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ABSTRACT 

Object-based image analysis (OBIA) is employed to classify forest types, including 

deciduous, evergreen and mixed forests, in a U.S. National Park unit using very high spatial 

resolution (VHR) IKONOS satellite imagery. This research investigates the effect of scale on 

segmentation quality and object-based forest type classification. Average local variance and 

spatial autocorrelation analyses are utilized to determine the quality of segmentation. This 

research also examines the effect of grey-level co-occurrence matrix (GLCM) texture measures 

on forest classification results. 

The comparison of a manual interpretation revealed that three distinct levels of segmentation 

quality were yielded depending on scale: over-, optimal- and under-segmentation. Over-

segmentation produced larger number and smaller size of image objects (or segments) than those 

of manually interpreted forest stands. Under-segmentation generated the smaller number of 

image objects with larger average size compared with manual interpretation. On the other hand, 

optimal segmentation with a scale (i.e., scale parameter) of 18 generated similar image objects 

much resembling manually interpreted forest stands in number and average size. Based on visual 



assessment, image segments were similar to manually interpreted forest stands in terms of 

location, shape, number and average size. 

Statistical analyses supported these results. A graph of average local variance against 

segmentation scale also indicated an optimal scale of 18. According to spatial autocorrelation 

analysis, this research found that over- and under-segmentations were related to positive 

autocorrelation, while optimal segmentations achieved lower, or even negative, Moran’s I values. 

This research discovered that optimal segmentations achieved higher accuracy of forest type 

classification than over- and under-segmentation. In particular, a scale of 19 produced the 

highest overall classification accuracies when using only spectral bands (79 % in overall 

accuracy and 0.65 in Kappa). The research found that the incorporation of individual texture 

measures did not improve OBIA forest classification at scale 19. Instead, the use of multiple 

texture measures enhanced OBIA forest type classification accuracies to 83 % in overall 

accuracy and 0.71 in Kappa by disentangling classification confusions. 

OBIA with multiple GLCM texture measures are expected to be a useful approach to 

automatically classify forest types. In addition, OBIA will play a role in closely coupling remote 

sensing and GIS with its ability to create a GIS database to be utilized for further GIS analyses. 
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CHAPTER 1 

 

INTRODUCTION AND LITRATURE REVIEW 

 

1.1 MANUAL INTERPRETATION AND IMAGE CLASSIFICATION 

Aerial photographs have been employed for manual interpretation and mapping of natural 

resources in the U.S. since the 1940s (Colwell, 1960; Heller, 1975; Lachowski et al., 2000). The 

basic elements of image interpretation, such as size, shape, shadow, tone, color, texture, pattern, 

associated relationships and context are typically used to produce detailed forest maps (Jensen, 

2000). Human interpreters largely employ three fundamental interpretation elements of spectral, 

textural and contextual information (Haralick et al., 1973; Haralick and Shanmugam, 1974). On 

the other hand, automated image classification techniques were developed in the 1970s and 

1980s with the advent of moderate-spatial-resolution (20 to 80 m) satellite imagery. For example, 

the U.S. Landsat Multispectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) and the European Satellite Pour l’Observation de la Terre (SPOT) were 

launched to be utilized for land-use and land-cover (LULC) classification including forest types 

(Connors et al., 1987; Nelson et al., 1987; Woodcock et al., 1994; Kimes et al., 1999; Oetter et 

al., 2000; Salovaara et al., 2005) 

Until the 1990s, the major differences between air photos and satellite imagery for use in 

forest classification were spatial resolution and manual vs. automated techniques to identify 

forest classes. Aerial photographs, particularly large-scale color infrared (CIR) air photos, have 
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been interpreted manually for vegetation database development and forest resource management 

in state and federal conservation lands managed by agencies such as the National Park Service 

(NPS), the U.S. Forest Service and the U.S. Bureau Land Management (Welch et al., 2002). 

However, the cost of aerial photographs for broad-area forest mapping generally cost more than 

moderate-resolution satellite imagery (Read et al., 2003). In addition, manual interpretation is 

labor intensive, and several months to years may be needed to develop vegetation databases of 

National Park units ranging in size from hundreds of hectares to hundreds of square kilometers 

(Welch et al., 2002). 

With the launch of the commercial satellite IKONOS in 1999 by Space Imaging, Inc. (now 

GeoEye, Inc.), very high resolution (VHR) 4-m multispectral and 1-m panchromatic image data 

became available for resource inventory and monitoring (GeoEye, 2008). The launch of the 

IKONOS satellite was quickly followed by DigitalGlobe’s launch of the QuickBird satellite in 

2001 and the acquisition of 2.44-m multispectral and 0.61-m panchromatic bands (DigitalGlobe, 

2006). VHR satellite imagery, such as IKONOS and QuickBird, matches the spatial quality of 

aerial photographs and may be an alternative to air photos to characterize forest structure and 

dynamics with automatic image classification techniques. These VHR images offer a mapping 

potential for scales ranging from 1:5,000 to 1:10,000 (Puissant et al., 2005; Jacobsen, 2003). In 

particular, IKONOS data are now widely employed in forest mapping as an alternative to the 

aerial photographs (Franklin et al., 2001a; Asner and Warner, 2003; Read et al., 2003; Wulder et 

al., 2004; Metzler and Sader, 2005; Souza and Roberts, 2005). 

Remotely sensed data have been interpreted automatically largely on the basis of pixel-

based image classification, i.e., the statistical analysis of each pixel’s spectral value (Blaschke 

and Strobl, 2001). The conventional pixel-based classification approaches, however, have 
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limitations to be considered when used with VHR imagery because these procedures ignore 

spectral reflectance characteristics of neighboring pixels (Fisher, 1997; Towonshend et al., 2000; 

Brandtberg and Warner, 2006). Although improvements have been made to pixel-based 

classification methodologies, such as fuzzy classifiers, step-wise and hybrid classifiers, without 

fully utilizing spatial and spectral information of surrounding pixels, the pixel- and spectral-

based methods of traditional image classification were doomed to yield unsatisfactory results 

with VHR images (Blaschke, 2003; Maillard, 2003). 

In addition, the advent of VHR data  provides increased information on land cover details 

from local to national scales (Alpin et al., 1999), but these images require much more complex 

classification techniques (Carleer et al., 2005). This is attributed, in part, to decreased statistical 

separability between spectral classes (i.e., between-class variance) caused by increased internal 

spectral variability within homogeneous land cover units (i.e., within-class variance) (Woodcock 

and Strahler, 1987; Marceau et al., 1990; Hay et al., 1996; Franklin et al., 2001b; Shiewe et al., 

2001; Carleer et al., 2005; Yu et al., 2006; Lu and Weng, 2007). The increased within-class 

variability decreases the classification accuracy drawn from the traditional per-pixel 

classification with VHR images (Shiewe et al., 2001). Since forest scenes usually show 

significant spectral variations in VHR imagery and between-class variance is an important factor 

affecting the classification accuracy of forest classes (Straher et al., 1986; Marceau et al., 1994a), 

it is imperative to develop classification procedures which decrease within-class variance and 

increase between-class variability. In this sense, many attempts have been made to develop 

various image classification techniques, including object-based, textural and contextual image 

classifications, that reduce the limitations related to conventional pixel-based classification and 

VHR imagery (Guo et al., 2007; Lu and Weng, 2007). 
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1.2 RESEARCH OBJECTIVES 

This study develops a methodology to obtain a priori information of optimal segmentation for 

OBIA forest type classification. A 4-m multispectral IKONOS image was used to classify forest 

types of a National Park unit of the southeastern U.S., i.e., Guilford Courthouse National 

Military Park, located in Greensboro, North Carolina. In particular, the study investigates the 

potential of using a graph of average local variance in VHR imagery and spatial autocorrelation 

analysis in estimating an optimal segmentation scale for delineating forest stands with a 

benchmark of manual interpretation. This research also explores how scale affects the quality of 

segmentation in terms of automatic forest stand delineation. 

In addition, object-based image classification with the addition of object-specific texture is 

used to answer three questions in forest type mapping: 

1) Does the quality of segmentation related to segmentation scale have a direct effect on  

    forest type classification with IKONOS imagery? 

2) Can the methods of local variance and spatial autocorrelation be utilized to determine  

    optimal segmentation scale before object-based forest type classification? 

3) Does the addition of object-specific texture, computed with grey-level co-occurrence  

    matrix (GLCM), enhance object-based forest type classification. 

In this study, a series of image segmentations and classifications is conducted to investigate these 

objectives with VHR imagery, i.e., IKONOS. It is anticipated that this research will contribute to 

concepts of object-based image processing in remote sensing and ultimately provide park 

management decision makers with useful information related to more accurate and automated 

techniques of forest classification for timely and critical monitoring of natural and cultural 

resources.  
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1.3 LITERATURE REVIEW 

1.3.1 Vegetation/Forest mapping 

The purposes of vegetation mapping are considered to communicate a complex set of 

information in a simplified and spatially referenced form and to provide spatially referenced 

numerical data for further analytical purposes (Millington and Alexander, 2000). To meet these 

purposes, ecologists and biogeographers have developed ground-based (or field survey) 

vegetation mapping methods with their expertise of sampling, taxonomy and classification. Field 

survey methods can produce much more detailed information of vegetation and obtain 

information about sub-surface conditions (e.g., soils and hydrology) that are difficult to be 

detected by remote sensing methods (Wyatt, 2000). In addition, floristic-level vegetation 

mapping is well suited to the ground-based methods (Gerard et al., 1998). These methods, 

however, require intensive labor with high levels of knowledge about vegetation. It is not be 

practical to apply ground-based methods for extensive or inaccessible areas. On the contrary, 

remote sensing methods facilitate vegetation mapping in those areas and aid in updating existing 

vegetation databases with frequent revisits of the same area. 

Natural resource managers have relied on the manual interpretation of aerial photographs 

since the 1940s and on automated classification of medium-resolution satellite image data since 

the 1970s (Colwell, 1960; Heller, 1975; Hoffer and Staff, 1975; Jensen, 1979; Lachowski et al., 

2000). Large-scale CIR aerial photographs have been interpreted manually to develop detailed 

forest databases and manage resources in state and federal conservation lands (Welch et al., 

1995; Lund et al., 1997; Welch et al., 1999). Manual interpretation to identify forest stands from 

aerial photographs is typically performed by human interpreters using basic image interpretation 

elements of tone, texture, shape, size, pattern, and associations (Avery, 1962; Teng et al., 1997). 
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Although this technique provides a high level of detail, it is labor-intensive classification of 

forest types from digital imagery (Welch et al., 2002; Read et al., 2003). 

VHR satellite imagery with spatial resolutions of similar magnitude to those of aerial 

photographs (1-4 m pixels) became available for resource inventory and monitoring with the 

successful launch of commercial imaging satellites in the late 1990s (Ehlers et al., 2003; Ehlers, 

2004). VHR imagery is an alternative to aerial photos for characterization of forest structure and 

dynamics using automatic image classification techniques. In recent years, for example, 

IKONOS imagery has been utilized frequently for forest/vegetation mapping using pixel-based 

image classification methods (Franklin et al., 2001a; Asner and Warner, 2003; Read et al., 2003; 

Wang et al., 2004a; Wulder et al., 2004; Metzler and Sader, 2005; Souza and Roberts, 2005). 

 

1.3.2 Object-based image analysis 

Object-based image analysis (OBIA) is a promising development within integrated geographic 

information system (GIS) and remote-sensing image analysis. It encompasses spectral 

information of surrounding pixels and incorporates information such as texture, shape, size, 

directionality, and spatial distribution of features in image classification (Blascke and Strobl, 

2001; Kim et al., in press). This approach was proposed in the late 1990s as a means of 

incorporating spatial and contextual information into the classification procedure to overcome 

the limitations of pixel-based classification. OBIA procedures are divided into two major steps: 

1) image segmentation that generates image objects (or segments); and 2) image classification 

based on these image objects (Wang et al., 2004a; Hay and Castilla, 2008; Kim et al., in press). 

Segmented images are less sensitive to the modifiable areal unit problem (MAUP) because 

geographic entities are represented by image objects rather than pixels, i.e. arbitrary spatial units 
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(Hay et al., 2008; Hay and Castilla, 2008). MAUP is an interpretation error that might occur 

when original data are aggregated in geographic research (Openshaw, 1984). It is associated with 

the ecological fallacy, whose false assumption is the homogeneity of aggregated data.  

Table 1.1 describes major differences between pixel- and object-based classification 

approaches. The basic difference is the unit to be utilized in image analysis and classification 

procedures. Conventional pixel-based approaches have largely depended on individual pixels, 

but OBIA employs image objects (or segments) that are defined as groups of pixels. The 

descriptive statistics of digital numbers, corresponding to pixels within each image segment, can 

be computed and utilized as the spectral information of individual image objects. 

 

 

Table 1.1 Comparisons of pixel- and object-based classification approaches. 

 Pixel-based approach Object-based approach 

Spectral information Digital numbers of individual 
pixels 

Representative values of 
image objects such as 
minimum, maximum, mean 
and standard deviation etc. 

Spatial information Texture Texture, area, length, width, 
shape index and direction etc. 

Contextual information  
Relationship to neighbors, 
proximity and containment 
etc. 

 

 

The grouping of pixels with homogeneous values provides a potential to overcome the high 

spectral variation of the same ground feature inherent in VHR imagery (Yu et al., 2006). The 

spatial properties of each image object can also be defined and utilized to identify what ground 
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features the image objects represent in the real world. Moreover, OBIA makes it possible to 

define contextual relationships between image objects, e.g. topological relationships of 

adjacency, connectivity and containment, in image analyses. The spectral, spatial and contextual 

characteristics of image segments are closely associated with basic image interpretation elements 

that have been widely adopted by human interpreters. In this sense, OBIA is considered to be an 

automatic remote sensing method with VHR imagery to emulate, to some extent, a human 

interpreter’s ability in classifying images (Blaschke and Strobl, 2001; Schiewe et al., 2001; Benz 

et al., 2004; Blascke, 2003; Meinel and Neubert, 2004; Yu et al., 2006). 

 

1.3.2.1 Image segmentation 

The first step of OBIA processing is image segmentation to group pixels of relatively 

homogeneous values into image objects (or segments). Segmentation techniques themselves are 

not new and have been utilized in processing of remotely sensed data for forest/vegetation and 

LULC classifications since the 1970s (Haralick et al., 1973; Ryherd and Woodcock, 1996; Lobo, 

1997; Katrikeyan et al., 1998; Lobo et al., 1998; Abkar et al., 2000; Stuckens et al., 2000; 

Baskent et al., 2001; Hay et al., 2001; Dorren et al., 2003; Sande et al., 2003; Hall et al., 2004; 

Lalinerte et al., 2004; Wang et al., 2004a; Wang et al., 2004b; Kim et al., in press). Various 

segmentation algorithms and their descriptions can be found in Haralick and Shapiro (1985), Pal 

and Pal (1993), Ryherd and Woodcock (1996) and Cufi et al. (2002).  

