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Chapter 1

Introduction

1.1 Objectives of the Study

The twin objectives of this study are (1) to apply the class of space time bilinear

(STBL) models proposed by Dai and Billard (1998) to a set of AIDS data and (2)

to compare the results with existing space time autoregressive and moving average

(STARMA) models and the standard nonspatial linear autoregressive and moving

average (ARMA) models. The main objectives of time series modeling and analyses

are to seek an understanding of the dynamic or time-dependent structure of the

observations of a single series-univariate time series analysis, and thence to ascer-

tain the leading, lagging, and feedback relationships that might exist among several

series-multivariate time series analyses. Knowledge of the dynamic structure will

help produce better forecasts of future observations and help design more optimal

control schemes.

As Dai and Billard (1998) discussed, the STBL model is a special form of a mul-

tiple bilinear time series which exhibits bilinear behavior on a spatial neighborhood

structure. Spatial data are data collected at a number of geographically separate

locations. States and regions in a county are very common spatial neighborhoods in

epidemic monitoring including in AIDS surveillance. Since spatial time series models

deal with processes that exhibit both spatial and temporal dependencies, the data

set consisting of AIDS cases in U.S. reported from all regions over time is analyzed

and so addresses our main objectives.

1
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This paper is organized as follows. Chapter 2 presents a literature review of

ARMA models, STARMA models, and STBL models. Background, the Data Sets,

and Autocorrelation and Partial Autocorrelation Functions are discussed in Chapter

3. Chapter 4 deals with the analysis of the data using the three models (of Chapter

2). The major topics cover data sources, missing observations, weighting with prob-

ability proportional to size, neighborhood structure, maximum likelihood estimation

of the coefficients and variance of error in the models, and forecasting. In Chapter

5, comparisons of the results and conclusions of this paper are given.

This paper is formatted with LaTeX using The University of Georgia thesis

style file and the electronic version may be accessible through the following website:

http://graduate.gradsch.uga.edu/etd2/library.

1.2 Expected Outcomes of the Research

Dai and Billard (1998) developed a space time model, the STBL model, which can

be employed for real data that exhibits both spatial and sudden short spurts of

larger than usual values (i.e., shocks features to the underlying time series process).

An application to the epidemic surveillance data of the infections disease mumps in

U.S. is presented in Billard and Dai (2000) and of wind speeds in Ireland in Dai and

Billard (2002). Based on their discussion and findings, it is reasonable to expect (1)

the feasibility of applying the STBL model to the modeling of the infections disease

AIDS in U.S., and (2) the fits from the STBL model to be preferable than those

obtained from existing models.



Chapter 2

Literature Review

2.1 Autoregressive Moving-Average Model

As Box and Jenkins (1976) discussed, the use of time series and dynamic

models in three important areas of applications are (1) the forecasting of future

values, (2) the determination of the transfer function of a system, and (3) the design

of simple feed forward and feed back control schemes. The autoregressive moving-

average (ARMA) model or more generally the autoregressive integrated moving-

average (ARIMA) model, also often referred to as the Box-Jenkins model procedure,

analyzes and forecasts equally spaced univariate time series data, transfer function

data and intervention data. The ARIMA model predicts a value in a response time

series as a linear combination of its own past values and of past errors also called

shocks, innovations or white noises.

The general transfer function model employed by the ARIMA procedure was

discussed Box and Jenkins (1976). Aroian (1980), Voss et al. (1980), Oprian et al.

(1980), Taneja et al. (1980) and others, have extended the Box-Jenkins results. The

standard linear autoregressive moving average (ARMA) model is given by

Z(t) =
p

∑

i=1

φi Z(t − i)

+
q

∑

j=1

θje(t − j) − e(t) (2.1)

3
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where Z(t) is a sequence of observations,

φi is the autoregressive parameter,

θj is the moving average parameter, and

e(t) are assumed to be independently and identically distributed random variables

from a normal distribution N(0, σ2).

In the papers of Aroian et al., conditions are discussed for allowable parameters

values in such ARMA models to ensure stationarity and invariability for low order

cases. We denote ARMA(p, q) with p and q representing the autoregressive order

and moving average order of the model, respectively.

Henceforth, in this work, it will be assumed that suitable differencing of the data

has been carried out to ensure stationarity pertains, and that suitable transforma-

tions have been executed to ensure stability of the variance.

2.2 Space Time Autoregressive and Moving Average Model

Linear autoregressive moving average space time models known as STARMA

models have been developed since 1975 (Cliff et al., 1975; Pfeifer and Deutsch, 1980a,

1980b). The STARMA model, denoted by STARMA (pλ, qη), is defined as

Z(t) =
p

∑

i=1

λi
∑

m=0

φi
mW(m)Z(t − i)

+
q

∑

j=1

ηj
∑

n=0

θj
n W(n)e(t − j) + e(t) (2.2)

where Z(t) = [Z1(t), ..., Zn(t)]
T is an n × 1 stochastic vector process,

W(m) = (w
(m)
kn ) is the n × n weighting matrix for spatial order m,

φi
m is the autoregressive parameter at temporal lag i and spatial lag m,

θj
n is the moving average parameter at temporal lag j and spatial lag n,

λi = [λ1, ..., λp] where λi is the spatial order associated with the ith autoregressive
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parameter,

ηj = [η1, ..., ηq] where ηj is the spatial order associated with the jth moving average

parameter,

and e(t) = [e1(t), ..., en(t)]T is a sequence of independent and identically distributed

vector random variables.

Like the ARMA models, the linear space time models have already appeared

in many important areas of applications. Note that when n = 1, W (m) = 0, m >

0, W (0) = I, this model reduces to the standard ARMA model as a special case.

2.3 Space Time Bilinear Model

To model nonlinear phenomena such as spatial and temporal processes of earth-

quakes, acute infectious disease outbreaks, etc., nonlinear models are considered.

One such powerful nonlinear time series model is the bilinear (BL) model which

emerged as a direct extension of ARIMA models by including cross products of Z(t)

and e(t); this was first developed in the context of control theory by Mohler (1973).

The analysis of BL models has been considered by Granger and Andersen (1978),

Subba Rao (1981), Kim and Billard (1990), and Subba Rao and Gabr (1984), among

others. However, this BL model does not allow for spatial dependencies.

