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Abstract

Contemporary datasets are becoming increasingly larger and more complex, while tech-

niques to analyse them are becoming more and more inadequate. Thus, new methods

are needed to handle these new types of data. This study introduces methods to cluster

histogram-valued data. However, histogram-valued data are difficult to handle computation-

ally because observations typically have a different number and length of subintervals. Thus,

a transformation for histogram data is proposed as a technique for handling them more

easily computationally. From this technique, three new dissimilarity measures for histogram

data are proposed. Then, how the monothetic clustering algorithm based on Chavent (1998,

2000) can be extended to histogram data is shown, and a polythetic clustering algorithm

for symbolic objects is developed (based on all p variables). Validity criteria to aid in the

selection of the optimal number of clusters are described and verified by some simulation

studies. The new methodology is illustrated on a large dataset collected from the US Forestry

Service.
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Chapter 1

Introduction

Nowadays with contemporary computer capacity, the size of datasets is rapidly increasing in

many areas with an increase of both the number of objects and variables. Under this trend,

methods of summarizing and extracting information from large datasets are becoming more

and more important.

One approach to handling very large datasets is to aggregate the data in some meaningful

way. When we are interested in classes or groups of individuals, the data for individuals can

be aggregated as classes or groups. The form of the aggregated data can be a range, list,

and distribution, etc. These types of data are called symbolic data; Diday (1987), Bock and

Diday (2000), and Billard and Diday (2006). In order to analyse symbolic data, we need new

methods which are different from classical methods in many aspects, and in particular in

cluster analysis as well. Our focus is on clustering methods for symbolic data, particularly

histogram data.

For clustering histogram data, we need new dissimilarity measures and clustering algo-

rithms. Gowda and Diday (1991a, 1992) suggested similarity and dissimilarity measures for

multi-valued and interval-valued variables and a hierarchical agglomerative clustering algo-

rithm. Also, Ichino and Yaguchi (1994) proposed dissimilarity measures for multi-valued and

interval-valued data and extensions to Minkowski distances.

An agglomerative clustering method starts with clusters which are equal in number to

the number of objects. In other words, each cluster has one object at the first stage. It merges

successively two clusters until all objects are in a cluster. In contrast, a divisive method starts

with a cluster containing all objects, and then bisects successively into two clusters until there

1



2

is one object in each cluster. That is, a divisive clustering is the reverse of an agglomerative

clustering. Although the divisive method is less popular than the agglomerative method,

Kaufman and Rousseeuw (1990) indicated that it has the advantage which it shows the

main structure in the data. Chavent (1998, 2000) suggested a hierarchical monothetic divisive

clustering algorithm for interval data. A monothetic algorithm uses a single variable to bisect

a cluster at each stage. In contrast, a polythetic algorithm uses all the variables at each stage.

MacNaughton-Smith et al. (1964) proposed a polythetic method using an iterative procedure

based on an average dissimilarity between an object and a group of objects.

While an interval-valued random variable is defined by the lower and upper limits [a, b),

a histogram-valued random variable is defined by a finite number of non-overlapping subin-

tervals and relative frequencies {[ak, ak+1); pk, k = 1, . . . , v}. A histogram-valued variable is

more informative than an interval-valued variable because the former provides estimates of

the shape and location for the distribution but the latter gives only lower and upper limits.

Therefore, clustering for histogram-valued data gives more precise outcomes than that for

interval-valued objects. However, such methods are not available since there are no existing

dissimilarity measures for histogram-valued data. Moreover, it is not easy to handle his-

togram data in a computer because each observation has different lengths of subintervals as

well as a different number of subintervals.

In general, we do not have any prior information about the number of clusters in the data.

Moreover, since the clusters are often indistinguishable in the aspect of dissimilarity measures

and different dissimilarity measures often lead to different clustering outcomes, it is not easy

to detect the optimal number of clusters. To solve this, many different cluster validity indexes

have been proposed, such as Dunn’s index (1974), Davis-Bouldin’s index (1979), and Xie-

Beni’s index (1991), among others. However, since these indexes were developed for classical

or fuzzy datasets, they would not work well for symbolic data.

In this study, we develop clustering methodology for histogram-valued data. In Chapter

2, dissimilarity measures for interval data and the monothetic algorithm are reviewed. In
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Chapter 3, we propose a transformation of histogram data to enable the new methodologies

to be handled more easily computationally. From this technique, we develop dissimilarity

measures for histogram data based on the Gowda-Diday and Ichino-Yaguchi measures and

cumulative relative frequencies. In addition, we show how the monothetic algorithm based on

Chavent(1998, 2000) can be extended to histogram data and propose a polythetic algorithm

to produce new divisive hierarchical clusterings for symbolic objects. Cluster validity indexes

that are concerned with determining the optimal number of clusters are discussed in Chapter

4; simulation studies are also executed to study their properties. The methodology proposed

herein is illustrated on a forestry cover type dataset of 581,012 observations, in Chapter 5.



Chapter 2

Literature Review

In this chapter, we review the literature on dissimilarity/distance measures and clustering

methods for interval-valued data. In Section 2.1, methods to deal with large datasets such

as data squashing, boosting, and data mining, etc., are reviewed, and the difference between

these methods and symbolic data is explained. The definitions of symbolic data and their var-

ious examples are presented in Section 2.2. The clustering methodologies for interval-valued

data are reviewed in Section 2.3 and 2.4. In Section 2.3, various similarity and dissimilarity

measures for interval-valued data are introduced. In Section 2.4, the monothetic algorithm

for interval-valued data proposed by Chavent (1988, 2000) is explained and this algorithm

is illustrated using the Ruspini (1970) data.

2.1 Large DataSets

Datasets are becoming larger and larger and more complex with contemporary computer

capacity. On the contrary, techniques to analyse them have been overwhelmed by the pace

of the data collection. It is evident that classical methods are often unable to handle very

large datasets. Thus, new methods to analyse them such as data squashing, boosting, and

data mining, etc., have been introduced in many studies.

Data squashing, introduced by DuMouchel et al. (1999), produces a small sample from

a large dataset by aggregating the data into clusters and taking from each cluster a sample

with similar characteristics as determined by pseudodata points and weights. This sample

represents the large original dataset. Madigan et al. (2002) extends the moment matching

of DuMouchel et al. to likelihood-based squashing. In addition, Owen (2003) proposes data

4
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squashing by empirical likelihood, but shows that data squashing does not always give good

results, and suggests the methods need to be applied to more extensive datasets before

conclusions can be drawn. Owen also considers boosted classification and decision trees along

the lines of multiple adaptive regression trees for constructing boosted tree classifications.

Inatani and Suzuki (2002) combine data squashing and boosting methods in the computation

of outlier detection. Kaufman and Rousseeuw (1990) use the CLARA (Clustering LARge

Applications) algorithm to reduce the dataset to a sample. Another technique that deals

with large datasets is data mining; this method is interested in discovering patterns and

extracting knowledge from the dataset.

Symbolic data methods produce smaller datasets by the summarization of very large

datasets. It seems that the symbolic data methodology is similar to data squashing from

the point of view of producing smaller datasets. However, the symbolic data method as

a result of aggregation is different from data squashing because the former uses all the

original data but the latter uses just a sample. Since data squashing uses a sample, it can

use standard statistical methods to analyse a resulting data set. In contrast, symbolic data

require new statistical techniques because they are new types of data such as lists, intervals,

histograms, models, etc. In addition, some problems in data mining and knowledge discovery

lead naturally to symbolic data.

The different methods being proposed in this section will have a key role to play in

differing contexts, and equally each overlaps the others with common issues serving all fields.

Symbolic data methods also will help to play a role in analyzing large datasets. The concept

of symbolic data was first introduced by Diday (1987), and are described in Bock and Diday

(2000), and Billard and Diday (2006).

2.2 Symbolic Data

In the past decade, information technology has developed remarkably. Consequently, large

and complex datasets are now common due to routine collection of systematically generated
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data. For example, databases of credit card companies record all transactions for all card

users, and mobile companies keep the records of all cell phone calls. A huge amount of records

are routinely generated everyday. These datasets have billions of observations and hundreds

of variables. Since datasets are too large to be stored in the primary memory of a computer,

it is difficult to calculate statistics from large datasets by the usual statistical algorithms

and methodologies.

One approach is to summarize large datasets in a meaningful way. In the mobile company

example, a summary of the calls per user can be made instead of hundreds as specific calls for

each user over time. One such summary format could be a range of time for each call (e.g.,

2 – 67 minutes); or, it could be a list of received calls (e.g., Home, Mary, Mother,. . .); or, it

could be by type and calling time (e.g., {received call, 2 – 35 minutes}, {dialed call, 5 – 67

minutes}); or, it could be a histogram by calling time and relative frequencies for the number

of calls (e.g., {0 – 10 minutes, 0.5}, {10 – 20 minutes, 0.3},{20 – 30 minutes, 0.2}); or, etc.

Like these examples, the summarized data can be ranges, lists, histograms, distributions,

and models, etc., and these types of data are called symbolic data. These symbolic datasets

have a manageable size in a computer.

Notation 2.1 For the random variable Yj, j = 1, . . . , p, a symbolic value or realization

i = 1, . . . , n, will be denoted by yij. Also, a symbolic object (or observation) will be denoted

by yi = (yij, j = 1, . . . , p) ∈ Ω.

Based on the attendant research questions, classical large datasets are aggregated into

classes or groups. The outcomes aggregated by classes or groups are symbolic objects yi, i =

1, . . . , n ∈ Ω, where Ω = {y1, . . . ,yn}. Each symbolic object consists of symbolic values

yij, j = 1, . . . , p, and symbolic values can be lists, intervals, histograms, and models, etc.

For example, suppose we have a dataset including individual records for pitchers such as

innings pitched and earned runs. Then, we might be interested in the pitching performance

of baseball teams rather than individual players. To solve this question, first of all, we would

aggregate the data over individual players who make up each team. The summarized data
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Table 2.1: Bird colors.
Bird Major Colors
Anhinga {black, green}
Bananaquit {black, white, yellow}
Blue Jay {blue, gray, black}
Common Redpoll {red, gray, black, brown}
Budgerigar {green, blue, white, yellow }

would be intervals and histograms. For example, suppose that the data are aggregated as

intervals on Y1 =innings pitched and Y2 =earned runs, and there are 30 baseball teams.

Then, symbolic objects yi are baseball teams and can be denoted by yi ∈ Ω = {y1, . . . ,y30},

where yi = {yi1 = [ai1, bi1), yi2 = [ai2, bi2)}. The symbolic objects can be referred to as

categories or classes. In this example, categories are baseball teams. Therefore, the data for

individuals can be reduced to the data for teams by the research question.

Although symbolic data analysis is a method to deal with large datasets, symbolic data

can exist regardless of dataset size. For example, suppose we are interested in bird colors.

Most birds have two or more colors. Thus, since a classical value takes a single value, it

cannot express colors of a bird. In contrast, since symbolic data have internal structure, it

is possible to express the colors as shown in Table 2.1. Thus, e.g., a blue jay has the three

colors blue, gray, and black. Table 2.1 does not come from a large dataset. In this case, the

type of symbolic data is a list of single values, and it is called multi-valued data.

Definition 2.1 A multi-valued random variable Y takes one or more values from the list

of values in its domain Y.

Definition 2.2 An interval-valued random variable Y takes values in an interval [a, b] ⊂

<, where a ≤ b, a, b ∈ <. The interval can be closed or open.

Often, symbolic data naturally arise. For example, a pulse rate usually fluctuates over the

interval. (e.g., [64±2]); or, in a weather forecast, daily temperature can be usually expressed
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Table 2.2: Histograms for weight by age-groups.

Age Weight
20s {[70,96),0.08; [96,108),0.24; [108,120),0.30; [120,144),0.30; [144,160),0.08}
30s {[100,116),0.08; [116,124),0.40; [124,132),0.24; [132,140),0.24; [140,150),0.04}
40s {[110,135),0.18; [135,145),0.20; [145,155),0.42; [155,165),0.14; [165,185),0.06}
50s {[100,126),0.10; [126,138),0.20; [138,150),0.26; [150,162),0.28; [162,190),0.16}
60s {[125,144),0.18; [144,160),0.60; [160,168),0.16; [168,180),0.06}

by the lowest and highest temperature in a day (e.g., [45,78]), etc. In such examples, classical

methods usually use midpoints for each interval. However, it causes a loss of information

especially since the internal variation is ignored. Consider the following simple example where

we have three samples on the random variable Y =weight. Suppose Y1 = 130, Y2 = [127, 133],

and Y3 = [124, 136]. Also, assume that an interval has an uniform distribution. Then, means

for all three samples are the same, i.e., Ȳ1 = Ȳ2 = Ȳ3 = 130, but they have different internal

variations, i.e., V ar(Y1) = 0, V ar(Y2) = 3, V ar(Y3) = 12. Classical analysis using midpoint

values give the same results for the three samples. In contrast, symbolic analysis can provide

more informative results because it considers the internal variation for each sample.

Definition 2.3 Let Y be a random variable that takes values on a finite number of non-

overlapping intervals {[ak, ak+1), k = 1, . . . , v} with relative frequencies pk corresponding to

each subinterval, where ak ≤ ak+1. Then, Y is called a histogram-valued random variable.

The ith observation yi for a histogram-valued random variable is given by

yi = {[aik, ai,k+1), pik; k = 1, . . . , vi},

where
∑vi

k=1 pik = 1.

A type of data that is more informative than interval-valued data is histograms.

Histogram-valued data consist of a finite number of non-overlapping subintervals and
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Table 2.3: Distribution of monthly water usage for households.

Household Water usage (gallon)
A Normal (µ = 2730, σ = 347)
B Normal (µ = 1882, σ = 672)
C Normal (µ = 3472, σ = 245)
D Normal (µ = 4324, σ = 781)
E Normal (µ = 2320, σ = 145)

relative frequencies corresponding to each subinterval as shown in Table 2.2. Since his-

tograms with well defined subintervals can be a good density estimate, it is a useful way to

summarize large datasets.

Furthermore, in the symbolic data context, histogram-valued observations could be speci-

fied distributions. Distribution data could be known parametric distributions such as normal,

exponential, and gamma distributions; or they could be empirical distributions with the

parameter values estimated from data. Table 2.3 shows an example with distributions as

symbolic data. Suppose monthly water usage for households has a normal distribution. Then,

parameters of normal distributions are estimated from the original data, and water usage

for each household can be summarized by the distributions.

Models also can be used as symbolic data. For example, suppose a trend for the price of

a stock of each company has autoregressive moving average (ARMA) models as shown in

Table 2.4. Then, in this case the time series data for the price of a stock of each company

can be summarized by ARMA models with parameters, and we can use these models as

symbolic data for each company.

In summary, the form of symbolic data can be lists, intervals, distributions, and models,

etc. While classical data on p random variables are expressed by single points in p-dimensional

space, symbolic data on p random variables are p-dimensional hypercubes, or a Cartesian

product of p distributions, broadly defined. In addition, each symbolic observation has
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Table 2.4: Model of the price of a stock for companies.

Company Model
Company 1 AR(2); φ1 = 0.7, φ2 = −0.2
Company 2 ARMA(1,1); φ1 = 0.3, θ1 = 0.1
Company 3 AR(1); φ1 = 0.5
Company 4 AR(2,1); φ1 = 0.3, φ2 = −0.1, θ1 = 0.2

internal variation, but a classical observation does not. Thus, classical analyses deal with

variation between observations only. In contrast, analyses of symbolic data have to explain

both the internal variations and the variations between observations. More detailed descrip-

tions of symbolic data along with numerous examples can be found in Billard and Diday

(2003, 2006).

2.3 An Overview of Similarity and Dissimilarity Measures for Interval-

valued Data

Clustering is an exploratory procedure to understand data with complex structure and mul-

tivariate relationships. In general, there are two main parts that have important roles in

clustering. One is similarity or dissimilarity (or distance) measures, and another is clustering

algorithms. Usually, clustering is performed by various criteria such as the smallest distance

(single linkage), the farthest distance (complete linkage), Ward criterion (1963), and the

minimum within-cluster variance, etc. While a few methods exist which use the observations

directly (e.g., Brito 1995), most criteria are based on similarity or dissimilarity measures.

Thus, it is very important to define similarity or dissimilarity measures between two objects.

In this section, we review similarity and dissimilarity measures for interval-valued data. While

classical point values are special cases of symbolic data, these measures are very different for

symbolic data than are those for classical data. An extensive summary of classical measures
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can be found in Gordon (1999), such as the Minkowski metrics, the Canberra metric (Lance

and Williams, 1966), the angular separation, and the correlation coefficient, etc.

Before reviewing similarity and dissimilarity measures for interval-valued data, we give

definitions of similarity, dissimilarity, and distance measures.

Definition 2.4 Let x and y be any two objects in Ω. Then, a similarity measure S(x,y)

between the objects x and y has the following properties:

< i > S(x,y) = S(y,x);

< ii > S(x,x) = S(y,y) > S(x,y) for all x 6= y;

Property < i > shows the symmetric property of similarity measures, and < ii > means

that the similarity between the same objects has the largest value.

Definition 2.5 A dissimilarity measure D(x,y) between the objects x and y is a mea-

sure that satisfies

(i) D(x,y) = D(y,x);

(ii) D(x,x) = D(y,y) < D(x,y) for all x 6= y;

(iii) D(x,x) = 0 for all x ∈ Ω.

Property (i) represents the symmetric property of dissimilarity measures. From (ii) and

(iii), we can know that the dissimilarity value between the same two objects is zero, and

a dissimilarity value is always positive. Typically, the relationship between similarity and

dissimilarity measures is inverse functional. For example, similarity measures can be easily

transformed to dissimilarity measures by D(x,y) = 1− S(x,y).

Definition 2.6 A distance measure has the properties of a dissimilarity measure as

defined in (i), (ii), and (iii), and further satisfies

(iv) D(x,y) = 0 implies x = y;
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(v) D(x,y) ≤ D(x, z) +D(z,y) for all x, y, z ∈ Ω.

Property (v) in the definition of a distance measure is called the triangular inequality.

Since dissimilarity measures do not satisfy the triangular inequality, unlike distances, dis-

similarity cannot be geometrically explained.

As mentioned in Section 2.2, classical data are single points in p−dimensional space. Thus,

since classical data only have information for location and satisfy the triangular inequality,

they can be geometrically explained in p−dimensional space. Therefore, the dissimilarity

of classical data can be measured by distance measures. In contrast, since symbolic data

have information for internal variation as well as location, dissimilarity should explain both

location and internal variation of symbolic objects. Thus, Nieddu and Rizzi (2003) indicated

that dissimilarities for symbolic data do not always satisfy the triangular inequality.

Finally, for the collection of objects y1, . . . ,yn in Ω, the n × n matrix D with elements

D(yi,yj), i, j = 1, . . . , n is called the dissimilarity matrix or distance matrix.

There exist many similarity and dissimilarity measures for interval-valued data. Let Y =

(Y1, . . . , Yp) be a vector of p interval-valued variables. Then, the interval-valued observation

yi for ith object is given by

yi = (yij, j = 1, . . . , p) = {[aij, bij), j = 1, . . . , p}, i = 1, . . . , n. (2.1)

Now, we review these similarity and dissimilarity measures and their properties. Gowda

and Diday (1991b) proposed a similarity measure for interval-valued data. The Gowda-Diday

similarity measure between two interval-valued objects yi1 and yi2 is given by

SGD(yi1 ,yi2) =

p∑
j=1

[
S1(yi1j, yi2j) + S2(yi1j, yi2j) + S3(yi1j, yi2j)

]
, (2.2)

where for the jth variable, each component of the measure is

S1(yi1j, yi2j) =
|bi1j − ai1j|+ |bi2j − ai2j|

2|max(bi1j, bi2j)−min(ai1j, ai2j)|
,

S2(yi1j, yi2j) =
Λi1i2j

|max(bi1j, bi2j)−min(ai1j, ai2j)|
,
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where

Λi1i2j =

 |max(ai1j, ai2j)−min(bi1j, bi2j)|, if max(ai1j, ai2j) < min(bi1j, bi2j),

0, otherwise,

i.e., Λi1i2j is the length of the overlapped interval between yi1j and yi2j; and

S3(yi1j, yi2j) = 1− |ai1j − ai2j|
maxi(bij)−mini(aij)

.

The denominator in S3(yi1j, yi2j) equals the total length spanned by all of the observations

of variable Yj.

As shown in Equation (2.2), the Gowda-Diday similarity measure consists of three compo-

nents. The first component, S1(yi1j, yi2j), measures the relative sizes of two objects without

referring to common parts between them. The second component, S2(yi1j, yi2j), indicates

the common parts of two objects. The last component, S3(yi1j, yi2j), measures the relative

position of two objects. All three components have normalized values between 0 and 1.

The Gowda-Diday dissimilarity measure for interval-valued data was introduced in

Gowda and Diday (1991a). Similarly to the Gowda-Diday similarity measure, the Gowda-

Diday dissimilarity measure between two interval-valued objects yi1 and yi2 can be defined

by

DGD(yi1 ,yi2) =

p∑
j=1

[
D1(yi1j, yi2j) +D2(yi1j, yi2j) +D3(yi1j, yi2j)

]
, (2.3)

where for the jth variable, each component of the measure is

D1(yi1j, yi2j) =

∣∣|bi1j − ai1j| − |bi2j − ai2j|
∣∣

|max(bi1j, bi2j)−min(ai1j, ai2j)|
,

D2(yi1j, yi2j) =
|bi1j − ai1j|+ |bi2j − ai2j| − 2Λi1i2j

|max(bi1j, bi2j)−min(ai1j, ai2j)|
,

where

Λi1i2j =

 |max(ai1j, ai2j)−min(bi1j, bi2j)|, if max(ai1j, ai2j) < min(bi1j, bi2j),

0, otherwise,

i.e., Λi1i2j is the length of the overlapped interval between yi1j and yi2j; and

D3(yi1j, yi2j) =
|ai1j − ai2j|

maxi(bij)−mini(aij)
.
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Similarly to Equation (2.2), the Gowda-Diday dissimilarity measure is constituted by

three components. The first component, D1(yi1j, yi2j), corresponds to the relative size of

yi1j and yi2j including common parts between them. The D2(yi1j, yi2j) indicates the relative

content excluding common parts between them. Finally, D3(yi1j, yi2j) is a measure of their

relative positions.

Gowda and Ravi (1995) introduced a modified version for both Gowda-Diday similarity

and dissimilarity measures. They indicated that the similarity and dissimilarity measures

for interval-valued data introduced by Gowda-Diday (1991a,b) have several disadvantages as

follows: Firstly, when there is no overlapping part between two interval-valued objects, the

dissimilarity measure is greater than the similarity measure. Secondly, when the lengths of

two intervals are the same, the similarity measure is greater than the dissimilarity measure.

Thirdly, the third component in the similarity measure, S3(yi1j, yi2j), is just another aspect of

that component in the dissimilarity measure, D3(yi1j, yi2j). To overcome these disadvantages,

Gowda and Ravi (1995) modified both the similarity and dissimilarity measures for interval-

valued objects. The Gowda-Ravi similarity measure between two interval-valued objects yi1

and yi2 is defined using a sine function as follows:

SGR(yi1 ,yi2) =

p∑
j=1

[
S∗1(yi1j, yi2j) + S∗2(yi1j, yi2j)

]
, (2.4)

where

S∗1(yi1j, yi2j) = sin

[
90

(
|bi1j − ai1j|+ |bi2j − ai2j|

2|max(bi1j, bi2j)−min(ai1j, ai2j)|

)]
,

and

S∗2(yi1j, yi2j) = sin

[
90

(
1− |ai1j − ai2j|

maxi(bij)−mini(aij)

)]
.

Unlike the Gowda-Diday similarity measure of Equation (2.2), this measure consists of two

components, relative size and position between two interval-valued objects. The first compo-

nent S∗1(yi1j, yi2j) measures the relative size between two objects, and the second component

S∗2(yi1j, yi2j) indicates the relative position. That is, this modified measure does not consider

the component of relative content.
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The Gowda-Ravi dissimilarity measure between two interval-valued objects yi1 and yi2

is given using a cosine function as follows:

DGR(yi1 ,yi2) =

p∑
j=1

[D∗1(yi1j, yi2j) +D∗2(yi1j, yi2j)] , (2.5)

where

D∗1(yi1j, yi2j) = cos

[
90

(
|bi1j − ai1j|+ |bi2j − ai2j|

2|max(bi1j, bi2j)−min(ai1j, ai2j)|

)]
,

and

D∗2(yi1j, yi2j) = cos

[
90

(
1− |ai1j − ai2j|

maxi(bij)−mini(aij)

)]
.

The Gowda-Ravi dissimilarity measure is also constituted by two components, but it uses a

cosine function instead of a sine function. By using sine and cosine functions, Gowda-Ravi

similarity and dissimilarity measures can overcome the disadvantages of the Gowda-Diday

measures mentioned above.

The Ichino-Yaguchi dissimilarity measure, proposed by Ichino and Yaguchi (1994), is

defined using the Cartesian operators ‘join’ and ‘meet’ between two sets. For the interval-

valued variable Yj, the Ichino-Yaguchi dissimilarity measure between objects yi1 and yi2 is,

for variable Yj, j = 1, . . . , p,

φ(yi1j, yi2j) = |yi1j ⊕ yi2j| − |yi1j ⊗ yi2j|+ γ(2|yi1j ⊗ yi2j| − |yi1j| − |yi2j|), (2.6)

where the Cartesian join yi1j ⊕ yi2j for interval-valued objects is

yi1j ⊕ yi2j =
[

min(ai1j, ai2j),max(bi1j, bi2j)
)
, (2.7)

and the Cartesian meet yi1j ⊗ yi2j for interval-valued observations is

yi1j⊗yi2j =


[

max(ai1j, ai2j),min(bi1j, bi2j)
)
, if max(ai1j, ai2j) < min(bi1j, bi2j),

0, otherwise,
(2.8)

where | · | is the length of the interval (e.g., |yij| = bij − aij), and γ is a prespecified constant

between 0 and 0.5 (0 ≤ γ ≤ 0.5). Unlike the Gowda-Diday dissimilarity measure, since the

Ichino-Yaguchi measure is not a normalized measure, it has different scales for each variable.
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If an unnormalized measure is used, its value might depend on variables with large scales. In

order to solve this problem, the total length spanned by observations for variable Yj is used

as a normalized factor. Therefore, the normalized Ichino-Yaguchi measure for Yj is given by

φ∗(yi1j, yi2j) =
φ(yi1j, yi2j)

maxi(bij)−mini(aij)
. (2.9)

This normalized Ichino-Yaguchi measure has a value between 0 and 1.

Malerba et al. (2001) in their empirical study proposed that when |yi1j ⊗ yi2j| = 0, γ be

set to 0.5 to prevent nullifying the contribution of the Cartesian meet operator. In addition,

they recommended generally to use an intermediate value between 0 and 0.5.

Ichino and Yaguchi (1994) also suggested extensions to Minkowski distances for their dis-

similarity measure. The generalized Minkowski distance between two interval-valued objects

yi1 and yi2 is defined by

Dq
M(yi1 ,yi2) =

[ p∑
j=1

φ(yi1j, yi2j)
q
]1/q

, (2.10)

where φ(yi1j, yi2j) is given in Equation (2.6), and q ≥ 1 is a prespecified order. According to

various values of order q, this provides various measures. If order q = 1, this becomes the city

block distance (also called the Manhattan distance); and a generalized Minkowski distance

with order q = 2 is called the Euclidean distance.

If Equation (2.9) is applied to the generalized Minkowski distance, its normalized version

can be obtained as follows:

Dq
NM(yi1 ,yi2) =

[ p∑
j=1

φ∗(yi1j, yi2j)
q
]1/q

. (2.11)

When we want to consider the relative importance of variables, we can apply weights to

Equation (2.11). This further extension is given by

Dq
NWM(yi1 ,yi2) =

[ p∑
j=1

ωj

{
φ∗(yi1j, yi2j)

}q
]1/q

, (2.12)

where ωj is a weight with ωj > 0 and
∑p

j=1 ωj = 1.
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De Carvalho (1994, 1998) proposed two extensions of the Ichino-Yaguchi dissimilarity

measure. In the first extension, De Carvalho introduced five comparison functions and an

aggregation function such as the generalized Minkowski distance, and the second extension

proposed the concept of a description potential.

Firstly, we review the first extension of the Ichino-Yaguchi measure introduced by De

Carvalho (1994). The first extension uses comparison functions and an aggregation function.

To define comparison functions, De Carvalho suggested agreement and disagreement indexes.

For variable Yj, the agreement and disagreement indexes between two interval-valued objects

yi1 and yi2 are summarized in Table 2.5.

Table 2.5: Agreement and disagreement indexes.

Agreement Disagreement Total
Agreement α = |yi1j ∩ yi2j| β = |yi1j ∩ c(yi2j)| |yi1j|

Disagreement χ = |c(yi1j) ∩ yi2j| δ = |c(yi1j) ∩ c(yi2j)| |c(yi1j)|
Total |yi2j| |c(yi2j)| |Yj|

In Table 2.5, |yij| is the length of the interval yij = [aij, bij), Yj is the domain of variable Yj,

and c(yij) is the complementary set of yij in the domain. For interval-valued data, the domain

Yj is the interval spanned by all observations of variable Yj, i.e., Yj = [mini(aij),maxi(bij)).

Thus, the complementary set of yij means c(yij) = Yj − yij.

De Carvalho proposed five comparison functions, cfk, k = 1, . . . , 5, using these agreement

and disagreement indexes α, β, χ, δ defined in Table 2.5, as follows:

cf1 =
α

α + β + χ
, (2.13)

cf2 =
2α

2α + β + χ
, (2.14)

cf3 =
α

α + 2(β + χ)
, (2.15)

cf4 =
1

2

[
α

α + β
+

α

α + χ

]
, (2.16)

cf5 =
α√

(α + β)(α + χ)
. (2.17)
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These comparison functions are defined using the similarity measures for classical binary

variables and have a value between 0 and 1. Thus, since these functions have the properties

of similarity measures, dissimilarity functions dfk corresponding to each comparison function

are defined by

dfk = 1− cfk, k = 1, . . . , 5. (2.18)

Since comparison functions have a value between 0 and 1 regardless of scale of variable Yj,

comparison functions are normalized measures. Therefore, since dissimilarity functions are

a linear transformation of comparison functions, they are also normalized measures.

De Carvalho’s dissimilarity measure are defined using dissimilarity functions dfk, instead

of φ or φ∗ of the Ichino-Yaguchi measure, and the generalized Minkowski distance as an

aggregation function. These dissimilarity measures between two interval-valued objects yi1

and yi2 are given by

Dq
dfk

(yi1 ,yi2) =

[
p∑

j=1

{
ωjdfk(yi1j, yi2j

}q

]1/q

, k = 1, . . . , 5, (2.19)

where ωj is a weight with ωj > 0 and
∑p

j=1 ωj = 1.

The second extension of the Ichino-Yaguchi measure introduced by De Carvalho (1998)

is defined using the description potential and an extension of Cartesian operators. Unlike

the first extension, this measure does not need an aggregation function. The description

potential for an interval-valued object, π(yi), is defined by

π(yi) =

p∏
j=1

|yij|, i = 1, . . . , n, (2.20)

where | · | is a length of the interval. That is, the description potential for an interval-

valued object equals the product of lengths of intervals for each variable. Also, De Carvalho

defined the Cartesian operators ‘join’ and ‘meet’ between two symbolic objects. While the

Cartesian operators of Equation (2.7) and (2.8) are defined for a single variable, the Cartesian

operators extended by De Carvalho include all p variables. Thus, the Cartesian join between

two interval-valued objects yi1 and yi2 , yi1 ⊕ yi2 , is defined by

yi1 ⊕ yi2 =
{
yi1j ⊕ yi2j, j = 1, . . . , p

}
, (2.21)
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where yi1j ⊕ yi2j is defined in Equation (2.7). And, the Cartesian meet between two interval-

valued objects yi1 and yi2 , yi1 ⊗ yi2 , is given by

yi1 ⊗ yi2 =
{
yi1j ⊗ yi2j, j = 1, . . . , p

}
, (2.22)

where yi1j ⊗ yi2j is defined in Equation (2.8). That is, the Cartesian join (or meet) between

two symbolic objects is a set of the Cartesian join (or meet) of observations of two objects

for each variable. Using these extensions, the Ichino-Yaguchi dissimilarity measure between

two interval-valued objects yi1 and yi2 , φc(yi1 ,yi2), can be extended as follows:

φc(yi1 ,yi2) = π(yi1 ⊕ yi2)− π(yi1 ⊗ yi2) + γ
(
2π(yi1 ⊗ yi2)− π(yi1)− π(yi2)

)
, (2.23)

where γ is a prespecified constant and 0 ≤ γ ≤ 0.5, as usual. As shown in Equation (2.23),

this measure does not use the aggregation function such as the Minkowski distance. De

Carvalho (1998) also proposed two normalized measures of φc(yi1 ,yi2). The first normalized

measure is obtained by

φ∗c(yi1 ,yi2) =
φc(yi1 ,yi2)

π(Y)
, (2.24)

where Y =
{
Yj, j = 1, . . . , p

}
is the domain of variable Yj, i.e., Yj = maxi(bij)−mini(aij).

The second normalized measure is given by

φ′c(yi1 ,yi2) =
φc(yi1 ,yi2)

π(yi1 ⊕ yi2)
. (2.25)

Another distance measure for interval-valued data is the Hausdorff distance (Hausdorff,

1937). For variable Yj, the Hausdorff distance between two interval-valued observations yi1j

and yi2j is given by

ϕ(yi1j, yi2j) = max
[
|ai1j − ai2j|, |bi1j − bi2j|

]
. (2.26)

In the case of classical data, this measure reduces to the absolute difference between two data

points. From Equation (2.26), the Euclidean Hausdorff distance can be defined as follows:

DH(yi1 ,yi2) =

[
p∑

j=1

{
ϕ(yi1j, yi2j)

}2

]1/2

. (2.27)
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There are two alternative normalizations of the Euclidean Hausdorff distance (see Chavent

(2000) or Billard and Diday (2006)). The first normalized version can be defined as follows:

DNH1(yi1 ,yi2) =

[
p∑

j=1

{
ϕ(yi1j, yi2j)

Hj

}2
]1/2

, (2.28)

where

Hj =
1

2n2

n∑
i1=1

n∑
i2=1

{
ϕ(yi1j, yi2j)

}2
.

The second version is given using the length of the domain Yj as follows:

DNH2(yi1 ,yi2) =

[
p∑

j=1

{
ϕ(yi1j, yi2j)

|Yj|

}2
]1/2

, (2.29)

where Yj = [mini(aij),maxi(bij)) and | · | is the length of the interval.

In this section, we reviewed various types of similarity and dissimilarity measures for

interval-valued data. Gowda and Diday (1991a,b) proposed both similarity and dissimilarity

measures for symbolic objects. Both measures consist of three components representing rela-

tive size, content, and position. However, Gowda and Ravi (1995) indicated that there exists

an inbalance between the Gowda-Diday similarity and dissimilarity measures, and introduced

the modified version of Gowda-Diday similarity and dissimilarity measures to overcome the

inbalance by using the sine and cosine functions. Ichino and Yaguchi (1994) also proposed a

dissimilarity measure for symbolic objects using the Cartesian operators, and extended it to

the Minkowski distance. De Carvalho (1994, 1998) suggested two extensions of the Ichino-

Yaguchi dissimilarity measure. The first extension uses five comparison functions and an

aggregation function such as the generalized Minkowski distance, and the second extension

is defined using the description potential. In the first extension, comparison functions are

defined using the agreement and disagreement indexes proposed by De Carvalho and have

the types of the similarity measures for classical binary variables. In the second extension,

De Carvalho defined the description potential and extended the Cartesian operators.

There exist several dis/similarity measures for histogram-valued data. Irpino and Verde

(2006) proposed a distance measure for histogram data based on the Wasserstein metric,
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and Arroyo and Maté (2009) developed a method to forecast histogram time series using

this distance measure. Also, Strelkov (2008) introduced a similarity measure focussing on

the peaks of a histogram, and Cha and Srihari (2002) developed another distance measure

considering correlations between ordered univariate histograms.

However, since the distance measure proposed by Irpino and Verde (2006) uses inverse

functions of cumulative density functions, this measure may have some computational

problems due to the invertibility of cumulative density functions. The similarity measure

introduced by Strelkov (2008) accompanies complicated computations. In addition, these

measures are not applicable to mixed datasets including interval-valued, multi-valued, and

histogram-valued data because Irpino and Verde’s measure does not provide distances

for multi-valued data and Strelkov’s measure cannot be extended into distances for both

interval-valued and multi-valued data. The distance measure developed by Cha and Sri-

hari (2002) deals with histograms for discrete variables. However, this study focuses on

histograms for continuous variables.

Thus, to date, no dis/similarity or distance measures that are readily computable and

applicable to mixed datasets exist for multivariate histogram-valued data. Therefore, in this

study, we propose extended Gowda-Diday, extended Ichino-Yaguchi, and cumulative density

function (CDF) dissimilarity measures for histogram-valued data, in Chapter 3.

2.4 An Overview of hierarchical divisive monothetic clustering method

One of the common issues in large dataset analysis is to detect and construct homogeneous

groups from all objects in those datasets. To solve this issue, we need techniques to mea-

sure dissimilarity between objects and to classify objects. Various dissimilarity measures for

interval-valued data were reviewed in Section 2.3, and in this section, we review the mono-

thetic method that is a hierarchical divisive clustering algorithm of symbolic objects. Before

reviewing the monothetic algorithm, some basics for clustering methods are explained.
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Definition 2.7 Suppose we have p random variables {Yj, j = 1, . . . , p} with symbolic objects

yi, i = 1, . . . , n, yi ∈ Ω = {y1, . . . ,yn}. Then, the rth partition of Ω, Pr, is a set of subsets

{Cu, u = 1, . . . , r} that satisfies

< i > Cu ∩ Cv = φ, for all u 6= v = 1, . . . , r;

< ii >
⋃r

u=1Cu = Ω.

That is, the subsets {C1, . . . , Cr} of the rth partition Pr are disjoint, and exhaustive of

the entire set Ω. Sometimes the subsets, Cu, u = 1, . . . , r, are called clusters or classes.

We deal with hierarchical divisive clustering methods in this study. A hierarchy is a

clustering structure.

Definition 2.8 A hierarchy on Ω is a set of subsets H = {Cu, u = 1, . . . , r} that satisfies

the following properties:

(i) Ω ∈ H;

(ii) for all single objects yi in Ω, {yi} ∈ H;

(iii) for all Cu, Cv ∈ H, u 6= v = 1, . . . , r, Cu ∩ Cv ∈ {φ,Cu, Cv}.