In recent years, some segmentation software packages have been developed and 

distributed commercially or freely in remote-sensing and image-processing domains. Table 1.2 

describes some available segmentation software packages based on Meinel and Neubert (2004) 

and Neubert et al. (2006; 2008). As shown in the table, Definiens, Inc., München, Germany, 
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developed the first commercial segmentation software package, eCognition (version 2), in 2002 

and the more recent packages Professional (versions 5 and 6) and Developer (versions 7 and 8). 

Definiens is considered to be one of the best segmentation software packages that well delineate 

landscape features in image segmentations (Meinel and Neubert, 2004). All the versions are 

mainly based on the Multiresolution Segmentation algorithm, which is a kind of region-growing 

techniques. This algorithm segments an image by generating seed pixels over the entire image 

area and grouping surrounding pixels around seed pixels with a specific criterion and input data. 

Additional segmentation algorithms are also implemented in Definiens software packages, 

including Chessboard, Quad Tree and Contrast Split segmentations. 

The use of Definiens is very complex in terms of selecting parameters related to 

segmentation and classification, e.g., input data type, segmentation parameters, spectral, spatial 

and contextual attributes of individual image objects. For example, user-defined parameters must 

be entered in performing segmentation procedures by Multiresolution Segmentation algorithm: 

1) a scale parameter (hereafter also called segmentation scale or scale); 2) the ratio of color and 

shape; and 3) the ratio of compactness and smoothness. Figure 1.1 illustrates the conceptual 

design of the segmentation algorithm in Definiens. As shown in the figure, the Multiresolution 

Segmentation produces image objects (or segments) so that individual pixels are grouped 

depending on several parameters. 
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Table 1.2. Summary of segmentation software packages. 

 Developer Algorithm Application Field Development 
year 

eCognition Definiens, 
Germany Region growing Remote sensing 2002 

Data 
dissection 
tools 

INCITE, Stirling 
University, U.K. 

Superparamagnetic 
clustering 

Image analysis 
and statistical 

physics 
2002 

CAESAR 3.1 N.A. Software, 
Ltd. Simulated annealing Remote sensing 

with RADAR data 1996 

InfoPack 1.0 InfoSAR, Ltd. Simulated annealing Remote sensing 
with RADAR data 2003 

Image 
segmentation 
- add-on 
module for 
ERDAS 
Imagine 

Remote sensing 
applications 
center, U.S. 

Department of 
Agriculture 

Forest Service 

Region growing Remote sensing 2002 

Minimum 
entropy 
approach 

Institute of 
Compute 
Science, 

University of 
Bonn, Germany 

Triangulation Polygonization of 
noisy imagery 2002 

Spring 4.0 
National Institute 

for Space 
Research, Brazil 

Region growing and 
watershed Remote sensing 2003 

HalconSEG TU Munich and 
IOER Dresden 

Hybrid (edge and 
region oriented) 

Color images and 
mobile systems 2005 

Imagine WS 
ERDAS 
Imagine 
extension 

Commission for 
scientific 

visualization, 
Austrian 

Academy of 
Sciences 

Hierarchical 
watershed Remote sensing 2003 
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Table 1.2. Summary of segmentation software packages (continued). 

 Developer Algorithm Application Field Development 
year 

PARBAT 
0.32 Lucieer (2004) Region growing Remote sensing 2004 

RHSEG 1.0 
Goddard Space 
Flight Center, 

NASA 

Hierarchical region 
growing Remote sensing 2005 

SEGEN IBM Haifa research 
labs Region growing Color images 2006 

SEGSAR 
1.0 

National Institute 
for Space Research, 

Brazil 

Hybrid (edge/region 
oriented) 

Remote sensing 
with RADAR 

data 
2005 

EDISON 

Robust Image 
Understanding Lab, 
Rutgers University, 

U.S. 

Mean shift Color images 2003 

EWS 1.0 Li and Xiao (2006) 
Multi-channel 

watershed 
transformation 

Remote sensing 2006 

Definiens 
Developer 
7.0 

Definiens, 
Germany 

Multiresolution 
segmentation Remote sensing 2007 

HalcoSEG 
1.0 InfoSAR, Ltd. Simulated annealing

Remote sensing 
with RADAR 

data 
2006 

RHSEG 1.3 
Goddard Space 
Flight Center, 

NASA 

Hierarchical region 
growing Remote sensing 2007 

SCRM Castilla (2007) Watershed and 
region growing Remote sensing 2007 
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Figure 1.1. Conceptual framework of Multiresolution Segmentation in Definiens. The figure was 

adapted from Definiens Reference Book (2006). 

 

 

The value of scale parameter denotes a maximum-allowable standard deviation to be 

utilized in a segmentation procedure. For instance, a value of 18 for the parameter means a 

standard deviation 18 that is computed from all pixels within a pair of adjacent image objects. 

The scale parameter is utilized to terminate segmentation procedures and determine the average 

size of image objects in a given segmentation (Definiens, 2004; Benz et al., 2004). As shown in 

Figure 1.2, if the calculated value of heterogeneity exceeds a user-defined value of scale 

parameter, image objects 1 and 2 remains as separate segments, and iterative segmentation 

procedures are stopped. Otherwise, the two segments are merged into a single larger image 

object to be utilized in another segmentation procedure. In general, a larger value of scale 

parameter produces larger image segments in size (Benz et al., 2004). 
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Figure 1.2. Scale parameter to be utilized in deciding merge of a pair of image objects. 

 

 

The Multiresolution Segmentation algorithm optimizes segmentation procedures based on 

spectral and spatial heterogeneities, defined as  

 

shapecolor hwhwH ⋅−+⋅= )1( ·········· Equation 1 

 

where H represents a heterogeneity value computed with a pair of image segments, hcolor means 

spectral heterogeneity, and hshape denotes spatial heterogeneity (Definiens, 2004). The ratio of 

color and shape indicates weights to be utilized in Equation 1. The total weight of color and 

shape is 1, and the values of the two weights are inversely proportional to each other. For 

example, if a weight value of 0.9 for color, then that of 0.1 is automatically set for shape. Larger 
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values of shape result in optimized segmentation for spatial heterogeneity, which means more 

regular shapes of image objects. 

Spectral heterogeneity is the sum of the standard deviations with weight values of 

individual input image layer, defined as 

 

∑ ⋅= σwhcolor ·········· Equation 2 

 

where ω represent weight values of each input image layer and σ  indicates the standard 

deviation of pixels within a pair of image objects. Spatial heterogeneity is calculated with the 

values of compactness and smoothness, defined as 

 

smoothnessscompactnesshape hwhwh )1( −+⋅= ·········· Equation 3 

 

where scompactnesh and smoothnessh  denote heterogeneities computed with the values of compactness 

and smoothness. Definiens (2004) describes provides algorithms to be utilized in computing 

heterogeneities of compactness and smoothness. 

Figures 1.3 shows image objects that were derived from a CIR aerial photograph with 0.5-

m spatial resolution by using Definiens Developer (version 7.0). A scale parameter of 40 was 

employed with the different values of colors, i.e., 0.9 (Figure 1.3a), 0.5 (Figure 1.3b) and 0.1 

(Figure 1.3c). A default value of smoothness, i.e., 0.5, was adopted for these segmentations. As 

shown in Figure 1.3, the boundary shapes of individual image segments tend to be more regular 

with larger values of shape. The values of smoothness and compactness are associated with the 
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boundary shape of each image object. Image segments, derived from segmentation procedures, 

are then utilized in image classifications as basic units, instead of pixels. 

 

 

 

Figure 1.3.  Image segmentations with a CIR aerial photograph using scale parameter 40 and 

smoothness of 0.5. The boundaries of individual image segments were delineated with solid lines 

in grey color and vary according to the ratio of colors and shape as 0.9 (a), 0.5 (b) and 0.1(c). 
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1.3.2.2 Segmentation quality 

The OBIA approach appears to cast a promising light on overcoming the limitations of pixel-

based approaches with VHR imagery, but there is an issue to be considered in association with 

segmentation quality. In relating image segments to ground features in the real world, OBIA 

results in distinct levels of segmentation quality associated with the number and the size of 

image objects: 1) over- segmentation, 2) optimal segmentation and 3) under-segmentation 

(Frauman and Wolff, 2005; Castilla and Hay, 2008; Kim et al., 2008; Kim et al., in press). 

Over-segmentation is considered to result in objects that are too small relative to ground 

features of interest, since the contrast between some neighboring image segments is insufficient. 

Consequently, there would be an excessive number of image objects in an over-segmented result. 

Under-segmentation produces too few image objects, so some different ground features would be 

mixed and included in a single image object, thus affecting classification results. On the contrary, 

an optimal segmentation produces image segments that are similar to ground features of interest 

in size and number. Figure 1.4 illustrates the different levels of segmentation quality related to 

segmentation scale. The segmentations were yielded with selected scales using Definiens 

Developer (version 7). For building rooftops, smaller scale values tend to generate over-

segmented results, as shown in Figures 1.4a and 1.4b, where individual rooftops are composed of 

several image segments. On the contrary, Figures 1.4c and 1.4d show optimal segmentations for 

building rooftops. With larger scale values of 130 and 160, these rooftops are mixed with 

adjacent ground features of grass and trees in under-segmentations, as in Figures 1.4e and 1.4f. 

The quality of segmentation is known to have a direct effect on the accuracies of object-

based classifications (Dorren et al., 2003; Meinel and Neubert, 2004; Addink et al., 2007; Kim et 

al., in press). Segmentation scale has been reported to play an important role in yielding optimal 
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segmentation, so it is a critical and challenging issue in using object-based classification 

approaches (Ryherd and Woodcock, 1996; Blaschke, 2003; Dorren et al., 2003; Kim et al., in 

press). Ryherd and Woodcock (1996) demonstrate that segmentation controlled by minimum size, 

functioning like a scale parameter, can increase overall accuracy with simulated forest imagery. 

A threshold for minimum value was utilized to avoid the generation of large image objects in  

 

 

 

Figure 1.4. Segmentation quality associated with segmentation scales: (a) 10, (b) 40, (c) 70, (d) 

100, (e) 130 and (f) 160. 
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their study. In addition, Dorren et al. (2003) acquired their best object-based forest type 

classification from a segmentation that produced average sizes of image objects similar to these 

forest types in the real world. For this reason, it is imperative to develop methodologies to 

determine an optimal segmentation associated with segmentation scale before proceeding to 

actual classification of image objects. 

 

1.3.2.3 Estimation of optimal segmentation quality 

Scale-related studies are mainly concerned with developing methods for determining the most 

appropriate scale (or resolution) and assessing their effects on automatic image classification 

(Cao and Lam, 1997). As for VHR imagery, the accuracy of classification is closely associated 

with the relative size of the ground features under investigation (Markham and Townshend, 

1981). 

Most studies concerning optimal scale have been based largely on pixel-based 

classification with two estimation methods: 1) graphs of local variance and 2) variogram analysis. 

The first method produces several levels of aggregated pixels to represent progressively coarser 

resolutions and to determine optimal spatial resolution for a particular remotely sensed image 

(Woodcock and Strahler, 1987; Marceau et al., 1994b; Coops and Culvenor, 2000; Raptis et al., 

2003). The graphs of local variance, proposed by Woodcock and Strahler (1987), are used 

mainly for determining a single optimal spatial scale over an entire image. They computed 

variances within a 3-by-3 moving window for individual pixels and calculated average local 

variance on a whole scene. These average local variances are then graphed as a function of 

spatial resolution, i.e., the aggregated levels of pixels (or upscaling). On the other hand, in recent 

years, variograms have been widely employed for the same purpose, without upscaling 
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(Atkinson and Curran, 1997; Treitz and Howarth, 2000a; Wallace et al., 2000; Atkinson and 

Aplin, 2004; Zawadzki et al., 2005). In the analysis of variograms, point-centered sample data 

sets are utilized to find sill and range with the distance between a pair of sample points. In the 

object-based classification it seems difficult to determine which pixel within an image object 

should be selected to represent the image object for the variogram analysis. In addition, 

variogram-based analyses are rather complex compared with the method based on local variance. 

In the OBIA approach there are no specific guidelines on this issue, and the selection 

procedure is highly dependent on trial-and-error methods that influence segmentation quality 

subjectively (Definiens, 2004; Meinuel and Neubert, 2004). However, a number of attempts were 

made to determine an optimal segmentation scale in recent years. Wang et al. (2004a) utilized 

Bhattacharya Distance (BD), a statistical separability index, to decide a segmentation scale that 

produced the best classification result of coastal mangrove species from IKONOS imagery. They 

selected training data representing several species of mangrove trees and image segmentation 

was applied to the training data instead of the whole scene, with scale parameters from 5 to 25. 

Several segmented images at each scale were classified, and they found the value of 25 to be 

optimal for mapping mangrove species. Kim and Madden (2006) examined the relationship 

between segmentation scale of general forest types (deciduous, evergreen and mixed forests) and 

classification based on average local variances (see Chapter 2). In addition, a computer 

programming approach, i.e., genetic algorithm, was adopted to determine optimal sets of 

segmentation parameters (Feitosa et al., 2006). 

In forest mapping there would be the potential to associate the spectral values of image 

objects to segmentation quality by employing spatial autocorrelation analysis. In over-

segmentation, adjacent image segments would be similar in spectral values and spatially 
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autocorrelated. Under-segmentation would produce large image segments that show similar 

mixtures of spectral values, and this may result in relatively high autocorrelation. On the contrary, 

an optimal segmentation would be associated with the least autocorrelation between image 

segments. This research is presented in Chapter 2 of this dissertation. 

 

1.3.3 Texture analysis 

Texture, representing local spatial information, is a basic interpretation element which human 

interpreters employ in manual interpretation. Texture is a characteristic of physical surface 

properties of features such as smoothness or roughness has a tactile quality and is manifested by 

reflectance differences and the variance of color on a surface (Tuceryan and Jain, 1998). In 

general, images can be classified directly based on texture data or on texture data incorporated 

with spectral bands (Zhang, 1999). Texture is widely utilized in pixel-based classification for 

forest/vegetation (Franklin et al. 2000, 2001a, 2001b; Zhang et al., 2004), land use/land cover 

(Kiema, 2002; Herold et al., 2003; Coburn and Roberts, 2004; Lloyd et al., 2004; Puissant et al., 

2005) and urban applications (Shaban and Dikshit, 2001; Zhang et al., 2003). The integration of 

texture in automated classification procedures is an increasingly important aspect of VHR 

imagery analysis (Coburn and Roberts, 2004). High-spatial-resolution imagery is considered to 

be highly textured in forest mapping (Wulder, 1998). Therefore, the analysis of texture has been 

widely used to introduce the spatial information of different ground features into image 

classification in order to improve classification results with VHR imagery (Zhang, 1999; Ferro 

and Warner, 2002; Puissant et al., 2005). 