Recently a class of space time bilinear (STBL) models designed to model spatial

time series data which exhibit bilinear behavior has been proposed by Dai and

Billard (1998). Analogous to the multivariate bilinear time series model, the STBL

model contains the most general STARMA models (2.2) as one special case when

the nonlinear part, i.e., the pure bilinear term is not present. The STBL model also

contains the general univariate bilinear BL model as another special case when each
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site is not spatially dependent and can be handled separately by letting n = 1. Dai

and Billard (1998) defined the STBL model as follows:

Z(t) =
p

∑

i=1

λi
∑

m=0

φi
mW(m)Z(t − i) +

q
∑

j=1

ηj
∑

n=0

θj
nW

(n)e(t − j)

+
r

∑

i=1

s
∑

j=1

ξi
∑

m=0

µj
∑

n=0

βij
mm[W(m)Z(t − i)]#[W(n)e(t − j)] + e(t) (2.3)

where Z(t) = [Z1(t), ..., Zg(t)]
T , t = 0, 1, ... is an g × 1 stochastic vector process,

p is the autoregressive order,

q is the moving average order,

r is the autoregressive order in the bilinear term,

s is the moving average order in the bilinear term,

λi is the spatial order of the autoregressive term at temporal lag i,

ηj is the spatial order of the moving average term at temporal lag j,

ξi is the spatial order of the autoregressive term in the bilinear term at temporal lag

i,

µj is the spatial order of the moving average term in the bilinear term at temporal

lag j,

φi
m is the autoregressive parameter at temporal lag i and spatial lag m,

θj
n is the moving average parameter at temporal lag j and spatial lag n,

βij
mm is the bilinear parameter at temporal lag i and j for the autoregressive and the

moving average terms, respectively, and at spatial lag m and n for the autoregressive

and moving average terms, respectively,

W(m) = (w
(m)
ku ) is the g × g weighting matrix at spatial order m, and

e(t) = [e1(t), ..., eg(t)]
T is a sequence of independent and identically distributed

vector random variables with

E[e(t)] = 0,
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E[e(t)e(t + j)T ] =















G, j = 0,

0, j 6= 0,

E[Z(t)e(t + j)T ] = 0, j > 0.

We write A#B = (cij), where cij = aijbij is defined as matrix element wise

multiplication for any matrices A = (aij) and B = (bij) of the same size.

Analogous to the STARMA model in (2.2), the model of (2.3) is denoted by

STBL (pλ, qη, rξ, sµ) model of temporal order p, q, r, and s; and spatial order

λ = [λ1, ..., λp], η = [η1, ..., ηq], ξ = [ξ1, ..., ξr], and µ = [µ1, ..., µp].

As Dai and Billard explained, the spatial locations can be regularly or irregularly

spaced. An example of regularly spaced spatial locations would be that where obser-

vations are placed on a grid or on quadrants of Euclidean space; whereas common

examples of irregularly spaced locations would be states or regions in a country.

More theoretical results accompanied by examples and numerical illustrations can

be found in Dai and Billard (1998, 2002), and Billard and Dai (2000).



Chapter 3

Background and the Data Set

3.1 The Data Set

The data set for this research is the set consisting of the number of

acquired immunodeficiency syndrome (AIDS) cases reported in the United States.

The AIDS Public Information Data Set is created each year by the Division

of HIV/AIDS Prevention, National Center for HIV, STD and TB Prevention,

Center for Disease Control and Prevention (CDC) and contains information

extracted from CDC’s national AIDS surveillance data base. One of the two

formats of the AIDS Public Information Data Set consists of a rectangular data

file of 16 variables extracted from CDC’s national AIDS data base (available at:

http://www.cdc.gov/hiv/software/apids.htm). This rectangular data file contains

one line of data for each AIDS case reported to CDC. Each line contains a total of

35 columns (for the 16 variables).

The data set for this paper contains the year and month in which CDC received

the case report, and region (non-metropolitan area) of residence at diagnosis of

AIDS identified since January 1984 through December 1999 (see Appendix B.1).

According to the U.S. Bureau of Census, CDC classified the 51 states into four

regions (Northeast, Midwest, South and West); see Figure 3.1 and Table 3.1.

Only three reports were missing out of 768 (16 years x 12 months x 4 regions)

expected monthly reports amounting to 0.004%. Two of these missing reports (one

case each from the Midwest and West in 1984) were surrounded by low counts of

8
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cases (less than 10) and treated as zeros, while the other one (from the West in

1992) was surrounded by high counts and so was handled by taking the average of

the four surrounding counts plus a random number between 0 and 9 (to maintain

its randomness).

Finally, the data were examined for seasonality and nonstationarity through the

autocorrelation and partial autocorrelation functions, and appropriate differencing

and transformation methods were employed to convert these data into data that

were nonseasonal and stationary; see Section 3.3.

3.2 Weighting with Probability Proportional to Size

The Dai and Billard model of (2.3) requires that the weight matrices W(m) be known.

There are many possible formats for W(m). In this paper, employing the advantages

of sampling with probability proportional to size (PPS), we have developed a prob-

ability proportional to size weighting matrix scheme as follows.

Intuitively, it seems more reasonable to put more weight on the neighbor that

has more cases than the one with fewer counts (since believed it will exerts more

influence). Let us define the neighbor to be the region that shares the common

borders. The neighborhood structure can be simplified as follows (see Figure 3.1;

the following diagram is not drawn to scale):

2 1

4

3
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Region 1 is the Northeast with 21,834 reported AIDS cases,

Region 2 is the Midwest with 15,349 reported AIDS cases,

Region 3 is the South with 62,104 reported AIDS cases, and

Region 4 is the West with 16,009 reported AIDS cases .

Hence, the first spatial order weighting matrix for the first order neighborhood (see

Table 3.2) which identifies the neighbors for each of the regions can be constructed

as follows

W (1) =

























0.0 0.2 0.8 0.0

0.2 0.0 0.6 0.2

0.4 0.3 0.0 0.3

0.0 0.2 0.8 0.0

























.
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From the first row of the weighting matrix, we can see that weighting with PPS

assigns more weight to the South Region (0.8) than to the Midwest Region (0.2) for

the same first order neighbors of the Northeast Region 1. This means in particular

that Region 1 is likely to be influenced more by Region 3 than it will be by Region

2.

3.3 Autocorrelation and Partial Autocorrelation Functions

The original time series data (shown in Figures 3.2.a, 3.2.b, 3.2.c, and 3.2.d

with the solid line for the Northeast Region, Midwest Region, South Region, and

West Region, respectively) were transformed to achieve stability in the variance of

the underlying model. Each of the well known square root and log transformations

was used in separate analyses, one for each region. Since these analyses showed the

log transformation to be superior, we report henceforth on that one only.

It is well known that variance is a measure of dispersion and that comparability is

achieved if we standardize the autocovariances by dividing them all by covariance’s,

that is, by transforming them to correlations, which for time series data are referred

to as autocorrelations.

The set of autocorrelations is often referred to collectively as the autocorrelation

functions. A graph of the autocorrelation function, called the correlogram, serves

much the same function in time series analysis as does the histogram in sampling.

The approximation for a standard error for the estimated partial autocorrelation

function at lag k is based on a null hypothesis that a pure autoregressive Gaussian

process of order k − 1 generated the time series. This standard error is used to

produce the approximate 95% confidence intervals depicted by the dots in the plot.
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The autocorrelation functions based on the original (log transformed) data (see

Figure 3.3.a) decays but not fast enough as we go from lag 0 to lag 24. The partial

autocorrelation function is shown in Figure 3.3.b.

Obviously, this suggests the need to apply a differencing operation. Among sev-

eral potential differencing candidates were considered, the first differencing operation

emerged as the most appropriate for our data (followed by the well known lag twelve

differencing operation).

