with the calculated bond energy De=345

cm−1 of the corresponding NO+-Ne complex suggests that the interaction in the

H̃-state is dominated by ionic interactions [127]. This result is also consistent

with the observed vibrational stretching and bending frequencies (vs=74 cm−1 and

vb=42 cm−1) which are close to the values determined by Lee et al. for the ionic

complex (vs=82 cm−1 and vb=41 cm−1) [127]. The observed Q-branches show a

small splitting consistent with a deviation in the vibrationally averaged structure

from a near T-shaped configuration. The deduced Jacobi angle of 60◦ is smaller

than the value determined for the equilibrium configuration of the cation complex

in the ab-initio calculation by Wright and co-workers [127].

F̃ 2∆− X̃ 2Π Transition

In the NO monomer, the two-photon transition for F 2∆ − X 2Π is carried by

a single second rank tensor component T
(2)
1 . When this component is transformed

to the PA system, all possible second rank tensor components are expected to

contribute. Consequently, the band systems of the complex correlating with the

F̃ 2∆ are expected to have a complicated rotational structure. As shown in Fig.

4.2, the F̃ -state spectrum is shifted by 100 cm−1 to the red of the corresponding
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Figure 4.2: Overview spectrum for the region of excitation to the states derived from
the 3d complex. The spectra are recorded by monitoring the appropriate parent ion
masses.

monomer band. Although the vibrational progression is not clear, most likely the

spectrum consists of two band systems with partially resolved rotational structures.

The spectrum could be analyzed assuming two different vibrationally averaged

structures: a near T-shaped geometry (85◦) and a 30◦ geometry with an energy

difference of about 5 cm1. Assuming that the excitation of the two vibrational levels

involve the intermolcular stretching coordinate, the spectrum could be reproduced.

Since the calculation is based on the rigid rotor model, the assignment should be

considered as tentative.
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Figure 4.3: (2+1) REMPI spectrum of the NO-Ne complex probing an electronic
state correlating with E 2Σ+. The bottom spectrum is the observed one while the
top spectrum is the calculated one.

Ẽ 2Σ+ − X̃ 2Π Transition

The spectrum for the Ẽ 2Σ+− X̃ 2Π transition is shown in Fig. 4.3. The bottom

spectrum is the observed one while the top spectrum is the calculated one. The

spectrum is dominated by two members of the stretching progression. A small

satellite band observed to the red of the stretching progression is assigned to the

intermolecular bending mode. For a consistent interpretation, the first band must

be regarded as the second member of the stretching progression. This assignment

locates the origin for this band system at 60738 cm−1 with stretching and bending
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frequencies of about 50 cm−1 and 39 cm−1 , respectively. Even though the radius

for the Rydberg orbital increases to 6.26 Å which might result in a large increase of

the binding energy for the NO-Ne complex, the E-state is derived from a 4s orbital

which allows for a considerable probability of finding the electron in the core region,

shielding partially the electric charge of NO+.

4.1.2 Infrared-Ultraviolet spectroscopy of NO-Ne

Experimental Results

In order to find the first overtone transition of the complex, a depletion spectrum

was recorded with the UV laser fixed to the second vibronic band of the C̃(v′ = 1)−X̃

transition shown in Fig. 4.1. Compared to the depletion measured for the NO

monomer in Fig. 2.27 on page 62, the depletion signal found for the NO-Ne complex

is considerably reduced due to the mismatch in the linewidths of the two lasers.

Figure 4.4 shows a depletion spectrum (top) together with a room temperature

photoacoustic spectrum (bottom). The strongest depletion feature of about 15% is

found near the Q11(
1
2
) monomer line at 3724 cm−1. Even though the signal-to-noise

ratio is poor, the features indicated as arrows represent different rotational lines of

band A (the vibrationless band of the first overtone transition. See Fig. 4.10). This

becomes obvious in Fig. 4.5 where the depletion spectrum (top) is compared with

the hot band spectrum (bottom) of band A. Dominant depletion features coincide

with lines of the bottom spectrum.

(2+1) REMPI spectra of the hot band transition are recorded by stabilizing

the IR laser onto one of the observed depletion features and scanning the UV laser

through the hot band region of interest. Figure 4.6 displays the hot band transi-

tion to the Ẽ-state. Unfortunately, this transition coincides with the vibronic band
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Figure 4.4: Depletion of the NO-Ne REMPI signal as a function of the IR frequency.
The REMPI laser is fixed to a vibronic feature of the C̃(v′ = 1)− X̃ band system of
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trace shows the room temperature photoacoustic spectrum. Depletion features are
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spectrum is the same as the top trace in Fig. 4.4. Thee bottom spectrum is an IR
spectrum of band A.

C 2Π(v′ = 2) − X 2Π(v′′ = 0) of the monomer, resulting in serious baseline shifts

at several frequencies (marked with asterisks). Furthermore, a part of the spectrum

overlaps the single color spectrum associated with the C̃ 2Π(v′ = 2)− X̃ 2Π(v′′ = 0)

transition in the NO-Ne complex (dotted box area). Nonetheless, two hot band

transitions have been identified at 57088.1 cm−1 and 57107.3 cm−1 and are marked

with arrows. On the other hand, none of these problems have been encountered

for the hot band regions of the F̃ - and H̃-states as shown in Figs. 4.7−4.9. A

careful comparison confirms that the rovibrational structures are very similar to the

ones found for the corresponding origin bands. This is seen in Figs. 4.7−4.9 where
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Figure 4.6: IR-REMPI double resonance spectrum of NO-Ne. The UV laser is
scanned over the region of the hot band transition Ẽ 2Σ(v′ = 0) − X̃ 2Π(v′′ = 2) of
the complex while the IR laser is fixed to the maximum depletion signal. Features
marked with an asterisk are due to monomer transitions resulting in serious baseline
shifts. The dotted box area is due to the single color C̃ 2Π(v′ = 2) − X̃ 2Π(v′′ = 0)
transition of the NO-Ne complex. Hot band transitions corresponding to a double
resonance are identified at 57088.1 cm−1 and 57107.3 cm−1 and are marked with
arrows.

the hot band spectra are compared with the single color spectra shifted to the red

by the amount of the NO vibrational excitation. For the origin bands and the hot

band transitions, the same levels of the excited potential surface are accessed. Thus,

any difference in the rovibrational structure must be attributed to differences in the

population of the intermolecular vibrational levels of the overtone system and to the

resulting changes in FC factors for excitation to the Rydberg state. By pumping a

combination band which involves one or more quanta of intermolecular stretching
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and bending vibration, it is expected that changes in FC factors allow one to access

different intermolecular vibrational levels in the excited state. For instance, Fig. 4.8

shows the hot band transition in which the IR laser excites to a combination band

involving intermolecular bending and stretching vibration. In comparison to Fig.

4.7, Fig. 4.8 shows different rovibronic structures especially at larger frequencies.

These are most likely due to excitation of higher bending levels in the excited state.

Once the hot band spectra have been identified, the UV laser is fixed to one

of the frequencies marked with arrows in Figs. 4.7−4.9 and then the IR laser is

scanned through the overtone region. Figure 4.10 shows a comparison of the IR

spectra recorded by detecting the vibrationally excited complex through the Ẽ-,

F̃ -, and H̃-states. Up to 4 bands are observed and labeled as A, B, C, and D

in order of increasing frequency. They are located at 3724.02 cm−1, 3727.87 cm−1,

3732.56 cm−1, and 3739.20 cm−1, respectively. The positions of the resonances

recorded with different UV frequencies coincide very well. On the other hand, the

intensity varies from spectrum to spectrum. These differences must be due to the

rovibronic structure of the (2+1) REMPI spectra of the various Rydberg states and

to the fact that the UV laser frequency is kept fixed while the IR laser is scanned.