Texture can be acquired from remotely sensed images by structural, model-based, and 

statistical methods (Coburn and Roberts, 2004). Most of these methods have been developed in 
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pattern recognition and have not always been considered helpful in image analysis with remotely 

sensed data (Ryherd and Woodcock, 1996). In most cases, a statistical approach has been widely 

adopted for deriving texture from remote-sensing imagery. The grey-level co-occurrence matrix 

(GLCM), introduced by Haralick et al. (1973) and Haralick and Shanmugam (1974), is one of 

the most common methods used to calculate statistical texture measures (Franklin et al., 2001b; 

Chan et al., 2003; Coburn and Roberts, 2004). In recent years, GLCM texture has been 

frequently utilized to improve classification results in forest mapping studies (Franklin et al. 

2000, 2001a; Maillard, 2003; Zhang et al., 2004). 

A kernel (or moving window) is commonly utilized in image classification to define 

spatial information specified by a particular number of columns and rows surrounding a target 

pixel. Successful image classification with texture depends highly upon the kernel size selected, 

and so optimal kernel size is considered to be an important factor in deriving texture (Puissant et 

al., 2005; Franklin et al., 2001b). Puissant et al. (2005) point out that, if the window is too small, 

insufficient spatial information is extracted to characterize texture. On the contrary, if the 

window is too large, it can overlap two types of ground cover and thus introduce erroneous 

spatial information due to the edge effect of between-class texture (Ferro and Warner, 2002). 

In OBIA, texture is computed for non-overlapping, irregularly-shaped “windows” that 

correspond to individual image objects (Benz et al., 2004). Such texture is called object-specific 

texture to distinguish it from texture computed with kernels, i.e. kernel-based texture. In using 

kernels, between-class texture is not distinguished from within-class texture, and this confusion 

usually degrades the overall performance of texture-based image classification (Ferro and 

Warner, 2002). That is, in kernel-based texture, both internal pixels and adjacent pixels outside a 

ground object are often included in the texture computation of a particular window (Figure 1.5a). 
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Between-class texture is potentially excluded, however, by computing texture based only on 

pixels from within the boundary of an image object, as long as the quality of the segmentation is 

reliable (Figure 1.5b). In addition, because image objects can potentially have various sizes, 

object-specific texture is not inherently limited to a single scale to the extent that fixed-kernel-

size texture is. 

 

 

 

Figure 1.5. Kernel-based texture (a) and object-specific texture (b). A hatched ground object is a 

target for texture computation. In (a), adjacent pixels belonging to other ground features are 

included in calculating the texture of the hatched object. 

 

 

Hay et al. (1996) utilized object-specific texture measures computed within individual 

triangulated areas, the vertices of which were derived from the centers of tree crowns. Although 

they did not adopt an image segmentation procedure, their calculation of texture is similar to that 

of the object-specific texture adopted in this study. They found that forest stand classification 
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using spectral bands alone had an accuracy of 65 %, which increased to 78 % with the inclusion 

of the texture information. In summary, it appears that object-specific texture has the potential to 

produce more accurate classifications than do classifications using traditional kernel-based 

texture. 

 

1.4 STUDY AREA AND DATA 

1.4.1 Study area 

The study area is Guilford Courthouse National Military Park (GUCO), which was established in 

1917 to preserve the vegetation and landscape that approximates battlefield conditions at the 

time of the American Revolution. The GUCO park was officially surrounded by the city limits of 

Greensboro, North Carolina, in 1984 (Figure 1.6) and thus lies in one of the most rapidly 

growing quarters of the city (Hiatt, 2003). This urban sprawl beleaguers managers of the park 

who aim to preserve the historical and vernacular landscape of GUCO. Left as the only green 

space within a matrix of commercial and residential development, the park is heavily used by 

visitors who use the paved trails within the park for recreational walking, running, biking, and 

dog walking. A current vegetation database is needed to assess heavy visitor use and surrounding 

land use changes that have potential impacts on the health of vegetation and animal populations 

within the park. 

In 2004, the Center for Remote Sensing and Mapping Science (CRMS), Department of 

Geography at the University of Georgia, developed a vegetation geodatabase in conjunction with 

the NPS and NatureServe as a part of the U.S. Geological Survey (USGS)-NPS National 

Vegetation Mapping Program (Madden and Jordan, 2004; NPS, 2008). The geodatabase was 
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Figure 1.6. Location of GUCO in Greensboro, North Carolina. 

 

 

created from manual interpretation of large-scale (i.e., fine-scale) CIR aerial photographs 

combined with CRMS-NatureServe field observations and plot-level vegetation surveys 

conducted by NatureServe. The manual interpretation was based on association (or community)-

level forest classes of the National Vegetation Classification System (NVCS) identified for the 

park by NatureServe (2007). Table 1.3 summarizes association-level vegetation classes in the 

GUCO National Park and the more general forest type class to which each association belongs. 

In Table 1.3, NVCS Community Element Global (CEGL) codes are provided with related 

association-level forests in the GUCO park. 

According to NatureServe (2007), cold-deciduous forests are predominant in the park, 

with oaks (Quercus spp) the dominant species among hardwoods, including White Oak (Q. alba), 

Southern Red Oak (Q. falcata), Black Oak (Q. velutina), Chestnut Oak (Q. prinus), and Scarlet 

Oak (Q. coccinea). The other hardwoods include various forest canopy species such as Shagbark 

Hickory (Carya ovata) and Pignut Hickory (Carya glabra), Red Maple (Acer rubrum) and Sugar 

Maple (Acer saccharum), Tuliptree (Liriodendron tulipifera), Sycamore (Platanus occidentalis), 
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and Sweetgum (Liquidambar styraciflua). Needle-leaved evergreen forests are dominated by 

Shortleaf Pine (Pinus echinata), Loblolly Pine (Pinus taeda), or Virginia Pine (Pinus virginiana). 

In addition, non-forest vegetation (herbaceous vegetation, shrubland and exotic species) and 

man-made features (buildings, roads, cemeteries, trails and homesites) are found in the park. To 

facilitate this research on OBIA techniques that required repeated iterations of image processing 

procedures, association-level vegetation polygons of the CRMS-NPS vegetation geodatabase 

were generalized to three forest type classes: deciduous forest, evergreen forest, and mixed 

deciduous-evergreen forest, plus one non-forest class. 

 

 

Table 1.3. Association-level forest vegetations in GUCO National Park. 

Forest type CEGL code Association description 

8462 Loblolly Pine/Sweetgum Successional 

2591 Virginia Pine Successional Needle-leaf Evergreen 
Forest 

6327 Shortleaf Pine Successional 

8475 White Oak (Red Oak, Scarlet Oak, Hickory)/ 
Vaccinium pilidum Piedmont Dry Mesic 

8465 
American Beech – Northern Red Oak/ 
Flowering Dogwood/Christmas Fern-Virginia 
Heartleaf Acidic Piedmont Mesic 

7244 Southern Red Oak – White Oak – Mockernut 
Hickory/Sourwood/Deerberry Dry Mesic 

7221 Tuliptree – Red Maple – Oak Successional 

Submontane Cold-
deciduous Forest 

7216 Sweetgum Successional 
Temporarily Flooded 
Cold-deciduous Forest 4418 Piedmont Small-stream Sweetgum (Tuliptree, 

Red Maple)/Northern Spicebush Bottomland 
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1.4.2 Data 

This research employs IKONOS imagery to investigate objectives described in Section 1.4.1.1 

The IKONOS satellite was launched as the world’s first commercial VHR satellite on September 

24, 1999, from Vandenberg Air Force Base, California (Tanaka and Sugimura, 2001). An 

IKONOS image can be acquired by the sensor in either 1-m panchromatic or four 4-m 

multispectral band mode. Table 1.4 describes the spectral resolution of each band of IKONOS 

imagery. 

 

 

Table 1.4. Spectral wavelength regions of IKONOS imagery. 

 Spectral wavelength regions (µm) 

Panchromatic band 0.450 - 0.900 

Blue 0.445 - 0.516 

Green 0.506 - 0.595 

Red 0.632 - 0.698 
Multispectral 
bands 

Near-infrared (NIR) 0.757 - 0.853 
 

 

The IKONOS satellite revisits the same area every 3 to 5 days and collects an image of 11×11 

km2 with a radiometric resolution of 11 bits. The pixel size of the IKONOS panchromatic band is 

the same as that of a USGS digital orthophoto quarter quadrangle (DOQQ), while 11-bit imagery 

provides image contrast and quality superior to the DOQQ (Davis and Wang, 2003). An 

IKONOS image for the GUCO park was conferred as a Space Imaging Award (now, GeoEye 

Award) presented by the American Society of Photogramemtry and Remote Sensing (ASPRS) 

                                                 
1 IKONOS means “image” in Greek. 
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and Space Imaging, Inc. (Figure 1.7).2 The IKONOS image was provided as a Geo Bundle 

Product, which has a nominal positional accuracy of 15 m with a circular error at 90 % 

probability (CE90).  

 

 

 

Figure 1.7. Multispectral IKONOS image of Guilford Courthouse National Military Park in false 

color composite using NIR, red and green for RGB. The park boundary is outlined in blue. 

 

 

                                                 
2 Space Imaging was merged with OrbImage and the name of the merged company has changed 
as GeoEye, Inc. 



 

 28

The CE90 denotes that 90 % of well-defined check points should fall within the specified 

positional accuracy. Therefore, the IKONOS image must be rectified to guarantee positional 

accuracy for further image analyses such as segmentations and classifications. 

A large-scale CIR aerial photograph at 1:12,000 scale was orthorectified with a root-mean-

square error (RMSE) of ± 5 m (Jordan and Madden, 2008) and used as reference data with a 

1999 USGS digital orthophoto quarter quadrangle (DOQQ) to correct the IKONOS imagery 

geometrically to a RMSE of ± 3 m to ±  4m. The CIR air photo was also employed to derive 

training samples that was used in object-based image classifications. The CIR air photo was 

acquired on October 20, 2000, by the U.S. Forest Service and utilized in manual interpretation of 

vegetation in the GUCO park by the CRMS (Welch et al., 2002). Figure 1.8 shows a CIR aerial 

photo of the park. Besides the IKONOS image and the CIR air photos, a CRMS vegetation 

geodatabase is employed to develop samples that will be utilized in accuracy assessment of 

object-based classifications. 
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Figure 1.8. A false color composite of the 1:12,000 scale color infrared air photo with near 

infrared, red and green for red, green and blue. The park boundary is shown in blue. 
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ESTIMATION OF OPTIMAL IMAGE OBJECT SIZE FOR THE SEGMENTATION OF 

FOREST STANDS WITH MULTISPECTRAL IKONOS IMAGERY3 

 

 
 
 
 
 
 
 
 
 
 

                                                 
3 Kim, M., M. Madden, and T. Warner. 2008. Object-Based Image Analysis - Spatial Concepts 
for Knowledge-driven Remote Sensing Applications (T. Blaschke, S. Lang and G.J. Hay, 
editors), Springer-Verlag, Inc., pp.291-307. Reprinted here with kind permission of Springer 
Science+Business Media. 
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ABSTRACT 

The determination of segments, representing an optimal image object size, is very challenging in 

object-based image analysis (OBIA). This research employs local variance and spatial 

autocorrelation to estimate the optimal size of image objects for segmenting forest stands. 

Segmented images are visually compared to a manually interpreted forest stand database to 

examine the quality of forest stand segmentation in terms of the average size and number of 

image objects. Average local variances are then graphed against segmentation scale in an attempt 

to determine the appropriate scale for optimally derived segments. In addition, an analysis of 

spatial autocorrelation is performed to investigate how between-object correlation changes with 

segmentation scale in terms of over-, optimal, and under-segmentation. 

 

INDEX WORDS: Image segmentation, Very high spatial resolution image, Over- and under- 

segmentation, Object-based image analysis (OBIA), Forest stands, Local 

variance, Spatial autocorrelation 

 

2.1 INTRODUCTION 

Conventional pixel-based classification approaches have limitations that should be considered 

when applied to very high spatial resolution (VHR) imagery (Fisher, 1997; Townshend et al., 

2000; Ehlers et al., 2003; Brandtberg and Warner, 2006). The increased within-class spectral 

variation of VHR images decreases classification accuracy when used with the traditional pixel-

based approaches (Shiewe et al., 2001). Object-based image analysis (OBIA), which became an 

area of increasing research interest in the late 1990s, is a contextual segmentation and 

classification approach that may offer an effective method for overcoming some of the 



 

 43

limitations inherent to traditional pixel-based classification of VHR images. Particularly, the 

OBIA can overcome within-class spectral variation inherent to VHR imagery (Yu et al., 2006). 

In addition, it can be used to emulate a human interpreter’s ability in image interpretation 

(Blaschke and Strobl, 2001; Blaschke, 2003; Benz et al., 2004; Meinel and Neubert 2004).  

Although the OBIA scheme seems to hold promise for solving classification problems 

associated with VHR imagery, it also has an important related challenge, namely, the estimation 

of the desired size of image objects that should be obtained in an image segmentation procedure. 

Unfortunately, there is currently no objective method for deciding the optimal scale of 

segmentation, so the segmentation process is often highly dependent on trial-and-error methods 

(Meinel and Neubert, 2004). Yet, the size of image objects is one of the most important and 

critical issues which directly influences the quality of the segmentation, and thus the accuracy of 

the classification (Blaschke, 2003; Dorrren et al., 2003; Meinel and Neubert, 2004).  

In this paper, we employ a case study that builds on the results of Kim and Madden (2006) 

to investigate agreement between a manual interpretation and image segmentation at a variety of 

scales, and the pattern of segment variance and autocorrelation associated with those 

segmentation scales. Kim and Madden (2006) performed a research to examine the relationship 

between segmentation scale of general forest types (i.e., deciduous, evergreen, and mixed 

forests) and classification. For this follow-on study, we examine if an understanding of changes 

associated with segment variance and autocorrelation might provide image analysts with a 

method of determining optimal size of image objects in image segmentation for forest stand 

mapping. 
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2.2 LOCAL VARIANCE, SPATIAL AUTOCORRELATION AND IMAGE OBJECTS 

ASSOCIATED WITH FOREST STAND MAP 

A number of previous studies have investigated how image properties change with pixel 

resolution (Cao and Lam 1997). One common method for understanding how image spatial 

structure changes with pixel size is the graph of average local variance, used by Woodcock and 

Strahler (1987). This approach has been used to determine the optimal spatial resolution for 

identifying thematic information of interest in the context of pixel-based image classification. In 

Woodcock and Strahler’s (1987) approach, the image is degraded to a range of pixel size. 