That is, property (iii) means that either any two clusters Cu and Cv are disjoint, or one

cluster is contained in the other one. A hierarchical clustering consists of a series of partitions.

The clusters of a hierarchical classification can be displayed by a rooted tree where the root

is the entire set Ω and n clusters with a single object as the leaves of the tree. This tree

structured plot is called a dendrogram.

A hierarchical clustering is typically performed in a recursive way that either goes ‘from

top to bottom’ by successive splitting of clusters or ‘from bottom to top’ by successive

agglomeration of clusters. The former is called the divisive clustering method, and the latter

is called the agglomerative clustering method. In general, the agglomerative clustering method

starts with n clusters each with a single object, and successively merges two clusters using
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some clustering criteria. Finally, it reaches the entire set Ω. In contrast, the divisive clustering

method starts from a single cluster containing all objects in Ω. At each stage, a cluster is

partitioned into two clusters. This is repeated until all clusters have only one object.

In this study, we focus on the divisive clustering method. In hierarchical clustering

methods, the agglomerative clustering method is more widely used than the divisive clus-

tering method because the divisive clustering has too many possible bipartitions (2n−1 − 1)

and computationally spends much more time and costs. However, the divisive clustering has

some advantages. It shows the main structure in datasets and avoids unfortunate decisions

at earlier stages. In addition, the monothetic and polythetic algorithms to be introduced in

this section and Chapter 3, respectively, can reduce the number of possible bipartitions to

be examined.

Clustering criteria are also important in cluster analysis because they measure the quality

of a partition and affect outcomes of clustering. That is, different clustering criteria can lead

to different clustering outcomes. There are various clustering criteria such as minimum dis-

tance (or, single linkage), maximum distance (complete linkage), average distance, and Ward

criterion, etc. One well-known criterion is the variance criterion. In the variance criterion,

the optimal partition has the minimum variance.

In this study, we focus on divisive clustering methods of symbolic objects. There are

various divisive clustering methods for classical data. Edward and Cavalli-Sforza (1965)

introduced a divisive clustering method that finds the optimal bipartition among the 2n−1−1

possible bipartitions for a cluster with n objects using the within-cluster sum of squares as a

clustering criterion. Since this method considers all possible bipartitions in a cluster, it always

gives a global optimal bipartition but is not computationally efficient. MacNaughton-Smith

et al. (1964) proposed a method that iteratively uses an average distance between an object

and a group of objects. Also, Har-even and Brailovsky (1995) introduced a probabilistic

validation approach for divisive clustering.
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Williams and Lambert (1959) and Lance and Williams (1968) have first proposed mono-

thetic divisive clustering methods for classical binary data. For symbolic data, Chavent

(1998, 2000) developed a divisive clustering method for interval data using a hierarchy of a

set of objects and a monothetic characteristic of each cluster of the hierarchy. At each step,

bipartitioning is performed by minimizing the within-cluster variance, and a binary question

corresponding to a monothetic characteristic can be found. A brief description of Chavent’s

method follows.

Suppose that there are p interval-valued random variables {Yj, j = 1, . . . , p} with obser-

vations yi = {yi1, . . . , yip} ∈ Ω for i = 1, . . . , n, and let Pr be a rth stage partition. Then, a

partition of Ω at the rth stage, Pr, can be represented by a set of subsets {Cu, u = 1, . . . , r}.

The subset, Cu, is called a cluster. At the (r + 1)th stage a single cluster Cu in the partition

Pr is bisected into C1
u and C2

u. Thus, a new partition can be written as

Pr+1 =
(
Pr ∪ {C1

u, C
2
u}
)
− {Cu}.

To perform divisive hierarchical clustering, Chavent (1998, 2000) proposed the within-

cluster variance as a criterion partitioning a cluster. For a cluster Cu = {y1, . . . ,ynu}, the

within-cluster variance I(Cu) is defined by

I(Cu) =
1

2τ

nu∑
i1=1

nu∑
i2=1

wi1wi2D
2(yi1 ,yi2), (2.30)

where D(yi1 ,yi2) is a dissimilarity or distance measure between the objects yi1 and yi2 in

Cu and wi is the weight for the yi, and where τ =
∑nu

i=1wi. The I(Cu) is a homogeneity

measure for the cluster Cu. Often, it is desired to weight each object according to its size. In

that case, wi can be the proportion of the size of an object to the total size over all objects.

However, if the weight for each observation is equivalent, wi = 1/n, where n is the total

number of objects in Ω (n =
∑r

u=1 nu). The total within-cluster variance for a partition Pr

is the sum of within-cluster variances for all clusters in Pr. It is written as

W (Pr) =
r∑

u=1

I(Cu). (2.31)
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The between-cluster variance for the partition Pr is defined by

B(Pr) = W (Ω)−W (Pr), (2.32)

where Ω ≡ P1. The P1 means there is only one cluster in the partition and includes all

objects. From (2.32), we know that minimizing the within-cluster variance is equivalent to

maximizing the between-cluster variance.

A characteristic of the divisive monothetic clustering is that the partition can be bisected

by a binary question for a single variable at each stage because it considers bipartitions sorted

by each variable to find a bipartition (C1
u, C

2
u) minimizing the total within-cluster variance.

The form of a binary question is ‘Is Yj ≤ c?’, where c is the cut point. For the interval-

valued variable Yj taking values [aij, bij), i = 1, . . . , n, j = 1, . . . , p, suppose that the cluster

Cu = {y1, . . . ,ynu} is bisected into C1
u and C2

u. Then, candidates cqj for the cut point c for

a variable Yj are obtained by

cqj = (ȳqj + ȳq+1,j)/2, q = 1, . . . , nu − 1, (2.33)

where ȳqj is the value sorted by ascending values of ȳij, where ȳij = (aij + bij)/2. Thus, there

exist p(nu − 1) candidates for the cut point in the cluster Cu. This means that the (C1
u, C

2
u)

minimizing the total within-cluster variance can be chosen among the p(nu− 1) bipartitions

corresponding to each candidate for cut point, and the cut point c is the cqj corresponding

to the selected (C1
u, C

2
u). Therefore, each object is classified into C1

u or C2
u by whether the

answer for the detected binary question ‘Is Yj ≤ c?’ is ‘yes’ or ‘no’.

Table 2.6: Interval-valued data for Ruspini data.

y Y1 Y2

y1 [4,36] [49,88]
y2 [28,63] [124,156]
y3 [74,117] [94,132]
y4 [58,83] [4,31]

To understand the monothetic algorithm, we see an example for the Ruspini (1970) data

well known in cluster analysis. The classical Ruspini dataset is artificial data and consists of
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Figure 2.1: 4 interval-valued objects for Ruspini data.

75 observations with two variables; and it is also well known that there are four clusters in

this dataset. In our example, we use these four clusters as interval-valued objects to explain

the monothetic algorithm. Thus, we have four interval-valued objects (i.e., y1, . . . ,y4) with

two variables (i.e., Y1 and Y2) as shown in Table 2.6, and the plot for these interval-valued

data, represented by rectangles, is shown in Figure 2.1.

Since this is a divisive clustering method, we start with all four objects. In addition, since

there are four objects (n = 4), the number of all possible biparitions is seven (= 24−1− 1) at

the first stage. However, seven possible bipartitions can be reduced to six possible bipartitions

(= 2(4−1)) by the monothetic method. In this example, the number of possible bipartitions

to be reduced by the monothetic method is small becasue the number of objects is also small.

In general, that number would be much larger for a large number of objects.



27

Table 2.7: ȳij values for Ruspini interval-valued data.

ȳij Y1 Y2

y1 ȳ11 = 20 ȳ12 = 68.5
y2 ȳ21 = 45.5 ȳ22 = 140
y3 ȳ31 = 95.5 ȳ32 = 113
y4 ȳ41 = 70.5 ȳ42 = 17.5

Table 2.7 shows the mid-point values for intervals, ȳij = (aij+bij)/2, i = 1, . . . , 4, j = 1, 2.

From this table, ascending orders of objects for each variable can be obtained by ascending

values of ȳij. For the variable Y1, y1 < y2 < y4 < y3, and for the variable Y2, y4 < y1 <

y3 < y2. Using these orders, possible bipartitions for the variable Y1 are
{

(y1), (y2,y4,y3)
}

,{
(y1,y2), (y4,y3)

}
,
{

(y1,y2,y4), (y3)
}

; and for the variable Y2, we have
{

(y4), (y1,y3,y2)
}

,{
(y4,y1), (y3,y2)

}
,
{

(y4,y1,y3), (y2)
}

.

Suppose that the bipartition
{

(y4,y1), (y3,y2)
}

made by the variable Y2 has the minimum

value of the sum of within-cluster variance in Equation (2.31). Then, the cut point at the

first stage can be obtained by

c = (ȳ12 + ȳ32)/2 = (68.5 + 113)/2 = 90.75,

and the binary question is ‘Is Y2 ≤ 90.75?’. If for a given object the answer for this binary

question is ‘Yes’, that object goes to the cluster
{
y4,y1

}
, and if ‘No’, it goes to the cluster{

y3,y2

}
.

Let cluster C1 =
{
y4,y1

}
and C2 =

{
y3,y2

}
. Then, either C1 or C2 is bipartitioned

at the second stage. For the variable Y1, ascending orders for each cluster are C1; y1 <

y4 and C2; y2 < y3, and for the variable Y2, C1; y4 < y1 and C2; y3 < y2. Although

these ascending orders are meaningless (in the present example) because there are only two

objects in each cluster, this procedure is necessary if there are more than two objects in

a cluster. Thus, in this case, we have less than four possible bipartitions (= 2(2 − 1) +

2(2 − 1)) from the monothetic method, and the actual number of possible bipartitions is
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Figure 2.2: Dendrogram for Ruspini interval-valued data.

two,
{

(y1), (y4), (y2,y3)
}

and
{

(y1,y4), (y2), (y3)
}

. Suppose that the optimal bipartition is{
(y1), (y4), (y2,y3)

}
, i.e., C1 is bipartitioned into C1

1 =
{
y1

}
and C2

1 =
{
y4

}
. Then, there

are two possible binary questions because the orders for variables Y1 and Y2 are the same.

For the variable Y1,

c = (ȳ11 + ȳ41)/2 = (20 + 70.5)/2 = 45.25,

and for the variable Y2,

c = (ȳ12 + ȳ42)/2 = (68.5 + 17.5)/2 = 43.

Thus, there are two possible binary questions, ‘Is Y1 ≤ 45.25?’ and ‘Is Y2 ≤ 43?’, but we

have to choose one of them by using the dissimilarity or distance measure values between y1

and y4 for each variable. That is, we compare the distance between two observations y11 and
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y41, D(y11, y41) with the distance between y12 and y42, D(y12, y42). Suppose that D(y11, y41)

is larger than D(y12, y42); then the binary question of the second stage is ‘Is Y1 ≤ 45.25?’.

Since the third stage is the last stage,
{
y2,y3

}
should be bipartitioned into

{
y2

}
and{

y3

}
. Similarly to the second stage, suppose the distanceD(y21, y31) is larger thanD(y22, y32);

then the binary question of the third stage is ‘Is Y1 ≤ 70.5?’. These results are shown using

the dendrogram in Figure 2.2. From Figure 2.2, if the answer for the binary question of the

first stage is ‘Yes’, then we ask ‘Is Y1 ≤ 45.25?’. If ‘No’, then we ask ‘Is Y1 ≤ 70.5?’.

In summary, Chavent’s monothetic method uses the within-cluster variance as a clustering

criterion. This monothetic method reduces the amount of calculation to detect the optimal

(C1
u, C

2
u) in the Cu. That is, suppose that we want to find the optimal bipartition at the (r+

1)th stage from the partition Pr = {Cu, u = 1, . . . , r}; then there exist a total of
∑r

u=1(2
nu−1−

1) possible bipartitions. However, the monothetic method needs to examine only
∑r

u=1 p(nu−

1) bipartitions to find the optimal bipartition. When the number of objects is large, the

number of possible bipartitions is even further reduced by the monothetic method. However,

since the monothetic method is based on a single variable to detect the optimal bipartition

at each stage, it performs poorly in a structure that depends on combinations of variables.

Our new proposed polythetic algorithm (in Section 3.4.2) overcomes this deficiency.



Chapter 3

Clustering for Histogram-valued Data

In this chapter, we focus on dissimilarity measures and divisive clustering methods for

histogram-valued data. In Section 3.1, the histogram-valued random variable is defined; and

a transformation for histogram-valued data to enable the new methodologies to be handled

more easily computationally is proposed in Section 3.2. To perform clustering, basically we

need a dissimilarity/distance measure, a clustering criterion, and an algorithm. Thus, three

dissimilarity measures using transformed histogram-valued data are introduced in Section

3.3. In Section 3.4, we show how to extend the monothetic method to histogram-valued

observations. A polythetic clustering method based on all p variables is proposed in Section

3.4.

3.1 Histogram-valued Data

A histogram is a useful tool to summarize data graphically. It includes information for the

approximate shape and location for data and is specified by non-overlapping subintervals

and their frequency. Thus, a histogram-valued random variable can be defined as follows.

Definition 3.1 Let Y be a random variable that takes values on a finite number of non-

overlapping intervals {[ak, ak+1), k = 1, . . . , v} with relative frequencies pk corresponding

to each subinterval, where ak ≤ ak+1. Then, Y is called a histogram-valued random

variable. The ith observation yi for a histogram-valued random variable is given by

yi =
{

[aik, ai,k+1), pik; k = 1, . . . , vi

}
, (3.1)

where
∑vi

k=1 pik = 1, i = 1, . . . , n.

30
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Definition 3.2 Let Y = (Y1, . . . , Yp) be a p-dimensional histogram-valued random variable.

Then, the ith observation yi can be written in the form, for each i = 1, . . . , n,

yi =
(
[aijk, aij,k+1), pijk; j = 1, . . . , p, k = 1, . . . , vij

)
, (3.2)

where
∑vij

k=1 pijk = 1.

3.2 Data Transformation

Unlike interval-valued data, it is not easy to deal with histogram-valued data computationally

nor to apply existing dissimilarity measures to them because each observation has different

lengths and numbers of subintervals. If we transform them so as to have the same length

and number of subintervals for each variable, handling such data in a computer would be

easier and existing dissimilarity measures could be extended to histogram-valued data. Thus,

we try to transform the observations into a form which has the same length and number

of subintervals. Once transformed subintervals are set up, then relative frequencies can be

calculated for the new subintervals.

Definition 3.3 Let {[bjk, bj,k+1), j = 1, . . . , p, k = 1, . . . , tj} be a transformed subinterval

for the jth variable. Then, we can define

bj1 = min
i
{aij1}, (3.3)

bj,tj+1 = max
i
{aij,tij+1}, (3.4)

and

bj,k+1 = bj1 + kΨj/tj, k = 1, . . . , tj, (3.5)

where

Ψj = bj,tj+1 − bj1, (3.6)

tj =

⌈
Ψj

mini,k{aij,k+1 − aijk}

⌋
, (3.7)
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where d·c is rounding off a number to the nearest integer. Thus, a transformed histogram-

valued observation can be written as

y′i = {y′ij, j = 1, . . . , p} = {[bjk, bj,k+1), p
′
ijk; j = 1, . . . , p, k = 1, . . . , tj}, i = 1, . . . , n,

(3.8)

where p′ijk is a transformed relative frequency corresponding to a transformed subinterval,

and
∑tj

k=1 p
′
ijk = 1.

This subinterval does not depend on any one observation. That is, each observation has

the same subintervals (i.e., same subinterval and points) and the same number of subintervals

for each variable; but can differ for different variables. Only relative frequency values are

different for the observations. The lengths of the transformed subinterval for each variable

are the same (i.e., bj,k+1− bjk = bj,k′+1− bjk′ , for all k, k′ = 1, . . . , tj). In addition, the length

of the transformed subinterval for each variable is approximate or equal to the minimum

length of the original subintervals as shown in Equation (3.7).

As the length of a subinterval increases, the number of subintervals decreases but the

loss of information increases. On the contrary, if the length of a subinterval is small, we can

minimize the loss of information for the original histogram-valued data. However, if most

objects for a variable Yj have similar lengths of subintervals and only a few objects have

relatively very small lengths, the number of transformed subintervals would be very large.

This has a consequence that calculations become computationally very expensive. In that

case, we might consider the average or mode of lengths of the original subintervals, instead

of the minimum length.

For example, consider histogram-valued data for a variable Y1 as shown in Table 3.1.

The lengths of subintervals for all objects have a value between 0.1 and 4. In contrast, the

lengths of subintervals except for y5 have a value between 1 and 4. Suppose the object y5 is

excluded in the dataset. That is, the dataset has histogram-valued objects y1, . . . ,y4. Then,

using Definition 3.3,
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Table 3.1: An example for histogram-valued data with different subintervals.

Y1

y1 {[4,6),0.08; [6,10),0.24; [10,12),0.30; [12,18),0.30; [18,20),0.08}
y2 {[6,8),0.08; [8,9),0.40; [9,12),0.24; [12,14),0.24; [14,15),0.04}
y3 {[1,3),0.18; [3,5),0.20; [5,8),0.42; [8,10),0.14; [10,14),0.06}
y4 {[2,4),0.18; [4,8),0.60; [8,12),0.16; [12,15),0.06}
y5 {[0,0.1),0.10; [0.1,0.3),0.20; [0.3,0.6),0.26; [0.6,0.8),0.28; [0.8,1.0),0.16}

b11 = min
i
{ai11} = min{4, 6, 1, 2} = 1,

and

b1,t1+1 = max
i
{ai1,ti1+1} = max{20, 15, 14, 15} = 20.

Thus,

Ψ1 = b1,t1+1 − b11 = 20− 1 = 19,

t1 =

⌈
Ψ1

mini,k{ai1,k+1 − ai1k}

⌋
=

⌈
19

1

⌋
= 19,

and

b1,k+1 = b11 + kΨ1/t1 = 1 + k, k = 1, . . . , 19.

Thus, in this case we have 19 transformed subintervals with length 1. In contrast, if the

dataset includes the object y5, then

b11 = min
i
{ai11} = min{4, 6, 1, 2, 0} = 0,

and

b1,t1+1 = max
i
{ai1,ti1+1} = max{20, 15, 14, 15, 1} = 20.

Thus,

Ψ1 = b1,t1+1 − b11 = 20− 0 = 20,

t1 =

⌈
Ψ1

mini,k{ai1,k+1 − ai1k}

⌋
=

⌈
20

0.1

⌋
= 200,
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and

b1,k+1 = b11 + kΨ1/t1 = k(0.1), k = 1, . . . , 200.

In this case, we have 200 transformed subintervals with length 0.1. Since the minimum length

of y5 is relatively very small to other objects, the number of subintervals for including y5 is

10 times more than that for excluding y5. This has a consequence that the cost for computing

steeply increases. Thus, in this case, it might be better to consider the average or mode of

lengths of the original subintervals, rather than the minimum length.

Now, we should calculate the transformed relative frequencies for each observation

because the subintervals are changed. The relative frequencies for the transformed subin-

tervals are calculated from the overlapping proportion between the original and the new

subintervals. The relative frequency for any non-overlapped portion is assigned to zero. This

is illustrated through the following example.
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Figure 3.1: Two-dimensional plot for the iris data
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Table 3.2: Petal width and petal length for iris species.

y Species Y1 =Petal Width Y2 =Petal Length
y1 versi- {[1.0, 1.5), 0.90; [1.5, 2.0), 0.10} {[3.0, 4.0), 0.32; [4.0, 5.0), 0.66;

color [5.0, 6.0), 0.02}
y2 virgi- {[1.2, 1.6), 0.08; [1.6, 2.0), 0.46; {[4.5, 5.5), 0.50; [5.5, 6.5), 0.42;

nica [2.0, 2.4), 0.40; [2.4, 2.8), 0.06} [6.5, 7.5), 0.08}
y3 setosa {[0.0, 0.4), 0.96; [0.4, 0.8), 0.04} {[1.0, 1.5), 0.74; [1.5, 2.0), 0.26}

Example 3.1 Consider the three sets of observations from Fisher’s (1936) iris data shown

in Table 3.2 obtained by aggregating observations by species. This gives histogram values

for Y1 =‘Petal Width’ and Y2 =‘Petal Length’ for the three species of iris, iris versicolor

(object y1), virginica (y2), and setosa (y3). Figure 3.1 shows the classical data points for

the complete dataset of 150 observations. Now, we calculate the transformed subinterval and

relative frequency. From Equation (3.3), (3.4), (3.5) and (3.7), the transformed subinterval

for Y1 is given by

b11 = min{1, 1.2, 0} = 0, b1,t1+1 = max{2, 2.8, 0.8} = 2.8,

t1 =

⌈
2.8− 0

min{0.5, 0.4, 0.4}

⌋
= 7,

and

b12 = 0 + 1

(
2.8− 0

7

)
= 0.4, b13 = 0 + 2

(
2.8

7

)
= 0.8, . . . , b17 = 0 + 6

(
2.8

7

)
= 2.4.

Thus, the transformed subinterval for Y1 is {[0, 0.4), [0.4, 0.8), . . . , [2.4, 2.8)}. For the obser-

vation y11, the relative frequency corresponding to the transformed subinterval is obtained

by

p′111 = 0, p′112 = 0, p′113 = 0.9

(
1.2− 1

1.5− 1

)
= 0.36,

p′114 = 0.9

(
1.5− 1.2

1.5− 1

)
+ 0.1

(
1.6− 1.5

2− 1.5

)
= 0.56,

p′115 = 0.1

(
2− 1.6

2− 1.5

)
= 0.08, p′116 = 0, p′117 = 0.
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Table 3.3: The transformed histogram values for the data of Table 3.2.

y′ Species Y1 =Petal Width Y2 =Petal Length
y′1 versi- {[0.0, 0.4), 0.00; [0.4, 0.8), 0.00; {[1.0, 1.5), 0.00; [1.5, 2.0), 0.00;

color [0.8, 1.2), 0.36; [1.2, 1.6), 0.56; [2.0, 2.5), 0.00; [2.5, 3.0), 0.00;
[1.6, 2.0), 0.08; [2.0, 2.4), 0.00; [3.0, 3.5), 0.16; [3.5, 4.0), 0.16;
[2.4, 2.8), 0.00} [4.0, 4.5), 0.33; [4.5, 5.0), 0.33;

[5.0, 5.5), 0.01; [5.5, 6.0), 0.01;
[6.0, 6.5), 0.00; [6.5, 7.0), 0.00;
[7.0, 7.5), 0.00}

y′2 virgi- {[0.0, 0.4), 0.00; [0.4, 0.8), 0.00; {[1.0, 1.5), 0.00; [1.5, 2.0), 0.00;
nica [0.8, 1.2), 0.00; [1.2, 1.6), 0.08; [2.0, 2.5), 0.00; [2.5, 3.0), 0.00;

[1.6, 2.0), 0.46; [2.0, 2.4), 0.40; [3.0, 3.5), 0.00; [3.5, 4.0), 0.00;
[2.4, 2.8), 0.06} [4.0, 4.5), 0.00; [4.5, 5.0), 0.25;

[5.0, 5.5), 0.25; [5.5, 6.0), 0.21;
[6.0, 6.5), 0.21; [6.5, 7.0), 0.04;
[7.0, 7.5), 0.04}

y′3 setosa {[0.0, 0.4), 0.96; [0.4, 0.8), 0.04; {[1.0, 1.5), 0.74; [1.5, 2.0), 0.26;
[0.8, 1.2), 0.00; [1.2, 1.6), 0.00; [2.0, 2.5), 0.00; [2.5, 3.0), 0.00;
[1.6, 2.0), 0.00; [2.0, 2.4), 0.00; [3.0, 3.5), 0.00; [3.5, 4.0), 0.00;
[2.4, 2.8), 0.00} [4.0, 4.5), 0.00; [4.5, 5.0), 0.00;

[5.0, 5.5), 0.00; [5.5, 6.0), 0.00;
[6.0, 6.5), 0.00; [6.5, 7.0), 0.00;
[7.0, 7.5), 0.00}

Thus, the transformed histogram value for y11 is {[0.0, 0.4), 0.00; [0.4, 0.8), 0.00; [0.8, 1.2), 0.36;

[1.2, 1.6), 0.56; [1.6, 2.0), 0.08; [2.0, 2.4), 0.00 [2.4, 2.8), 0.00}. Note, the sum of transformed

relative frequencies is 1 (=
∑tj

k=1 p
′
ijk). Figure 3.2 illustrates the procedure to obtain

p′11k, k = 1, . . . , 7. Similarly, we can transform all the data of Table 3.2. This completed

result is shown in Table 3.3 for both Y1 and Y2 and all three observations.
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Figure 3.2: The transformed relative frequencies for y11.

3.3 Dissimilarity and Distance Measures

In this section, we introduce dissimilarity and distance measures for histogram-valued data.

Usually we judge how far an object is from another object using these measures. Since basi-

cally most clustering methods depend on them, it is very important to measure dissimilarity

or distance accurately and reasonably.

For continuous variables, the dissimilarity for classical data is interpreted as the distance

between two objects based on their location in p-dimensional space. In contrast, even when

the centers of two symbolic objects are located in the same point, we cannot say they are

similar because the degree of their dispersion may be different. Thus, the dissimilarity for

histogram-valued data should reflect both their location and dispersion. We first propose

dissimilarity or distance measures for histogram-valued data in this section by extending

two particular measures developed for the case of interval-valued data by Gowda and Diday

(1991a) and Ichino and Yaguchi (1994). There are followed by a measure based on the

cumulative density function for histogram data (see Definition 3.12).
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In order to define dissimilarity measures, first of all, we define the union and intersection

between two histogram-valued objects, and the mean and standard deviation for histogram-

valued data.

Definition 3.4 Let y′i be a transformed histogram-valued observation, corresponding to yi,

with subintervals and relative frequencies
(
[bjk, bj,k+1), p

′
ijk; j = 1, . . . , p, k = 1, . . . , tj

)
, i =

1, . . . , n; and let y′(i1∪i2) be the union between two transformed histogram-valued observations

y′i1 and y′i2. Then, y′(i1∪i2) is

y′(i1∪i2) = {[bjk, bj,k+1), p
′
(i1∪i2)jk; j = 1, . . . , p, k = 1, . . . , tj}, i1, i2 = 1, . . . , n, (3.9)

where

p′(i1∪i2)jk = max{p′i1jk, p
′
i2jk}, k = 1, . . . , tj. (3.10)

Also, let y′(i1∩i2) be the intersection between two histogram-valued observations y′i1 and y′i2.

Then, y′(i1∩i2) is given by

y′(i1∩i2) = {[bjk, bj,k+1), p
′
(i1∩i2)jk; j = 1, . . . , p, k = 1, . . . , tj}, i1, i2 = 1, . . . , n, (3.11)

where

p′(i1∩i2)jk = min{p′i1jk, p
′
i2jk}, k = 1, . . . , tj. (3.12)

Note that in Equations (3.10) and (3.12),
∑tj

k=1 p
′
(i1∪i2)jk ≥ 1 and

∑tj
k=1 p

′
(i1∩i2)jk ≤ 1, respec-

tively.

Figure 3.3 displays an example of the union and intersection, respectively, of two

histogram-valued observations for a variable Yj.

From Billard and Diday (2003), we have the descriptive statistics, empirical mean and

variance for histogram-valued data, as follows:

Definition 3.5 Let y′ij be a transformed histogram-valued observation for a variable Yj.

Then, the mean for y′ij is defined by

Mij =

tj∑
k=1

(
bjk + bj,k+1

2

)
p′ijk, (3.13)
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Figure 3.3: An example of the union and intersection between two histogram-valued data.

and the standard deviation for y′ij is given by

Sij =

√√√√ tj∑
k=1

{
(bjk −Mij)2 + (bjk −Mij)(bj,k+1 −Mij) + (bj,k+1 −Mij)2

3

}
p′ijk . (3.14)

However, the means for the union and intersection between two objects are different

from that of Definition 3.5. For two single observations y′i1j and y′i2j, if we use p′(i1∪i2)jk or

p′(i1∩i2)jk to obtain the mean, it is not a measure of the mean because
∑tj

k=1 p
′
(i1∪i2)jk ≥ 1

and
∑tj

k=1 p
′
(i1∩i2)jk ≤ 1. Thus, the sum of p′(i1∪i2)jk and p′(i1∩i2)jk, respectively, need to be

standardized to 1. This leads to the following definitions for the empirical mean and variance

of the union and intersection of histogram-valued data.
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Definition 3.6 Let y′(i1∪i2)j be the union between two transformed histogram-valued obser-

vations y′i1j and y′i2j. Then, the mean of their union y′(i1∪i2)j is

M∗
(i1∪i2)j =

tj∑
k=1

(
bjk + bj,k+1

2

)
p∗(i1∪i2)jk, (3.15)

where

p∗(i1∪i2)jk =
p′(i1∪i2)jk∑tj

k=1 p
′
(i1∪i2)jk

. (3.16)

Also, the mean for the intersection y′(i1∩i2)j can be written as

M∗
(i1∩i2)j =

tj∑
k=1

(
bjk + bj,k+1

2

)
p∗(i1∩i2)jk, (3.17)

where

p∗(i1∩i2)jk =
p′(i1∩i2)jk∑tj

k=1 p
′
(i1∩i2)jk

. (3.18)

Note that
∑tj

k=1 p
∗
(i1∪i2)jk =

∑tj
k=1 p

∗
(i1∩i2)jk = 1. On the contrary, the standard deviations

of both union and intersection use p′(i1∪i2)jk and p′(i1∩i2)jk, respectively, because they should

satisfy S(i1∪i2)j ≥ max{Si1j, Si2j} and S(i1∩i2)j ≤ min{Si1j, Si2j}, respectively, to be used as

components of dissimilarity measures.

Definition 3.7 Let y′(i1∪i2)j be the union between two transformed histogram-valued obser-

vations y′i1j and y′i2j. Then, the standard deviation of their union y′(i1∪i2)j is defined by

S(i1∪i2)j =

√√√√ tj∑
k=1

{
(bjk −M∗

∪)
2 + (bjk −M∗

∪)(bj,k+1 −M∗
∪) + (bj,k+1 −M∗

∪)
2

3

}
p′(i1∪i2)jk ,

(3.19)

where M∗
∪ = M∗

(i1∪i2)j; and the standard deviation of the intersection is given by

S(i1∩i2)j =

√√√√ tj∑
k=1

{
(bjk −M∗

∩)
2 + (bjk −M∗

∩)(bj,k+1 −M∗
∩) + (bj,k+1 −M∗

∩)
2

3

}
p′(i1∩i2)jk ,

(3.20)

where M∗
∩ = M∗

(i1∩i2)j.
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Now we can extend the Gowda-Diday (1991a) and Ichino-Yaguchi (1994) dissimilarity

measures originally developed for interval-valued data to histogram-valued data.

Definition 3.8 The extended Gowda-Diday dissimilarity measure between the two

transformed histogram-valued observations y′i1 and y′i2 is given by

DGD(y′i1 ,y
′
i2

) =

p∑
j=1

[
D1j(y

′
i1j, y

′
i2j) +D2j(y

′
i1j, y

′
i2j) +D3j(y

′
i1j, y

′
i2j)
]
, (3.21)

where for the variable Yj, each component of the measure is

D1j(y
′
i1j, y

′
i2j) =

|Si1j − Si2j|
Si1j + Si2j

,

D2j(y
′
i1j, y

′
i2j) =

Si1j + Si2j − 2S(i1∩i2)j

Si1j + Si2j

,

D3j(y
′
i1j, y

′
i2j) =

|Mi1j −Mi2j|
Ψj

,

where Sij is the standard deviation for y′ij of Equation (3.14) and S(i1∩i2)j is the standard

deviation of the intersection between y′i1j and y′i2j of Equation (3.20), Mij is the mean of y′ij

of Equation (3.13), and where Ψj = bj,tj+1 − bj1.

Similarly to the case of interval-valued data, the extension of the Gowda-Diday dissim-

ilarity measure to histogram-valued data is also comprised of three components. The first

component, D1j(y
′
i1j, y

′
i2j), relates to the relative size, D2j(y

′
i1j, y

′
i2j) indicates the relative con-

tent, and D3j(y
′
i1j, y

′
i2j) measures the relative location. However, unlike interval-valued data,

histogram-valued data use the standard deviations (Si1j, Si2j, S(i1∩i2)j) to measure relative

size and relative content, and the means (Mi1j, Mi2j) as a relative location measure. It is rea-

sonable to use these standard deviations and means because a histogram-valued observation

has information for the distribution such as center and dispersion. For each variable, each

component has a value between 0 and 1. In addition, as the degree of similarity between two

objects increases, the extended Gowda-Diday measure for each variable is closer to 0.

Example 3.2 Consider the transformed histogram-valued data of Table 3.3. We calculate

the extended Gowda-Diday dissimilarity measure for the three species of iris. In order to
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obtain the three components of this measure, we first have to compute the intersection of

y′i1 = y′1 and y′i2 = y′2. For the variable Yj = Y1,

for i1 = 1, i2 = 2, j = 1, k = 1, p′(i1∩i2)jk = p′(1∩2)11 = min{0, 0} = 0.

where subscripts i1 and i2 are the ith1 and ith2 observations, respectively, j is the jth variable,

and k is the kth subinterval or relative frequency. Similarly,

p′(1∩2)12 = min{0, 0} = 0, p′(1∩2)13 = min{0.36, 0} = 0,

p′(1∩2)14 = min{0.56, 0.08} = 0.08, p′(1∩2)15 = min{0.08, 0.46} = 0.08,

p′(1∩2)16 = min{0, 0.40} = 0, p′(1∩2)17 = min{0, 0.06} = 0.

Thus, for i1 = 1, i2 = 2, j = 1, y′(i1∩i2)j = y′(1∩2)1 is

y′(1∩2)1 = {[0, 0.4), 0; [0.4, 0.8), 0; [0.8, 1.2), 0; [1.2, 1.6), 0.08;

[1.6, 2.0), 0.08; [2.0, 2.4), 0; [2.4, 2.8), 0}.

Now we calculate the mean and standard deviation of y′i1j = y′11. These are, respectively,

Mi1j = M11 =
1

2

{
(0 + 0.4)0 + (0.4 + 0.8)0 + (0.8 + 1.2)0.36 + · · ·+ (2.4 + 2.8)0

}
= 1.288,

and

Si1j = S11 =

{
0 + 0 +

(
(−0.488)2 + (−0.488)(−0.088) + (−0.088)2

3

)
0.36 + · · ·+ 0

}1/2

= 0.267.

Similarly, Mi2j = M21 = 1.976, Si2j = S21 = 0.312.

In order to compute S(i1∩i2)j = S(1∩2)1, first of all, we obtain p∗(i1∩i2)jk = p∗(1∩2)1k, k =

1, . . . , 7; and then calculate M∗
(i1∩i2)j = M∗

(1∩2)1 using Equation (3.17). Thus,

7∑
k=1

p′(1∩2)1k = 0 + 0 + 0 + 0.08 + 0.08 + 0 + 0 = 0.16.
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Hence, from Equation (3.18), the standardized relative frequencies p∗(i1∩i2)jk = p∗(1∩2)1k, k =

1, . . . , 7, are

p∗(1∩2)11 =
0

0.16
= 0, p∗(1∩2)12 = 0, p∗(1∩2)13 = 0, p∗(1∩2)14 =

0.08

0.16
= 0.5,

p∗(1∩2)15 =
0.08

0.16
= 0.5, p∗(1∩2)16 = 0, p∗(1∩2)17 = 0,

and

M∗
(i1∩i2)j = M∗

(1∩2)1 =
1

2

{
0 + · · ·+ (1.2 + 1.6)0.5 + (1.6 + 2.0)0.5 + 0

}
= 1.6.

Hence, the standard deviation for the intersection of y′i1j = y′11 and y′i2j = y′21 is, from

Equation (3.20),

S(i1∩i2)j = S(1∩2)1 =

{
0 + · · ·+

(
(1.2− 1.6)2 + 0 + 0

3

)
0.08

+

(
0 + 0 + (2− 1.6)2

3

)
0.08 + · · ·+ 0

}1/2

= 0.092.

By using these mean and standard deviation values, the three components in Equation (3.21)

of the extended Gowda-Diday measure between observations y′1 and y′2 for variable Y1 can be

obtained as follows:

D11(y
′
11, y

′
21) =

|0.267− 0.312|
0.267 + 0.312

= 0.079,

D21(y
′
11, y

′
21) =

0.267 + 0.312− 2(0.092)

0.267 + 0.312
= 0.681,

D31(y
′
11, y

′
21) =

|1.288− 1.976|
2.8− 0

= 0.246.

Similarly, the three components for variable Y2 are D12(y
′
12, y

′
22) = 0.094, D22(y

′
12, y

′
22) =

0.794, and D32(y
′
12, y

′
22) = 0.212. Thus, the extended Gowda-Diday dissimilarity measure

between y′1 and y′2 is given by, from Equation (3.21),

DGD(y′1,y
′
2) = (0.079 + 0.681 + 0.246) + (0.094 + 0.794 + 0.212) = 2.106.
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Similarly, we can calculate these dissimilarities DGD(y′i1 ,y
′
i2

) for all i1, i2 = 1, 2, 3. Hence,

we can complete the dissimilarity matrix. The extended Gowda-Diday dissimilarity matrix

for the data of Table 3.3 is

DGD =


0 2.106 3.505

2.106 0 4.110

3.505 4.110 0

 .

Let us now consider an Ichino-Yaguchi dissimilarity measure for histogram-valued data.

For interval-valued data, the Ichino-Yaguchi dissimilarity measure is defined using the Carte-

sian ‘join’ and ‘meet’ functions. In contrast, our extension of the Ichino-Yaguchi measure to

histogram-valued data uses the standard deviation of the ‘union’ and ‘intersection’ between

transformed histogram-valued objects given in Definition 3.7.

Definition 3.9 The extended Ichino-Yaguchi dissimilarity measure of the two

transformed histogram-valued observations y′i1j and y′i2j on the variable Yj is

φ(y′i1j, y
′
i2j) = S(i1∪i2)j − S(i1∩i2)j + γ(2S(i1∩i2)j − Si1j − Si2j), (3.22)

where S(i1∪i2)j, S(i1∩i2)j, and Sij are the standard deviations defined in Equation (3.19),

(3.20), and (3.14), respectively, and where 0 ≤ γ ≤ 0.5 is a prespecified constant.

Since the extended Ichino-Yaguchi dissimilarity measure is not normalized, it has different

units of measurement for each variable and may depend on a large scale variable. Thus, we

often need a normalized version.