Then we have employed this first differencing operation to impose stationarity

on the resulting underlying ARIMA procedure which is further discussed in the

following chapter.
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The ARIMA Procedure

Name of Variable = logct

Mean of Working Series 4.424845

Standard Deviation 0.895545

Number of Observations 192

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.802001 1.00000 | |********************|

1 0.631781 0.78776 | . |**************** |

2 0.645688 0.80510 | . |**************** |

3 0.626543 0.78123 | . |**************** |

4 0.609946 0.76053 | . |*************** |

5 0.580270 0.72353 | . |************** |

6 0.557290 0.69487 | . |************** |

7 0.535624 0.66786 | . |************* |

8 0.523781 0.65309 | . |************* |

9 0.499600 0.62294 | . |************ |

10 0.491294 0.61259 | . |************ |

11 0.447346 0.55779 | . |*********** |

12 0.473493 0.59039 | . |************ |

13 0.445094 0.55498 | . |*********** |

14 0.432446 0.53921 | . |*********** |

15 0.412203 0.51397 | . |**********. |

16 0.392369 0.48924 | . |**********. |

17 0.400161 0.49895 | . |**********. |

18 0.389311 0.48542 | . |**********. |

19 0.361446 0.45068 | . |********* . |

20 0.346335 0.43184 | . |********* . |

21 0.349497 0.43578 | . |********* . |

22 0.333840 0.41626 | . |******** . |

23 0.318184 0.39674 | . |******** . |

24 0.318184 0.39674 | . |******** . |

"." marks two standard errors

Figure 3.3.a Autocorrelation Functions, Northeast Log Transformed Data
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Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.78776 | . |**************** |

2 0.48634 | . |********** |

3 0.24970 | . |***** |

4 0.11921 | . |**. |

5 -0.00784 | . | . |

6 -0.04007 | . *| . |

7 -0.02827 | . *| . |

8 0.03114 | . |* . |

9 0.00354 | . | . |

10 0.04182 | . |* . |

11 -0.10473 | .**| . |

12 0.13210 | . |*** |

13 0.03917 | . |* . |

14 -0.00652 | . | . |

15 -0.04764 | . *| . |

16 -0.07882 | .**| . |

17 0.07485 | . |* . |

18 0.07249 | . |* . |

19 -0.04374 | . *| . |

20 -0.08140 | .**| . |

21 0.04072 | . |* . |

22 -0.00104 | . | . |

23 0.02061 | . | . |

24 0.03774 | . |* . |

Autocorrelation Check for White Noise

To Chi- Pr >

Lag Square DF ChiSq -------------Autocorrelations------------

6 683.94 6 <.0001 0.788 0.805 0.781 0.761 0.724 0.695

12 1152.03 12 <.0001 0.668 0.653 0.623 0.613 0.558 0.590

18 1486.64 18 <.0001 0.555 0.539 0.514 0.489 0.499 0.485

24 1719.67 24 <.0001 0.451 0.432 0.436 0.416 0.397 0.397

Figure 3.3.b Partial Autocorrelation Functions, Northeast Log Transformed.



Chapter 4

Application of Time Series Models

4.1 ARMA Models

We have examined the autocorrelation and partial autocorrelation functions of

each region by extending the lag up to 48 (the SAS default lag is 24) to obtain a

better vision of the underlying ARMA process. As a result the of log transformation

and first differencing operation, we can see from our correlogram in Figure 4.1.a

that now, the autocorrelations decay quickly as intended (compare Figure 3.3.a and

Figure 4.1.a for Northeast region).

Moreover, we can see that the lag k = 1 autocorrelation function values are

large, and that for lags k > 1 the autocorrelation function values are very small,

while the partial autocorrelation function values decayed exponentially to zero in

Figure 3.3.b and Figure 4.1.b. This suggests that the first order moving average of

lag 1 be considered for the underlying model. This pattern prevailed for all four

regions. That is, for each region, the tentatively identified model is an ARMA (0, 1)

model (or equivalently for the nondifferenced data, an ARIMA (0, 1, 1) model).

17
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The ARIMA Procedure

Period(s) of Differencing 1

Mean of Working Series 0.014645

Standard Deviation 0.566095

Number of Observations 191

Observation(s) eliminated by differencing 1

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.320463 1.00000 | |********************|

1 -0.190847 -.59553 | ************| . |

2 0.041931 0.13084 | . |***. |

3 -0.0037162 -.01160 | . | . |

4 0.0056567 0.01765 | . | . |

5 -0.0019888 -.00621 | . | . |

6 -0.0053784 -.01678 | . | . |

7 -0.0012196 -.00381 | . | . |

8 0.0069668 0.02174 | . | . |

9 -0.016211 -.05059 | . *| . |

10 0.035259 0.11002 | . |** . |

11 -0.055719 -.17387 | .***| . |

12 0.044193 0.13790 | . |***. |

13 -0.012846 -.04009 | . *| . |

14 0.0096701 0.03018 | . |* . |

15 -0.0007864 -.00245 | . | . |

16 -0.024448 -.07629 | . **| . |

17 0.011782 0.03677 | . |* . |

18 0.020157 0.06290 | . |* . |

19 -0.015472 -.04828 | . *| . |

20 -0.012024 -.03752 | . *| . |

21 0.018078 0.05641 | . |* . |

22 -0.0042889 -.01338 | . | . |

23 -0.010948 -.03416 | . *| . |

24 0.010850 0.03386 | . |* . |

"." marks two standard errors

Figure 4.1.a Autocorrelation Functions, Northeast Log Transformed and First

Differenced Data
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Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 -0.59553 | ************| . |

2 -0.34682 | *******| . |

3 -0.19938 | ****| . |

4 -0.08234 | .**| . |

5 -0.01931 | . | . |

6 -0.02639 | . *| . |

7 -0.05274 | . *| . |

8 -0.02453 | . | . |

9 -0.08084 | .**| . |

10 0.07119 | . |* . |

11 -0.10282 | .**| . |

12 -0.05040 | . *| . |

13 0.00012 | . | . |

14 0.06818 | . |* . |

15 0.11044 | . |**. |

16 -0.03830 | . *| . |

17 -0.11538 | .**| . |

18 0.00885 | . | . |

19 0.06748 | . |* . |

20 -0.03398 | . *| . |

21 0.00724 | . | . |

22 -0.00925 | . | . |

23 -0.04470 | . *| . |

24 -0.01429 | . | . |

Autocorrelation Check for White Noise

To Chi- Pr >

Lag Square DF ChiSq -------------Autocorrelations------------

6 72.30 6 <.0001 -0.596 0.131 -0.012 0.018 -0.006 -0.017

12 85.49 12 <.0001 -0.004 0.022 -0.051 0.110 -0.174 0.138

18 88.37 18 <.0001 -0.040 0.030 -0.002 -0.076 0.037 0.063

24 90.41 24 <.0001 -0.048 -0.038 0.056 -0.013 -0.034 0.034

Figure 4.1.b Partial Autocorrelation Functions, Northeast Log Transformed and

First Differenced Data
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After tentative values for the model orders are identified as discussed above,

maximum likelihood estimation of the parameter values was carried out by fitting

the identified model and then subsequently by over-fitting (by adding one parameter

at a time to) the model.

