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Abstract

Speededness effects tend to occur when tests have time limits (Lu & Sireci, 2007). Speed-

edness is normally dealt with in psychometric models as a “nuisance” factor because it is a

factor which is not the intended focus of the test. When speededness occurs, therefore, its

effects intrude on the construct being measured and can seriously degrade the validity of the

test results. A number of different approaches have been used to try to detect which exami-

nees exhibit speededness effects. Speededness in constructed response (CR) items, however,

has only recently been studied (Kim et al., 2016), although CR items are becoming increas-

ingly prominent in standardized assessments as a means of getting students to produce a

response rather than select a choice (Scalise, 2014). In this dissertation, we investigate test

speededness in the context of CR items.

The first study examined a statistical model for detection of speededness effects in CR

items using a two-class mixture graded response model (GRM; Samejima, 1969) for testlets.

Traditional IRT models, unfortunately, cannot detect speededness, as the effects of speeded-

ness violate such models. In this first study, therefore, we considered an alternative model for

estimating person and item parameters, when speededness effects are present. This approach



uses a mixture IRT model (Rost, 1990) and operates, in part, to classify examinees into one

of two latent groups, a speeded group and a nonspeeded group.

In the second study, the model in the first study was extended to consider model param-

eters for both person and item as random effects. In particular, we investigated the per-

formance of a random item mixture GRM for testlets with item covariates. The random

item model considers both persons and items to be randomly sampled from a population

(De Boeck, 2008). Treating items as random enables inclusion of item covariates directly in

the model, which allows simultaneous detection of speededness effects and examination of

the relationship between speededness effects in CR items and the item covariates.

In the third study, we described another possible way to characterize a latent group mem-

bership from a mixture IRT model. In general, a mixture IRT model does not readily provide

a qualitative explanation of the latent dimension(s). In this dissertation, we investigated a

statistical method for detecting latent themes or topics in the actual text that examinees used

in giving their answers to CR items. This method is latent Dirichlet allocation (LDA; Blei,

Ng, & Jordan, 2003), which is used to detect latent topics in text corpora. We investigated

the use of LDA for usefulness in providing information about the qualitative differences in

textual responses from the speeded and nonspeeded examinees.

Index words: Speededness, mixture item response theory, graded response model,
testlet effect, latent Dirichlet allocation, constructed response items
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Chapter 1

Introduction

Speededness occurs when a test is administered within a limited time (Bejar, 1985). Under

a dichotomy of power or speed tests, speededness is a construct of interest, when a test is

designed to measure an examinee’s speed of answering questions. Speededness is normally

a “nuisance” factor, however, when time limits are implemented for test administration (Lu

& Sireci, 2007). Most standardized assessments, for example, enforce time restrictions to

ensure that all test takers are given the same amount of time so that a test is fair for every

examinee (Powers & Fowles, 1996). In other words, such assessments may include some

element of speededness even though standardized assessments are most often categorized as

power tests.

Item response theory (IRT) models have been widely applied for measuring latent char-

acteristics of items as well as individuals. The advantages of IRT over classical test theory

are as follows: (a) person parameter estimates are assumed to be invariant with respect to

the set of items that fits the IRT scale, (b) the precision of the estimates is available at

the individual level, (c) item parameter estimates obtained from different samples can be in

a common scale up to a linear transformation, and (d) it is possible to predict examinees’

performance as well as the plausibility of the model (de Ayala, 2013). It should be noted

that these advantages can be achieved when the underlying assumptions, such as unidimen-

sionality and local independence, are satisfied.

These important assumptions for IRT models, however, may be violated under time

restrictions. For given time limits, some examinees may have insufficient time to finish the

test, which may make them resort to guessing at or skipping some items (Bejar, 1985). This
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can result in responses to items (usually at the end of a test) being governed by an additional

construct, for example, test speededness (Lord & Novick, 1968), besides the target latent

ability the test was intended to measure. As a result, the assumption of unidimensionality

may be violated due to the intrusion of this additional construct. This, in turn, violates the

local independence assumption of IRT, because an examinee’s responses to end-of-test items

are dependent both on speededness effects and the target latent ability. In this case, item

and person parameter estimates would be biased if the data are analyzed using traditional

IRT models (Oshima, 1994).

The effects of speededness have been studied largely in the context of multiple-choice

items (e.g., Bolt, Cohen, & Wollack, 2002; Goegebeur, De Boeck, Wollack, & Cohen, 2008;

Yamamoto & Everson, 1997) as this item type tends to predominate on standardized tests.

Speededness in constructed response (CR) items, however, has only recently been studied

(e.g., Kim et al., 2016). CR items are increasingly being used in standardized assessments as

a means of getting students to produce a response rather than select a choice (Scalise, 2014).

The intent is to tap higher order skills more directly than may be possible with selection

items. In this dissertation, we investigated test speededness in the context of CR items.

One concern with the use of CR items is that they tend to take longer to respond to

than multiple-choice or other selected response items and are often graded with a single

score. One way to increase the amount of information provided by CR items is to score the

responses for multiple kinds of information (Ercikan, 2002). In this way, the CR item can be

considered as a testlet, since the individual scores are all based on the same stimulus. This

requires an implementation of testlet IRT models to analyze the data from CR items using

multiple rubrics.

The remainder of this dissertation is organized as follows. The second chapter pertains to

the detection of speededness effects in CR items using a two-class mixture graded response

model (GRM; Samejima, 1969) for testlets (MixGRM-t). Generally, the item parameter esti-

mates in IRT are considered invariant for all examinees, since they are assumed to belong to
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the same population. This assumption, however, can be violated if more than one population

exists in the sample of examinees (Rost, 1990). As will be discussed in the sequel, mixture

IRT (MixIRT; Mislevy & Verhelst, 1990; Rost, 1990) models, including the MixGRM-t, allow

the classification of examinees into several latent groups based on their responses to the items

on the test. In MixIRT models, different item parameters are estimated between the latent

classes, and examinees in the same class can have different ability estimates. Thus, MixIRT

models classify examinees into latent classes formed along a categorical latent variable and

have an ability estimate along a continuous latent variable.

This feature of MixIRT models has been shown to be useful in detecting speededness

effects on latent groups of examinees in the sample taking the test. To be specific, MixIRT

models can detect a latent group of students whose responses to items were affected by

speededness effects. This effect has typically been assessed on items at the end of a test.

Bolt et al. (2002) presented an example using a two-class mixture Rasch model to detect

speededness effects. Bolt et al. assumed that students answered questions sequentially and

that some of the students were influenced by speededness on items close to and at the end of

the test. Results suggested this model detected two different latent groups of students based

on their responses to end-of-test items. One group, the nonspeeded group, was not affected

by speededness effects and one group, the speeded group, was affected by speededness effects.

In this study, using the same assumptions as in Bolt et al. (2002), a two-class MixGRM-t is

developed and investigated for use in detecting speededness effects in polytomously scored

CR items. Further, since item responses were scored for multiple characteristics, a testlet

structure is considered.

In the third chapter, we proposed a random item mixture (RIM; De Boeck, 2008) GRM for

testlets (RIMGRM-t) with item covariates that helps to examine which item characteristic

affects speededness in CR items. IRT algorithms for estimation of model parameters typically

treat items as fixed and persons as random. This approach is also common in MixIRT models.

A more theoretically appealing approach, however, is a model in which items are treated as
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random as it is generally assumed that items are also randomly sampled from a population

(De Boeck, 2008). The random item model considers both persons and items to be randomly

sampled from a population.

Treating items as random in the MixIRT model also enables inclusion of item covariates.

Inclusion of a covariate in the model allows simultaneous detection of speededness effects

and examination of the relationship between item parameter estimates and the covariate

or covariates. In this study, as noted above, we consider a testlet version of the RIMGRM

(i.e., RIMGRM-t). A simulation study is conducted to investigate the performance of the

RIMGRM-t with and without a covariate. To illustrate the application of the RIMGRM-

t, data from the same source as that used in the first study are analyzed. Similar to the

simulation study, results of the RIMGRM-t with and without a covariate are compared.

The characteristics of examinees in each latent class of a MixIRT model are typically

determined based on differences in item performance (e.g., Cho, Cohen, Kim, & Bottge,

2010). In the fourth chapter, we describe another possible way to characterize latent class

membership. Although a MixIRT model assigns class memberships based on an examinees’

response patterns, the model does not readily provide a qualitative explanation about the

latent dimension along which some examinees are classified into a given latent class. One

way to identify the characteristic of each latent class is to determine the association between

class membership and manifest information such as gender or ethnicity (e.g., Bolt et al.,

2002). This approach requires additional information about an examinee, even though it is

convenient to use. Another way to explain differences between latent groups is to interview

examinees after a test (e.g., Izsák, Orrill, Cohen, & Brown, 2010). Whereas an interview

with examinees is an abundant source of information, only a handful of examinees can be

subjects due to the limitation of time and resources.

In this dissertation, we investigated a third method, latent Dirichlet allocation (LDA;

Blei et al., 2003) which is a generative probabilistic model used to detect latent profiles in

text corpora. Using LDA, we analyze the text of students’ responses to the CR items. The
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advantages of the LDA analysis are as follows. First, this method does not require additional

demographic information. Second, it includes all of the examinees in the analysis. Finally,

it uses examinees’ written responses to the CR items, thereby helping to explain cognitive

differences between latent classes that are reflected in these responses. An actual data set

from a middle and high grades test of science inquiry skills was analyzed. In this study, a two-

class MixGRM-t for testlets is used to classify examinees into speeded and nonspeeded groups

and then topics, which are obtained from the LDA analysis, of each group are compared.

5



Chapter 2

Mixture Testlet Graded Response Model for Test Speededness

Tests that are administered under time constraints will often produce speededness effects

(Evans & Reilly, 1972). For examinees who do not have sufficient time to complete a test,

speededness effects will be manifested as an unwanted component to the construct being

measured (Lord & Novick, 1968). This may cause poor estimation of ability for speeded

examinees and poor estimation of item parameters, particularly for those items located at

the end of the test (Douglas, Kim, Habing, & Gao, 1998; Oshima, 1994). Items at the end

of speeded tests often appear harder than they would be on a nonspeeded test, because, as

examinees run out of time, they often tend to hurry through or even completely omit the

items at the end of the test (Bejar, 1985; Bolt et al., 2002; Oshima, 1994).

Recent evidence has suggested the usefulness of mixture item response theory (IRT)

models in accounting for speededness effects on item parameter estimates (Bolt et al., 2002;

Yamamoto, 1989; Yamamoto & Everson, 1997). Bolt et al. (2002) extended the mixture

Rasch model by Rost (1990) to classify examinees into latent speeded or nonspeeded groups,

based upon the difference in performance on items at the beginning and end of speeded

tests. Parameter estimates for end-of-test items based only on the nonspeeded group were

very similar to estimates for those same items when they were administered in nonspeeded

locations on a different form of the test. Wollack, Cohen, and Wells (2003) applied the Bolt,

et al. model to eleven years’ worth of data on a college-level English Placement Test that

reserved the item locations at the end of the test to pilot new items. Items that performed

well became candidates to use on a future form of the test. Wollack et al. demonstrated that

calibrating the item pool using only examinees in the nonspeeded class produced a more
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stable and more unidimensional score scale than was produced by including all examinees in

the calibration.

Wollack et al. scored all items with a dichotomous Rasch model, even though the reading

comprehension section consisted of several reading passages with 6 to 8 associated questions.

Items of this type are better treated as testlets to control for the local dependencies that exist

among items for a common passage (Thissen, Steinberg, & Mooney, 1989; Wainer & Kiely,

1987; Wainer & Lewis, 1990; Yen, 1993). Cho, Cohen, and Kim (2014) presented an example

using a mixture IRT testlet model to detect speededness effects in a reading comprehension

test. The results from Cho et al. suggest that the mixture testlet model provided a markedly

different solution than that provided by the regular dichotomous mixture IRT model.

Constructed response (CR) items are increasingly used in standardized assessments as a

means of getting students to produce a response rather than select a choice (Scalise, 2014).

CR items are often graded with a single score. When CR items are scored for multiple kinds

of information, each item can be considered as a testlet, since the individual scores are all

based on the same stimulus. The effects of speededness on CR items have not yet been

studied. In this study, we investigate test speededness in the context of CR items that are

part of testlets.

Since CR items can be scored in multiple ordered categories, in this paper, we use the

graded response model (GRM; Samejima, 1969) version of the two-class mixture IRT model

(Bolt et al., 2002) for detection of speededness effects in CR tests with testlet item structures.

To illustrate the use of the graded response testlet model for detecting speededness, we

present an empirical example using data from a middle grades assessment of science inquiry

skills.
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2.1 IRT Testlet Models for Speeded Test Data

2.1.1 Testlet Model

A testlet refers to a group of items based on a common stimulus (Wainer & Kiely, 1987).

As it is possible that the items in a testlet are not locally independent, the testlet structure

can result in biased parameter estimates (Wang & Wilson, 2005). In a testlet model, this

dependency between responses is accounted for by adding a random effect to the IRT model.

Bradlow, Wainer, and Wang (1999) modified a two-parameter logistic (2PL) model by adding

a person-specific testlet effect. The 2PL testlet model, 2PL-t, can be expressed as

Pij = P (uij = 1|θj, αi, βi, γjt(i)) =
exp[αi(θj − βi − γjt(i))]

1 + exp[αi(θj − βi − γjt(i))]
,

where uij is scored as a 1 or 0 response of examinee j to item i, θj is the ability parameter

of examinee j, αi is the discrimination parameter of item i, βi is the difficulty parameter of

item i, and γjt(i) is a person-specific testlet effect representing the interaction of examinee j

with testlet t(i) (i.e., testlet t includes item i).

The variance of the testlet effect parameter, γjt(i), is interpreted as the amount of the

testlet effect. The size of variance indicates the amount of local independence. If the variance

of γjt(i) is zero, it indicates that there is no dependency between items in one testlet, and

the model becomes the standard 2PL model.

2.1.2 Two-Class Mixture Testlet Model for Speeded Data

In mixture IRT models, it is assumed that a population of examinees consists of discrete

latent classes (Rost, 1990). In the two-class speededness model by Bolt et al. (2002), it is

assumed that a population consists of two latent groups: a speeded group, which is affected

by the time limits, and a nonspeeded group, which is not.

In the two-class mixture model, the separation of latent classes can be achieved using

ordinal constraints on item difficulty parameters. At the beginning of the test, both speeded

and nonspeeded groups are assumed to have the same item difficulty parameters. At the
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end of the test, the items are assumed to be harder for the speeded group. For these items,

ordinal constraints are imposed such that the item difficulties of the speeded group are larger

than those of the nonspeeded group.

As CR items are often scored polytomously based on a rubric with ordered categories, it is

appropriate to consider use of a polytomous IRT model for calibration. The graded response

model (GRM; Samejima, 1969) is an IRT model for ordered polytomous data. It can be

seen as a generalization of the 2PL model. This model defines the probability of getting a

score of k as the difference between two cumulative probabilities of adjacent categories k

and k − 1. The boundary characteristic curve P ∗
ijk represents the cumulative probability of

responding with category score k or higher. The boundary characteristic curve for examinee

j of obtaining a score of k or higher on item i can be described as

P ∗
ijk = P (uij = k|θj, αi, βik) =

exp[αi(θj − βik)]
1 + exp[αi(θj − βik)]]

,

where θj is the ability of examinee j, αi is the item discrimination parameter of item i,

and βik is the category boundary location parameter for category k of item i. Then, the

probability of getting a category score k can be expressed as

Pijk = P ∗
ij,k−1 − P ∗

ijk,

where k = 1, . . . ,mi + 1 when mi is the maximum category score of item i. By definition,

P ∗
ij1 = 1 and P ∗

ij,mi+1 = 0.

The probability of examinee j in latent group g obtaining category k or higher under the

two-class mixture GRM is expressed as

P ∗
ijgk = P (uijg = k|θjg, αig, βigk, g) =

exp[αig(θjg − βigk)]
1 + exp[αig(θjg − βigk)]

,

where g is an index for the latent group and g = 1, 2.

Finally, the two-class mixture testlet GRM considers an additional random effect which

comes from the testlet structure. The probability for examinee j in latent group g of obtaining
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category k or higher under the two-class mixture testlet GRM is given by

P ∗
ijgk = P (uijg = k|θjg, αig, βigk, γjt(i), g) =

exp[αig(θjg − βigk − γjt(i))]
1 + exp[αig(θjg − βigk − γjt(i))]

.

2.2 Example: Speededness in a Science Inquiry Practice Test

An example is presented here using data from a middle grades test of science inquiry skills

to illustrate the effects of speededness in a constructed response test. Science education

is currently undergoing its first major reform in two decades, with a new emphasis on a

model of three-dimensional learning meant to support a college and career ready STEM

workforce (National Research Council, 2013). In this model, science learning is viewed as a

combination of science practices, core conceptual ideas, and crosscutting concepts (National

Research Council, 2012). For students to succeed in this new vision of science education,

they must learn to communicate their thinking about complex phenomena both orally and

in writing (Lee, Quinn, & Valdés, 2013). Writing about actual science investigations or

about science investigation scenarios can accomplish one part of this purpose (Gunel, Hand,

& Prain, 2007). To this end, the next generation of science assessments, requiring substantial

amounts of student writing on constructed response assessments, is currently being developed

in an effort to measure student learning of these complex science practices (Scalise, 2014).

2.2.1 Methods

Data Sources

The sample consisted of 1,612 middle and high school students’ responses to a test of science

inquiry practices. The test was one of two pre-test forms used as part of a larger host

study in which students were provided with instruction on science inquiry practices. Science

inquiry practices in this context consisted of hypothesis testing, determining cause and effect,

and explaining standard physical phenomena (e.g., the impact of heat on different colors of
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clothing, the effect of adding yeast to flour, salt, and water). Students were given a single 50

minute class period to complete the test.

There were seven CR items on the test. Each of the items was scored from two to four

ordered categories over two to six different characteristics. These characteristics were treated

as items within a testlet. The seven CR items were treated as seven testlets with 7, 5, 5, 6, 6, 5,

and 6 items, respectively. The first three testlets measured ‘Cause and Effect Relationships,’

the next two testlets measured ‘Controlling Variables,’ and the last two testlets measured

‘Hypothesis, Observation, and Evidence.’

Model

In this study, two models were used: a testlet GRM (GRM-t) and a two-class mixture testlet

GRM (MixGRM-t). The first model was used to estimate item parameters of the first 17

items (those for Testlet 1 to Testlet 3). It was assumed that the speededness effect was not

present in these items. The second model was used to account for speededness effects using

ordinal constraints on the last 17 items (those for Testlet 5 to Testlet 7). The items in Testlet

4 were not constrained and were estimated.