Definition 3.10 Let φ(y′i1j, y
′
i2j) be the extended Ichino-Yaguchi dissimilarity measure for

the two transformed histogram-valued observations y′i1j and y′i2j on the variable Yj as given in

Equation (3.22). Then, a normalized extended Ichino-Yaguchi dissimilarity mea-

sure is given by

φ∗(y′i1j, y
′
i2j) =

φ(y′i1j, y
′
i2j)

Vj

, (3.23)
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where

Vj =

√
5A1j + 2A2j − 6A3j

24
, (3.24)

where

A1j = b2j1 + b2j2 + b2jtj + b2j,tj+1,

A2j = bj1bj2 + bjtjbj,tj+1,

A3j = bj1bjtj + bj1bj,tj+1 + bj2bjtj + bj2bj,tj+1.

where bjk and bj,k+1, k = 1, . . . , tj, are lower and upper limits for transformed subintervals,

respectively, defined in Definition 3.3.

In order to normalize the extended Ichino-Yaguchi measure, we use the maximum stan-

dard deviation value of the union between two single histogram-valued observations for

a variable Yj. That is, for a variable Yj, consider the union of two single observations,

y′(i1∪i2)j, with transformed subintervals [bjk, bj,k+1), k = 1, . . . , tj. Then, when the trans-

formed relative frequencies corresponding to the first and last subintervals are one (i.e.,

p′(i1∪i2)j1 = p′(i1∪i2)jtj
= 1) and the others are zero, the standard deviation of the union,

S(i1∪i2)j, is maximized and this maximum value is the Vj of Equation (3.24). By dividing the

extended Ichino-Yaguchi measure by Vj, the normalized measure can be obtained and it has

a value between 0 and 1.

The extended Ichino-Yaguchi dissimilarity measure can be extended to Minkowski dis-

tances. The form of the Minkowski distance is the same as in Equation (2.10).

Definition 3.11 The generalized Minkowski distance between the two transformed

histogram-valued objects y′i1 and y′i2 is

Dq
M(y′i1 ,y

′
i2

) =
[ p∑

j=1

φ(y′i1j, y
′
i2j)

q
]1/q

, (3.25)

where φ(y′i1 ,y
′
i2

) is the extended Ichino-Yaguchi dissimilarity measure. The city block dis-

tance is a Minkowski distance with order q = 1,

D1
M(y′i1 ,y

′
i2

) =

p∑
j=1

φ(y′i1j, y
′
i2j). (3.26)
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Also, when a Minkowski distance has order q = 2, it is called the Euclidean distance and

becomes

D2
M(y′i1 ,y

′
i2

) =
[ p∑

j=1

φ(y′i1j, y
′
i2j)

2
]1/2

. (3.27)

If Equation (3.23) is applied to the generalized Minkowski distance, it becomes the nor-

malized Minkowski distance which takes account of the scale of measurement on each variable

Yj as follows:

Dq
NM(y′i1 ,y

′
i2

) =
[ p∑

j=1

φ∗(y′i1j, y
′
i2j)

q
]1/q

, (3.28)

where φ∗(·, ·) is given by Equation (3.23). When the relative importance of variables is

considered in a Minkowski distance, we can use a weight for each variable. This measure is

called the normalized and weighted Minkowski distance, viz.,

Dq
NWM(y′i1 ,y

′
i2

) =
[ p∑

j=1

ωj

{
φ∗(y′i1j, y

′
i2j)
}q
]1/q

, (3.29)

where ωj is a weight with ωj > 0 and
∑p

j=1 ωj = 1.

Example 3.3 Consider the transformed histogram-valued data of Table 3.3. We calculate

the extended Ichino-Yaguchi dissimilarity measure for the three species of iris. To calculate

the extended Ichino-Yaguchi measure, we first obtain the union between two transformed

histogram-valued objects y′i1 = y′1 and y′i2 = y2. For the variable Yj = Y1,

for i1 = 1, i2 = 2, j = 1, k = 1, p′(i1∪i2)jk = p′(1∪2)11 = max{0, 0} = 0,

where subscripts i1 and i2 are the ith1 and ith2 observations, respectively, j is the jth variable,

and k is the kth subinterval or relative frequency. Similarly,

p′(1∪2)12 = max{0, 0} = 0, p′(1∪2)13 = max{0.36, 0} = 0.36,

p′(1∪2)14 = max{0.56, 0.08} = 0.56, p′(1∪2)15 = max{0.08, 0.46} = 0.46,

p′(1∪2)16 = max{0, 0.40} = 0.40, p′(1∪2)17 = max{0, 0.06} = 0.06.
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Thus, the union y′(i1∪i2)j = y′(1∪2)1 is

y′(1∪2)1 =
{

[0, 0.4), 0; [0.4, 0.8), 0; [0.8, 1.2), 0.36; [1.2, 1.6), 0.56;

[1.6, 2.0), 0.46; [2.0, 2.4), 0.40; [2.4, 2.8), 0.06
}
.

In order to compute the standard deviation of union S(i1∪i2)j = S(1∪2)1, first of all, we obtain

p∗(11∪i2)jk = p∗(1∪2)1k, k = 1, . . . , 7; and then calculate the mean of union M∗
(i1∪i2)j = M∗

(1∪2)1

using Equation (3.15). Hence,

7∑
k=1

p′(1∪2)1k = 0 + 0 + 0.36 + 0.56 + 0.46 + 0.40 + 0.06 = 1.84.

Therefore, from Equation (3.16), the standardized relative frequencies p∗(i1∪i2)jk = p∗(1∪2)1k, k =

1, . . . , 7, are

p∗(1∪2)11 = 0, p∗(1∪2)12 = 0, p∗(1∪2)13 =
0.36

1.84
= 0.196,

p∗(1∪2)14 =
0.56

1.84
= 0.304, p∗(1∪2)15 =

0.46

1.84
= 0.250,

p∗(1∪2)16 =
0.40

1.84
= 0.217, p∗(1∪2)17 =

0.06

1.84
= 0.033,

and the mean of union is , from Equation (3.15),

M∗
(i1∪i2)j = M∗

(1∪2)1 =
1

2

[
0 + 0 + (0.8 + 1.2)0.196 + · · ·+ (2.4 + 2.8)0.033

]
= 1.635.

Thus, the standard deviation for the union of y′i1j = y′11 and y′i2j = y′21 is, from Equation

(3.19),

S(i1∪i2)j = S(1∪2)1 =

{(
(−0.835)2 + (−0.835)(−0.435) + (−0.435)2

3

)
0.36

+ · · ·+
(

2.834

3

)
0.06

}1/2

= 0.630.

From Example 3.2, we know Si1j = S11, Si2j = S21, and S(i1∩i2)j = S(1∩2)1. Thus, if we

assume γ = 0.5, then the extended Ichino-Yaguchi measure φ(y′11, y
′
21) is, from Equation

(3.22),

φ(y′11, y
′
21) = 0.630− 0.092 + 0.5(2× 0.092− 0.267− 0.312) = 0.340.
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Similarly, φ(y′12, y
′
22) = 0.686.

Now we compute the normalized extended Ichino-Yaguchi measure for φ(y′11, y
′
21). First,

from Equation (3.24),

A1j = A11 = 02 + 0.42 + 2.42 + 2.82 = 13.76,

A2j = A21 = 0× 0.4 + 2.4× 2.8 = 6.72,

A3j = A31 = 0× 2.4 + 0× 2.8 + 0.4× 2.4 + 0.4× 2.8 = 2.08.

Thus,

Vj = V1 =

√
5× 13.76 + 2× 6.72− 6× 2.08

24
= 1.705.

Therefore, substituting into Equation (3.23), we obtain

φ∗(y′11, y
′
21) =

0.340

1.705
= 0.200.

Similarly, φ∗(y′12, y
′
22) = 0.162.

By using φ∗(y′11, y
′
21) = 0.200 and φ∗(y′12, y

′
22) = 0.162, the normalized Euclidean distance

of y′1 and y′2 can be computed, from Equation (3.28) with q = 2, as follows:

D2
NM(y1,y2) =

[
0.2002 + 0.1622

]1/2
= 0.257.

Similarly, the normalized Euclidean distances for all i1, i2 = 1, 2, 3 can be calculated. Hence,

the normalized Euclidean distance matrix can be completed to give

D2
NM =


0 0.257 0.533

0.257 0 0.871

0.533 0.871 0

 .

As indicated, the extended Gowda-Diday and extended Ichino-Yaguchi measures for

histogram-valued data are extensions of their counterparts for interval-valued data. We now

introduce a new measure based on histogram-valued data, as follows. Since histogram-valued

data can be considered as probability density functions, cumulative density functions can

be obtained from the data. Thus, the area between two cumulative density functions can be

used as a dissimilarity measure.
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Definition 3.12 The Cumulative Density Function (CDF) dissimilarity measure

between the two histogram-valued objects, yi1 and yi2, is defined by

DCDF (y′i1 ,y
′
i2

) =

p∑
j=1

DCDF (y′i1j, y
′
i2j) =

p∑
j=1

[
tj∑

k=1

{
Tj

∣∣Fi1jk − Fi2jk

∣∣}] , (3.30)

where Tj is the length of a transformed subinterval (i.e., Tj = bj,k+1 − bjk), and Fijt =∑t
k=1 p

′
ijk which is a cumulative relative frequency. The normalized CDF dissimilarity

measure which does not depend on units of measurement for variables is given by

DNCDF (y′i1 ,y
′
i2

) =

p∑
j=1

DNCDF (y′i1j, y
′
i2j) =

p∑
j=1

[
Ψ−1

j

tj∑
k=1

{
Tj

∣∣Fi1jk − Fi2jk

∣∣}] , (3.31)

where Ψj = bj,tj+1 − bj1.

The dissimilarity measure DNCDF (yi1 ,yi2) has a value between 0 and p, where p is the

number of variables.

Example 3.4 From the transformed histogram-valued data of Table 3.3, we calculate the

CDF dissimilarity measure for the three species of iris. First of all, the cumulative relative

frequencies for y′i1j = y′11 are obtained by

for i1 = 1, j = 1, k = 1, Fi1jk = F111 = p′111 = 0,

where subscripts i1 is the ith1 observation, j is the jth variable, and k is the kth subinterval

or relative frequency. Similarly,

F112 = F111 + p′112 = 0 + 0 = 0,

F113 = F112 + p′113 = 0 + 0.36 = 0.36,

F114 = F113 + p′114 = 0.36 + 0.56 = 0.92,

F115 = F114 + p′115 = 0.92 + 0.08 = 1,

F116 = F115 + p′116 = 1 + 0 = 1,

F117 = F116 + p′117 = 1 + 0 = 1.
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Figure 3.4: Plot of the CDF dissimilarity value between y′11 and y′21.

Similarly, cumulative relative frequencies for y′i2j = y′21 are

F211 = 0, F212 = 0, F213 = 0, F214 = 0.08, F215 = 0.54, F216 = 0.94, F217 = 1.

Thus, since Tj = T1 = b1,k+1 − b1k = 0.4 for k = 1, . . . , t1, the CDF dissimilarity measure of

y′11 and y′21 is obtained by

DCDF (y′11, y
′
21) = 0.4

[
0 + 0 +

∣∣0.36− 0
∣∣+
∣∣0.92− 0.08

∣∣+ · · ·+
∣∣1− 1

∣∣] = 0.688.

The shaded area of Figure 3.4 is the CDF dissimilarity measure of y′i1j = y′11 and yi2j = y′21.

Similarly, DCDF (y′12, y
′
22) = 1.38. Thus, the CDF dissimilarity measure of yi1 = y1 and
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yi2 = y2 is, from Equation (3.30),

DCDF (y′1,y
′
2) = 0.688 + 1.38 = 2.068.

In addition, from Equation (3.31), the normalized CDF dissimilarity measure of y′1 and

y′2 is calculated as follows:

DNCDF (y′1,y
′
2) =

(
0.688

2.8

)
+

(
1.38

6.5

)
= 0.458.

Similarly, we can calculate these distances DNCDF (y′i1 ,y
′
i2

) for all i1, i2 = 1, 2, 3. Hence,

we can complete the normalized CDF dissimilarity measure for the histogram-valued data of

Table 3.2 as follows:

DNCDF =


0 0.458 0.817

0.458 0 1.275

0.817 1.275 0

 .

3.4 Hierarchical Divisive Clustering Methods

In this section, we show how to extend the Chavent (1998, 2000) monothetic method reviewed

in Section 2.4 to histogram-valued data (see Section 3.4.1), and introduce a polythetic method

for symbolic objects (in Section 3.4.2). Both the monothetic and polythetic algorithms are

hierarchical divisive clustering methods. The difference between the two algorithms is in the

strategy used to find the bipartition minimizing the within-cluster variance. The former uses

a single variable at each stage. In contrast, the latter uses all variables simultaneously at

each stage.

Suppose that there are p-dimensional histogram-valued random variables {Yj, j =

1, . . . , p} with observations yi ∈ Ω = {y1, . . . ,yn} with yi =
{
yij, j = 1, . . . , p

}
and Pr is a

partition of Ω at the rth stage. Then, Pr = {Cu, u = 1, . . . , r}, where Cu = {y1, . . . ,ynu} is

a cluster of size nu, where
∑r

u=1 nu = n. At the (r + 1)th stage, a single cluster Cu in Pr is

bisected into C1
u and C2

u. Thus, a new partition can be written as

Pr+1 =
(
Pr ∪ {C1

u, C
2
u}
)
− {Cu}. (3.32)
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Now our interest is which cluster Cu is bisected and how to find the optimal C1
u and C2

u

for that Cu. If we have a partition Pr, there are
∑r

u=1(2
nu−1− 1) = z (say) possible (r+ 1)th

bipartitions of Pr+1. Since the number of possible bipartitions exponentially increases as the

number of objects increases, we may not be able to examine all possible bipartitions due to

computational time and cost. In order to solve this problem, we need a criterion and strategy

which can find the optimal C1
u and C2

u without having to consider all z possibilities. The

criterion used in this study is minimizing the within-cluster variance and maximizing the

between-cluster variance.

Definition 3.13 For a cluster Cu = {y1, . . . ,ynu}, the within-cluster variance I(Cu)

is, for u = 1, . . . , r,

I(Cu) =
1

2τ

nu∑
i1=1

nu∑
i2=1

wi1wi2D
2(yi1 ,yi2), i1, i2 = 1, . . . , nu, (3.33)

where D(yi1 ,yi2) is a dissimilarity or distance measure between the observation yi1 and yi2

in Cu and where wi is the weight for the object yi, and where τ =
∑nu

i=1wi.

If the weight is the same for each observation, the weight wi is equal to 1 or equal to 1/n,

where n is the total number of objects in Ω. If wi = 1 for all i, the within-cluster variance

can be written as

I(Cu) =
1

2n

nu∑
i1=1

nu∑
i2=1

D2(yi1 ,yi2). (3.34)

If wi = 1/n, the I(Cu) is

I(Cu) =
1

2nnu

nu∑
i1=1

nu∑
i2=1

D2(yi1 ,yi2). (3.35)

Definition 3.14 For a partition Pr = (C1, . . . , Cr) at the rth stage, the total within-

cluster variance is given by, for r = 1, . . . , n− 1,

W (Pr) =
r∑

u=1

I(Cu). (3.36)
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Definition 3.15 For a partition Pr = (C1, . . . , Cr) at the rth stage, where Ω ≡ P1, the

between-cluster variance is defined by, for r = 1, . . . , n− 1,

B(Pr) = W (Ω)−W (Pr). (3.37)

From Equation (3.32), the total within-cluster variance for Pr+1 can be written as

W (Pr+1) = W (Pr)− {I(Cu)− I(C1
u)− I(C2

u)}. (3.38)

Thus, minimizing W (Pr+1) is equivalent to maximizing the decrement value of the within-

cluster variance ∆u, where

∆u =
{
I(Cu)− I(C1

u)− I(C2
u)
}
. (3.39)

Therefore, when we want to minimize W (Pr+1), we have to find the bipartition (C1
u, C

2
u) that

maximizes ∆u.

3.4.1 Monothetic Algorithm

A monothetic algorithm uses a single variable to find the bipartition that minimizes the

within-cluster variance. It can also find a binary question for a single variable which shows a

monothetic characteristic at each stage. The form of a binary question is ‘Is Yj ≤ cr?’, where

cr is the cut point at the rth stage.

Suppose that there are p-dimensional histogram-valued random variables {Yj, j =

1, . . . , p} with observations yi ∈ Ω = {y1, . . . ,yn} with yi =
{
yij, j = 1, . . . , p

}
={

[aijk, aij,k+1), pijk, j = 1, . . . , p, k = 1, . . . , vij

}
. Then, we can obtain transformed

histogram-valued observations y′i =
{
y′ij, j = 1, . . . , p

}
=
{

[bijk, bij,k+1), p′ijk, j =

1, . . . , p, k = 1, . . . , tj
}

, i = 1, . . . , n, from the original histogram-valued observations

yi, i = 1, . . . , n, using Definition 3.3; and from these transformed histogram-valued observa-

tions, we can calculate distance or dissimilarity values among all observations such as, the

extended Gowda-Diday, the extended Ichino-Yaguchi, and the CDF dissimilarity measures
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proposed in Section 3.3. Using these transformed observations and dissimilarity values, the

monothetic clustering method can be achieved.

The monothetic algorithm for histogram-valued data is very similar to the case of interval-

valued data introduced in Section 2.4. By adapting that algorithm (developed by Chavent,

1998), we obtain an extension of the algorithm for histogram-valued data as follows:

- Step 1: Start with P1 ≡ Ω = {y1, . . . ,yn}. Then, r = 1.

- Step 2: At the rth stage, we have a partition Pr = {Cu, u = 1, . . . , r}, and each cluster

contains histogram-valued objects (i.e., Cu = {yi, i = 1, . . . , nu}).

- Step 3: For a variable Yj, calculate the mean Mij for the transformed observations y′ij

of all objects in each cluster using Equation (3.13); and then sort the objects in Cu in

ascending order using the value of Mij. Let {yj
(i), i = 1, . . . , nu} be the sorted objects

in Cu for the variable Yj, and let C1
u = {yj

(1), . . . ,y
j
(l)} and C2

u = {yj
(l+1), . . . ,y

j
(nu)},

l = 1, . . . , nu − 1. Then, there are
∑r

u=1(nu − 1) possible bipartitions in the partition

Pr. For the variable Yj, find the Cu and its bipartition (C1
u, C

2
u) with the smallest total

within-cluster variance of the
∑r

u=1(nu − 1) possible bipartitions by maximizing ∆u

defined in Equation (3.39); and then set Cj
u = Cu, C1j

u = C1
u and C2j

u = C2
u.

- Step 4: For all the variables Yj, j = 1, . . . , p, repeat Step 3. Then, we can find the

optimal (C1
u, C

2
u) and j satisfying

max
j
{I(Cj

u)− I(C1j
u )− I(C2j

u )}.

- Step 5: In order to obtain the cut point cr, calculate the mean of the union between

y′(l)j and y′(l+1)j for the identified (C1
u, C

2
u) and j in Step 4 using Equation (3.15). That

is, the cut point cr is

cr = M∗
(l∪l+1)j. (3.40)

Thus, the binary question at the rth stage is ‘Is Yj ≤ cr?’.
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Figure 3.5: The flow chart for the monothetic algorithm.



56

Table 3.4: Ruspini histogram-valued data.
Y1 Y2

y1

{
[0, 5), 0.100; [5, 10), 0.100; [10, 15), 0.200;

{
[45, 50), 0.050; [50, 55), 0.150; [55, 60), 0.200;

[15, 20), 0.100; [20, 25), 0.100; [25, 30), 0.250; [60, 65), 0.200; [65, 70), 0.050; [70, 75), 0.200;
[30, 35), 0.100; [35, 40), 0.050

}
[75, 80), 0.100; [80, 85), 0.000; [85, 90), 0.050

}
y2

{
[25, 30), 0.044; [30, 35), 0.217; [35, 40), 0.130;

{
[120, 125), 0.044; [125, 130), 0.000; [130, 135), 0.000;

[40, 45), 0.174; [45, 50), 0.174; [50, 55), 0.174; [135, 140), 0.087; [140, 145), 0.348; [145, 150), 0.217;
[55, 60), 0.044; [60, 65), 0.044

}
[150, 155), 0.261; [155, 160), 0.044

}
y3

{
[70, 80), 0.118; [80, 90), 0.177; [90, 100), 0.294;

{
[90, 95), 0.059; [95, 100), 0.118; [100, 105), 0.000;

[100, 110), 0.235; [110, 120), 0.177
}

[105, 110), 0.000; [110, 115), 0.294; [115, 120), 0.235;
[120, 125), 0.118; [125, 130), 0.118; [130, 135), 0.059;

y4

{
[55, 60), 0.067; [60, 65), 0.267; [65, 70), 0.333;

{
[0, 5), 0.067; [5, 10), 0.000; [10, 15), 0.267;

[70, 75), 0.067; [75, 80), 0.200; [80, 85), 0.067
}

[15, 20), 0.200; [20, 25), 0.267; [25, 30), 0.133;
[30, 35), 0.067

}

- Step 6: Repeat Steps 2–5 until r = R or r = n, where R is a prespecified value and n

is the number of objects.

Figure 3.5 shows the process of the monothetic algorithm.

Example 3.5 Consider the Ruspini (1970) histogram-valued data shown in Table 3.4. This

classical Ruspini dataset is artificial data and has 75 observations with two variables and

it is well known that there are four clusters in this dataset. In this example, we use these

four clusters as histogram-valued objects to illustrate the monothetic method. First of all, we

transform the histogram-valued data of Table 3.4 using Definition 3.3. These transformed

histogram-valued data are shown in Table 3.5. Now we have four transformed histogram-

valued objects (i.e.,
{
y′1,y

′
2,y

′
3,y

′
4

}
) with two variables Y1 and Y2.

From these transformed data, we can calculate dissimilarity values between two objects.

In this example, we use the CDF dissimilarity measure defined in Equation (3.30). Since Y1

and Y2 have a similar range of values, we do not use the normalized measure. To obtain the

CDF dissimilarity measure for four objects, first of all, the cumulative relative frequencies
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Table 3.5: Ruspini transformed histogram-valued data.

Y1 y′1 y′2 y′3 y′4 Y1 y′1 y′2 y′3 y′4
[b1k, b1,k+1) p′11k p′21k p′31k p′41k [b1k, b1,k+1) p′11k p′21k p′31k p′41k

[0, 5) 0.100 0.000 0.000 0.000 [5, 10) 0.100 0.000 0.000 0.000
[10, 15) 0.200 0.000 0.000 0.000 [15, 20) 0.100 0.000 0.000 0.000
[20, 25) 0.100 0.000 0.000 0.000 [25, 30) 0.250 0.043 0.000 0.000
[30, 35) 0.100 0.217 0.000 0.000 [35, 40) 0.050 0.130 0.000 0.000
[40, 45) 0.000 0.174 0.000 0.000 [45, 50) 0.000 0.174 0.000 0.000
[50, 55) 0.000 0.174 0.000 0.000 [55, 60) 0.000 0.043 0.000 0.067
[60, 65) 0.000 0.043 0.000 0.267 [65, 70) 0.000 0.000 0.000 0.333
[70, 75) 0.000 0.000 0.059 0.067 [75, 80) 0.000 0.000 0.059 0.200
[80, 85) 0.000 0.000 0.088 0.067 [85, 90) 0.000 0.000 0.088 0.000
[90, 95) 0.000 0.000 0.147 0.000 [95, 100) 0.000 0.000 0.147 0.000

[100, 105) 0.000 0.000 0.118 0.000 [105, 110) 0.000 0.000 0.118 0.000
[110, 115) 0.000 0.000 0.088 0.000 [115, 120) 0.000 0.000 0.088 0.000

Y2 y′1 y′2 y′3 y′4 Y2 y′1 y′2 y′3 y′4
[b2k, b2,k+1) p′12k p′22k p′32k p′42k [b2k, b2,k+1) p′12k p′22k p′32k p′42k

[0, 5) 0.000 0.000 0.000 0.067 [5, 10) 0.000 0.000 0.000 0.000
[10, 15) 0.000 0.000 0.000 0.267 [15, 20) 0.000 0.000 0.000 0.200
[20, 25) 0.000 0.000 0.000 0.267 [25, 30) 0.000 0.000 0.000 0.133
[30, 35) 0.000 0.000 0.000 0.067 [35, 40) 0.000 0.000 0.000 0.000
[40, 45) 0.000 0.000 0.000 0.000 [45, 50) 0.050 0.000 0.000 0.000
[50, 55) 0.150 0.000 0.000 0.000 [55, 60) 0.200 0.000 0.000 0.000
[60, 65) 0.200 0.000 0.000 0.000 [65, 70) 0.050 0.000 0.000 0.000
[70, 75) 0.200 0.000 0.000 0.000 [75, 80) 0.100 0.000 0.000 0.000
[80, 85) 0.000 0.000 0.000 0.000 [85, 90) 0.050 0.000 0.000 0.000
[90, 95) 0.000 0.000 0.059 0.000 [95, 100) 0.000 0.000 0.118 0.000

[100, 105) 0.000 0.000 0.000 0.000 [105, 110) 0.000 0.000 0.000 0.000
[110, 115) 0.000 0.000 0.294 0.000 [115, 120) 0.000 0.000 0.235 0.000
[120, 125) 0.000 0.043 0.118 0.000 [125, 130) 0.000 0.000 0.118 0.000
[130, 135) 0.000 0.000 0.059 0.000 [135, 140) 0.000 0.087 0.000 0.000
[140, 145) 0.000 0.348 0.000 0.000 [145, 150) 0.000 0.217 0.000 0.000
[150, 155) 0.000 0.261 0.000 0.000 [155, 160) 0.000 0.043 0.000 0.000
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for y′i1j = y′11, Fi1jk = F11k, are calculated by

F111 = 0.1, F112 = 0.1 + 0.1 = 0.2, F113 = 0.2 + 0.2 = 0.4,

F114 = 0.4 + 0.1 = 0.5, F115 = 0.5 + 0.1 = 0.6, F116 = 0.6 + 0.25 = 0.85,

F117 = 0.85 + 0.1 = 0.95, F118 = 0.95 + 0.05 = 1, . . . , F11,24 = 1.

Similarly, the cumulative relative frequencies for y′i2j = y′21, Fi2jk = F21k, are

F211 = 0, F212 = 0, F213 = 0, F214 = 0, F215 = 0,

F216 = 0.043, F217 = 0.261, F218 = 0.391, . . . , F21,24 = 1.

Thus, since Tj = T1 = 5, the CDF dissimilarity measure of y′i1j = y′11 and y′i2j = y′12 is

DCDF (y′11, y
′
21) = 5×

{∣∣0.1− 0
∣∣+
∣∣0.2− 0

∣∣+
∣∣0.4− 0

∣∣+
∣∣0.5− 0

∣∣
+
∣∣0.6− 0

∣∣+
∣∣0.85− 0.043

∣∣+
∣∣0.95− 0.261

∣∣+ · · ·+
∣∣1− 1

∣∣}
= 23.652.

Similarly, DCDF (y′12, y
′
22) = 81.293. Thus, the CDF dissimilarity measure between y′1 and y′2

is

DCDF (y′1,y
′
2) = 23.652 + 81.293 = 104.946.

Similarly, we can calculate these distances DCDF (y′1,y
′
2) for all i1, i2 = 1, 2, 3, 4. Hence, we

can complete the CDF dissimilarity matrix as follows:

DCDF =



0 104.946 127.868 94.750

104.946 0 84.303 152.391

127.868 84.303 0 123.951

94.750 152.391 123.951 0


. (3.41)

Now, we perform clustering using the monothetic method. At the first stage, we have

P1 ≡ Ω =
{
y1,y2,y3,y4

}
. To obtain the order of objects, the means of the observations for
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each variable are calculated using Equation (3.13). The mean of y′ij = y′11, M11, is

Mij = M11 =
(0 + 5

2

)
0.1 +

(5 + 10

2

)
0.1 + · · ·+

(115 + 120

2

)
0 = 19.50.

Similarly, Mij, i = 1, 2, 3, 4, j = 1, 2, can be calculated; Table 3.6 shows the mean values

for each variable and each object. From these mean values, the ascending order of objects

can be obtained. For variable Y1, we have the order y1 < y2 < y4 < y3, and for variable

Y2, the order is y4 < y1 < y3 < y2. Thus, the number of possible bipartitions for variable

Y1 is three (= nu − 1 = 4 − 1); these are
(
{y1}, {y2,y4,y3}

)
,
(
{y1,y2}, {y4,y3}

)
, and(

{y1,y2,y4}, {y3}
)
. Similarly, we can obtain the possible bipartitions for variable Y2, viz.,(

{y4}, {y1,y3,y2}
)
,
(
{y4,y1}, {y3,y2}

)
, and

(
{y4,y1,y3}, {y2}

)
.

Table 3.6: Mean values for each variable and each object.

Variable Object (yi) y1 y2 y3 y4

Y1 Mean (Mi1) 19.50 43.15 96.76 68.83
Y2 Mean (Mi2) 64.25 145.54 114.85 18.83

To find the optimal bipartition, we use these possible bipartitions and the decrement value

of the within-cluster variance, ∆u, defined in Equation (3.39). The optimal bipartition has

the maximum ∆u value. For example, suppose we have a cluster C1 = {y1,y2,y3,y4} and a

bipartition (C1
1 , C

2
1) = ({y1,y2}, {y3,y4}). From the dissimilarity matrix in Equation (3.41),

the within-cluster variances I(C1), I(C1
1), and I(C2

1) are, using Equation (3.35) with weights

wi = 1/n,

I(C1) =
1

4× 4

{
104.9462 + 127.8682 + 94.7502 + 84.3032 + 152.3912 + 123.9512

}
= 5127.203

I(C1
1) =

1

4× 2

{
104.9462

}
= 1376.699

I(C2
1) =

1

4× 2

{
123.9512

}
= 1920.481.

Thus, the decrement value ∆1 is

∆1 = I(C1)− I(C1
1)− I(C2

1) = 5127.203− 1376.699− 1920.481 = 1830.023.
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Similarly, the decrement values for all the possible bipartitions can be calculated as given in

Table 3.7.

Table 3.7: Decrement values for the first stage.

Variable (C1
1 , C2

1 ) I(C1
1 ) I(C2

1 ) I(C1)− I(C1
1 )− I(C2

1 )
({y1}, {y2,y4,y3}) 0.00 3807.83 1319.37

Y1 ({y1,y2}, {y4,y3}) 1376.70 1920.48 1830.02
({y1,y2,y4}, {y3}) 3601.19 0.00 1526.02
({y4}, {y1,y3,y2}) 0.00 2872.56 2254.642

Y2 ({y4,y1}, {y3,y2}) 1122.20 888.38 3116.63
({y4,y1,y3}, {y2}) 3390.96 0.00 1736.24

From Table 3.7, we know the bipartition ({y4,y1}, {y3,y2}) has the largest decrement

value (3116.63). Note that this bipartition is detected by variable Y2. Thus, the form of the

binary question is ‘Is Y2 ≤ c1?’. From Equation (3.40), the cut point at the first stage, c1, is

the mean of the union of the two transformed observations y′1 and y′3 for variable Y2. Thus,

from Equation (3.15), the cut point c1 = M∗
(i1∪i2)j = M∗

(1∪3)2 = 89.55, and the binary question

at the first stage is ‘Is Y2 ≤ 89.55?’.

At the second stage, we have the partition P2 =
{
C1, C2

}
, where C1 = {y4,y1} and

C2 = {y3,y2}, and either C1 or C2 is bipartitioned. Similarly to the first stage, we find the

optimal bipartition by sorting objects in each cluster by the mean values Mij and by using

the decrement value of the within-cluster variance defined in Equation (3.39). This result is

shown in Table 3.8.

Table 3.8: Decrement values for the second stage.

Variable (C1
u, C2

u) I(C1
u) I(C2

u) I(Cu)− I(C1
u)− I(C2

u)
Y1 ({y1}, {y4}) 0.00 0.00 1122.20

({y2}, {y3}) 0.00 0.00 888.38
Y2 ({y4}, {y1}) 0.00 0.00 1122.20

({y3}, {y2}) 0.00 0.00 888.38

From Table 3.8, we know the optimal bipartition at the second stage is ({y1}, {y4}). Unlike

the first stage, this optimal bipartition is detected by both variables Y1 and Y2. In this case,

to obtain a unique binary question, we choose a variable using dissimilarity values for each
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y1 y4 y2 y3

Y2 <= 89.55

Y1 <= 44.17

Y1 <= 69.96

Left : YES , Right : NO

Figure 3.6: Dendrogram for Ruspini data using the monothetic method.

variable. That is, we compare DCDF (y′11, y
′
41) with DCDF (y′12, y

′
42). Since DCDF (y′11, y

′
41) =

49.33 > DCDF (y′12, y
′
42) = 45.42, the form of the binary question at the second stage is ‘Is

Y1 ≤ c2?’. Using Equation (3.15), the cut point is c2 = M∗
(i1∪i2)j = M∗

(1∪4)1 = 44.17, and the

binary question at the second stage is ‘Is Y1 ≤ 44.17?’.

Similarly, we can find the optimal bipartition and binary question for the third stage. The

dendrogram for the complete clustering result is shown in Figure 3.6. For the first binary

question ‘Is Y2 ≤ 89.55?’, if the answer is ‘Yes’, then the observations fall into cluster{
y1,y4

}
, and if ‘No’ then observations fall into cluster

{
y2,y3

}
.

As mentioned in Section 3.4, there exist
∑r

u=1(2
nu−1− 1) possible bipartitions at the rth

stage. However, in the monothetic method, we have
∑r

u=1 p(nu− 1) bipartitions because for

each cluster, there are nu − 1 bipartitions for each variable due to the fact that objects are

sorted in ascending order using the mean; see Step 3. Thus, in order to obtain the optimal

bipartition, we need
∑r

u=1 p(nu − 1) repetitions of the Step 3 at each stage.
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There is a binary question at every stage. This binary question is interpreted to mean

that if an object yi has ‘Yes’ as a response for ‘Is Yj ≤ cr?’, then yi ∈ C1
u, and if ‘No’,

then yi ∈ C2
u. The prespecified number of clusters is R. In Chapter 4, we propose a rule to

select the number of clusters. An application of this algorithm is given in Chapter 5; and the

program code in software R is provided in the Appendix C.

3.4.2 Polythetic Algorithm

In this section, we propose a polythetic method for clustering symbolic objects including

interval-valued, histogram-valued, and multi-valued objects, etc. As explained in Section

3.4.1, the monothetic method depends on a single variable to find the optimal bipartition

because it uses objects sorted in ascending mean values for each variable. Thus, this method

is simple and has the advantages that it gives both a hierarchy on a dataset and a simple

interpretation (i.e., binary questions) for clustering results. However, Chavent (1998) indi-

cated that since it uses a single variable at a time, it might perform poorly in those situations

where the cluster structure depends on combinations of variables. In contrast, the polythetic

method uses all variables simultaneously through dissimilarity or distance values. That is,

this method does not depend on orders of single variables but completely depends on dis-

similarity or distance values, and these dissimilarity values consider the dissimilarity for all

variables simultaneously.

To avoid considering all possible bipartitions, the method starts by finding the object

that is farthest away from the others within clusters Cu, u = 1, . . . , r, in a partition Pr. The

farthest object would be used as the seed. Let y∗ be a seed and C be the cluster with y∗ that

is one of clusters Cu, u = 1, . . . , r, in Pr; then C would be bipartitioned into (C1, C2). At the

beginning, the seed y∗ automatically goes to C2. That is, C1 = C −
{
y∗
}

and C2 =
{
y∗
}

.

Then, the cluster C1 is called the main cluster (or group) and cluster C2 is the splinter

cluster. The method compares whether each object is closer to the main cluster C1 or to the

splinter cluster C2. If an object is closer to the splinter cluster, it moves into that cluster C2.
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This comparison is iterated until there are no more objects that are closer to the splinter

cluster at each stage.

The polythetic algorithm for classical data proposed by MacNaughton-Smith et al. (1964)

iteratively uses an average distance between an object and a group of objects. In their

method, the object with the maximum average distance between objects in the same cluster

is used as a seed and automatically goes into a splinter cluster. Each object in the cluster

is compared using average distance between an object in the main cluster and objects in

the splinter cluster whether it is close to the main cluster or the splinter cluster, and any

objects that are closer to the splinter cluster are moved into the splinter cluster. This step is

repeated while, in the main cluster, there are objects that are closer to the splinter cluster.

On the contrary, we propose the polythetic method of symbolic objects using an iterative

procedure by a within-cluster variance, instead of an average distance as follows:

- Step 1: Let yi be a symbolic object. Then, start with P1 ≡ Ω = {y1, . . . ,yn}. Then,

r = 1.

- Step 2: At the rth stage, we have a partition Pr = {Cu, u = 1, . . . , r}, and each cluster

has histogram-valued objects (i.e., Cu = {yi, i = 1, . . . , nu}).

- Step 3: Let D̄u(yi) be an average weighted dissimilarity of yi for Cu. Then, D̄u(yi) is

defined by

D̄u(yi) =

∑
i′ 6=i

{
wiwi′D(yi,yi′)

}
τu − wi

, i = 1, . . . , nu, (3.42)

where D(yi,yi′) is the dissimilarity or distance measure between two symbolic objects

yi and yi′ , yi, yi′ ∈ Cu and where wi is the weight for the yi and τu =
∑nu

i=1wi. Let

MADu be the maximum value of D̄u(yi) for a cluster Cu (i.e., the maximum average

dissimilarity). Then, the MADu is given by

MADu = max
i
{D̄u(yi), i = 1, . . . , nu}. (3.43)
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Figure 3.7: The flow chart for the polythetic algorithm.
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Let MMAD be the maximum value of MADu for all clusters, Cu, u = 1, . . . , r, in Pr.

Then, MMAD is defined as

MMAD = max
u
{MADu, u = 1, . . . , r}. (3.44)

- Step 4: Let y∗ be the object with MMAD value in Pr, and let y∗ ∈ Cu. Then, this

object y∗ is used as the seed for the bipartition of Cu, and the cluster Cu is bisected

into (C1
u, C

2
u). First of all, set C1

u = {y(1), . . . ,y(t)} and C2
u = {y∗}, where t = nu − 1.

The C1
u is called the main cluster and C2

u with y∗ is called the splinter cluster.

- Step 5: Set TC1 = C1
u and TC2 = C2

u, and let one of the objects in TC1, y(i), move into

TC2. That is, now TC1 = TC1 − {y(i)} and TC2 = TC2 ∪ {y(i)}. Then, calculate the

difference of the sums of the within-cluster variances between (C1
u, C

2
u) and (TC1, TC2)

that results from moving y(i). That is, this difference, H(i), is

H(i) = {I(C1
u) + I(C2

u)} − {I(TC1) + I(TC2)}. (3.45)

After H(i) for moving y(i) is calculated, y(i) goes back to TC1. That is, now TC1 =

TC1 ∪ {y(i)} and TC2 = TC2 − {y(i)} (i.e., TC1 = C1
u and TC2 = C2

u).