We have considered a total of 24 different models, 8 each for the square root

transformed, log transformed and the original (nontransformed) data.

Then, best fits were obtained by taking the AIC criterion (Akaike, 1977) into

consideration. In all four regions, the ARIMA (p, d, q) = (0, 1, 1) model as orig-

inally identified, had the best fit; i.e., first order moving average model with no

autoregressive component. The AIC values were 213.63, 174.08, 93.94 and 171.94,

respectively, and the σ̂2 were 0.17, 0.14, 0.09 and 0.14 for Northeast, Midwest, South

and East Regions, respectively; see Table 4.1 for the summary of the ARIMA esti-

mation procedure.

Hence, the linear autoregressive moving average model Eq. (2.1) for region k is

given by

z(t) = θk e(t − 1) − e(t) (4.1)

where θ̂1 = 0.772 for the Northeast region, θ̂2 = 0.721 for the Midwest region,

θ̂3 = 0.673 for the South region, and θ̂4 = 0.722 for the East region.

Finally, using these best models we have computed the predicted AIDS cases for each

region and reverse transformed. The plot of both the reported and predicted values

given in Figures 3.2.a, 3.2.b, 3.2.c, and 3.2.d for the Northeast, Midwest, South and

East regions, respectively. Further comparative discussion of these fits is deferred to

Chapter 5.
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4.2 STARMA Models

Following the procedure discussed by Dai and Billard (1998), we have identified the

orders of the model parameters for (p, q,λ,η). The autocorrelation function is given

by

ρh(j) = τho(j)/
√

τhh(0)τoo(0) (4.2)

where ρhk(j) is the space-time autocovariance function between the hth and kth

order neighbors and j time lags apart and is given by

ρhk(j) = (1/g)Cov(W(h)z(t),W(k)z(t − j)) = (1/g)tr([W(k)]TW(h)Γ(j))

with

Γ(j) = Cov(z(t), z(t − j))

and tr (A) is the trace of the matrix A. The space-time partial autocorrelation

function is the coefficient φ
′

kl obtained from solving the system of equations

τho(j) =
k

∑

i=1

λ
∑

l=1

φ
′

klτhl(j − i) (4.3)

as l=0, 1, ..., λ for k=1,2, ..., in turn.

The autocorrelation and partial autocorrelation functions given in equation (4.2)

and (4.3) are calculated on the log transformed observations are shown in Table 4.2

and Table 4.3, respectively. From these tables, we see that the autocorrelations cutoff

at the S=1 time lag while the partial autocorrelations decay exponentially as the lag

S increases. Thus, we have identified the time orders to be p=0 and q=1. Likewise,

from the spatial lags L for both the autocorrelation and partial autocorrelation

functions we have identified (λ,η) to be (0, 11). Hence, these both together would

lead us to identify the linear orders (p, q,λ,η), i.e., we have (pλ, qη) = (0, 11) giving
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a STARMA (0, 11) model. That is, there is the linear first order moving average with

no autoregressive component, when assuming the model is a pure STARMA model.

We then estimated the values of the parameters ψ = (θ0, θ1) for this model

using the procedures of Dai and Billard (2002). The resulting estimated values were

ψ̂ = (−0.75, 0.15).

We then overfitted the model by adding extra parameters. Let the parameters of

the general model be denoted by ψ = (φ0, φ1, θ0, θ1). A summary of the estimated

parameter values along with the estimate of σ2 for the residuals for some of these

models is shown in Table 4.4.

For the so-called full model, we found ψ̂ = (φ̂0, φ̂1, θ̂0, θ̂1) = (-0.219, -0.118, -0.668,

0.247). From this, we conclude that the best model is STRAMA(11, 11), the full

model with mean square error σ̂2 = 0.1349. The Akaike Information criterion (AIC)

= nT logσ̂2+2 (number of parameters) where n is the number of observations and T

is the number of special sites, was calculated to be AIC = 191(4)log(0.1349)+2(4) =

−1, 522.46.

Hence, the estimated STARMA (11, 11) model is

ẑ(t) = φ̂0z(t − 1) + φ̂1W
(1)z(t − 1) + θ̂0e(t − 1) + θ̂1W

(1)e(t − 1) (4.4)

where W(1) is our weighting matrix. Using the best-fit model (4.4), we then

computed the predicted AIDS cases for each region and reverse transformed. The

plot for both the reported and predicted values using the STARMA (11, 11) model

is given in Figures 4.3.a, 4.3.b, 4.3.c, and 4.3.d for the Northeast, Midwest, South,

and East regions, respectively.

Comparing these plot of Figures 4.3.a with that in Figure 3.2.a for the ARMA

model for the Northeast region, we can clearly see that the predicted values using

the STRAMA model appear to give better fits than those obtained for the ARMA

model, i.e., the predicted values depicted by broken lines in the STARMA plot
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comes closer to the reported cases (solid lines). Likewise, plots comparing the

observed and predicted number of cases for Region 2, Region 3 and Region 4 shows

similar patterns. A fuller discussion of the comparison of these results with those

obtained by fitting the nonspatial ARMA models is given in Chapter 5.

4.3 STBL Models

As for the previous models, in order to fit a STBL model to our data, it is first

necessary to identify the model orders (p, q, r, s,λ,η, ξ,µ). Dai and Billard (1998)

developed a two-stage procedure to do this. The first stage involves finding the

space-time autocorrelation function and the space-time partial autocorrelation

function on the (transformed differenced) data, the z(t)’s. This allows identification

of the linear model orders (p, q,λ,η). This in effect corresponds to fitting a pure

STARMA model. Thus, from the results of Section 4.2, we have identified

(pλ, qη) = (11, 11).

The second stage involves taking the residuals obtained after fitting the STARMA

model identified in the first stage. These residuals then would correspond to a pure

space-time bilinear model STBL(0, 0, rξ, sµ), i.e., the residuals contain only

bilinear terms. From Dai and Billard, to identify the bilinear model orders

(r, s, ξ,µ) it is necessary to find the space-time autocorrelation on the residuals

squared.

We have computed the autocorrelation and the partial autocorrelation functions

using the squared residuals e2(t) of the STARMA models, since the bilinear

components of the STBL involves requires these e2(t) as Dai and Billard discussed.

That is, the input observations z(t)
′

s used in equation (4.2) and (4.3) are these

e2(t)
′

s. The squared residuals e2(t)
′

s are the square of the difference between the

reported and predicted values using the STARMA model. These autocorrelation
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and the partial autocorrelation functions are shown in Table 4.5 and 4.6,

respectively. Both the autocorrelation and the partial autocorrelation functions cut

off at spatial lag L=1 while they do not exihibt a clear decay across the time lag.

This reflects the presence of both the first order autoregressive and autoregressive

and moving average terms in the model when assuming the model for the residuals

is a pure STBL model.

Once again following the Dai and Billard maximum likelihood estimation

procedure, we have estimated the values of the parameters for this model. Let us

denote the vector of parameters as ψ = (φ0, φ1, θ0, θ1, β00, β01, β10, β11).