As can be seen in Figs. 4.6−4.9, the two-photon excitation spectra to the Ẽ- and

F̃ -states show a dense cluster of rovibrational bands while the H̃-state spectrum is

dominated by well separated sharp Q-branches. Therefore, while scanning the IR

laser, the REMPI laser is more likely to be out of resonance in the case of H̃-state

detection. On the other hand, for the F̃ -state the complete hot band manifold is

shifted according to the change in the IR laser frequency. In other words, although

the fixed UV laser probes different resonances in this manifold, the IR absorption

is effectively detected over a wide range. This phenomenon is quite obvious in the

high frequency parts of the spectra displayed in Fig. 4.10. In the case of H̃-state

detection, only bands A and B are detected. But, when F̃ -state detection is applied,
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Figure 4.7: Hot band spectrum (top) to an excited state of the NO-Ne complex
correlating with the NO F-state. The IR laser is locked to the maximum feature
of band A (see Fig. 4.10 on page 174). Lines marked with an asterisk resulted
from a baseline distortion due to a strong monomer signal. The bottom spectrum
represents the single color REMPI spectrum corresponding to the origin band of the
complex. This spectrum is shifted by the amount of IR excitation.
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Figure 4.8: Hot band spectrum (top) to an excited state of the NO-Ne complex
correlating with the NO F -state. The IR laser is locked to the maximum feature of
band D at 3739.2 cm−1. The bottom spectrum represents the single color REMPI
spectrum corresponding to the origin band of the complex. This spectrum is shifted
by the amount of IR excitation.
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Figure 4.9: Hot band spectrum (trace (a)) to an excited state of the NO-Ne complex
correlating with the NO H-state. The IR laser is locked to the maximum feature
of band A (see Fig. 4.10 on page 174). Under these conditions no background
signal (trace (b)) is observed. Trace c represents the single color REMPI spectrum
corresponding to the origin band of the complex. This spectrum is shifted by the
amount of IR excitation.
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Figure 4.10: Overview spectra of the NO-Ne complex recorded at the indicated
two-photon frequencies corresponding to the hot band systems of the Ẽ-, H̃-, and
F̃ -states.

two additional bands C and D are detected. Even though they are weak, once the

bands are identified, the IR laser is stabilized onto a feature of the new bands and

the UV laser is scanned to find the associated hot band spectrum. This provides

new UV frequencies for the IR detection. As an example, part (d) of Fig. 4.10

shows a spectrum recorded through F̃ -state detection but now at the UV frequency

suitable for detection of band D.
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Analysis

Figure 4.11 shows the adiabatic bender (AB) potentials for the NO-Ne com-

plex calculated with CCSD(T) potential energy surfaces (PESs) by Alexander [15].

Corresponding relative energies are tabulated in Table 4.3. n labels the AB state.

Solid curves and dashed curves correspond to P = 1
2

and P = 3
2
, respectively. The

potential curves appear in closely spaced pairs (for example, n=1,2 pair or n=3,4

pair). These pairs correspond to the ω-doublets. Because the Coriolis coupling is

neglected in the AB approximation, the P -type doubling does not appear in the

potential curves. Since the minimum configuration for the NO-Ne complex is a near

T-shaped geometry, the difference potential term, Vdiff , is small. Thus, states with

positive and negative values of P × ω lie very close in energy. According to the

theoretical calculation, band A is assigned to the lowest vibrational level of the com-

plex (vs, vb) = (0, 0) (or P = 1
2
, n = 1, 2) in Fig. 4.11, while band B corresponds to

excitation to the (0,1) level (or P = 3
2
, n = 1, 2). Here, vs and vb are the intermolec-

ular stretching and bending vibrational quantum numbers, respectively. Band C

corresponds to transition to P = 1
2
, n=3,4 levels with (0,2) and band D corresponds

to transition to the P = 1
2
, n = 1, 2 levels with excitation of one stretching quantum

(1,0).

From the heuristic Hamiltonian

EJPvs
tot ω = EPvvvs + BJ(J + 1)−D

[
J(J + 1)

]2
+ · · ·

− Pω

|Pω|
{

V0 + V1(J + 1
2
) + V2(J + 1

2
)2 + · · ·

+ζ
[
C0 + C1(J + 1

2
) + C2(J + 1

2
)2 + · · ·

]}
, (3.280)

it is found that the rotational lines are split into two ω-components and that these ω-

components are split again into two components depending on the sign of ζ. The fol-

lowing parity selection rule was derived for the one-photon transition (Eq. (3.285)):
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Figure 4.11: Adiabatic bender potentials for the NO-Ne complex. The figure is
excerpted from Ref.[15]. The solid and dashed curves correspond to P = 1

2
and

P = 3
2
, respectively. n labels the adiabatic bender states. The position of the lowest

vibrational level in each AB potential is shown by horizontal lines.

ζ ′ζ ′′(−)2J ′′+∆J = 1. In order to understand the structure of the observed spectra,

the energy levels and allowed one-photon transitions are illustrated in Fig. 4.12. In

considering the transitions, one should note that the ordering of the P -type doublets

in the ω = −1
2

level is reversed as compared to the ω = 1
2

level. According to

the selection rule, Q-branch lines can only occur between levels which differ in the

symmetry quantum number ζ while lines of the different P - and R-branches exist

if the symmetry quantum number is conserved. Due to the ω-splitting terms, there
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Table 4.3: Relative energies (in cm−1) of the lowest bound-states of the NO-Ne
complex [15].

CCa Data
J P nd vs

e

ηf = +1 η = −1
CDb ABc Bandg

Table

1/2 1/2 1 0 0 0.007 0 0

2 0 0.86 0.84 0.76 0.76

}
A 4.4

3 0 7.72 7.70 7.46 9.36

4 0 9.19 9.22 9.07 11.15

}
C 4.6

1 1 14.66 14.41 14.18 16.84

2 1 14.85 15.07 14.53 15.46

}
D 4.7

3/2 1/2 1 0 0.31 0.29 0.22 0.33

2 0 1.18 1.21 0.98 1.08

3 0 7.97 8.01 7.66 9.66

4 0 9.54 9.49 9.26 11.44

1 1 14.51 14.83 14.37 17.12

2 1 15.45 15.18 14.72 15.73

3/2 1 0 4.28 4.28 3.72 5.18

2 0 5.30 5.30 4.14 6.11

}
B 4.5

3 0 16.79 16.78 20.59 17.71

4 0 17.06 17.06 21.20 19.12

aClose-coupled calculations.
bCentrifugal-decoupled calculations.
cAdiabatic-bender calculations.
dAdiabatic-bender state index.
eNominal stretching quantum number
fParity. η = ζ(−)J−1/2.
gBands A, B, C, and D correspond to the transition from the lowest state

to the indicated states.
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Figure 4.12: One-photon transitions between different rotational levels of the NO-X
complex.
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are four different types of transitions within each P-, Q-, and R-branch depending

on ∆ω = 0,±1. Individual lines are conveniently labeled as sign(ζ)(∆J)
sign(ω′)
sign(ω′′)

(J).

For instance, +Q−
+(J) represents a transition from a level with ω = +1

2
, ζ = +1 to

a level with ω = −1
2
, ζ = −1. From the diagram, it is evident that the ω splitting

of the excited level is reflected in the difference between ±(∆J)−+ and ±(∆J)+
+ lines.

Similarly, the ω splitting of the ground state is found from the difference between

±(∆J)−+ and ±(∆J)+
+ lines. Furthermore, the spacing between Q+

+ branches and Q−
+

branches provide information about the ω-splitting in the excited state. In the same

manner, the spacing between +Q+
+ branches and −Q+

+ reveals the J-independent

P -type doubling.

Using the heuristic Hamiltonian, the different spectroscopic constants are deter-

mined by a least squares fit from the energy levels calculated by Alexander in a full

quantum mechanical bound state calculation. Tables 4.4−4.7 list the total energy

levels for the vibrational levels ((vs, vb) = (0, 0), P = 1
2
, n = 1, 2), ((0, 1), P = 3

2
, n =

1, 2), ((0, 2), P = 1
2
, n = 3, 4), and ((1, 0), P = 1

2
, n = 1, 2), respectively. The deter-

mined constants are compiled in Table 4.8. The results of the fit are displayed in

Figs. 4.13 and 4.14. Figure 4.13 displays the energies as a function of J(J + 1).

Clearly, the energies depend on J(J + 1), indicating that the main contribution to

the energy is given by the rotational term. In the figure, no centrifugal distortion is

noticeable, which is consistent with a very small centrifugal constant.

In Fig. 4.14 the ω splitting is plotted as a function of J + 1
2
. It is dominated by a

constant term and a term quadratic in (J + 1
2
). The fit indicates a small contribution

from a term proportional to (J + 1
2
)4. It is important to verify that the empirical

Hamiltonian can reproduce the results from the ab initio calculation. Figure 4.15

shows two different calculated spectra. Trace (a) is a spectrum based on the ab

initio calculation. Spectrum (b) is generated by fitting the bound state energies of

the ab initio calculation to the heuristic Hamiltonian in a least squares fit (Table
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Table 4.4: Relative position of the P = 1
2
, n = 1, 2 level as a function of J (in cm−1).

Results are from the calculation based on the CCSD(T) PES’s by Alexander [132].

ηa = +1 η = −1
Jtot

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 0 0.858 0.007 0.841

3/2 0.306 1.178 0.294 1.210

5/2 0.789 1.788 0.803 1.742

7/2 1.510 2.525 1.479 2.592

9/2 2.380 3.608 2.413 3.529

11/2 3.518 4.748 3.485 4.835

13/2 4.797 6.274 4.830 6.179

15/2 6.340 7.814 6.309 7.916

17/2 8.022 9.758 8.051 9.651

19/2 9.931 11.795 9.958 11.684

aParity. η = ζ(−)J−1/2.