- Step 6: Repeat Step 5 for all objects in TC1 (i.e., for all y(i), i = 1, . . . , t). Then, we

have t H(i) values corresponding to each y(i), i = 1, . . . , t.

- Step 7: Let MH = maxi{H(i), i = 1, . . . , t} and yMH be the object corresponding to

the MH value in TC1. Then, if MH > 0, the object yMH moves from C1
u into C2

u (i.e.,

C1
u = C1

u − {yMH} and C2
u = C2

u ∪ {yMH}); and set t = t− 1.

- Step 8: Repeat Steps 5–7 while MH > 0. If MH ≤ 0, go to the (r + 1)th stage (i.e,

r = r + 1).

- Step 9: Repeat Steps 2–8 until r = R or r = n, where R is a prespecified number of

clusters and n is the number of objects.
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In Step 7, MH > 0 indicates that the difference of the sums of the within-cluster variances

for moving of the object corresponding to the MH value is also positive because MH =

maxi{H(i), i = 1, . . . , t}. For example, suppose that the object y(2) in the cluster Cu has

the MH value and MH is positive. Then, the difference of the sums of the within-cluster

variance for y(2), H(2), is also positive. This means that the sum of within-cluster variances

is decreased due to moving the object y(2) into the splinter cluster. This coincides with our

clustering criterion to minimize the total within-cluster variance of Equation (3.36). Thus, if

MH is larger than zero, the object corresponding to the MH value moves into the splinter

cluster. In contrast, if the MH value is negative, this means that the sum of within-cluster

variances is increased due to moving the object with the MH value into the splinter cluster.

In this case, that object stays in the main cluster. Figure 3.7 shows the process of the

polythetic algorithm.

Example 3.6 Consider the Ruspini (1970) histogram-valued data shown in Table 3.4 again.

We illustrate the polythetic method using this dataset. At the first stage, we have Ω ≡ P1 =

{C1} =
{
y1,y2,y3,y4

}
. First of all, we find a seed using the CDF dissimilarity matrix in

Equation (3.41) and average weighted dissimilarity in Equation (3.42). If we use weights

wi = 1/n in Equation (3.42), then the average weighted dissimilarity for object y1 is

D̄u(yi) = D̄1(y1) =
1

4(4− 1)

(
104.946 + 127.868 + 94.750

)
= 27.297.

Similarly, D̄1(y2) = 28.470, D̄1(y3) = 28.010, and D̄1(y4) = 30.924. Thus, since there is

only one cluster at the first stage (P1 = C1), from Equation (3.43) and (3.44), MMAD =

MAD1 = 30.924 and the seed y∗ = y4. Therefore, the seed y4 automatically goes into the

splinter cluster C2
1 , and we currently have the bipartition (C1

1 , C
2
1) =

(
{y1,y2,y3}, {y4}

)
.

Now, in turn, each object in the cluster C1
1 moves into the splinter cluster C2

1 , one at

a time; and then we calculate the difference of the sums of the within-cluster variance in

Equation (3.45). For example, suppose the object y(1) ≡ y1 moves into the splinter group;

then the temporary bipartition (TC1, TC2) =
(
{y2,y3}, {y1,y4}

)
and the current bipartition
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(C1
1 , C

2
1) =

(
{y1,y2,y3}, {y4}

)
. From these bipartitions, the the difference of the sums of

the within-cluster variance for y(1) ≡ y1, H(1), can be calculated using Equation (3.45) as

follows:

I(C1
1) =

1

4× 3

(
104.9462 + 127.8682 + 84.3032

)
= 2872.56,

I(C2
1) = 0,

I(TC1) =
1

4× 2

(
84.3032

)
= 888.38,

I(TC2) =
1

4× 2

(
94.7502

)
= 1122.20.

Thus,

H(1) = (2872.56 + 0)− (888.38 + 1122.20) = 861.98.

Similarly, we can calculate the H(i) values for the other objects and this result is shown in

Table 3.9.

Table 3.9: H(i) values for C1
1 = {y1,y2,y3} and C2

1 = {y4}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y1 ({y2,y3}, {y1,y4}) 888.38 1122.20 +861.98
y(2) ≡ y2 ({y1,y3}, {y2,y4}) 2043.77 2902.89 -2074.10
y(3) ≡ y3 ({y1,y2}, {y3,y4}) 1376.70 1920.48 -424.62

From Table 3.9, we know the maximum H(i) value, MH is 861.98. Since MH = 861.98 >

0, the current bipartition of cluster C1, (C1
1 , C

2
1), is ({y2,y3}, {y1,y4}). Again, one of the

objects in cluster C1
1 moves into the splinter cluster C2

1 at a time, and then the H(i) values

are calculated. This procedure is similar to that used in obtaining Table 3.9. The result is

shown in Table 3.10.

Table 3.10: H(i) values for C1
1 = {y2,y3} and C2

1 = {y1,y4}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y2 ({y3}, {y2,y1,y4}) 0.00 3601.19 -1590.62
y(2) ≡ y3 ({y2}, {y3,y1,y4}) 0.00 3390.96 -1380.39
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From Table 3.10, since the maximum H(i) value, MH is -1380.39 and the MH value is

less than zero, there is no object to move into the splinter cluster C2
1 in this step. Thus, the

optimal bipartition at the first stage is (C1
1 , C

2
1) = ({y2,y3}, {y1,y4}).

At the second stage, we have a partition P2 = (C1, C2) =
(
{y2,y3}, {y1,y4}

)
. Similarly to

the first stage, we find the seed using the average weighted dissimilarity in Equation (3.42).

The average weighted dissimilarity for object y2 is

D̄u(yi) = D̄1(y2) =
1

4(2− 1)

(
84.303

)
= 21.076.

Similarly, D1(y3) = 21.076, D2(y1) = 23.688, and D2(y4) = 23.688. Thus, since MAD1 =

21.076 and MAD2 = 23.688, the MMAD value for the current partition is 23.688. This

means the cluster C2 is bipartitioned at this step. Since the cluster C2 has only two objects

and either object automatically moves into the splinter cluster, the optimal bipartition at

the second stage is (C1
2 , C

2
2) =

(
{y1}, {y4}

)
. Thus, at the third stage, we have a partition

P3 = (C1, C2, C3) =
(
{y2,y3}, {y1}, {y4}

)
. Similarly, we can find the optimal bipartition

and binary question for the third stage. The dendrogram for the complete clustering result is

shown in Figure 3.8.

The polythetic method has at most Nr bipartitions, where

Nr = {n∗u(n∗u − 1)}/2− 1, (3.46)

where n∗u is the number of objects in the cluster that includes the object y∗ with MMAD

value at the rth stage. Thus, we need at most Nr repetitions for the Steps 5–7 at each stage,

and this means there are at most Nr possible bipartitions to be considered at the rth stage.

As mentioned in Section 3.4.1, the monothetic method evaluates
∑r

u=1 p(nu−1) possible

bipartitions to find the optimal bipartition at the rth stage. From this, we know the number

of possible bipartitions for the monothetic method depends on the number of variables p. In

contrast, Nr in Equation (3.46) does not depend on the number of variables p. Thus, as the

number of variables increases, the number of possible bipartitions for the monothetic method
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Figure 3.8: Dendrogram for Ruspini data using the polythetic method.

increases, but this number for the polythetic method does not change. In addition, to find

the optimal bipartition, the monothetic method has to consider all
∑r

u=1 p(nu − 1) possible

bipartitions at the rth stage. In contrast, since the polythetic method stops the process for

the rth stage when the MH value is less than zero, the number of possible bipartitions for

the polythetic method is, in practice, less than Nr. Therefore, when the number of variables

is large, the polythetic method is more efficient in computing time than is the monothetic

method. An application of this algorithm is shown in Chapter 5; and the program code in

software R is provided in the Appendix C.



Chapter 4

Selection of the Optimal Number of Clusters

In any clustering approach, the entire set of objects is partitioned into r classes or clusters.

To date, the literature does not provide details of how to find r in the clustering of symbolic

objects. Thus, in these clustering methods, r is typically pre-defined, with the methodology

applied to a range of possible r values. After providing some background in Section 4.1, we

present in Section 4.2 some cluster validity indexes used to select an optimal r value. Then,

in Section 4.3, these are evaluated and compared on some simulated data.

4.1 Background

The clustering methodology summarizes a collection of objects into a small number of classes

by grouping objects with similar characteristics and separating objects with different char-

acteristics. In general, we do not have any prior information about the number of clusters in

the data. Kim and Ramakrishna (2005) indicated that the objects in each cluster are often

indistinguishable under some criterion of similarity or dissimilarity. In addition, Everitt et al.

(2001) indicated that different dissimilarity measures often lead to different groupings. Under

this situation, we need to find the optimal number of clusters r and to evaluate clustering

outcomes. Cluster validity indexes help to solve these problems.

Many different cluster validity indexes for classical data have been proposed in the lit-

erature, such as Dunn’s (1974) index, Davis-Bouldin’s (1979) index, and Xie-Beni’s (1991)

index, etc.; Milligan and Cooper (1985) has an extensive review of such indexes for clas-

sical data. The quality of the clustering outcomes depends on compactness and separability
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of clusters. Compactness means closeness of objects within a cluster, and separability indi-

cates distinctness of between clusters. Berry and Linoff (1997) indicated that most cluster

validity indexes are usually defined by combining these two properties. Compactness and sep-

arability are measured by within-cluster and between-cluster measures, respectively. Thus,

small within-cluster and large between-cluster measures are deemed to give good clustering

results.

Usually, since these indexes were developed for hierarchical clustering algorithms for

classical or fuzzy datasets, they use the minimum (also called single linkage), maximum

(or, complete linkage), and/or average dissimilarity values such as within or between-cluster

measures. Since, unlike the case of classical data, the divisive clustering methods for sym-

bolic objects proposed in Chapter 3 use the variance as within or between-cluster measures,

existing cluster validity indexes would not be expected to work well for hierarchical divi-

sive clustering algorithms for symbolic objects. Thus, cluster validity indexes for symbolic

clustering should be different from those for classical data. Therefore, validity indexes for

symbolic data such as interval-valued and histogram-valued data are developed in Section

4.2 and their properties studied through some simulation studies in Section 4.3.

4.2 Cluster Validity Indexes

Let yi, i = 1, . . . , n, be symbolic objects with p-dimensional random variables {Yj, j =

1, . . . , p} and yi ∈ Ω = {y1, . . . ,yn}. Also, let Pr be a partition of Ω at the rth stage.

Then, Pr = {Cu, u = 1, . . . , r}, where Cu = {y1, . . . ,ynu} is a cluster of size nu, where∑r
u=1 nu = n. At the (r + 1)th stage, a single cluster Cu in Pr is bisected into C1

u and C2
u.

Thus, a new partition can be written as

Pr+1 =
(
Pr ∪ {C1

u, C
2
u}
)
− {Cu}. (4.1)

For a cluster Cu = {y1, . . . ,ynu}, the within-cluster variance I(Cu) is, for u = 1, . . . , r,

I(Cu) =
1

2τ

nu∑
i1=1

nu∑
i2=1

wi1wi2D
2(yi1 ,yi2), i1, i2 = 1, . . . , nu, (4.2)
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where D(yi1 ,yi2) is a dissimilarity or distance measure between the observation yi1 and yi2

in Cu and where wi is the weight for the object yi, and where τ =
∑nu

i=1wi. For a partition

Pr = (C1, . . . , Cr) at the rth stage, the total within-cluster variance is, for r = 1, . . . , n− 1,

W (Pr) =
r∑

u=1

I(Cu). (4.3)

Also, the between-cluster variance is defined by, for r = 1, . . . , n− 1,

B(Pr) = W (Ω)−W (Pr), (4.4)

where Ω ≡ P1.

The divisive hierarchical clustering methods proposed in Chapter 3 use a within-cluster

variance criterion. At each stage, our goal is to find the bipartition,
(
C1

u, C
2
u

)
of Cu, u =

1, . . . , r, minimizing the total within-cluster variance, W (Pr). Since, at the rth stage, we

have r clusters and one of the clusters is split into two clusters, we have r + 1 clusters at

the (r + 1)th stage. Thus, as the procedure goes into the next stage, the number of clusters

increases and the total within-cluster variance, W (Pr), decreases. In addition, if the number

of clusters is equal to the number of objects, then the total within-cluster variance is zero.

That is, W (Pr+1) ≤ W (Pr) and W (Pn) = 0. In contrast, as the total within-cluster variance

decreases, the between-cluster variance increases. Thus, the simplest index to find the optimal

number of clusters would be the explained rate Er given by, for r = 1, . . . , n,

Er =
B(Pr)

W (Ω)
=
W (Ω)−W (Pr)

W (Ω)
, (4.5)

where Ω = {y1, . . . ,yn}, and where W (Pr) is the total within-cluster variance for the par-

tition Pr defined in Equation (4.3) and B(Pr) is the between-cluster variance for the par-

tition Pr defined in Equation (4.4). The explained rate, Er, is the ratio of the decrement

of the within-cluster variance for the rth stage and the total within-cluster variance of Ω,

i.e., the proportion of the total variation explained by the variation between clusters. As

the number of clusters increases, the explained rate increases because the total within-

cluster variance,W (Pr), decreases and the between-cluster variance, B(Pr), increases. Let
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δr = Er+1 − Er. Then, if δr suddenly becomes small relatively to δr−1, it indicates that the

explained rate at the (r+1)th stage, Er+1, has small increases relatively to Er, and the effect

of the bipartition from the rth stage to the (r + 1)th stage is weak. Thus, r = r∗ can be the

optimal number of clusters.

However, through their simulation study, Milligan and Cooper (1985) showed that validity

indexes such as the explained rate are not appropriate as a solution for determining the

optimal number of clusters. They conducted a comparative evaluation of 30 validity indexes

for classical data within a simulation framework and showed that such kinds of indexes

using the decrement of the within-cluster inertia poorly perform relatively to other indexes.

Chavent (1998) also refers to this fact. Thus, in this section we introduce two validity indexes

for hierarchical divisive clustering for symbolic objects. These new indexes are based on

Dunn’s (1974) index and Davis-Bouldin’s (1979) index developed for classical data.

For classical data, suppose that a partition Pr has r clusters (i.e., Pr = (Cu, u = 1, . . . , r))

at the rth stage. Then, the index introduced by Dunn (1974) is defined by

DI = min
u=1,...,r

[
min

t=1,...,r,t6=u

{
d(Ct, Cu)

maxl=1,...,r{w(Cl)}

}]
, (4.6)

where

d(Ct, Cu) = min{D(yi,yj) | yi ∈ Ct, yj ∈ Cu},

and

w(Cl) = max{D(yi,yj) | yi,yj ∈ Cl},

where D(yi,yj) is the distance measure between two classical objects yi and yj. Dunn’s index

is a function of the ratio of the minimum distance d(Ct, Cu) between two clusters Ct and Cu

and the maximum diameter w(Cl) of clusters Cl, l = 1, . . . , r. That is, d(Ct, Cu) indicates

the minimum distance between two clusters as a between-cluster measure, and w(Cl) shows

the maximum diameter of clusters as a within-cluster measure. Since well-separated clusters

have large distances between clusters and small diameters within clusters, the partition with

the higher Dunn’s index value implies there is a better clustering result.
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Davis and Bouldin (1979) proposed a cluster validity index that measures the ratio of

the average of similarity measures between each cluster. It is defined as

DB =
1

r

r∑
u=1

[
max

t=1,...,r,t6=u

{
st + su

dtu

}]
, (4.7)

where

dtu = D(vt,vu),

and

su =
1

nu

nu∑
i=1

D(yi,vu),

where D(vt,vu) is the distance measure between vt and vu, where vt and vu are the centroids

of the cluster Cu and Ct respectively, and nu is the number of objects in Cu. That is, dtu

is the distance between two centroids of Ct and Cu and plays a role as the between-cluster

measure. In contrast, su represents the dispersion of each cluster and is used as the within-

cluster measure. A lower Davis-Bouldin’s index value means that the clusters are compact

and well-separated.

As mentioned in Chapter 3, the divisive clustering algorithms for symbolic objects use

the within-cluster variance as a clustering criterion. Thus, we propose two cluster validity

indexes for symbolic objects that use within-cluster and between-cluster variances. They are

similar in concept to the Dunn and Davis-Bouldin’s indexes. The within-cluster variance

measures the compactness of each cluster and the between-cluster variance represents the

separability between two clusters.

Definition 4.1 For a partition Pr = (C1, . . . , Cr) at the rth stage, the Dunn index for

symbolic objects, DIs
r , for the partition Pr is given by

DIs
r = min

u=1,...,r

[
min

t=1,...,r,t6=u

{
I(Ct ∪ Cu)− I(Ct)− I(Cu)

maxl=1,...,r{I(Cl)}

}]
, r = 2, . . . , n− 1, (4.8)

where I(·) is the within-cluster variance from Definition 3.13.

This index consists of the ratio of the minimum between-cluster variance for all possible

combinations of two clusters in the partition Pr and the maximum within-cluster variance for
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all clusters in Pr. As such, the index has the same design principles as does the Dunn index

of Equation (4.6) for classical data. The between-cluster variance, I(Ct∪Cu)−I(Ct)−I(Cu),

measures how far apart two clusters are, and the term I(Cl) represents how close the objects

are in each cluster. Since a good clustering result has small within-cluster measures and

large between-cluster measures, to obtain a good clustering outcome, the denominator of the

Dunn index in Equation (4.8) should be large and the numerator should be small. Thus, a

higher DIs
r value means a better clustering outcome has occurred.

Now, we propose the Davis-Bouldin index for symbolic objects. This index is defined by

the average of cluster evaluation for all clusters in a partition.

Definition 4.2 For a partition Pr = (C1, . . . , Cr) at the rth stage, the Davis-Bouldin

index for symbolic objects, DBs
r , for the partition Pr is defined as

DBs
r =

1

r

r∑
u=1

[
maxt=1,...,r,t6=u{I(Ct) + I(Cu)}

minl=1,...,r,l 6=u{I(Cl ∪ Cu)− I(Cl)− I(Cu)}

]
, r = 2, . . . , n− 1, (4.9)

where I(·) is the within-cluster variance from Definition 3.13.

This index consists of the average of ratios for each cluster in Pr of the maximum sum

of two within-cluster variances and the minimum between-cluster measure for two clusters.

Unlike the Dunn index for symbolic objects in Equation (4.8), the Davis-Bouldin index in

Equation (4.9) uses average values of ratios of the within-cluster and the between-cluster

measures. In addition, the ratio in Equation (4.9) is a little bit different from the that of

the original Davis-Bouldin index in Equation (4.7). The original index uses the maximum

ratio of the within-cluster and the between-cluster measures for each cluster. In contrast,

the index of Equation (4.9) obtains the ratio of the maximum within-cluster measure and

the minimum between-cluster measure. Similarly to the original index, a lower value of the

Davis-Bouldin index for symbolic objects implies better results for the clustering outcome.

We illustrate the procedure calculating the Dunn and Davis-Bouldin indexes for symbolic

objects in detail in Example 4.1.



76

-20 0 20 40 60 80 100

-4
0

-2
0

0
20

40
60

80

 

 

 

 

2Y  

1Y  

},{ 2y1y  

}4,3{ yy

}6,5{ yy  

Figure 4.1: Struyf et al. (1997) data.

Example 4.1 Consider the Struyf et al. (1997) classical dataset consisting of artificial data,

with 3000 observations with two variables and three well-separated clusters as shown in Figure

4.1. The three clusters have 900, 1150, and 950 observations, respectively. We divide each

cluster into two parts with equal size. For example, the first cluster is divided by two parts.

One part has the 1st to the 450th observations, and the other part has the 451st to the 900th

observations. Similarly, we can divide the second and third clusters by two parts, respectively.

Then, we have a total of six parts (i.e., six objects) and generate six histogram-valued objects

from the individual observations in each of the six parts. These histogram-valued data are
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shown in Table 4.1. From Table 4.1, transformed histogram-valued data can be obtained using

Definition 3.3. These transformed histogram-valued data are shown in Table 4.2.

Table 4.1: Struyf et al. (1997) histogram-valued data.

Y1 Y2

y1

{
[−30,−20), 0.004; [−20,−10), 0.022;

{
[−30,−20), 0.002; [−20,−10), 0.018;

[−10, 0), 0.164; [0, 10), 0.327; [−10, 0), 0.129; [0, 10), 0.353;
[10, 20), 0.320; [20, 30), 0.129; [10, 20), 0.318; [20, 30), 0.160;
[30, 40), 0.033

}
[30, 40), 0.018; [40, 50), 0.002

}
y2

{
[−20,−10), 0.020; [−10, 0), 0.164;

{
[−30,−20), 0.004; [−20,−10), 0.004;

[0, 10), 0.331; [10, 20), 0.338; [−10, 0), 0.111; [0, 10), 0.327;
[20, 30), 0.127; [30, 40), 0.018; [10, 20), 0.396; [20, 30), 0.131;
[40, 50), 0.000; [50, 60), 0.002

}
[30, 40), 0.027

}
y3

{
[0, 10), 0.002; [10, 20), 0.016;

{
[20, 30), 0.002; [30, 40), 0.031;

[20, 30), 0.129; [30, 40), 0.325; [40, 50), 0.155; [50, 60), 0.348;
[40, 50), 0.357; [50, 60), 0.153; [60, 70), 0.336; [70, 80), 0.113;
[60, 70), 0.017; [70, 80), 0.002

}
[80, 90), 0.016

}
y4

{
[10, 20), 0.026; [20, 30), 0.146;

{
[30, 40), 0.016; [40, 50), 0.106;

[30, 40), 0.270; [40, 50), 0.369; [50, 60), 0.332; [60, 70), 0.410;
[50, 60), 0.169; [60, 70), 0.021

}
[70, 80), 0.120; [80, 90), 0.016

}
y5

{
[30, 40), 0.002; [40, 50), 0.017;

{
[−40,−30), 0.023; [−30,−20), 0.158;

[50, 60), 0.131; [60, 70), 0.360; [−20,−10), 0.314; [−10, 0), 0.339;
[70, 80), 0.337; [80, 90), 0.128; [0, 10), 0.147; [10, 20), 0.017;
[90, 100), 0.023; [100, 110), 0.002

}
[20, 30), 0.002

}
y6

{
[30, 40), 0.002; [40, 50), 0.023;

{
[−40,−30), 0.032; [−30,−20), 0.143;

[50, 60), 0.147; [60, 70), 0.343; [−20,−10), 0.322; [−10, 0), 0.345;
[70, 80), 0.291; [80, 90), 0.166; [0, 10), 0.128; [10, 20), 0.029

}
[90, 100), 0.025; [100, 110), 0.002

}

Firstly, we illustrate the procedure calculating the Dunn and Davis-Bouldin indexes for

symbolic objects using the extended Gowda-Diday measure and the polythetic algorithm; and

then, we verify the Dunn and Davis-Bouldin indexes using the normalized city block distance

and normalized Euclidean distance based on the extended Ichino-Yaguchi measure, and the

normalized CDF distance, for both the monothetic and polythetic algorithms.
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Table 4.2: Transformed histogram-valued data for Struyf et al. (1997) data.

Y1 y′1 y′2 y′3 y′4 y′5 y′6
[b1k, b1,k+1) p′11k p′21k p′31k p′41k p′51k p′61k

[−30,−20) 0.004 0 0 0 0 0
[−20,−10) 0.022 0.02 0 0 0 0

[−10, 0) 0.164 0.164 0 0 0 0
[0, 10) 0.327 0.331 0.002 0 0 0
[10, 20) 0.32 0.338 0.016 0.026 0 0
[20, 30) 0.129 0.127 0.129 0.146 0 0
[30, 40) 0.033 0.018 0.325 0.27 0.002 0.002
[40, 50) 0 0 0.357 0.369 0.017 0.023
[50, 60) 0 0.002 0.153 0.169 0.131 0.147
[60, 70) 0 0 0.017 0.021 0.36 0.343
[70, 80) 0 0 0.002 0 0.337 0.291
[80, 90) 0 0 0 0 0.128 0.166
[90, 100) 0 0 0 0 0.023 0.025
[100, 110) 0 0 0 0 0.002 0.002

Y2 y′1 y′2 y′3 y′4 y′5 y′6
[b2k, b2,k+1) p′12k p′22k p′32k p′42k p′52k p′62k

[−40,−30) 0 0 0 0 0.023 0.032
[−30,−20) 0.002 0.004 0 0 0.158 0.143
[−20,−10) 0.018 0.004 0 0 0.314 0.322

[−10, 0) 0.129 0.111 0 0 0.339 0.345
[0, 10) 0.353 0.327 0 0 0.147 0.128
[10, 20) 0.318 0.396 0 0 0.017 0.029
[20, 30) 0.16 0.131 0.002 0 0.002 0
[30, 40) 0.018 0.027 0.031 0.016 0 0
[40, 50) 0.002 0 0.155 0.106 0 0
[50, 60) 0 0 0.348 0.332 0 0
[60, 70) 0 0 0.336 0.41 0 0
[70, 80) 0 0 0.113 0.12 0 0
[80, 90) 0 0 0.016 0.016 0 0
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From the transformed histogram-valued data of Table 4.2, the extended Gowda-Diday

dissimilarity measure can be calculated by using Equation (3.21). Thus, the extended Gowda-

Diday dissimilarity matrix for all variables of the transformed histogram-valued data of Table

4.2 is given by

DGD =



0 0.184 2.325 2.371 2.207 2.176

0.184 0 2.313 2.344 2.184 2.201

2.325 2.313 0 0.196 2.506 2.551

2.371 2.344 0.196 0 2.604 2.596

2.207 2.184 2.506 2.604 0 0.133

2.176 2.201 2.551 2.596 0.133 0


. (4.10)

Using the dissimilarity matrix in Equation (4.10), the polythetic method introduced in

Section 3.4.2 can be performed for clustering the six objects, y1, . . . ,y6. The clustering result

is shown in Table 4.3 and the hierarchy in Figure 4.2. From Figure 4.2, we see that the

cluster {y1, . . . ,y6} is bipartitioned into {y6,y5,y2,y1} and {y4,y3} at the first stage, and

the splinter cluster is {y4,y3}. At the second stage, the cluster {y6,y5,y2,y1} is split into

{y6,y5} and {y2,y1}. Thus, the third partition, P3, is
(
{y6,y5}, {y2,y1}, {y4,y3}

)
. This

result coincides with the attribute of the classical dataset.

Table 4.3: Clustering result using the polythetic method.

Partition Pr Clusters (C1, . . . , Cr)
P1

(
{y1,y2,y3,y4,y5,y6}

)
P2

(
{y1,y2,y5,y6}, {y3,y4}

)
P3

(
{y1,y2}, {y3,y4}, {y5,y6}

)
P4

(
{y1,y2}, {y3}, {y4}, {y5,y6}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5,y6}

)
P6

(
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

)
Now, we can calculate the Dunn index for the clustering result of Table 4.3 using Equation

(4.8). For the second partition P2, we have two clusters (C1, C2) =
(
{y1,y2,y5,y6}, {y3,y4}

)
.
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Figure 4.2: Dendrogram obtained by using the extended Gowda-Diday measure and the
polythetic method.

The within-cluster variances for each cluster are given by, from Equation (3.35),

I(C1) =
1

6× 4

(
0.1842 + 2.2072 + 2.1762 + 2.1842 + 2.2012 + 0.1332

)
= 0.803, (4.11)

I(C2) =
1

6× 2

(
0.1962

)
= 0.003. (4.12)

Thus,

max
l=1,2
{I(Cl)} = max{0.803, 0.003} = 0.803. (4.13)

We calculate the between-cluster measure I(Ct ∪ Cu)− I(Ct)− I(Cu) as follows:

I(C1 ∪ C2) =
1

6× 6

(
0.1842 + 2.3252 + 2.3712 + · · ·+ 2.5962 + 0.1332

)
= 1.875. (4.14)

Thus,

I(C1 ∪ C2)− I(C1)− I(C2) = 1.875− 0.803− 0.003 = 1.069. (4.15)
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Therefore, the Dunn index for the partition at the second stage, DIs
2 is obtained as, from

Equation (4.8),

DIs
r = DIs

2 =
1.069

0.803
= 1.331. (4.16)

For the partition at the third stage P3, we have three clusters (C1, C2, C3) =
(
{y1,y2}, {y3,y4},

{y5,y6}
)
. The Dunn index for this partition is obtained as follows: From Equation (3.35)

and (4.10),

I(C1) =
1

6× 2

(
0.1842

)
= 0.003, (4.17)

I(C2) =
1

6× 2

(
0.1962

)
= 0.003, (4.18)

I(C3) =
1

6× 2

(
0.1332

)
= 0.001. (4.19)

Thus,

max
l=1,2,3

{I(Cl)} = max{0.003, 0.003, 0.001} = 0.003. (4.20)

Then, we consider all possible sets of union of any two clusters in the partition P3, Ct ∪

Cu, t, u = 1, 2, 3, t 6= u. The within-cluster variances for these sets of union are, from

Equation (3.35) and (4.10),

I(C1 ∪ C2) = I({y1,y2,y3,y4})

=
1

6× 4

(
0.1842 + 2.3252 + 2.3712 + 2.3132 + 2.3442 + 0.1962

)
= 0.914, (4.21)

I(C1 ∪ C3) = I({y1,y2,y5,y6})

=
1

6× 4

(
0.1842 + 2.2072 + 2.1762 + 2.1842 + 2.2012 + 0.1332

)
= 0.803, (4.22)

I(C2 ∪ C3) = I({y3,y4,y5,y6})

=
1

6× 4

(
0.1962 + 2.5062 + 2.5512 + 2.6042 + 2.5962 + 0.1332

)
= 1.098. (4.23)
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Thus, the between-cluster measures for all these possible sets of union are

I(C1 ∪ C2)− I(C1)− I(C2) = 0.914− 0.003− 0.003 = 0.908, (4.24)

I(C1 ∪ C3)− I(C1)− I(C3) = 0.803− 0.003− 0.001 = 0.799, (4.25)

I(C2 ∪ C3)− I(C1)− I(C3) = 1.098− 0.003− 0.001 = 1.094. (4.26)

Hence, from Equation (4.8), the Dunn index for symbolic objects for the partition P3 is

DIs
r = DIs

3 = min

{
0.908

0.003
,
0.799

0.003
,
1.094

0.003

}
= min{286.880, 251.881, 344.593}

= 251.881. (4.27)

Similarly, we can obtain the Dunn index values for the partitions P4 and P5. The complete

set of results, for r = 2, . . . , 5, is shown in Table 4.4.

Table 4.4: Dunn index values
# of clusters r = 2 r = 3 r = 4 r = 5

DIs
r 1.331 251.881 1.128 1.912

From Table 4.4, we know that the Dunn index for the partition P3 has the largest value.

This means the optimal number of clusters is three. This result coincides with the attribute

of the original dataset.

Now, we illustrate the Davis-Bouldin index in Equation (4.9) using the extended Gowda-

Diday dissimilarity matrix Equation (4.10) and the divisive polythetic clustering result in

Table 4.3. From Table 4.3, we know the partition at the second stage P2 = (C1, C2) =(
{y1,y2,y5,y6}, {y3,y4}

)
.

Since there are only two clusters (r = 2) in the partition, and I(C1) + I(C2) = 0.806 and

I(C1 ∪ C2) − I(C1) − I(C2) = 1.069 from Equation (4.11), (4.12), and (4.15), the Davis-

Bouldin index for the partition at the second stage, DBs
2, is obtained, from Equation (4.9),

as

DBs
r = DBs

2 =
1

2

{
max{0.806}
min{1.069}

+
max{0.806}
min{1.069}

}
= 0.754. (4.28)
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For the partition at the third stage P3, we have three clusters
(
C1 = {y1,y2}, C2 =

{y3,y4}, C3 = {y5,y6}
)
. The Davis-Bouldin index for this partition is obtained as follows:

For the cluster C1, from Equation (4.17), (4.18), and (4.19),

I(C1) + I(C2) = 0.003 + 0.003 = 0.006, (4.29)

I(C1) + I(C3) = 0.003 + 0.001 = 0.004. (4.30)

Thus, the maximum within-cluster measure for C1 (i.e., the denominator of Equation (4.9)

when u = 1) is

max
t=2,3

{
I(Ct) + I(C1)

}
= max

{
0.006, 0.004

}
= 0.006. (4.31)

Similarly, the maximum within-cluster measures for C2 and C3 are maxt=1,3

{
I(Ct) +

I(C2)
}

= 0.006 and maxt=1,2

{
I(Ct) + I(C3)

}
= 0.004, respectively.

The minimum between-cluster measure for C1 (i.e., the numerator of Equation (4.9) when

u = 1) is, from Equation (4.24) and (4.25),

min
l=2,3

{
I(Cl ∪ C1)− I(Cl)− I(C1)

}
= min

{
0.908, 0.799

}
= 0.799. (4.32)

Similarly, the minimum between-cluster measures for C2 and C3 are minl=1,3

{
I(Cl ∪ C2)−

I(Cl)− I(C2)
}

= 0.908 and minl=1,2

{
I(Cl ∪ C3)− I(Cl)− I(C3)

}
= 0.799, respectively.

Hence, from Equation (4.9), the Davis-Bouldin index for symbolic objects for the partition

P3, DBs
3, is

DBs
r = DBs

3 =
1

3

{
0.006

0.799
+

0.006

0.908
+

0.004

0.799

}
= 0.006. (4.33)

Similarly, we can obtain the Davis-Bouldin index values for the partitions P4 and P5. The

complete set of results, for r = 2, . . . , 5, is shown in Table 4.5.

Table 4.5: Davis-Bouldin index values
# of clusters r = 2 r = 3 r = 4 r = 5

DBs
r 0.754 0.006 0.447 0.395

From Table 4.5, we know that the Davis-Bouldin index for the partition P3 has the smallest

value. This means the optimal number of clusters is three. This identification of the optimal

r = 3 is the same as the result for the Dunn index.
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Now, we verify the performance of cluster validity indexes using the city block distance of

Equation (3.26) and Euclidean distances of Equation (3.27) based on the normalized extended

Ichino-Yaguchi measure for γ = 0.25 defined in Equation (3.22) and (3.23), and the normal-

ized CDF measure of Equation (3.31). Figure 4.1 shows that this dataset has obviously three

clusters. Thus, for all distance or dissimilarity measures and clustering methods, the Dunn

and Davis-Bouldin indexes should detect that the optimal number of clusters in this dataset

is three.

From the transformed histogram-valued data of Table 4.2, we can calculate the normalized

city block distance, the normalized Euclidean distance, and the normalized CDF measure.

The normalized city block distance is the normalized Minkowski distance of Equation

(3.28) when q = 1, where, in this example, this measure is obtained by using the normalized

extended Ichino-Yaguchi measure with γ = 0.25. Thus, we first calculate the normalized

extended Ichino-Yaguchi measure for each variable. The normalized extended Ichino-Yaguchi

dissimilarity matrix with γ = 0.25 for variable Y1 is, from Equation (3.23),

φ∗j = φ∗1 =



0 0.008 0.217 0.218 0.434 0.434

0.008 0 0.216 0.217 0.431 0.432

0.217 0.216 0 0.009 0.206 0.207

0.218 0.217 0.009 0 0.207 0.208

0.434 0.431 0.206 0.207 0 0.007

0.434 0.432 0.207 0.208 0.007 0


. (4.34)

The normalized extended Ichino-Yaguchi dissimilarity matrix with γ = 0.25 for variable Y2

is, from Equation (3.23),

φ∗j = φ∗2 =



0 0.014 0.374 0.388 0.153 0.152

0.014 0 0.369 0.384 0.158 0.158

0.374 0.369 0 0.012 0.537 0.538

0.388 0.384 0.012 0 0.552 0.553

0.153 0.158 0.537 0.552 0 0.010

0.152 0.158 0.538 0.553 0.010 0


. (4.35)
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The sum of Equation (4.34) and (4.35) is the normalized city block distance matrix. Thus,

the normalized city block distance matrix is given by

D1
NM =



0 0.022 0.591 0.606 0.586 0.587

0.022 0 0.585 0.601 0.589 0.589

0.591 0.585 0 0.021 0.744 0.745

0.606 0.601 0.021 0 0.759 0.760

0.586 0.589 0.744 0.759 0 0.017

0.587 0.589 0.745 0.760 0.017 0


. (4.36)

The normalized Euclidean distance is the normalized Minkowski distance of Equation

(3.28) when q = 2, where, in this example, this measure is obtained by using the normalized

extended Ichino-Yaguchi dissimilarity matrices with γ = 0.25 for each variable as given in

Equation (4.34) and (4.35). From Equation (3.27) and (3.28), the normalized Euclidean

distance matrix is

D2
NM =



0 0.016 0.433 0.445 0.460 0.460

0.016 0 0.427 0.441 0.459 0.459

0.433 0.427 0 0.015 0.576 0.577

0.445 0.441 0.015 0 0.590 0.590

0.460 0.459 0.576 0.590 0 0.012

0.460 0.459 0.577 0.590 0.012 0


. (4.37)

The normalized CDF measure is obtained by using Equation (3.31). Thus, the normalized

CDF dissimilarity matrix is

DNCDF =



0 0.014 0.595 0.609 0.589 0.590

0.014 0 0.590 0.604 0.595 0.596

0.595 0.590 0 0.020 0.741 0.742

0.609 0.604 0.020 0 0.753 0.754

0.589 0.595 0.741 0.753 0 0.008

0.590 0.596 0.742 0.754 0.008 0


. (4.38)
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Using these distance or dissimilarity matrices, we can perform the divisive monothetic

and polythetic clustering methods. The clustering results for each distance or dissimilarity

measure and clustering method are shown in Table 4.6.

Table 4.6: Clustering results for each measure and method.