Variance in spectral reflectance or brightness is then computed a 3×3 moving window, and then 

the average for the entire scene is graphed as a function of the associated pixel size. Woodcock 

and Strahler (1987) found that the local variance was low if the spatial resolution was 

considerably finer than objects on an image. When the pixel size was approximately one half to 

three quarters of the size of the objects in the image, the local variance was found to reach a 

maximum. On the other hand, if the pixel size was larger than the objects in the image, the local 

variance decreases once again. Thus, the graph of local variance against pixel size is one method 

that can be helpful for understanding spectral heterogeneity and the scale of the objects in the 

image. 

Building on this idea of linking variance and scale, we hypothesize that the average 

variance of image objects, graphed as a function of image segment size, may provide insight as 

to the optimal scale of image objects for image segmentation. We define the optimal scale as one 

that is not over-segmented, with an excessive number of segments that are on average too small, 

and also not under-segmented, with too few segments that are on average too large. 
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This definition of an optimal scale is useful for considering the relationship between image 

object variance and scale. As the segmentation becomes coarser, each segment will tend to 

incorporate a wider range of image brightness values. Therefore, a general trend of increasing 

average variance of the segments is expected with coarser scale (and decreasing number of 

segments). However, we hypothesize that with mixed forest stands, as the segments become too 

large (i.e., reach a stage of under-segmentation) each segment will tend to include more pixels 

from pure forest stands. This inclusion would lower the variance of image objects corresponding 

to mixed forest stands. Therefore, we suggest that the optimal segmentation actually would occur 

at the scale just before a flattening of the graph. Our second hypothesis is that the optimal scale 

generates the least positive, and potentially even negative, autocorrelation between the average 

brightness values of the segments. In other words, we assume that an optimal scale most clearly 

brings out contrasting average brightness values in the segmentation. 

This autocorrelation hypothesis draws in part on the concept that ideal image enhancement 

should maximize autocorrelation at the pixel level (Warner, 1999). Likewise, image 

enhancements (Warner and Shank, 1997) and classifications (Warner et al., 1999) can be ranked 

based on their information content as indicated by autocorrelation at the pixel level. However, 

for segmentation, we suggest that the optimal pattern is obtained when the adjacent segments are 

the least similar in brightness values. In an over-segmented image, we would expect that the 

adjacent segments are on average somewhat similar, and thus the segments will tend to be 

autocorrelated. On the other hand, in an under-segmented image, the segments are too large, and 

lose their spectral homogeneity. In this instance, the average brightness of the adjacent segment 

will tend to converge on relatively similar mixtures, and once again the autocorrelation of the 

segments is relatively high. Therefore, we suggest that in a graph of scale versus autocorrelation 
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of the segments, the optimal scale should be indicated by the scale associated with the least 

autocorrelation between segments. 

 

2.3 STUDY AREA AND DATA SOURCES 

The study area for the case research is the Guilford Courthouse National Military Park (GUCO) 

located in Greensboro, North Carolina, U.S.A. (Figure 2.1). The 1-km2 park lies in one of the 

most rapidly developing portions of the city and provides increasingly important green space for 

recreational activities and wildlife refuge (Hiatt, 2003).  

 

 

 
Figure 2.1. Forest stands of GUCO park from University of Georgia CRMS-NPS vegetation 

database produced by the manual interpretation of aerial photographs. 

 



 

 47

The park was initially mapped by the Center for Remote Sensing and Mapping Science 

(CRMS), Department of Geography at the University of Georgia, in conjunction with the 

National Park Service (NPS) and NatureServe, as part of the NPS/U.S. Geological Survey 

(USGS) National Vegetation Mapping Program (Welch et al., 2002; Madden et al., 2004). The 

mapping of the park was based on manual interpretation of 1:12,000-scale leaf-on color-infrared 

(CIR) aerial photographs using the National Vegetation Classification System (NVCS) 

(Grossmann et al., 1998). Figure 2.1 illustrates the manually-interpreted association-level forest 

stands in GUCO. 

In our study, we assume that the manually produced GUCO vegetation database/map can 

be used as a reference for determining the optimal scale of the segmentation. Although the 

manual map does not necessarily represent an objective optimal scale and classification of forest 

stands, it represents vegetation communities of the type, level of detail and scale that the 

resource managers require for management decisions. Furthermore, human interpreters bring to 

bear extensive local (i.e., field-based data) and expert knowledge of forest stands and associated 

remote sensing signatures. GUCO was visited several times throughout the course of the project 

by CRMS and NatureServe botanists to collect plot-level data of overstory and understory tree 

species, as well as numerous quick plots to identify the NVCS class of observation points 

geolocated with GPS (Madden et al. 2004). An independent accuracy assessment of the 

completed association-level vegetation and forest stand database conducted by NatureServe 

resulted in an overall accuracy of 83 % and a Kappa of 0.81 (NatureServe, 2007). Therefore, we 

can assume that the manually interpreted database represents the best approximation of the 

optimal scale and classification of GUCO forest stands. 
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A multispectral IKONOS image of 4-m pixel resolution acquired on July 6, 2002 by Space 

Imaging, Inc. (now GeoEye, Inc.) was used for this research with special attention to the near 

infrared band (NIR) that is crucial to vegetation studies. The image was georeferenced and co-

registered to a scanned CIR aerial photograph that was acquired October 20, 2000 at 1:12,000 

scale and rectified based on horizontal control from a 1998 USGS Digital Orthophoto Quarter 

Quadrangle (DOQQ). The study area has a very flat terrain, so the co-registration of the CIR 

aerial photograph and IKONOS image could be achieved to a root-mean-square-error of ±4 m 

with this process. The GUCO park includes non-forest areas such as open pasture, roads, 

cemeteries and homesites. These non-forest areas were masked out before image segmentation of 

forest stands. 

 

2.4 METHODOLOGY 

Multiresolution Segmentation, implemented in Definiens Professional Version 5.0 (formerly 

eCognition), was utilized for the OBIA. The segmentation is based on a region growing 

technique which places seed pixels over an entire image and groups surrounding pixels to the 

local seeds, if they meet specific criteria. The size and homogeneity of image objects are 

important parameters in the segmentation. The scale parameter, i.e. segmentation scale, controls 

the average size of the image objects (Definiens, 2004). The homogeneity criterion determines 

the importance or weight of three heterogeneity attributes: color, smoothness and compactness. 

The color criterion minimizes the standard deviation of spectral values within image objects and 

also considers the shape of image objects. The shape criterion itself is comprised of a smoothness 

criterion defined as how smooth the boundary of each image object is in a segmented image and 

a compactness criterion minimizing the deviation from the ideal compact form (Definiens, 2004). 
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For this study, a series of segmentations was conducted using the IKONOS image with the 

segmentation scale varying from 2 to 30 in steps of 1 to examine the segmentation quality of 

image objects representing more detailed (association-level) forest stands. These values were 

chosen so as to encompass a range of scales that were observed to extend from over-

segmentation to under-segmentation. In addition, the scale step of 1 was made possible by the 

relatively small size of the park (1 km2) and therefore minimal time for processing iterations. An 

additional analysis was conducted to assess the repeatability of segmentation processes. The 

entire range of segmentation scales from 2 to 30 was repeated 5 times each and the resulting 

segments were visually compared. This thorough analysis of this size range of segmentation 

scale was needed to determine the optimal object size for object-based forest stands 

segmentation.  

The color and shape ratios are inversely proportional to each other in the homogeneity 

criterion. The shape of each image object approaches that of a circle as the shape value 

approaches a value of 1.0. Therefore, if the segmentation scale is consistent (e.g., 18) and the 

color to shape ratio decreases, forest segment boundaries became less complex and segment sizes 

became more uniform (see Figure 2.2) when compared to forest stands in the manually 

interpreted CRMS database (see Figure 2.1). Since a value of 0.9 for this ratio was found to 

produce a pattern most like that of the manual map, this value was used for the entire subsequent 

analysis. All segmentation procedures were performed using only brightness values of the four 

spectral bands.  

Segmented images across entire segmentation scales were exported to polygon vector files 

of ArcView Shapefile format to compute average local variance and Moran’s I indices. The 

standard deviations of image objects’ spectral reflectance and an average for all the segments 
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were computed from the brightness values of NIR band. These average variances were then 

graphed as a function of segmentation scale. Moran’s I indices were computed from the mean 

values of NIR band of the segmented images in order to examine between-object spatial 

autocorrelation at each scale. The contiguity matrix, used for computing the Moran’s I, was 

calculated from the squared inverse Euclidean distance between segment centroids.  

 

 

 

Figure 2.2. Different shapes of image objects with a constant segmentation scale of 18, but 

decreasing ratios of color to shape. Image objects derived from the color criterion of 0.9 (a), 0.5 

(b) and 0.1 (c) 
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2.5 RESULTS AND DISCUSSION 

The image segmentation was performed across the range of segmentation scales (2 to 30). This 

produced a range of sizes and numbers of image objects (Table 2.1). The segmentation across the 

entire range of scales (2 to 30) was repeated 5 times, with no discernable difference in the 

number and average size of segments, as well as the calculation of local variance and Moran’s I 

autocorrelation. 

 

 

Table 2.1. Average sizes and numbers of image object produced by the image segmentation. 

Scale Average size 
(m2) 

No. of 
image objects Scale Average size 

(m2) 
No. of 

image objects
2 50 13,182 17 6,207 107 

3 125 5,321 18 6,991 96 

4 228 2,907 19 8,407 79 

5 378 1,756 20 9,488 70 

6 565 1,175 21 9,767 68 

7 829 801 22 11,451 58 

8 1,094 607 23 12,299 55 

9 1,466 453 24 13,023 51 

10 1,965 339 25 13,283 50 

11 2,424 274 26 13,283 50 

12 2,913 228 27 15,095 45 

13 3,477 191 28 15,445 43 

14 3,907 170 29 16,199 41 

15 4,677 142 30 16,604 40 

16 5,535 120    
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The average sizes of image objects across the range of scales were then compared to the 

average size of association-level forest stands derived from the manual interpretation to identify 

scales associated with under- and over-segmentation (Figure 2.3). Since the average size of the 

CRMS forest stands was 7,002 m2 and the number of forest stands was 94, it can be inferred that 

the segmentation scale of 18 produced segmentation results most closely resembling manually 

interpreted forest stands in shape, size and location.  

 

 

 

Figure 2.3. Average sized image objects resulting from a range of segmentation scales to 

determine under- and over-segmentation of image objects in comparison to the manually 

produced map (7,002 m2). 
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We visually assessed segmentation quality associated with over-, optimal, and under-

segmentation in comparison with manually interpreted forest stands. Figures 2.4a and 2.4b 

indicate over-segmentation of association-level forest stands compared with manual 

interpretation. At a scale of 6, the study area is clearly segmented to excess with over 5 times the 

desired number of segments. At the other extreme, small stands of pure evergreen forest, 

indicated by dashed circles on Figure 2.4a, do not appear in the under-segmented image as 

shown in Figure 2.4c. It is important to note, however, that even at the apparently optimal scale 

of 18 (Figure 2.4d), some small areas of disagreement do exist between the manual and 

automated segmentations. Forest stands, shown in the dashed-circle areas in Figure 2.4d, were 

divided into several image objects that do not match the manual forest stands. 
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Figure 2.4. Segmentation quality compared with manual interpretation: (a) manually produced 

vegetation associations map of GUCO, (b) over-segmentation at the scale of 6, (c) under-

segmentation at the scale of 25, (d) optimal segmentation at the scale of 18. 
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Two different analyses of object local variance and spatial autocorrelation provided 

evidence of 18 and 19 being strong candidates for the optimal segmentation scales in this study. 

The graph of average local variance of image objects over the range of segmentation scale is 

shown in Figure 2.5.  

 

 

 

Figure 2.5. Graph of local variance as a function of segmentation scale. 

 

 

Average local variance increases from a low value of 2.0 at the minimum scale of 2, and levels 

off at the scale of 20. As discussed earlier, we anticipated that the under-segmentation would 

occur at the scale where the graph of local variance began to level off and the optimal scale 

would actually come just before this point. Therefore, Figure 2.5 supports a scale of 19 being 

optimal for forest objects. Additional support for determining the optimal segmentation scale 
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comes from Table 2.1. This table indicates the number and average size of image objects is most 

similar to those of the manually produced forest stands map at the segmentation scale of 18. The 

graph of spatial autocorrelation, as calculated by Moran’s I, versus segmentation scale also 

shows a distinct overall bowl shape with minima at scale of 14 and 18 (Figure 2.6). The lowest 

minimum at scale 18 coincides with the scale that produced the segmentation most similar to the 

manually produced map. It should also be noted that between the scale of 14 and 21, the 

autocorrelation is negative, indicating dissimilarity between adjacent values. The graph confirms 

the expectation that excessive over- and under-segmentation is associated with positive 

autocorrelation, while an optimal segmentation should be associated with the lowest 

autocorrelation. 

 

 

Figure 2.6. Moran’s I indices as a function of segmentation scale. 
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2.6 SUMMARY AND CONCLUSION 

In summary, object-based forest stand segmentation was performed using a 4-m multispectral 

IKONOS image. Visual comparison was made between a vegetation database compiled by 

manual interpretation and segmented images to examine segmentation quality associated with 

over-, optimal, and under- segmentation. Local variance and spatial autocorrelation were utilized 

in an attempt to estimate the optimal scales related to sizes of image objects for forest stand 

segmentation. 

Average local variance was graphed as a function of segmentation scales. The average 

variance was found to increase with the magnitude of the segmentation scale, leveling off at the 

scale of 20 and therefore, indicating an optimal scale of 19. We also expected that the optimal 

segmentation scale would result in image objects similar in number and size to those of the 

manual forest stands before the scale where the graph leveled off. This expectation was validated 

at a scale of 18 which produced the number/size of image objects closet to those of the manual 

interpretation. The average size and number of image objects at the scale of 18 (6,991 m2 and 96, 

respectively) were very close to those of manually interpreted association-level forest stands in 

the park (7,002 m2 and 94, respectively). 

The analysis of spatial autocorrelation indicated that there was high positive correlation 

between segmentation scales and Moran’s I indices calculated for image objects with excessive 

over- and under-segmentation. In contrast, between-object autocorrelation was lowest, and 

indeed negative, when the scale was 18. This supports the scale at which the average size and 

number of segmented image objects were similar to those of manually interpreted forest stands. 

In conclusion, three types of analyses (i.e., number/average size of objects, local variance, 

and spatial autocorrelation) all confirmed that segmentation scales of 18 to 19 are optimal for 



 

 58

obtaining segmented image objects that most closely resemble those of manual interpretation of 

forest stands by vegetation experts. Although the analyses did not agree on the exact same 

optimal segmentation scale, they narrowed the wide range of possible segmentation scales to 18 

or 19. Indeed, users often do not know the order of magnitude to begin for the determination of 

segmentation scale (e.g., 10 or 100). By 1) comparing segmentation results to objects in a dataset 

of known accuracy completeness, and 2) analyzing measures of image variance heterogeneity 

and spatial autocorrelation vs. segmentation scale, it is now possible to propose an image 

analysis methodology that may be useful for identifying optimal segmentation scales. 