The mean ability of the speeded group in the MixGRM-t was constrained to be zero to

resolve the identification problem so that item boundary location parameter estimates could

be compared across latent groups. This solution is different from the norming condition

which Bolt et al. implemented.

Modeling Speededness

For the two-class MixGRM-t, it was assumed that the end-of-test items included effects

of speededness. This assumption was reflected in the model such that the item boundary

location parameter estimates and item discriminations for the first 17 items (those for Testlet

1 to Testlet 3) were constrained to be equal for both the speeded and nonspeeded group.

The item boundary location parameters of the last 17 items (those for Testlet 5 to Testlet
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7) were constrained to be higher for the speeded group than the nonspeeded group. The

boundary location parameter estimates for the items in Testlet 4 were unconstrained. The

item discrimination parameters for items in Testlets 4 to 6 were freely estimated.

Estimation

A Markov chain Monte Carlo (MCMC) estimation algorithm employing Gibbs sampling as

implemented in the OpenBUGS software (Thomas, O’Hara, Ligges & Sturtz, 2006) was used

to estimate the MixGRM-t. MCMC algorithms have been used for estimation of mixture

distributions (Robert, 1996), including for mixture IRT models (Bolt et al., 2001; Cho &

Cohen, 2010, Cho et al., 2014).

The MCMC algorithm first samples a Markov chain in which values for parameters in

the model are sampled from their full conditional posterior distributions over a typically

large number of iterations. The algorithm begins by sampling a class membership for each

examinee at each stage of the chain and then sampling values for class parameters conditional

on those class memberships (Bolt et al., 2002).

Mixing proportions and class ability parameters were based on the frequencies with which

examinees were sampled into each latent class. The frequencies with which an examinee was

sampled in each latent class over the course of the Markov chain defined the posterior proba-

bility of latent class membership in that class. Mixing proportions (πg) and class mean ability

parameters (µg) were estimated along with the class memberships. Ability was assumed to

be normally distributed with a variance of 1 in each latent class.

To derive the posterior distributions for each parameter, it is first necessary to specify

their prior distributions. The following priors were used to estimate the parameters of the
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MixGRM-t in this study:

ai ∼ Normal(µa, σ
2
a)I(0, )

bi ∼ Normal(µb, σ
2
b )

γgt(i) ∼ Normal(µg, σ
2
γt(i))

θgi ∼ Normal(µg, 1), i = 1, . . . , N,

µg ∼ Normal(0, 1), g = 1, 2,

(π1, π2) ∼ Dirichlet(0.5, 0.5),

where N is the total number of examinees and I(0, ) indicates that observations of a were

sampled above zero. Hyperparameters used in this analysis were selected to be noninforma-

tive: µa ∼ N(0, 1), µb ∼ N(0, 1), σ2
a ∼ χ−2

νa , σ
2
b ∼ χ−2

νb
, σ2

γg ∼ γ−1
(2.5,0.25).

Starting values are provided for each parameter being sampled to define the first state of

the Markov chain. For the latent class mixing proportions, π1 and π2, starting values were

set at .5. Starting values for the remaining model parameters were randomly generated using

the OpenBUGS software.

In an MCMC analysis, information from initial iterations is discarded. These iterations,

called burn-in iterations, are discarded, because initial sampled values tend to be dependent

on the starting values. The subsequent iterations are based on a chain that is assumed to have

converged to its stationary distribution. Estimates of sampled parameters were calculated

from these post-burn-in iterations. In this study, the Heidelberger and Welch (1983) conver-

gence diagnostic, as implemented in the CODA package using R (Plummer, Best, Cowles,

& Vines, 2006), was used to determine the number of burn-in iterations. This diagnostic

consists of two tests: the stationary and halfwidth tests. The null hypothesis of the first

test is that the estimates for each variable have reached their stationary state. The second

test, which is done only for those variables that have passed the stationary test, is used to

estimate the standard error of the variable.
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Table 2.1: Descriptive Statistics for the Female and Male Students

Testlet 4 Testlet 5 Testlet 6 Testlet 7 Total

Gender N M SD M SD M SD M SD M SD

Female 852 9.24 2.98 9.76 3.42 8.64 3.09 10.19 3.23 37.83 10.54

Male 754 8.76 2.96 9.13 3.26 7.94 2.92 9.81 3.32 35.64 10.49

2.2.2 Results

Descriptive Statistics for the Test Items

Descriptive statistics of the last four testlets for female and male students are presented in

Table 2.1. The means of female students were higher than those of male students for all four

testlets. Independent t-tests suggested that the differences between females and males were

significant at α = .05 in all four testlets.

Monitoring Convergence

The Heidelberger and Welch (1983) convergence diagnostic suggested a burn-in length of

10,000 iterations for the GRM-t and 11,000 iterations for the MixGRM-t. Also, the result

proposed a post burn-in length of 5,000 iterations for the GRM-t and 4,000 iterations for the

MixGRM-t. Estimates of model parameters were based on the means of the sampled values

from the post burn-in iterations.

Item Parameter Estimates

The item discrimination estimates for items in Testlet 4 to Testlet 7 for both the speeded

and nonspeeded groups are given in Figure 2.1. It is interesting that all of the estimates for

the speeded group were larger than those for the nonspeeded group except for one item even

though there was no constraint for estimation of the item discrimination parameters.
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Figure 2.1: Item discrimination parameter estimates
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Figure 2.2 plots the means of the boundary curve location estimates for items in Testlets 4

to Testlet 7 for both the speeded and nonspeeded groups. The average of boundary location

parameter estimates for each item, as suggested by Masters (1982), was used to provide

an index of the relationship between the item boundary location parameter estimates for

speeded and nonspeeded groups. The item boundary location parameter estimates along

with the item discrimination parameter estimates for the speeded and nonspeeded groups

are given in Tables 2.2 and 2.3, respectively. In accordance with previous studies (Bolt et al.,

2002; Kim et al., 2016), the distance between the speeded and nonspeeded groups appeared

to be similar in Testlets 4 and 5 but increased in Testlet 6 and Testlet 7. This finding suggests

that the speededness effect was largest at the end of the test.

It should be noted that the item discrimination and item boundary location parameter

estimates may not be clearly separated because the estimation of those parameters is related

to each other. More specifically, it is highly likely that the items which are extremely easy

or difficult tend to have lower item discrimination parameters than the items which are

moderately difficult.

Testlet Effects

Table 2.4 illustrates the testlet effects for both speeded and nonspeeded groups. As noted

earlier, the testlet effect indicates the magnitude of the local dependence among items which

belong to the same testlet. Table 2.4 suggests that the larger testlet effect was detected for

the speeded group for all of the testlets. For both groups, the testlet effects were larger at

first (from Testlet 1 to Testlet 3), decreased in the middle (Testlet 4 and Testlet 5), and

increased again at the end of the test (Testlet 6 and Testlet 7). For the speeded group, the

testlet effect of the last two testlets was much larger compared to the nonspeeded group.
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Figure 2.2: Means of boundary location parameter estimates
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Table 2.2: Item Parameter Estimates for the Speeded Group

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 18 1.74 0.26 1.72 0.20 1.72

19 1.95 0.37 2.49 0.30 2.49

20 3.33 0.43 1.12 0.11 1.60 0.14 1.36

21 1.81 0.18 -0.58 0.08 1.10 0.12 0.26

22 3.01 0.33 0.59 0.09 1.22 0.12 1.82 0.16 2.34 0.20 1.49

23 3.67 0.44 0.66 0.09 1.44 0.12 1.05

5 24 2.72 0.38 1.33 0.13 1.33

25 2.01 0.31 1.82 0.20 1.82

26 3.17 0.41 1.17 0.11 1.68 0.15 1.42

27 2.57 0.28 -0.19 0.07 1.33 0.13 0.57

28 3.80 0.42 0.71 0.09 1.17 0.11 1.63 0.14 2.28 0.19 1.45

29 3.49 0.41 0.86 0.10 1.73 0.14 1.29

6 30 2.55 0.40 1.65 0.17 1.65

31 2.70 0.46 2.37 0.17 2.47 0.17 2.42

32 2.09 0.27 0.71 0.13 2.27 0.21 1.49

33 2.66 0.38 1.99 0.18 2.46 0.20 3.36 0.28 3.98 0.36 2.95

34 3.16 0.46 1.82 0.17 2.49 0.21 2.15

7 35 3.43 0.53 2.35 0.18 2.35

36 1.95 0.39 4.19 0.30 4.90 0.40 4.54

37 1.65 0.36 4.95 0.43 4.95

38 2.80 0.40 2.03 0.16 3.36 0.23 2.70

39 3.44 0.50 2.64 0.19 3.36 0.22 4.00 0.26 4.46 0.32 3.62

40 3.71 0.53 2.33 0.18 3.54 0.22 2.94
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Table 2.3: Item Parameter Estimates for the Nonspeeded Group

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 18 1.89 0.16 0.98 0.08 0.98

19 1.78 0.18 1.80 0.13 1.80

20 2.87 0.21 0.44 0.05 1.02 0.07 0.73

21 0.96 0.08 -4.22 0.30 0.71 0.10 -1.76

22 2.70 0.18 -0.02 0.04 0.74 0.06 1.44 0.08 2.14 0.12 1.08

23 3.22 0.23 -0.03 0.04 1.02 0.07 0.49

5 24 2.11 0.18 0.70 0.06 0.70

25 1.81 0.15 1.19 0.09 1.19

26 2.41 0.17 0.21 0.05 0.84 0.06 0.52

27 1.18 0.09 -3.97 0.26 0.89 0.09 -1.54

28 2.62 0.17 -0.42 0.04 0.38 0.05 1.05 0.07 1.70 0.09 0.68

29 2.47 0.17 -0.47 0.05 0.97 0.07 0.25

6 30 1.18 0.10 -0.44 0.07 -0.44

31 2.46 0.20 0.36 0.05 0.76 0.06 0.56

32 1.30 0.10 -3.96 0.24 -0.59 0.07 -2.27

33 1.53 0.11 0.05 0.06 1.04 0.08 2.15 0.13 2.87 0.17 1.53

34 2.91 0.24 -0.39 0.05 0.91 0.06 0.26

7 35 1.84 0.19 -2.01 0.12 -2.01

36 1.18 0.10 0.46 0.08 1.02 0.10 0.74

37 1.10 0.10 0.87 0.10 0.87

38 1.62 0.14 -3.40 0.21 -1.20 0.08 -2.30

39 2.08 0.16 -0.41 0.06 0.69 0.07 1.66 0.10 2.59 0.15 1.13

40 1.86 0.15 -1.99 0.11 1.93 0.12 -0.03
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Table 2.4: Testlet Effects

Testlet

Group 1 2 3 4 5 6 7

Speeded 3.38 2.30 2.79 0.30 0.29 1.55 3.52

Nonspeeded 1.98 1.15 1.11 0.26 0.36 0.61 0.73

Mean Ability and Proportion of Latent Classes

The mean ability of the speeded group was constrained as zero to resolve the identification

problem and the mean ability estimate of the nonspeeded group was -1.01. This result sug-

gests that the speeded group was more capable than the nonspeeded group. Also, this finding

is in accordance with previous studies on speededness (Bolt et al., 2002; Cho et al., 2014).

The estimates of the mixing proportions suggested that 30% of students were assigned to

the speeded group and 70% to the nonspeeded group.

Classification of Examinees

Latent group memberships can be estimated based on the frequencies with which examinees

are assigned into each latent group over the post-burn-in iterations. To understand the

characteristics of latent classes, it helps to compare the class membership with manifest

demographic information such as gender and ethnicity. The sample consisted of 852 female

and 754 male students; six students did not report their gender. Also, the sample contained

690 Hispanic and 911 non-Hispanic students and 11 students did not report their ethnicity.

Table 2.5 shows the proportion of speeded and nonspeeded groups for gender and

ethnicity, respectively. A two-way contingency table analysis was conducted to evaluate

whether gender or ethnicity has a statistical association with speededness. First, gender

and speededness were found to be significantly related (χ2 = 8.800, df = 1, p = .003). The

proportion of female students who were classified as the speeded group (26.8%) was lower
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Table 2.5: Relationship between Speededness Effects and Gender and Ethnicity

Group N %Speeded %Nonspeeded χ2 df p-value

Female 852 26.8 73.2

Male 754 33.6 66.4 8.800 1 .003

Hispanic 690 30.4 69.6

Non-Hispanic 911 29.7 70.3 0.088 1 .766

than that of male students (33.6%). Second, ethnicity and speededness were found to be

insignificantly related (χ2 = 0.001, df = 1, p = .980). The proportion of Hispanic students

who were classified as the speeded group (30.4%) was higher than that of non-Hispanic

students (29.7%), but this difference was not significant.

2.3 Summary

Speededness effects have been shown to have an impact on the accuracy of item parameter

estimates in IRT models. Previous work on speededness has focused on dichotomous models.

In this study, speededness in CR items scored in multiple ordered categories was investigated.

Speededness effects in testlets were investigated using the two-class mixture IRT model

approach described by (Bolt et al., 2002). CR items are becoming increasingly important

in educational research as researchers seek to expand the kinds of knowledge that can be

measured by tests. These items are typically scored in multiple ordered categories. In the

context of IRT, this type of scoring can usually be handled by using polytomous models.

In the present study, we examined the utility of one approach in the detection of speeded-

ness in the context of locally dependent item structures and also for items scored in multiple

ordered categories. An example using a CR test with a testlet structure was presented.

Results indicated that the gap in item boundary location parameter estimates between the
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speeded and nonspeeded groups increased monotonically as the test proceeded. Also, the

magnitude of the testlet effect was larger in the speeded group than in the nonspeeded

group. The pattern of the testlet effect was similar in both groups such that the testlet effect

was larger from Testlet 1 through Testlet 3, decreased from Testlet 4 and Testlet 5, and

increased from Testlet 5 to Testlet 7.
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Chapter 3

A Random Item Mixture IRT Model for a Speeded Test

Item response theory (IRT) algorithms for estimation of model parameters typically treat

the items as fixed and persons as random. This is the way marginalized maximum likelihood

estimation (MMLE; Bock & Aitkin, 1981) usually treats items when estimating parameters

in the presence of the unobserved random latent variable(s). Under the MMLE procedure,

the ability distribution is integrated over and thus removed from the likelihood function. It is

then possible to estimate item parameters in the marginalized distribution. These estimates

are independent from the estimation of ability parameters (Baker & Kim, 2004). It follows

that we can estimate ability parameters using known item parameter estimates. In this way,

both ability and item parameters are estimated.

As De Boeck (2008) has suggested, a more theoretically appealing approach is a model in

which items are treated as random. Often, items are considered as a random sample from a

domain but are treated as fixed when estimating item parameters. This is the case for software

packages such as BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003), MULTILOG

(Thissen, Chen, & Bock, 2003) and PARSCALE (Muraki & Bock, 2003). De Boeck suggests

it may be more reasonable, however, to consider items as randomly sampled from a domain

and, therefore, to treat items as random when estimating parameters. For example, assume

an item bank, e.g., a pre-existing sample of calibrated items, needs to be constructed. The

domain of the items, from which the bank is to be constructed, can be considered as the

population from which each item in the domain is sampled.

In addition, a random item model can incorporate covariates that can help explain the

variance of item difficulties. The linear logistic test model (LLTM; Fischer, 1973) has been
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used to explain the components of item difficulty using a Q-matrix-like structure to account

for the variability in the item parameter. The LLTM, however, has often been regarded

as too stringent because it assumes that the item difficulties are explained completely by

the components used in the model. Mislevy (1988) and Rijmen and De Boeck (2002) have

extended the LLTM to relax its strong assumptions. Mislevy (1988) embedded the LLTM

model in Bayesian estimation, thereby including the variances of item parameters. Rijmen

and De Boeck (2002) proposed a random weights LLTM, which includes interactions between

persons and item properties to permit different person-dependent item effects.

In addition, Frederickx, Tuerlinckx, De Boeck, and Magis (2010) has shown how differ-

ential item functioning (DIF) can be detected under a random item model. In a fixed item

model, a set of anchor items is required in order to detect the DIF items. The quality of the

anchor items will have an effect on the results of the DIF analysis (Kolen & Brennan, 2004).

It is not necessary, however, in the context of a random item model to specify a priori a set

of anchor items. Frederickx et al. (2010) suggested an alternative method for detecting DIF

items using a random item mixture (RIM; De Boeck, 2008) model.

In this approach, an item is assumed to belong to one of two latent classes, a DIF class

or a non-DIF class. The RIM model is then used to assign items into one of these two

classes. In this approach, “the person groups are always manifest, whereas the item classes

are latent” (p. 435). This is clearly different from the previous work on detection of DIF with

mixture IRT models (e.g., Cohen & Bolt, 2005) which considers detecting DIF by classifying

examinees into different latent groups.

There does not appear to be any research published yet on a RIM model for polytomous

data. Considering that the implementation of constructed response (CR) items has increased

in standardized assessment (Scalise, 2014), research on polytomous IRT models to analyze

typically polytomous data from CR items would seem to be helpful. Kim et al. (2016) has

recently reported speededness effects in a test composed of CR items using a mixture GRM.

In this study, we extend the model by Kim et al. to include random item effects. Specifically,
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we describe a RIM testlet graded response model (RIMGRM-t) and investigate its utility

for the detection of speededness effects in the context of polytomously scored CR items. It

should be noted that persons are assumed to belong to one of two latent class, a speeded

group or a nonspeeded group, which is somewhat different from De Boeck’s approach.

3.1 A Random Item Mixture Testlet Graded Response Model

The RIMGRM-t is an IRT model which incorporates a random component for item parame-

ters (the random item part of the model), assumes that a population consists of several latent

subpopulations (the mixture IRT part of the model), and can handle ordered polytomous

categories nested in testlets (the graded response testlet part of the model). In this section,

each component of the RIMGRM-t is introduced.

3.1.1 A Random Item Model

In the context of multilevel modeling, an IRT model treating both persons and items as

random can be regarded as a special case of a cross-classified random effects model (Van

den Noortgate, De Boeck, & Meulders, 2003). Typically, multilevel modeling assumes that

the lower-level observation belongs to one and only one higher-level unit (Raudenbush &

Bryk, 2002). Occasionally, however, the lower-level observation may belong to more than

one higher-level unit. In such a case, it is necessary to include the effects of additional

higher-level units on a dependent variable in the model. When this is the case, it can be

parameterized as a cross-classified random effects model (Raudenbush, 1993).