Monothetic method Polythetic method
Measure Pr Clusters (C1, . . . , Cr) Clusters (C1, . . . , Cr)

P1

(
{y1,y2,y3,y4,y5,y6}

) (
{y1,y2,y3,y4,y5,y6}

)
P2

(
{y1,y2,y5,y6}, {y3,y4}

) (
{y1,y2,y5,y6}, {y3,y4}

)
Extended P3

(
{y1,y2}, {y3,y4}, {y5,y6}

) (
{y1,y2}, {y3,y4}, {y5,y6}

)
Gowda-Diday P4

(
{y1,y2}, {y3}, {y4}, {y5,y6}

) (
{y1,y2}, {y3}, {y4}, {y5,y6}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5,y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5,y6}

)
P6

(
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

)
P1

(
{y1,y2,y3,y4,y5,y6}

) (
{y1,y2,y3,y4,y5,y6}

)
P2

(
{y1,y2,y5,y6}, {y3,y4}

) (
{y1,y2,y5,y6}, {y3,y4}

)
Normalized P3

(
{y1,y2}, {y3,y4}, {y5,y6}

) (
{y1,y2}, {y3,y4}, {y5,y6}

)
city block P4

(
{y1}, {y2}, {y3,y4}, {y5,y6}

) (
{y1}, {y2}, {y3,y4}, {y5,y6}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5,y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5,y6}

)
P6

(
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

)
P1

(
{y1,y2,y3,y4,y5,y6}

) (
{y1,y2,y3,y4,y5,y6}

)
P2

(
{y1,y2,y3,y4}, {y5,y6}

) (
{y1,y2,y3,y4}, {y5,y6}

)
Normalized P3

(
{y1,y2}, {y3,y4}, {y5,y6}

) (
{y1,y2}, {y3,y4}, {y5,y6}

)
Euclidean P4

(
{y1}, {y2}, {y3,y4}, {y5,y6}

) (
{y1}, {y2}, {y3,y4}, {y5,y6}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5,y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5,y6}

)
P6

(
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

)
P1

(
{y1,y2,y3,y4,y5,y6}

) (
{y1,y2,y3,y4,y5,y6}

)
P2

(
{y1,y2,y5,y6}, {y3,y4}

) (
{y1,y2,y5,y6}, {y3,y4}

)
Normalized P3

(
{y1,y2}, {y3,y4}, {y5,y6}

) (
{y1,y2}, {y3,y4}, {y5,y6}

)
CDF P4

(
{y1,y2}, {y3}, {y4}, {y5,y6}

) (
{y1,y2}, {y3}, {y4}, {y5,y6}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5,y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5,y6}

)
P6

(
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

) (
{y1}, {y2}, {y3}, {y4}, {y5}, {y6}

)
We see from Table 4.6 that both the monothetic and polythetic methods give the same

clustering results for each given distance/dissimilarity measure. In contrast, the clustering

results for each dissimilarity measure are a little bit different depending on which measure

was used in the clustering method. However, the partitions at the third stage are all the same

regardless of measures and methods (i.e., P3 =
(
{y1,y2}, {y3,y4}, {y5,y6}

)
). This partition

coincides with the attribute of the original classical dataset. From the distance or dissimilarity
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matrices in Equation (4.36), (4.37), and (4.38) and clustering outcomes in Table 4.6, we can

calculate the Dunn and Davis-Bouldin indexes using Equation (4.8) and (4.9), respectively.

Table 4.7: Cluster validity index values for Example 4.1

Monothetic method Polythetic method
Measure Validity r = 2 r = 3 r = 4 r = 5 r = 2 r = 3 r = 4 r = 5
Extended DIs

r 1.331 250.531 1.128 1.912 1.331 250.531 1.128 1.912
Gowda-Diday DBs

r 0.754 0.007 0.447 0.395 0.754 0.007 0.447 0.395
Normalized DIs

r 1.442 1389.382 1.157 1.477 1.442 1389.382 1.157 1.477
city block DBs

r 0.694 0.001 0.433 0.505 0.694 0.001 0.433 0.505
Normalized DIs

r 1.593 1440.352 1.204 1.486 1.593 1440.352 1.204 1.486
Euclidean DBs

r 0.628 0.001 0.416 0.493 0.628 0.001 0.416 0.493
Normalized DIs

r 1.411 1827.749 2.037 2.620 1.411 1827.749 2.037 2.620
CDF DBs

r 0.709 0.001 0.246 0.228 0.709 0.001 0.246 0.228

Table 4.7 shows the Dunn and Davis-Bouldin index values for the extended Gowda-Diday

measure, the normalized city block distance and normalized Euclidean distance based on the

normalized extended Ichino-Yaguchi measure, and the normalized CDF distance, for both the

divisive monothetic and polythetic clustering methods. For all measures and methods, when

the number of clusters are three, the Dunn index values, DIs
r , are relatively very large and

the Davis-Bouldin index values, DBs
r , are relatively very small. This means that the optimal

number of clusters is clearly identified as three.

4.3 Simulation Study

In this section, we evaluate the performance of the Dunn index and Davis-Bouldin index

for symbolic objects by a simulation study through three examples. For the simulation,

the true number of clusters for datasets is known. We also consider various dissimilarity

measures such as the extended Gowda-Diday measure, the normalized city block distance and

normalized Euclidean distance based on the normalized extended Ichino-Yaguchi measure,

and the normalized CDF measure, for both the monothetic and polythetic mehtods. To verify
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the cluster validity indexes proposed in Section 4.2, in Example 4.2, simulated histogram-

valued data are used; also, the cluster validity indexes are verified through Fisher’s (1936)

iris dataset in Example 4.3.

Example 4.2 We use the dataset of Table 4.8 shown in Figure 4.3 to verify that the cluster

validity indexes proposed in Section 4.2 can work well for the case of clustering for histogram-

valued data generated by bivariate normal random numbers. To obtain simulated histogram-

valued data with two variables, we generate random numbers from bivariate normal distribu-

tions as follows:

y1 and y2 ∼ N2

 5

5

 ,

 0.3 0

0 0.3

 , (4.39)

y3 and y4 ∼ N2

 5

5

 ,

 1.0 0.8

0.8 1.0

 , (4.40)

y5 ∼ N2

 10

5

 ,

 0.3 0

0 0.3

 . (4.41)

Thus, 200 classical sample points for each object are generated from the bivariate normal

distributions, and then histogram-valued data are found from these generated classical sample

points. For example, to obtain the histogram-valued data for the object y1, we sample 200

classical points from the bivariate normal distribution of Equation (4.39), and then we find

histogram-valued data for object y1 from these 200 sample points. These histogram-valued

data for all objects are shown in Table 4.8. Plots of the individual classical data points are

shown in Figure 4.3.

As shown in Figure 4.3, there are three clusters,
(
{y1,y2}, {y3,y4}, {y5}

)
, in the dataset.

From Equation (4.39) and (4.40), the clusters {y1,y2} and {y3,y4} are generated from the

same mean vector and different variance-covariance matrices. In contrast, from Equation

and (4.39) and and (4.41), the clusters {y1,y2} and {y5} have the same variance-covariance

matrix, but the mean vectors are different. Comparing Figure 4.1 and Figure 4.3, it is clear
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Table 4.8: Simulated histogram-valued data for Example 4.2.

Y1 Y2

y1

{
[3.5, 4.0), 0.020; [4.0, 4.5), 0.165;

{
[3.5, 4.0), 0.035; [4.0, 4.5), 0.160;

[4.5, 5.0), 0.325; [5.0, 5.5), 0.290; [4.5, 5.0), 0.345; [5.0, 5.5), 0.300;

[5.5, 6.0), 0.150; [6.0, 6.5), 0.050
}

[5.5, 6.0), 0.120; [6.0, 6.5), 0.025;

[6.5, 7.0), 0.015
}

y2

{
[3.0, 3.5), 0.005; [3.5, 4.0), 0.020;

{
[3.5, 4.0), 0.035; [4.0, 4.5), 0.165;

[4.0, 4.5), 0.160; [4.5, 5.0), 0.300; [4.5, 5.0), 0.275; [5.0, 5.5), 0.305;

[5.0, 5.5), 0.340; [5.5, 6.0), 0.150; [5.5, 6.0), 0.165; [6.0, 6.5), 0.050;

[6.0, 6.5), 0.020; [6.5, 7.0), 0.005
}

[6.5, 7.0), 0.005
}

y3

{
[2.0, 3.0), 0.025; [3.0, 4.0), 0.135;

{
[2.0, 3.0), 0.020; [3.0, 4.0), 0.155;

[4.0, 5.0), 0.360; [5.0, 6.0), 0.345; [4.0, 5.0), 0.295; [5.0, 6.0), 0.345;

[6.0, 7.0), 0.125; [7.0, 8.0), 0.010;
}

[6.0, 7.0), 0.170; [7.0, 8.0), 0.015
}

y4

{
[2.0, 3.0), 0.050; [3.0, 4.0), 0.130;

{
[2.0, 3.0), 0.030; [3.0, 4.0), 0.135;

[4.0, 5.0), 0.355; [5.0, 6.0), 0.290; [4.0, 5.0), 0.360; [5.0, 6.0), 0.330;

[6.0, 7.0), 0.145; [7.0, 8.0), 0.030;
}

[6.0, 7.0), 0.115; [7.0, 8.0), 0.025;

[8.0, 9.0), 0.005
}

y5

{
[8.0, 8.5), 0.005; [8.5, 9.0), 0.020;

{
[3.0, 3.5), 0.005; [3.5, 4.0), 0.020;

[9.0, 9.5), 0.205; [9.5, 10.0), 0.255; [4.0, 4.5), 0.150; [4.5, 5.0), 0.365;

[10.0, 10.5), 0.340; [10.5, 11.0), 0.155; [5.0, 5.5), 0.300; [5.5, 6.0), 0.135;

[11.0, 11.5), 0.015; [11.5, 12.0), 0.005
}

[6.0, 6.5), 0.020; [6.5, 7.0), 0.005
}
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Figure 4.3: Simulated data for Example 4.2.

that the data in this example are different from the data of Example 4.1. The three clusters

in Example 4.1 are obviously distinguishable because they do not overlap. In contrast, the

clusters {y1,y2} and {y3,y4} in the present example do overlap. Thus, in this example, the

cluster validity indexes are verified for the case where clusters overlap.

The transformed histogram-valued data for the data of Table 4.8 are obtained using Def-

inition 3.3 and are shown in Table 4.9. From these transformed histogram-valued data of

Table 4.9, we can calculate the extended Gowda-Diday measure of Equation (3.21), the city

block distance of Equation (3.26) and Euclidean distances of Equation (3.27) based on the

normalized extended Ichino-Yaguchi measure for γ = 0.25 defined in Equation (3.22) and

(3.23), and the normalized CDF measure of Equation (3.31).
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Table 4.9: Transformed histogram-valued data for Example 4.2.

Y1 y′1 y′2 y′3 y′4 y′5
[b1k, b1,k+1) p′11k p′21k p′31k p′41k p′51k

[2, 2.5) 0 0 0.012 0.025 0
[2.5, 3) 0 0 0.012 0.025 0
[3, 3.5) 0 0.005 0.068 0.065 0
[3.5, 4) 0.02 0.02 0.068 0.065 0
[4, 4.5) 0.165 0.16 0.18 0.178 0
[4.5, 5) 0.325 0.3 0.18 0.178 0
[5, 5.5) 0.29 0.34 0.172 0.145 0
[5.5, 6) 0.15 0.15 0.172 0.145 0
[6, 6.5) 0.05 0.02 0.062 0.072 0
[6.5, 7) 0 0.005 0.062 0.072 0
[7, 7.5) 0 0 0.005 0.015 0
[7.5, 8) 0 0 0.005 0.015 0
[8, 8.5) 0 0 0 0 0.005
[8.5, 9) 0 0 0 0 0.02
[9, 9.5) 0 0 0 0 0.205
[9.5, 10) 0 0 0 0 0.255
[10, 10.5) 0 0 0 0 0.34
[10.5, 11) 0 0 0 0 0.155
[11, 11.5) 0 0 0 0 0.015
[11.5, 12) 0 0 0 0 0.005

Y2 y′1 y′2 y′3 y′4 y′5
[b2k, b2,k+1) p′12k p′22k p′32k p′42k p′52k

[2, 2.5) 0 0 0.01 0.015 0
[2.5, 3) 0 0 0.01 0.015 0
[3, 3.5) 0 0 0.078 0.068 0.005
[3.5, 4) 0.035 0.035 0.078 0.068 0.02
[4, 4.5) 0.16 0.165 0.148 0.18 0.15
[4.5, 5) 0.345 0.275 0.148 0.18 0.365
[5, 5.5) 0.3 0.305 0.172 0.165 0.3
[5.5, 6) 0.12 0.165 0.172 0.165 0.135
[6, 6.5) 0.025 0.05 0.085 0.058 0.02
[6.5, 7) 0.015 0.005 0.085 0.058 0.005
[7, 7.5) 0 0 0.008 0.012 0
[7.5, 8) 0 0 0.008 0.012 0
[8, 8.5) 0 0 0 0.002 0
[8.5, 9) 0 0 0 0.002 0
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The extended Gowda-Diday dissimilarity matrix is given by, from Equation (3.8),

DGD =



0 0.185 1.205 1.316 1.600

0.185 0 1.180 1.304 1.659

1.205 1.180 0 0.241 2.460

1.316 1.304 0.241 0 2.517

1.600 1.659 2.460 2.517 0


. (4.42)

The normalized city block distance is the normalized Minkowski distance of Equation

(3.28) when q = 1, where, in this example, this measure is obtained by using the normalized

extended Ichino-Yaguchi measure with γ = 0.25. Thus, we first calculate the normalized

extended Ichino-Yaguchi measure for each variable. The normalized extended Ichino-Yaguchi

dissimilarity matrix with γ = 0.25 for variable Y1 is, from Equation (3.23),

φ∗j = φ∗1 =



0 0.008 0.052 0.068 0.493

0.008 0 0.054 0.070 0.494

0.052 0.054 0 0.019 0.498

0.068 0.070 0.019 0 0.499

0.493 0.494 0.498 0.499 0


. (4.43)

The normalized extended Ichino-Yaguchi dissimilarity matrix with γ = 0.25 for variable Y2

is, from Equation (3.23),

φ∗j = φ∗2 =



0 0.014 0.087 0.087 0.013

0.014 0 0.082 0.082 0.017

0.087 0.082 0 0.029 0.093

0.087 0.082 0.029 0 0.094

0.013 0.017 0.093 0.094 0


. (4.44)
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The sum of Equation (4.43) and (4.44) is the normalized city block distance matrix. Thus,

the normalized city block distance matrix is given by

D1
NM =



0 0.022 0.139 0.156 0.506

0.022 0 0.137 0.152 0.511

0.139 0.137 0 0.047 0.591

0.156 0.152 0.047 0 0.593

0.506 0.511 0.591 0.5930


. (4.45)

The normalized Euclidean distance is the normalized Minkowski distance of Equation

(3.28) when q = 2, where, in this example, this measure is obtained by using the normalized

extended Ichino-Yaguchi dissimilarity matrices with γ = 0.25 for each variable as given in

Equation (4.43) and (4.44). From Equation (3.27) and (3.28), the normalized Euclidean

distance matrix is

D2
NM =



0 0.016 0.102 0.111 0.493

0.016 0 0.099 0.108 0.495

0.102 0.099 0 0.034 0.507

0.111 0.108 0.034 0 0.508

0.493 0.495 0.507 0.508 0


. (4.46)

The normalized CDF measure is obtained by using Equation (3.31). Thus, the normalized

CDF dissimilarity matrix is

DNCDF =



0 0.016 0.101 0.106 0.500

0.016 0 0.094 0.106 0.511

0.101 0.094 0 0.028 0.573

0.106 0.106 0.028 0 0.566

0.500 0.511 0.573 0.566 0


. (4.47)

Using these distance or dissimilarity matrices, we can perform the divisive monothetic

and polythetic clustering methods. The clustering results for each distance or dissimilarity

measure and clustering method are shown in Table 4.10.
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Table 4.10: Clustering results for each measure and method.

Monothetic method Polythetic method
Measure Pr Clusters (C1, . . . , Cr) Clusters (C1, . . . , Cr)

P1

(
{y1,y2,y3,y4,y5}

) (
{y1,y2,y3,y4,y5}

)
Extended P2

(
{y1,y2,y3,y4}, {y5}

) (
{y1,y2,y3,y4}, {y5}

)
Gowda-Diday P3

(
{y1,y2}, {y3,y4}, {y5}

) (
{y1,y2}, {y3,y4}, {y5}

)
P4

(
{y1,y2}, {y3}, {y4}, {y5}

) (
{y1,y2}, {y3}, {y4}, {y5}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5}

) (
{y1}, {y2}, {y3}, {y4}, {y5}

)
P1

(
{y1,y2,y3,y4,y5}

) (
{y1,y2,y3,y4,y5}

)
Normalized P2

(
{y1,y2,y3,y4}, {y5}

) (
{y1,y2,y3,y4}, {y5}

)
City block P3

(
{y1,y2}, {y3,y4}, {y5}

) (
{y1,y2}, {y3,y4}, {y5}

)
P4

(
{y1,y2}, {y3}, {y4}, {y5}

) (
{y1,y2}, {y3}, {y4}, {y5}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5}

) (
{y1}, {y2}, {y3}, {y4}, {y5}

)
P1

(
{y1,y2,y3,y4,y5}

) (
{y1,y2,y3,y4,y5}

)
Normalized P2

(
{y1,y2,y3,y4}, {y5}

) (
{y1,y2,y3,y4}, {y5}

)
Euclidean P3

(
{y1,y2}, {y3,y4}, {y5}

) (
{y1,y2}, {y3,y4}, {y5}

)
P4

(
{y1,y2}, {y3}, {y4}, {y5}

) (
{y1,y2}, {y3}, {y4}, {y5}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5}

) (
{y1}, {y2}, {y3}, {y4}, {y5}

)
P1

(
{y1,y2,y3,y4,y5}

) (
{y1,y2,y3,y4,y5}

)
Normalized P2

(
{y1,y2,y3,y4}, {y5}

) (
{y1,y2,y3,y4}, {y5}

)
CDF P3

(
{y1,y2}, {y3,y4}, {y5}

) (
{y1,y2}, {y3,y4}, {y5}

)
P4

(
{y1,y2}, {y3}, {y4}, {y5}

) (
{y1,y2}, {y3}, {y4}, {y5}

)
P5

(
{y1}, {y2}, {y3}, {y4}, {y5}

) (
{y1}, {y2}, {y3}, {y4}, {y5}

)

From Table 4.10, we see that both the monothetic and polythetic methods give the

same clustering results for any one given distance/dissimilarity measures, and the four

distance/dissimilarity measures also give the same outcomes for both the monothetic and

polythetic algorithms.

For the distance or dissimilarity matrices in Equation (4.42), (4.45), (4.46), and (4.47)

and clustering outcomes in Table 4.10, we can calculate the Dunn and Davis-Bouldin indexes

using Equation (4.8) and (4.9).

Table 4.11 shows the Dunn and Davis-Bouldin index values for the extended Gowda-Diday

measure, the normalized city block distance and normalized Euclidean distance based on the

normalized extended Ichino-Yaguchi measure, and the normalized CDF distance, for both
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Table 4.11: Cluster validity index values for Example 4.2

Monothetic method Polythetic method
Measure Validity r = 2 r = 3 r = 4 r = 2 r = 3 r = 4
Extended DIs

r 2.023 53.387 1.698 2.023 53.387 1.698
Gowda-Diday DBs

r 0.494 0.025 0.301 0.494 0.025 0.301
Normalized DIs

r 10.833 18.487 4.541 10.833 18.487 4.541
city block DBs

r 0.092 0.046 0.115 0.092 0.046 0.115
Normalized DIs

r 17.436 18.197 4.453 17.436 18.197 4.453
Euclidean DBs

r 0.057 0.046 0.117 0.057 0.046 0.117
Normalized DIs

r 21.600 25.772 3.242 21.600 25.772 3.242
CDF DBs

r 0.046 0.035 0.159 0.046 0.035 0.159

the divisive monothetic and polythetic clustering methods. For all measures and methods,

when the number of clusters are three, the Dunn index values, DIs
r , are largest and the

Davis-Bouldin index values, DBs
r , are smallest. From Table 4.10, the three clusters are(

{y1,y2}, {y3,y4}, {y5}
)
. However, index values at r = 3 are relatively close to those at

r = 2. This can be explained by the fact that clusters {y1,y2} and {y3,y4} have the same

mean vector and overlap. Nevertheless, the validity indexes detect the optimal number of

clusters (three) in this example even with the overlap.

Example 4.3 In this example, we evaluate the proposed indexes for the Fisher’s (1936)

iris dataset used in Example 3.1. Originally, Fisher’s iris dataset has four variables, viz.,

Y1 =‘Sepal Length’, Y2 =‘Sepal Width’, Y3 =‘Petal Length’, and Y4 =‘Petal Width’ and 150

individual observations from three species (setosa, versicolor, virginica), with each species

having 50 individual observations. However, in this example, we aggregate consecutive groups

of ten from the 150 observations. After aggregating, a histogram-valued dataset with 15 objects

can be generated (these are provided in the Appendix A.1, Table A.1). Each iris species

is represented by five symbolic objects. For example, object y1, . . . ,y5 are included in the

species ‘setosa’, y6, . . . ,y10 are in the species ‘versicolor’, and y10, . . . ,y15 are in the species

‘virginica’.
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It is well known that the Fisher’s iris dataset has two or three clusters. Thus, the true

number of clusters for the histogram-valued iris dataset is also two or three. If it has three

clusters, each species constitutes one cluster. If two clusters, one cluster is the species ‘setosa’,

and another cluster has the species ‘versicolor’ and ‘virginica’.

The transformed histogram-valued data are obtained using Definition 3.3 and are given in

Table A.2 in Appendix A.2. From these transformed histogram-valued data, we can calculate

the extended Gowda-Diday measure of Equation (3.21), the city block distance of Equation

(3.26) and Euclidean distances of Equation (3.27) based on the normalized extended Ichino-

Yaguchi measure for γ = 0.25 defined in Equation (3.22) and (3.23), and the normalized

CDF measure of Equation (3.31).

From Equation (3.8), the extended Gowda-Diday dissimilarity matrix is given in Table

4.12. The normalized city block distance is the normalized Minkowski distance of Equation

(3.28) when q = 1, where, in this example, this measure is obtained by using the normalized

extended Ichino-Yaguchi measure with γ = 0.25. Thus, we first calculate the normalized

extended Ichino-Yaguchi measure for each variable. The normalized extended Ichino-Yaguchi

dissimilarity matrices with γ = 0.25 for each variable (i.e., Y1, . . . , Y4) are, from Equation

(3.23), given in Table 4.13, 4.14, 4.15, and 4.16, respectively. The sum of the normalized

extended Ichino-Yaguchi dissimilarity matrices given in Table 4.13, 4.14, 4.15, and 4.16 is

the normalized city block distance matrix. Thus, the normalized city block distance matrix is

given in Table 4.17. The normalized Euclidean distance is the normalized Minkowski distance

of Equation (3.28) when q = 2, where this measure is obtained by using the normalized

extended Ichino-Yaguchi dissimilarity matrices of Equation (3.23) with γ = 0.25 as given in

Table 4.13, 4.14, 4.15, and 4.16. From Equation (3.27) and (3.28), the normalized Euclidean

distance matrix is shown in Table 4.18. The normalized CDF measure is obtained by using

Equation (3.31). Thus, the normalized CDF dissimilarity matrix is shown in Table 4.19.

Using these distance or dissimilarity matrices, we can perform the monothetic and poly-

thetic divisive clustering methods. The clustering results for each of the extended Gowda-
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Table 4.12: The extended Gowda-Diday dissimilarity matrix.

DGD y1 y2 y3 y4 y5 y6 y7 y8

y1 0 2.34 3.14 1.89 2.68 6.36 6.51 6.73

y2 2.34 0 3.35 2.09 3.15 5.87 5.91 6.73

y3 3.14 3.35 0 3.55 3.06 6.53 6.63 6.48

y4 1.89 2.09 3.55 0 3.27 6.39 6.33 6.94

y5 2.68 3.15 3.06 3.27 0 5.98 5.89 6.48

y6 6.36 5.87 6.53 6.39 5.98 0 2.47 2.58

y7 6.51 5.91 6.63 6.33 5.89 2.47 0 2.52

y8 6.73 6.73 6.48 6.94 6.48 2.58 2.52 0

y9 6.39 6.00 6.58 6.44 5.97 1.91 1.90 2.09

y10 6.21 5.91 6.02 6.00 5.85 2.76 2.83 2.70

y11 7.25 7.03 7.66 7.60 7.18 4.03 4.93 4.46

y12 7.42 6.94 7.68 7.60 6.67 4.08 4.42 4.47

y13 7.46 7.18 7.27 7.67 7.42 4.08 4.78 3.93

y14 7.34 6.80 7.11 7.52 7.03 4.08 4.86 4.25

y15 6.71 6.80 6.66 6.97 6.53 4.67 4.29 3.45

DGD y9 y10 y11 y12 y13 y14 y15

y1 6.39 6.21 7.25 7.42 7.46 7.34 6.71

y2 6.00 5.91 7.03 6.94 7.18 6.80 6.80

y3 6.58 6.02 7.66 7.68 7.27 7.11 6.66

y4 6.44 6.00 7.60 7.60 7.67 7.52 6.97

y5 5.97 5.85 7.18 6.67 7.42 7.03 6.53

y6 1.91 2.76 4.03 4.08 4.08 4.08 4.67

y7 1.90 2.83 4.93 4.42 4.78 4.86 4.29

y8 2.09 2.70 4.46 4.47 3.93 4.25 3.45

y9 0 3.08 4.55 4.36 4.54 4.40 3.98

y10 3.08 0 5.27 5.42 5.12 5.55 5.08

y11 4.55 5.27 0 2.24 2.51 2.01 3.32

y12 4.36 5.42 2.24 0 3.12 2.17 3.49

y13 4.54 5.12 2.51 3.12 0 2.23 3.62

y14 4.40 5.55 2.01 2.17 2.23 0 3.11

y15 3.98 5.08 3.32 3.49 3.62 3.11 0
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Table 4.13: The normalized extended Ichino-Yaguchi dissimilarity matrix for variable Y1.

φ∗1 y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.12 0.04 0.05 0.00 0.29 0.27 0.35

y2 0.12 0 0.11 0.08 0.11 0.20 0.18 0.26

y3 0.04 0.11 0 0.05 0.04 0.27 0.24 0.31

y4 0.05 0.08 0.05 0 0.05 0.24 0.21 0.29

y5 0.00 0.11 0.04 0.05 0 0.29 0.26 0.34

y6 0.29 0.20 0.27 0.24 0.29 0 0.09 0.14

y7 0.27 0.18 0.24 0.21 0.26 0.09 0 0.09

y8 0.35 0.26 0.31 0.29 0.34 0.14 0.09 0

y9 0.25 0.17 0.22 0.20 0.25 0.13 0.07 0.08

y10 0.20 0.13 0.17 0.14 0.20 0.15 0.09 0.15

y11 0.44 0.32 0.42 0.38 0.43 0.14 0.22 0.20

y12 0.42 0.33 0.40 0.37 0.42 0.19 0.16 0.14

y13 0.46 0.37 0.43 0.41 0.45 0.19 0.18 0.14

y14 0.47 0.39 0.44 0.42 0.47 0.23 0.22 0.17

y15 0.40 0.31 0.37 0.35 0.39 0.15 0.12 0.04

φ∗1 y9 y10 y11 y12 y13 y14 y15

y1 0.25 0.20 0.44 0.42 0.46 0.47 0.40

y2 0.17 0.13 0.32 0.33 0.37 0.39 0.31

y3 0.22 0.17 0.42 0.40 0.43 0.44 0.37

y4 0.20 0.14 0.38 0.37 0.41 0.42 0.35

y5 0.25 0.20 0.43 0.42 0.45 0.47 0.39

y6 0.13 0.15 0.14 0.19 0.19 0.23 0.15

y7 0.07 0.09 0.22 0.16 0.18 0.22 0.12

y8 0.08 0.15 0.20 0.14 0.14 0.17 0.04

y9 0 0.12 0.25 0.19 0.21 0.25 0.14

y10 0.12 0 0.29 0.24 0.26 0.29 0.21

y11 0.25 0.29 0 0.13 0.08 0.13 0.19

y12 0.19 0.24 0.13 0 0.07 0.06 0.14

y13 0.21 0.26 0.08 0.07 0 0.06 0.12

y14 0.25 0.29 0.13 0.06 0.06 0 0.14

y15 0.14 0.21 0.19 0.14 0.12 0.14 0



99

Table 4.14: The normalized extended Ichino-Yaguchi dissimilarity matrix for variable Y2.

φ∗2 y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.12 0.08 0.13 0.11 0.19 0.27 0.20

y2 0.12 0 0.10 0.12 0.16 0.31 0.40 0.33

y3 0.08 0.10 0 0.11 0.13 0.21 0.30 0.22

y4 0.13 0.12 0.11 0 0.19 0.26 0.34 0.28

y5 0.11 0.16 0.13 0.19 0 0.19 0.25 0.22

y6 0.19 0.31 0.21 0.26 0.19 0 0.16 0.10

y7 0.27 0.40 0.30 0.34 0.25 0.16 0 0.09

y8 0.20 0.33 0.22 0.28 0.22 0.10 0.09 0

y9 0.22 0.35 0.25 0.30 0.21 0.04 0.13 0.09

y10 0.24 0.37 0.26 0.31 0.24 0.10 0.11 0.04

y11 0.13 0.28 0.18 0.23 0.16 0.12 0.16 0.07

y12 0.17 0.28 0.21 0.27 0.11 0.12 0.14 0.14

y13 0.16 0.28 0.17 0.23 0.21 0.10 0.17 0.08

y14 0.15 0.23 0.12 0.22 0.15 0.10 0.19 0.11

y15 0.12 0.25 0.15 0.20 0.16 0.09 0.15 0.07

φ∗2 y9 y10 y11 y12 y13 y14 y15

y1 0.22 0.24 0.13 0.17 0.16 0.15 0.12

y2 0.35 0.37 0.28 0.28 0.28 0.23 0.25

y3 0.25 0.26 0.18 0.21 0.17 0.12 0.15

y4 0.30 0.31 0.23 0.27 0.23 0.22 0.20

y5 0.21 0.24 0.16 0.11 0.21 0.15 0.16

y6 0.04 0.10 0.12 0.12 0.10 0.10 0.09

y7 0.13 0.11 0.16 0.14 0.17 0.19 0.15

y8 0.09 0.04 0.07 0.14 0.08 0.11 0.07

y9 0 0.08 0.10 0.12 0.12 0.13 0.10

y10 0.08 0 0.10 0.14 0.12 0.15 0.11

y11 0.10 0.10 0 0.11 0.11 0.11 0.06

y12 0.12 0.14 0.11 0 0.16 0.13 0.13

y13 0.12 0.12 0.11 0.16 0 0.09 0.07

y14 0.13 0.15 0.11 0.13 0.09 0 0.09

y15 0.10 0.11 0.06 0.13 0.07 0.09 0
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Table 4.15: The normalized extended Ichino-Yaguchi dissimilarity matrix for variable Y3.

φ∗3 y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.01 0.03 0.02 0.02 0.47 0.44 0.49

y2 0.01 0 0.03 0.02 0.03 0.47 0.44 0.49

y3 0.03 0.03 0 0.03 0.03 0.45 0.41 0.46

y4 0.02 0.02 0.03 0 0.02 0.47 0.44 0.49

y5 0.02 0.03 0.03 0.02 0 0.46 0.43 0.48

y6 0.47 0.47 0.45 0.47 0.46 0 0.06 0.02

y7 0.44 0.44 0.41 0.44 0.43 0.06 0 0.05

y8 0.49 0.49 0.46 0.49 0.48 0.02 0.05 0

y9 0.46 0.46 0.44 0.46 0.45 0.07 0.05 0.05

y10 0.43 0.43 0.41 0.43 0.42 0.05 0.05 0.07

y11 0.72 0.72 0.69 0.72 0.71 0.24 0.27 0.22

y12 0.67 0.68 0.65 0.68 0.67 0.22 0.24 0.20

y13 0.66 0.66 0.63 0.66 0.65 0.20 0.23 0.18

y14 0.69 0.69 0.67 0.70 0.68 0.22 0.25 0.20

y15 0.64 0.64 0.62 0.64 0.63 0.17 0.19 0.15

φ∗3 y9 y10 y11 y12 y13 y14 y15

y1 0.46 0.43 0.72 0.67 0.66 0.69 0.64

y2 0.46 0.43 0.72 0.68 0.66 0.69 0.64

y3 0.44 0.41 0.69 0.65 0.63 0.67 0.62

y4 0.46 0.43 0.72 0.68 0.66 0.70 0.64

y5 0.45 0.42 0.71 0.67 0.65 0.68 0.63

y6 0.07 0.05 0.24 0.22 0.20 0.22 0.17

y7 0.05 0.05 0.27 0.24 0.23 0.25 0.19

y8 0.05 0.07 0.22 0.20 0.18 0.20 0.15

y9 0 0.07 0.24 0.22 0.21 0.22 0.17

y10 0.07 0 0.28 0.25 0.23 0.25 0.20

y11 0.24 0.28 0 0.07 0.05 0.03 0.10

y12 0.22 0.25 0.07 0 0.11 0.11 0.10

y13 0.21 0.23 0.05 0.11 0 0.09 0.10

y14 0.22 0.25 0.03 0.11 0.09 0 0.07

y15 0.17 0.20 0.10 0.10 0.10 0.07 0
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Table 4.16: The normalized extended Ichino-Yaguchi dissimilarity matrix for variable Y4.

φ∗4 y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.01 0.04 0.00 0.05 0.46 0.42 0.48

y2 0.01 0 0.04 0.01 0.05 0.44 0.41 0.46

y3 0.04 0.04 0 0.05 0.03 0.40 0.36 0.41

y4 0.00 0.01 0.05 0 0.06 0.47 0.43 0.48

y5 0.05 0.05 0.03 0.06 0 0.41 0.37 0.42

y6 0.46 0.44 0.40 0.47 0.41 0 0.04 0.04

y7 0.42 0.41 0.36 0.43 0.37 0.04 0 0.07

y8 0.48 0.46 0.41 0.48 0.42 0.04 0.07 0

y9 0.44 0.43 0.38 0.45 0.39 0.02 0.04 0.05

y10 0.40 0.38 0.34 0.41 0.35 0.05 0.04 0.08

y11 0.72 0.71 0.65 0.73 0.66 0.27 0.30 0.25

y12 0.73 0.71 0.65 0.73 0.66 0.26 0.30 0.24

y13 0.68 0.67 0.61 0.69 0.62 0.22 0.25 0.20

y14 0.68 0.67 0.61 0.69 0.62 0.23 0.26 0.20

y15 0.78 0.76 0.70 0.79 0.72 0.31 0.34 0.30

φ∗4 y9 y10 y11 y12 y13 y14 y15

y1 0.44 0.40 0.72 0.73 0.68 0.68 0.78

y2 0.43 0.38 0.71 0.71 0.67 0.67 0.76

y3 0.38 0.34 0.65 0.65 0.61 0.61 0.70

y4 0.45 0.41 0.73 0.73 0.69 0.69 0.79

y5 0.39 0.35 0.66 0.66 0.62 0.62 0.72

y6 0.02 0.05 0.27 0.26 0.22 0.23 0.31

y7 0.04 0.04 0.30 0.30 0.25 0.26 0.34

y8 0.05 0.08 0.25 0.24 0.20 0.20 0.30

y9 0 0.05 0.29 0.27 0.24 0.24 0.33

y10 0.05 0 0.33 0.32 0.27 0.29 0.37

y11 0.29 0.33 0 0.11 0.09 0.11 0.10

y12 0.27 0.32 0.11 0 0.07 0.03 0.08

y13 0.24 0.27 0.09 0.07 0 0.07 0.11

y14 0.24 0.29 0.11 0.03 0.07 0 0.10

y15 0.33 0.37 0.10 0.08 0.11 0.10 0
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Table 4.17: The normalized city block distance matrix.

D1
NM y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.26 0.20 0.20 0.19 1.41 1.40 1.50

y2 0.26 0 0.28 0.22 0.34 1.43 1.42 1.54

y3 0.20 0.28 0 0.25 0.23 1.33 1.31 1.41

y4 0.20 0.22 0.25 0 0.32 1.44 1.42 1.54

y5 0.19 0.34 0.23 0.32 0 1.34 1.31 1.46

y6 1.41 1.43 1.33 1.44 1.34 0 0.35 0.30

y7 1.40 1.42 1.31 1.42 1.31 0.35 0 0.31

y8 1.50 1.54 1.41 1.54 1.46 0.30 0.31 0

y9 1.37 1.42 1.29 1.41 1.30 0.26 0.29 0.27

y10 1.27 1.32 1.18 1.29 1.21 0.35 0.30 0.34

y11 2.02 2.03 1.94 2.06 1.97 0.77 0.96 0.75

y12 1.99 2.00 1.91 2.06 1.86 0.79 0.84 0.72

y13 1.96 1.97 1.84 1.99 1.93 0.70 0.83 0.60

y14 2.00 1.98 1.84 2.03 1.92 0.78 0.92 0.68

y15 1.94 1.97 1.83 1.98 1.90 0.73 0.81 0.56

D1
NM y9 y10 y11 y12 y13 y14 y15

y1 1.37 1.27 2.02 1.99 1.96 2.00 1.94

y2 1.42 1.32 2.03 2.00 1.97 1.98 1.97

y3 1.29 1.18 1.94 1.91 1.84 1.84 1.83

y4 1.41 1.29 2.06 2.06 1.99 2.03 1.98

y5 1.30 1.21 1.97 1.86 1.93 1.92 1.90

y6 0.26 0.35 0.77 0.79 0.70 0.78 0.73

y7 0.29 0.30 0.96 0.84 0.83 0.92 0.81

y8 0.27 0.34 0.75 0.72 0.60 0.68 0.56

y9 0 0.32 0.88 0.81 0.78 0.84 0.73

y10 0.32 0 0.99 0.95 0.89 0.99 0.90

y11 0.88 0.99 0 0.42 0.33 0.38 0.45

y12 0.81 0.95 0.42 0 0.42 0.33 0.45

y13 0.78 0.89 0.33 0.42 0 0.30 0.40

y14 0.84 0.99 0.38 0.33 0.30 0 0.41

y15 0.73 0.90 0.45 0.45 0.40 0.41 0
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Table 4.18: The normalized Euclidean distance matrix.
D2

NM y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.17 0.11 0.14 0.12 0.74 0.72 0.79

y2 0.17 0 0.16 0.14 0.20 0.75 0.74 0.79

y3 0.11 0.16 0 0.14 0.14 0.69 0.67 0.73

y4 0.14 0.14 0.14 0 0.21 0.75 0.73 0.80

y5 0.12 0.20 0.14 0.21 0 0.70 0.67 0.75

y6 0.74 0.75 0.69 0.75 0.70 0 0.20 0.18

y7 0.72 0.74 0.67 0.73 0.67 0.20 0 0.16

y8 0.79 0.79 0.73 0.80 0.75 0.18 0.16 0

y9 0.72 0.74 0.67 0.74 0.68 0.15 0.16 0.14

y10 0.67 0.70 0.62 0.69 0.63 0.19 0.16 0.19

y11 1.12 1.10 1.05 1.12 1.07 0.41 0.49 0.40

y12 1.09 1.07 1.02 1.10 1.03 0.41 0.44 0.37

y13 1.07 1.05 0.99 1.06 1.03 0.36 0.42 0.31

y14 1.09 1.06 1.01 1.09 1.05 0.41 0.46 0.35

y15 1.09 1.08 1.01 1.09 1.04 0.40 0.44 0.34

D2
NM y9 y10 y11 y12 y13 y14 y15

y1 0.72 0.67 1.12 1.09 1.07 1.09 1.09

y2 0.74 0.70 1.10 1.07 1.05 1.06 1.08

y3 0.67 0.62 1.05 1.02 0.99 1.01 1.01

y4 0.74 0.69 1.12 1.10 1.06 1.09 1.09

y5 0.68 0.63 1.07 1.03 1.03 1.05 1.04

y6 0.15 0.19 0.41 0.41 0.36 0.41 0.40

y7 0.16 0.16 0.49 0.44 0.42 0.46 0.44

y8 0.14 0.19 0.40 0.37 0.31 0.35 0.34

y9 0 0.17 0.46 0.42 0.40 0.43 0.40

y10 0.17 0 0.53 0.49 0.46 0.51 0.49

y11 0.46 0.53 0 0.21 0.17 0.21 0.24

y12 0.42 0.49 0.21 0 0.22 0.18 0.23

y13 0.40 0.46 0.17 0.22 0 0.15 0.20

y14 0.43 0.51 0.21 0.18 0.15 0 0.21

y15 0.40 0.49 0.24 0.23 0.20 0.21 0
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Table 4.19: The normalized CDF dissimilarity matrix.