Table 4.5: Relative position of the P = 3
2
, n = 1, 2 level as a function of J (in cm−1).

Results are from the calculation based on the CCSD(T) PES’s by Alexander [132].

ηa = +1 η = −1
Jtot

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 - - - -

3/2 4.281 5.297 4.281 5.298

5/2 4.795 5.824 4.796 5.822

7/2 5.512 6.558 5.508 6.565

9/2 6.428 7.507 6.435 7.493

11/2 7.558 8.627 7.547 8.651

13/2 8.863 10.001 8.880 9.962

15/2 10.396 11.481 10.370 11.538

17/2 12.065 13.263 12.100 13.185

19/2 13.941 15.170 13.986 15.071

aParity. η = ζ(−)J−1/2.
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Table 4.6: Relative position of the P = 1
2
, n = 3, 4 level as a function of J (in cm−1).

Results are from the calculation based on the CCSD(T) PES’s by Alexander [132].

ηa = +1 η = −1
Jtot

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 7.719 9.186 7.700 9.214

3/2 7.969 9.543 8.006 9.489

5/2 8.478 10.001 8.429 10.076

7/2 9.098 10.810 9.131 10.735

9/2 9.983 11.651 9.951 11.735

11/2 11.007 12.847 11.032 12.758

13/2 12.285 14.048 12.271 14.137

15/2 13.744 15.591 13.741 15.509

17/2 15.407 17.132 15.430 17.201

19/2 17.288 18.908 17.333 18.957

aParity. η = ζ(−)J−1/2.

Table 4.7: Relative position of P = 1
2
, n = 1, 2 level with one quantum of the bending

vibration as a function of J (in cm−1). Results are from the calculation based on
the CCSD(T) PES’s by Alexander [132].

ηa = +1 η = −1
Jtot

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 14.660 14.413 14.847 15.068

3/2 14.512 14.832 15.445 15.178

5/2 15.121 14.789 15.733 15.983

7/2 15.293 15.588 16.696 16.510

9/2 16.251 15.965 17.424 17.582

11/2 16.856 17.122 18.657 18.525

13/2 18.217 17.989 19.822 19.929

15/2 19.369 19.537 21.394 21.310

17/2 21.093 20.991 22.994 23.056

19/2 22.880 22.837 24.872 24.912

aParity. η = ζ(−)J−1/2.
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Table 4.8: Spectroscopic constants (in cm−1) of the heuristic Hamiltonian in Eq.
(3.280) for the electronic ground state levels of the NO-Ne complex based on
Alexander’s calculation. Note the different values of C0 and C1 for ω = ±1.

Band P EvbvsP B D V0 V2 V4 C0 C1

×10−5 ×10−3 ×10−5 ×10−2 ×10−3

A 1
2

0 0.1070 1.75 0.422 6.94 -2.22 0.60a 1.85a

0.81b 5.28b

B 3
2

4.051 0.1045 2.83 0.504 1.34 -5.74 0.15a -0.14a

0.39b -0.33b

C 1
2

8.034 0.0994 1.78 0.743 6.00 -5.35 -1.43a 0.00a

-2.44b 0.00b

D 1
2

14.322 0.0850 7.48 0.259 18.83 -1.77 -16.46a 1.32a

-11.75b 1.11b

aω = +1
2

bω = −1
2

Table 4.9: Spectroscopic constants (in cm−1) for the electronic ground state levels
of the NO-Ne complex fitted to the experimental spectra.

Band P EvbvsP B D V0 V2 V4 C0 C1

×10−5 ×10−3 ×10−5 ×10−2 ×10−3

A 1
2

0 0.1130 0.33 6.80 0.4 6.0

B 3
2

3.83 0.1100 0.45 1.0 0.0 0.0

C 1
2

8.54 0.0995 0.59 -1.0 2.0 2.0

D 1
2

15.18 0.0780 0.27 25.0 -13.0 0.0
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Figure 4.13: Bound state energies for the vibrational ground state of the NO-Ne
complex as a function of J(J + 1). The open triangles represent the energy aver-
aged over the two P -type components for ω = ±1

2
. The solid circles represent the

rotational energy.
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NO-Ne
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Figure 4.15: Comparison of two predicted spectra. Part (a) is the simulation from
the ab initio calculation. Part (b) is the simulation using the heuristic Hamiltonian
with parameters corresponding to the best fit of the ab initio energy levels. Both
Spectra are calculated assuming a temperature of 1 K and for the linewidth a 0.01
cm−1 Lorentzian component and a 0.01 cm−1 Gaussian component.

4.8) with the assumption that the intensity arises from a purely parallel transition

with a constant FC factor. The overall agreement between the calculated spectra (a)

and (b) is excellent except for minor differences in the intensities. This agreement

confirms that the Hamiltonian in Eq. (3.280) can be used to fit the experimental

spectra.

Figure 4.16 shows a calculated spectrum (a) and the different branches (b−d).

In this way, it is straightforward to assign individual rotation lines. The assign-

ment is shown in Fig. 4.17. Observed and calculated spectra in the region of band
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A are displayed in Fig. 4.17. Spectrum (a) is the experimental spectrum mea-

sured under molecular beam conditions. The theoretical spectrum (b) is calculated

from the energy levels represented by Eq. (3.280) using the constants of Table 4.9

and assuming a temperature of 1 K and a linewidth with a 0.01 cm−1 Lorentzian

component and a 0.01 cm−1 Gaussian component (all predicted spectra are calcu-

lated assuming these parameters). Different rotational lines belonging to different

branches are labeled with (J − 1
2
). The two parity components are indicated for

the branches R−
+, R+

− , P−+, and P+
−. Because under molecular beam conditions the

temperature is low and because for the NO-X complexes levels with ω = +1
2

are

lower in energy, lines originating from these levels are expected to be dominant in

the spectrum. For example, lines of the branches ±R−
+(J) are clearly visible. Each

line of this branch is split due to the P -type doubling (Fig. 4.17). As can be seen in

Table 4.9, the ω-splitting is comparable to the rotational energy for small values of

J . As a result, branches other than ±R−
+(J) are heavily mixed in the center of the

band. The P-type doubling is resolved for branches with ∆ω = ±1. Furthermore,

Fig. 4.17 shows that the P -type doubling of the R−
+ branches is clearly J-dependent

since the spacing increases as J .

Figure 4.18 shows the observed spectrum of band A and different calculated

spectra. Spectrum (b) is the experimental spectrum with the UV frequency fixed to

the two-photon resonance at 58874.3 cm−1 of the H̃ − X̃ transition. Part (c) is the

same spectrum as Fig. 4.16(b). Comparison of spectra (c) with the experimental

spectrum shows good agreements in the overall rotational structure except discrep-

ancies for a few line positions. Using the heuristic Hamiltonian of Eq. (3.280), it is

possible to improve the agreement with the observed spectrum by slightly changing

the parameters. Part (a) in Fig. 4.18 is a spectrum based on constants determined

in a fit to the experimental spectrum. Table 4.9 lists the set of constants derived

in this fit. In the process of fitting band A, constants for both the ground state
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Figure 4.16: Spectrum calculated with constants in Table 4.9. Spectrum (a) shows
all branches. Parts (b), (c), and (d) represent spectra for Q-, R-, and P -branches,
respectively.
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Figure 4.17: Comparison of observed and calculated spectra in the region of band
A. The theoretical spectrum is calculated from the energy levels represented by Eq.
(3.280) using the constants of Table 4.9 and assuming a temperature of 1 K and a
linewidth with a 0.01 cm−1 Lorentzian component and a 0.01 cm−1 Gaussian compo-
nent. The intensities are determined from an approximate line strength calculation
as discussed in the text. The P -type doubling is resolved for branches with ∆ω = ±1.
The UV laser is fixed to the indicated two-photon frequency corresponding to H̃-
state detection. Different rotational lines belonging to different branches are labeled
with J − 1

2
. The two parity components are indicated for the branches R−

+, R+
−, P−

+ ,
and P+

− . Rotational lines are labeled with (J − 1
2
).
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Figure 4.18: Comparison of predicted spectra with the experimental spectrum (b) of
the first overtone transition in the NO-Ne complex. Part (a) is generated using the
heuristic Hamiltonian. Part (c) is the simulation using the heuristic Hamiltonian
with parameters corresponding to the best fit of the ab initio energy levels. Spectra
(a) and (c) are calculated assuming a temperature of 1 K and for the linewidth a
0.01 cm−1 Lorentzian component and a 0.01 cm−1 Gaussian component. Rotational
lines are labeled with (J − 1

2
).
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and the excited state in Table 4.9 are not determined independently. In comparing

spectra (a) and (c), it turns out that the ab initio calculation predicts too large an

ω-splitting. In the best fit, the constant V0 is decreased from 0.422 cm−1 to 0.33

cm−1 while the rotational constant is increased from 0.1070 cm−1 to 0.113 cm−1.