Van den Noortgate et al. (2003) proposed a cross-classified multilevel logistic model in

which the Rasch model is incorporated into a cross-classified random effects model. In this

model, both persons and items can be regarded as higher-levels in which an examinee’s

response to an item is nested. It is possible, thus, for both levels to have random effects.
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First, the Rasch model can be written as

ηij = log

[
Pi(θj)

1− Pi(θj)

]
= θj − βi,

where θj is the ability parameter of examinee j; and βi is the item difficulty parameter of

item i. This relationship between θj and βi can be reformulated as a level-1 model in the

context of a cross-classified random effects model. The level-1 model can be described as

ηij = β0j + βi,

where β0j is the ability parameter of examinee j, and βi is the item easiness parameter of

item i. Note that the item parameter βi has a different sign following the convention of

multilevel models. This changes the interpretation of the parameter from item difficulty to

item easiness. It should also be noted that there is no within-cell random effect because each

cell has only one observation. That is, an examinee produces only one item response to an

item.

The level-2 model includes random effects for person and item parameters and can be

described as

β0j = uj,

βi = ui,

uj ∼ N(µ1, τ
2
1 )

ui ∼ N(µ2, τ
2
2 ),

where uj is the random effect of the person parameter, and ui is the random effect of the

item parameter.

The combined model under the assumption that both items and persons are treated as

random (i.e., the random item Rasch model) can be expressed as

ηij = β0 + ui + uj,
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where β0 is the estimated logit for the probability of a correct response of an average person

on an average item, ui is the random effect of the item parameter, and uj is the random

effect of the person parameter. Van den Noortgate et al. (2003) suggested this model may

not be useful because it does not provide the estimates for either ability or item difficulty

parameters. However, this model “opens up the perspective of an error term for the items

when the issue is to explain the item difficulties from item features” (p. 373).

Wang (2011) extended the cross-classified multilevel logistic model into a multilevel mix-

ture IRT model (MMixIRTM) and applied it to the detection of test speededness. The

MMixIRTM can be regarded as “a combination of the regular multilevel IRT model and the

mixture IRT model” (p. 22). Under the multilevel mixture Rasch model, the level-1 model

is expressed as

ηijg = θj + βig,

where θj is the ability estimate of examinee j, and βig is the item easiness estimate of item

i in latent group g.

Similar to the cross-classified multilevel logistic model, the random effects of the person

and item parameters are specified in the level-2 model. The level-2 model related to the

person parameter is defined as

θj = γ0j + u1j,

γ0j ∼ N(µg, 1),

u1j ∼ N(0, σ2
1),

where γ0j is the fixed person effect, µg is the mean of the ability estimates in latent group g,

and u1j is the random person effect. The mean ability of the first latent group is constrained

to be 1 to solve the identification problem (i.e., µ1 = 1).
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The level-2 model related to the item parameter is given by

βig = γig + u2i,

γig ∼ N(βg, 1),

u2i ∼ N(0, σ2
2),

where γig is the fixed item effect for item i in latent group g, βg is the mean of the item

easiness estimates in latent group g, and u2i is the random item effect.

The combined model with item and person covariates can be written as

ηijg = θj + βig

= b0g + λ0g +
A∑
a=1

bagNj +
B∑
b=1

λbgMi + u1j + u2i,

where b0j is the mean of the ability estimates in latent group g when there is no person effect

on the ability estimate, bag is the regression coefficient for person covariate Nj in latent group

g, λ0g is the mean of the item easiness estimates in latent class g when there is no item effect

on the item easiness parameter, and λbg is the regression coefficient for item covariate Mi in

latent group g.

An important aspect of these random item IRT models combined with multilevel mod-

eling lies in their capability for including covariates to explain the variance of a param-

eter (i.e., the random effect of a parameter). For instance, Wang (2011) provided evidence

showing that including covariates to explain the random components improved the accuracy

of parameter estimates. Also, it is possible to estimate the item parameters of individual

items, when using the IRT models under the cross-classified framework, whereas the LLTM

provides the regression coefficients only for item properties. This study, therefore, used the

same approach of Van den Noortgate et al. (2003) and Wang (2011) such that the model

allows the item variance at the item-level. In the context of Bayesian estimation, this item

variance can be specified as a hyperprior of the item parameters.
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3.1.2 A Mixture IRT Model

A mixture IRT (MixIRT) model can be regarded as a combination of an IRT model and a

latent class model (Rost, 1990). MixIRT models assume that a person population consists

of discrete latent classes. One thing this means is that a single set of parameters cannot

fully explain the relationship between a person’s ability and item characteristics as there

are subpopulations for which the item parameters may differ. MixIRT models resolve this

problem by applying different item parameters to individual subpopulations. That is, a

unique set of item parameters is estimated for each latent group under a MixIRT models.

This reflects another important assumption of MixIRT models—an IRT model still holds

within an individual latent class. The probability of getting an item correct in the mixture

Rasch model, for example, is defined as

P (uijg = 1|θjg, βig, g) =
exp(θjg − βig)

1 + exp(θjg − βig)
,

where g is an index for the latent class, uijg is a response of examinee j in class g to item i,

θjg is the ability of examinee j in class g, and βig is the item difficulty parameter of item i

for class g.

As mentioned earlier, different sets of item parameters are defined within individual

latent groups under MixIRT models. It is necessary, therefore, to solve the identification

problems. This issue is one which takes into account that item parameter estimates from one

latent group are not comparable to those from another latent group. There are two different

solutions for this identification problem. First, a norming condition such that
∑

i βig = 0

can be implemented (Rost, 1990). Second, the mean ability of the first latent group can be

constrained to be zero (i.e., µ1 = 0). Either of these techniques allows comparison of item

and person parameter estimates across the latent classes.
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3.1.3 Testlet Graded Response Model

The graded response model (GRM; Samejima, 1969) is an IRT model for ordered polytomous

categories. Under this model, the probability of receiving a score of k is defined as the

difference between two cumulative probabilities of adjacent categories k and k − 1. The

cumulative probability, also called the boundary characteristic curve, with which examinee

j obtains a score of k or higher on item i is expressed as

P ∗
ijk = P (uij = k|θj, αi, βik) =

exp[αi(θj − βik)]
1 + exp[αi(θj − βik)]]

,

where k = 0, . . . ,mi + 1 when mi is the maximum category score of item i, θj is the ability

of examinee j, αi is the item discrimination parameter of item i, and βik is the category

boundary location parameter for category k of item i. By definition, P ∗
ij0 = 1 and P ∗

ij,mi+1 = 0.

The probability of examinee j getting a score of k is the difference between adjacent

cumulative probabilities and is defined as

Pijk = P ∗
ij,k−1 − P ∗

ijk.

The testlet graded response model (GRM-t) is an extension of the GRM for a test which

consists of one or more testlets. When a set of items shares a common stimulus, the testlet

effect can occur in item parameters (Wainer & Kiely, 1987). This follows, because of the

violation of the local independence assumption, that biased estimates may be produced of

person and item parameters. The testlet model tries to account for the dependency between

answers by including additional random effects in the IRT model. The probability of examinee

j obtaining category k or higher under the GRM-t is given by

P ∗
ijk = P (uijg = k|θj, αi, βik, γjt(i)) =

exp[αi(θj − βik − γjt(i))]
1 + exp[αi(θj − βik − γjt(i))]

,

where γjt(i) is a person-specific testlet effect which depicts the interaction of examinee j and

testlet t(i) (i.e., item i belongs to testlet t). The variance of the testlet effect is considered

as the amount of the testlet effect.
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3.1.4 A Random Item Mixture Testlet Graded Response Model

The RIMGRM-t expresses the probability of examinee j in latent group g of obtaining

category k or higher as

P ∗
ijgk = P (uijg = k|θjg, αig, βigk, γjt(i), g) =

exp[αig(θjg − βigk − γjt(i))]
1 + exp[αig(θjg − βigk − γjt(i))]

, (3.1)

where g is an index for the latent group and g = 1, 2 because this study assumes that a

person population consists of two subpopulations—the speeded and nonspeeded groups. Note

that an unconditional model refers to the RIMGRM-t without covariates and a conditional

model refers to the RIMGRM-t with covariates in this study. Both the unconditional and

conditional models have the equivalent mathematical representation as Equation 3.1, since

their difference comes from their prior distributions. The next part covers this difference

between the unconditional and conditional models.

3.2 Parameter Estimation

3.2.1 Bayesian Estimation Using Markov Chain Monte Carlo

The RIMGRM-t parameters were estimated using a Markov chain Monte Carlo (MCMC)

method with Gibbs sampling as implemented in the OpenBUGS software (Thomas, O’Hara,

Ligges, & Sturtz, 2006).

For models with higher complexity, including mixture IRT models, integration over high-

dimensional distributions is required to make inferences about parameters. In such cases, it

may not always be possible to implement numerical integration. MCMC methods provide an

alternative way to solve this problem by employing Monte Carlo integration using Markov

chains (Gilks, Richardson, & Spiegelhalter, 1996). To be more precise, Monte Carlo estimates

the expectation of model parameters using a mean of the samples drawn by using a Markov

chain. The Markov chain is a sequence of estimates of random variables whose distribution

depends only on the current state of the chain. The Markov chain gradually forgets its initial

state and, when the chain converges, becomes a stationary distribution. The expectation of

31



the parameters can be calculated following discarding of the burn-in iterations by using the

remaining iterations.

Gibbs sampling, which is one of the MCMC sampling algorithms, iteratively draws sam-

ples from the full conditional distribution of model parameters and observed responses

(Spiegelhalter, Best, Gilks, & Inskip, 1996). This full conditional distribution, which is also

called the posterior distribution, is proportional to the product of the prior distribution and

the likelihood function. For example, the prior distribution of the unconditional model can

be written as

P (µg, β̄g, σ
2
β, σ

2
γ, θjg, αig, βigk, γjt(i), g, πg|Y )

∝ P (µg, β̄g, σ
2
β, σ

2
γ, θjg, αig, βigk, γjt(i), g, πg)P (Y |µg, β̄g, σ2

β, σ
2
γ, θjg, αig, βigk, γjt(i), g, πg)

= P (µg, β̄g, σ
2
β, σ

2
γ)P (θjg, αig, βigk, γjt(i), g, πg|µg, β̄g, σ2

β, σ
2
γ)P (Y |θjg, αig, βigk, γjt(i), g, πg),

where P (Y |θjg, αig, βigk, γjt(i), g, πg) is the probability of getting a score of k to item i under

the unconditional RIMGRM-t.

As described in Chapter 2, the MCMC algorithm samples a class membership for each

examinee at each stage of the chain. Next, it samples values for the parameters of each class

conditional on class membership. First a class membership, gj = 1, . . . , G, and an examniee’s

ability, θjg, are sampled for each examinee at each stage of the Markov chain proportional to

the probability of membership in that class and conditional upon all other class parameters.

The mixing proportions, πg, and class ability distribution, µg, parameters are defined

by the frequency each of the examinees was sampled into each latent class. The frequency

examinees are sampled in each latent class defines the posterior membership probability for

the examinee in that class. The mixing proportions and class mean ability parameters are

then estimated along with the class memberships of the respondents. Ability, in this study,

was assumed to be normally distributed with mean 0 and variance 1 in each latent class.
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3.2.2 Priors

The following priors and hyperpriors were used for both unconditional and conditional

models:

θjg ∼ N(µg, 1), j = 1, . . . , N, g = 1, 2,

αig ∼ N(0, 1)I(0, ), i = 1, . . . , n, g = 1, 2,

γjt(i) ∼ N(µg, σ
2
γ), j = 1, . . . , N, t = 1, . . . , T,

(π1, π2) ∼ Dirichlet(0.5, 0.5),

µg ∼ N(0, 1), g = 1, 2,

σ2
γ ∼ Inverse-Gamma(2.5, 0.25),

where I(0, ) indicates that the observations of αig will be sampled above zero. The mean

ability of the first group was fixed as zero (i.e., µ1 = 0) to resolve the identification problem.

Note that the variance of the discrimination parameter is fixed as one. In other words, this

study focused on the random effect of item boundary location parameters.

The difference between the unconditional and conditional model is specified as how the

mean of the item boundary location parameter is defined. For the unconditional model, the

prior distribution of the item boundary location parameter is given by

βigk ∼ N(β̄g, σ
2
β), i = 1, . . . , n, g = 1, 2, k = 1, . . . ,mi,

β̄g ∼ N(0, 1), g = 1, 2,

σ2
β ∼ Uniform(0, 2),

(3.2)

where β̄g is the mean of the item boundary location parameters for latent group g which

implies that mean values can be different for speeded and nonspeeded groups and σ2
β is the

variance of the item boundary location parameter (i.e., the random item effect).

For the conditional model, the equivalent distribution of the item boundary location

parameter is still used. The mean of the item boundary location parameter, however, is
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expressed rather differently by using item covariates and can be written as

β̄g = β̄0g +
∑A

a=1 cagICa, g = 1, 2,

β̄0g ∼ N(0, 1), g = 1, 2,

(3.3)

where β̄0g is the mean of the item boundary location parameter for latent group g when the

item covariates have no impact on the item boundary location parameter, cag is the effect of

the item covariate for latent group g, and ICa is the item covariate. It is important to note

that the item covariate coefficient cgk can be different for each latent group.

3.2.3 Checking Convergence

As mentioned earlier, it is expected that the posterior distribution converges to the sta-

tionary distribution after a sufficiently long burn-in. The burn-in iterations should be

determined based on evidence of convergence, since the length of the burn-in can vary

depending on a number of factors including the complexity of the model or the data. In this

study, Heidelberger and Welch (1983) convergence diagnostics as implemented in the CODA

package (Plummer et al., 2006) were used to check the convergence.

3.3 Example: Detection of Speededness on a Science Inquiry Test

In this section, an example is presented to illustrate the detection of speededness using the

RIMGRM-t. Data for the example were taken from a middle grades and high school grades

test of science inquiry knowledge. In the example, both the unconditional and conditional

RIMGRM-t’s were used to detect test speededness in CR items.

3.3.1 Methods

Data

The sample consisted of 1,245 middle (77.23%) and 367 high (22.77%) school students. The

data were taken from the responses to a test designed to evaluate students’ knowledge and use
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of science inquiry practices. This test was composed of seven CR items. The responses were

scored using four different rubrics depending on the type of information being scored for the

item. This was done to increase the amount of information which comes from an examinee’s

written answer (Ercikan, 2002). In this case, the seven items were regarded as seven testlets

and scores from various rubrics as ordered categories for items nested in testlets. The data

were treated as responses nested in the seven testlets and consisted of 6, 4, 5, 6, 6, 5, and 6

items, respectively.

For the conditional model, the item type was used as an item covariate. As noted earlier,

there are four different item types (i.e., Science Inquiry, Everyday Language, Academic

Language, and Science Content), and an item type was coded as 0 and 1 (i.e., dummy

coding).

Model

Three models were used in this study: a random item testlet GRM model (RIGRM-t) and

a two two-class RIMGRM-t model, the unconditional and conditional models, respectively.

The item discrimination and boundary location parameters for the first 15 items (those

for Testlet 1 to Testlet 3) were estimated by the first model. Then, an equality constraint

was imposed on the item parameters of these 15 items based on the assumption that those

items were not affected by test speededness. The item parameters of the remaining 28 items

(those for Testlet 4 to Testlet 7) were estimated by both the unconditional and conditional

RIMGRM-t’s.

The mean ability parameter of the speeded group was constrained to be zero so that the

parameter estimates for the nonspeeded group could be compared with those for the speeded

group.
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Modeling Speededness

The speededness model suggested in Bolt et al. (2002) was used in this study. That model

assumes that the effects of test speededness are most likely to be detected on items at the

end of the test. The ordinal constraints for this assumption were mentioned in the previous

chapter and were used to model speededness in this example.

3.3.2 Results

Monitoring Convergence

The Heidelberger and Welch (1983) convergence diagnostic was used to determine the burn-

in and post burn-in iterations. The results suggested a burn-in length of 6,000 and a post

burn-in length of 6,000 for the RIGRM-t. For the unconditional and conditional RIMGRM-

t’s, the diagnostic indicated that the unconditional model converged after 13,000 burn-in

iterations and the conditional model converged after 10,000 burn-in iterations. Also, the

result from the diagnostic proposed a post burn-in of 2,000 iterations for the unconditional

model and 5,000 iterations for the conditional model.

Parameters Estimates

The item discrimination parameter estimates for the speeded and nonspeeded models from

the unconditional and conditional models are illustrated in Figures 3.1 and 3.2. The differ-

ences between the unconditional and conditional models for the speeded group were more

appreciable compared to those for the nonspeeded group. Given that the sample size for the

speeded group was much smaller than that for the nonspeeded group, it is possible that the

item discrimination parameter estimates are more dependent on the sample size than the

item boundary location parameter estimates which are presented below.

Figure 3.3 shows plots of the differences between the unconditional and conditional

models in the means of item boundary location parameters for each testlet for the speeded

group. Similarly, Figure 3.4 shows the differences between the unconditional and conditional
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Figure 3.1: Item discrimination parameter estimates: The speeded group
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Figure 3.2: Item discrimination parameter estimates: The nonspeeded group
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models in the means of item boundary location parameters for the nonspeeded group. Since

the first 15 items on the test were constrained to be equal for the speeded and nonspeeded

groups for both the conditional and unconditional models, they served as anchor items to

link the metrics of the conditional and unconditional models. Therefore, the means of item

boundary location parameters for the speeded and nonspeeded groups were on the same

scale.

Both figures suggest that the item boundary location parameter estimates from the

unconditional and conditional models were similar to each other. There were, however, a

couple of differences between the estimates from these models. For the speeded group, the

difference between the two models became larger at the end of the test (i.e., Testlet 6 and

Testlet 7). For the nonspeeded group, the boundary location parameter estimates of Everyday

Language were smaller for the conditional model. This might possibly be explained by the

effects of item covariates (explained below). The item discrimination parameter estimates

as well as the item boundary location parameter estimates for the speeded and nonspeeded

groups obtained from the unconditional model are provided in Tables 3.1 and 3.2, and those

for the nonspeeded group obtained from the conditional model are provided in Tables 3.3

and 3.4.

The item variance of the unconditional model was 1.926 (SD = 0.068), whereas the item

variance of the conditional model was 1.861 (SD = 0.114). These results suggest that the

inclusion of the item covariate helped explain the random variance in items. Results in Table

3.5 show the effects of the item covariates on item boundary location parameter estimates.