Then, we found (φ̂0, φ̂1, θ̂0, θ̂1, β̂00, β̂01, β̂10, β̂11) = (-0.216, -0.073, -0.685, 0.204,

0.019, 0.0718, -0.118, 0.082) with σ̂2 = 0.01341, and hence

AIC = 191(4)log(0.1341) + 2(8) = −1, 519.67. Since φ̂1 = −0.073, β̂00 = 0.019 and

β̂
−1 = 0.07 and β11 = 0.082 are very close to zero, a reduced model with

parameters ψ = (φ0, θ0, θ1β10) was fitted. The resulting parameter estimates were

σ̂2 = 0.14, with an AIC =-1,498.11. Comparing these results, we see that the full

model is preferred.

Using the full model, we have forecasted the AIDS cases for each region and reverse

transformed. The observed and predicted values are shown in Figures 4.3.a, 4.3.b.,

4.3.c., and 4.3.d. for the Northeast, Midwest, South and West regions, respecitively.

All plots shows best fit and reveal the usefulness of space time bilinear model that

display shocks. In general, the bilinear models are better in modeling time series

data which shows sudden outburst or (up and downs); compare Figures 3.2, 4.2

and 4.3. A fuller discussion of this comparison is presented in Chapter 5.
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Chapter 5

Comparisons and Conclusion

In Chapter 4, three different classes of models were fitted to our AIDS data. In

this chapter, we compare these models. This is done by comparing estimated error

variances σ̂2, and also by comparing the sum of squared forecast errors, for each

model, for each region and in total over all regions.

For the estimated error variance σ̂2, we see that the respective ARMA (0, 1)

models gave estimates of σ̂2 equal to 0.177, 0.144, 0.095 and 0.142 for the

Northeast, regions, respectively. When fitting the STARMA (11, 11) model, this

estimated value was σ̂2=0.1349; while for the STBL (11, 11, 11, 11) model, the

estimate was σ̂2=0.1341. Clearly, by this criterion, the STBL model provided the

best fit and so would be preferred.

To compare the models by the sum of forecast error squares (SSF), we focussed

attention on the twelve months January - December 1999. Table 5.1 summarizes

this quantity for each of the three models by region and also gives the total SSF

values over all regions.

When we examine the squared sum of forecast error (SSF) for the last twelve

months, (January through December 1999) again the STBL model shows the best

performance. The SSF for the univariate ARMA models, the full STARMA model

and for the full STBL model are 209,755, 60,085 and 56,478, respectively. We see

that also the STARMA model is a considerable improvement over the the standard

univariate ARMA models. This means there is indeed spatial dependencies in the

29
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spread of HIV/AIDS. However, the STBL model still has the best fit showing that

in addition to the presence of spatial dependencies, there are indeed shocks that

are not modeled by the STARMA model but which are captured by the STBL

model. When we examine the SSF of each individual region, the STARMA model

gives the best forecast for the Northeast, and Midwest regions (with very close

margin), while the STBL shows the best fits for the South and West regions. This

leads us to a close examination of the underlying process of our data, especially in

the Northeast and South regions where the SSF values for the STARMA and

STBL models show a wider range.

When we examine the Northeast region, we have observed one usually high

monthly reported count of 974 surrounded by relatively low cases (with 103

average of the four surrounding counts). This surely looks like an outlier and will

have a larger contribution to our the squared sum of forecast errors.

More importantly, the original time series AIDS counts for the South region

fluctuates higher (up as high as 1,600 cases) with a standard deviation of 231.8

while the Northeast region counts exhibit relatively moderate variation (dance up

and down slowly) with a standard deviation of 98.7 (compare Figure 4.2.a and

Figure 4.3.c). This preference for the STBL model confirms its robust performance

for those situations when the time series data exhibits such fluctuations. When we

look at the plot of the STBL model (Figures 4.3) the original and the predicted

data are very close (it would be a clear plot if the gap was wide), and we see that

the STBL model is more sensitive to changes in the data.

The Space Time Bilinear (STBL) model gives the smallest σ̂2 and very close

prediction for these AIDS data fitting, as expected. Comparison of Figures 3.2, 4.2,

and 4.3 shows that the predicted values shown by broken lines in Figure 4.2 and

4.3 plots are very close to the reported cases (the solid lines) in some cases looks

overlap which shows the closeness of the fit, while the ARMA model plots in



31

Figure 3.2 shows a wider gap. In general, both the STARMA and STBL models

shows very competative best fit to our AIDS data.

This result is consistent with the findings of Dai and Billard with Mumps and

Wind data. This reveals again that the STBL model has the potential to be

applied to nonlinear spatial and temporal processes.



Chapter 6

Future Research

First, analogous to PROC ARIMA, develop PROC STARMA and PROC

STBL a SAS friendly procedures by extending Dai and Billard’s programs. This

will make the application of bilinear and Space Time Bilinear models convenient

for applied research activities.

Second, continue research on the application of space time bilinear models to many

other areas of disciplines by giving emphasis on forecasting to confirm that STBL

is a better time series model that can have a significant impact on quality and

processing improvement.
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Appendix A

Tables

A.1 Table 3.1. U.S. Census Bureau Regions Division

Region State

Northeast Connecticut New Jersey Maine

New York Massachusetts Pennsylvania

New Hampshire Rhode Island Vermont

Midwest Indiana Iowa Nebraska

Illinois Kansas North Dakota

Michigan Minnesota South Dakota

Ohio Missouri Wisconsin

South Delaware Alabama Arkansas

District of Columbia Kentucky Louisiana

Florida Mississippi Oklahoma

Georgia Tennessee Texas

Maryland North Carolina South Carolina

Virginia West Virginia

East Arizona Montana Alaska

Colarado Utah California

Idaho Nevada Hawaii

New Mexico Wyoming Oregon

Washington
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A.2 Table 3.2. The First Order Neighborhood Structure

Region Code Region Neighbor Regions

1 Northeast Midwest and South

2 Midwest Northeast, South and West

3 South Northeast, Midwest and West

4 West Midwest and South

A.3 Table 4.1. Summary of the Estimation of ARIMA Procedure

φ̂0 φ̂1 Region σ̂2 AIC

0.013 0.772 Northeast 0.177 213.634

0.019 0.721 Midwest 0.144 174.078

0.019 0.673 South 0.095 93.944

0.017 0.722 West 0.142 171.942
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A.4 Table 4.2. Space-Time Autocorrelation for {Z(t)}, STARMA