DNCDF y1 y2 y3 y4 y5 y6 y7 y8

y1 0 0.27 0.34 0.13 0.21 1.42 1.40 1.52

y2 0.27 0 0.43 0.17 0.38 1.45 1.43 1.55

y3 0.34 0.43 0 0.35 0.23 1.35 1.34 1.42

y4 0.13 0.17 0.35 0 0.28 1.43 1.42 1.54

y5 0.21 0.38 0.23 0.28 0 1.36 1.35 1.46

y6 1.42 1.45 1.35 1.43 1.36 0 0.24 0.17

y7 1.40 1.43 1.34 1.42 1.35 0.24 0 0.25

y8 1.52 1.55 1.42 1.54 1.46 0.17 0.25 0

y9 1.39 1.42 1.32 1.41 1.33 0.22 0.13 0.23

y10 1.28 1.31 1.24 1.29 1.23 0.29 0.18 0.32

y11 2.04 2.07 1.81 2.05 1.91 0.70 0.89 0.67

y12 1.99 2.02 1.80 2.01 1.86 0.63 0.77 0.59

y13 1.95 1.98 1.78 1.97 1.88 0.63 0.79 0.55

y14 1.98 2.01 1.78 2.00 1.88 0.69 0.86 0.62

y15 1.95 1.98 1.74 1.96 1.83 0.66 0.83 0.59

DNCDF y9 y10 y11 y12 y13 y14 y15

y1 1.39 1.28 2.04 1.99 1.95 1.98 1.95

y2 1.42 1.31 2.07 2.02 1.98 2.01 1.98

y3 1.32 1.24 1.81 1.80 1.78 1.78 1.74

y4 1.41 1.29 2.05 2.01 1.97 2.00 1.96

y5 1.33 1.23 1.91 1.86 1.88 1.88 1.83

y6 0.22 0.29 0.70 0.63 0.63 0.69 0.66

y7 0.13 0.18 0.89 0.77 0.79 0.86 0.83

y8 0.23 0.32 0.67 0.59 0.55 0.62 0.59

y9 0 0.18 0.85 0.73 0.74 0.81 0.78

y10 0.18 0 0.95 0.87 0.87 0.94 0.91

y11 0.85 0.95 0 0.25 0.22 0.18 0.31

y12 0.73 0.87 0.25 0 0.28 0.22 0.29

y13 0.74 0.87 0.22 0.28 0 0.16 0.28

y14 0.81 0.94 0.18 0.22 0.16 0 0.29

y15 0.78 0.91 0.31 0.29 0.28 0.29 0
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Diday measure, the normalized city block distance, the normalized Euclidean distance, and

the normalized CDF distance and the monothetic and polythetic clustering methods are shown

in Figure 4.4, 4.5, 4.6, and 4.7, respectively.

Figure 4.4 shows the clustering results for the extended Gowda-Diday measure, for the

monothetic and polythetic clustering methods. From Figure 4.4(a), we see that for the mono-

thetic method there are 14 binary questions, and the binary question at the first stage is ‘Is

Y3 ≤ 2.79?′. This means that bipartiotioning is based on variable Y3 =’Petal Length’, and

the cut point for ‘Yes’ or ‘No’ is 2.79. Thus, if the answer is ‘Yes’, the iris species goes to

the cluster {y1, . . . ,y5}. Conversely, if ‘No’, it goes to {y6, . . . ,y15}. That is, if the Petal

Length is equal or less than 2.79, then the iris species goes to the setosa, and if the Petal

Length is larger than 2.79, then it goes to the versicolor and virginica. For example, suppose

that there is a histogram-valued object for a new iris species and the mean for the variable

Y3 of this object, Mij = Mi3 = 2.2 of Equation (3.13). Then, since the mean of this new

iris species object is less than the cut point (2.79), the answer is ‘Yes’ and this new object is

classified into the cluster {y1, . . . ,y5} (setosa). At the second stage, the binary question is

‘Is Y3 ≤ 4.85?′. Similarly to the first stage, if the answer is ‘Yes’, then it goes to the cluster

{y6, . . . ,y10}, and if ‘No’, then it goes to {y11, . . . ,y15} (virginica). For example, suppose

that we have a histogram-valued object for a new iris species, and the mean for the variable

Y3 of a new histogram-valued object is 4.0. Then, the answer for the first binary question,

‘Is Y3 ≤ 2.79?′, is ‘No’, and the answer for the second binary question, ‘Is Y3 ≤ 4.85?′, is

‘Yes’. Thus, this object is classified into the cluster {y6, . . . ,y10} (versicolor).

As shown in Figure 4.4(b), the polythetic method does not provide binary questions because

it uses all p variables to find the optimal bipartition. From Figure 4.4(b), the right side of

each node represents the splinter cluster. The polythetic method proposed in Section 3.4.2

starts from finding the object that is the most different from the others within a cluster. That

object is called the seed, and the cluster including the seed is called the splinter cluster or

group. The polythetic method iteratively compares whether each object is close to a main
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cluster or a splinter cluster. Thus, from Figure 4.4(b), we know that the splinter cluster for

the first stage is {y1, . . . ,y5}. At the second stage, the cluster {y6, . . . ,y15} is bipartitioned

into {y6, . . . ,y10} and {y11, . . . ,y15}. In this case, {y11, . . . ,y15} is the main cluster and

{y6, . . . ,y10} is the splinter cluster.

Figure 4.5 shows the dendrograms obtained when using the normalized city block distance

with q = 1 in Equation (3.28). Figure 4.5(a) is obtained using the monothetic clustering

method and Figure 4.5(b) uses the polythetic method. The monothetic methods in Figure

4.5(b) provides the binary questions. At the first stage, Ω = {y1, . . . ,y15} is bipartitioned

into {y1, . . . ,y5} and {y6, . . . ,y15}. The first binary question is ‘Is Y3 ≤ 2.79?’. This means

that if the Petal Length is less than 2.78, then it belongs to the cluster {y1, . . . ,y5} (setosa),

and otherwise, it goes to {y6, . . . ,y15} (versicolor and virginica). The binary question for the

second stage is ‘Is Y4 ≤ 1.63?’. The cluster {y6, . . . ,y15} is bipartitioned into ({y6, . . . ,y10}

(versicolor) and {y11, . . . ,y15} (virginica) by the variable Y4 =‘Petal Width’. The bipartitions

for the first and second stage are the exactly same as those for the extended Gowda-Diday

measure as shown in Figure 4.4(a), but the binary questions for the second stage are different.

From Figure 4.5(b), we know that the splinter cluster for the first stage is {y1, . . . ,y5}. At

the second stage, the cluster {y6, . . . ,y15} is bipartitioned into
(
{y6, . . . ,y10}, {y11, . . . ,y15}

)
,

and the splinter cluster is {y11, . . . ,y15}. The bipartitions for the first and second stage are

the same as those of the monothetic method of Figure 4.4(a).

Figure 4.6 shows the dendrograms obtained when using the normalized Euclidean distance

with q = 2 in Equation (3.28). Figure 4.6(a) is obtained using the monothetic clustering

algorithm and Figure 4.6(b) comes from the polythetic algorithm. From Figure 4.6(a) by

the monothetic method, the first binary question is ‘Is Y3 ≤ 2.79?’, and Ω = {y1, . . . ,y15} is

bipartitioned into {y1, . . . ,y5} and {y6, . . . ,y15} by this binary question. At the second stage,

the cluster {y6, . . . ,y15} is split into
(
{y6, . . . ,y10}, {y11, . . . ,y15}

)
by the binary question

‘Is Y4 ≤ 1.63?’. For example, suppose that there is a new histogram-valued object, and the

mean for Y3 =‘Petal Length’ of this object is 3.5 and the mean for Y4 =‘Petal Width’ is 2.0.
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y1 y4 y2 y5 y3 y10 y7 y9 y6 y8 y15y13y12y14y11

Y3 <= 2.79

Y3 <= 4.85

Y3 <= 1.47

Y3 <= 5.32

Y1 <= 5.74

Y2 <= 3.27

Y3 <= 5.43

Y1 <= 6.04

Y1 <= 5.13

Y1 <= 5.92

Y3 <= 5.66

Y4 <= 1.97

Y2 <= 2.61

Y2 <= 3.38

Left : YES , Right : NO

(a) Monothetic method

y14y11y12y13y15 y7 y9 y6 y8 y10 y4 y1 y2 y3 y5

Right : Splinter group

(b) Polythetic method

Figure 4.4: Dendrogram for the extended Gowda-Diday measure.

y5 y1 y3 y4 y2 y7 y10 y9 y6 y8 y15y12y13y14y11

Y3 <= 2.79

Y4 <= 1.63

Y1 <= 6.5

Y1 <= 6.49

Y2 <= 2.7

Y4 <= 1.97

Y2 <= 3.41

Y2 <= 2.95

Y2 <= 2.59

Y1 <= 6.04

Y1 <= 5.85

Y2 <= 3.3

Y2 <= 3.56

Y2 <= 3.2

Left : YES , Right : NO

(a) Monothetic method

y13y11y12y14y15 y9 y6 y8 y10 y7 y1 y5 y3 y2 y4

Right : Splinter group

(b) Polythetic method

Figure 4.5: Dendrogram for the normalized city block measure.
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y5 y1 y3 y4 y2 y7 y10 y9 y8 y6 y15y12y13y14y11

Y3 <= 2.79

Y4 <= 1.63

Y1 <= 6.5

Y1 <= 6.49

Y2 <= 3.41

Y2 <= 2.7

Y4 <= 1.97

Y2 <= 2.79

Y2 <= 2.59

Y2 <= 2.95

Y2 <= 3.2

Y2 <= 3.56

Y2 <= 2.71

Y2 <= 3.3

Left : YES , Right : NO

(a) Monothetic method

y13y11y12y14y15 y9 y8 y10 y7 y6 y4 y2 y1 y3 y5

Right : Splinter group

(b) Polythetic method

Figure 4.6: Dendrogram for the normalized Euclidean measure.

y1 y4 y2 y3 y5 y10 y7 y9 y6 y8 y15y12y11y13y14

Y3 <= 2.79

Y4 <= 1.63

Y4 <= 0.24

Y1 <= 5.92

Y1 <= 6.5

Y1 <= 6.49

Y2 <= 3.56

Y4 <= 0.3

Y2 <= 2.9

Y1 <= 5.74

Y1 <= 6.04

Y3 <= 5.56

Y2 <= 2.61

Y2 <= 3.38

Left : YES , Right : NO

(a) Monothetic method

y14y13y11y12y15 y6 y8 y7 y9 y10 y4 y1 y2 y3 y5

Right : Splinter group

(b) Polythetic method

Figure 4.7: Dendrogram for the normalized CDF measure.
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Then, this object goes to the cluster {y11, . . . ,y15} (virginica). The partitions for the first and

second stage are the exactly same as those obtained for the extended Gowda-Diday measure

and for the normalized city block distance.

From Figure 4.6(b), we know that Ω = {y1, . . . ,y15} is bipartitioned into {y1, . . . ,y5} and

{y6, . . . ,y15} at the first stage, and the splinter cluster is {y1, . . . ,y5}. At the second stage,

the cluster {y6, . . . ,y15} is split into
(
{y6, . . . ,y10}, {y11, . . . ,y15}

)
. These bipartitions for

the first and second stage are the same as those obtained by the monothetic method shown

in Figure 4.6(a).

Figure 4.7 shows the dendrograms obtained when using the normalized CDF dissimilarity

measure of Equation (3.31). Figure 4.7(a) is obtained using the monothetic clustering method

and Figure 4.7(b) uses the polythetic method. From Figure 4.7(a) for the monothetic method,

Ω = {y1, . . . ,y15} is bipartitioned into {y1, . . . ,y5} and {y6, . . . ,y15} at the first stage, the

binary question for this stage is ‘Is Y3 ≤ 2.79?’. At the second stage, the cluster {y6, . . . ,y15}

is split into
(
{y6, . . . ,y10}, {y11, . . . ,y15}

)
by the binary question ‘Is Y4 ≤ 1.63?’. These

bipartitions for the first and second stage are the same as those of the extended Gowda-Diday,

the normalized city block distance, and the normalized Euclidean distance. From Figure 4.7(b)

by the polythetic method, we also know that the partitions for the first and second stage are

same as those of the monothetic method shown in Figure 4.7(a).

Thus, when the numbers of clusters are two and three, we know that all dissimilarity

measures and clustering methods give the same results. That is, when r = 2, the clusters are(
{y1, . . . ,y5}, {y6, . . . ,y15}

)
; and the clusters are

(
{y1, . . . ,y5}, {y6, . . . ,y10}, {y11, . . . ,y15}

)
when r = 3. This partition coincides with the attribute of the original classical iris dataset.

From the distance or dissimilarity matrices in Table 4.12, 4.17, 4.18, and 4.19 and the

clustering outcomes in Figure 4.4, 4.5, 4.6, and 4.7, we can calculate the Dunn and Davis-

Bouldin indexes for symbolic objects using Equation (4.8) and (4.9).

Table 4.20 shows the cluster validity index values for the extended Gowda-Diday measure,

the normalized city block distance, the normalized Euclidean distance, and the normalized



110

Table 4.20: Cluster validity index values for Example 4.3

Measure Method Index r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
Mono- DIs

r 1.797 2.216 0.476 0.589 0.568 0.537 0.533
Extended thetic DBs

r 0.698 0.688 1.733 2.125 1.985 2.064 1.936
Gowda-Diday Poly- DIs

r 1.797 2.216 0.442 0.589 0.370 0.537 0.533
thetic DBs

r 0.698 0.688 2.181 2.125 2.416 2.064 1.936
Mono- DIs

r 4.610 4.595 0.521 0.450 0.552 0.541 0.812
Normalized thetic DBs

r 0.232 0.268 1.667 1.709 1.842 1.817 1.438
city block Poly- DIs

r 4.610 4.595 0.521 0.487 0.283 0.420 0.349
thetic DBs

r 0.232 0.268 1.667 1.595 2.283 2.045 2.191
Mono- DIs

r 4.804 4.573 0.493 0.417 0.393 0.662 0.814
Normalized thetic DBs

r 0.227 0.282 1.739 1.841 2.530 1.930 1.508
Euclidean Poly- DIs

r 4.804 4.573 0.493 0.432 0.379 0.334 0.304
thetic DBs

r 0.227 0.282 1.739 1.778 2.421 2.782 2.847
Mono- DIs

r 5.556 7.909 0.822 0.494 0.729 0.980 0.881
Normalized thetic DBs

r 0.199 0.163 0.852 1.617 1.419 1.023 1.070
CDF Poly- DIs

r 5.556 7.909 0.822 0.515 0.371 0.980 0.681
thetic DBs

r 0.199 0.163 0.852 1.653 1.967 1.023 1.261
Measure Method Index r = 9 r = 10 r = 11 r = 12 r = 13 r = 14

Mono- DIs
r 0.704 0.587 0.578 1.265 1.124 1.008

Extended thetic DBs
r 1.457 1.562 1.494 0.814 0.735 0.714

Gowda-Diday Poly- DIs
r 0.704 0.587 0.575 1.265 1.124 1.008

thetic DBs
r 1.457 1.562 1.542 0.814 0.735 0.714

Mono- DIs
r 0.597 0.593 0.998 0.758 1.040 1.426

Normalized thetic DBs
r 1.560 1.616 1.006 1.010 0.723 0.482

city block Poly- DIs
r 0.347 0.333 0.998 0.758 0.574 1.426

thetic DBs
r 2.412 2.479 1.006 1.010 1.113 0.482

Mono- DIs
r 0.928 0.797 0.740 1.012 1.028 1.640

Normalized thetic DBs
r 1.153 1.136 1.208 0.915 0.857 0.505

Euclidean Poly- DIs
r 0.242 0.740 0.740 0.623 0.606 1.640

thetic DBs
r 3.097 1.238 1.208 1.315 1.302 0.505

Mono- DIs
r 0.768 0.805 1.359 1.077 1.434 1.031

Normalized thetic DBs
r 1.144 1.004 0.666 0.669 0.520 0.530

CDF Poly- DIs
r 0.768 0.805 1.359 1.077 1.434 1.031

thetic DBs
r 1.144 1.004 0.666 0.669 0.520 0.530
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CDF measure, and the monothetic and polythetic divisive clustering methods. The monothetic

and polythetic methods give the same maximum value of the Dunn index and the same min-

imum value of the Davis-Bouldin index. The validity indexes for the extended Gowda-Diday

and normalized CDF measures show that the optimal number of clusters is three because the

Dunn index value for these measures is largest at r = 3 and the Davis-Bouldin index value

for r = 3 is smallest. On the contrary, the index values for the normalized city block distance

and the normalized Euclidean distance indicate that there are two clusters in this dataset.

However, all index values at r = 2 are relatively very close to the index values at r = 3. If

there are two clusters, the clusters are
(
{y1, . . . ,y5}, {y6, . . . ,y15}

)
, and if there are three

clusters, we have
(
{y1, . . . ,y5}, {y6, . . . ,y10}, {y11, . . . ,y15}

)
. This result coincides with the

iris species in the original dataset. This example shows that the monothetic and polythetic

divisive clustering methods, and the extended Gowda-Diday measure, the normalized city

block distance, the normalized Euclidean distance, and the normalized CDF measure give a

good result for clustering in this dataset, and the validity indexes find the optimal number of

clusters well.

From these examples, we know that the Dunn index, DIs
r , and the Davais-Bouldin index,

DBs
r , proposed in this chapter, work well for symbolic objects. They can be useful indexes

that give the information for the optimal number of clusters and help to choose well-separated

partitions.



Chapter 5

Data Analysis

In this chapter, the effectiveness of the divisive clustering methods proposed in this study is

demonstrated on the forest cover type dataset with cartographic variables (available in the

UCI Machine Learning Repository web site; http://www.ics.uci.edu/∼mlearn/ MLReposi-

tory.html). This dataset includes 581,012 individual observations and ten numeric variables

with information for four wilderness areas, viz., the Rawah, Comanche Peak, Neota, and

Cache la Poudre in the Roosevelt National Forest, located in northern Colorado. The forest

cover type dataset came from the US Forest Service inventory information. The cartographic

variables in the dataset are the location information for seven cover types such as elevation,

aspect, and slope. Most variables were derived from standard digital spatial data precessed

in a geographical information system (GIS).

Originally, this dataset was made up for a discriminant analysis of cover types using the

geographical and environmental information. However, the goal of the analysis in this study is

to investigate which forest cover types have the most similar location and environment to each

other. Since this dataset has a huge number of individual observations and we are interested

in cover types, in order to obtain the answer for the research question it is appropriate that

data are aggregated by each cover type. This aggregation transforms the original data into

histogram-valued data. That is, each cover type is regarded as a histogram-valued object.

A more detailed description of the data is given in Section 5.1. Thus, we perform clustering

for histogram-valued data using various dissimilarity measures. Through the analysis for

the forest cover type data, we show in Section 5.2 and 5.3 how to apply the dissimilarity

112
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measures and the divisive clustering algorithms proposed in this study to real data sets.

Then, in Section 5.4, we examine whether they work well or not.

5.1 Data Description

The cover type dataset consists of information for four wilderness areas in the Roosevelt

National Forest, Colorado. The dataset has 581,012 individual observations and ten numeric

variables including information for the place and environment where each cover type is

located. Each observation has one of seven mutually exclusive forest cover type classes.

Table 5.1 shows the cover type classes and the number of individual observations for each

class. For example, the Spruce-fir cover type has 211,840 observations. The lodgepole pine

and Spruce-fir have the largest number of observations relatively to the other cover types,

and the cottonwood/willow cover type has the smallest number of observations (at 2,747).

For the purposes of our analysis, we will not consider original frequencies for each object in

the symbolic data context. Thus, each cover type is treated as one observation. An extension

of our methodology could weight each observation, e.g., in proportion to these frequencies.

Table 5.1: Forest cover type classes.

Symbolic object Forest cover type # of obs.
y1 Spruce-fir 211,840

y2 Lodgepole pine 283,301

y3 Ponderosa pine 35,754

y4 Cottonwood/Willow 2,747

y5 Aspen 9,493

y6 Douglas-fir 17,367

y7 Krummholz 20,510
Total 581,012

The ten numeric variables in this dataset are digital spatial data obtained from the US

Geological Survey (USGS) and the US Forest Service (USFS). The description of each vari-

able is shown in Table 5.2; an expanded description is given in the UCI Machine Learning

Repository web site (http://archive.ics.uci.edu/ml/datasets/Covertype). Table 5.3 shows
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some basic descriptive statistics for each variable of the classical cover type data, viz., the

sample mean, standard deviation, and the minimum and maximum values. The measure-

ment scale of five of the variables is in meters, one is in degrees, another is azimuth (i.e.,

the horizontal angular distance from a fixed reference point), and three are index variables.

Since the measurement units of the variables in the dataset are not the same and the ranges

of the variables are different, normalized dissimilarity measures are used for clustering.

Table 5.2: Description of each variable in the cover type dataset.

Variable Measurement Description

Y1 Meters Elevation

Y2 Azimuth Aspect

Y3 Degrees Slope

Y4 Meters Horizontal distance to nearest surface water feature

Y5 Meters Vertical distance to nearest surface water feature

Y6 Meters Horizontal distance to nearest roadway

Y7 0 to 255 index A relative measure of incident sunlight at 09:00 A.M.
on the summer solstice

Y8 0 to 255 index A relative measure of incident sunlight at noon
on the summer solstice

Y9 0 to 255 index A relative measure of incident sunlight at 03:00 P.M.
on the summer solstice

Y10 Meters Horizontal distance to nearest historic wildfire
ignition point

This dataset is transformed into a histogram-valued dataset with seven symbolic

objects and ten histogram-valued variables. To transform the classical cover type data

into histogram-valued dataset, we firstly aggregate classical data by each cover type. Then,

we have seven groups of aggregated data because there are seven cover types. From each

group of aggregated data, we generate one-dimensional histograms for each variable using the
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‘hist()’ function in statistical software ‘R’. The number of bins for each histogram is decided

by using a formula proposed by Sturges (1926). Sturges’ (1926) formula is dlog2N + 1e,

where N is the number of classical observations, and d·e is the ceiling function mapping

a real number to the next largest integer. This histogram-valued dataset generated from

original classical cover type data is provided in Table B.1 of Appendix B.1. We use the

resulting histogram-valued dataset for our clustering methodology.

In Section 5.2 and 5.3, we analyse the forest cover type data by performing the clustering

methods for symbolic objects proposed in this study. As shown in Table B.1, the histogram-

valued data that come from the original cover type data set have different numbers and

lengths of subintervals for each object. Thus, in order to obtain the same number and length

of subintervals for each object, the histogram-valued data should be transformed using the

method introduced in Section 3.2. For each variable, we obtain the starting and ending

points of transformed subintervals using Equation (3.3) and (3.4). From the interval with

these starting and ending points, the transformed subintervals can be obtained by dividing

Table 5.3: Descriptive statistics for each variable.

Variable Minimum Maximum Mean Standard
Deviation

Y1 1859 3858 2959.36 279.98

Y2 0 360 155.65 111.91

Y3 0 66 14.10 7.49

Y4 0 1397 269.43 212.55

Y5 -173 601 46.42 58.30

Y6 0 7117 2350.15 1559.25

Y7 0 254 212.15 26.77

Y8 0 254 223.32 19.77

Y9 0 254 142.53 38.27

Y10 0 7173 1980.29 1324.19
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this interval by the minimum length of original subintervals as defined in Equation (3.5) and

(3.7). For each object, the transformed relative frequencies corresponding to each transformed

subinterval are determined by the overlapping portion between the original and transformed

subintervals. Thus, we can obtain the transformed histogram-valued data from the original

histogram-valued data. These transformed data are shown in Table B.2 of Appendix B.2.

5.2 Dissimilarity Measures

From the transformed histogram-valued data of Table B.2, dissimilarity measure values for

pairs of objects can be calculated. For the analysis, we apply four different dissimilarity

measures to the transformed dataset, viz., the extended Gowda-Diday dissimilarity measure

(GD) of Equation (3.21), the city block distance (CB) of Equation (3.26) and the Euclidean

distances (EU) of Equation (3.27) (based on the normalized extended Ichino-Yaguchi measure

for γ = 0.25 defined in Equation (3.22) and (3.23)), and the normalized CDF measure

(NCDF) of Equation (3.31). All four measures are normalized measures. Details of their

derivations are given in Appendix B.3; the corresponding complete dissimilarity/distance

matrices DGD, D1
NM , D2

NM , and DNCDF are as follows:

The extended Gowda-Diday dissimilarity matrix for seven objects of cover types is given

by

DGD =



0.000 1.341 6.454 7.305 4.300 6.354 2.953

0.000 6.201 7.239 3.891 6.285 3.593

0.000 4.037 4.775 2.077 7.042

0.000 4.818 4.416 7.251

0.000 5.175 4.770

0.000 7.288

0.000


. (5.1)

The normalized city block and Euclidean distances are based on the normalized extended

Ichino-Yaguchi measure (see Appendix B.3), and are special cases of the normalized

Minkowski distance of Equation (3.28). If q = 1 in the normalized Minkowski distance,



117

then it becomes the normalized city block distance, and if q = 2, it becomes the normalized

Euclidean distance. The normalized city block distance matrix for seven objects of cover

types is

D1
NM =



0.000 0.257 1.155 1.365 0.732 1.122 0.472

0.000 1.087 1.262 0.615 1.095 0.626

0.000 0.589 0.743 0.348 1.323

0.000 0.732 0.695 1.475

0.000 0.846 0.925

0.000 1.364

0.000


. (5.2)

The normalized Euclidean distance matrix for seven objects of cover types is given by

D2
NM =



0.000 0.114 0.471 0.567 0.273 0.453 0.174

0.000 0.417 0.501 0.223 0.406 0.263

0.000 0.212 0.279 0.133 0.568

0.000 0.326 0.276 0.664

0.000 0.315 0.369

0.000 0.565

0.000


. (5.3)

The normalized CDF dissimilarity matrix is

DNCDF =



0.000 0.225 1.112 1.354 0.727 1.107 0.380

0.000 1.016 1.221 0.590 1.042 0.492

0.000 0.596 0.702 0.330 1.291

0.000 0.674 0.714 1.478

0.000 0.806 0.868

0.000 1.364

0.000


. (5.4)
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5.3 Clustering

Both the monothetic and polythetic methods are used for divisive clustering, and clustering

outcomes are demonstrated using validity indexes (in Section 5.4). These clustering proce-

dures for this cover type dataset are described in Section 5.3.1 in detail; and a discussion of

the resulting partitions and dendrograms is in Section 5.3.2.

5.3.1 Monothetic and Polythetic Methods

In this section, we illustrate the monothetic and polythetic clustering procedures for the

cover type dataset using the extended Gowda-Diday dissimilarity matrix of Equation (5.1).

Monothetic Method

We illustrate the clustering procedure for the cover type data by the monothetic method.

At the first stage, we have a cluster with seven histogram-valued objects for the cover type

data. That is,

P1 ≡ C1 = {y1, . . . ,y7},

where yi are as described in Table 5.1. First, we calculate the mean of each object for each

variable, Mij, using Equation (3.13), and then sort the objects in ascending order by their

mean values. The result is shown in Table B.3 in Appendix B.4. Let yj
(i) denote an object

with the ith smallest mean for the variable Yj. Then, from this table, the object with the

smallest mean for the variable Y1 = Elevation is y4, and this object y4 is denoted by y1
(1).

The second smallest mean for the variable Y1 is 2394.2 corresponding to y(2) ≡ y3. Also, the

object with the largest mean for Y1 is y7 and its mean is 3361.7. Thus, Table B.3 shows the

order of objects sorted by mean values for each variable.

In the monothetic context, the number of possible bipartitions for the rth stage is∑r
u=1 p(nu−1), where p is the number of variables and nu is the number of objects in cluster

Cu, u = 1, . . . , r. Thus, since we have seven objects in C1, there are 60 (= 10(7−1)) possible
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bipartitions at the first stage. We have to examine the within-cluster variance for all 60 pos-

sible bipartitions. For example, from the first row of Table B.3 in Appendix B.4, the possible

bipartitions for variable Y1 are ({y4}, {y3,y6,y5,y2,y1,y7}), ({y4,y3}, {y6,y5,y2,y1,y7}),

({y4,y3,y6}, {y5,y2,y1,y7}), ({y4,y3,y6,y5}, {y2,y1,y7}), ({y4,y3,y6,y5,y2}, {y1,y7}),

and ({y4,y3,y6,y5,y2,y1}, {y7}). For all 60 bipartitions, the decrement values of the within-

cluster variance are obtained by Equation(3.39), and the optimal bipartition can be found

by the maximum decrement value. For example, if the extended Gowda-Diday dissimilarity

matrix and weights wi = 1/n for the within-cluster variance are used, the decrement value

of the within-cluster variance for the partition ({y4,y3,y6}, {y5,y2,y1,y7}) can be obtained

as follows: Let C1 = {y1,y2,y3,y4,y5,y6,y7}, C1
1 = {y4,y3,y6}, and C2

1 = {y5,y2,y1,y7}.

Then,

I(C1) =
1

7× 7

{
1.3412 + 6.4542 + 7.3052 + · · ·+ 5.1752 + 4.7702 + 7.2882

}
= 12.53,

I(C1
1) =

1

7× 3

{
4.0372 + 4.4162 + 2.0772

}
= 1.91,

I(C2
1) =

1

7× 4

{
3.8912 + 4.3002 + 4.7702 + 1.3412 + 3.5932 + 2.9532

}
= 2.85.

Thus,

∆1 = I(C1)− I(C1
1)− I(C2

1) = 12.53− 1.91− 2.85 = 7.77.

Similarly, we can obtain decrement values of the other possible bipartitions for the first stage,

and this result is shown in Table B.4 of Appendix B.4. From the Table B.4, we know that the

maximum decrement value is 7.77, and the optimal bipartition corresponding to this value

is ({y3,y4,y6}, {y1,y2,y5,y7}).

The important characteristic is that a binary question can be found at each stage. In the

case of histogram-valued data, cut points for binary questions can be obtained by the mean

value of the union between two objects on a boundary of the optimal bipartition. However,

at each stage, there can often exist more than one cut point. For example, as shown in
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Table B.4, the clustering outcomes based on the variables Y1, Y3, Y4, Y6, Y8, Y10, respec-

tively, detect the same optimal bipartition, ({y1,y2,y5,y7}, {y3,y4,y6}), corresponding to

the largest decrement value (7.77). Thus, there can be six cut points at the first stage because

six variables detect the optimal bipartition. To obtain a unique cut point and binary ques-

tion, we use dissimilarity values for these variables between two objects on the boundary

of the optimal bipartition. As shown in Table B.4, the optimal bipartition for the variable

Y1 is ({y4,y3,y6}, {y5,y2,y1,y7}). In this case, two objects on the boundary of the optimal

bipartition in ascending order by Y1 are y6 and y5. That is, the cluster {y1, . . . ,y7} is split

into two clusters in the boundary between two objects y6 and y5. Thus, the dissimilarity

value for variable Y1 between two transformed objects y′6 and y′5 is considered. That is, from

Definition 3.8,

DGD(y′61, y
′
51) = [D11(y

′
61, y

′
51) +D21(y

′
61, y

′
51) +D31(y

′
61, y

′
51)]

= 0.319 + 0.725 + 0.180 = 1.223.

Similarly, the dissimilarity values for the other variables Y3, Y4, Y6, Y8, Y10 that detect the

optimal bipartition at the first stage can be obtained as follows:

Y3 : DGD(y′53, y
′
43) = 0.181,

Y4 : DGD(y′34, y
′
54) = 0.260,

Y6 : DGD(y′66, y
′
56) = 0.662,

Y8 : DGD(y′48, y
′
58) = 0.200,

Y10 : DGD(y′6,10, y
′
5,10) = 0.715.

Since the dissimilarity based on the Y1 variable has the largest value of 1.223, the binary

question for the first stage is based on the variable Y1, and from Equation (3.15), the cut

point can be obtained using the mean for the variable Y1 of the union of two transformed

objects y′6 and y′5. That is, the cut point is M∗
(6∪5)1 = 2596.83. Thus, the binary question for

the first stage is ‘Is Y1 ≤ 2596.83?’. As shown in Figure 5.1(a), if the answer of this question
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is ‘Yes’, then the observation goes into cluster C1 = {y3,y4,y6}, but if ‘No’, then it goes

into cluster C2 = {y1,y2,y5,y7}.

From the result of the first stage, we start the second stage with two clusters C1 =

{y3,y4,y6} and C2 = {y1,y2,y5,y7}). In this stage, either of these two clusters is biparti-

tioned. Similarly to the first stage, we first sort the objects for each cluster by mean values.

Using the mean values for the Yj variable in Table B.3, we can sort the objects in each cluster

for the Yj variable. For example, for the Y2 variable, the sorted result is C1 = {y4,y3,y6}

and C2 = {y5,y2,y7,y1}. Similarly, we can sort the objects for the other variables. In this

stage, we have to examine five (= 2 + 3) possible biparitions for each variable. Thus, there

are a total of 50 possible bipartitions at this stage.

The within-cluster variance values for two clusters C1 = {y3,y4,y6}) and C2 =

{y1,y2,y5,y7} can be found in Table B.4 in columns 3 and 4, respectively. For example, in

Table B.4, the third row of the clustering result for variable Y1 shows the optimal biparti-

tion, to be
(
{y4,y3,y6}, {y5,y2,y1,y7}

)
. The I(C1

1) and I(C2
1) values (viz., 1.91 and 2.85,

respectively) corresponding to the optimal bipartition are the within-cluster variances for

the two clusters C1 = {y3,y4,y6}) and C2 = {y1,y2,y5,y7} at the second stage. That is,

at the second stage, I(C1) = 1.91 and I(C2) = 2.85. Using these values, we can calculate

the decrement values for each possible bipartition. The results are shown in Table B.5 of

Appendix B.4.

From Table B.5, we see that the decrement value, I(Cu)− I(C1
u)− I(C2

u), has the largest

value of 1.73 when the cluster C2 = {y1,y2,y5,y7} is split into ({y5} and {y1,y2,y7}). That

is, the optimal partition at the second stage is ({y1,y2,y7}, {y5}, {y3,y4,y6}). Since, as

shown in Table B.5, all variables except for variable Y5 (i.e., 9 variables) detect the same

optimal bipartition for the second stage, there can be nine possible binary questions at this

stage. Thus, to obtain a unique binary question, we examine the extended Gowda-Diday

measure values for each variable that detect the optimal bipartition. That is, the variable

with the largest dissimilarity value becomes the unique binary question for this stage. For
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example, for variable Y3, the optimal bipartition is ({y1,y2,y7}, {y5}) in ascending order by

mean values for Y3. In this case, the two objects on the boundary of the optimal bipartition

are y7 and y5. That is, the cluster {y1,y2,y5,y7} is split into two clusters in the boundary

between two objects y7 and y5. In this case, the dissimilarity value for variable Y3 between

two transformed histogram-valued objects y′7 and y′5, DGD(y′73, y
′
53), should be examined.

Thus, we have to examine the dissimilarity values for nine variables except for Y5 between

two objects on the boundary, using Equation (3.21) as follows:

Y1 : DGD(y′51, y
′
21) = 0.773,

Y2 : DGD(y′52, y
′
22) = 0.225,

Y3 : DGD(y′73, y
′
53) = 0.224,

Y4 : DGD(y′54, y
′
14) = 0.255,

Y6 : DGD(y′56, y
′
26) = 0.701,

Y7 : DGD(y′77, y
′
57) = 0.136,

Y8 : DGD(y′58, y
′
78) = 0.284,

Y9 : DGD(y′59, y
′
79) = 0.320,

Y10 : DGD(y′5,10, y
′
1,10) = 0.355.

Since the dissimilarity for the variable Y1 has the largest value of 0.773, the cut point for the

second binary question should be the mean value of the union for the variable Y1 between

the two transformed histogram-valued objects y′5 and y′2. Thus, from Equation (3.15), the

cut point is M∗
(5∪2)1 = 2875.28, and the second binary question becomes ‘Is Y1 ≤ 2875.28?’.

As shown in Figure 5.1(a), if the answer for this binary question is ‘Yes’, the object goes

into cluster {y5}. In contrast, if ‘No’, it goes into cluster {y1,y2,y7}.

At the third stage, we start with three clusters (C1 = {y3,y4,y6}, C2 = {y5}, C3 =

{y1,y2,y7}). One of these three clusters would be bipartitioned, but we do not have to

examine cluster C2 because this cluster has only one object. Thus, in this stage, there are

four (= 2 + 0 + 2) possible bipartitions for each variable. Similarly to the first and second
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Table 5.4: Clustering results for four dissimilarity measures.