The splittings predicted by the ab initio calculation for the R−
+-branch manifold are

too small. Therefore, in the ab initio calculation the J-dependent P -type doubling

is slightly underestimated.

Figure 4.19 shows the comparison of spectra for band B which represents the

transition to the first excited bending level associated with P = 3
2
. The spectrum

calculated from the ab initio results is shifted by 0.221 cm−1 to lower frequencies to

match the experimental spectrum. This implies that for the predicted origin of this

band the EvsvsP parameter in Table 4.8 is slightly too large. Also, the rotational

constant predicted by the ab initio treatment is slightly too small (0.1045 cm−1 vs.

0.11 cm−1) while the ω-splitting is predicted correctly. From the theoretical study

in Chapter 2, it is expected that the P -type doubling is more pronounced when the

transition is between levels with P = 1
2
. Therefore, in the best fit of this band, the

constants C0 and C1 were not included. From the fit, the bending vibrational energy

is found to be 3.83 cm−1. The transition frequency for this band is approximately

derived as bNO(P 2
f − P 2

i ) = 2bNO, where bNO represents the rotational constant for

the NO monomer. The expected vibrational frequency is 3.4 cm−1 which is slightly

smaller than the observed value. This discrepancy may be due to the deviation from

the T-shaped geometry resulting in an increased effective rotational constant. In

Fig. 4.20 the calculated spectrum is compared with different experimental spectra.

The differences in the intensities reflect dependence of the detection sensitivity on

the UV frequency. On the other hand, the agreement between line positions in the

different spectra is very satisfactory.
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Band C represents the transition to the second excited bending level with P = 1
2
.

Trace (c) of Fig. 4.21 is based on the ab initio results shifted by 0.506 cm−1 to

the blue. The rotational constant for the best fit does not change dramatically as

compared to the ab initio calculation. A J-dependent P -type doubling constant

is added in the fit although it was not necessary for fitting the results of the ab

initio calculation. In Fig. 4.22, traces (b) and (c) are recorded with different UV

frequencies. Again, the positions are well reproduced although the intensities are

different.

For band D, the simulation based on the heuristic Hamiltonian reproduces the

experimental spectrum far less satisfactorily than those for other bands. This band

corresponds to excitation of one quantum of intermolecular stretching vibration with

a stretching frequency of 15.18 cm−1 resulting in a substantial decrease in the rota-

tional constant (0.078 cm−1). The ω-splitting is considerably decreased while Coriolis

coupling is increased dramatically. As can be seen in Fig. 4.23, one line of the R(1
2
)

doublet lies even higher in frequency than a line from the R(3
2
). This makes the

unambiguous fitting of constants very difficult. Therefore, except for the rotational

constant the other constants are kept very close to the ones found for the ab initio

result.

The comparison of the constants for different bands listed in Table 4.9 shows

several interesting trends. The rotational constant B decreases with increasing

intermolecular vibrational excitation reflecting the larger delocalization of the wave-

function. Especially for band D, the large reduction of B reflects the increased

averaged Jacobi distance upon excitation of the intermolecular stretching vibra-

tion. Differences in the relative amounts of bending and stretching motion can be

used to rationalize the variation of the ω-splitting constants V0. Qualitatively, the

ω-splitting can be interpreted as reflecting the degree of electronic orbital angular

momentum quenching, i.e., the lifting of the degeneracy between electronic states
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Figure 4.19: Comparison of predicted and experimental spectra of band B. Trace (a)
is the spectrum generated using the heuristic Hamiltonian and the constants listed
in Table 4.9. Trace (b) is the experimental spectrum. Trace (c) is the simulation
based on the ab initio calculation. Spectra (a) and (c) are calculated assuming a
temperature of 1 K and for the linewidth a 0.01 cm−1 Lorentzian component and a
0.01 cm−1 Gaussian component. Rotational lines are labeled with (J − 1

2
).
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Figure 4.20: Comparison of the calculated spectra for band B with different observed
spectra detected at the indicated two-photon frequencies. Different rotational lines
belonging to several branches are labeled with (J − 1

2
). The two parity components

are indicated for the R−
+ branch.
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Figure 4.21: Comparison of predicted and experimental spectra of band C. Trace (a)
is the spectrum generated using the heuristic Hamiltonian with constants from Table
4.9. Trace (b) is the experimental spectrum. Trace (c) is the simulation from the ab
initio calculation. Spectra (a) and (c) are calculated assuming a temperature of 1 K
and for the linewidth a 0.01 cm−1 Lorentzian component and a 0.01cm−1 Gaussian
component. Rotational lines are labeled with (J − 1

2
).
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Figure 4.22: Comparison of observed and calculated spectra for band C. The UV
laser is fixed to the indicated two-photon frequencies. Different rotational lines
belonging to several branches are labeled with (J − 1

2
). The two parity components

are indicated for the R−
+ branch. Rotational lines are labeled with (J − 1

2
).
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Figure 4.23: Comparison of observed and calculated spectra for band D. The UV
laser is fixed to the indicated two-photon frequency corresponding to F-state detec-
tion. Different rotational lines belonging to several branches are labeled with (J− 1

2
).

The two parity components are indicated for the R−
+ branch. Spectra (a) and

(c) are calculated assuming a temperature of 1 K and for the linewidth a 0.01
cm−1 Lorentzian component and a 0.01 cm−1 Gaussian component. Rotational lines
are labeled with (J − 1

2
).
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with electronic orbital angular momentum projection λ = ±1. Excitation of the

intermolecular stretching vibration will increase the average Jacobi distance R and,

consequently, it will cause a decrease in the splitting. On the other hand, excitation

of the bending vibration allows the Ne atom to approach the NO moiety more

closely at intermediate Jacobi distances resulting in a more dramatic quenching of

the angular momentum. For levels with P = 1
2
, the Coriolis coupling increases sub-

stantially with increasing vibrational excitation. This reflects the extreme floppiness

of the NO-Ne complex.

4.2 NO-Ar system

As a benchmark system for the interaction of an open-shell diatom with a closed

shell atom, the NO-Ar complex has been studied with the new IR-REMPI double

resonance technique developed as part of this thesis. In the IR-REMPI double

resonance experiment, the states E 2Σ+, F 2∆, and H ′ 2Π were used to detect the

IR absorption through hot band spectra. To have a better understanding of the

experiment, the different low lying Rydberg states of the complex are summarized

in the first subsection. The second subsection contains the experimental results and

analysis of the IR-REMPI double resonance experiment.

4.2.1 REMPI spectroscopy of NO-Ar

Ã 2Σ+ − X̃ 2Π Transition

For the state Ã 2Σ+ of NO-Ar, the origin band is located at 44242 cm−1 blue

shifted by 43 cm−1, suggesting that the interaction with the cationic core is weak.

This behavior is understandable because the A-state of the monomer has a large

quantum defect resulting in an expectation value for the radius of the Rydberg



197

orbital smaller than the van der Waals radius. The Rydberg electron resides in an

orbital which screens effectively the charge of the NO+ core. Due to the very weak

bond, it is not possible to apply the rigid rotor model in describing the rovibrational

structure for this system. Large amplitude bending motion will be coupled to the

rotational motion of the complex. McQuaid et al. applied a hindered rotor model

to assign several features in the spectrum to the excitation of different bending

levels [62]. They concluded that the effective bending Hamiltonian is dominated

by a V20 term while the V10 term is very small. But, the data were not sufficient

to distinguish between a global minimum for the linear or the T-shaped geometry.

Recently, Lozeille et al. employed the same hindered rotor model [128]. According

to their analysis, the observed spectrum is a composite of at least two band sys-

tems: excitation to the vibrationless origin band and to the first intermolecular

stretching level. Additional bands are assigned to the excitation of combination

bands involving different bending levels. For the vibrational ground state of the Ã

state, a negative anisotropy term results in a linear configuration (see Section 3.3.1).

In the first excited stretching level, the anisotropy is dominated by a positive V20-

term moving the global minimum of the Ã-state surface to the T-shaped geometry.

The rotational structure should be regarded as an almost free rotation of the NO

within the molecular plane or out of plane rotation representing a axis rotation.

C̃ 2Π− X̃ 2Π Transition

As in the case of NO-Ne, bands systems correlating with the NO vibrational

level (v′ = 0 − 4) have been measured for NO-Ar. The vibrational structure is

dominated by a progression in the stretching vibration. The blue satellites of the

stretching progression are identified as partially resolved rotational structures. The

weak progression in the bending vibration confirms the near T-shaped vibrationally
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Table 4.10: Comparison of term values and spectroscopic constants (in cm−1) for the
vibrational bands of NO(C̃ 2Π(v′))-Ar with the corresponding monomer values. The
second column refers to the position of the observed bands while the third and the
fourth columns represent the term values after applying a first-order and a second-
order deperturbation procedure, respectively. The frequency shift (∆ν) with respect
to the monomer value in the sixth enrtry is listed together with the term values for
each cluster band in the fifth entry. νs denotes the stretching frequency.