Model

Time lag Spatial lag L = 0 spatial lag L = 1

S=1 -.5403 -.2413

S=2 0.0539 0.0998

S=3 0.0292 -.0188

S=4 -.0054 -.0090

S=5 -.03157 0.0075

S=6 0.0491 0.0499

S=7 -.0515 -.1139

A.5 Table 4.3. Space-Time Partial Autocorrelation for {Z(t)},

STARMA Model

Time lag Spatial lag L = 0 Spatial lag L = 1

S=1 -.5403 -.0541

S=2 -.3367 0.0805

S=3 -.1789 0.1066

S=4 -.0925 0.0719

S=5 -.0961 0.0894

S=6 -.0271 0.1818

S=7 -.0685 -.0082



39

A.6 Table 4.4. Summary for Estimation of STARMA Model

Model φ̂0 φ̂1 θ̂0 θ̂1 σ̂2 AIC

STARMA (0, 11) 0 0 - 0.75 0.15 0.1408 -1,493.76

STARMA (11, 0) -0.52 -0.04 0 0 0.1605 -1,393.71

STARMA (11, 11) -0.219 -0.118 -0.668 0.247 0.1349 -1,522.46

A.7 Table 4.5. Space-Time Autocorrelations for {Z2(t)}, STBL

Model

Time lag Spatial lag L=0 Spatial lag L=1

S=1 0.0041 0.0001

S=2 -.0054 0.0005

S=3 -.0058 0.0002

S=4 -.0067 -.0003

S=5 0.0248 0.0002

S=6 0.0467 0.0049

S=7 0.0047 -.0001
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A.8 Table 4.6. Space-Time Partial Autocorrelations for {Z2(t)},

STBL Model

Time lag Spatial lag L = 0 Spatial lag L = 1

S=1 -.0041 0.0001

S=2 -.0054 0.0005

S=3 -.0059 0.0003

S=4 -.0068 -.0002

S=5 0.0247 0.0002

S=6 0.0468 0.0032

S=7 0.0054 -.0001
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A.9 Table 5.1. Reported and STBL Predicted (in parenthesis) AIDS

Cases in 1999

Month Northeast Midwest South East

Jan 47(23) 71(48) 501(537) 61(53)

Feb 100(214) 98(126) 412(340) 66(97)

Mar 134(115) 72(62) 472(479) 87(105)

Apr 93(65) 90(109) 433(399) 56(50)

May 111(122) 61(58) 563(577) 89(123)

Jun 142(131) 91(126) 532(421) 74(62)

Jul 89(70) 55(51) 457(417) 71(77)

Aug 101(130) 67(98) 453(481) 58(63)

Sep 71(73) 79(83) 411(409) 97(120)

Oct 135(187) 63(55) 458(491) 65(47)

Nov 79(55) 81(91) 378(363) 61(70)

Dec 245(309) 106(91) 380(436) 62(71)

A.10 Table 5.2. Summary of Forcast Error Square in 1999

Region ARMA STARMA STBL

Northeast 27561.19 23048.59 23592.77

Midwest 24328.06 4478.35 4495.71

South 131696.94 28596.49 24694.89

East 26169.44 3962.21 3695.09

Total 209755.63 60085.64 56478.46



Appendix B

DATA SETS AND PROGRAMS

B.1 DATA SETS

The data set for this paper contains the year and month in which CDC received

the AIDS case report, and region (non-metropolitan area) of residence at diagnosis

of AIDS identified since January 1984 through December 1999 (refer to section

3.1). Below is the partial list of the data file (Region 1=Northeast, 2=Midwest,

3=South and 4=West).

Region Year Month

1 84 01

1 84 02

1 84 03

more

4 99 10

4 99 11

4 99 12
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B.2 SAS PROGRAMS

/****************************************************************

* Program: aids_pgm.sas

* Programmer: Tadesse Haileyesus, April 2002

* Input: CDC External ASCII file called pids.txt

* Desc: To Apply Time Series Models to AIDS Data

*****************************************************************/

options ls=78 ps=56 nodate formdlim=’-’ pageno=1;

data temp; set maps.us;

/* set ’C:\Program Files\SAS Institute\SAS\V8\maps.us’; */

if state in(’9’,’23’,’25’,’33’,’44’,’50’,’34’,’36’,’42’)

then DIVISION = 1 ;

else if state in(’18’,’17’,’26’,’39’,’55’,’19’,

’20’,’27’,’29’,’31’,’38’,’46’)

then DIVISION = 2 ;

else if state in(’10’,’11’,’12’,’13’,’24’,’37’,’45’,’51’,

’54’,’1’,’21’,’28’,’47’,’5’,’22’,’40’,’48’)

then DIVISION = 3 ;

else if state in(’4’,’8’,’16’,’35’,’30’,’49’,’32’,

’56’,’2’,’6’,’15’,’41’,’53’)

then DIVISION = 4 ;

else DIVISION = 5;

run;

proc sort data=temp;

by division;

run;

proc gremove data=temp out=remstate;

by division;

id state;

run;

goptions reset=global gunit=pct

border=white cback=white colors=(black )

ftext=swiss htitle=6 htext=3;

footnote ’Figure 3.1. U.S. Census Bureau Regions Division Map’;

proc gmap map=remstate data=temp all;

id division;

choro division / discrete legend=legend ; * nolegend;

run;

quit;
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/* Import year, month and region from CDC AIDS data */

data data1;

infile ’N:\aids\pids.txt’;

input year 3-4 month 5-6 region 10;

run; /* DATA1 has 115,482 observations and 3 variables, 2.7 MB */

/* Group by region, year, month to get counts */

proc sql;

create table data2 as

select region, year, month, count(*) as count

from data1 where year >= 84 /* get Jan 84 to Dec 99 */

group by region, year, month;

/* DATA2 created, with 765 rows and 4 columns. */

data time; /* create time frame */

do region = 1 to 4;

do year = 84 to 99;

do month = 1 to 12;

time + 1; /* 16yrs x 12=192 monthly reports */

If time > 192 then time=1; output;

end;

end;

end;

run; /* TIME has 768 observations and 4 variables. */

proc sort data=time;

by region year month;

run;

data merge1;

merge time data2;

by region year month;

run; /* MERGE1 has 768 obs and 5 var */

/* handle missing values as discussed in section 3.1 */

data data3;

set merge1;

if (region =4 and year =92 and month =8) then count=110;

if count =. then count=0;

put count@@;

run;
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/* set date, transform data and output */

data aids.trans_tbl; /* out put table */

set data3;

file ’N:\aids\trans_file’; /* out put file */

date =mdy(month,1,year);

format date monyy.;

sqct=sqrt(count);

logct=log(1+count);

put region year month count sqct logct;

run;

/* out put in separate files: region1 Northeast (shown below)

region2 Midwest, region3 South and region4 West (not shown) */

data region1 ;

set data4;

file ’N:\aids\region1’;

if region=1 then

put region year month count sqct logct;

run;

/* To do the identification stage for log(1+count)*/

Title ’Figure 3.3 Partial & Autocorrelation Functions,

Northeast Log Transformed Data’;

PROC ARIMA data=aids.region1 out=out1;

Identify var=logct nlag=48;

Title ’ Figure 4.1 Partial & Autocorrelation Functions,

Northeast Log Transformed and First Differenced Data’;

PROC ARIMA data=aids.region1 out=out1a;

Identify var=logct(1) nlag=48;

/* To get first difference, AIDS data */

/* output count1234, d1sqct1234 & d1logct1234, 191 obs, 4 regions*/

data reg1 (keep=time count1 sqct1 logct1);

infile ’N:\aids\region1’;

input time region year month count1 sqct1 logct1 ;

data aids.region1234;

merge reg1 reg2 reg3 reg4;

by time; /* region1234 merged side by side */
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data aids.d1region1234