The credibility interval from 2.5% to 97.5% in Table 3.5 indicates whether the parameter

was significantly different from zero. The result suggests that the effects of all item covariates

did not affect the item boundary location parameters of the speeded group, but the effects

of Everyday Language and Academic Language covariates were contained in the interval

at the .05 level for the nonspeeded group. These significant coefficients helped explain the

differences between the unconditional and conditional models in item boundary location
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Figure 3.3: Means of boundary location parameter estimates: The speeded group
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Figure 3.4: Means of boundary location parameter estimates: The nonspeeded group
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Table 3.1: Item Parameter Estimates for the Speeded Group: The Unconditional Model

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 16 1.62 0.22 1.63 0.17 1.63

17 2.15 0.36 2.37 0.22 2.37

18 2.99 0.39 1.07 0.09 1.62 0.13 1.34

19 1.90 0.19 -0.90 0.09 0.99 0.11 0.04

20 2.82 0.30 0.50 0.07 1.20 0.10 1.91 0.14 2.47 0.20 1.52

21 3.34 0.38 0.63 0.07 1.47 0.11 1.05

5 22 2.62 0.33 1.14 0.09 1.14

23 2.13 0.31 1.60 0.15 1.60

24 3.34 0.41 0.93 0.08 1.44 0.12 1.18

25 2.91 0.29 -0.54 0.07 1.10 0.09 0.28

26 3.86 0.37 0.45 0.06 0.92 0.07 1.40 0.09 2.03 0.14 1.20

27 3.52 0.38 0.60 0.07 1.48 0.11 1.04

6 28 2.45 0.32 1.21 0.13 1.21

29 2.72 0.44 2.11 0.22 2.34 0.24 2.22

30 2.14 0.25 0.11 0.10 1.96 0.20 1.03

31 2.57 0.34 1.63 0.16 2.26 0.21 3.28 0.30 4.39 0.46 2.89

32 3.14 0.40 1.49 0.14 2.25 0.19 1.87

7 33 2.82 0.39 1.99 0.18 1.99

34 1.67 0.32 4.18 0.31 4.90 0.38 4.54

35 1.30 0.24 4.53 0.38 4.53

36 2.60 0.35 1.40 0.16 3.24 0.25 2.32

37 2.73 0.40 2.76 0.21 3.46 0.23 4.30 0.27 5.28 0.39 3.95

38 3.37 0.47 2.06 0.18 3.58 0.24 2.82
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Table 3.2: Item Parameter Estimates for the Nonspeeded Group: The Unconditional Model

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 16 1.88 0.16 0.72 0.08 0.72

17 1.61 0.15 1.62 0.12 1.62

18 2.83 0.22 0.15 0.05 0.75 0.06 0.45

19 0.85 0.07 -5.10 0.35 0.44 0.11 -2.33

20 2.62 0.17 -0.32 0.05 0.46 0.06 1.16 0.08 1.88 0.11 0.80

21 3.00 0.22 -0.36 0.05 0.75 0.06 0.20

5 22 2.07 0.18 0.41 0.06 0.41

23 1.68 0.14 0.94 0.09 0.94

24 2.24 0.15 -0.10 0.05 0.57 0.06 0.24

25 1.03 0.08 -4.84 0.33 0.65 0.10 -2.10

26 2.55 0.17 -0.75 0.05 0.09 0.05 0.78 0.06 1.46 0.09 0.39

27 2.26 0.15 -0.84 0.05 0.71 0.06 -0.06

6 28 1.08 0.10 -0.81 0.08 -0.81

29 2.14 0.20 0.05 0.06 0.48 0.07 0.26

30 1.08 0.09 -5.33 0.37 -1.14 0.09 -3.24

31 1.36 0.10 -0.28 0.07 0.80 0.10 2.02 0.16 2.79 0.21 1.33

32 2.68 0.22 -0.79 0.06 0.65 0.07 -0.07

7 33 1.46 0.16 -2.86 0.17 -2.86

34 0.99 0.10 0.14 0.09 0.79 0.12 0.46

35 0.94 0.09 0.65 0.11 0.65

36 1.21 0.12 -5.46 0.45 -1.98 0.13 -3.72

37 1.88 0.18 -0.85 0.07 0.41 0.07 1.49 0.11 2.47 0.18 0.88

38 1.57 0.14 -2.81 0.15 1.91 0.14 -0.45
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Table 3.3: Item Parameter Estimates for the Speeded Group: The Conditional Model

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 16 1.56 0.20 1.61 0.17 1.61

17 1.74 0.30 2.53 0.31 2.53

18 3.43 0.40 0.98 0.10 1.50 0.12 1.24

19 2.00 0.17 -0.99 0.08 1.04 0.12 0.02

20 3.12 0.32 0.45 0.09 1.11 0.11 1.80 0.16 2.27 0.18 1.40

21 3.39 0.37 0.51 0.09 1.34 0.12 0.93

5 22 2.58 0.31 1.07 0.10 1.07

23 2.06 0.28 1.51 0.16 1.51

24 3.17 0.36 0.86 0.08 1.30 0.11 1.08

25 3.20 0.29 -0.65 0.06 1.07 0.10 0.21

26 3.76 0.34 0.32 0.06 0.88 0.07 1.30 0.09 1.82 0.13 1.08

27 3.40 0.34 0.41 0.06 1.39 0.11 0.90

6 28 2.55 0.32 0.92 0.10 0.92

29 2.27 0.36 2.11 0.15 2.32 0.17 2.21

30 2.16 0.21 -0.17 0.08 1.64 0.13 0.74

31 2.47 0.30 1.32 0.11 1.95 0.14 2.85 0.21 3.66 0.33 2.44

32 3.23 0.42 1.20 0.10 1.97 0.14 1.58

7 33 3.49 0.45 1.11 0.15 1.11

34 1.40 0.24 4.31 0.37 5.35 0.51 4.83

35 1.04 0.21 5.44 0.54 5.44

36 3.19 0.43 0.65 0.13 2.54 0.22 1.59

37 3.05 0.41 1.88 0.17 2.68 0.22 3.69 0.27 4.61 0.39 3.21

38 4.26 0.52 1.15 0.15 2.76 0.21 1.96
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Table 3.4: Item Parameter Estimates for the Nonspeeded Group: The Conditional Model

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

4 16 1.86 0.16 0.74 0.08 0.74

17 1.66 0.18 1.62 0.15 1.62

18 2.59 0.20 0.15 0.06 0.79 0.07 0.47

19 0.70 0.07 -6.69 0.57 0.44 0.13 -3.13

20 2.39 0.16 -0.33 0.05 0.51 0.06 1.25 0.09 2.06 0.14 0.87

21 2.94 0.23 -0.36 0.05 0.81 0.07 0.23

5 22 2.06 0.18 0.41 0.07 0.41

23 1.74 0.16 0.93 0.09 0.93

24 2.26 0.16 -0.13 0.05 0.58 0.07 0.22

25 0.91 0.08 -6.51 0.56 0.67 0.11 -2.92

26 2.52 0.17 -0.75 0.05 0.06 0.05 0.79 0.07 1.50 0.09 0.40

27 2.34 0.17 -0.81 0.05 0.69 0.07 -0.06

6 28 1.01 0.10 -0.84 0.09 -0.84

29 2.24 0.20 -0.04 0.06 0.41 0.07 0.19

30 1.02 0.09 -6.39 0.53 -1.31 0.10 -3.85

31 1.31 0.10 -0.28 0.07 0.85 0.09 2.12 0.15 2.92 0.20 1.40

32 2.65 0.24 -0.84 0.06 0.67 0.07 -0.09

7 33 1.42 0.17 -2.87 0.18 -2.87

34 1.02 0.10 -0.02 0.09 0.64 0.11 0.31

35 0.96 0.10 0.46 0.11 0.46

36 1.12 0.11 -5.73 0.49 -2.28 0.14 -4.01

37 1.86 0.16 -0.81 0.07 0.48 0.08 1.56 0.13 2.58 0.18 0.95

38 1.72 0.16 -2.70 0.14 2.15 0.17 -0.28
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Table 3.5: Effects of the Item Covariates

Group Covariate Estimate SD 2.5% 97.5%

Speeded Inquiry 0.847 0.545 -0.222 1.928

EVLan -0.495 0.588 -1.674 0.637

ACLan 0.697 0.542 -0.364 1.768

Content 0.087 0.587 -1.092 1.240

Nonspeeded Inquiry 0.542 0.549 -0.526 1.612

EVLan -2.485 0.603 -3.645 -1.280

ACLan 1.199 0.531 0.163 2.252

Content 0.306 0.581 -0.814 1.447

Note. Inquiry = Science Inquiry, EVLan = Everyday Language,
ACLan = Academic Language, Content = Science Content.

parameter estimates of Everyday Language and Academic Language. More specifically, the

differences in Everyday Language was larger than that in Academic Language.

Table 3.6 presents the estimated testlet effects for the unconditional and conditional

models. Both the unconditional and conditional models showed a similar pattern in testlet

effects. The testlet effects in the speeded group were large both at the beginning of the test

(Testlet 1 to Testlet 3) and at the end of the test (Testlet 7) and smaller in the middle of

the test (Testlet 4 to Testlet 6). The testlet effects in the nonspeeded group were large at

the beginning of the test (Testlet 1 to Testlet 3) and small at the middle and end of the test

(Testlet 4 to Testlet 7).

As can be seen in Table 3.7, the proportion of the speeded group obtained from the

unconditional model was lower than the proportion obtained from the conditional model.

That is, the mixture proportion of the speeded group was 35.6% in the unconditional model

and 40.2% in the conditional model. The mixture proportion of the nonspeeded group was

64.4% in the unconditional model and 59.8% in the conditional model.
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Table 3.6: Testlet Effects

Testlet

Model Group 1 2 3 4 5 6 7

Unconditional Speeded 11.330 8.155 9.184 0.329 0.152 1.390 4.366

Nonspeeded 6.614 4.315 2.699 0.233 0.317 0.726 0.791

Conditional Speeded 9.977 7.884 8.722 0.367 0.164 1.192 3.923

Nonspeeded 6.947 4.305 2.579 0.262 0.274 0.772 0.831

Table 3.7: Proportions of Latent Classes

Proportions (%)

Model Speeded Nonspeeded

Unconditional 35.6 64.4

Conditional 40.2 59.8

Results in Table 3.8 show a cross-tabulation of group membership assigned by the uncon-

ditional and conditional models. Both models detected 86.0% of the total examinees in the

same latent group. When the item covariates were used (i.e., under the conditional model),

4.7% of the total examinees were classified as the speeded group and 9.3% of the total

examinees were classified as the nonspeeded group.

3.4 A Simulation Study

The purpose of this simulation study was to examine the performance of a RIMGRM-t

for the detection of speededness effects under practical testing conditions. Results from the

unconditional and conditional models were compared.
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Table 3.8: Cross-Tabulation of Latent Group Membership

Conditional Model

Speeded Nonspeeded Total

Unconditional Speeded 498 76 574

Model (30.9%) (4.7%) (35.6%)

Nonspeeded 101 899 1000

(9.3%) (55.1%) (64.4%)

Total 698 983 1612

(40.2%) (59.8%) (100.0%)

3.4.1 Simulation Conditions

Aside from the differences between the unconditional and conditional models, two factors

were considered in the simulation study based on the results from Wang (2011). First, the

sample size was manipulated. Wang used three different conditions (1,000, 2,000 and 3,000)

for this factor. The results from Wang suggested that the improvements in the recovery of the

parameters were negligible when the sample size increased from 2,000 to 3,000, suggesting

that one of the conditions can be dropped. Considering that a RIMGRM-t is more complex

than the model implemented in Wang, two sample sizes were simulated, 1,000 and 3,000

examinees.

Second, the membership proportions of the speeded group were manipulated. In previous

work, the proportions of the speeded group range from 10% to 30% (e.g., Bolt et al., 2002;

Kim et al., 2016; Wang, 2011). In this study, two proportions of test speededness were

simulated: small and high speededness. The former includes 10% and the later 30% of the

speeded examinees in the sample. These conditions were compared to the ones obtained from

the analysis of the generated data to check the classification accuracy.
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Twenty replications were simulated for each of the 8 different conditions considered (i.e.,

2 models × 2 sample sizes × 2 proportions of the speeded group = 8 conditions).

3.4.2 Data Generation Procedure

The same test length and structure of the real data were used to generate the response data.

That is, a 38-item test length was simulated with 7 testlets. The item parameter estimates

obtained from the real data were used as generating parameters. Specifically, the estimates

of the first 15 items obtained from the RIGRM-t were used as the generating values for both

the unconditional and conditional models. As mentioned above, the parameters of these 15

items were assumed to be equal across the latent classes. The generating parameters of the

items for the first three testlets are given in Table 3.9. The item parameter estimates of

the other 23 items from the unconditional and conditional models were implemented as the

generating parameters for each model. The generating parameters of the items for the last

four testlets of the unconditional and conditional models are presented in Table 3.10 and

Table 3.11, respectively.

For the conditional model, the item type was simulated as covariates on the item

boundary location parameters. The item types of the real data, which included Science

Inquiry, Everyday Language, Academic Language, and Science Content, were also used

for the simulation. The types of items describe the major issue considered in scoring the

response. Each response was scored as belonging to only one item type. Every testlet has

one item of Science Content, Everyday Language, and Academic Language, whereas the

number of Science Inquiry items ranges from 2 to 3. Dummy coding was used to indicate

the item type, which resulted in adding four coefficients to the model. The effect of the item

type on each latent group was fixed when the data was generated.

Again, the testlet effects obtained from the real data were used as the variance of the

normal distribution for the person-specific testlet effect parameter.
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Table 3.9: Generating Parameters for Testlet 1 to Testlet 3

Testlet Item α β1 β2 β3 β4

1 1 0.621 -0.980

2 0.992 0.998

3 0.625 -2.737

4 0.964 0.603

5 0.624 -2.252 0.212 2.640 4.340

6 2.192 -2.282 1.320

2 7 0.821 -2.487

8 0.669 0.944

9 0.942 -1.510 0.937 3.531 5.194

10 1.850 -3.533 1.807

3 11 3.454 -1.080

12 3.877 -1.156

13 1.202 -5.642 -4.811

14 0.986 -0.642 0.488 3.293 4.814

15 4.882 -1.309 0.172
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Table 3.10: Generating Parameters for Testlet 4 to Testlet 7: The Unconditional Model

Speeded Nonspeeded

Testlet Item α β1 β2 β3 β4 α β1 β2 β3 β4

4 16 1.62 1.63 1.88 0.72

17 2.15 2.37 1.61 1.62

18 2.99 1.07 1.62 2.83 0.15 0.75

19 1.90 -0.90 0.99 0.85 -5.10 0.44

20 2.82 0.50 1.20 1.91 2.47 2.62 -0.32 0.46 1.16 1.88

21 3.34 0.63 1.47 3.00 -0.36 0.75

5 22 2.62 1.14 2.07 0.41

23 2.13 1.60 1.68 0.94

24 3.34 0.93 1.44 2.24 -0.10 0.57

25 2.91 -0.54 1.10 1.03 -4.84 0.65

26 3.86 0.45 0.92 1.40 2.03 2.55 -0.75 0.09 0.78 1.46

27 3.52 0.60 1.48 2.26 -0.84 0.71

6 28 2.45 1.21 1.08 -0.81

29 2.72 2.11 2.34 2.14 0.05 0.48

30 2.14 0.11 0.11 1.08 -5.33 -5.33

31 2.57 1.63 2.26 3.28 4.39 1.36 -0.28 0.80 2.02 2.79

32 3.14 1.49 2.25 2.68 -0.79 0.65

7 33 2.82 1.99 1.46 -2.86

34 1.67 4.18 4.90 0.99 0.14 0.79

35 1.30 4.53 0.94 0.65

36 2.60 1.40 3.24 1.21 -5.46 -1.98

37 2.73 2.76 3.46 4.30 5.28 1.88 -0.85 0.41 1.49 2.47

38 3.37 2.06 3.58 1.57 -2.81 1.91
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Table 3.11: Generating Parameters for Testlet 4 to Testlet 7: The Conditional Model

Speeded Nonspeeded

Testlet Item α β1 β2 β3 β4 α β1 β2 β3 β4

4 16 1.56 1.61 1.86 0.74

17 1.74 2.53 1.66 1.62

18 3.43 0.98 1.50 2.59 0.15 0.79

19 2.00 -0.99 1.04 0.70 -6.69 0.44

20 3.12 0.45 1.11 1.80 2.27 2.39 -0.33 0.51 1.25 2.06

21 3.39 0.51 1.34 2.94 -0.36 0.81

5 22 2.58 1.07 2.06 0.41

23 2.06 1.51 1.74 0.93

24 3.17 0.86 1.30 2.26 -0.13 0.58

25 3.20 -0.65 1.07 0.91 -6.51 0.67

26 3.76 0.32 0.88 1.30 1.82 2.52 -0.75 0.06 0.79 1.50

27 3.40 0.41 1.39 2.34 -0.81 0.69

6 28 2.55 0.92 1.01 -0.84

29 2.27 2.11 2.32 2.24 -0.04 0.41

30 2.16 -0.17 -0.17 1.02 -6.39 -6.39

31 2.47 1.32 1.95 2.85 3.66 1.31 -0.28 0.85 2.12 2.92

32 3.23 1.20 1.97 2.65 -0.84 0.67

7 33 3.49 1.11 1.42 -2.87

34 1.40 4.31 5.35 1.02 -0.02 0.64

35 1.04 5.44 0.96 0.46

36 3.19 0.65 2.54 1.12 -5.73 -2.28

37 3.05 1.88 2.68 3.69 4.61 1.86 -0.81 0.48 1.56 2.58

38 4.26 1.15 2.76 1.72 -2.70 2.15
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The ability parameters of the speeded group for the unconditional and conditional models

were generated from a normal distribution with mean 0 and variance 1, whereas the ability

parameters for the nonspeeded group for both models were generated from a normal distri-

bution with estimated mean ability parameters and variance 1.

Given those generating parameters, the response data of the unconditional and condi-

tional models were generated based on equation 3.1 and distributions 3.2 and 3.3.