C̃(v′) NO(0)a NO(1)a NO(2)a NO-Ar ∆ν(1) νs

0 52373 52372 52380 52050b -332 56

1 54690 54697 54742 54373c -324 56

2 57081 56958 57108 56578c -390 48

3 59208 59420 59378 59046d -374 44

4 61732 61741 61677 61428c -313 54

aReference [106]
bReference [66]
cReference [122]
dReference [72]

averaged structure. Figure 4.24 shows recorded spectra for the C̃ 2Π(v′ = 1 − 4) −
X̃ 2Π transition of the NO-Ar complex. The origins of the individual band systems

are aligned for comparison. Positions of the band systems are listed in Table 4.10

together with term values and spectroscopic constants.

The rotational analysis shows that the experimentally observed rotational A

constant as compared to bNO is slightly increased. This fact also indicates evidence

for complexation-induced changes in the state mixing. As in the case of NO-Ne,

the frequency shift of the band system and the observed vibrational frequencies for

the bands with v′ = 0, 1, and 4 are very similar. On the other hand, the bands

associated with v′ = 2, 3 are further redshifted.
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Figure 4.24: Spectra of the C̃ 2Π(v′ = 1− 4)− X̃ transition in NO-Ar. The spectra
recorded for v′ = 2 and v′ = 3 do not show any indication of lifetime broadening due
to predissociation. Correct positions of the band systems are listed in Table 4.10.
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Table 4.11: Comparison of term values (in cm−1) for the vibrational bands of
NO(C̃ 2Π(v′)) − X with the values for the monomer state B 2Π. The term value
of NO for the different vibrational levels of the B state obtained in a first-order
deperturbation procedure is listed in the second column while the term value of NO-
Ne for the different vibrational levels the C̃-state obtained experimentally is listed
in the fourth column together with energy mismatch (∆E) in the third column.

B(v′) NO(1)a ∆E NO-Ar C̃(v′)

6 51425 615 52040b 0

9 54203 170 54373c 1

11 55984 584 56578c 2

14 58564 482 59046d 3

17 61103 325 61428c 4

aReference [106]
bReference [66]
cReference [122]
dReference [72]

When the vibrational frequencies are compared, the observed stretching vibra-

tion frequencies are noticeably smaller for the vibrational levels v′=2 and v′=3 than

for the levels v′ = 0, 1 and 4 (46 cm−1 vs. 55 cm−1). These reduced values

of the stretching frequency suggest a decrease in the dissociation energy, contra-

dicting the values derived from the increased red shifts. The data strongly support

complexation-induced changes of the homogeneous interaction between the C- and

the B-states of the NO moiety within the complex.

As can be seen in Fig. 4.24, unlike the NO-Ne complex the band system

correlating with NO(C 2Π(v′ = 1))-Ar exhibits considerable broadening due to

predissociation [77]. Although the signal for this band is relatively weak, the inten-

sity of the bands assigned to the bending vibration is significantly increased most
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likely due to a weak coupling to the stretching coordinate. These findings have

been confirmed by Tsuji et al. in their recent studies [68]. These authors suggest

predissociation via a lower lying vibrational level of the B̃-state as the dominant

mechanism. Because most of the C̃-state vibrational levels are heavily mixed,

differences in the predissociation behavior are attributed to the difference in FC

factors between bound state wavefunctions and the continuum state wavefunctions

associated with the B̃-state. In Table 4.11, the term values for the different vibra-

tional levels of the B-state obtained in a first order deperturbation procedure are

listed [106]. The energy mismatch (∆E) controlling the FC factor is given by the

energy difference. For the C 2Π state, ∆E is at a minimum for v′=1 indicating a

rapid predissociation process. Along the same line of reasoning, it is expected that

the (v′=4) level exhibits an increased predissociation rate. This is confirmed by

the observed (v′=4) band which is broadened and shows diminished intensity. This

behavior is quite different from the case for NO-Ne. For NO-Ne, in Table 4.2 the

smallest value for the energy mismatch is found for the level C̃ 2Π(v′ = 2) which is

almost resonant with the B-state level v′ = 12. But, Figure 4.1 does not show any

evidence for the predissociation behavior. The strong effects for the state mixing in

these levels upon complexation are expected for NO-Ne.

D̃ 2Σ+ − X̃ 2Π Transition

The D̃ 2Σ+−X̃ 2Π spectra for NO-Ar were reported by Miller and Cheng [66] and

Tsuji et al. [68]. The spectra are dominated by a long progression in the stretching

vibration. Although the observed vibrational frequency (68.7 cm−1) is very similar

to the one found for the stretching vibration of the C̃-state (60 cm−1), the disso-

ciation energy deduced from the observed red shift is increased by more than a

factor of two. It is interesting to note that the binding energy of 1044 cm−1 for
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the NO(D̃(v′ = 0))-Ar state is surprisingly large, even larger than the D0 value of

NO+-Ar (940 cm−1). In this respect, the system in the D̃-state closely resembles the

strongly bound cation whose stretching frequency (94 cm−1) is substantially larger

than the one found for the C̃-state (60 cm−1) and the D̃-state (69 cm−1). On the

other hand, the expectation values for the radius of the Rydberg orbitals in the two

states are very similar (3.38Å vs. 3.53Å) [129]. Consequently, one would expect

similar Rydberg behavior for the interaction in these states.

F̃ 2∆, H̃ 2Σ+, H̃ ′ 2Π− X̃ 2Π Transition

The overview spectrum of NO-Ar at 320 nm region is shown in Fig. 4.2 on page

164. Band systems involving the F̃ -state and the H̃-state are observed to be shifted

to the red. The H̃-state is shifted so far to the red that it overlaps the band system

of the F̃ -state resulting in a complicated rovibronic structure. In comparison with

the one-color REMPI spectrum (Fig. 4.25(c)) the IR-REMPI experiment shows

a possibility to analyze the H̃ ′-state spectrum. Parts (a) and (b) are IR-REMPI

double resonance spectra. Part (b) is recorded with the IR frequency fixed to a

frequency for the first overtone without any intermolecular vibration (vs, vb) = (0, 0)

while part (a) is recorded with the IR laser tuned to the transition to the first

intermolecular bending level (vs, vb) = (0, 1) . For comparison, spectrum (a) is

shifted to the blue by 15 cm−1. Spectrum (a) shows only strong lines in the region

of the F̃ -state while part (b) is almost identical to part (c) except that spectrum

(c) is shifted to lower frequency by 3724 cm−1. As a possible explanation, the

FC factor for excitation to the H̃-state from the first bending level is thought to

be very small, consistent with the assumption that the excited state has a near

T-shaped configuration similar to the ground state configuration. On the other

hand, as shown in part (a), the transition to the F̃ -state is allowed if the following
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assumption is made: This state strongly deviates from the T-shaped geometry so

that the FC factor with the first excited bending wavefunction of the ground state

does not vanish. If this explanation is correct, the missing lines of part (a), as

compared to parts (b) and (c), can be assigned to the progression in the stretching

vibration of the H̃-state located at 61940 cm−1 [72]. With this assumption, the

H̃-state structure looks very similar to the one found for NO-Ne. The different

stretching vibrational bands do not show a resolved rotational structure consistent

with a zeroth rank tensor component carrying the two-photon transition. From

the vibrational analysis, ωe=80 cm−1, χeωe=2 cm−1 are found. Assuming a Morse

potential, these data give a dissociation energy consistent with the value of D′=867

cm−1 derived from the red shift of the band system. In both (b) and (c), the first

three members of the progression are sharp and the intensity increases dramatically

with increasing vibrational excitation reflecting the increase in FC factor. But,

the intensities of the higher members are very weak and broadened due to the

predissociation. The most probable mechanism is dissociation to the continuum of

the F̃ -state. A possible schematic view of the potential of those states is shown in

Fig. 4.26. The H̃-state potential lies 273 cm−1 higher than the one for the F̃ -state

which has a binding energy of 465 cm−1. Using the derived spectroscopic constants

and in the absence of a barrier, dissociation becomes possible for stretching levels

H̃(v′ ≥ 3). This line of reasoning agrees with the experimental observation. As the

IR-REMPI spectrum suggests, if the F̃ -state has a vibrationally averaged structure

which deviates considerably from the T-shaped geometry, intense transitions to

excited bending levels are anticipated. In this case, the hindered rotor model is

more appropriate [123].
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Figure 4.25: (2+1) REMPI spectra of the F̃ − X̃ and H̃ − X̃ transitions in
NO(v′′ = 2)-Ar. Part (c) represents the one-color REMPI spectrum for NO(v′′ = 2)-
Ar shifted by 3724 cm−1. The top two spectra are IR-REMPI double resonance
spectra recorded at the indicated IR frequencies. Spectrum (a) is shifted to the blue
by the amount of 15 cm−1 for comparison.
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Ẽ 2Σ+ − X̃ 2Π Transition

In the NO monomer, the rotational structure of the two-photon Ẽ − X̃ tran-

sition is determined by a single tensor component T
(2)
−1 [49]. The comparison of

the rotational contour with the experimental spectrum suggests that the Jacobi

angle θ deviates from a perfect T-shaped structure by about 25◦ in either direction

[122]. The experimental spectrum is dominated by the stretching vibration with a

frequency of 86.4 cm−1. This value is very similar to the one found for the cationic

complex [130]. Significant deviation from the T-shaped structure of the complex

allows the substantial increase in the FC factor, resulting in a relatively strong

bending progression and even combination bands. The frequency of the bending

mode is about 54 cm−1. From the red shift, the dissociation energy is derived as

578.5 cm−1 considerably smaller than that of cationic complex. As pointed out for

NO-Ne, the Ẽ-state is derived from the 4s orbital which allows for some electron

density in the core region, thus effectively shielding the nuclear charge. In summary,

the interaction in these Rydberg states is very sensitive to the spatial orientation of

the orbital as well as its spatial extent.