(keep= dcount1 dsqct1 dlogct1 dcount2 dsqct2 dlogct2

dcount3 dsqct3 dlogct3 dcount4 dsqct4 dlogct4);

set aids.region1234 ;

dcount1 = dif1(count1);

dsqct1 = dif1(sqct1);

dlogct1 = dif1(logct1);

dcount2 = dif1(count2);

dsqct2 = dif1(sqct2);

dlogct2 = dif1(logct2);

dcount3 = dif1(count3);

dsqct3 = dif1(sqct3);

dlogct3 = dif1(logct3);

dcount4 = dif1(count4);

dsqct4 = dif1(sqct4);

dlogct4 = dif1(logct4);

data aids.d1count1234 (keep=dcount1 dcount2 dcount3 dcount4 );

set aids.d1region1234 ;

where dcount1 <> . ;

data aids.d1sqct1234 (keep=dsqct1 dsqct2 dsqct3 dsqct4 );

set aids.d1region1234 ;

where dsqct1 <> . ;

data aids.d1logct1234 (keep=dlogct1 dlogct2 dlogct3 dlogct4 );

set aids.d1region1234 ;

where dlogct1 <> . ;

data in;

set aids.d1logct1234;

file ’N:\aids\d1logct1234’;/*transformed & diff1 out put file*/

put dlogct1-dlogct4;

run;

/* Do estimation, forecast and reverse transform */

/* We work with the (0,1,1) of the (p,d,q)x(P,D,Q)

for s=1 model, as this gave best fit */

PROC ARIMA data=aids.region1 out=outt1;

Identify var=logct(1) nlag=48 noprint outcov=outcvl1;

Title2 ’Log Counts --- First Difference’;
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estimate q=(1) grid plot; run;

FORECAST back=12 lead=12 interval=month out=flog1; run;

quit;

/* To put data outcvl1 into an outfile <ocvl1> */

data regl1; set outcvl1;

file ’N:\aids\ocvl1’;

code=1;

put LAG 6-7 VAR 10-13 N 16-18 COV 10.5 CORR 10.5 STDERR 10.5

INVCORR 10.5 PARTCORR 10.5 code 2-3; run;

proc print data=regl1; run;

/* To put forcast into outfile <forsl1> */

data data1; set flog1;

file ’N:\aids\forl1’;

code=1;

put logct 12.8 forecast 12.8 std 12.8 l95 12.8 u95 12.8

residual 12.8 code 5-6 ; run;

proc print data=data1; run;

/* To inverse transform forcast */

data aids.arma1; set flog1;

count1=-1 + exp(logct);

ll95=-1 + exp(l95);

lu95=-1 + exp(u95);

arma1=-1 + exp( forecast + std*std/2);

lresid=count1-arma1; run;

run; /* similar steps for region 2,3 & 4 */

data test1 (keep= arma1 count1);

set aids.arma1; if _N_ > 1 ;

data test1; set test1 ; Month+1;

run;

data aids.arma_final;

merge test1 test2 test3 test4 ;

by Month;

run;

/* ARMA PLOT */

proc gplot data =aids.arma_final;

plot arma1*Month/haxis = 0 to 192 by 12

vaxis = 0 to 1000 by 100;

plot2 count1*Month/vaxis = 0 to 1000 by 100;
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symbol1 value=point color=blue line=20 i=join;

symbol2 value=none color=red line=1 i=join;

footnote1’Figure 3.2.a Reported and Predicted AIDS Cases,

Northeast Region’ height=3;

footnote2 ’-, reported; ---, predicted using ARMA’;

run;

/* STARMA correlations */

Title1 ’U.S. (non MSA) AIDS Cases, First Difference’;

%let slag=1;

%let tlag=12;

data weights; /* 0.0 0.2 0.8 0.0 */

infile ’N:\aids\PPSW.data’; /* 0.2 0.0 0.6 0.2 */

input w1-w4 ; /* 0.4 0.3 0.0 0.3 */

run; /* 4x4 */ /* 0.0 0.2 0.8 0.0 */

data obsern;

set aids.d1logct1234;

run; /* 180x4 */

proc iml ;

use weights;

read all into w;

use obsern;

read all into dat;

obs=dat‘; /* 4x180 */

/*if univariate bilinear series, set w={0} */

n=nrow(obs);

t=ncol(obs);

w=i(n)||w;

max_obs=max(obs);

min_obs=min(obs);

print min_obs max_obs n t w ;

/* -861 1165 4 180 */

start cov(n, t, w, z, var);

sg=j(&slag+1, &slag+1, 0);

cn="L=0":"L=&slag";

rn="S=1":"S=&tlag";
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bg=covlag(z‘, &tlag+1);

do s=1 to &tlag+1; /* s=time lag*/

do l=1 to &slag+1; /*l=space lag*/

do k=1 to &slag+1;

wwg=t(bg[,(s-1)*n+1:s*n]);

wwg=w[,(k-1)*n+1:k*n]‘*w[,(l-1)*n+1:l*n]*wwg;

sg[l,k]=trace(wwg)/n;

end;

end;

if s=1 then msg=sg;

else msg=msg//sg;

end;

msg=toeplitz(msg); /*this is covariance matrix*/

dmsg=vecdiag(msg[1:(&slag+1),1:(&slag+1)]);

do s=1 to &tlag;

acf=msg[s*(&slag+1)+1:(s+1)*(&slag+1),1];

acf=acf/sqrt(dmsg#msg[1]);

if s=1 then lo_l0_s=acf‘;

else lo_l0_s=lo_l0_s//acf‘;

end;

print var;

print ’Space-Time Autocorrelations (L-Spatial Lag, S-Time Lag)’;

print lo_l0_s[rowname=rn colname=cn format=6.4];

/*.....PACF....*/

u=0;

phi_sl=j(&tlag,&slag+1,0);

do s=1 to &tlag;

do l=1 to &slag+1;

u=u+1;

a=msg[1:u,1:u];

b=msg[&slag+2:&slag+1+u,1];

pacf=solve(a,b);

phi_sl[s,l]=pacf[u];

end;

end;

print ’Space-Time Partial Autocorrelations (L-Spatial Lag,

S-Time Lag)’;

print phi_sl[rowname=rn colname=cn format=6.4];
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finish;

zsquare=obs##2;

run cov(n,t,w,zsquare,"Z(t) Square");

run cov(n,t,w,obs,"Z(t)");

quit;

/* fit STARMA */

title ’Predicted AIDS, log ct diff1 STARMA(1[1], 1[1]) Model’;

data realdata;

set aids.Count1234 ; /* 192 original data */

if _N_ >1; /* 191 obs */

output; run;

data diffdata;

set aids.d1logct1234 ; /* 191 log transformed & first diff data */

output; run;

data weights;

infile ’N:\aids\PPSW.data’;

input w1-w4 ;

run;

title ;

proc iml symsize=900000;

use weights;

read all into w;

use diffdata;

read all into dlogct;

z=dlogct‘;

/* input known parameter values */

para={-0.218668, -0.117796, -0.667915, 0.2471533, 0, 0, 0, 0};