3.4.3 Recovery Analysis

A recovery analysis was conducted to evaluate the performance of the two RIMGRM-t’s

(i.e., the unconditional and conditional random item testlet graded response models) for the

detection of test speededness. Results of the recovery analysis indicate the extent to which

the generating parameters were recovered from the simulated data. For item discrimination,

item boundary location parameters, and testlet effects, the bias, the root mean square error

(RMSE), and the correlation between the generating item parameters and the estimated

item parameters were computed. For the mean ability parameter of each latent class, only

the mean ability of the nonspeeded group was recovered because the mean ability of the

speeded group was constrained to be 0 to solve the identification problem. The predetermined

latent group membership of the speeded and nonspeeded examinees were compared with the

estimated latent group membership from the simulated data.

3.4.4 Results

In this section, the results of the recovery analysis of item parameters (i.e., item discrimi-

nation and item boundary location parameters), testlet effects, and percentages of correct

detection of latent group memberships are given separately for the unconditional and con-

ditional models. This is mainly because the number of examinees who were assigned to the

speeded group was much smaller than that of examinees who were assigned to the nonspeeded

group. The recovery of the mean ability of the nonspeeded group is also presented.
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Simulation Results of the Unconditional Model

The bias, RMSEs, the correlations between the estimates and the true parameters, and the

percentages of the correct classification of latent group memberships for the speeded and

nonspeeded groups obtained from the unconditional model are presented in Table 3.12. In

general, the absolute values for the bias and the RMSEs for the speeded group were larger

than those for the nonspeeded group, and the correlations for the speeded group were lower

than those of the nonspeeded group. The percentage of correct membership for the speeded

group was slightly larger than those for the nonspeeded group.

Recovery of the Item Discrimination Parameters. The absolute values for bias and RMSEs

for the item discrimination parameters for both the speeded and nonspeeded groups

decreased as the sample size increased or the proportion of the speeded group increased.

For example, the RMSE of the speeded group, when the sample size was 1,000, decreased

from 0.974 to 0.634 as the proportion of the speeded group increased from 10% to 30%. The

absolute values for bias of the item discrimination parameters for the speeded group, which

ranged from 0.257 to 0.804, were larger than those for the nonspeeded group, which ranged

from 0.061 to 0.222. The RMSEs for the item discrimination parameters for the speeded

group ranged from 0.411 to 0.974 and were also larger than those for the nonspeeded group,

which ranged from 0.177 to 0.256.

The correlations for both the speeded and nonspeeded groups increased as the sample size

increased. When the proportion of the speeded group increased, however, the correlations

for the speeded group increased, while the correlations for the nonspeeded group decreased.

Considering that the proportion of the speeded group is also related to the sample size of

each latent class, these results suggest that a sufficient sample size would have a positive

impact on the recovery of the correlations of the item discrimination parameters. Note that

the correlations for the speeded group were lower than .9 under all conditions, whereas those

for the nonspeeded group were higher than .9 under all conditions. To be more precise, the
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correlations for the speeded group, which ranged from .548 to .884, were smaller than those

for the nonspeeded group, which ranged from .952 to .990.

Recovery of the Item Boundary Location Parameters. The absolute values for the bias and

the RMSEs for the item boundary location parameters for both the speeded and nonspeeded

groups decreased as either the sample size increased or as the proportion of the speeded

group increased, except in a few conditions. When the sample size was 3,000, the absolute

value of the bias and the RMSE for the speeded group increased as did the absolute value of

bias for the nonspeeded group as the proportion of the speeded group increased from 10% to

30%. The absolute values for bias of the item boundary location parameters for the speeded

group, which ranged from 0.055 to 0.181, were larger than those for the nonspeeded group,

which ranged from 0.022 to 0.116. The RMSEs for the item boundary location parameters

for the speeded group ranged from 0.530 to 0.898 and were also larger than those for the

nonspeeded group, which ranged from 0.210 to 0.334.

The correlations of the item boundary location parameters for the speeded group

increased as the total sample increased, only when the sample size was 1,000. Under the

3,000 examinee condition, the correlations for the speeded group remained the same as the

proportion of the speeded group increased. Similar to the recovery of the item discrimination

parameters, the correlations for the nonspeeded group increased as the sample size increased

and the correlations decreased as the proportion of the speeded group increased. These

differences, were negligible as all the correlations for the nonspeeded group were higher than

.99. The correlations for the speeded group, which ranged from .809 to .936, were smaller

than those for the nonspeeded group, which ranged from .993 to .999.

Recovery of the Testlet Effects. The absolute values for the bias of the testlet effects for

both the speeded and nonspeeded groups increased as the proportion of the speeded group

increased within each sample size. For example, the absolute value for the bias, when the

sample size was 3,000, increased from 0.286 to 0.744 for the speeded group, and from 0.208
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to 0.310 for the nonspeeded group. The absolute values for the bias of testlet effects for the

speeded group, which ranged from 0.286 to 0.744 was larger than those for the nonspeeded

group, which ranged from 0.208 to 0.310.

The RMSEs for the testlet effects for the speeded group, which ranged from 1.009 to

1.910, increased as the proportion of the speeded group increased only when the sample size

was 3,000 and the RMSEs for the speeded group decreased as the sample size increased.

The RMSEs for testlet effects for the nonspeeded group, which ranged from 0.401 to 0.648,

increased as the proportion of the speeded group increased. This result seems reasonable

because a smaller sample size was involved in the estimation of the testlet effects for the

nonspeeded group when the proportion of the speeded group increased. Note that the RMSEs

were larger than 1 only for the speeded group, which indicates a small portion of the total

sample may be insufficient for recovering the true testlet effects.

The correlations of the testlet effects for the speeded group were lower than those for

the nonspeeded group, when the sample size was 1,000, whereas the correlations for both

groups were similar when the sample size was 3,000. Again, the correlations for both groups

increased as the sample size increased. Also, the correlations for the speeded group increased

and the correlations for the nonspeeded group decreased when the proportion of the speeded

group increased. All of the correlations for both groups were higher than .9. Specifically,

the correlations for the speeded group ranged from .983 to .992 and the correlations for the

nonspeeded group ranged from .981 to .993.

Recovery of Latent Group Membership. The recovery of latent group membership was eval-

uated by the percentages of the correct classification of each examinee’s latent group mem-

bership. As expected, the percentages of the correct detection for the speeded group increased

and the percentages for the nonspeeded group decreased as the proportion of the speeded

group increased. Similarly, the percentages for both groups increased when the sample size

increased, except for the 3,000 examinee condition for the nonspeeded group. These results
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imply that the proportion of the speeded group affects the recovery of the latent group

membership for the nonspeeded group even when the sample size is sufficient.

Recovery of the Latent Group Mean for the Nonspeeded Group. The bias and the RMSEs

for the latent group mean for the nonspeeded group is presented in Table 3.13. When the

sample size was 1,000, both the absolute values for the bias and the RMSEs for the mean

ability for the nonspeeded group increased as the proportion of the speeded group increased.

When the sample size was 3,000, the absolute values for the bias increased, whereas the

RMSEs decreased as the proportion of the speeded group increased.
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Table 3.12: Results of Recovery Analysis: The Unconditional Model

α β Testlet Effects

Group N Proportion BIAS RMSE Corr. BIAS RMSE Corr. BIAS RMSE Corr. Correct%

Speeded 1000 10% -0.804 0.974 .548 0.177 0.898 .809 -0.567 1.910 .947 84.90

30% -0.468 0.634 .763 -0.055 0.573 .917 -0.617 1.211 .983 92.85

3000 10% -0.506 0.682 .718 0.136 0.513 .936 -0.286 1.009 .983 87.57

30% -0.257 0.411 .884 -0.181 0.530 .936 -0.744 1.123 .992 93.52

Nonspeeded 1000 10% 0.156 0.246 .966 0.107 0.334 .995 -0.211 0.434 .992 94.36

30% 0.083 0.244 .952 -0.022 0.306 .993 -0.288 0.644 .981 84.74

3000 10% 0.222 0.256 .990 0.095 0.243 .999 -0.208 0.401 .993 96.84

30% 0.061 0.177 .979 -0.116 0.210 .997 -0.310 0.648 .984 82.46

Speeded -0.509 0.675 .728 0.019 0.629 .900 -0.554 1.313 .976 89.71

Nonspeeded 0.131 0.231 .972 0.016 0.273 .996 -0.254 0.532 .988 89.60

1000 -0.258 0.525 .807 0.052 0.528 .929 -0.421 1.050 .976 89.21

3000 -0.120 0.382 .893 -0.017 0.374 .967 -0.387 0.795 .988 90.09

10% -0.233 0.540 .806 0.129 0.497 .935 -0.318 0.939 .979 90.91

30% -0.145 0.367 .895 -0.094 0.405 .961 -0.490 0.907 .985 88.39



Table 3.13: Recovery Analysis of Latent Group Mean: The Unconditional Model

Group Mean

N Proportion BIAS RMSE

1000 10% -0.018 0.078

30% 0.027 0.132

3000 10% 0.004 0.134

30% 0.006 0.036

1000 -0.017 0.334

3000 0.005 0.085

10% -0.007 0.106

30% 0.017 0.084

Simulation Results of the Conditional Model

The bias, RMSEs, the correlations between the estimates and the true parameters, and the

percentages of the correct classification of the latent group memberships for the speeded

and nonspeeded group obtained from the conditional model are presented in Table 3.14.

In general, similar to the result from the unconditional model, the absolute values for bias

and RMSEs for the speeded group were larger than those for the nonspeeded group, and the

correlations for the speeded group were larger than those for the nonspeeded group. Contrary

to the unconditional model, the percentages of correct membership for the speeded group

were smaller than those for the nonspeeded group.

Recovery of the Item Discrimination Parameters. The absolute values for bias and RMSEs

for the item discrimination parameters for the speeded group decreased as the sample size

increased or the proportion of the speeded group increased. For the nonspeeded group,

however, there was no specific pattern in the absolute values for bias and RMSEs. The

absolute values for bias of the item discrimination parameters for the speeded group, which

ranged from 0.215 to 1.035, were larger than those for the nonspeeded group, which ranged

from 0.158 to 0.220. The RMSEs for the item discrimination parameters for the speeded
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group, which ranged from 0.386 to 1.251, were also larger than those for the nonspeeded

group, which ranged from 0.255 to 0.376.

Again, the correlations for both the speeded and nonspeeded groups increased as the

sample size increased. When the proportion of the speeded group increased, the correlations

for the speeded group increased, whereas the correlations for the nonspeeded group decreased.

As noted earlier, the proportion of the speeded group is related to the sample size of each

group. To be more precise, the sample for the speeded group increased and the sample for

the nonspeeded group decreased when the proportion of the speeded group increased. These

results, therefore, indicate that the recovery of the correlations of the item discrimination

parameters is affected by the sample size. It should be noted that the correlations for the

speeded group were lower than .9 under all conditions except for one condition (i.e., 3,000

examinees and 30% speeded group), whereas the correlations for the nonspeeded group were

higher than .9 under all conditions. The correlations for the speeded group, which ranged

from .513 to .927, were smaller than those for the nonspeeded group, which ranged from .934

to .990.

Recovery of the Item Boundary Location Parameters. The absolute values for the bias and

the RMSEs for the item boundary location parameters for both the speeded and nonspeeded

groups decreased as either the sample size increased or as the proportion of the speeded group

increased, except in one condition for the nonspeeded group (i.e., 3,000 examinees). When

the sample size was 3,000, the absolute value and the RMSE for the nonspeeded group

increased as the proportion of the speeded group increased from 10% to 30%, which was

similar to the pattern identified from the bias and RMSE values for the item discrimination

parameters. The absolute values for bias of the item boundary location parameters for the

speeded group, which ranged from 0.038 to 0.749 were larger than those for the nonspeeded

group, which ranged from 0.060 to 0.185, except in one condition (i.e., 3,000 examinees and

30% speeded group).
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The correlations of the item boundary location parameters for the speeded group

increased as the sample size increased or as the proportion of the speeded group increased.

For example, when the proportion of the speeded group was 10%, the correlation for the

speeded group increased from .854 to .965 as the sample size increased from 1,000 to 3,000.

The correlations for the nonspeeded group increased as the proportion of the speeded group

increased, only when the sample size was 1,000. The correlations for the nonspeeded group

remained the same, when the sample size was 3,000, as the proportion of the speeded group

increased. Again, these differences between the correlations for the nonspeeded group were

trivial because all the correlations for the nonspeeded group were higher than .99 under all

conditions. The correlations for the speeded group, which ranged from .854 to .990, were

smaller than those for the nonspeeded group, which ranged from .990 to .998.

Recovery of the Testlet Effects. The absolute values for the bias of the testlet effects for the

speeded group increased as the proportion of the speeded group increased, while those for

the nonspeeded group decreased under a 1,000 examinee condition or increased under a 3,000

examinee condition as the proportion of the speeded group increased. The absolute values for

the bias of the testlet effects for the speeded group increased under the 10% speeded group

condition or decreased under the 30% speeded group condition as the sample size increased.

The absolute values for the bias of testlet effects for the nonspeeded group increased as the

sample size increased. The range of the absolute values for the bias of the speeded group was

from 0.001 to 0.572 and the range for the nonspeeded group was from 0.148 to 0.215.

The RMSEs for the testlet effect for the speeded group increased as the proportion

of the speeded group increased when the sample size was 1,000 and decreased when the

sample size was 3,000. The RMSEs for the nonspeeded group increased as the proportion

of the speeded group increased under both the 1,000 and 3,000 examinee conditions. The

RMSEs for the speeded group decreased as the sample size increased, whereas those for the

nonspeeded group increased under the 10% speeded group condition and decreased under

the 30% speeded group condition as the sample size increased. The RMSEs for the speeded
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group, which ranged from 0.510 to 2.056, were larger than those for the nonspeeded group,

which ranged from 0.367 to 0.503. Similar to the result from the unconditional model, the

RMSEs for the speeded group under the 1,000 examinee condition were larger than 1, which

implies the estimates for testlet effects might be unreliable under this condition.

When the sample size was 1,000, the correlations of the testlet effects for the speeded

group were lower than those for the nonspeeded group. When the sample size was 3,000,

the correlations of both groups were similar to each other. The correlations for both groups

increased as the proportion of the speeded group increased except in one condition for the

nonspeeded group (i.e., 10% speeded group). The correlations for the speeded group ranged

from .886 to .996 and those for the nonspeeded group ranged from .987 to .995.

Recovery of Latent Group Membership. Similar to the result from the unconditional model,

the percentages of the correct classification for the speeded group increased and those for

the nonspeeded group decreased as the proportion of the speeded group increased. The

percentages for both groups increased as the sample size increased. The percentages for the

speeded group were larger than .90 only when the proportion of the speeded group was

30%, whereas those for the speeded group were larger than .90 under all conditions. These

results suggest that the successful recovery of the latent group membership requires a higher

proportion of the speeded group even when the sample size is satisfactory.

Recovery of the Latent Group Mean for the Nonspeeded Group. The bias and the RMSEs

for the latent group mean for the nonspeeded group are provided in Table 3.15. Both the

absolute values for the bias and the RMSEs for the mean ability for the nonspeeded group

increased as the proportion of the speeded group increased, when the sample size was 1,000.

On the contrary, both the absolute values for the bias and the RMSEs for the nonspeeded

group decreased as the proportion of the speeded group increased, when the sample size was

3,000.
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Table 3.14: Results of Recovery Analysis: The Conditional Model

α β Testlet Effects

Group N Proportion BIAS RMSE Corr. BIAS RMSE Corr. BIAS RMSE Corr. Correct%

Speeded 1000 10% -1.035 1.251 .513 0.749 1.139 .854 -0.001 1.635 .932 80.20

30% -0.673 0.931 .764 0.282 0.642 .924 -0.572 2.056 .886 90.85

3000 10% -0.572 0.728 .855 0.252 0.464 .965 -0.029 0.857 .984 85.32

30% -0.215 0.386 .927 0.038 0.215 .990 -0.216 0.510 .996 92.92

Nonspeeded 1000 10% 0.158 0.229 .975 0.152 0.383 .997 -0.180 0.367 .995 97.83

30% 0.194 0.376 .934 0.185 0.620 .990 -0.148 0.503 .987 93.35

3000 10% 0.220 0.256 .990 0.118 0.298 .998 -0.189 0.371 .994 97.87

30% 0.180 0.233 .985 0.060 0.239 .998 -0.215 0.436 .992 93.74

Speeded -0.624 0.824 .765 0.330 0.615 .933 -0.205 1.265 .950 87.32

Nonspeeded 0.188 0.274 .971 0.129 0.385 .996 -0.183 0.419 .992 95.70

1000 -0.339 0.697 .797 0.342 0.696 .941 -0.225 1.140 .950 90.56

3000 -0.097 0.401 .939 0.117 0.304 .988 -0.162 0.544 .992 92.46

10% -0.307 0.616 .833 0.318 0.571 .954 -0.100 0.808 .976 90.30

30% -0.129 0.482 .903 0.141 0.429 .976 -0.288 0.876 .965 92.71



Table 3.15: Recovery Analysis of Latent Group Mean: The Conditional Model

Group Mean

N Proportion BIAS RMSE

1000 10% -0.020 0.062

30% 0.052 0.166

3000 10% 0.006 0.031

30% -0.001 0.027

1000 -0.214 0.429

3000 0.003 0.029

10% -0.007 0.047

30% 0.026 0.097

Summary of Recovery Analysis

The RMSE values for the unconditional and conditional models are presented in Figures 3.5

and 3.6, respectively. For both the unconditional and conditional models, the RMSEs for

the speeded group were larger than those for the nonspeeded group. For the unconditional

model, the RMSEs for the item discrimination and item location boundary parameters are

similar, whereas the RMSEs for the testlet effects were larger than the RMSEs for the

item parameters. For the conditional model, a similar pattern is identified, whereas the

RMSEs for the item discrimination, item location boundary parameters, and testlet effect

were comparable only for the nonspeeded group. The RMSEs for the mean ability parameter

for the nonspeeded group were much smaller compared to the other RMSEs in both models.

The correlations between the generating and estimated parameters are illustrated in

Figures 3.7 and 3.8. Again, the pattern was similar in both the unconditional and conditional

models. In both models, the correlations for the item discrimination parameters for the

speeded group were relatively smaller than the others, whereas the correlations for the item
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boundary location parameters and testlet effects were close to 1 regardless of the latent group

membership.