4.2.2 Infrared-Ultraviolet spectroscopy of NO-Ar

Experimental Results

The experimental procedure to find the first overtone transition of NO-Ar is

similar to the procedure applied for NO-Ne. A depletion signal for NO-Ar was found

by fixing the UV laser to the second feature of C̃ 2Π(v′ = 2) − X̃, (vs, vb) = (1, 0)

in Fig. 4.24 and scanning the IR laser over the wavelength region of the first

overtone. As can be seen in Fig. 2.29, a depletion of 20% is found at a frequency

of 3723.4 cm−1. And a weaker signal is identified at 3727.2 cm−1. The cluster
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Figure 4.27: IR overview spectra of the NO-Ar complex are labeled A, B, C, and D
in order of increasing frequency. Bands A, B, and C are recorded at the two-photon
frequency of 58178.7 cm−1 while band D is recorded at 58024.2 cm−1.

band is red-shifted about 0.45 cm−1, which indicates that the binding energy for

the vibrationally excited complex is increased by this amount and that the NO

stretching vibration remains unchanged upon complexation. To confirm the double

resonance, the IR laser frequency is stabilized on this frequency and the UV laser

is scanned. Figure 2.30 shows the resulting IR-REMPI double resonance spectrum

in the region of the hot band Ẽ − X̃ transition. The bottom part shows the one

color (2+1) REMPI spectrum of the Ẽ − X̃ transition. It is shifted by the amount

of IR photon frequency to match the spectrum with the top part. As can be seen
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in Fig. 2.31, the intensity of a band system is very sensitive to the UV frequency

probed even though the position of a band system is reproducible. As shown in

Fig. 4.27, four band systems, labeled as A, B, C, and D in order of increasing

frequency, are detected. They are located at 3723.4 cm−1, 3727.2 cm−1, 3738.5

cm−1, and 3743.4 cm−1, respectively. Bands A, B, and C, are measured with

the UV frequency fixed to the two-photon frequency 58178.7 cm−1 whereas band D

is measured with the UV laser fixed to the frequency corresponding to 58178.7 cm−1.

Analysis

While the experiment was being performed, Alexander independently performed

the bound state calculations based on a CCSD(T) PESs [45, 46]. Band A, which is

the vibrationless band of the first overtone transition, is well reproduced [12] by the

simple rigid-rotor model of Howard and co-workers [19]. On the other hand, it was

not possible to reproduce satisfactorily the spectrum of band B with this rigid-rotor

model [12]. Therefore, a joint theoretical-experimental investigation was performed

between two groups [13]. This section will describe the results of the joint studies.

Figure 4.28 shows adiabatic potentials for the NO-Ar complex based on the

CCSD(T) PES’s [13, 46]. The curves appear in closely spaced pairs, indicating two

curves of different signs of P×ω similar to the case of the NO-Ne complex. Examina-

tion of the adiabatic wavefunctions shows that in the well region the eigenfunctions

are dominated by signed P × ω states. Figure 4.28 displays the identification of the

lowest adiabatic bender (AB) states listed in the column of AB calculation of Table

4.12. Since for NO-Ar the minimum in the potential energy surface occurs at a near

T-shaped geometry, the AB potential with positive and negative values of P × ω lie

very close in energy as seen in Fig. 4.28. On the other hand, two minima in the PES

occur at the linear geometry with substantial differences in the OH-Ar and HO-Ar
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P=1/2

P=3/2

Figure 4.28: Adiabatic bender potential curves for the NO-Ar complex. The figure
is excerpted from Ref.[13] The solid and dashed curves correspond to P = 1

2
and

P = 3
2
, respectively. n labels the AB states. The position of the lowest vibrational

level in each AB potential is shown by a horizontal line

well depth. In this case, the states with P × ω positive and P × ω negative differ

significantly in energy [11].

The contour plots of the probability densities calculated by Alexander are dis-

played in Figs. 4.29−4.33. Figure 4.29 presents the probability distributions of the

lowest two states with P = 1
2

(labeled as n=1,2). The solid curve corresponds to

the n=1 state and the dashed line represents the n=2 state. These two states are

compact and nodeless indicating (vs, vb) = (0, 0). Figure 4.30 shows the probability

distribution of the lowest two states (n = 1, 2) with P = 3
2
. The wavefunctions
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Table 4.12: Relative energies (in cm−1) of the lowest bound states of the NO-Ar
complex [15].

CCa Data
J P nd ve

s
ηf = +1 η = −1

CDb ABc Figure Bandg

Table

1/2 1/2 1 0 0 0.021 0 0

2 0 0.217 0.192 0.193 0.003

}
4.29 A 4.13

3 0 13.77 13.77 13.78 13.56

4 0 14.94 14.94 14.93 15.79

}
4.31 C 4.15

1 1 19.78 19.58 19.65 19.95

2 1 19.98 20.12 20.00 23.12

}
4.33 D

3/2 1/2 1 0 0.211 0.177 0.211 0.209

2 0 0.415 0.454 0.404 0.215

3 0 13.95 13.94 13.97 13.76

4 0 15.14 15.15 15.12 15.99

1 1 19.62 19.90 19.84 20.15

2 1 20.53 20.14 20.21 22.65

3/2 1 0 3.72 3.72 3.72 4.02

2 0 4.16 4.16 4.14 4.18

}
4.30 B 4.14

3 0 20.73 20.68 20.59 20.35

4 0 21.24 21.24 21.20 22.16

}
4.32 D

aClose-coupled calculations.
bCentrifugal-decoupled calculations.
cAdiabatic-bender calculations.
dAdiabatic-bender state index.
eNominal stretching quantum number: equal to the number of node
in the vibrational wavefunction (see Figs. 4.29−4.33).

fParity. η = ζ(−)J−1/2.
gBands A, B, C, and D correspond to the transition from the lowest state to the

indicated states.
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P=1/2, n=1,2 v vs b=0, =0

Figure 4.29: Plot of the distribution function describing the probability of finding the
Ar atom at the Jacobi coordinates (R, θ) for the P = 1

2
states of the NO-Ar complex

excerpted from Ref. [13]. The solid curves represent probabilities for the n = 1 state
while the dashed curves refer to those for the n = 2 state. The wavefunctions are
nodeless, representing a vibrationless state. Results are from the calculation based
on the CCSD(T) PES’s.

have one node at 90◦ indicating that one bending quantum is excited. Figure 4.31

shows the probability distributions of the next two states (n=3,4) with P = 1
2
. The

wavefunctions have a node in the angular degree of freedom corresponding to the

excitation of one bending quantum.