Researchers, for example, could perform a rough cut of segmentation at a few scales between a 

wide range of (e.g., 5, 10, 15, 20) and then graph local variance and Moran’s I. The shapes of 

these graphs will reveal scale ranges most likely to be associated with optimal image object sizes. 

The local variance graph will level off and Moran’s I will dip to negative values. OBIA 

researchers can then target specific scales (e.g., 10-15) and avoid wasting time for segmentation 

at non-optimal scales. It is hoped that these results will lead to more automated procedures of 

segmentation for the extraction of high quality features from very high resolution digital images. 
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CHAPTER 3 

 

FOREST TYPE MAPPING USING OBJECT-SPECIFIC TEXTURE MEASURES FROM 

MULTISPECTRAL IKONOS IMAGERY: SEGMENTAITON QUALITY AND IMAGE 

CLASSIFICATION ISSUES4 

 

 

 

 

                                                 
4 Kim, M., M. Madden, and T. Warner. Accepted by Photogrammetric Engineering & Remote 
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ABSTRACT 

This study investigated the use of an object-based image analysis (OBIA) approach with the 

incorporation of object-specific grey-level co-occurrence matrix (GLCM) texture measures from 

a multispectral IKONOS image for delineation of deciduous, evergreen and mixed forest types in 

Guilford Courthouse National Military Park, North Carolina. A series of automated 

segmentations was produced at a range of scales, each resulting in an associated range of number 

and size of objects (or segments). Prior to classification, the spatial autocorrelation of each 

segmentation was evaluated by calculating Moran’s I using the average image digital numbers 

(DNs) per segment. An initial assumption was made that the optimal segmentation scales would 

have the lowest spatial autocorrelation, and conversely, that over- and under-segmentation would 

result in higher autocorrelation between segments. At these optimal segmentation scales, the 

automated segmentation was found to yield information comparable to manually interpreted 

stand-level forest maps in terms of the size and number of segments. A series of object-based 

classifications was carried out on the image at the entire range of segmentation scales. The 

results demonstrated that the scale of segmentation directly influenced the object-based forest 

type classification results. The accuracies were higher for classification of images identified from 

a spatial autocorrelation analysis to have an optimal segmentation, compared to those determined 

to have over- and under-segmentation. An overall accuracy of 79 % with a Kappa of 0.65 was 

obtained at the optimal segmentation scale of 19. The addition of object-specific GLCM multiple 

texture analysis improved classification accuracies up to a value of 83 % overall accuracy and a 

Kappa of 0.71 by reducing the confusion between evergreen and mixed forest types. Although 

some misclassification still remained because of local segmentation quality, a visual assessment 
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of the texture-enhanced OBIA classification was generally agreeable with manually interpreted 

forest types. 

 

INDEX WORDS: Object-based image analysis, Segmentation quality, Grey-level co- 

occurrence matrix, Forest type classification 

 

3.1 INTRODUCTION 

Natural resources managers have relied on the manual interpretation of aerial photographs since 

the 1940s and automated classification of medium resolution satellite image data since the 1970s 

(Colwell, 1960; Heller, 1975; Hoffer and Staff, 1975; Jensen, 1979; Lachowski et al., 2000). 

Large-scale color infrared (CIR) aerial photographs have been manually interpreted to develop 

detailed forest databases and manage resources in state and federal conservation lands (Welch et 

al., 1995; Lund et al., 1997; Welch et al., 1999). Manual interpretation to identify forest stands 

from aerial photographs is typically performed by human interpreters using basic image 

interpretation elements of tone, texture, shape, size, pattern, and associations (Avery, 1962; Teng 

et al., 1997). Although this technique provides a high level of detail, it is a labor intensive 

classification of forest types from digital imagery (Welch et al., 2002; Read et al., 2003). 

Very high spatial resolution (VHR) satellite imagery with spatial resolutions of similar 

magnitude to those of aerial photographs (1-4 m pixels) became available for resource inventory 

and monitoring with the successful launch of commercial imaging satellites in the late 1990s 

(Ehlers et al., 2003; Ehlers, 2004). The VHR imagery is anticipated to be an alternative to aerial 

photos for characterization of forest structure and dynamics using automatic image classification 

techniques. In recent years, for example, IKONOS imagery has been frequently utilized for 
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forest/vegetation mapping purpose using pixel-based image classification methods (Franklin et 

al., 2001a; Asner and Warner, 2003; Read et al., 2003; Wang et al., 2004a; Wulder et al., 2004; 

Metzler and Sader, 2005; Souza and Roberts, 2005).  

Pixel-based approaches, however, have limitations for use with VHR image classification 

because high spectral variability within classes decreases classification accuracy (Woodcock and 

Strahler, 1987; Marceau et al., 1990; Shiewe et al., 2001; Yu et al., 2006; Lu and Weng, 2007). 

Pixel-based approaches also ignore the context and the spectral values of adjacent pixels (Fisher, 

1997; Townshend et al., 2000; Brandtberg and Warner, 2006). Various image classification 

techniques have been developed in remote sensing research, including object-based, textural, and 

contextual image classifications, in order to reduce the limitations associated with VHR images 

(Guo et al., 2007; Lu and Weng, 2007). In this study, we employ an object-based image 

classification approach with the incorporation of texture for automatically interpreting forest 

types from VHR satellite imagery.  

 

3.1.1 Object-based image analysis and object-specific texture 

The object-based image analysis (OBIA) approach has the potential to overcome inherent 

problems of high spectral variability within the same land cover classes in VHR imagery (Yu et 

al., 2006). The OBIA approach has been recognized as an important research area since the late 

1990s, partly in the hope that this approach will emulate the human interpreters’ ability to 

identify and delineate features of interest (Blaschke and Strobl, 2001; Schiewe et al., 2001; 

Blaschke, 2003; Benz et al., 2004; Meinel and Neubert, 2004). 

Two steps typically involved in OBIA are: 1) image segmentation to produce image 

objects (or segments) that are relatively homogeneous groups of pixels; and 2) image 
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classification based on these image objects. The quality of segmentation is known to influence 

the accuracy of image classification (Dorren et al., 2003; Meinel and Neubert, 2004; Addink et 

al., 2007). Blaschke (2003) suggests estimation of the appropriate size of image objects (i.e., 

optimal segmentation scale) is a critical, but challenging, issue in OBIA. In addition, Dorren et al. 

(2003) and Ryherd and Woodcock (1996) emphasize the importance of image object size in 

forest mapping. However, there have been few studies to investigate the relationship between 

segmentation quality and forest type classification using VHR satellite imagery compared to a 

reliable reference data set. For example, with a manually interpreted and field verified data set 

for comparison, it is possible to examine how accurately object-based image classification can 

delineate the boundaries of forest types, and to investigate optimal segmentations for forest type 

mapping.  

Even though there have been a number of attempts to determine optimal segmentation 

(Wang et al., 2004a; Kim and Madden, 2006; Feitosa et al., 2006; Kim et al., 2008), there are no 

specific guidelines on this issue and the selection procedure remains highly dependent on trial-

and-error methods which subjectively influence segmentation quality (Definiens, 2004; Meinel 

and Neubert, 2004). For this reason, defining an optimal segmentation for the object-based 

classifications of various landscape units on the ground and developing methodologies for 

estimating the optimal segmentation can be regarded as urgent research issues. An example of a 

methodology to determine the appropriate segmentation for forest stands delineation is the 

spatial autocorrelation analysis employed by Kim et al. (2008). They performed a series of image 

segmentations and found three levels of segmentation in terms of spatial autocorrelation: over-

segmentation, optimal segmentation, and under-segmentation. Optimal segmentation is 

considered a segmentation that produces desired image objects of the lowest autocorrelation in 
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terms of spectral reflectance. On the contrary, over- and under-segmentations result in image 

objects of higher autocorrelation than optimal segmentation. Kim et al. (2008) computed and 

graphed Moran’s I values across various segmentation scales to find these three levels of 

segmentation quality for forest stands. 

In addition, the problem of within-class spectral variation of VHR imagery can 

potentially be addressed by an OBIA approach that uses a combination of spectral and texture 

information (Lu and Weng, 2007). The incorporation of texture in pixel-based classification 

approaches is a recurrent theme in remote sensing literature and has been successfully used to 

improve the accuracy of pixel-based forest/vegetation mapping with VHR satellite imagery 

(Zhang, 1999; Ferro and Warner, 2002). For example, Wang et al. (2004b) utilized first- and 

second-order texture measures to map mangrove species from VHR satellite images such as 

IKONOS and QuickBird. 

The grey-level co-occurrence matrix (GLCM) (Haralick et al., 1973; Haralick and 

Shanmugam, 1974) is one of the most common algorithms for computing texture measures 

(Coburn and Roberts, 2004; Franklin et al., 2000, 2001a, 2001b; Zhang et al., 2004). Common 

pixel-based texture is dependent on the size of the moving window (also called the kernel), 

specified by a particular number of columns and rows, used in the texture calculation. In OBIA, 

texture is essentially computed for non-overlapping irregularly-shaped “windows” that 

correspond to individual image objects (Benz et al., 2004). We term such texture object-specific 

texture to distinguish it from texture computed with overlapping, moving kernels. When using 

kernel-based texture, it has been reported that between-class texture tends to degrade the overall 

performance of kernel-based texture classification (Ferro and Warner, 2002). However, between-

class texture is potentially excluded by computing texture based only on pixels from within the 
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boundary of an image object, as long as the quality of the segmentation is reliable. In addition, 

because image objects can potentially vary in size, object-specific texture is not inherently 

limited to a single scale to the extent that a single fixed-kernel size texture is limited. Hay et al. 

(1996) conducted a study utilizing object-specific texture measures which were computed within 

individual triangulated areas, the vertices of which were derived from the centers of tree crowns. 

Although they did not adopt an image segmentation procedure, their calculation of texture is 

similar to that of the object-specific texture adopted in this study and they found forest stand 

classification could be improved by adding texture information computed from triangulated areas 

of tree crowns. 

 

3.1.2 Research objectives 

The overall research objective was to investigate object-based classification with GLCM texture 

measures, using a case study of forest type mapping in the Eastern U.S., 4-m multispectral 

IKONOS imagery, and a comparison with a reliable manually interpreted forest data set.  

The overall research objective was addressed through three research questions: 

1) Does segmentation quality, associated with segmentation scale, directly influence the 

classification results of forest types from VHR satellite imagery? If so, which segmentation is 

optimal for forest type mapping?   

2) Can we determine optimal segmentation scale(s) prior to actual object-based forest 

type classification? 

3) Will classification accuracies be improved by adding texture measures in object-based 

image classifications? If so, for what forest types? 
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The first question is closely associated with finding optimal segmentation of meaningful 

image objects for forest type classification related to shape, size, and placement. Although 

segmentation can be conducted across all possible scales, there is no guideline to determine what 

scale will produce optimal segmentation or to estimate the scale before actual image 

classification. In this study, a series of object-based forest type classifications was performed to: 

1) examine the effect of segmentation quality on classification results; 2) evaluate optimal 

segmentation scales for forest type mapping; 3) confirm the validation of spatial autocorrelation 

analysis for estimating optimal segmentation; and 4) compare the effects of object-specific 

texture measures on forest type classification with a benchmark of a manually interpreted and 

field verified forest stands database. In addition, the boundary delineation of forest types from 

object-based classification was compared to the boundaries of a forest stands database derived 

from manual interpretation. 

 

3.2 STUDY AREA AND DATA 

The study site is the National Park Service (NPS) Guilford Courthouse National Military Park 

(GUCO) which is located in Greensboro, North Carolina (Figure 3.1). The geographic 

coordinates of the site are 36° 07'39'' - 36°08'11'' N, and 79°49'56'' - 79°50'58'' W. The National 

Military Park is about 1 km2 in area, and it is located in a region experiencing rapid urban sprawl 

(Hiatt, 2003). This remaining green space is heavily used for recreation by the surrounding 

residents, placing increasing pressure on park managers to protect its natural and cultural 

resources. The park is managed to preserve the vegetation and landscape of the battlefield in a 

state as similar as possible to that of the time of the American Revolution. 



 

 70

 

Figure 3.1. The Guilford Courthouse National Military Park study area depicted in a false color 

multispectral IKONOS image (bands 4, 3, and 2 as RGB). 

 

 

The vegetation of the GUCO park was mapped by the UGA-CRMS in conjunction with 

NPS and NatureServe, as a part of the USGS-NPS National Vegetation Mapping Program 

(Madden and Jordan, 2004; NPS, 2008). CIR aerial photographs, acquired on 20 October 2000, 

at 1:12,000 scale, were utilized for manual interpretation of vegetation based on the National 

Vegetation Classification System (NVCS) with 19 association (community)-level forest classes 

for the GUCO park. An independent field-based assessment performed by NatureServe, a non-

profit conservation organization, indicated that the overall classification accuracy of the GUCO 

vegetation geodatabase was 83 %, with a Kappa of 0.81 (NatureServe, 2007). In this study, we 

collapsed the 19 floristic forest associations into 3 physiognomic formations (Figure 3.2): 

deciduous broad-leaved forest (DF), evergreen needle-leaved forest (EF), mixed evergreen-
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deciduous forest (MF). These classes approximate the upper L3-Formation Hierarchy Level of 

the Federal Geographic Data Committee (FGDC) National Vegetation Classification Standard 

Version 2 (Draft) and will hereafter be referred to as forest types (FGDC, 2007). 

 

 

 

Figure 3.2. Forest types of GUCO park from the CIR manual interpretation. 

 

 

A multispectral IKONOS image with 8-bit radiometric resolution and 4-m spatial 

resolution was used for object-based forest type classifications of the park. The IKONOS image 

was acquired on 6 July 2002 (see Figure 3.1) and rectified to a 1999 USGS digital orthophoto 

quarter quadrangle (DOQQ) with a root-mean-square-error of ±4 m. The CRMS vegetation 

geodatabase was employed to obtain training data sets for individual forest types and samples for 
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evaluating classification accuracy. The sample points were obtained by stratified random 

sampling method and verified using the DOQQ and CIR air photos. 

 

3.3 METHODS 

In order to compare the different OBIA classification strategies, a systematic series of 

classifications was undertaken. Before image segmentation and classification, we masked out 

non-forest areas such as pastures, home-sites, cemeteries and roads since the main concern of our 

study focused on forest types. 

A series of segmentations was conducted using Definiens Developer Version 7.0 

software. All spectral bands of the masked IKONOS image were used in the segmentations. 

Segmentations were produced using Definiens scale parameters (hereafter referred to as 

“scales”) varying from 2 to 29, in steps of 1, producing a total of 28 segmentations. We chose 29 

as a maximum scale because at this scale the largest image object was 45,920 m2, which is 

similar to the maximum size of forest stands produced by the manual interpretation (46,286 m2). 