Comparison of Unconditional and Conditional Models

The RMSE values for the item discrimination, item boundary location parameters, and

testlet effects for the speeded and nonspeeded group are presented in Figures 3.9 to 3.11. For

the item discrimination parameters, the RMSEs from both the unconditional and conditional

models were similar except for those for the speeded group under the 1,000 examinee condi-

tion. For the item boundary location parameters, the RMSEs for the speeded group from the

unconditional model were smaller than those from the conditional model when the sample

size was 1,000, whereas the RMSEs for the speeded group from the unconditional model

were larger when the sample size was 3,000. The RMSEs for the nonspeeded group from the

unconditional model were smaller than those from the conditional model under all condi-

tions. For the testlet effects, the RMSEs for both the speeded and nonspeeded groups were

larger than those from the conditional model except in one condition (i.e., 1,000 examinees

and 30% speeded group).

Also, the RMSE values for the mean ability for the nonspeeded group are plotted in

Figure 3.12. The RMSEs for the mean ability for the nonspeeded group from the uncondi-

tional model were larger than those from the conditional model except in one condition (i.e.,

1,000 examinees and 30% speeded group). The difference between two models, however, was

negligible except for one condition (i.e., 3,000 examinees and 10% speeded group).

The percentages of correct detection of latent class memberships are presented in Figure

3.13. The percentages for the speeded group from the unconditional model were larger than

those from the conditional model under all conditions, whereas the percentages for the non-

speeded group from the unconditional model were smaller than those from the conditional

model.
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Figure 3.5: RMSE values for recovery analysis: The unconditional model
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Figure 3.6: RMSE values for recovery analysis: The conditional model
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Figure 3.7: Correlations between true and estimated values: The unconditional model
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Figure 3.8: Correlations between true and estimated values: The conditional model
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Figure 3.9: RMSE values for recovery analysis: Item discrimination parameters
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Figure 3.10: RMSE values for recovery analysis: Item boundary location parameters
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Figure 3.11: RMSE values for recovery analysis: Testlet effects

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S10P10 S10P30 S30P10 S30P30

Nonspeeded

Unconditional Conditional

Figure 3.12: RMSE values for recovery analysis: Mean ability
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Figure 3.13: Percentages of correct detection of latent group membership

3.5 Summary

The purpose of this study was to examine the performance of the RIMGRM-t for the detec-

tion of test speededness. The RIMGRM-t can be considered as a random item mixture IRT

model for testlets. Two RIMGRM-t’s, the unconditional and conditional models, were com-

pared to examine the effects of item covariates on item boundary location parameters. The

data used in this study were obtained from CR items on a test designed to measure middle

and high school students’ knowledge of science inquiry practices. Each CR item was scored

with multiple rubrics, and the multiple scores from one answer were treated as individual

item responses in a testlet.

The results from the real data analysis suggested that item boundary location parameter

estimates from the unconditional and conditional models were similar to each other. The

mixing proportions (i.e., the latent class membership proportions) in the two latent classes
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indicated that both unconditional and conditional models had similar results. Further, most

examinees were assigned to the same latent group by both models. In addition, the testlet

effect estimates from both models had similar patterns. These results suggested that the

performance of the unconditional and conditional models in the detection of the speededness

in CR items was comparable. The effects of the item covariates on item boundary location

parameters, however, were different depending on the latent class.

A simulation study was also conducted to compare the performance of the unconditional

and conditional RIMGRM-t’s under various testing conditions. Two factors, the sample size

and the proportion of the speeded group, were considered along with the difference between

the unconditional and conditional models. The bias, RMSEs, and correlations were used to

evaluate the recovery. The results from the recovery analysis indicated that the recovery

from both the unconditional and conditional models was acceptable, and a sufficient amount

of the sample size is required to recover model parameters, especially testlet effects. The

percentages of the correct classification were also similar in both models.
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Chapter 4

Exploring Characteristics of Speeded Examinees Using LDA

This chapter considers the application of latent Dirichlet allocation (LDA; Blei et al., 2003)

for characterizing latent class membership to see the difference between the speeded and

nonspeeded groups. A mixture IRT (MixIRT; Mislevy & Verhelst, 1990; Rost, 1990) model

was implemented in the first two chapters because this model is one common way to detect

speededness. It is not possible, however, to obtain a qualitative explanation about each latent

class from this model, since the mixture IRT model classifies examinees based on different

item performance (e.g., Cho et al., 2010). Additional analysis is required, therefore, to see

the attribute of each latent class from MixIRT models.

One way to describe the characteristics of each latent class is to examine the association

between latent class membership and manifest characteristics such as gender or ethnicity

(e.g., Bolt et al., 2002). Bolt et al. used the mixture Rasch model to detect speededness in a

college-level mathematics placement examination. The results suggested that approximately

24% of examinees were classified as speeded and 76% as nonspeeded. Differences in the gender

and ethnicity characteristics of the speeded and nonspeeded groups were analyzed using

Pearson chi-square tests for a randomly selected sample of 1,000 examinees. Bolt et al. found

that the association between gender and speededness was not significant (χ2 = 2.37, p =

.124), but the association between ethnicity and speededness was (χ2 = 3.92, p = .048).

Another way to characterize differences between latent groups is to interview examinees

after a test (e.g., Izsák et al., 2010). Izsák et al. used a mixture Rasch model to analyze

the responses on a multiple-choice test designed to measure the mathematical knowledge

necessary for teaching arithmetic. The mixture Rasch model detected two latent groups.
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Results from follow-up interviews were used to determine the different aspects of the latent

groups. The authors interviewed 16 of the 201 teachers in the sample—seven belonged to

the one latent group and nine to the other latent group. The follow-up interviews revealed

important differences between the two groups. For example, the teachers in the first group

identified “appropriate reference units for numbers and parts-of-parts of quantities more

consistently” (p. 293) than the teachers in the second group. The number of interviewees,

however, was very small relative to the size of the total sample, and represents a drawback

of this approach. That is, this approach permits use of interview data from only a handful

of examinees because of limited time and resources.

In this dissertation, a third method, the LDA model, was investigated. LDA is a generative

probabilistic model and is used to uncover latent topics in text corpora. It is worth noting

that the analysis unit of the LDA model is a word, which enables the analysis of the text

from examinees’ responses to the constructed response (CR) items. There are a number

of advantages derived from using LDA to analyze text data. First, it is not necessary for

this method to have additional demographic information, whereas the additional analysis in

Bolt et al. (2002) required manifest information. Second, this approach includes all of the

examinees in the analysis, whereas the number of examinees is limited when using interviews.

Third, and possibly most importantly, this process analyzes examinees’ written responses to

the CR items, whereas the MixIRT analyzes only the item scores. In this study, a two-class

mixture graded response testlet (MixGRM-t) model was used to classify examinees as the

speeded or nonspeeded group as the item response data are polytomous. Then the text of

each latent group’s responses was characterized using the LDA model.

4.1 Theoretical Framework

4.1.1 Mixture Testlet Graded Response Model

The mixture testlet graded response model (MixGRM-t) can be considered as a combination

of a mixture IRT model (Rost, 1990), a graded response model (GRM; Samejima, 1969), and
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a testlet IRT model (Wainer & Kiely, 1987). The features of each model are connected to the

characteristics of the data. First, a mixture IRT model separates examinees into latent classes

based on their responses. In this study, examinees were assigned into two latent classes, the

speeded and nonspeeded groups, with the assumption that some of the examinees’ responses

were affected by test speededness. Second, GRM can be seen as an extension of the two-

parameter logistic model to analyze the ordered categories. In this study, the CR items were

scored in two or more ordered categories, which suggests that it is appropriate to analyze

the data using a polytomous IRT model. Lastly, the testlet IRT model accounts for the

local dependency which comes from the testlet structure by adding a person-specific testlet

effect. The responses to CR items are sometimes scored by multiple rubrics in order to make

multiple inferences and interpretations (Ercikan, 2002). In this case, the individual scores

from one response can be regarded as nested in a testlet.

GRM specifies the probability of obtaining a score of k using cumulative probability (i.e.

the probability of obtaining a score of k or higher) which is also called a boundary probability.

The probability for examinee j in latent group g of obtaining category k or higher under the

mixture testlet GRM (GRM-t) is given by

P ∗
ijgk = P (uijg = k|θjg, αig, βigk, γjt(i), g) =

exp[αig(θjg − βigk − γjt(i))]
1 + exp[αig(θjg − βigk − γjt(i))]

,

where

- g: an index for latent group, g = 1, 2,

- uijg: the response of examinee j in class g to item i,

- θjg: the ability parameter of examinee j in class g,

- αig: the item discrimination parameter of item i for class g,

- βigk: the item difficulty parameter of item i of category k for class g,

- γjt(i): a person-specific testlet effect representing the interaction of examinee j with

testlet t(i) (i.e., testlet t includes item i).

By definition, the probability of getting a score of zero or higher is 1 (i.e., P ∗
ijg0 = 1) and the

probability of getting a score of mi+1 or higher is 0 (P ∗
ijg,mi+1 = 0) where mi is the maximum
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category of item i. The probability of getting a score of k is defined as the difference between

adjacent boundary probabilities, which is expressed as

Pijgk = P ∗
ijg,k−1 − P ∗

ijgk,

where k = 0, . . . ,mi. Since this study assumes that students belong to either the speeded or

nonspeeded group, this model becomes a two-class MixGRM-t (i.e., g = 1, 2).

4.1.2 Latent Dirichlet Allocation

Several studies have been conducted to describe the characteristics of a collection of docu-

ments in an efficient way. The LDA model also comes from the same motivation. Compared

with other methodologies for text corpora, however, this model involves mixture distribu-

tions for single words contained in the document (Blei et al., 2003). To be specific, the basic

ideas of LDA are that each document is assumed to be a mixture of topics and also of words;

the documents are assumed to be generated from these topics. The LDA model can be seen

as a hidden variable model. That is, in an LDA analysis, “the observed data are the words

of each document and the hidden variables represent the latent topical structure” (Blei &

Lafferty, 2009, p. 73).

The probabilistic generative process of the LDA model can be expressed as follows (Blei

& Lafferty, 2009).

1. For each topic k = 1, . . . , K

(a) Draw a distribution over words φk ∼ Dirichlet(β).

2. For each document d = 1, . . . , D

(a) Draw a vector of topic proportions θd ∼ Dirichlet(α).

(b) For each word i = 1, . . . , Nd

i. Draw a topic assignment zi ∼ Multinomial(θd), zi ∈ 1, . . . , K.

ii. Draw a word wi ∼ Multinomial(φzi), wi ∈ 1, . . . , V .
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where K is a specified number of topics, V is the number of words in the vocabulary,

Dirichlet(β) is a K-dimensional Dirichlet, Dirichlet(α) is a V -dimensional Dirichlet, Nd is

the individual document length, zi is a topic index, and wi is a word index.

The Dirichlet distribution which plays an important role in the LDA model has the

following density:

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

θαi−1
i ,

where Γ is the Gamma function which can be regarded as a real-valued extension of the

factorial function. According to Blei et al. (2003), ”the Dirichlet is a convenient distribution

on the simplex—it is in the exponential family, has finite dimensional sufficient statistics,

and is conjugate to the multinomial distribution” (p. 996).

Based on the probabilistic generative process, the joint distribution of the random vari-

ables (w, z, φ, θ) is expressed as

p(w, z, φ, θ|α, β) ∝ p(φ|β)p(θ|α)p(w|z, φ)p(z|θ).

Then, the marginal probability of the corpus A (i.e., the D observed documents) given α

and β is obtained by integrating over both φ and θ and summing over z; it is written as

p(A|α, β) =

∫
φ

∫
θ

∑
z

p(φ|β)p(θ|α)p(w|z, φ)p(z|θ)dθdφ.

Since this probability is not computationally intractable in general (Blei et al., 2003), some

approximations of the marginal probability, including variational inference (Blei et al., 2003),

collapsed variational inference (Teh, Newman, & Welling, 2006) and collapsed Gibbs sam-

pling (Griffiths & Steyvers, 2004), have been developed.

4.2 Methods

4.2.1 Data

For the MixGRM-t, the data were taken from the responses of 876 middle school students

to a constructed response test that was designed to examine middle school students’ under-
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standing of independent and dependent variables, cause and effect, and hypothesis testing.

The test consisted of six CR items and was scored with four different rubrics: science inquiry

practices, use of everyday language, use of academic language, and science content. This

process produced 33 scores with scores for each item ranging from 0 to 4.

For the LDA model, the texts of the responses of 137 of the 876 students were analyzed

to help sort examinees into speeded and nonspeeded latent classes. The corpus consisted

of 137 answer documents and 631 words. Words that occurred in only a few documents or

those that were considered to be ”stop” words were removed by using TF-IDF (Salton &

McGill, 1986), reducing the number of words to 572. Stop words are those that appear with

high frequency but contribute little to the meaning. These words are context dependent but

typically include words such as if, and, a, and the.

4.2.2 Modeling Speededness in Mixture Testlet GRM

To model test speededness, we assumed that the speeded examinees were not affected by

speededness at the beginning of the test, whereas they were affected by speededness at the

end of the test. Based on this assumption, the item discrimination and boundary location

parameters of the first two testlets (Testlet 1 and Testlet 2) were constrained to be equal.

Also, the item boundary location parameters for the speeded group in the last three testlets

(Testlet 4 to Testlet 6) were constrained to be larger than those for the nonspeeded group.

The model parameters of the third testlet were unconstrained and freely estimated.

4.2.3 Procedure

The constrained two-class MixGRM-t was applied to classify the examinees as the speeded

or nonspeeded group using the total sample which included the sample of the LDA analysis,

because the sample for the LDA analysis was insufficient to estimate the latent group mem-

bership using a MixGRM-t. The latent group membership for individual students was then
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used to classify students who belonged to the sample for the LDA analysis. This made it

possible to compare the proportions of topics used by the speeded and nonspeeded groups.

Then, the LDA model was used to extract latent topics used by examinees in their written

responses, which were part of the total sample. Cluster analysis of the proportions of topic

usage for each person and each group was used to characterize the latent groups. For cluster

analysis, hierarchical clustering was used to explore the proportions for topic usages for each

topic to set the number of clusters. K-means was then used to identify the patterns in the

proportions of topic usage for the speeded and nonspeeded groups.

4.2.4 Estimation

Mixture Testlet GRM

A Markov chain Monte Carlo (MCMC) algorithm using Gibbs sampling, as implemented in

the computer software OpenBUGS (Thomas et al., 2006), was used to estimate the parame-

ters of the MixGRM-t. The MCMC algorithm samples a Markov chain repeated from the full

conditional posterior distributions over a large number of iterations. After a sufficiently long

burn-in, the Markov chain is assumed to reach its stationary distribution. The subsequent

sampling becomes dependent on this stationary distribution. Then, the sample mean (or

mode) obtained from the remaining iterations can be used as the parameter estimate from

the posterior.

Under the MCMC algorithm, the mixture distribution is estimated by sampling a class

membership parameter for each examinee at each stage of the chain (Bolt et al., 2002). Once

a class membership parameter and an examinee’s ability parameter are sampled, the class

parameters, which include item parameters and the mean and variance of ability parameters

for each class, are sampled conditional on the class membership and ability parameters.
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It is necessary to specify prior distributions for parameters that are estimated. The fol-

lowing priors were used for MixGRM-t:

aig ∼ N(0, 1)I(0, ), i = 1, . . . , n, g = 1, 2,

bigk ∼ N(β̄g, 1), i = 1, . . . , n, g = 1, 2, k = 1, . . . ,mi,

γjt(i) ∼ N(µg, σ
2
γ), j = 1, . . . , N, t = 1, . . . , T,

θjg ∼ N(µg, 1), j = 1, . . . , N, g = 1, 2,

(π1, π2) ∼ Dirichlet(0.5, 0.5),

where n is the total number of items, N is the total number of examinees, and I(0, ) indicates

that observations of aig are sampled above zero. Hyperparameters in this analysis were

selected to be noninformative:

µg ∼ N(0, 1), g = 1, 2,

β̄g ∼ N(0, 1), g = 1, 2,

σ2
γ ∼ Inv-Gamma(2.5, 0.25).

The convergence was checked by using Heidelberger and Welch (1983) convergence diag-

nostics as implemented in the CODA package (Plummer et al., 2006).

LDA

The Gibbs sampling (Griffiths & Steyvers, 2004), as implemented in the topicmodels package

written in R (Grün & Hornik, 2011), was used to fit the LDA model. Under Gibbs sampling,

all variables are sampled from their full conditional distributions conditioning on the current

state of all other variables and data (Griffiths & Steyvers, 2004). When the data come from

D documents involving K topics over W unique words, the full conditional distribution is

expressed as

P (zi = j|z−i,w) ∝

[
n
(wi)
−i,j + β

n
(·)
−i,j +Wβ

][
n
(di)
−i,j + α

n
(di)
−i,· +Kα

]
,
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where zi is the latent variable indicating the current topic membership of the ith word,

z−i is the current topic membership for all words except for the ith word, w is the corpus

which consists of words wi’s (i.e., w = {w1, . . . , wn}), n(wi)
−i,j is the frequency of that word

wi that has been classified as topic j without the current membership, n
(·)
−i,j is the sum of

the frequencies of all the words assigned to topic j without the current membership, n
(di)
−i,j

is the frequency of that document di that has been classified as topic j without the current

membership, and n
(di)
−i,· is the sum of the frequencies of that di that has been classified as

any topics without the current membership. This expression, therefore, suggests that the full

conditional distribution is proportional to the two probabilities: the probability of word wi

assigned to topic j under all words assigned to topic j and the probability of topic k under

document di (Griffiths & Steyvers, 2004).

The Dirichlet priors of α and β are used in the estimation of the posterior distributions.

There does not yet appear to be a consensus on these priors. Consequently, in this study the

priors 50/K and 200/W were implemented for α and β, respectively, as suggested in Blei et

al. (2003).

Removing stop words was done using the term frequency-inverse document frequency

(TF-IDF) measures (Blei & Lafferty, 2009). A TF-IDF measure is defined as a multiplication

of TF and IDF measures, and it is given by

TF-IDFi = TFi × IDFi,

=
kij
Kj

× log
N

ni
,

where kij is the frequency of vocabulary ti in document j, Kj is the total number of vocab-

ulary in document j, ni is the frequency of documents that contain the term ti, and N is

the total number of documents. A TF-IDF measure can prune out words that have lower

frequencies using the first term, a TF measure, as well as words which occurred in lots of

documents (e.g., about, the, will), that can be called ’stop’ words, using the second term, an

IDF measure (Grün & Hornik, 2011).