Because it was possible to reproduce the ab initio spectra for NO-Ne with the

heuristic Hamiltonian, a similar Hamiltonian is applied to generate spectra for NO-

Ar. The next two states (n = 3, 4) with P = 3
2
, displayed in Fig. 4.32, have two

nodes in the angular degree of freedom indicating two quanta of excitation in the

bending mode. Finally, the probability distribution for the fifth and sixth P = 1
2

states are shown in Fig. 4.33. As listed in Table 4.12, these states correspond
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P=3/2, n=1,2 v =0, v =1s b

Figure 4.30: Plot of the distribution function describing the probability of finding the
Ar atom at the Jacobi coordinates (R, θ) for the P = 3

2
states of the NO-Ar complex

excerpted from Ref. [13]. The solid curves represent probabilities for the n = 1 state
while the dashed curves refer to those for the n = 2 state. The wavefunctions have
one node in angle θ representing that one quantum of bending vibration is excited.
Results are from calculation based on the CCSD(T) PES’s.

to the first vibrationally excited (vs = 1) state of the adiabatic bender potential

(P = 1
2
, n = 1, 2). The probability distribution shows clear evidence of a radial node

in the stretching coordinate and two angular nodes in the bending coordinate. Using

the energy levels provided by Alexander (Tables 4.13−4.15) [132], spectroscopic

constants are determined in a least squares fit. The results are listed in Table 4.17

and are plotted in Figs. 4.34−4.36. Table 4.16 shows the centrifugal decoupling

(CD) results for the lowest three levels. In the CD approximation, Coriolis coupling

is neglected so that the only levels with different ω values are listed. Most energy

levels are reproduced within 0.01 cm−1. Slightly larger deviations occur for several

levels with J = 1
2
. The main contribution to the energy is given by the rotational



213

P=1/2, n=3,4 v vs b=0, =1

Figure 4.31: Plot of the distribution function describing the probability of finding
the Ar atome at the Jacobi coordinates (R, θ) for the P = 1

2
states of the NO-

Ar complex excerpted from Ref. [13]. The solid curves represent probabilities for
the n = 3 state while the dashed curves refer to those for the n = 4 state. The
wavefunctions have one node in angle θ representing that one quantum of bending
vibration is excited. Results are from calculation based on the CCSD(T) PES’s.

energy which is displayed in Fig. 4.34. In comparison to NO-Ne, no centrifugal

distortion is observed. Figure 4.35 displays the ω-splitting of rotational levels for the

ground vibrational state of NO-Ar as function of J . Within the CD approximation,

the splitting is independent of J , which is consistent with the result of first-order

perturbation theory. However, the full calculation yields a pronounced linear J-

dependence of the splitting. From the difference between the CD calculation and

the full calculation, it is clear that the J-dependence in the ω-splitting originates

from Coriolis coupling. This deduction is confirmed by the analysis of the rotational

levels for the bending states corresponding to P = 3
2

as shown in Fig. 4.36. Since
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P=3/2, n=3,4 v vs b=0, =2

Figure 4.32: Plot of the distribution function describing the probability of finding the
Ar atom at the Jacobi coordinates (R, θ)for the P = 3

2
states of the NO-Ar complex

excerpted from Ref. [13]. The solid curve represents probabilities for the n = 3 state
while the dashed curve refers to those for the n = 4 state. The wavefunctions have
two nodes in angle θ representing that two quanta of bending vibration is excited.
Results are from calculation based on the CCSD(T) PES’s.

for these states Coriolis coupling can only contribute in higher order, the ω-splitting

is nearly constant.

Figure 4.37 shows an experimental spectrum (part (a)) and several simulated

spectra ((b)−(d)). Part (a) corresponds to the experimental spectrum. Parts (c)

and (d) show calculated spectra using the line strength for a parallel transition

and a perpendicular transition, respectively. Part (b) is calculated assuming an

equal mixture of parallel and perpendicular transition moments in order to achieve

better agreement with the experimental spectrum (see Eq. (3.291)). The spectra are

dominated by two Q-branches (Q−
− and Q+

+) which are split due to the constant term

of the P -type doubling. The R−
+ branch shows a J-dependent P -type doubling. At
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Table 4.13: Relative position of the P = 1
2
, n = 1, 2 levels as a function of J (in

cm−1). Results are from the calculation based on the CCSD(T) PES’s by Alexander
[132].

P = 1/2, vs = 0, vb = 0

ηa=+1 η=-1
J

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 0 0.217 0.021 0.192

3/2 0.211 0.415 0.177 0.454

5/2 0.486 0.834 0.525 0.786

7/2 0.972 1.301 0.931 1.354

9/2 1.512 2.011 1.554 1.955

11/2 2.271 2.747 2.230 2.805

13/2 3.085 3.736 3.125 3.675

15/2 4.116 4.740 4.077 4.802

17/2 5.205 6.004 5.243 5.940

19/2 6.507 7.274 6.470 7.340
aParity. η = ζ(−)J−1/2.

Table 4.14: Relative position of the P = 3
2
, n = 1, 2 levels as a function of J (in

cm−1). Results are from calculation based on the CCSD(T) PES’s by Alexander
[132].

P = 3/2, vs = 0, vb = 1

ηa=+1 η=-1
J

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

3/2 3.719 4.161 3.719 4.161

5/2 4.064 4.506 4.064 4.506

7/2 4.546 4.990 4.547 4.989

9/2 5.168 5.610 5.167 5.611

11/2 5.924 6.370 5.927 6.368

13/2 6.824 7.263 6.819 7.267

15/2 7.851 8.301 7.858 8.296

17/2 9.029 9.465 9.019 9.472

19/2 10.324 10.780 10.336 10.770
aParity. η = ζ(−)J−1/2.
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Table 4.15: Relative position of the P = 1
2
, n = 3, 4 levels as a function of J (in

cm−1). Results are from calculation based on the CCSD(T) PES’s by Alexander
[132].

P = 1/2, vs = 1, vb = 0

ηa=+1 η=-1
J

ω = +1
2

ω = −1
2

ω = +1
2

ω = −1
2

1/2 13.769 14.942 13.771 14.940

3/2 13.948 15.142 13.943 15.145

5/2 14.235 15.482 14.242 15.479

7/2 14.655 15.949 14.646 15.952

9/2 15.176 16.552 15.186 16.551

11/2 15.838 17.284 15.827 17.281

13/2 16.599 18.137 16.610 18.144

15/2 17.503 19.132 17.493 19.118

aParity. η = ζ(−)J−1/2.

Table 4.16: Centrifugal decoupling results (in cm−1) for P = 1
2
, n = 1, 2,P = 3

2
, n =

, 2, and P = 1
2
, n = 3, 4 level. Results are from calculation based on the CCSD(T)

PES’s by Alexander [132]. In the CD approximation, Coriolis coupling is neglected
so that the only levels with different ω values are listed.

P = 1/2 P = 3/2 P = 1/2Jtot
vs = 0, vb = 0 vs = 0, vb = 1 vs = 1, vb = 0

1/2 0 0.193 - - 13.781 14.934

3/2 0.211 0.404 3.717 4.137 13.970 15.118

5/2 0.562 0.755 4.069 4.489 14.285 15.424

7/2 1.053 1.246 4.562 4.981 14.726 15.853

9/2 1.684 1.878 5.195 5.615 15.293 16.404

11/2 2.456 2.650 5.969 6.388 15.984 17.075

13/2 3.366 3.561 6.883 7.301 16.801 17.868

15/2 4.416 4.612 7.936 8.354 17.743 18.781

17/2 5.605 5.801 9.129 9.547 18.809 19.813

19/2 6.932 7.129 10.461 10.878 19.999 20.963

21/2 8.398 8.595 11.932 12.347 21.313 22.230
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P=1/2, n=1,2 v vs b=1, =2

Figure 4.33: Plot of the distribution function describing the probability of finding
the Ar atom at the Jacobi coordinates (R, θ) for the P = 1

2
states of the NO-

Ar complex excerpted from Ref. [13] with one quantum of the stretching vibration
excited. The solid curve represents probabilities for the n = 1 state while the dashed
curve refers to those for the n = 2 state. The wavefunctions have two nodes in angle
θ representing that two quanta of bending vibration is excited, with vs = 1. Results
are from calculation based on the CCSD(T) PES’s.

the low molecular beam temperature of about 1 K, mainly the lower ω-component

is populated resulting in weak branches for transitions originating from the upper

ω-component. Figure 4.38 shows the comparison of the experimental spectrum with

calculated spectra based on the fit to the experimental spectrum and the fit to

the ab initio energy levels. The overall agreement is excellent although a careful

examination reveals a slightly larger value for the P -type doubling constant.

Band B involves the transition to the state P = 3
2
, n = 1, 2 which has one

quantum of bending vibrational excitation as shown in Fig. 4.30. No P -type dou-

bling is observed as expected for this perpendicular transition. The associated vibra-
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Figure 4.34: Bound state energies for the vibrational ground state of the NO-Ar
complex as a function of J(J + 1). The open triangles represent the energy aver-
aged over the two P -type components for ω = ±1

2
. The solid circles represent the

rotational energy.

tional energy bNO(∆P )2 is predicted by the ab initio calculation within 0.1 cm−1.

The fitted constants show that in the ab initio calculation the constants B and V0

are slightly overestimated. Since the rotational constant reflects the vibrationally

averaged structure, a decrease in the rotational constant can result from a change

towards a more T-shaped configuration or from a lengthening of the intermolecular

distance. The former effect is also consistent with the smaller value found for the

ω-splitting constant.

For the parallel band C, again better agreement in the intensity distribution is

found if an equal mixture of parallel and perpendicular components for the trans-
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Figure 4.35: The ω-splitting of the rotational energy levels for the ground vibrational
state of NO-Ar for ω = ±1

2
. Circles represent the results for the different ω levels.