The values of 0.1 and 0.9 were chosen for the ratios of shape and color, respectively. Each 

segmentation, produced from the entire range of segmentation scales, was separately processed 

using object-based forest type classification. 

Spectral signatures of individual forest types were extracted from the four bands of the 

masked IKONOS image by using training data sets identified from the CRMS geodatabase, and 

then supervised object-based image classifications were performed by standard nearest neighbor 

classifier implemented in Definiens Developer. For these initial classifications, we utilized only 

the spectral values of the image to find the effect of segmentation quality and optimal 

segmentation for object-based forest type classification. 
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For the classifications involving object-specific texture classification, eight GLCM 

texture measures were employed: angular second moment (ASM), contrast (CON), correlation 

(COR), dissimilarity (DIS), entropy (ENT), homogeneity (HOM), mean (MEAN), and variance 

(VAR). The object-specific texture measures were computed using Definiens Developer from the 

near infrared (NIR) band of a segmentation which resulted in the highest overall classification 

accuracy when using spectral information alone. The NIR band was chosen for this segmentation 

because it contained the greatest range in spectral brightness values, and also carries important 

information for differentiating deciduous and coniferous species. A directionally invariant 

texture measure was obtained by calculating the mean of the texture results in all four directions 

(0°, 45°, 90°, and 135°), which was then assigned to the associated image object. These object-

specific texture measures were entered into forest type classifications as additional bands. 

 

3.4 ACCUARCY ASSESSMENT 

Based on the assumption that the manual map represented an optimal classification, overall 

accuracy and Kappa coefficient were employed to provide summary measures, and conditional 

Kappa coefficients to quantify accuracies of individual forest types based on agreement with the 

manual interpretation of forest types. A conditional Kappa coefficient indicates the classification 

accuracy of each individual class (Gong et al., 1992), and it can be used to compare individual 

class differences between distinct classifications (Coburn and Roberts, 2004).  

In addition, error maps were generated to explore the spatial distribution of differences 

between the classifications. The CRMS forest type Shapefile was rasterized with 4-m pixel size 

and overlaid on the classified images in order to generate error maps which displayed the spatial 

distribution of differences between the automated OBIA classifications and the manual mapping, 

and to compute the percentages of classification confusions among three forest types. 
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3.5 RESULTS AND DISCUSSION 

3.5.1 Segmentation quality for forest stands and spatial autocorrelation 

Figure 3.3 illustrates a visual comparison of how the segmentation scale influences the quality of 

image segmentations. Figure 3.3a shows the manually interpreted community-level forest stands 

considered as the smallest unit on the GUCO park. Vegetation mapping for National Parks is 

normally carried out with a minimum mapping unit (MMU) of 0.5 ha (5,000 m2), however for 

GUCO Park, a much smaller MMU was realized because photointerpreters included smaller 

mappable units of discernable forest communities. Thus, the smallest forest stand mapped was 

240 m2, with an average size of 4,025 m2. The other parts of Figure 3.3 illustrate three levels of 

segmentation at four scales.  

The results at smaller segmentation scales were highly over-segmented, and the size of 

image objects was much smaller than the manually-interpreted forest stands, as shown in Figure 

3.3b. As the scale increases, the segmentation results start to resemble the forest stands of the 

manual interpretation. In particular, the scales of 18 and 19 produced image segmentations most 

similar to the manually interpreted forest stands. Even at a scale of 18, the dashed-circle areas in 

Figure 3.3c indicate manually-interpreted forest stands that were divided into several image 

objects on the segmented image. Conversely, some forest stands on the manually interpreted 

database corresponded to merged image objects as indicated by arrows in Figure 3.3c. The other 

segmentation at scale of 19 showed several image objects produced with the scale of 18 were 

merged further and formed larger image objects illustrated by arrows in Figure 3.3 d. 

Nevertheless, the segmentation from the scale of 19 was relatively similar to that of scale 18. At 

a scale of 26, the image was under-segmented, particularly in areas indicated by arrows (Figure 

3.3e). These areas were composed of several image objects at scales of 18 and 19, but at the  
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Figure 3.3. Over- and under-segmentation compared to manual interpretation: (a) manually-

interpreted map, (b) over-segmentation at the scale of 4, (c) optimal segmentation at the scale of 

18, and (d) optimal segmentation at the scale of 19, and (e) under-segmentation at the scale of 25. 

 

 

scale of 26, each area was represented as a single image object where more than two forest types 

were included.  

In a previous evaluation of segmentation quality for GUCO park, Kim et al. (2008) found 

that optimal segmentations occurred at scales that were close to manually-interpreted forest 
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stands in terms of number and average size (Figure 3.4). The average sizes of image objects at 

the scales were 4,432 and 6,608 m2, respectively. These object sizes are comparable to the 

average size of manually interpreted forest stands (4,025 m2) indicating automatic segmentation 

can potentially delineate forest stands at least similar to that obtained from a manual 

interpretation. 

In addition to image object size, quality of segmentation can be assessed by using spatial 

autocorrelation. Kim et al. (2008) assumed that with over-segmentation, as in Figure 3.3b, 

neighboring image objects would be spatially autocorrelated due to their similar mean spectral 

values. Similarly, the spatial autocorrelation of neighboring objects would be high with under-

segmentation (as in Figure 3.3e) as the segments would tend to comprise mixtures of spectral 

values.  

 

 

 

Figure 3.4. Median size and number of image objects produced at each segmentation scale. 
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On the other hand, they suggested that the least similarity in spectral values of adjacent segments 

would indicate optimal segmentation. Kim et al. (2008) found that over- and under-

segmentations occurred when Moran’s I index values were positive, while optimal segmentation 

was associated with lowest, even negative, index values (Figure 3.5). 

 

 

 

Figure 3.5. Moran’s I graphed as a function of segmentation scale. The figure was reprinted with 

permission of Springer Science and Business Media. 

 

 

3.5.2 Object-based Spectral Classification  

The relationship between classification accuracy and segmentation scale is shown in Figure 3.6.  
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Generally, the accuracy rises from the smallest scale of 2, with a peak accuracy at the scale of 19 

(overall accuracy 79 % and Kappa 0.65). By comparison, the scale of 18, which was determined 

to be the optimal scale based on image object size, has an overall accuracy of 76 % with a Kappa 

of 0.57.  

 

 

 

Figure 3.6. Object-based classification accuracies graphed against segmentation scales. 

 

 

In general, Figure 3.6 shows lower overall classification accuracies for the scales that 

produced over- and under-segmentations, and higher accuracies for those that produced more 

optimal segmentations. The accuracies of forest type classification were directly influenced by 

the quality of segmentation related to the average size of image objects (see Figure 3.4). Higher 
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classification accuracies were obtained at segmentations that resemble the average size of forest 

stands from the manual interpretation. This result supports our hypothesis that optimal 

segmentation scales for forest type mapping can create a meaningful segmentation that resembles 

stand-level forest polygons on manual interpretation, and the appropriate scale can be estimated 

by computing Moran’s I values, and graphing them against segmentation scales. As shown in 

Table 3.1, at the scale of 19, individual classification accuracies of  deciduous forest based on 

spectral information alone were 85 % and 90 % for producer’s and user’s accuracies, 

respectively, with a Kappa of 0.76. However, the producer’s accuracy of evergreen forest and the 

user’s accuracy of mixed forest were 62 % and 61 % with Kappa of 0.64 and 0.52, respectively. 

Figure 3.7a illustrates a classification result that was derived at a scale of 19 with only spectral 

bands. 

 

 

Table 3.1. Error matrix of an object-based classification at the scale of 19 using spectral bands. 

  Reference 
  DF EF MF

User’s accuracy 
(%) 

DF 144 13 3 90 

EF 11 46 6 73 

C
lassification MF 15 15 47 61 

Producer’s accuracy (%) 85 62 84  

Overall accuracy: 79 %, Kappa coefficient: 0.65 
DF Kappa coefficient: 0.76 
EF Kappa coefficient: 0.64 
MF Kappa coefficient: 0.52 
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In order to compare the edge boundaries and placement of image segments from the 

optimal scale of 19 vs. manually interpreted forest stands, the two data sets were overlaid to 

produce an “error” map as shown in Figure 3.7b. The classification error map depicts 

misclassifications visually and quantitatively between the automatic classification and the 

manual interpretation with differences generally being less than 10 %. The percentage of 

misclassification between deciduous and evergreen forest types was 8 % and that between 

deciduous and mixed forest was 6 % when compared with manual interpretation. The confusion 

between evergreen and mixed forest types was 6 %. The spectral information alone in object-

based forest type classification produced higher confusion between pure and mixed forest types 

than between pure forest types. Therefore, object-specific texture classifications were adopted to 

reduce this classification confusion.  
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Figure 3.7. Object-based classification of spectral data at a scale of 19 (a) and differences 

between the object-based classification and the manually interpreted map (b). 
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3.5.3 Object-specific Texture Classification 

A total of eight object-specific GLCM texture measures were computed based on the 

segmentation that resulted in the best overall classification accuracies, i.e., at the scale of 19. 

Texture measures for the segmented objects were individually combined with the spectral bands 

of mean brightness values, and then entered into each object-based texture classification. Object-

specific texture classification accuracy results using a single texture measure ranged from 60 % 

(Kappa of 0.37) for GLCM homogeneity, to 79.3 % (Kappa of 0.65) for GLCM mean (Figure 

3.8). Compared to the 79 % accuracy (Kappa of 0.65) of object-based classification using 

spectral bands alone, the addition of the GLCM correlation texture measure enhanced overall 

accuracy by just 0.3 %, and the incorporation of the remaining texture measures, except angular 

second moment and contrast, decreased classification accuracy. 

As another way of using texture measures, the multiple texture analyses, which 

incorporated multiple texture measures simultaneously for object-specific texture classifications, 

were employed using the same segmentation scale (i.e., 19). Seven combinations of GLCM 

texture measures were investigated: all combinations of two, three, four, five, six, seven and 

eight texture measures. Figure 3.9 illustrates the minimum, median, maximum, first quartile and 

third quartile of overall classification accuracies for texture combinations with 2 to 7 measures. 

The incorporation of all 8 texture measures resulted in an overall accuracy of 78 %, with a Kappa 

of 0.64. The highest overall classification accuracies, with relatively uniform values of 

approximately 83 % and Kappa values of 0.71, were obtained with selected combinations from 

two to five texture measures. 

 

 



 

 83

 

Figure 3.8. Classification accuracies using individual GLCM texture measures. 

 

 

Figure 3.9. Box plot illustrating classification accuracies across possible combinations of GLCM 

texture measures. Each marker within individual boxes represents median values and the number 

on the abscissa represents the number of texture measures entered into classification. 
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For example, for just two texture measures, the combination that produced the highest accuracy 

was GLCM correlation and variance. The highest accuracy for three texture measures was 

obtained with GLCM correlation, variance, and dissimilarity. The highest accuracy for four 

texture measures was acquired with two different groups: GLCM contrast, correlation, 

dissimilarity and variance, and GLCM correlation, dissimilarity, mean and variance. The highest 

accuracy that was obtained with five texture measures was GLCM contrast, correlation, 

dissimilarity, mean and variance. A notable feature of this multiple texture analysis is that the 

incorporation of GLCM homogeneity texture measure generally degraded classification 

accuracies of the object-based texture classifications. 

Besides these enhanced overall classification accuracies and Kappa coefficients using 

combined spectral and texture information, there also was notable improvement of individual 

classification accuracies for evergreen and mixed forest types. For example, as shown in Table 

3.2, classification accuracies of evergreen and mixed forest types were generally improved 

(ranging from 72 % to 88 % correct) by incorporating multiple texture measures in terms of 

producers’ accuracy, user’s accuracy and conditional Kappa coefficient. By adding GLCM 

contrast, correlation, dissimilarity and variance, the producer’s and user’s accuracies of 

evergreen forest type were improved by 16 % and 9 %, respectively, when compared with those 

accuracies from spectral information alone. In addition, the user’s accuracy of mixed forest type 

was enhanced by 11 % with four object-specific GLCM texture measures. Gains of 0.12 and 0.13 

in conditional Kappa coefficients for mixed and evergreen forest types, respectively, were 

observed, although there was a slight decrease (i.e., 0.04) in the conditional Kappa coefficient of 

deciduous forest type. 
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Table 3.2. Error matrix of an object-based classification at the scale of 19 using spectral bands 

and texture measures of GLCM contrast, correlation, dissimilarity and variance. 

  Reference 
  DF EF MF

User’s accuracy 
(%) 

DF 145 13 7 88 

EF 10 58 3 82 

C
lassification MF 15 3 46 72 

Producer’s accuracy (%) 85 78 82  

Overall accuracy: 83 %, Kappa coefficient: 0.71 
DF Kappa coefficient: 0.72 
EF Kappa coefficient: 0.76 
MF Kappa coefficient: 0.65 

 

 

The other GLCM texture combinations, mentioned above, also enhanced classification 

accuracies by reducing the classification confusion between evergreen and mixed forest types. 

Overall, the accuracy of object-based classification could be improved through the incorporation 

of multiple GLCM texture measures, although not in all cases as shown in Figure 3.9 by the 

variation between the minimum and maximum accuracy achieved. Figure 3.10a illustrates an 

OBIA forest type classification result produced by using spectral information and GLCM texture 

measures of contrast, correlation, dissimilarity and variance. 
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Figure 3.10. Forest type classification result (a) and misclassifications on object-specific texture 

classification using GLCM contrast, correlation, dissimilarity and variance (b). 
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This object-specific GLCM multiple texture analysis raises the question of why overall 

classification results were not enhanced beyond 83 %. To answer this question, we produced a 

classification error map using an automatic classification result from a texture combination of 

GLCM contrast, correlation, dissimilarity and variance and the manually-interpreted forest 

stands, as shown in Figure 3.10b. In addition, we calculated the percentages of confused 

classification among the three forest types. The confusion percentages of DF-EF and DF-MF 

were the same as those from the spectral classification (i.e., 8 % and 6 %, respectively) even 

though the classification confusion between evergreen and mixed forest types was lowered to 

2 %. As illustrated in Figure 3.10b, the confusion between deciduous and evergreen forest types 

came from transition areas between the two types and local segmentation result that did not 

produce smaller evergreen stands designated by circles in Figure 3.10b. In addition, the 

confusion between deciduous and mixed forest types resulted from local segmentation quality 

even at the optimal scale of 19. The classification confusion between evergreen and mixed forest 

types also occurred because of local segmentation quality even after adding object-specific 

GLCM multiple texture measures. The confusion percentages and error map of this study 

revealed that the object-based forest type classification result could not perfectly resemble the 

manual interpretation possibly because of poor segmentation quality even at the optimal scale of 

19 or due to the subjective nature of manual interpretation. At any rate, the quality of 

segmentation has a critical effect on forest type classifications when using object-based 

classification and VHR satellite imagery.  