Partition Extended Gowda-Diday (Monothetic and Polythetic)
P2

(
{y1,y2,y5,y7}, {y3,y4,y6}

)
P3

(
{y1,y2,y7}, {y3,y4,y6}, {y5}

)
P4

(
{y1,y2,y7}, {y3,y6}, {y4}, {y5}

)
P5

(
{y1,y2}, {y3,y6}, {y4}, {y5}, {y7}

)
P6

(
{y1,y2}, {y3}, {y4}, {y5}, {y6}, {y7}

)
Partition Normalized city block (Monothetic and Polythetic)

P2

(
{y1,y2,y7}, {y3,y4,y5,y6}

)
P3

(
{y1,y2,y7}, {y3,y4,y6}, {y5}

)
P4

(
{y1,y2,y7}, {y3,y6}, {y4}, {y5}

)
P5

(
{y1,y2}, {y3,y6}, {y4}, {y5}, {y7}

)
P6

(
{y1,y2}, {y3}, {y4}, {y5}, {y6}, {y7}

)
Partition Normalized Euclidean (Monothetic and Polythetic)

P2

(
{y1,y2,y5,y7}, {y3,y4,y6}

)
P3

(
{y1,y2,y7}, {y3,y4,y6}, {y5}

)
P4

(
{y1,y2,y7}, {y3,y6}, {y4}, {y5}

)
P5

(
{y1,y2}, {y3,y6}, {y4}, {y5}, {y7}

)
P6

(
{y1,y2}, {y3}, {y4}, {y5}, {y6}, {y7}

)
Partition Normalized CDF (Monothetic and Polythetic)

P2

(
{y1,y2,y7}, {y3,y4,y5,y6}

)
P3

(
{y1,y2,y7}, {y3,y6}, {y4,y5}

)
P4

(
{y1,y2,y7}, {y3,y6}, {y4}, {y5}

)
P5

(
{y1,y2}, {y3,y6}, {y4}, {y5}, {y7}

)
P6

(
{y1,y2}, {y3}, {y4}, {y5}, {y6}, {y7}

)
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y4 y6 y3 y5 y2 y1 y7

Y1 <= 2596.83

Y1 <= 2875.28

Y1 <= 2329.27

Y1 <= 3237.83

Y5 <= 55.01

Y1 <= 3020.51

Left : YES , Right : NO

(a) Monothetic algorithm

y2 y1 y7 y5 y3 y6 y4

Right : Splinter group

(b) Polythetic algorithm

Figure 5.1: The clustering result for the extended Gowda-Diday dissimilarity measure.

stage, the optimal bipartition and binary question for the third stage can be calculated;

and all completed clustering outcomes shown in Table 5.4 and Figure 5.1(a) also can be

obtained. Similarly to the case of the extended Gowda-Diday dissimilarity measure of Equa-

tion (5.1), clustering results for the normalized city block distance, the normalized Euclidean

distance, and the normalized CDF dissimilarity measure of Equation (5.2), (5.3), and (5.4),

respectively, can be obtained and are shown in Table 5.4.

Polythetic Method

Let us now apply the polythetic method introduced in Section 3.4.2 to the forest cover

type dataset. We start the first stage with P1 = (C1 = {y1, . . . ,y7}). First, we calculate

the average weighted dissimilarity, D̄u(yi), for each object using the extended Gowda-Diday

dissimilarity matrix of Equation (5.1). For example, suppose that the weight wi = 1/n for all

objects. Then, the average weighted dissimilarity for the object y1, D̄1(y1), is, from Equation
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(3.42),

D̄1(y1) =
1

n(n1 − 1)

n1∑
i=1

DGD(y′1,y
′
i)

=
1

7× 6
(0.000 + 1.341 + 6.454 + 7.305 + · · ·+ 2.953)

= 0.684,

where the dissimilarities DGD(y′1,y
′
i) are given in Equation (5.1), and where n is the number

of objects in the partition P1 and n1 is the number of objects in the cluster C1.

Similarly, we can obtain the average weighted dissimilarity values for the other objects,

and those values are as follows:

D̄1(y2) = 0.680, D̄1(y3) = 0.728, D̄1(y4) = 0.835,

D̄1(y5) = 0.660, D̄1(y6) = 0.752, D̄1(y7) = 0.783.

From these values, we can obtain the maximum value of the D̄1(yi), i = 1, · · · , 7. Thus,

the object y4 has the maximum average dissimilarity value, and MAD1 = maxi{D̄1(yi), i =

1, . . . , 7} = 0.835 (where MAD1 is the maximum average dissimilarity value for the cluster

C1 = {y1, . . . ,y7}, see Equation (3.43)). At the first stage, since there is only one cluster,

MMAD = maxu{MADu} = MAD1 (where MMAD is the maximum average dissimilarity

value for all clusters in the current partition, see Equation (3.44)). Therefore, the object

y4 plays a role as a seed, and it goes into the splinter cluster. That is, the splinter cluster

C2
1 = {y4} ≡ {y∗}. Then, C1

1 = {y1,y2,y3,y5,y6,y7} ≡ {y(1),y(2),y(3),y(4),y(5),y(6)},

where y1 ≡ y(1), y2 ≡ y(2), y3 ≡ y(3), y5 ≡ y(4), y6 ≡ y(5), and y7 ≡ y(6). Note that, unlike

the monothetic method, the polythetic method does not consider the order of objects in each

cluster.

To obtain the difference of the sums of the within-cluster variances for each object of

Equation (3.45), H(i), the within-cluster variance for C1
1 = {y1,y2,y3,y5,y6,y7} and for

C2
1 = {y4} are first calculated. Since C2

1 has only one object at the current status, the

within-cluster variance I(C2
1) = 0. The within-cluster variance for the cluster C1

1 is given as,
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from Equation (3.35),

I(C1
1) =

1

7× 6

{
1.3412 + 6.4542 + 4.3002 + · · ·+ 4.7702 + 7.2882}

}
= 9.44.

Let TC1 and TC2 be temporary clusters for the clusters C1
1 and C2

1 , respectively. These

temporary clusters play a role as temporary storage corresponding to the clusters C1
1 and C2

1 .

Now, we set TC1 = C1
1 and TC2 = C2

1 ; then TC1 = {y1,y2,y3,y5,y6,y7} and TC2 = {y4},

and one object of TC1 moves into the cluster TC2. For example, if the object y(1) ≡ y1

moves into the splinter cluster, the cluster TC1 = {y2,y3,y5,y6,y7} and TC2 = {y1,y4}.

Then, the H(1) value can be calculated as follows. From Equation (3.35),

I(TC1) =
1

7× 5

{
6.2012 + 3.8912 + 6.2852 + 3.5932 + 4.7752

+2.0772 + 7.0422 + 5.1752 + 4.7702 + 7.2882}
}

= 8.15,

I(TC2) =
1

7× 2
7.3052 = 3.81.

Thus, from Equation (3.45),

H(1) = (9.44 + 0.00)− (8.15 + 3.81) = −2.52.

Similarly, the H(i) values for the other objects can be obtained, and the results are shown in

Table B.6 of Appendix B.4.

From Table B.6, when the object y6 goes into the splinter cluster TC2, we have the

maximum H(i) value. Let MH be the maximum H(i) value (i.e., MH = maxi{H(i), i =

1, . . . , 6}); then MH = 1.41. Since the MH value is positive, the object y6 goes into the

cluster C2
1 . Thus, currently C1

1 = {y1,y2,y3,y5,y7} and C2
1 = {y4,y6}. The within-cluster

variance values for these clusters C1
1 and C2

1 are 6.64 and 1.39, respectively. Again, we set

temporary clusters where now TC1 = C1
1 = {y1,y2,y3,y5,y7} and TC2 = C2

1 = {y4,y6}.

And then, one object of TC1 = {y1,y2,y3,y5,y7} moves into the splinter cluster TC2 =

{y4,y6}, and H(i) values are calculated as shown in Table B.7 in Appendix B.4.
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From the results of Table B.7, when the object y3 goes into the splinter cluster TC2,

we have the maximum H(i) value of 3.27. Since MH > 0, the object y3 moves from the

cluster C1
1 into the cluster C2

1 . Thus, now C1
1 = {y1,y2,y5,y7} and C2

1 = {y3,y4,y6}. The

within-cluster variance values for C1
1 = {y1,y2,y5,y7} and C2

1 = {y3,y4,y6} are 2.85 and

2.91, respectively. Similarly to the previous step, we set TC1 = C1
1 = {y1,y2,y5,y7} and

TC2 = C2
1 = {y3,y4,y6}; and then one object of TC1 goes into the splinter cluster TC2.

Table B.8 (of Appendix B.4) shows this result.

Since MH = −0.39 < 0, there is no object to move from the cluster C1
1 into the cluster

C2
1 . Thus, we finally obtain the optimal bipartition for the first stage. That is, the optimal

partition for the first stage is C1 = {y1,y2,y5,y7} and C2 = {y3,y4,y6}. In order to find

the optimal bipartition using the polythetic algorithm at this first stage, we examined 15

possible bipartitions. This number of possible bipartitions is much less than that required

for the monothetic algorithm (60 possible bipartitions).

We start the second stage with two clusters, C1 = {y1,y2,y5,y7} and C2 = {y3,y4,y6}.

Similarly to the first stage, we have to calculate the average weighted dissimilarity values.

To obtain these values, it is more convenient to use the reduced extended Gowda-Diday

dissimilarity matrices. The reduced distance/dissimilarity matrix can be obtained from the

original distance/dissimilarity matrix corresponding to Ω = {y1, . . . ,yn}. In this case, the

original extended Gowda-Diday dissimilarity matrix is given in Equation (5.1). To obtain the

reduced dissimilarity matrix corresponding to the cluster C1 = {y1,y2,y5,y7}, we extract

the 1st, 2nd, 5th, and 7th rows and columns from the original dissimilarity matrix of Equation

(5.1). Then, the reduced extended Gowda-Diday dissimilarity matrix for the cluster C1 =

{y1,y2,y5,y7} is given as
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y1 y2 y5 y7

DGD,C1 =

y1

y2

y5

y7



0.000 1.341 4.300 2.953

1.341 0.000 3.891 3.593

4.300 3.891 0.000 4.770

2.953 3.593 4.770 0.000


.

Similarly, the reduced dissimilarity matrix for C2 = {y3,y4,y6} is

y3 y4 y6

DGD,C2 =

y3

y4

y6


0.000 4.037 2.077

4.037 0.000 4.416

2.077 4.416 0.000

.

For example, the average weighted dissimilarity value for the objects y1 and y3, respectively,

are, from Equation (3.35),

D̄1(y1) =
1

7× 3
(0.000 + 1.341 + 4.300 + 2.953)

= 0.409,

D̄2(y3) =
1

7× 2
(0.000 + 4.037 + 2.077)

= 0.437.

The other average dissimilarity values for C1 are D̄1(y2) = 0.420, D̄1(y5) = 0.617, D̄1(y7) =

0.539, and the other average dissimilarity values for C2 are D̄2(y4) = 0.604, D̄2(y6) =

0.464. Thus, the maximum value for C1, from Equation (3.43) is MAD1 = 0.617, and the

maximum value for C2 is MAD2 = 0.604. Finally, the maximum value of MADu, u = 1, 2

is MMAD = 0.617, and the object corresponding to 0.617 is y5. Thus, y5 is regarded as

a seed, and C1 is bipartitioned into two clusters at this stage because y5 ∈ C1. That is,

C1
1 = {y1,y2,y7} ≡ {y(1),y(2),y(3)}, and C2

1 = {y5} ≡ {y∗}. The within-cluster variance

for C1
1 is I(C1

1) = 1.12, and for C2
1 is I(C2

1) = 0.

Now, we set TC1 = C1
1 = {y1,y2,y7} and TC2 = C2

1 = {y5}; and then H(i) values for

each object of C1 are calculated as shown in Table B.9 of Appendix B.4.
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Since the MH value is −0.59 and this value is negative, there is no object to move

from the cluster C1
1 into the cluster C2

1 at this stage. Thus, the optimal bipartition for the

second stage is C1
1 = {y1,y2,y7} and C2

1 = {y5}, and P3 = (C1 = {y1,y2,y7}, C2 =

{y3,y4,y6}, C3 = {y5}). Similarly to the first and second stage, the clustering outcomes for

the other stages as shown in Table 5.4 and Figure 5.1(b) can be obtained.

Also, the clustering results based on the normalized city block distance, the normalized

Euclidean distance, and the normalized CDF dissimilarity measure of Equation (5.2), (5.3),

and (5.4), respectively, can be obtained by the similar procedure to the extended Gowda-

Diday matrix of Equation (5.1), and are shown in Figure 5.2, 5.3, and 5.4, respectively.

5.3.2 Discussion

Figures 5.1, 5.2, 5.3, 5.4, and Table 5.4 show dendrograms and partitions of the clustering

results for each dissimilarity measure and clustering methods. Figure 5.1 gives the dendro-

grams obtained when the extended Gowda-Diday measure is used; Figure 5.1(a) is obtained

when using the monothetic method introduced in Section 3.4.1, and Figure 5.1(b) is given

by the polythetic method proposed in Section 3.4.2. Figure 5.2 shows the dendrograms

obtained when using the normalized city block distance and both the monothetic and poly-

thetic methods. Figure 5.3 comes from using the normalized Euclidean distance measure,

and Figure 5.4 results from using the normalized CDF measure of Equation (3.31). For these

dendrograms, the vertical axis represents the rth stage. Also, dendrograms for the monothetic

method show the binary questions for each stage. For each binary question, the left side of

each node means ‘Yes’ for binary questions, and the right side represents ‘No’. The binary

question in the monothetic method identifies the criterion on which bipartitioning is made.

From Figure 5.1(a) obtained by the monothetic algorithm based on the extended Gowda-

Diday measure, we see there are six binary questions, with the binary question at the first

stage as ‘Is Y1 ≤ 2596.83?′. This means that bipartitioning is based on variable Y1, and the

cut point for ‘Yes’ or ‘No’ is 2596.83. Thus, if the answer is ‘Yes’, the cover type goes to the
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cluster {y3,y4,y6}. Conversely, if ‘No’, it goes to {y1,y2,y5,y7}. That is, if the elevation is

equal or less than 2596.83 meters, then the cover type goes to the cluster {y3,y4,y6}, and

if the elevation is larger than 2596.83 meters, then it goes to {y1,y2,y5,y7}. For example,

suppose that there is a histogram-valued object for a new cover type and the mean for the

variable Y1 of this object, Mij = Mi1 of Equation (3.13), is 2200 meters. Then, since the

mean of this new cover type object is less than the cut point (2596.83), the answer is ‘Yes’

and this new cover type object is classified into the cluster {y3,y4,y6}.

At the second stage, the binary question is ‘Is Y1 ≤ 2875.28?′. Similarly to the first

stage, if the answer is ‘Yes’, then it goes to the cluster {y5}, and if ‘No’, then it goes to

{y1,y2,y7}. For example, suppose that we have a histogram-valued object for a new cover

type, and the mean for the variable Y1 of a new histogram-valued object is 2700 meters.

Then, the answer for the first binary question, ‘Is Y1 ≤ 2596.83?′, is ‘No’, and the answer

for the second binary question, ‘Is Y1 ≤ 2875.28?′, is ‘Yes’. Thus, this object is classified

into the cluster {y5}. As shown in Figure 5.1(a), all binary questions except for the fifth

binary question (‘Is Y5 ≤ 55.01?′) are related to the variable Y1 representing the elevation.

This means that objects are mainly classified by variable Y1 in the clustering result obtained

using the extended Gowda-Diday measure. That is, the elevation is a important factor to

classify cover types when classification is based on the extended Gowda-Diday measure.

As shown in Figure 5.1(b), the polythetic method does not provide binary questions

because it uses all p variables to find the optimal bipartition. In the results for the extended

Gowda-Diday measure, for all stages, the clustering result of the polythetic method is exactly

the same as that of the monothetic method as shown in Figure 5.1(a) and 5.1(b). In Figure

5.1(b), the right side of each node corresponds to the splinter cluster. The polythetic method

proposed in Section 3.4.2 starts with finding the object that is the most different from the

others within a cluster. That object is called the seed, and the cluster including the seed

is called the splinter cluster or group. The polythetic method iteratively compares whether

each object is close to a main cluster or a splinter cluster. Thus, from Figure 5.1(b), we
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know that the splinter cluster is {y3,y4,y6} and the object y4, which is located in the end

of the right side in Figure 5.1(b), is the seed at the first stage. At the second stage, the

cluster {y1,y2,y5,y7} is bipartitioned into {y1,y2,y7} and {y5}. In this case, {y1,y2,y7}

is the main cluster and {y5} is the splinter cluster and the seed. In other words, in the

cluster {y1, . . . ,y7}, the object y4 is the most different from the others, and in the cluster

{y1,y2,y5,y7}, the object y5 is the most different in both location and dispersion.

y3 y6 y4 y5 y2 y1 y7

Y6 <= 2033.73

Y1 <= 2596.83

Y7 <= 211.13

Y1 <= 3237.83

Y2 <= 174.58

Y1 <= 3020.51

Left : YES , Right : NO

(a) Monothetic algorithm

y6 y3 y4 y5 y1 y2 y7

Right : Splinter group

(b) Polythetic algorithm

Figure 5.2: The clustering result for the normalized city block distance measure.

Figure 5.2 shows the dendrograms obtained when using the normalized city block dis-

tance with q = 1 in Equation (3.28). Figure 5.2(a) is obtained using the monothetic clustering

method and Figure 5.2(b) uses the polythetic method. The monothetic methods in Figure

5.2(a) provides the binary questions. At the first stage, P1 = {y1, . . . ,y7} is bipartitioned into

{y1,y2,y7} and {y3,y4,y5,y6}. This bipartition is a little bit different from the clustering

result for the extended Gowda-Diday measure as shown in Figure 5.1(a). The cluster of the

object y5 is changed. However, the third partition of the normalized city block distance is the

same as that of the extended Gowda-Diday measure, P3 =
(
{y1,y2,y7}, {y3,y4,y6}, {y5}

)
.
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The first binary question is ‘Is Y6 ≤ 2033.73?’. This means that if the horizontal dis-

tance to the nearest roadway is less than 2033.73 meters, then that object belongs to

the cluster {y3,y4,y5,y6}, and otherwise, it goes to {y1,y2,y7}. The binary question for

the second stage is ‘Is Y1 ≤ 2596.83?’. The cluster {y3,y4,y5,y6} is bipartitioned into(
{y3,y4,y6}, {y5}

)
by the variable Y1. The six binary questions for this clustering result

are related to the variables Y1, Y2, Y6 and Y7.

From Figure 5.2(b), we know that the splinter cluster for the first stage is {y1,y2,y7}. At

the second stage, The cluster {y3,y4,y5,y6} is bipartitioned into
(
{y3,y4,y6}, {y5}

)
, and

the splinter cluster is {y5}. Similarly to the result for the extended Gowda-Diday measure

shown in Figure 5.1, the clustering result for the normalized city block distance by the

polythetic algorithm is the same as that by the monothetic algorithm.

Figure 5.3 shows the dendrograms obtained when using the normalized Euclidean distance

with q = 2 in Equation (3.28). Figure 5.3(a) is obtained using the monothetic clustering

algorithm and Figure 5.2(b) comes from the polythetic algorithm. In Figure 5.3(a) by the

monothetic method, the first binary question is ‘Is Y1 ≤ 2596.83?’, and P1 = {y1, . . . ,y7}

is bipartitioned into {y1,y2,y5,y7} and {y3,y4,y6} by this binary question. At the second

stage, the cluster {y1,y2,y5,y7} is bipartitioned into
(
{y1,y2,y7}, {y5}

)
by the binary

question ‘Is Y6 ≤ 2033.73?’. For example, suppose that there is a new histogram-valued

object, and the mean for Y1 of this object is 2700 meters and the mean for Y6 is 2200 meters.

Then, this object goes to the cluster {y1,y2,y7}. For another example, if the mean for Y1

of a new object is 2200 meters and the mean for Y6 is 2000 meters, then this object goes

to the cluster {y3,y4,y6}. That is, this object is not affected by the second binary question

‘Is Y6 ≤ 2033.73?’. The clustering outcome for the normalized Euclidean distance is the

exactly same as that for the extended Gowda-Diday measure, but their binary questions are

different. Although monothetic clustering results for each measures can be the same, binary

questions for each measure can be different.
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y3 y6 y4 y5 y2 y1 y7

Y1 <= 2596.83

Y6 <= 2033.73

Y7 <= 211.13

Y1 <= 3237.83

Y2 <= 174.58

Y1 <= 3020.51

Left : YES , Right : NO

(a) Monothetic algorithm

y6 y3 y4 y1 y2 y7 y5

Right : Splinter group

(b) Polythetic algorithm

Figure 5.3: The clustering result for the normalized Euclidean distance measure.

Also, from Figure 5.3, we know that the clustering result for the normalized Euclidean

distance by the polythetic algorithm is the same as that by the monothetic algorithm. In

Figure 5.3(b), P1 = {y1, . . . ,y7} is bipartitioned into {y1,y2,y5,y7} and {y3,y4,y6} at the

first stage, and the splinter cluster is {y1,y2,y5,y7}. This bipartition is the same as that of

the extended Gowda-Diday measure shown in Figure 5.1(b). However, the splinter cluster of

the extended Gowda-Diday measure is {y3,y4,y6} at the first stage, and this splinter cluster

is different from that of the normalized Euclidean distance shown in Figure 5.3(b). That is,

splinter clusters can be different for different distance/dissimilarity measures.

Figure 5.4 shows the dendrograms obtained when using the normalized CDF dissimilarity

measure of Equation (3.31). Figure 5.4(a) is obtained using the monothetic clustering method

and Figure 5.4(b) uses the polythetic method. From Figure 5.4(a) by the monothetic method,

P1 = {y1, . . . ,y7} is bipartitioned into {y1,y2,y7} and {y3,y4,y5,y6} at the first stage, the

binary question for this stage is ‘Is Y6 ≤ 2033.73?’. This second bipartition P2 is the same as
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y4 y5 y3 y6 y2 y1 y7

Y6 <= 2033.73

Y2 <= 159.28

Y1 <= 2505.3

Y1 <= 3237.83

Y2 <= 174.58

Y1 <= 3020.51

Left : YES , Right : NO

(a) Monothetic algorithm

y2 y1 y7 y6 y3 y5 y4

Right : Splinter group

(b) Polythetic algorithm

Figure 5.4: The clustering result for the normalized CDF dissimilarity measure.

that of the normalized city block distance. At the second stage, the cluster {y3,y4,y5,y6}

is split into {y3,y6} and {y4,y5} by the binary question ‘Is Y2 ≤ 159.28?’. That is, if the

elevation is less than 2596.83 meters and the aspect is also less than 159.28 azimuth, then

the object goes to the cluster {y4,y5}. Also, if the elevation is less than 2596.83 meters

and the aspect is also larger than 159.28 azimuth, then the object belongs to the cluster

{y3,y6}. This partition P3 is different from the third partitions for the other measures.

The third partition P3 for the extended Gowda-Diday, normalized city block and Euclidean

measures is
(
{y1,y2,y7}, {y3,y4,y6}, {y5}

)
. However, the partitions P4, P5 and P6 for all

four dissimilarity/distance measures give the same outcomes.

In Figure 5.4(b), the splinter cluster for the first stage is {y3,y4,y5,y6}, and the second

stage is {y4,y5}. The clustering outcome by the polythetic algorithm is the same as that

obtained by the monothetic algorithm.
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In summary, Table 5.4 shows partitions of each stage by each distance/dissimilarity mea-

sure. For all four distance/dissimilarity measures, the monothetic and polythetic algorithms

have the same clustering outcomes at each stage as shown in Table 5.4. The clustering

results for the extended Gowda-Diday, normalized city block and Euclidean measures are

the same except for the partition P2 when using the city block distance. The clustering

result when using the normalized CDF measure is different from the extended Gowda-Diday

and normalized Euclidean measures in P2 and P3. The partitions P2 and P3 for the extended

Gowda-Diday and normalized Euclidean measures are
(
{y1,y2,y5,y7}, {y3,y4,y6}

)
and(

{y1,y2,y7}, {y3,y4,y6}, {y5}
)
, respectively. However, the partitions P2 and P3 are(

{y1,y2,y7}, {y3,y4,y5,y6}
)

and
(
{y1,y2,y7}, {y3,y6}, {y4,y5}

)
, respectively. In con-

clusion, the partitions P2 and P3 are different for the four distance/dissimilarity measures,

but for all four measures, the partitions P4, P5, and P6 are the same. Thus, all measures

give very similar clustering results. Also, we see in Section 5.4 that the optimal number of

clusters is r = 5.

The cover type dataset includes the cartographic variables such as elevation, aspect, and

slope, etc. and all ten variables represent the information for location and circumstance of

each cover type. Since the clustering for the cover type dataset is based on these variables,

the clustering result is closely related to the areas where the seven cover types are located in.

Thus, we verify our clustering result through the the areas where each cover type inhabits.

The cover type data were investigated in four wilderness areas, viz., the Rawah (29,628

hectares), Comanche Peak (27,389 hectares), Neota (3,904 hectares), and Cache la Poudre

(3,817 hectares). The proportions and frequencies of each area by types of cover are shown

in Table 5.5. In our clustering, we do not consider weights for frequencies of each object.

That is, all objects have equal weights. Since all objects have equal weights, proportions of

cover types for each area should be considered.

From Table 5.5, Spruce-fir (y1) and lodgepole pine (y2) are primarily distributed in the

Rawah and Comanche Peak areas. 91.22% of Spruce-fir inhabit the Rawah and Comanche
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Table 5.5: Proportion for each cover type and wilderness area.

Symbolic Cover Rawah Neota Comanche Cache la
object Type Peak Poudre Total

y1 Spruce-fir 49.90% 8.78% 41.32% 0.00% 100%

(105,717) (18,595) (87,528) (0) (211,840)
y2 Lodgepole 51.60% 3.17% 44.16% 1.07% 100%

Pine (146,197) (8,985) (125,093) (3,026) (283,301)
y3 Ponderosa 0.00% 0.00% 40.00% 60.00% 100%

Pine (0) (0) (14,300) (21,454) (35,754)
y4 Cottonwood/ 0.00% 0.00% 0.00% 100.00% 100%

Willow (0) (0) (0) (2,747) (2,747)
y5 Aspen 39.83% 0.00% 60.17% 0.00% 100%

(3,781) (0) (5,712) (0) (9,493)
y6 Douglas-fir 0.00% 0.00% 43.91% 56.09% 100%

(0) (0) (7,626) (9,741) (17,367)
y7 Krummholz 24.87% 11.23% 63.90% 0.00% 100%

(5,101) (2,304) (13,105) (0) (20,510)

Peak areas, and 95.76% of lodgepole pine are located in these areas. In addition, 49.90% and

41.32% of Spruce-fir are located in the Rawah and Comanche Peak, respectively, and 51.60%

and 44.16% of lodgepole pine inhabit the Rawah and Comanche Peak, respectively. Thus,

both Spruce-fir and lodgepole pine have similar proportions in the Rawah and Comanche

Peak areas. Also, a much lower proportion of these trees is located in the Neota area.

Although Krummholz (y7) is also found in the Rawah, Comanche Peak, and Neota areas,

the proportion for the Comanche Peak (63.90%) is much larger than that for the Rawah area

(24.87%). Therefore, Spruce-fir and lodgepole pine can be a cluster, and Krummholz can be

distinguished from this cluster.

Moreover, ponderosa pine (y3) and Douglas-fir (y6) are mainly distributed in the

Comanche Peak and Cache la Poudre areas. In addition, 40.00% and 60.00% of ponderosa

pine are located in the Comanche Peak and Cache la Poudre, respectively, and 43.91%

and 56.09% of Douglas-fir inhabit the Comanche Peak and Cache la Poudre, respectively.
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Thus, ponderosa pine and Douglas-fir have a similar distribution across the different areas.

Therefore, ponderosa pine and Douglas-fir can be a cluster.

On the contrary, cottonwood/willow (y4) is only in the Cache la Poudre area, and aspen

(y5) is only found in the Rawah and Comanche Peak. Thus, cottonwood/willow and aspen

can be a cluster, respectively. Thus, this result supports the conclusion that there are five

clusters in this dataset.

5.4 Diagnostics

For the cover type histogram-valued dataset, processing times for both monothetic and poly-

thetic algorithms (performed using R software, Windows XP with Intel Core2 Duo processor,

3.0GHz, and 2GB RAM) are shown in Table 5.6. These processing times are measured for

each distance/dissimilarity measure used, as indicated. As shown in Table 5.6, processing

times for each distance/dissimilarity measure are not largely different. The processing time

of the monothetic algorithm depends on both the number of objects and the number of vari-

ables, and the polythetic algorithm depends on only the number of objects. Thus, the type

of distance/dissimilarity measures does not affect processing time for clustering procedure.

Table 5.6: Processing time of clustering algorithms for each distance/dissimilarity measure.

Distance/Dissimilarity Monothetic Polythetic
Extended Gowda-Diday 0.0608 0.0084
Normalized city block 0.0607 0.0089
Normalized Euclidean 0.0627 0.0090

Normalized CDF 0.0642 0.0082

In the clustering for the cover type dataset, the processing time of the polythetic algorithm

is about seven times faster than that of the monothetic algorithm as shown in Table 5.6. As

mentioned in Section 3.4, for the monothetic algorithm, there are
∑r

u=1 p(nu − 1) possible

bipartitions at the rth stage, where p is the number of variables and nu is the number of

objects in a cluster Cu. On the contrary, the polythetic algorithm has at most [{n∗r(n∗r −

1)}/2 − 1] possible bipartitions at the rth stage, where n∗r is the number of objects in the
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Table 5.7: Validity index values for each dissimilarity measure and clustering algorithm.

Dissimilarity Validity r = 2 r = 3 r = 4 r = 5 r = 6

Algorithms Index

Extended Gowda-Diday DIs
r 2.7239 0.9082 1.4355 3.2053 2.3972

Mono and Poly DBs
r 0.6013 1.4237 0.7699 0.2833 0.2146

Normalized city block DIs
r 2.7005 1.1711 1.1311 3.2054 1.8351

Mono and Poly DBs
r 0.4923 1.2427 0.8989 0.3240 0.2905

Normalized Euclidean DIs
r 3.4310 1.2065 1.0048 3.5062 1.3569

Mono and Poly DBs
r 0.4363 1.2459 0.9383 0.3293 0.3915

Normalized CDF DIs
r 2.8294 1.5889 1.5583 2.2186 2.1399

Mono and Poly DBs
r 0.4336 0.7052 0.6409 0.3769 0.2684

splinter cluster. The cover type dataset has ten variables (p = 10) and seven objects (n =

7). For example, at the first stage, the monothetic method has 60 (= 10(7 − 1)) possible

bipartitions. In contrast, the polythetic method has at most 20 (= {7(7−1)}/2−1) possible

bipartitions. That is, at the first stage, the number of possible bipartitions of the monothetic

method is three times larger than that of the polythetic method. For the clustering result for

the extended Gowda-Diday measure, the second partition is
(
{y1,y2,y5,y7}, {y3,y4,y6}

)
as shown in Table 5.4. In this case, the monothetic method has 50 possible bipartitions

(= 10(4 − 1) + 10(3 − 1)). In contrast, since the splinter cluster is {y3,y4,y6} as shown in

Figure 5.1(b), the polythetic method has at most 5 possible bipartitions (= {3(3−1)}/2−1).

This number is six times smaller than the number of possible biparitions of the monothetic

algorithm. Thus, from this dataset, we see that the polythetic method is much faster than

the monothetic method when the number of variables is large.

Now, the problem is to find the optimal partition and number of clusters. We investigate

these entities using the two cluster validity indexes proposed in Section 4.2. Table 5.7 shows

the Dunn and Davis-Bouldin index values for symbolic objects to find the optimal number

of clusters. The Dunn and Davis-Bouldin indexes are calculated from Equation (4.8) and



139

(4.9), respectively. For these data, the monothetic and polythetic algorithms give the same

index values for each of the distance/dissimilarity measures and each r value because the

clustering outcomes for the monothetic and polythetic methods are exactly the same.

As mentioned in Section 4.2, a larger Dunn index and a smaller Davis-Bouldin index value

gives better clustering results. From Table 5.7, the Dunn index, DIs
r , has the largest value at

r = 5 for each distance/dissimilarity measure except for the normalized CDF measure, and

the Davis-Bouldin index, DBs
r , has the smallest values at r = 6 except for the normalized

Euclidean distance. However, the Davis-Bouldin index values for the extended Gowda-Diday,

normalized city block and CDF measures have the second smallest value at r = 5. Especially,

the Davis-Bouldin index values for the extended Gowda-Diday and normalized city block

measures at r = 5 are similar to the values when r = 5 relatively to other values; while both

indexes for the normalized Euclidean distance indicate r = 5. Thus, we conclude that there

are five clusters in this dataset. Since all four distance/dissimilarity measures have the same

clustering outcome at r = 5, from Table 5.4, the five clusters are {Spruce-fir, Lodgepole

pine}, {Ponderosa pine, Douglas-fir}, {Cottonwood/Willow}, {Aspen}, and {Krummholz}.

Although this analysis is just one example, it shows that the distance/dissimilarity mea-

sures and clustering algorithms proposed in this study are a viable method for extracting

knowledge from large datasets and more important for data that are histogram-valued

objects.



Chapter 6

Conclusion and Future Work

Histogram-valued data analytic methodology is one of the methods that deal with numeric

variables in huge datasets when we are interested in classes or groups of individuals, rather

than individual observations. Also, histogram-valued data are more informative than interval-

valued data because they include estimates of the shape and location of the distribution for

each class or group, while interval-valued data give only lower and upper limits. Therefore,

clustering methodology for histogram-valued data would generally be more precise than that

for interval-valued data. However, histogram-valued data are difficult to handle computation-

ally because observations typically have a different number and length of subintervals.

In this study, we propose a transformation for histogram data, as a technique for

handling them more easily computationally. From this technique, we developed new

distance/dissimilarity measures for histogram-valued data. Since some of the new dis-

tance/dissimilarity measures are based on the existing measures for interval-valued data

such as the Gowda-Diday and Ichino-Yaguchi measures, distance/dissimilarity values for

mixed datasets including multi-valued, interval-valued, and histogram-valued data can now

be obtained.

The monothetic algorithm based on a single variable at a time performs poorly in a struc-

ture that depends on combinations of variables. For this structure, the polythetic algorithm,

introduced in this study, as a new divisive clustering algorithm for symbolic objects is a

better approach because it is based on all p variables. Moreover, the polythetic algorithm is

much faster than is the monothetic algorithm when the number of variables are large.
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One of the important issues in clustering is how to find the optimal number of clusters.

For this issue, we propose two validity indexes for symbolic data based on Dunn’s index

and Davis-Bouldin’s index developed for classical data. Also, we showed that these indexes

detect well the number of clusters on the Fisher’s iris dataset and simulated datasets. We

believe that the methodology proposed in this paper can be a useful method for discovering

knowledge in large datasets.

Some future work may focus on dissimilarity measures for modal multi-valued data.

If dissimilarity measures for modal multi-valued data based on existing measures such as

the Gowda-Diday and Ichino-Yaguchi measures can be obtained, in the symbolic context,

we might extract more informative knowledge from large datasets. Another future work

may be related to supervised learning methods for histogram data such as the k−means

clustering method. The hierarchical clustering methods including the agglomerative and

divisive clustering methods are unsupervised learning methodologies because these methods

do not make use of class information about each object during clustering. However, when

class information in datasets such as the number of clusters is known, we need clustering

methods for symbolic objects that can use this information. Thus, this can be one of the

issues for clustering of histogram-valued objects.