The triangles are the results for the CD approximation.

formed transition moment is assumed. The origin of this band is found at a higher

frequency than predicted in the ab initio calculation. From the position of the two

Q-branches (Q−
− and Q+

+), it is clear that the ω-splitting predicted by the ab initio

calculation is too large while the P -type doubling constants is too small.

Figure 4.41 shows the comparison of predicted and experimental spectra of band

D. Band D corresponds to the excitation of two states; the first excited state of the

P = 1
2
, n=1,2 AB potential which corresponds to the first van der Waals stretching

mode and the second pair of the P = 3
2
, n=3,4 AB potential. It may well be that the

FC factors for the UV detection step differ significantly for excitation out of these
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Table 4.17: Spectroscopic constants (in cm−1) of the heuristic Hamiltonian given in
Eq. (3.280) for the electronic ground state levels of the NO-Ar complex based on
Alexanders’s calculation [132].

Band P EvbvsP B V0 V1 V2 C0

×10−2 ×10−2

A 1
2

0 0.0686 0.050 3.57 0.00 2.26

B 3
2

3.683 0.0689 0.221 0.00 0.00 0.00

C 1
2

14.310 0.0628 0.577 0.00 0.93 0.05

Table 4.18: Fitted Spectroscopic constants (in cm−1) for the electronic ground state
levels of the NO-Ar complex.

Band P EvbvsP B V0 V1 V2 C0

×10−2 ×10−2

A 1
2

0 0.068 0.045 3.6 2.0

B 3
2

3.580 0.068 0.19 0.0 0.0

C 1
2

15.302 0.063 0.43 2.6 1.2
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Figure 4.36: The ω-splitting of the rotational energy levels for the ground vibrational
state of NO-Ar for ω = ±3

2
. Circles represent the results for the different ω levels.

The triangles are the results for the CD approximation.

two different van der Waals modes. This may be part of the reason for the poorer

agreement with the simulated spectrum for band D as compared with bands A−C.

The black boxes in Fig. 4.41 indicate regions of strong water absorption.

Because band B involves one quantum of bending vibrational excitation, it was

not possible to reproduce satisfactorily the spectrum with the rigid-rotor treatment

[12]. Similarly, the complicated structures of bands C and D reflect the more delo-

calized probability of the rovibronic states involved. In this case, quantum number

could only be assigned reliably by analyzing the calculated wavefunctions. In this

sense, the theoretical work combined with the experimental results allows for a syn-
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ergy effect which provides a much better understanding of the molecular interaction

and dynamics. The heuristic Hamiltonian which reproduces the spectra obtained

by the ab initio calculation not only helps to assign the lines of different branches,

but it also helps to gain additional physical insight about the different splittings and

interactions. This approach will also be very helpful for those open shell complexes

for which no set of PESs are available.
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Figure 4.37: Comparison of band A with simulated spectra assuming different types
of transition moments. Spectrum (a) is the observed one while spectra (b), (c),
and (d) are calculated assuming a temperature of 1 K and for the linewidth a 0.01
cm−1 Lorentzian component and a 0.01 cm−1 Gaussian component. Rotational lines
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Figure 4.38: Comparison of band A with simulated spectra based on the results of
(c) the ab initio treatment and (b) and the results of the fit of the experimental
spectrum. Spectra (b) and (c) are calculated assuming a temperature of 1 K and
for the linewidth a 0.01 cm−1 Lorentzian component and a 0.01 cm−1 Gaussian
component.
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Figure 4.39: Comparison of band B with simulated spectra based on the results of
(c) the ab initio treatment and (b) and the results of the fit of the experimental
spectrum. Spectra (b) and (c) are calculated assuming a temperature of 1 K and
for the linewidth a 0.01 cm−1 Lorentzian component and a 0.01 cm−1 Gaussian
component.
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Figure 4.40: Comparison of band C with simulated spectra based on the results of
(c) the ab initio treatment and (b) and the results of the fit of the experimental
spectrum. Spectra (b) and (c) are calculated assuming a temperature of 1 K and
for the linewidth a 0.01 cm−1 Lorentzian component and a 0.01 cm−1 Gaussian
component.
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Figure 4.41: Comparison of predicted and experimental spectra of band D. The two
black boxes indicate the spectral region where strong water absorption masks the
presence of NO-Ar lines.



Chapter 5

Conclusion

In this thesis, the measurement of the first overtone spectra of the NO-Ne and

NO-Ar complexes has been achieved using a new type of IR-REMPI double reso-

nance technique. The use of a single longitudinal mode OPO made it possible to

excite the first overtone transition associated with the N-O stretching vibration. In

combination with REMPI detection, it was possible to measure different bending-

stretching intermolecular vibrational levels with rotational resolution for the first

time.

The small frequency shifts of the origin band (0.45 cm−1 to the red for NO-Ar

and 0.17 cm−1 to the blue for NO-Ne) indicate that the NO stretching vibration

does not change much upon complexation. For both complexes, four band systems

were measured. For NO-Ar, Alexander’s ab initio potential surface assigns bands A,

B, C and D to the excitation of the levels (P = 1
2
, (vs, vb) = (0, 0)), (P = 3

2
, (0, 1)),

(P = 1
2
, (0, 1)) and (P = 1

2
, (1, 2) and P = 3

2
, (0, 2)), respectively. And for NO-

Ne, the assignments are (P = 1
2
, (0, 0)), (P = 3

2
, (0, 1)), (P = 1

2
, (0, 2)), and (P =

1
2
, (1, 0)), respectively. Since the observed spectra are sensitive to details of the

potential surfaces, they provide an important test for current ab initio treatments

of these systems. Potential energy surfaces for NO-Ar and NO-Ne calculated at the

CCSD(T) level predict the bound level energies within a fraction of a wavenumber,

thus achieving spectroscopic accuracy.

Although the ab initio studies enabled a complete comparison and assignment

of the experimental spectra, the development of an empirical Hamiltonian based on

228
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perturbation theory allows one to gain additional physical insight. In this model,

the complex is described as a near symmetric top molecule whose energy levels

are split due to electrostatic splitting (ω-splitting) and Coriolis coupling (P -type

doubling). The latter involves contributions from the difference potential while the

former is closely related to the odd expansion terms of the average potential. This

Hamiltonian is used to improve the spectroscopic constants predicted by ab initio

treatment. The results are not only consistent with a near T-shaped structure of the

complex, but they also give clear indication of the large amplitude motion present

in the complex.

So far the main information on the ground state interaction of the NO-X com-

plexes relied on collision experiments which could not resolve uncertainties in con-

nection with the existing ab initio PESs. The experimental results of this thesis pro-

vide a very stringent test for these PESs. The excellent agreement between results

obtained in IR-REMPI double resonance experiment and the ab initio results encour-

ages further exploration of the weak interactions involving van der Waals complexes

using the IR-REMPI double resonance technique.
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[111] P. R. Bunker and D. Papoušek, J. Mol. Spectrosc. 102, 419 (1969).

[112] J. K. G. Watson, Mol. phys. 19, 465 (1970).

[113] B. J. Howard and R. E. Moss, Mol. Phys. 20,147 (1971).



238

[114] D. M. Brink and G. R. Satchler, Angular Momemtum, (Oxford Univ. Press,

London and New York, 1979).

[115] E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928).

[116] H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic

Molecules, (Academic, New York, 1986).

[117] P. F. Bernath, Spectra of Atoms and Molecules, (Oxford Univ. Press, New

York Oxford, 1995).

[118] J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

[119] J. T. Hougen, Monogr. 115(1070), Nat. Bur. Stand. (US) Washington D.C.

[120] W. S. Struve, Fundamentals of Molecular Spectroscopy, (John Wiley & Sons,

New York, 1989).

[121] R. N. Zare, Angular Momentum, (John Wiley & Sons, New York, 1988).

[122] H. Meyer, J. Phys. Chem. 107, 7722 (1997).

[123] J. M. Hutson, in Advances in Molecular Vibration and Collision Dynamics,

edited by J. M. Bowman and M. A. Ratner, Vol. IA, p. 1 (JAI, Greenwich,

CT,1991).

[124] M. H. Alexander, Chem. Phys. 92, 337 (1985).

[125] C. G. Gray, Can. J. Phys. 54, 505 (1976).

[126] P. Mack, J. M. Dyke, D. M. Smith, T. G. Wright, and H. Meyer, J. Chem.

Phys. 109, 4361 (1998).

[127] E.P.F. Lee, P. Soldan, and T.G. Wright, J. Phys. Chem. 102, 6858 (1999).



239

[128] J. Lozeille, S. D. Gamblin, S. E Daire, T. G Wright, and D. M. Smith, J.

Chem. Phys. 113, 7224 (2000).

[129] J. D. Barr, J. M. Dyke, D. M. Smith, and T. G. Wright, J. Electron Spectros.

97, 159 (1998).
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