Overall, the object-based classification combined with object-specific GLCM texture 

produced a map of forest types that most closely resembled the manually interpreted forest type 

map (see Figure 3.10a). In addition, the best object-based classification could be converted to a 
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vector polygon format representing forest type stands. This vector file of forest type stands can 

be used for further GIS analysis, e.g., vegetation modeling or forest fire fuels analysis.  

 

3.6 CONCLUSIONS 

Forest type mapping for a National Park unit was performed using an object-based approach 

applied to a 4-m multispectral IKONOS image acquired during the summer. The classification of 

forest types, including deciduous broadleaf, evergreen coniferous and mixed forests, was 

achieved through exploration of the effects of combining spectral and contextual texture 

information. A manually interpreted forest stands geodatabase was employed as a benchmark to 

investigate the extent to which object-based segmentation and classification can emulate a field-

verified manual interpretation of forest types. 

Important findings associated with object-based forest type classification on the IKONOS 

image include: 

1) The level of segmentation directly influenced forest type mapping when adopting an 

object-based approach. In general, classification accuracies were lower for data sets 

resulting from over- and under-segmentation than optimal segmentation. Overall 

classification accuracy for OBIA results with extreme over-segmentation, i.e., at the 

scale of 2, was improved by 31 % (0.42 Kappa) when optimal segmentation (i.e., 19) 

was used. At the optimal segmentation scale of 19, an overall classification accuracy 

of 79 % with a Kappa 0.65 was realized using only with spectral information. Our 

previous study (Kim et al., 2008) showed the number and average sizes of image 

objects obtained at segmentation scales of 18 and 19 were comparable to the number 

and size of forest stands contained in a manually interpreted and field verified forest 

type data set. 
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2) Given the importance of segmentation quality on object-based classification accuracy, 

an objective method of determining the optimal segmentation level was desired. A 

series of object-based classification results demonstrated that a spatial autocorrelation 

analysis, based on Moran’s I index values, could discriminate segmentation levels. 

The analysis yielded lowest, even negative, Moran’s I values at optimal 

segmentations compared with over- and under-segmentations. This analysis is 

anticipated to reduce processing time and labor of selecting appropriate segmentation 

scales for object-based forest type mapping with VHR satellite imagery in 

comparison with a trial-and-error method. 

3) Object-specific GLCM texture measures did not produce a notable increase in 

classification accuracies (ranging from 60 % to 79 % for overall accuracy) when they 

were employed individually with spectral information in classification procedures. 

However, forest type classification results were enhanced by adopting multiple 

texture measures. By employing selected multiple texture analysis, classification 

accuracies were enhanced to 83 % for overall accuracy with Kappa of 0.71 at the 

optimal segmentation of scale 19. These improved results were attributed to reducing 

classification confusion between evergreen and mixed forest types up to 2 %. An 

error map, produced from an OBIA classified image and manual interpretation, 

showed that the placement of image objects only differed by 8 % or less. Some 

misclassification occurred because of local over-segmentation, and other 

misclassification occurred at transition areas between two different forest types.  
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4) It is possible to produce GIS-ready vector polygons of forest type stands from object-

based classification of a VHR satellite image for further GIS analysis, thus enhancing 

the potential for a close coupling between remote sensing and GIS analyses. 

Overall, this study resulted in a forest type map that was similar to that of a manual 

interpretation by adopting object-based image classification with the addition of multiple object-

specific GLCM texture measures. The best classification meets accuracy standards that are 

required for National Park vegetation mapping (over 80 % in overall accuracy).  

With increasing availability of VHR imagery and high demand for mapping natural and 

cultural resources, the OBIA approach offers great potential for automated classification 

techniques that emulate the delineation and classification of manual interpretation. However, it is 

important to develop methodologies that estimate optimal segmentations across various 

landscape units and that enhance the quality of segmentation. In addition, although a single 

segmentation scale was utilized in this study, future research needs to consider multi-scale 

segmentation analyses when employing hierarchical classification scheme. That is because a 

single segmentation scale may not be appropriate for object-based land use and land cover 

classifications. 

In future work, we plan to evaluate optimal segmentation quality by using a spatial 

autocorrelation analysis for other landscapes, e.g., urban or suburban land use and land cover, 

and investigate the relationship between segmentation quality and classification results. Keeping 

the need for future updating of databases within the National Vegetation Mapping Program in 

mind, we plan to perform stand-level forest/vegetation OBIA classification for a large National 

Park like Great Smoky Mountains National Park. In addition, we intend to investigate whether it 
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is possible to find a method to assist researchers in identifying the optimal combination of 

GLCM texture measures for inclusion in OBIA classification. 
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CHAPTER 4 

 

SUMMARY AND CONCLUSIONS 

 

4.1 OVERVIEW 

Object-based image analysis (OBIA) has been considered as an alternative methodology to 

traditional pixel-based approaches in the hope that it resolves the limitations of pixel-based 

classifications with VHR imagery. Image segmentation, a primary step of OBIA, produces image 

objects that are groups of similar individual pixels. The segmentation makes it possible to gather 

spectral, spatial and contextual information of each image segment for use in classification 

procedures. In this sense, OBIA is considered a similar methodology to manual interpretation in 

association with VHR imagery. 

The OBIA approach, however, has an important aspect to be considered in the thematic 

classification of VHR imagery, i.e., segmentation quality. As addressed in the Introduction, the 

estimation of segmentation quality is critical since it has been reported to have a direct effect on 

classification results. For this reason, it is an urgent issue in OBIA to determine the optimal 

segmentation that is assumed to produce the best classification results. In addition, the effect of 

spatial information, i.e., texture, is also an important research issue in automated techniques of 

classification since it has traditionally been a critical element for manual interpretation. This 

research investigated the potential of utilizing OBIA in delineating forest stands mainly in terms 

of the levels of segmentation quality: over-segmentation, optimal segmentation and under-
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segmentation. The estimation of optimal segmentation also was examined by using local 

variance and spatial autocorrelation analysis for stand-level forest delineation. Lastly, the effect 

of GLCM texture measures on forest type classifications was inspected in this research. For the 

research objectives, 4-m multispectral IKONOS imagery was utilized to produce stand-level 

forest segmentation and classify forest types, i.e., deciduous, evergreen and mixed forests, in 

Guilford Courthouse National Military National Park located in Greensboro, North Carolina. A 

1:12,000-scale CIR aerial photograph and the vegetation geodatabase of the CRMS were also 

employed to rectify the IKONOS imagery, determine training samples and derive sample points 

for accuracy assessment. 

 

4.2 SUMMARY 

4.2.1 Estimation of optimal segmentation quality 

A series of segmentations was conducted with a range of scales from 2 to 30, and the numbers 

and average sizes of image objects (i.e., association-level forest stands) at all scales were 

computed and compared with those of the vegetation geodatabase of the CRMS that was created 

by manual interpretation. Then, each segmentation result was visually assessed with the forest 

stands of the vegetation geodatabase in terms of segmentation quality. Lastly, average local 

variances and Moran’s I indices were graphed as a function of segmentation scales as indicators 

of segmentation quality associated with forest stands. 

The visual evaluation of forest stands segmentation discovered that there were different 

levels of segmentation quality associated with scales. It was found that the average size of forest 

stands was 7,002 m2 with 94 for the number of forest stands based on the manual interpretation. 

According to Table 2.1 and Figures 2.3 and 3.4, optimal segmentation results occurred around a 
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scale 18 in terms of the number/size of image objects related to forest stands. The scale produced 

a segmentation with 6,991 m2 and 96 for the average size and number of segments, respectively. 

The segmentation scales, smaller than the potential optimal scale of 18, generated over-

segmentations. For instance, the scale 6 yielded a segmentation that showed excessive 

number/average size of image objects (over 12 times) when compared with the manual 

interpretation. The scale 6 generated a segmentation with average size of 565 m2 and 1,175 

image objects in relation to the number and average size of manually mapped forest stands. At an 

extremely large scale of 30, under-segmentation occurred with the image object number of 40 

and the average size of 16,604 m2. 

The visual assessment of segmentation results confirmed the levels of segmentation 

quality recognized by the number/size (see Figures 2.4 and 3.3). Segmentation results with scales 

18 and 19 were very similar to forest stands of manual interpretation in general shape, size and 

location. However, it was very apparent that smaller scales generated highly detailed over-

segmented results (see Figure 2.4b and Figure 3.4b). On the contrary, under-segmentations of 

mixed classes were acquired with larger scales compared to forest stands from the manual 

interpretation. 

The graph of average local variance leveled off at the scale of 20, which indicated that 

under-segmentation occurred before optimal segmentations came (see Figure 2.6). The 

occurrence of under segmentation was supported by the number/size of image objects and visual 

assessment of segmentation quality. In addition, the graph of Moran’s I indices associated with 

segmentation scales revealed that optimal segmentations occurred at minimum, even negative, 

spatial autocorrelation indicating spectral dissimilarity between adjacent image segments (see 
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Figure 2.6). On the other hand, between-segment correlation resulted in high positive Moran’s I 

values in over- and under- segmentation. 

 

4.2.2 Image segmentation quality and its effect on classification results 

Object-based forest type classifications were performed to examine the relationship between 

segmentation quality, particularly focusing on spatial autocorrelation analysis, and classification 

with a range of segmentation scales of 2 to 29. Forest types included pure deciduous, pure 

evergreen and mixed forests. In addition, this research investigated the effect of GLCM texture 

on forest type classifications of the multispectral IKONOS imagery. 

This research found that the graph of classification accuracies, in general, had a tendency 

to produce lower overall accuracies in over- and under-segmentations and higher accuracies with 

optimal segmentations (see Figure 3.6). Based on the results of Chapter 2, the scales of 18 and 19 

produced optimal segmentations that resembled forest stands of manual interpretation in terms of 

size, shape and location. In fact, the highest overall accuracy of 79 % with a Kappa of 0.65 was 

acquired at the scale of 19, which was improved by 3 % and 0.08 for overall accuracy and Kappa, 

respectively, compared with those from the scale of 18. This result confirmed that the best 

classification of forest types can be obtained from optimal segmentations very similar to the 

stand-level forests of the manual interpretation. In addition, the optimal scale of segmentation 

can be potentially determined by graphing Moran’s I values that are computed with a range of 

scales. 

An error map was created to visually and quantitatively assess misclassifications between 

an automatic classification and a manual interpretation in terms of the edge boundaries and 

placement (see Figure 3.7). According to the error map, the percentage of misclassifications 
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between deciduous and evergreen forests was 8 %, which was less than the 12 % 

misclassifications between pure and mixed forests. This result was also confirmed in an error 

matrix, described in Table 3.1. Deciduous forest was more accurately classified with 85 % and 

90 % of producer’s and user’s accuracies, respectively. On the contrary, evergreen and mixed 

forests were less accurately classified in comparison with deciduous forest (see Table 3.1). 

This research discovered that overall accuracy was improved by 0.3 % with the addition of 

GLCM correlation when a single texture measure was incorporated with spectral bands in forest 

type classification. The additions of other single GLCM textures, including dissimilarity, entropy, 

homogeneity, mean and variance, actually decreased the overall accuracies of classifications 

compared with spectral-only classification (see Figure 3.8). However, classification results were 

found to be enhanced with the addition of multiple GLCM texture measures (see Figure 3.9). 

The use of two to five texture measures produced the relatively highest overall classification 

accuracy of 83 % and Kappa of 0.71. Nevertheless, the addition of multiple GLCM texture 

measures did not always improve classification accuracies as shown in Figure 3.9. 

When it comes to individual classification accuracies, notable gains were achieved for 

evergreen and mixed forest types with the utilization of GLCM contrast, correlation, 

dissimilarity and variance (see Tables 3.1 and 3.2). The accuracy of evergreen forest 

classification was improved by 16 % and 9 % for producer’s and user’s accuracies, respectively, 

and mixed forest type also obtained a gain of 11 % in user’s accuracy. In addition, the gains of 

12 % and 13 % in conditional Kappa coefficients were acquired for evergreen and mixed forest 

types, respectively. The addition of four GLCM texture measures was found to lower 

classification by 8 % confusion between pure and mixed forests with the aid of an error map (see 
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Figure 3.10), derived from the difference between an object-based classification with the texture 

measures and spectral bands at the scale of 19 and the manual interpretation. 

 

4.3 CONCLUSIONS 

This research performed object-based forest stand delineation and forest type classification of 

Guilford Courthouse National Military Park, North Carolina, U.S., with a 4-m multispectral 

IKONOS image. The quality of segmentation was evaluated particularly in terms of scale, i.e., 

the size of image objects, with a benchmark of the CRMS vegetation geodatabase produced for 

the National Park Service. This research also explored a potential to anticipate optimal 

segmentation in a quantitative manner by using average local variance and spatial autocorrelation 

analysis with Moran’s I. In addition, this research explored the relationship between the quality 

of segmentation and the accuracies of classification for deciduous broadleaf, evergreen 

coniferous and mixed forests. Finally, the effects of incorporating spectral and texture 

information on forest type classification results were investigated. 

The quality of segmentation was found to be directly associated with segmentation scale. 

In comparison with a manually-interpreted forest stand geodatabase, three distinct levels of 

segmentation quality were produced: 1) over-segmentation, 2) optimal segmentation and 3) 

under-segmentation. Small scales produced over-segmented images, where a large number and 

small size of image segments were found to compose a single forest stand on the manual 

interpretation. On the contrary, under-segmented images were generated with large scales in a 

way that the average size of image segments became larger and the number of mixed class image 

objects fewer. Thus, there would be a possibility that a single image object contained different 

types of forest. This inclusion of different landscape features decreases the performance of OBIA 
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classification in under-segmentation. An optimal segmentation with an appropriate scale, e.g., 18 

or 19, resembled the forest stands of the manual interpretation in terms of shape, size and 

location. Nevertheless, it was difficult to directly relate the appropriate scale to the average size 

of segments, although it is reported that the average size of image objects is closely related to 

segmentation scale, i.e., scale parameter (Definiens, 2004) (see Table 2.1). In association with 

the difficulty, Blaschke (2003) reported that this importance of determining optimal 

segmentation would be a challenging issue in the OBIA. 