80



Choosing a value for the TF-IDF index is somewhat context dependent. For example,

Blei and Lafferty (2009) chose the top 10,000 terms by TF-IDF, whereas Grün and Hornik

(2011) used an arbitrary number near the median TF-IDF measure as a cut-off score. Similar

to Grün and Hornik, this study also removed words that had a TF-DIF measure lower than

a cut-off score. The cut-off score of this study was 0.014 and was smaller than the median

TF-IDF measure of 0.030. This followed the suggestion from Kwak, Kim, and Cohen (2017)

which used a similar data set to this study. The justification of this cut-off score was that

it was the minimum TF-IDF number that allowed important academic words (e.g., increase

and decrease) to remain in the corpus.

Exploratory LDA analysis was used to determine the best fitting model for the corpus.

This was done by fitting different LDA models, each with a pre-specified number of topics.

Models were then compared based primarily on interpretability and information criterion

indices. This study considered models with two to ten topics and used the deviance informa-

tion criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) to select the best

fitting model, which seems to be a natural choice in that LDA implements the Bayesian

estimation. DIC was computed with the following equation:

DIC = D(θ) + pD,

where D(θ) is the posterior mean of the deviance and pD is the number of effective parame-

ters. The latter term is given by

pD = D(θ)−D(θ̂),

where D(θ̂) is the deviance of the posterior model. This criterion selects the model with the

smallest value as the best fitting model.
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Table 4.1: Descriptive Statistics for the Female and Male Students

Testlet 3 Testlet 4 Testlet 5 Testlet 6 Total

Gender N M SD M SD M SD M SD M SD

Female 78 10.04 1.90 12.12 2.43 8.18 2.15 11.04 2.75 41.37 6.72

Male 58 9.52 1.94 11.31 2.99 7.57 1.85 12.17 3.66 40.57 8.75

4.3 Results

4.3.1 Mixture Testlet GRM

Descriptive Analysis

Table 4.1 presents descriptive statistics for the final four testlets for females and males. The

means of female students were higher than those of male students for all testlets except for

Testlet 7. The total scores of the four testlets were similar to one another. Independent t-tests

suggested that the difference between female and male students in Testlet 6 was significant

at α = .05.

Monitoring Convergence

The Heidelberger and Welch (1983) convergence diagnostic proposed a burn-in length of

5,000 iterations and a post burn-in length of 11,000 iterations for the GRM-t and a burn-in

length of 12,000 iterations and a post burn-in length of 2,000 iterations for the MixGRM-t.

Item Parameter Estimates

The discrimination parameter estimates for items in Testlet 3 to Testlet 6 for both the

speeded and nonspeeded groups are plotted in Figure 4.1. In general, the discrimination

estimates for the speeded group were larger for Testlet 3 and Testlet 4 and those for the

nonspeeded group were larger for Testlet 5 and Testlet 6.
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Figure 4.1: Item discrimination parameter estimates
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The means of the boundary location parameter estimates for items in Testlet 3 to Testlet

6 for both the speeded and nonspeeded groups are presented in Figure 4.2. Both the item

discrimination and boundary location parameter estimates for the speeded and nonspeeded

group are presented in Tables 4.2 and 4.3, respectively. In Testlet 3, the means for the

speeded group were larger than those for the nonspeeded group at items for Science Inquiry

and Everyday Language, but smaller at Academic Language and Science Content. From

Testlet 4 to Testlet 6, the means for the speeded group were always larger than those for the

nonspeeded group due to the ordinal constraint.

Note that the pattern of the means of the boundary location parameter estimates is

different from that seen in previous research (Bolt et al., 2002; Kim et al., 2016). More

specifically, the pattern observed in Bolt et al. (2002) and Kim et al. (2016) was that the

distance between the speeded and nonspeeded groups increased at the end of the test. In

this study, however, the distance between the two groups was already large in the middle of

the test (i.e., in Testlet 4) except for items for Academic Language. The distance between

the two groups on items for Academic Language was rather small. This suggests that these

items were not affected by speededness. Also, the distance between the two groups remained

relatively consistent across the last three testlets (i.e., from Testlet 4 to Testlet 6). This

suggests that the speededness was already pronounced in the middle of the test.

Testlet Effects

The estimated testlet effects in the speeded and nonspeeded groups are given in Table 4.4.

Similar to the testlet effects detected in the previous two studies, the testlet effects in the

speeded group were large both at the beginning of the test (Testlet 1 and Testlet 2) and

at the end of the test (Testlet 6). The testlet effects in the nonspeeded group remained less

than 1 across all the testlets except for the last testlet.
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Table 4.2: Item Parameter Estimates for the Speeded Group

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

3 11 1.86 0.16 -1.43 0.19 -1.43

12 1.66 0.18 2.88 0.49 6.66 1.43 4.77

13 2.59 0.20 -2.19 0.23 -0.86 0.15 -1.52

14 0.70 0.07 -1.05 0.16 -0.40 0.15 0.31 0.18 0.83 0.21 -0.08

15 2.39 0.16 1.86 0.40 5.29 1.10 3.57

4 16 2.94 0.23 -0.83 0.13 -0.83

17 2.06 0.18 1.42 0.26 2.37 0.39 1.89

18 1.74 0.16 2.50 0.49 2.50

19 2.26 0.16 -1.36 0.13 -0.01 0.12 -0.68

20 0.91 0.08 -0.60 0.11 0.17 0.10 0.58 0.09 1.08 0.10 0.31

21 2.52 0.17 -0.67 0.12 1.66 0.18 0.50

5 22 2.34 0.17 3.01 0.52 3.01

23 1.01 0.10 2.95 0.53 2.95

24 2.24 0.20 -0.76 0.14 -0.11 0.13 -0.43

25 1.02 0.09 1.21 0.16 1.70 0.17 3.21 0.25 3.86 0.34 2.49

26 1.31 0.10 1.11 0.25 3.50 0.53 2.30

6 27 2.65 0.24 1.32 0.24 1.32

28 1.42 0.17 2.34 0.31 2.34

29 1.02 0.10 1.21 0.27 1.21

30 0.96 0.10 2.05 0.29 2.05

31 1.12 0.11 -0.93 0.21 1.29 0.25 0.18

32 1.86 0.16 0.22 0.17 1.29 0.19 2.28 0.22 2.58 0.21 1.59

33 1.72 0.16 0.77 0.18 2.33 0.31 1.55
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Table 4.3: Item Parameter Estimates for the Nonspeeded Group

α β1 β2 β3 β4

Testlet Item Est. SD Est. SD Est. SD Est. SD Est. SD β̄

3 11 1.65 0.30 -2.54 0.24 -2.54

12 0.86 0.13 1.03 0.23 3.37 0.57 2.20

13 1.66 0.24 -4.08 0.37 -2.54 0.18 -3.31

14 1.15 0.14 -1.94 0.17 -0.30 0.09 0.94 0.17 2.30 0.31 0.25

15 0.63 0.09 1.82 0.30 6.19 0.96 4.01

4 16 1.32 0.21 -2.59 0.26 -2.59

17 1.06 0.14 0.30 0.12 0.76 0.16 0.53

18 1.53 0.21 0.77 0.13 0.77

19 2.04 0.26 -3.74 0.35 -1.98 0.13 -2.86

20 1.94 0.15 -1.12 0.07 -0.32 0.06 0.40 0.07 0.96 0.08 -0.02

21 0.89 0.08 -2.48 0.18 1.57 0.17 -0.46

5 22 5.05 0.54 0.24 0.07 0.24

23 5.22 0.53 0.35 0.07 0.35

24 1.11 0.13 -3.50 0.26 -2.85 0.19 -3.17

25 1.12 0.09 0.90 0.11 1.50 0.13 2.99 0.20 3.53 0.27 2.23

26 3.78 0.44 -0.44 0.06 0.73 0.08 0.14

6 27 1.85 0.21 -0.37 0.08 -0.37

28 2.40 0.31 0.83 0.11 0.83

29 2.30 0.28 -0.80 0.09 -0.80

30 2.22 0.28 0.50 0.10 0.50

31 0.95 0.11 -4.39 0.36 -1.78 0.15 -3.09

32 1.13 0.09 -0.43 0.10 0.80 0.12 1.84 0.16 2.47 0.19 1.17

33 4.76 0.51 -0.56 0.07 0.88 0.09 0.16
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Table 4.4: Testlet Effects

Testlet

Group 1 2 3 4 5 6

Speeded 1.51 2.36 0.65 0.13 0.09 2.19

Nonspeeded 0.87 0.38 0.20 0.11 0.97 1.53

Mean Ability and Proportion of Latent Classes

The mean ability of the speeded group was fixed as zero to remove indeterminacy of the

scale. The estimated mean ability of the nonspeeded group was 0.602, which suggests that

the nonspeeded group was more capable than the speeded group. The results indicated that

24% of the total students were assigned to the speeded group and 76% to the nonspeeded

group. In the sample for the LDA analysis, similar proportions of 22% in the speeded group

and 78% in the nonspeeded group were observed.

4.3.2 LDA

Model Selection

In this study, DIC was used to select the best fitting model. DIC was calculated based on

hold-out likelihood, which requires one to separate the data set into two parts, the training

and test sets. In this study, 60% of the documents were chosen as the training set and 40%

as the test set. This selection resulted in 82 documents in the training set and 49 documents

in the test set.

The calculated DIC values for nine different models are shown in Figure 4.3. The results

indicated that a three-topic model was the best fitting model.
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Figure 4.3: Results of the model comparison using DIC
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Topic Specification

It is necessary to inspect the words in each topic to characterize the topic. The top 20 most

frequently occurring words in each topic are listed in Table 4.5. Topic 1 includes words such

as need, when, think, can, white, big, small, slower, fast, and little. These words suggest that

this topic is related to words which can be used in everyday life. The words in Topic 1,

therefore, would be considered to be ‘everyday words.’

Topic 2 includes words such as variable, circuit, hypothesize, experiment, independent,

temperature, and dependent, These words suggest that this topic is related to words which

can be used to write scientific assumptions or statements. The words in Topic 2, therefore,

would be considered to be ‘general academic words.’ The word would could possibly be

considered a stop word, but the TF-IDF index failed to detect it as such.

Topic 3 includes words such as hemisphere, northern, amount, metal, sunlight, Celsius,

and conduct. This suggests that this topic is related to words which would be taught in a

science class. The words in Topic 3, therefore, would be considered to be ‘discipline-specific

words.’ It should be noted that Topics 2 and 3 are both taught in science class, but Topic

2 is limited to words which would be used when crafting scientific statements such as a

hypothesis.

Proportions of Topic Usage

The descriptive statistics for the proportions of usage of each topic for the speeded and

nonspeeded groups are given in Table 4.6. Both means and standard deviations of the pro-

portions for both groups were similar to one another. The proportions of topic usage in each

topic for the speeded and nonspeeded groups are presented in Figure 4.4. Again, the median

values for both groups were similar across the topics. The interquartile ranges of Topics 1 and

2 for the speeded group were larger than those for the nonspeeded group, and the interquar-

tile range of Topic 3 for the speeded group was smaller than that for the nonspeeded group.

These results suggest that the proportions for the speeded group were more variable than
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Figure 4.4: The proportions of the topic used by the speeded and nonspeeded groups
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Table 4.5: Top 20 Frequent Words for Each Topic

Topic Twenty Most Frequent Words

1 need, burn, steelball, when, think, connect, can, attract, white, big,

small, weight, might, all, other, slower, turn, fast, little, earth

2 would, work, variable, circuit, hypothesize, out, experiment, independent,

temperature, there, energy, two, change, dependent, what, stay, keep,

less, nothing, smaller

3 same, hemisphere, cause, put, size, northern, type, which, amount, use,

effect, give, through, metal, white, sunlight, Celsius, bucket, conduct, was

Table 4.6: Descriptive Statistics for the Proportions of Topic Usage

Topic 1 Topic 2 Topic 3

Group N M SD M SD M SD

Speeded 30 0.35 0.08 0.33 0.07 0.32 0.06

Nonspeeded 170 0.34 0.07 0.33 0.07 0.34 0.08

those for the nonspeeded group for Topics 1 and 2 and less variable for the speeded group

for Topic 3.

This study also used cluster analysis to explain the proportions of topic usage in each

group. The results from hierarchical clustering suggested that there were two clusters in the

proportions of topic usage for both groups. K-means with two clusters was used to identify

these clusters. The clusters identified in the proportions for the speeded and nonspeeded

groups are shown in Figures 4.5 and 4.6. The patterns in the proportions of topic usage

as well as the proportion of the examinees in each cluster for the speeded and nonspeeded

groups are given in Tables 4.7 and 4.8, respectively.
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Figure 4.5: Patterns in proportions of topic usage identified by K-means: The speeded group
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Figure 4.6: Patterns in proportions of topic usage identified by K-means: The nonspeeded
group
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Table 4.7: Patterns in the Proportions of Topic Usage: The Speeded Group

Topic Usage (%)

Cluster Topic 1 Topic 2 Topic3 N %

1 29.4 37.2 33.4 17 56.7

2 42.2 26.7 31.2 13 43.3

Table 4.8: Patterns in the Proportions of Topic Usage: The Nonspeeded Group

Topic Usage (%)

Cluster Topic 1 Topic 2 Topic3 N %

1 28.5 29.0 42.5 33 30.8

2 36.1 34.1 29.9 74 69.2

The results indicated that the patterns of the speeded and nonspeeded groups were

different from one another. For the speeded group, 56.7% of the speeded examinees used

general academic words (37.2%) most frequently followed by discipline-specific words (33.4%)

and everyday words (29.4%) in their answers, whereas 43.3% of the speeded examinees used

everyday words (42.2%) most frequently followed by discipline-specific words (31.2%) and

everyday words (26.7%). For the nonspeeded group, 30.8% of the nonspeeded examinees

used discipline-specific words (42.5%) most frequently followed by general academic words

(29.0%) and everyday words (28.5%) in their answers, whereas 69.2% of the nonspeeded

examinees used everyday words (36.1%) most frequently followed by general academic words

(34.1%) and discipline-specific words (29.9%). It is worth pointing out that there was no

common pattern shared by both groups.
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4.4 Summary

In this study, the LDA model was implemented to characterize the latent groups, the speeded

and nonspeeded groups, obtained from a two-class MixGRM-t. The LDA model was studied

for its utility as a tool to help understand possible differences in the use of words between

speeded and nonspeeded examinees. Two data sets were used in this study. The first data set

was the rubric-based score of the total sample of 870 examinees who took one of the forms

of a middle grades test on science inquiry knowledge. The second data set was a subset

of the total set in which the written responses of 130 examinees were hand-entered into a

text file. The first data set was used to classify the examinees into speeded and nonspeeded

latent groups. The second data set was used to extract the latent topics of examinees’ written

responses and calculate the proportions of topic usage for the speeded and nonspeeded latent

groups. The latent group memberships of the examinees in the second data set were taken

from the results of the analysis for the total sample. The proportions of topic usage for each

group were then compared to determine whether differences could be observed between the

speeded and nonspeeded groups.

The results from the MixGRM-t for the total sample suggested that speededness effects

were more pronounced in the middle of the test and that the nonspeeded group was more

capable than the speeded group. In the sample used for the LDA, 22% of the 130 examinees

were classified as the speeded group and 78% of the 130 examinees as the nonspeeded group.

DIC suggested a three topic LDA model as the best fitting model. Based on the top 20

most frequent words for each topic, topics were characterized as everyday words, general

academic words, and discipline-specific words. The descriptive statistics for the proportions

of topic usage for the speeded and nonspeeded groups indicated that the means and standard

deviations were similar to each other, but the distributions of the proportions were slightly

different. A cluster analysis indicated that the patterns of the proportions of topic usage for

the speeded and nonspeeded groups were also different.
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Chapter 5

Discussion

The purpose of this dissertation was to investigate test speededness on constructed response

(CR) items. To do this, we employed different types of mixture IRT models, each designed

to treat the underlying traits somewhat differently. Test speededness can occur when time

for test administration is limited. This implies that most standardized assessments, which

usually enforce time limits for reasons of test fairness, can be affected by test speededness.

When the responses from the speeded test are analyzed by IRT models, the model parameter

estimates for items at the end of the test tend to be biased. This is because test speededness

can undermine the important assumptions of IRT models such as unidimensionality and

local independence.

Previous research has shown that mixture IRT models (Mislevy & Verhelst, 1990; Rost,

1990) can be effective separating examinees into two groups, the speeded and nonspeeded

groups (Bolt et al., 2002; Goegebeur et al., 2008; Wang, 2011). The examinees in the speeded

group were affected by speededness and, thus used different response strategies such as

guessing due to insufficient time, primarily at the end of the test. The nonspeeded group

consisted of students who were not affected by speededness and, thus used the same response

strategies throughout the test. Mixture IRT models used in this way permitted unbiased

estimates to be obtained from the nonspeeded group as well as to investigate each group’s

characteristics with estimated latent group membership for each examinee.

In Study 1 in this dissertation, a mixture graded response model for testlets (MixGRM-t)

was used to detect speededness in CR items nested in testlets. Previously reported approaches

to account for the impact of speededness effects on test performance using mixture IRT
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models have focused on multiple-choice items. This is natural as these items have been

prevalent in standardized assessments for many decades. CR items are increasingly employed

in standardized assessments, however, as automated means of scoring these items improve

and as measurement specialists seek to have students produce more of their answers rather

select them. The impact of test speededness on CR items, although an important issue in

education, has not been studied extensively. As the CR items in this study were scored

with multiple rubrics, they were considered to be nested within testlets. Nesting in this way

helped to expand the amount of information obtained from a student’s response. Thus, a

testlet IRT model was used to analyze the data.

In Study 2, a random item mixture graded response model for testlets (RIMGRM-t) was

studied for detection of speededness effects in CR items nested in testlets. Generally, IRT

models assume that persons are randomly sampled from a population, whereas items have

been treated as fixed, when the model parameters are estimated. The random item IRT

models, however, treat both person and items as random parameters, which allows one to

estimates the variance terms for both the person or item parameters. One of the advantages

of this approach is that it is possible to include covariates to explain the variance in item

responses. Two models, an unconditional model, which was a model with no covariates, and

a conditional model, which was a model with covariates, were compared to see the effects of

the item covariates on the item parameter estimates.

In Study 3, a new approach to examining differences between speeded and nonspeeded

examinees. Latent Dirichlet allocation (LDA) was first used to detect the latent topic struc-

ture of the texts of the CR responses. Next, the use of the latent topics was compared between

the speeded and nonspeeded latent groups. This was done to help understand the charac-

teristics of the answers of each latent group. Results were examined to determine whether

examinees’ written responses could be used to explore differences in examinees’ responses.
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5.1 Discussion for Chapter 2

An empirical example of using a MixGRM-t to detect speededness in a CR test was presented.