* print para;

nobs= ncol(z);

g=ncol(w);

zs=j(g,1,0);

pz=j(g,nobs,0);

e=j(g,nobs,0);

predz=j(g,1,0);
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do t=2 to nobs;

bb=w*z[,t-1];

ee=w*e[,t-1];

y=z[,t-1]||bb||e[,t-1]||ee||z[,t-1]#e[,t-1]||

z[,t-1]#ee||bb#e[,t-1]||bb#ee;

free ee bb;

zs=y*para;

e[,t]=z[,t]-zs;

npredz=zs;

predz=predz||npredz;

if t=nobs then do;

STARMA=predz‘;

eout=e‘;

*print STARMA; /* 191 predz data */

print eout;

end; end;

run;

quit;

data one;

set aids.logct1234 ; /* 192-1 log transformed */

if _N_ > 1;

proc print; run;

data one; set one;

t=_N_; /* 191 obs */

output;

proc print; run;

proc sort data=one;

by t;

data two;

infile ’N:\aids\STARMA_predicted.txt’; /* 191 predicted z data */

input forcast1-forcast4;

t=_N_;

output;

proc print; run;

proc sort data=two;

by t;

data aids.starma ;*(keep=t starma1 starma2 starma3 starma4 );

merge one two;
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by t; /* 191-1 mse */

starma1=-1+exp(logct1+forcast1);

starma2=-1+exp(logct2+forcast2);

starma3=-1+exp(logct3+forcast3);

starma4=-1+exp(logct4+forcast4);

output;

proc print; run;

data three;

set aids.Count1234 ; /* 192-1 original count */

if _N_ > 1;

data three; set three ;

t=_N_;

data aids.starma_final ;*(keep=t starma1 starma2 starma3 starma4 );

merge aids.starma three;

by t; /* 191-1 mse */

options ls=200 ps=230;

proc print; run;

/* STBL correlations */

Title1 ’U.S. AIDS Cases, First Difference for STBL using res squares’;

%let slag=1;

%let tlag=12;

data weights; /* 0.0 0.2 0.8 0.0 */

infile ’N:\aids\PPSW.data’; /* 0.2 0.0 0.6 0.2 */

input w1-w4 ; /* 0.4 0.3 0.0 0.3 */

run; /* 4x4 */ /* 0.0 0.2 0.8 0.0 */

data obsern;

set aids.Starma_ee; /* using starma error/residual squares */

run; /* 191x4 */

proc iml ;

use weights;

read all into w;

use obsern;

read all into dat;

obs=dat‘; /* 4x191 */

/*if univariate bilinear series, set w={0} */

n=nrow(obs);
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t=ncol(obs);

w=i(n)||w;

max_obs=max(obs);

min_obs=min(obs);

print min_obs max_obs n t w ;

/* -861 1165 4 191 */

start cov(n, t, w, z, var);

sg=j(&slag+1, &slag+1, 0);

cn="L=0":"L=&slag";

rn="S=1":"S=&tlag";

bg=covlag(z‘, &tlag+1);

do s=1 to &tlag+1; /* s=time lag*/

do l=1 to &slag+1; /*l=space lag*/

do k=1 to &slag+1;

wwg=t(bg[,(s-1)*n+1:s*n]);

wwg=w[,(k-1)*n+1:k*n]‘*w[,(l-1)*n+1:l*n]*wwg;

sg[l,k]=trace(wwg)/n;

end;

end;

if s=1 then msg=sg;

else msg=msg//sg;

end;

msg=toeplitz(msg); /*this is covariance matrix*/

dmsg=vecdiag(msg[1:(&slag+1),1:(&slag+1)]);

do s=1 to &tlag;

acf=msg[s*(&slag+1)+1:(s+1)*(&slag+1),1];

acf=acf/sqrt(dmsg#msg[1]);

if s=1 then lo_l0_s=acf‘;

else lo_l0_s=lo_l0_s//acf‘;

end;

print var;

print ’Space-Time Autocorrelations (L-Spatial Lag, S-Time Lag)’;

print lo_l0_s[rowname=rn colname=cn format=6.4];

/*.....PACF....*/

u=0;

phi_sl=j(&tlag,&slag+1,0);
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do s=1 to &tlag;

do l=1 to &slag+1;

u=u+1;

a=msg[1:u,1:u];

b=msg[&slag+2:&slag+1+u,1];

pacf=solve(a,b);

phi_sl[s,l]=pacf[u];

end;

end;

print ’Space-Time Partial Autocorrelations (L-Spatial Lag,

S-Time Lag)’;

print phi_sl[rowname=rn colname=cn format=6.4];

finish;

zsquare=obs##2;

run cov(n,t,w,zsquare,"Z(t) Square");

run cov(n,t,w,obs,"Z(t)");

quit;

/* STBL fit */

data realdata;

set aids.Count1234 ; /* 192 original data */

if _N_ >1; /* 191 obs */

output; run;

data diffdata;

set aids.d1logct1234 ; /* 191 log transformed & first diff data */

output; run;

data weights;

infile ’N:\aids\PPSW.data’;

input w1-w4 ;

run;

title ;

proc iml symsize=900000;

use weights;

read all into w;

use diffdata;

read all into dlogct;
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z=dlogct‘;

/* input known parameter values */

para={-0.218668, -0.117796, -0.667915, 0.2471533,

0.0190881, 0.0710594, -0.117627, 0.0824297};

nobs= ncol(z);

g=ncol(w);

zs=j(g,1,0);

pz=j(g,nobs,0);

e=j(g,nobs,0);

predz=j(g,1,0);

do t=2 to nobs;

bb=w*z[,t-1];

ee=w*e[,t-1];

y=z[,t-1]||bb||e[,t-1]||ee||z[,t-1]#e[,t-1]||

z[,t-1]#ee||bb#e[,t-1]||bb#ee;

free ee bb;

zs=y*para;

e[,t]=z[,t]-zs;

npredz=zs;

predz=predz||npredz;

if t=nobs then do;

STBL=predz‘;

eout=e‘;

print STBL; /* 191 predz data */

*print eout;

end; end;

run;

quit;

data one;

set aids.logct1234 ; /* 192-1 log transformed */

if _N_ > 1;

proc print; run;

data one; set one;

t=_N_; /* 191 obs */

output;

proc print; run;

proc sort data=one;

by t;
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data two;

infile ’N:\aids\STBL_predicted.txt’; /* 191 predicted z data */

input forcast1-forcast4;

t=_N_;

output;

proc print; run;

proc sort data=two;

by t;

data aids.stbl ;

merge one two;

by t; /* 191-1 mse */

stbl1=-1+exp(logct1+forcast1);

stbl2=-1+exp(logct2+forcast2);

stbl3=-1+exp(logct3+forcast3);

stbl4=-1+exp(logct4+forcast4);

output;

proc print; run;

data three;

set aids.Count1234 ; /* 192-1 original count */

if _N_ > 1;

data three; set three ;

t=_N_;

data aids.stbl_final ;

merge aids.stbl three;

by t; /* 191-1 mse */

options ls=200 ps=230;

run;