In this research, average local variance anticipated the approximate starting scale of under- 

segmentation. The graph of local variance had a tendency to rise from the smallest scale, i.e., 2, 

and leveled off at a scale of 20. The leveling-off scale occurred after optimal scales that 

generated segmentations resembling the manually-interpreted forest stands in terms of qualitative 

(or visual) and quantitative (number/size of segments) assessments was reached. When it comes 

to spatial autocorrelation analysis, this study produced a bowl-shaped graph of Moran’s I values 

across segmentation scales. In the graph, negative autocorrelation, representing dissimilarity 

between adjacent image objects in spectral values, occurred within a range of segmentation 

scales including the candidates of optimal scale, i.e., 18 and 19. According to the graph of 

Moran’s I values, excessive over- and under-segmentations were associated with positive 

autocorrelation. Taking into account the qualitative and quantitative assessments of segmentation 

quality, the use of average local variance and spatial autocorrelation analysis is anticipated to aid 

OBIA researchers in selecting a range of segmentation scales that will potentially produce 

optimal segmentations. In addition, this approach will play a critical role in reducing the degree 

of selection and processing time related to object-based image classification, particularly with 

VHR imagery encompassing a large area. 
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Object-based forest type classification results based only on spectral information showed 

that the highest overall accuracies occurred in coincidence with optimal segmentation scales of 

forest stand delineation. The results also confirmed an important finding by Dorren et al. (2003). 

In their study, the highest forest type classification result was obtained with a segmentation that 

was very close to real-world forest stands in average size. Frauman and Wolff (2006) found that 

an over-segmented image produced better classification results related urban area mapping. This 

research, however, discovered that excessive over- segmentations resulted in the lowest 

classification accuracies. A possible reason, related to this disagreement, would be assumed that 

an excessive over-segmentation may not reduce spectral variation of the same forest type (i.e., 

within-class spectral variation). Another potential reason would be associated with between-class 

spectral variation, considered to decrease the performance of image classifications, since spectral 

similarity would occur among landscape features in over-segmentation. In association with 

spectral variations, optimal segmentation should have little over-segmentation and no under-

segmentation (Castilla and Hay, 2008), which may also indicate increased between-class spectral 

variation and reduced within-class spectral variation.  

This research here demonstrated that object-specific texture measures aided in improving 

forest type classification results. In particular, the incorporation of multiple GLCM texture 

measures with spectral bands enhanced the overall accuracies of three forest type classifications 

by 4 % of overall accuracy with 0.06 for Kappa. Nevertheless, the accuracy of object-based 

forest type classification was not always improved from the combination of single or multiple 

GLCM texture measures with spectral bands. In addition, the individual accuracies of forest 

types increased with the multiple GLCM texture analysis. This research confirmed a previous 

texture analysis study conducted by Coburn and Roberts (2004). Most studies have attempted to 
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utilize individual texture measures combined with spectral bands in pixel-based image 

classification. Coburn and Roberts (2004), however, incorporated multiple texture, derived from 

a variety of window sizes, with spectral bands of 4-m airborne imagery, into a pixel-based 

classification of pure and mixed forest stands. According to their study, the addition of multi-

scale and multiple texture measures into pixel-based forest type classification gained 13 % of 

overall accuracy compared with spectral-only classification.  

 

4.4 RESEARCH ISSUES IN OBIA 

Object-based image analysis has received increasing attention in remote sensing with VHR 

imagery as a means to tackle the limitations associated with conventional pixel-based 

classification approaches. With the increased availability of VHR remote sensing data, the OBIA 

approach sheds a promising light on feature extraction/thematic classification, and may lead to a 

paradigm shift in remote sensing fields. However, there are some challenging issues to be 

answered in association with OBIA. 

The fundamental levels of the OBIA include segmentation as well as attribution and 

classification (Hay and Castilla, 2008). The attribution of image objects is greatly affected by 

segmentation quality as assessed by classification accuracy when a reference data set is available 

for comparison with OBIA results, as this research utilized the CRMS-NPS vegetation 

geodatabases. In this sense, the quality of segmentation is considered a critical factor in the 

OBIA. This research mainly focused on exploring the relationship between segmentation scale 

and its effect on segmentation quality, particularly in terms of image segmentation with only 

spectral bands. The type of input data, however, also plays an important role in determining the 

quality of segmentation (Blaschke, 2003). Texture, as a spatial information carrier, has 
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previously been entered into image segmentation procedures with spectral information (Hay et 

al., 1996; Ryherd and Woodcock, 1996; Lucieer and Stein, 2005; Kim et al., submitted(a)). 

Besides texture measures, topographic variables such as elevation, aspect and slope also are 

considered as important data sources to decide the locations and types of vegetations under 

interest and enhance classification results (Parker, 1982; Florinsky and Kurakova, 1996; 

Florinsky, 1998; Treitz and Howarth, 2000; Madden, 2004; Boyd and Danson, 2005). In OBIA, 

topographic information has been incorporated with spectral information for vegetation mapping 

and landform unit classification (Domaç et al., 2006; Dragut and Blaschke, 2006; Xu, 2008; 

Chastain et al., 2008; Kim et al., submitted(b)). In addition to spatial and topographic 

information, the OBIA approach has been conducted with the addition of existing GIS layers, 

e.g., transportation and hydrography, and the results of GIS analysis related to proximity 

derivation (Debeir et al., 2002; Burrough et al., 2001; Kim et al., 2008; Kim et al., submitted(b)). 

The inclusion of auxiliary data sets aids in disentangling between-class spectral variations with 

VHR imagery and enhance classification results of landscape features, as described by Kim et al. 

(in press(b)). 

This research has mainly focused on a single-scale segmentation and classification 

approach to automatically interpret forest stands and forest types with VHR imagery. In the real 

world, however, a single scale may not be appropriate to resolve multiple-sized ground features 

taking it into account that the landscape is typically composed of a large number of complex and 

heterogeneous components in size (Hay et al., 2003). In this sense, multi-scale approaches will 

be required to perform feature extraction and thematic classification from image segmentations 

based on multiple spatial dimensions (Hay et al., 2005). Many attempts have been made to 

embody the multi-scale concept in the OBIA literature (Hay et al., 2003; Hay et al., 2005; Hall et 
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al., 2004; Tian and Chen, 2007; Corbane et al., 2008; Kim et al., submitted(a); Kim et al., in 

press(b)). Nevertheless, researchers need to develop a robust methodology to decide optimal 

segmentation scales inherent in multi-scale OBIA approaches. 

A major advantage of the OBIA approach is a potential to utilize spatial information 

related to each image object and contextual information between image segments as human 

interpreters employ image interpretation elements. The spatial and contextual characteristics of 

image objects are critical factors to extract and classify landscape features with spectral 

information in OBIA (Blaschke, 2003). Theoretically, there are a large number of possibilities to 

create and utilize class-separation criteria in the OBIA. Researchers can compute and employ 

distinct types associated with spatial information such as texture and shape for feature extraction 

and thematic classification when using Definiens. It allows researchers to compute GLCM 

texture measures of angular second moment, contrast, correlation, dissimilarity, entropy, 

homogeneity, mean and standard deviation and shape-related criteria of area, asymmetry, border 

index, compactness, elliptic fit, length, main direction, rectangular fit, shape index, width and so 

on. Since users often find the large number of options overwhelming, especially when first using 

OBIA techniques, an attempt should be made to reduce the flood of potential separation criteria, 

and also reduce processing time in object-based analysis research. In addition, the acquisition of 

remote sensing imagery with very high resolution provides researchers with a high level of detail 

for landscape features, which occurs at the expense of data volume and associated image 

processing time for large study areas. Although this is expected to be solved to some extent by 

increased computing power with a parallel processing method, guidance for remote sensing 

practioners is needed to assist in the best selection of input parameters and highest quality of 

segmented image objects. The results of this research contribute to conceptual aspects of 
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automated object-based image processing by providing evidence of methodologies that improve 

classification accuracies and demonstrate best practices for optimal parameters input to OBIA 
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APPENDIX I 

 

KAPPA COEFFICIENT 

 

The accuracy of classification is, in general, evaluated with overall accuracy (OA) and Kappa 

coefficient. The two overall indices of classification accuracy are computed from an error matrix 

(also called contingency table), which are composed of correctly- and incorrectly-classified units 

for individual classes of interest. An overall accuracy means the percent of correctly classified 

classification units to total units, defined as 

 

100)/( ×= nSOA d  

 

where dS  means the sum of diagonal entries in an error matrix and n  denotes the total number 

of classified units.  

Overall accuracy, however, overestimates classification accuracy if the area of a class is 

much larger than those of the other classes. In addition, it does not consider change agreements 

that might occur between sample and reference data. Therefore, Kappa coefficient is employed 

to control the overestimation tendency of overall accuracy by adding all the off-diagonal entries 

of an error matrix during accuracy computation. A Kappa coefficient is also calculated from an 

error matrix, defined as 
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where oP is computed with dividing the number of entries along diagonal in an error matrix by 

the total number of samples and cP  is calculated with marginal distribution of classification and 

reference data in an error matrix. Further detailed description of oP  and cP  is available in Lo and 

Yeung (2002)5. Kappa coefficient ranges from 0 to 1, where 0 means random (by-chance) 

agreement and 1 denotes perfect agreement between classification and reference data. According 

to Congalton (1991)6, A Kappa coefficient greater than 0.8 indicates strong agreement between a 

classification result and a reference data set. A Kappa coefficient between 0.4 and 0.8 represents 

moderate agreement, and a coefficient less than 0.4 poor agreement. 

                                                 
5 Lo, C.P. and A.K.W. Yeung, 2002. Concepts and techniques of geographic information 

systems, Prentice-Hall, Inc., NJ, p. 116. 
6 Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed 

data. Remote Sensing of Environment, 37(1):35-46. 
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APPENDIX II 

 

MORAN’S I 

 

Spatial autocorrelation indicates the relationship of spatial distribution between objects and their 

neighbors and is described as positive, random and negative autocorrelations. Positive 

autocorrelation occurs when spatial features with same attributes cluster in a geographic space. 

On the contrary, even distribution of the features, which have the same attributes, results in 

negative autocorrelation. Random autocorrelation, however, does not have any clustering pattern 

of spatial features with same attributes. 

Moran’s I is a measure to describe spatial distribution pattern of interested spatial objects 

in a geographic area and is computed with a formula: 
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where N is the total number of spatial features, ijw  is the spatial weight between feature i and j , 

X is an attribute value of a spatial feature and X  is the mean attribute value of all spatial 

features of interest. Moran’s I index ranges from -1 to +1, where -1 means perfect negative 
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autocorrelation and +1 perfect positive autocorrelation. A Moran’s I value of 0 indicates random 

distribution, i.e. no-clustering pattern. 

In this research, the quality of segmentation was estimated with spatial autocorrelation 

analysis using Moran’s I indices. The definition of optimal segmentation, particularly related to 

forest types, needs to be made before explaining the result of spatial autocorrelation. A mixed 

forest, literally, is composed of pure deciduous and evergreen trees. A mixed forest area will be 

delineated with several image objects of pure deciduous and evergreen forests in its boundary in 

an over-segmentation with a small scale. Figure A-1 illustrates forest types from manual 

interpretation and automatic object-based classifications. When compared with manual 

interpretation (Figure A-1a), an extreme small scale did not produce appropriate image segments 

to encompass deciduous and evergreen trees in their boundary, and individual pure forests were 

classified as they were in a classification result, shown in Figure A-1b. On the contrary, pure 

forests were well classified particularly for evergreen forests at a scale of 10, and mixed forests 

also produced as forest patches (Figure A-1c). 

The estimation of optimal segmentation for forest stands was made with a spatial 

autocorrelation analysis using Moran’s I in this research. Segmentation results from a range of 

scales were converted to shapefiles that have the mean spectral values of near-infrared band for 

individual image objects. Then, individual shapefile were entered into ArcGIS (version 9.3) to 

compute Moran’s I values with inversely-squared Euclidean distances. According to the graph of 

Moran’s I values (see Figure 2.6), over-segmentations resulted in higher values than optimal 

segmentations. As illustrated in Figure 3-3(b), an over-segmentation produced many image 

objects for each forest stand, which would indicate that they are clustered with similar spectral 

reflectance in relation to a near-infrared band of IKONOS imagery. Under-segmentations 
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resulted in larger image segments that included different forest types and would generate similar 

spectral mixture. Therefore, image objects in under-segmentations would also be clustered with 

similar spectral reflectance, which generated relatively higher Moran’s I values than optimal 

segmentations. In this spatial autocorrelation analysis, optimal segmentations were hypothesized 

to produce relatively less correlated image objects with spectral values. Figure A-2 illustrates 

choropleth maps that were generated with the equal interval between minimum and maximum 

values using 3 classes. As shown in the figure, over- and under-segmentations at scales of 5 and 

27, respectively, show a spatial pattern where neighboring image objects with similar spectral 

values are clustered than an optimal segmentation at scale 18. 

Taking into consideration optimal segmentation, a spatial autocorrelation analysis needs to 

be performed with the pre-defined size of minimum mapping unit (MMU) particularly for 

object-based classification of deciduous, evergreen and mixed forests. It is essential particularly 

to produce appropriate boundaries of mixed forest stands and is anticipated to improve 

classification result as well as segmentation quality. 
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Figure A.1. Manual interpretation (a), GEOBIA classification at a scale 2 with only spectral 

bands (b) and GEOBIA classification at scale 10 with only spectral bands (c). Dark green 

represents deciduous forests, light green evergreen forest and red mixed forests. 

 

 
 

Figure A.2. An over-segmentation at scale of 5 (a), an optimal segmentation at scale of 18 (b) 

and an under-segmentation at scale of 27 (c). 
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APPENDIX III 

 

LIST OF ACRONYMS 

 

 Acronym Full description 
A   
 ASM Angular Second Moment 
 ASPRS American Society of Photogrammetry and Remote Sensing 

B   
 BD Bhattacharya Distance 

C   
 CE Circular Error 
 CEGL Community Element Global 
 CIR Color Infrared 
 CON Contrast 
 COR Correlation 
 CRMS Center for Remote Sensing and Mapping Science 

D   
 DF Deciduous Forest 
 DIS Dissimilarity 
 DN Digital Number 
 DOQQ Digital Orthophoto Quarter Quadrangle 

E   
 EF Evergreen Forest 
 ENT Entropy 
 ETM+ Enhanced Thematic Mapper Plus 

F   
 FGDC Federal Geographic Data Committee 

G   
 GIS Geographic Information System 
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 GLCM Grey-level Co-occurrence Matrix 
 GPS Global Positioning System 
 GUCO Guilford Courthouse 

H   
 HOM Homogeneity 

L   
 LULC Land Use and Land Cover 

M   
 MAUP Modifiable Areal Unit Problem 
 MEAN Mean 
 MF Mixed Forest 
 MMU Minimum Mapping Unit 
 MSS Multispectral Scanner 

N   
 NIR Near Infrared 
 NPS National Park Service 
 NVCS National Vegetation Classification System 

O   
 OBIA Object-based Image Analysis 

R   
 RGB Red, Green, and Blue 
 RMSE Root Mean Square Error 

S   
 SPOT Satellite Pour l’Observation de la Terra 

T   
 TM Thematic Mapper 

U   
 USGS United States Geological Survey 

V   
 VAR Variance 
 VHR Very High Resolution 

 