The data were taken from the seven CR items from a secondary grades science inquiry test.

The responses to these seven items were short answers on average of from one to three

sentences.

Item Parameters. Results indicated that the item discrimination parameter estimates for

the speeded group were larger than those for the nonspeeded group except for one item.

This item was designed to measure understanding of science inquiry. It was the first item of

the test, suggesting that speededness may not have affected the discrimination of this item

because of its location.

The differences in the item boundary location parameter estimates between the speeded

and nonspeeded groups increased toward the end of the test. The location parameter were

higher for the speeded group than for the nonspeeded group and suggested that speededness

effects were present in these parameter estimates. This was consistent with previous research

with dichotomous items (Bolt et al., 2002). The differences between item location parameter

estimates for the speeded and nonspeeded groups were smaller in the middle of the test and

increased toward the end of the test. This pattern suggested that the effects of speededness

tended to be greater the closer the items were to the end of the test.

Person Parameters. Consistent with previous research, the mean ability of the speeded

group was higher than that of the nonspeeded group (Bolt et al., 2002; Cho et al., 2014).

This finding suggested that the speeded examinees were more capable than the nonspeeded

examinees. What may also be likely, however, is that the measurement of speeded examinees’

ability was less accurate (Cohen, Wollack, Bolt, & Mroch, 2002). Cohen et al. found that

speeded examinees had a grade point average that was almost higher than that of nonspeeded

examinees. Semmes, Davison, and Close (2011) found that ACT performance was positively
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correlated with speededness, suggesting that examinees with higher ability may be more

affected by test speededness.

The estimated mixing proportion indicated that 30% of the examinees were classified in

the speeded group and 70% in the nonspeeded group. An examination of manifest charac-

teristics indicated gender was significantly related to speededness but ethnicity was not.

5.2 Discussion for Chapter 3

Two RIMGRM-t’s, an unconditional model and a conditional model, were used to analyze a

data set from the same study as that analyzed in Study 1. The unconditional model did not

include item covariates and the conditional model did. A simulation study was conducted to

examine the performance of both the unconditional and conditional models under practical

testing conditions.

Real Data Example. In general, the item and person parameter estimates from both the

unconditional and conditional models were comparable. The differences in item discrimina-

tion parameter estimates between the two models for the speeded group, however, were quite

different. The estimates for the nonspeeded group, on the other hand, were almost the same

for both models. This suggested that the item discrimination parameter estimates might be

related to sample size as the sample size for the speeded group were smaller than for the

nonspeeded group. More specifically, the numbers of speeded examinees were 574 (35.6%)

and 698 (40.2%) out of 1,612 for the unconditional and conditional models, respectively.

The differences in item boundary location parameter estimates between the unconditional

and conditional models were also clearly evident. This appeared to be related to the fact

that two of four item covariates for the nonspeeded group in the conditional model had a

significant effect on the item boundary location parameter estimates.

The item variance estimates from the unconditional model were larger than those from

the conditional model. This suggests that inclusion of item covariates reduced item variances.
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Testlet effects estimated from the two models also showed a similar pattern. For the mixing

proportions, the proportion of the speeded group classified by the unconditional model was

smaller than that by the conditional model. The cross-tabulation of latent group membership

classified by the unconditional and conditional models indicated that 86.0% of the examinees

in the sample were classified into the same latent group by both models.

Simulation Study. The simulation conditions included two sample sizes (1,000 and 3,000

examinees), two proportions for the speeded group (10% and 30%), and two estimation

models (an unconditional model and a conditional model). This yielded eight different sim-

ulation conditions. Twenty replications were simulated for each condition. The recovery of

the item parameters, including item discrimination, boundary location, and testlet effects,

as well as mean ability were evaluated using bias, RMSEs, and correlations between the true

and estimated values. Recovery of latent group membership was evaluated by the percentages

of the correct classification.

In general, both models showed similar levels of recovery of the model parameters. As

expected, the recovery of the parameters for the nonspeeded group was better than that for

the speeded group. One likely reason for this pattern may be that the sample size of the

nonspeeded group was much larger than that of the speeded group. As an example, when

the sample size was 1,000 and the proportion of the speeded group was 10%, there were 100

members in the speeded group but 900 members in the nonspeeded group.

Both the item discrimination and boundary location parameters were recovered moder-

ately well for the nonspeeded group in both the unconditional and conditional models. For

both the item discrimination and boundary location parameters, the reduction of the RMSEs

in the speeded group was much larger than that in the nonspeeded group. The estimates for

the nonspeeded group from the conditional model seemed to be related to the increase of the

proportions of the speeded group. For example, when the sample size was 1,000, the RMSEs

of the item boundary location parameters for the nonspeeded group from the conditional

model increased as the proportion of the speeded group increased from 10% to 30%. This
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increase did not occur, however, when the sample size was 3,000. In fact, the RMSEs for the

nonspeeded group decreased as the proportion of the speeded group increased from 10% to

30% when the sample size was 3,000.

The recovery of the testlet effects for the speeded group was poor in both models when

compared with recovery of either the item discrimination or boundary location parameters.

The conditional model had lower RMSEs for the testlet effect than the unconditional model

except in the 1,000 examinees and 30% speeded examinees condition.

The recovery of the mean ability parameter for the nonspeeded group was generally better

for both models compared to the recovery of either the item discrimination or boundary loca-

tion parameters. When the sample size was 1,000, the RMSEs from both models increased

as the proportion of the speeded group increased. When the sample size was 3,000, how-

ever, the RMSEs for ability from the unconditional model decreased whereas those from the

conditional model did not change.

The recovery of latent group membership for the speeded group was better with the

unconditional model and better for the nonspeeded group with the conditional model. This

tendency may explain why some of the examinees were assigned to different latent groups in

the real data analysis depending on the estimation model. In addition, when the proportion

of the speeded group was 30%, the difference in proportions between the two models for the

nonspeeded group was large.

5.3 Discussion for Chapter 4

In this study, LDA was used to analyze the actual words of the responses students in the

speeded and nonspeeded groups used in their answers to the CR items. Examinees were first

classified into the speeded and nonspeeded groups using a MixGRM-t on the total sample,

which were scores of 870 students. Next, LDA was used done on a subsample of the total

sample. This subsample consisted of the written responses of 137 students, that had been

transcribed into machine-readable form. Finally, the latent topic structure was compared for
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examinees in the speeded and nonspeeded groups. Data used in this study were from the

same NSF-funded project data used in the first two studies but from a different academic

year.

Results from the Mixture testlet GRM. In general, the item discrimination parameter esti-

mates for the speeded group were larger in the middle of the test (Testlet 3 to Testlet 4),

whereas those for the nonspeeded group were larger at the end of the test (Testlet 5 and

Testlet 6). For the item boundary location parameters, the distance between the speeded and

nonspeeded groups did not depend on the location of the item but instead was a function of

the item type like Everyday Language or Academic Language. For example, the difference

between two groups was smaller for items dealing with Academic Language and larger for

items dealing with Everyday Language. From these results, it appears that test speededness

varied depending on the item type rather than on the location of item. This result is some-

what different from previous studies (Bolt et al., 2002; Kim et al., 2016) which showed that

the difference between the speeded and nonspeeded groups was largest at the end of the test.

The testlet effects for the speeded group were larger both at the beginning and at the end

of the test, whereas those for the nonspeeded group were larger only at the end of the test.

The mixing proportions for the samples for the LDA analysis indicated that 22% of students

were assigned to the speeded group and 78% to the nonspeeded group.

Results from LDA. The DIC indices suggested that a two-topic model was the best-fitting

of the models considered. The top 20 most frequently occurring words in each topic were

examined to help characterize the topic. As a result, the first topic was classified as everyday

words, the second topic as general academic words, and the third topic as discipline-specific

words.

An LDA analysis also provides the proportions of usage for each topic. Differences between

these proportions between the speeded and nonspeeded groups are available at the individual

examinee level. This allows one to investigate the topic usage characteristics of speeded and
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nonspeeded examinees. It is possible, therefore, to compare these proportions for the speeded

and nonspeeded groups using various methods. For example, cluster analysis was used in this

dissertation to determine the differences in latent topic use between the two latent groups.

The descriptive statistics for the proportions of topic usage suggested that the distribution of

the proportions for two groups did differ, but the differences did not appear to be meaningful

as the means and standard deviations for the speeded and nonspeeded groups were almost

the same. However, the results from clustering analysis on the proportions for each group

suggested that the patterns in the proportions of topic usage for the speeded group were

different from those for the nonspeeded group. More specifically, the majority of the speeded

examinees used general academic words most frequently followed by the discipline-specific

words and then by everyday words, whereas the majority of the nonspeeded examinees

used the everyday words most frequently followed by the general academic words and the

discipline-specific words. Moreover, the speeded and nonspeeded groups did not share a

common pattern in topic usage.

5.4 Suggestions for Future Study

This dissertation used ordinal constraints only on the item boundary location parameters

to model speededness. It is possible, however, that changes in response patterns of speeded

examinees due to time limits could also affect the estimation of the item discrimination

parameters. For dichotomous data, Oshima (1994) suggested that test speededness could

distort the item discrimination, difficulty, and guessing parameter estimates. It might be

useful to investigate the relation between speededness and estimation of the item discrim-

ination parameters in the context of the CR items and to find useful constraints to model

speededness using the item discrimination as well as the item boundary location parameters.

For the conditional RIMGRM-t in the second study, the effect of person covariates needs

to be examined further. This dissertation used item covariates and confirmed that they
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affected item boundary location parameter estimates. Wang (2011) proposed that the inclu-

sion of a person covariate helped to classify the examinees into different latent classes. It

would be useful to inspect the influence of person covariates in the context of the graded

response model.

More testing conditions, especially ones involving item characteristics, might be useful

for a simulation study. The simulation study presented in the second study considered two

testing conditions, the sample size and the proportion of the speeded examinees. The item

characteristics such as item difficulty might also be considered since test speededness might

possibly vary with these characteristics. For example, the influence of time limits may differ

on a test which has difficult items at the beginning of the test from a test which has difficult

items at the end of the test.

The graded response model was implemented in this dissertation to deal with multiple

scores of the data. It is likely that other models for analyzing polytomous data might also be

potentially useful such as the rating scale model (Andrich, 1978b, 1978a), the partial credit

model (Masters, 1982), or the generalized partial credit model (Muraki, 1992). Based on the

taxonomy suggested by Thissen and Steinberg (1986), the graded response model belongs to

the category of ‘difference models,’ whereas the rating scale model, the partial credit model,

and the generalized partial credit model belong to the category of ‘divided-by-total models.’

Since this classification is based on how the probability of certain category score k is defined,

the impact of test speededness on the estimation of the model parameters is likely to be

different depending on which estimation model is implemented.
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Appendix A

OpenBUGS Code for the Unconditional Random Item Mixture Graded

Response Model for Test Speededness

# NE: the number of examinees
# NI: the number of items
# NT: the number of testlet
# mI: the maximum category of each item

model
{

for (j in 1:NE) {
for (i in 1:NI) {

r[j, i]<- resp[j, i]
r[j, i]∼ dcat(pcat[j, i, 1:mI[i]])

}
}

# GRM

for (j in 1:NE) {
for (i in 1:NI) {

for (k in 1:(mI[i]-1)) {
p[j, i, k]<- 1/ (1+ exp(-a2[gmem[j], i]*(theta[j]- beta[gmem[j],

i, k]- gamma[j, d[i]])))
}
p[j, i, mI[i]]<- 0

}
for (k in 1:NT){

gamma[j, k]∼ dnorm(mut[gmem[j]], pr.gamma[gmem[j], k])
}
theta[j]∼ dnorm(mut[gmem[j]], 1)
gmem[j]∼ dcat(pi[1:2])

}

for (j in 1:NE) {
for (i in 1:NI) {

pcat[j, i, 1]<- 1- p[j, i, 1]
for (k in 2:mI[i]) {
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pcat[j, i, k]<- p[j, i, k-1]- p[j, i, k]
}

}
}
pi[1:G2]∼ ddirch(alph[1:2])
mut[1]<- 0
mut[2]∼ dnorm(0, 1)

# Item variance

var.i∼ dunif(0, 2)
tau.i<- pow(var.i, -1)

# Priors

for (j in 1:G2){
for (i in 16:NI) {

a2[j, i]∼ dnorm(0, 1) I(0,)
}

}

for (i in 1:G2) {
mbeta[i]∼ dnorm(0, 1)

}

for (i in 1:G2){
for (k in 1:NT){

pr.gamma[i, k]∼ dgamma(2.5, 0.25)
}
for (k in 1:NT){

testlet[i, k]<- pow(pr.gamma[i, k], -1)
}

}

# Constraint on Testlet 1 to Testlet 3: a1 = a2 & b1 = b2

a2[1,1] <- 0.621
a2[1,2] <- 0.992
...
a2[1,14] <- 0.986
a2[1,15] <- 4.882

a2[2,1] <- 0.621
a2[2,2] <- 0.992
...
a2[2,14] <- 0.986
a2[2,15] <- 4.882
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beta[1,1,1] <- -0.980
beta[1,2,1] <- 0.998
...
beta[1,15,1] <- -1.309
beta[1,15,2] <- 0.172

beta[2,1,1] <- -0.980
beta[2,2,1] <- 0.998
...
beta[2,15,1] <- -1.309
beta[2,15,2] <- 0.172

# No constraint on Testlet 4

for (i in 16:21) {
beta[1, i, 1]∼ dnorm(mbeta[1, i], tau.i)
beta[2, i, 1]∼ dnorm(mbeta[2, i], tau.i)
for (k in 2: (mI[i]-1)) {

beta[1, i, k]∼ dnorm(mbeta[1, i], tau.i) I(beta[1, i, k-1], )
beta[2, i, k]∼ dnorm(mbeta[2, i], tau.i) I(beta[2, i, k-1], )

}
}

# Constraint on Testlet 5 to Testlet 7: b1 > b2

for (i in 22:NI){
beta[1, i, 1]∼ dnorm(mbeta[1, i], tau.i)
beta[2, i, 1]∼ dnorm(mbeta[2, i], tau.i) I(,beta[1, i, 1])
for (k in 2:(mI[i]-1)){

beta[1, i, k]∼ dnorm(mbeta[1, i], tau.i) I(beta[1, i, k-1], )
beta[2, i, k]∼ dnorm(mbeta[2, i], tau.i) I(beta[2, i, k-1], beta

[1, i, k])
}

}
}
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Appendix B

OpenBUGS Code for the Conditional Random Item Mixture Graded

Response Model for Test Speededness

# NE: the number of examinees
# NI: the number of items
# NT: the number of testlet
# mI: the maximum category of each item

model
{

for (j in 1:NE) {
for (i in 1:NI) {

r[j, i]<- resp[j, i]
r[j, i]∼ dcat(pcat[j, i, 1:mI[i]])

}
}

# GRM

for (j in 1:NE) {
for (i in 1:NI) {

for (k in 1:(mI[i]-1)) {
p[j, i, k]<- 1/ (1+ exp(-a2[gmem[j], i]*(theta[j]- beta[gmem[j],

i, k]- gamma[j, d[i]])))
}
p[j, i, mI[i]]<- 0

}
for (k in 1:NT) {

gamma[j, k]∼ dnorm(mut[gmem[j]], pr.gamma[gmem[j], k])
}
theta[j]∼ dnorm(mut[gmem[j]], 1)
gmem[j]∼ dcat(pi[1:2])

}

for (j in 1:NE) {
for (i in 1:NI) {

pcat[j, i, 1]<- 1- p[j, i, 1]
for (k in 2:mI[i]) {
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pcat[j, i, k]<- p[j, i, k-1]- p[j, i, k]
}

}
}
pi[1:G2]∼ ddirch(alph[1:2])
mut[1]<- 0
mut[2]∼ dnorm(0, 1)

# Item variance

var.i∼ dunif(0, 2)
tau.i<- pow(var.i, -1)

# Priors

for (j in 1:G2){
for (i in 16:NI) {

a2[j, i]∼ dnorm(0, 1) I(0,)
}

}

for (i in 1:G2){
for (k in 1:NT){

pr.gamma[i, k]∼ dgamma(2.5, 0.25)
}
for (k in 1:NT){

testlet[i, k]<- pow(pr.gamma[i, k], -1)
}

}

# Item covariates

for (j in 1:G2) {
for (i in 1:NI) {

mbeta[j, i]<- mb[j]+ coef.1[j]*item.cv1[i]+ coef.2[j]*item.cv2[i]+
coef.3[j]*item.cv3[i]

}
mb[j]∼ dnorm(0, 1)
coef.1[j]∼ dnorm(0, 1)
coef.2[j]∼ dnorm(0, 1)
coef.3[j]∼ dnorm(0, 1)

}

# Constraint on Testlet 1 to Testlet 3: a1 = a2 & b1 = b2

a2[1,1] <- 0.621
a2[1,2] <- 0.992
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...
a2[1,14] <- 0.986
a2[1,15] <- 4.882

a2[2,1] <- 0.621
a2[2,2] <- 0.992
...
a2[2,14] <- 0.986
a2[2,15] <- 4.882

beta[1,1,1] <- -0.980
beta[1,2,1] <- 0.998
...
beta[1,15,1] <- -1.309
beta[1,15,2] <- 0.172

beta[2,1,1] <- -0.980
beta[2,2,1] <- 0.998
...
beta[2,15,1] <- -1.309
beta[2,15,2] <- 0.172

# No constraint on Testlet 4

for (i in 16:21) {
beta[1, i, 1]∼ dnorm(mbeta[1, i], tau.i)
beta[2, i, 1]∼ dnorm(mbeta[2, i], tau.i)
for (k in 2: (mI[i]-1)) {

beta[1, i, k]∼ dnorm(mbeta[1, i], tau.i) I(beta[1, i, k-1], )
beta[2, i, k]∼ dnorm(mbeta[2, i], tau.i) I(beta[2, i, k-1], )

}
}

# Constraint on Testlet 5 to Testlet 7: b1 > b2

for (i in 22:NI){
beta[1, i, 1]∼ dnorm(mbeta[1, i], tau.i)
beta[2, i, 1]∼ dnorm(mbeta[2, i], tau.i) I(,beta[1, i, 1])
for (k in 2:(mI[i]-1)){

beta[1, i, k]∼ dnorm(mbeta[1, i], tau.i) I(beta[1, i, k-1], )
beta[2, i, k]∼ dnorm(mbeta[2, i], tau.i) I(beta[2, i, k-1], beta

[1, i, k])
}

}
}
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