Pyramid clustering for histogram-valued data also can be a future work. Pyramid clus-

tering is a agglomerative method, and the difference from usual hierarchical clustering

methods is that clusters of a pyramid can overlap. To date, the literature has pyramid

methods for classical data (e.g., Bertrand, 1992; and Bertrand and Diday, 1990) and for

intervals (Brito, 1995) only, and so far does not provide the pyramid clustering method for

histogram-valued data. Thus, this can be one of issues for clustering of symbolic data.
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Appendix A

Fisher’s Iris Data

A.1 Histogram-valued Data

Table A.1: Histogram-valued data for iris data.
y Y1 =Sepal Length Y2 =Sepal Width

y1 {[4.4, 4.6), 0.3; [4.6, 4.8), 0.1; [4.8, 5.0), 0.4; [5.0, 5.2), 0.1; {[2.8, 3.0), 0.2; [3.0, 3.2), 0.3; [3.2, 3.4), 0.2; [3.4, 3.6), 0.2;
[5.2, 5.4), 0.1} [3.6, 3.8), 0.0; [3.0, 3.2), 0.1}

y2 {[4.0, 4.5), 0.1; [4.5, 5.0), 0.2; [5.0, 5.5), 0.4; [5.5, 6.0), 0.3} {[3.0, 3.5), 0.4; [3.5, 4.0), 0.5; [4.0, 4.5), 0.1}

y3 {[4.6, 4.8), 0.3; [4.8, 5.0), 0.2; [5.0, 5.2), 0.4; [5.2, 5.4), 0.1} {[3.0, 3.2), 0.2; [3.2, 3.4), 0.5; [3.4, 3.6), 0.2; [3.6, 3.8), 0.1}

y4 {[4.4, 4.6), 0.1; [4.6, 4.8), 0.1; [4.8, 5.0), 0.3; [5.0, 5.2), 0.2; {[3.0, 3.2), 0.4; [3.2, 3.4), 0.2; [3.4, 3.6), 0.2; [3.6, 3.8), 0.0;
[5.2, 5.4), 0.1; [5.4, 5.6), 0.2} [3.8, 4.0), 0.0; [4.0, 4.2), 0.2}

y5 {[4.4, 4.6), 0.3; [4.6, 4.8), 0.1; [4.8, 5.0), 0.3; [5.0, 5.2), 0.2; {[2.0, 2.5), 0.1; [2.5, 3.0), 0.1; [3.0, 3.5), 0.5; [3.5, 4.0), 0.3}
[5.2, 5.4), 0.1}

y6 {[4.5, 5.0), 0.1; [5.0, 5.5), 0.2; [5.5, 6.0), 0.1; [6.0, 6.5), 0.3; {[2.2, 2.4), 0.2; [2.4, 2.6), 0.0; [2.6, 2.8), 0.3; [2.8, 3.0), 0.1;
[6.5, 7.0), 0.3} [3.0, 3.2), 0.3; [3.2, 3.4), 0.1}

y7 {[5.0, 5.5), 0.1; [5.5, 6.0), 0.6; [6.0, 6.5), 0.2; [6.5, 7.0), 0.1} {[2.0, 2.2), 0.3; [2.2, 2.4), 0.0; [2.4, 2.6), 0.1; [2.6, 2.8), 0.1;
[2.8, 3.0), 0.4; [3.0, 3.2), 0.1}

y8 {[5.6, 5.8), 0.1; [5.8, 6.0), 0.1; [6.0, 6.2), 0.3; [6.2, 6.4), 0.2; {[2.4, 2.6), 0.4; [2.6, 2.8), 0.2; [2.8, 3.0), 0.2; [3.0, 3.2), 0.2}
[6.4, 6.6), 0.1; [6.6, 6.8), 0.2}

y9 {[5.4, 5.6), 0.5; [5.6, 5.8), 0.1; [5.8, 6.0), 0.2; [6.0, 6.2), 0.0; {[2.2, 2.4), 0.3; [2.4, 2.6), 0.1; [2.6, 2.8), 0.2; [2.8, 3.0), 0.2;
[6.2, 6.4), 0.1; [6.4, 6.6), 0.0; [6.6, 6.8), 0.1} [3.0, 3.2), 0.1; [3.2, 3.4), 0.1}

y10 {[5.0, 5.2), 0.2; [5.2, 5.4), 0.0; [5.4, 5.6), 0.2; [5.6, 5.8), 0.4; {[2.2, 2.4), 0.1; [2.4, 2.6), 0.3; [2.6, 2.8), 0.2; [2.8, 3.0), 0.4}
[5.8, 6.0), 0.0; [6.0, 6.2), 0.2}

y11 {[4.5, 5.0), 0.1; [5.0, 5.5), 0.0; [5.5, 6.0), 0.1; [6.0, 6.5), 0.3; {[2.4, 2.6), 0.2; [2.6, 2.8), 0.1; [2.8, 3.0), 0.5; [3.0, 3.2), 0.0;
[6.5, 7.0), 0.1; [7.0, 7.5), 0.3; [7.5, 8.0), 0.1} [3.2, 3.4), 0.1; [3.4, 3.6), 0.1}

y12 {[5.5, 6.0), 0.3; [6.0, 6.5), 0.4; [6.5, 7.0), 0.1; [7.0, 7.5), 0.0; {[2.0, 2.5), 0.2; [2.5, 3.0), 0.5; [3.0, 3.5), 0.2; [3.5, 4.0), 0.1}
[7.5, 8.0), 0.2}

y13 {[5.5, 6.0), 0.1; [6.0, 6.5), 0.4; [6.5, 7.0), 0.2; [7.0, 7.5), 0.2; {[2.7, 2.8), 0.5; [2.8, 2.9), 0.0; [2.9, 3.0), 0.2; [3.0, 3.1), 0.0;
[7.5, 8.0), 0.1} [3.1, 3.2), 0.2; [3.2, 3.3), 0.1}

y14 {[6.0, 6.5), 0.6; [6.5, 7.0), 0.1; [7.0, 7.5), 0.1; [7.5, 8.0), 0.2} {[2.6, 2.8), 0.4; [2.8, 3.0), 0.2; [3.0, 3.2), 0.2; [3.2, 3.4), 0.1;
[3.4, 3.6), 0.0; [3.6, 3.8), 0.1}

y15 {[5.8, 6.0), 0.2; [6.0, 6.2), 0.1; [6.2, 6.4), 0.1; [6.4, 6.6), 0.1; {[2.4, 2.6), 0.1; [2.6, 2.8), 0.1; [2.8, 3.0), 0.3; [3.0, 3.2), 0.3;
[6.6, 6.8), 0.4; [6.8, 7.0), 0.1} [3.2, 3.4), 0.2}

(Continued)
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y Y3 =Petal Length Y4 =Petal Width

y1 {[1.3, 1.4), 0.6; [1.4, 1.5), 0.3; [1.5, 1.6), 0.0; [1.6, 1.7), 0.1} {[0.1, 0.2), 0.8; [0.2, 0.3), 0.1; [0.3, 0.4), 0.1}

y2 {[1.1, 1.2), 0.2; [1.2, 1.3), 0.1; [1.3, 1.4), 0.2; [1.4, 1.5), 0.3; {[0.1, 0.2), 0.5; [0.2, 0.3), 0.3; [0.3, 0.4), 0.2}
[1.5, 1.6), 0.1; [1.6, 1.7), 0.1}

y3 {[1.0, 1.2), 0.1; [1.2, 1.4), 0.1; [1.4, 1.6), 0.5; [1.6, 1.8), 0.2; {[0.2, 0.3), 0.7; [0.3, 0.4), 0.2; [0.4, 0.5), 0.1}
[1.8, 2.0), 0.1}

y4 {[1.2, 1.3), 0.3; [1.3, 1.4), 0.2; [1.4, 1.5), 0.4; [1.5, 1.6), 0.1} {[0.1, 0.2), 0.9; [0.2, 0.3), 0.0; [0.3, 0.4), 0.1}

y5 {[1.3, 1.4), 0.6; [1.4, 1.5), 0.1; [1.5, 1.6), 0.2; [1.6, 1.7), 0.0; {[0.2, 0.3), 0.8; [0.3, 0.4), 0.1; [0.4, 0.5), 0.0; [0.5, 0.6), 0.1}
[1.7, 1.8), 0.0; [1.8, 1.9), 0.1}

y6 {[3.0, 3.5), 0.1; [3.5, 4.0), 0.2; [4.0, 4.5), 0.2; [4.5, 5.0), 0.5} {[1.0, 1.1), 0.1; [1.1, 1.2), 0.0; [1.2, 1.3), 0.3; [1.3, 1.4), 0.2;
[1.4, 1.5), 0.3; [1.5, 1.6), 0.1}

y7 {[3.4, 3.6), 0.2; [3.6, 3.8), 0.0; [3.8, 4.0), 0.2; [4.0, 4.2), 0.2; {[1.0, 1.1), 0.4; [1.1, 1.2), 0.0; [1.2, 1.3), 0.1; [1.3, 1.4), 0.2;
[4.2, 4.4), 0.1; [4.4, 4.6), 0.2; [4.6, 4.8), 0.1} [1.4, 1.5), 0.3}

y8 {[3.5, 4.0), 0.2; [4.0, 4.5), 0.3; [4.5, 5.0), 0.5} {[1.0, 1.2), 0.2; [1.2, 1.4), 0.4; [1.4, 1.6), 0.2; [1.6, 1.8), 0.2}

y9 {[3.6, 3.8), 0.2; [3.8, 4.0), 0.2; [4.0, 4.2), 0.1; [4.2, 4.4), 0.1; {[1.0, 1.1), 0.2; [1.1, 1.2), 0.1; [1.2, 1.3), 0.3; [1.3, 1.4), 0.0;
[4.4, 4.6), 0.2; [4.6, 4.8), 0.1; [4.8, 5.0), 0.0; [5.0, 5.2), 0.1} [1.4, 1.5), 0.2; [1.5, 1.6), 0.2}

y10 {[3.0, 3.5), 0.2; [3.5, 4.0), 0.1; [4.0, 4.5), 0.6; [4.5, 5.0), 0.1} {[1.0, 1.1), 0.2; [1.1, 1.2), 0.3; [1.2, 1.3), 0.4; [1.3, 1.4), 0.1}

y11 {[4.5, 5.0), 0.1; [5.0, 5.5), 0.1; [5.5, 6.0), 0.5; [6.0, 6.5), 0.2; {[1.6, 1.8), 0.4; [1.8, 2.0), 0.1; [2.0, 2.2), 0.3; [2.2, 2.4), 0.0;
[6.5, 7.0), 0.1} [2.4, 2.6), 0.2}

y12 {[5.0, 5.5), 0.8; [5.5, 6.0), 0.0; [6.0, 6.5), 0.0; [6.5, 7.0), 0.2} {[1.4, 1.6), 0.1; [1.6, 1.8), 0.1; [1.8, 2.0), 0.3; [2.0, 2.2), 0.2;
[2.2, 2.4), 0.3}

y13 {[4.5, 5.0), 0.4; [5.0, 5.5), 0.0; [5.5, 6.0), 0.5; [6.0, 6.5), 0.0; {[1.6, 1.7), 0.1; [1.7, 1.8), 0.4; [1.8, 1.9), 0.0; [1.9, 2.0), 0.2;
[6.5, 7.0), 0.1} [2.0, 2.1), 0.2; [2.1, 2.2), 0.0; [2.2, 2.3), 0.1}

y14 {[4.5, 5.0), 0.1; [5.0, 5.5), 0.3; [5.5, 6.0), 0.3; [6.0, 6.5), 0.3} {[1.4, 1.6), 0.2; [1.6, 1.8), 0.2; [1.8, 2.0), 0.2; [2.0, 2.2), 0.2;
[2.2, 2.4), 0.2}

y15 {[5.0, 5.2), 0.6; [5.2, 5.4), 0.1; [5.4, 5.6), 0.1; [5.6, 5.8), 0.1; {[1.8, 1.9), 0.3; [1.9, 2.0), 0.1; [2.0, 2.1), 0.0; [2.1, 2.2), 0.0;
[5.8, 6.0), 0.1} [2.2, 2.3), 0.4; [2.3, 2.4), 0.1; [2.4, 2.5), 0.1}
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A.2 Transformed Histogram-valued Data

Table A.2: Transformed histogram-valued data for iris data.
Y1

Transformed Transformed relative frequency
subinterval y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

[4, 4.2) 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0

[4.2, 4.4) 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0

[4.4, 4.6) 0.3 0.06 0 0.1 0.3 0.02 0 0 0 0 0.02 0 0 0 0

[4.6, 4.8) 0.1 0.08 0.3 0.1 0.1 0.04 0 0 0 0 0.04 0 0 0 0

[4.8, 5) 0.4 0.08 0.2 0.3 0.3 0.04 0 0 0 0 0.04 0 0 0 0

[5, 5.2) 0.1 0.16 0.4 0.2 0.2 0.08 0.04 0 0 0.2 0 0 0 0 0

[5.2, 5.4) 0.1 0.16 0.1 0.1 0.1 0.08 0.04 0 0 0 0 0 0 0 0

[5.4, 5.6) 0 0.14 0 0.2 0 0.06 0.14 0 0.5 0.2 0.02 0.06 0.02 0 0

[5.6, 5.8) 0 0.12 0 0 0 0.04 0.24 0.1 0.1 0.4 0.04 0.12 0.04 0 0

[5.8, 6) 0 0.12 0 0 0 0.04 0.24 0.2 0.2 0 0.04 0.12 0.04 0 0.2

[6, 6.2) 0 0 0 0 0 0.12 0.08 0.2 0 0.2 0.12 0.16 0.16 0.24 0.1

[6.2, 6.4) 0 0 0 0 0 0.12 0.08 0.2 0.1 0 0.12 0.16 0.16 0.24 0.1

[6.4, 6.6) 0 0 0 0 0 0.12 0.06 0.1 0 0 0.08 0.1 0.12 0.14 0.1

[6.6, 6.8) 0 0 0 0 0 0.12 0.04 0.2 0.1 0 0.04 0.04 0.08 0.04 0.4

[6.8, 7) 0 0 0 0 0 0.12 0.04 0 0 0 0.04 0.04 0.08 0.04 0.1

[7, 7.2) 0 0 0 0 0 0 0 0 0 0 0.12 0 0.08 0.04 0

[7.2, 7.4) 0 0 0 0 0 0 0 0 0 0 0.12 0 0.08 0.04 0

[7.4, 7.6) 0 0 0 0 0 0 0 0 0 0 0.08 0.04 0.06 0.06 0

[7.6, 7.8) 0 0 0 0 0 0 0 0 0 0 0.04 0.08 0.04 0.08 0

[7.8, 8) 0 0 0 0 0 0 0 0 0 0 0.04 0.08 0.04 0.08 0

(Continued)
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Y2

Transformed Transformed relative frequency
subinterval y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

[2, 2.1) 0 0 0 0 0.02 0 0.15 0 0 0 0 0.04 0 0 0

[2.1, 2.2) 0 0 0 0 0.02 0 0.15 0 0 0 0 0.04 0 0 0

[2.2, 2.3) 0 0 0 0 0.02 0.1 0 0 0.15 0.05 0 0.04 0 0 0

[2.3, 2.4) 0 0 0 0 0.02 0.1 0 0 0.15 0.05 0 0.04 0 0 0

[2.4, 2.5) 0 0 0 0 0.02 0 0.05 0.1 0.05 0.15 0.1 0.04 0 0 0.05

[2.5, 2.6) 0 0 0 0 0.02 0 0.05 0.1 0.05 0.15 0.1 0.1 0 0 0.05

[2.6, 2.7) 0 0 0 0 0.02 0.15 0.05 0.15 0.1 0.1 0.05 0.1 0 0.2 0.05

[2.7, 2.8) 0 0 0 0 0.02 0.15 0.05 0.15 0.1 0.1 0.05 0.1 0.5 0.2 0.05

[2.8, 2.9) 0.1 0 0 0 0.02 0.05 0.2 0.2 0.1 0.2 0.25 0.1 0 0.1 0.15

[2.9, 3) 0.1 0 0 0 0.02 0.05 0.2 0.2 0.1 0.2 0.25 0.1 0.2 0.1 0.15

[3, 3.1) 0.15 0.08 0.1 0.2 0.1 0.15 0.05 0.05 0.05 0 0 0.04 0 0.1 0.15

[3.1, 3.2) 0.15 0.08 0.1 0.2 0.1 0.15 0.05 0.05 0.05 0 0 0.04 0.2 0.1 0.15

[3.2, 3.3) 0.1 0.08 0.25 0.1 0.1 0.05 0 0 0.05 0 0.05 0.04 0.1 0.05 0.1

[3.3, 3.4) 0.1 0.08 0.25 0.1 0.1 0.05 0 0 0.05 0 0.05 0.04 0 0.05 0.1

[3.4, 3.5) 0.1 0.08 0.1 0.1 0.1 0 0 0 0 0 0.05 0.04 0 0 0

[3.5, 3.6) 0.1 0.1 0.1 0.1 0.06 0 0 0 0 0 0.05 0.02 0 0 0

[3.6, 3.7) 0 0.1 0.05 0 0.06 0 0 0 0 0 0 0.02 0 0.05 0

[3.7, 3.8) 0 0.1 0.05 0 0.06 0 0 0 0 0 0 0.02 0 0.05 0

[3.8, 3.9) 0.05 0.1 0 0 0.06 0 0 0 0 0 0 0.02 0 0 0

[3.9, 4) 0.05 0.1 0 0 0.06 0 0 0 0 0 0 0.02 0 0 0

[4, 4.1) 0 0.02 0 0.1 0 0 0 0 0 0 0 0 0 0 0

[4.1, 4.2) 0 0.02 0 0.1 0 0 0 0 0 0 0 0 0 0 0

[4.2, 4.3) 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0

[4.3, 4.4) 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0

[4.4, 4.5) 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0

(Continued)
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Y3

Transformed Transformed relative frequency
subinterval y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

[1, 1.1) 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0

[1.1, 1.2) 0 0.2 0.05 0 0 0 0 0 0 0 0 0 0 0 0

[1.2, 1.3) 0 0.1 0.05 0.3 0 0 0 0 0 0 0 0 0 0 0

[1.3, 1.4) 0.6 0.2 0.05 0.2 0.6 0 0 0 0 0 0 0 0 0 0

[1.4, 1.5) 0.3 0.3 0.25 0.4 0.1 0 0 0 0 0 0 0 0 0 0

[1.5, 1.6) 0 0.1 0.25 0.1 0.2 0 0 0 0 0 0 0 0 0 0

[1.6, 1.7) 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0

[1.7, 1.8) 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0

[1.8, 1.9) 0 0 0.05 0 0.1 0 0 0 0 0 0 0 0 0 0

[1.9, 2) 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2.1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.1, 2.2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.2, 2.3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.3, 2.4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.4, 2.5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.5, 2.6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.6, 2.7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.7, 2.8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.8, 2.9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2.9, 3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3.1) 0 0 0 0 0 0.02 0 0 0 0.04 0 0 0 0 0

[3.1, 3.2) 0 0 0 0 0 0.02 0 0 0 0.04 0 0 0 0 0

[3.2, 3.3) 0 0 0 0 0 0.02 0 0 0 0.04 0 0 0 0 0

[3.3, 3.4) 0 0 0 0 0 0.02 0 0 0 0.04 0 0 0 0 0

[3.4, 3.5) 0 0 0 0 0 0.02 0.1 0 0 0.04 0 0 0 0 0

[3.5, 3.6) 0 0 0 0 0 0.04 0.1 0.04 0 0.02 0 0 0 0 0

[3.6, 3.7) 0 0 0 0 0 0.04 0 0.04 0.1 0.02 0 0 0 0 0

[3.7, 3.8) 0 0 0 0 0 0.04 0 0.04 0.1 0.02 0 0 0 0 0

[3.8, 3.9) 0 0 0 0 0 0.04 0.1 0.04 0.1 0.02 0 0 0 0 0

[3.9, 4) 0 0 0 0 0 0.04 0.1 0.04 0.1 0.02 0 0 0 0 0

(Continued)
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Y3

Transformed Transformed relative frequency
subinterval y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

[4, 4.1) 0 0 0 0 0 0.04 0.1 0.06 0.05 0.12 0 0 0 0 0

[4.1, 4.2) 0 0 0 0 0 0.04 0.1 0.06 0.05 0.12 0 0 0 0 0

[4.2, 4.3) 0 0 0 0 0 0.04 0.05 0.06 0.05 0.12 0 0 0 0 0

[4.3, 4.4) 0 0 0 0 0 0.04 0.05 0.06 0.05 0.12 0 0 0 0 0

[4.4, 4.5) 0 0 0 0 0 0.04 0.1 0.06 0.1 0.12 0 0 0 0 0

[4.5, 4.6) 0 0 0 0 0 0.1 0.1 0.1 0.1 0.02 0.02 0 0.08 0.02 0

[4.6, 4.7) 0 0 0 0 0 0.1 0.05 0.1 0.05 0.02 0.02 0 0.08 0.02 0

[4.7, 4.8) 0 0 0 0 0 0.1 0.05 0.1 0.05 0.02 0.02 0 0.08 0.02 0

[4.8, 4.9) 0 0 0 0 0 0.1 0 0.1 0 0.02 0.02 0 0.08 0.02 0

[4.9, 5) 0 0 0 0 0 0.1 0 0.1 0 0.02 0.02 0 0.08 0.02 0

[5, 5.1) 0 0 0 0 0 0 0 0 0.05 0 0.02 0.16 0 0.06 0.3

[5.1, 5.2) 0 0 0 0 0 0 0 0 0.05 0 0.02 0.16 0 0.06 0.3

[5.2, 5.3) 0 0 0 0 0 0 0 0 0 0 0.02 0.16 0 0.06 0.05

[5.3, 5.4) 0 0 0 0 0 0 0 0 0 0 0.02 0.16 0 0.06 0.05

[5.4, 5.5) 0 0 0 0 0 0 0 0 0 0 0.02 0.16 0 0.06 0.05

[5.5, 5.6) 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.06 0.05

[5.6, 5.7) 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.06 0.05

[5.7, 5.8) 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.06 0.05

[5.8, 5.9) 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.06 0.05

[5.9, 6) 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.06 0.05

[6, 6.1) 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0.06 0

[6.1, 6.2) 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0.06 0

[6.2, 6.3) 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0.06 0

[6.3, 6.4) 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0.06 0

[6.4, 6.5) 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0.06 0

[6.5, 6.6) 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0.02 0 0

[6.6, 6.7) 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0.02 0 0

[6.7, 6.8) 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0.02 0 0

[6.8, 6.9) 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0.02 0 0

[6.9, 7) 0 0 0 0 0 0 0 0 0 0 0.02 0.04 0.02 0 0

(Continued)
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Y4

Transformed Transformed relative frequency
subinterval y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7 y′
8 y′

9 y′
10 y′

11 y′
12 y′

13 y′
14 y′

15

[0.1, 0.2) 0.8 0.5 0 0.9 0 0 0 0 0 0 0 0 0 0 0

[0.2, 0.3) 0.1 0.3 0.7 0 0.8 0 0 0 0 0 0 0 0 0 0

[0.3, 0.4) 0.1 0.2 0 0.1 0 0 0 0 0 0 0 0 0 0 0

[0.4, 0.5) 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0

[0.5, 0.6) 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0

[0.6, 0.7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[0.7, 0.8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[0.8, 0.9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[0.9, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1.1) 0 0 0 0 0 0.1 0.4 0.1 0.2 0.2 0 0 0 0 0

[1.1, 1.2) 0 0 0 0 0 0 0 0.1 0.1 0.3 0 0 0 0 0

[1.2, 1.3) 0 0 0 0 0 0.3 0.1 0.2 0.3 0.4 0 0 0 0 0

[1.3, 1.4) 0 0 0 0 0 0.2 0.2 0.2 0 0.1 0 0 0 0 0

[1.4, 1.5) 0 0 0 0 0 0.3 0.3 0.1 0.2 0 0 0.05 0 0.1 0

[1.5, 1.6) 0 0 0 0 0 0.1 0 0.1 0.2 0 0 0.05 0 0.1 0

[1.6, 1.7) 0 0 0 0 0 0 0 0.1 0 0 0.2 0.05 0.1 0.1 0

[1.7, 1.8) 0 0 0 0 0 0 0 0.1 0 0 0.2 0.05 0.4 0.1 0

[1.8, 1.9) 0 0 0 0 0 0 0 0 0 0 0.05 0.15 0 0.1 0.3

[1.9, 2) 0 0 0 0 0 0 0 0 0 0 0.05 0.15 0.2 0.1 0.1

[2, 2.1) 0 0 0 0 0 0 0 0 0 0 0.15 0.1 0.2 0.1 0

[2.1, 2.2) 0 0 0 0 0 0 0 0 0 0 0.15 0.1 0 0.1 0

[2.2, 2.3) 0 0 0 0 0 0 0 0 0 0 0 0.15 0.1 0.1 0.4

[2.3, 2.4) 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0.1 0.1

[2.4, 2.5) 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1

[2.5, 2.6) 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0



Appendix B

Forestry Cover Type Data

B.1 Histogram-valued Data

Table B.1: Histogram data for forestry cover type data.

y Y1=Elevation
y1 {[2450,2500),0.00004; [2500,2550),0.00070; [2550,2600),0.00169; [2600,2650),0.00285;

[2650,2700),0.00441; [2700,2750),0.01005; [2750,2800),0.01385; [2800,2850),0.02272;
[2850,2900),0.02643; [2900,2950),0.04330; [2950,3000),0.06893; [3000,3050),0.08873;
[3050,3100),0.10630; [3100,3150),0.12242; [3150,3200),0.13729; [3200,3250),0.13883;
[3250,3300),0.09751; [3300,3350),0.05452; [3350,3400),0.03426; [3400,3450),0.01391;
[3450,3500),0.00518; [3500,3550),0.00335; [3550,3600),0.00145; [3600,3650),0.00095;
[3650,3700),0.00034}

y2 {[2100,2150),0.00001; [2150,2200),0.00015; [2200,2250),0.00025; [2250,2300),0.00049;
[2300,2350),0.00067; [2350,2400),0.00083; [2400,2450),0.00180; [2450,2500),0.00522;
[2500,2550),0.01775; [2550,2600),0.02688; [2600,2650),0.03552; [2650,2700),0.04405;
[2700,2750),0.05751; [2750,2800),0.06760; [2800,2850),0.07280; [2850,2900),0.09077;
[2900,2950),0.11580; [2950,3000),0.12553; [3000,3050),0.10131; [3050,3100),0.06574;
[3100,3150),0.05454; [3150,3200),0.04528; [3200,3250),0.03369; [3250,3300),0.02581;
[3300,3350),0.00765; [3350,3400),0.00210; [3400,3450),0.00026}

y3 {[1850,1900),0.00064; [1900,1950),0.00579; [1950,2000),0.01454; [2000,2050),0.02937;
[2050,2100),0.03890; [2100,2150),0.04548; [2150,2200),0.04964; [2200,2250),0.05415;
[2250,2300),0.07020; [2300,2350),0.09384; [2350,2400),0.09034; [2400,2450),0.09526;
[2450,2500),0.08393; [2500,2550),0.08010; [2550,2600),0.08757; [2600,2650),0.07227;
[2650,2700),0.04262; [2700,2750),0.02327; [2750,2800),0.01390; [2800,2850),0.00646;
[2850,2900),0.00171}

y4 {[1950,2000),0.00364; [2000,2050),0.04951; [2050,2100),0.08227; [2100,2150),0.13324;
[2150,2200),0.13069; [2200,2250),0.16199; [2250,2300),0.17692; [2300,2350),0.16163;
[2350,2400),0.07863; [2400,2450),0.01311; [2450,2500),0.00692; [2500,2550),0.00146}

y5 {[2450,2500),0.00748; [2500,2550),0.01243; [2550,2600),0.03697; [2600,2650),0.02950;
[2650,2700),0.05667; [2700,2750),0.18466; [2750,2800),0.19404; [2800,2850),0.20931;
[2850,2900),0.16022; [2900,2950),0.08712; [2950,3000),0.02096; [3000,3050),0.00063}

(Continued)
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y Y1=Elevation
y6 {[1850,1900),0.00403; [1900,1950),0.01134; [1950,2000),0.01416; [2000,2050),0.01434;

[2050,2100),0.02326; [2100,2150),0.03294; [2150,2200),0.02937; [2200,2250),0.03800;
[2250,2300),0.05620; [2300,2350),0.08637; [2350,2400),0.11464; [2400,2450),0.13624;
[2450,2500),0.11182; [2500,2550),0.08660; [2550,2600),0.07071; [2600,2650),0.06213;
[2650,2700),0.04474; [2700,2750),0.03478; [2750,2800),0.01710; [2800,2850),0.00818;
[2850,2900),0.00305}

y7 {[2850,2900),0.00117; [2900,2950),0.00210; [2950,3000),0.00083; [3000,3050),0.00000;
[3050,3100),0.00005; [3100,3150),0.00639; [3150,3200),0.02374; [3200,3250),0.08357;
[3250,3300),0.13554; [3300,3350),0.18649; [3350,3400),0.26685; [3400,3450),0.17913;
[3450,3500),0.05471; [3500,3550),0.01814; [3550,3600),0.01043; [3600,3650),0.00449;
[3650,3700),0.00507; [3700,3750),0.00873; [3750,3800),0.00507; [3800,3850),0.00712;
[3850,3900),0.00039}

y Y2=Aspect
y1 {[0,20),0.09491; [20,40),0.09745; [40,60),0.09417; [60,80),0.08232; [80,100),0.06844;

[100,120),0.05998; [120,140),0.04870; [140,160),0.03875; [160,180),0.03167;
[180,200),0.02961; [200,220),0.02648; [220,240),0.02211; [240,260),0.02440;
[260,280),0.03581; [280,300),0.04797; [300,320),0.06106; [320,340),0.06893;
[340,360),0.06723}

y2 {[0,20),0.08054; [20,40),0.08259; [40,60),0.08876; [60,80),0.08609; [80,100),0.07682;
[100,120),0.06596; [120,140),0.05919; [140,160),0.05030; [160,180),0.04481;
[180,200),0.03875; [200,220),0.03840; [220,240),0.03617; [240,260),0.03561;
[260,280),0.03350; [280,300),0.03255; [300,320),0.04162; [320,340),0.05220;
[340,360),0.05613}

y3 {[0,20),0.05997; [20,40),0.05599; [40,60),0.05227; [60,80),0.05367; [80,100),0.06704;
[100,120),0.07912; [120,140),0.07356; [140,160),0.06041; [160,180),0.05728;
[180,200),0.04581; [200,220),0.04181; [220,240),0.03697; [240,260),0.02839;
[260,280),0.03119; [280,300),0.04799; [300,320),0.06724; [320,340),0.07557;
[340,360),0.06570}

y4 {[0,20),0.04186; [20,40),0.04951; [40,60),0.06953; [60,80),0.07499; [80,100),0.10193;
[100,120),0.17801; [120,140),0.17546; [140,160),0.06225; [160,180),0.02912;
[180,200),0.03386; [200,220),0.02039; [220,240),0.01857; [240,260),0.01602;
[260,280),0.01383; [280,300),0.01129; [300,320),0.02657; [320,340),0.04077;
[340,360),0.03604}

y5 {[0,20),0.03813; [20,40),0.04814; [40,60),0.09080; [60,80),0.13526; [80,100),0.13599;
[100,120),0.09755; [120,140),0.06763; [140,160),0.05783; [160,180),0.05562;
[180,200),0.03877; [200,220),0.03234; [220,240),0.02370; [240,260),0.02602;
[260,280),0.03582; [280,300),0.02865; [300,320),0.02507; [320,340),0.03150;
[340,360),0.03118}
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y Y2=Aspect
y6 {[0,20),0.11948; [20,40),0.11965; [40,60),0.0885; [60,80),0.05614; [80,100),0.04111;

[100,120),0.03374; [120,140),0.02263; [140,160),0.01117; [160,180),0.01273;
[180,200),0.01140; [200,220),0.01031; [220,240),0.01480; [240,260),0.02240;
[260,280),0.03553; [280,300),0.05384; [300,320),0.10745; [320,340),0.14084;
[340,360),0.09829}

y7 {[0,20),0.08947; [20,40),0.07084; [40,60),0.0705; [60,80),0.08279; [80,100),0.10336;
[100,120),0.07587; [120,140),0.05661; [140,160),0.05022; [160,180),0.07060;
[180,200),0.03784; [200,220),0.02613; [220,240),0.01638; [240,260),0.01253;
[260,280),0.01570; [280,300),0.03374; [300,320),0.04924; [320,340),0.05987;
[340,360),0.0783}

y Y3=Slope
y1 {[0,5),0.11639; [5,10),0.27713; [10,15),0.28831; [15,20),0.17787; [20,25),0.08703;

[25,30),0.03578; [30,35),0.01267; [35,40),0.00340; [40,45),0.00110; [45,50),0.00029;
[50,55),0.00003}

y2 {[0,5),0.11125; [5,10),0.26495; [10,15),0.28129; [15,20),0.18366; [20,25),0.09282;
[25,30),0.04280; [30,35),0.01707; [35,40),0.00508; [40,45),0.00072; [45,50),0.00018;
[50,55),0.00008; [55,60),0.00006; [60,65),0.00004}

y3 {[0,5),0.03583; [5,10),0.10718; [10,15),0.16686; [15,20),0.18476; [20,25),0.18504;
[25,30),0.16555; [30,35),0.10270; [35,40),0.04274; [40,45),0.00828; [45,50),0.00106}

y4 {[0,5),0.07463; [5,10),0.17073; [10,15),0.16199; [15,20),0.16600; [20,25),0.17037;
[25,30),0.13724; [30,35),0.08664; [35,40),0.02585; [40,45),0.00582; [45,50),0.00073}

y5 {[0,5),0.07342; [5,10),0.19973; [10,15),0.20573; [15,20),0.20141; [20,25),0.16064;
[25,30),0.10060; [30,35),0.05067; [35,40),0.00453; [40,45),0.00105; [45,50),0.00200;
[50,55),0.00021}

y6 {[0,5),0.04008; [5,10),0.11556; [10,15),0.18771; [15,20),0.22520; [20,25),0.21155;
[25,30),0.13693; [30,35),0.06783; [35,40),0.01353; [40,45),0.00104; [45,50),0.00029;
[50,55),0.00029}

y7 {[0,5),0.08708; [5,10),0.23974; [10,15),0.31589; [15,20),0.19488; [20,25),0.08406;
[25,30),0.03788; [30,35),0.02116; [35,40),0.01365; [40,45),0.00405; [45,50),0.00151;
[50,55),0.00010}
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y Y4=Horizontal distance to nearest surface water feature
y1 {[0,50),0.14387; [50,100),0.11947; [100,150),0.11343; [150,200),0.08039;

[200,250),0.09279; [250,300),0.08146; [300,350),0.06280; [350,400),0.05730;
[400,450),0.05257; [450,500),0.04144; [500,550),0.03380; [550,600),0.03122;
[600,650),0.02216; [650,700),0.01867; [700,750),0.01327; [750,800),0.01104;
[800,850),0.00854; [850,900),0.00552; [900,950),0.00389; [950,1000),0.00322;
[1000,1050),0.00179; [1050,1100),0.00095; [1100,1150),0.00035; [1150,1200),0.00008}

y2 {[0,50),0.10166; [50,100),0.11049; [100,150),0.11885; [150,200),0.08855;
[200,250),0.10710; [250,300),0.09490; [300,350),0.07191; [350,400),0.06516;
[400,450),0.05442; [450,500),0.04157; [500,550),0.03371; [550,600),0.02987;
[600,650),0.02104; [650,700),0.01645; [700,750),0.01096; [750,800),0.00893;
[800,850),0.00691; [850,900),0.00474; [900,950),0.00324; [950,1000),0.00264;
[1000,1050),0.00194; [1050,1100),0.00146; [1100,1150),0.00127; [1150,1200),0.00083;
[1200,1250),0.00071; [1250,1300),0.00040; [1300,1350),0.00021; [1350,1400),0.00007}

y3 {[0,50),0.12555; [50,100),0.14762; [100,150),0.14684; [150,200),0.10374;
[200,250),0.11943; [250,300),0.10474; [300,350),0.07842; [350,400),0.06108;
[400,450),0.04581; [450,500),0.02959; [500,550),0.01770; [550,600),0.01225;
[600,650),0.00498; [650,700),0.00210; [700,750),0.00014}

y4 {[0,50),0.57809; [50,100),0.06807; [100,150),0.06152; [150,200),0.04405;
[200,250),0.05752; [250,300),0.05934; [300,350),0.04296; [350,400),0.03859;
[400,450),0.02657; [450,500),0.01420; [500,550),0.00837; [550,600),0.00073}

y5 {[0,100),0.31191; [100,200),0.24471; [200,300),0.20173; [300,400),0.10566;
[400,500),0.06320; [500,600),0.03424; [600,700),0.01728; [700,800),0.00874;
[800,900),0.00643; [900,1000),0.00358; [1000,1100),0.00253}

y6 {[0,50),0.22560; [50,100),0.17297; [100,150),0.16088; [150,200),0.10244;
[200,250),0.10958; [250,300),0.08862; [300,350),0.05130; [350,400),0.03950;
[400,450),0.02447; [450,500),0.01399; [500,550),0.00656; [550,600),0.00294;
[600,650),0.00115}

y7 {[0,100),0.22355; [100,200),0.15978; [200,300),0.14222; [300,400),0.10566;
[400,500),0.09615; [500,600),0.08347; [600,700),0.05076; [700,800),0.03603;
[800,900),0.02999; [900,1000),0.02579; [1000,1100),0.02589; [1100,1200),0.01599;
[1200,1300),0.00458; [1300,1400),0.00015}
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y Y5=Vertical distance to nearest surface water feature
y1 {[-200,-150),0.00001; [-150,-100),0.00094; [-100,-50),0.00573; [-50,0),0.18038;

[0,50),0.50471; [50,100),0.18037; [100,150),0.06997; [150,200),0.03492;
[200,250),0.01429; [250,300),0.00439; [300,350),0.00257; [350,400),0.00138;
[400,450),0.00034}

y2 {[-200,-150),0.00011; [-150,-100),0.00134; [-100,-50),0.00739; [-50,0),0.13805;
[0,50),0.51084; [50,100),0.20823; [100,150),0.07549; [150,200),0.03343;
[200,250),0.01469; [250,300),0.00654; [300,350),0.00244; [350,400),0.00071;
[400,450),0.00020; [450,500),0.00013; [500,550),0.00019; [550,600),0.00020}

y3 {[-140,-120),0.00020; [-120,-100),0.00103; [-100,-80),0.00190; [-80,-60),0.00266;
[-60,-40),0.00411; [-40,-20),0.01085; [-20,0),0.08077; [0,20),0.17053;
[20,40),0.16367; [40,60),0.13179; [60,80),0.11425; [80,100),0.09112;
[100,120),0.06696; [120,140),0.04794; [140,160),0.03672; [160,180),0.02646;
[180,200),0.01863; [200,220),0.01404; [220,240),0.00856; [240,260),0.00492;
[260,280),0.00221; [280,300),0.00059; [300,320),0.00008}

y4 {[-40,-20),0.00109; [-20,0),0.44230; [0,20),0.15690; [20,40),0.06480; [40,60),0.05461;
[60,80),0.05096; [80,100),0.04223; [100,120),0.04077; [120,140),0.04623;
[140,160),0.04368; [160,180),0.02621; [180,200),0.01493; [200,220),0.00655;
[220,240),0.00400; [240,260),0.00364; [260,280),0.00109}

y5 {[-140,-120),0.00021; [-120,-100),0.00158; [-100,-80),0.00221; [-80,-60),0.00411;
[-60,-40),0.00569; [-40,-20),0.01148; [-20,0),0.15348; [0,20),0.21964;
[20,40),0.13305; [40,60),0.11429; [60,80),0.09976; [80,100),0.07806;
[100,120),0.05320; [120,140),0.03676; [140,160),0.02697; [160,180),0.01917;
[180,200),0.01496; [200,220),0.01243; [220,240),0.00885; [240,260),0.00369;
[260,280),0.00042}

y6 {[-140,-120),0.00017; [-120,-100),0.00035; [-100,-80),0.00063; [-80,-60),0.00161;
[-60,-40),0.00225; [-40,-20),0.00726; [-20,0),0.14890; [0,20),0.22595;
[20,40),0.16773; [40,60),0.12570; [60,80),0.10641; [80,100),0.08159;
[100,120),0.05672; [120,140),0.03104; [140,160),0.01825; [160,180),0.01198;
[180,200),0.00662; [200,220),0.00392; [220,240),0.00167; [240,260),0.00069;
[260,280),0.00046; [280,300),0.00012}

y7 {[-100,-50),0.00463; [-50,0),0.15241; [0,50),0.38425; [50,100),0.18893;
[100,150),0.11224; [150,200),0.07518; [200,250),0.04247; [250,300),0.02199;
[300,350),0.01195; [350,400),0.00551; [400,450),0.00044}
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y Y6=Horizontal distance to nearest roadway
y1 {[0,500),0.04487; [500,1000),0.09847; [1000,1500),0.13361; [1500,2000),0.12812;

[2000,2500),0.12070; [2500,3000),0.10438; [3000,3500),0.09860; [3500,4000),0.07088;
[4000,4500),0.06256; [4500,5000),0.04972; [5000,5500),0.04307; [5500,6000),0.03309;
[6000,6500),0.01163; [6500,7000),0.00032}

y2 {[0,500),0.06916; [500,1000),0.13858; [1000,1500),0.15308; [1500,2000),0.13071;
[2000,2500),0.10419; [2500,3000),0.09182; [3000,3500),0.07236; [3500,4000),0.05029;
[4000,4500),0.04656; [4500,5000),0.03702; [5000,5500),0.04006; [5500,6000),0.04452;
[6000,6500),0.01731; [6500,7000),0.00415; [7000,7500),0.00019}

y3 {[0,200),0.07230; [200,400),0.13131; [400,600),0.14650; [600,800),0.11884;
[800,1000),0.12345; [1000,1200),0.11395; [1200,1400),0.09571; [1400,1600),0.06567;
[1600,1800),0.03591; [1800,2000),0.02472; [2000,2200),0.02268; [2200,2400),0.01863;
[2400,2600),0.01390; [2600,2800),0.00825; [2800,3000),0.00369; [3000,3200),0.00299;
[3200,3400),0.00140; [3400,3600),0.00008}

y4 {[0,100),0.00364; [100,200),0.01820; [200,300),0.03531; [300,400),0.05169;
[400,500),0.06261; [500,600),0.06443; [600,700),0.06553; [700,800),0.07353;
[800,900),0.08373; [900,1000),0.08810; [1000,1100),0.07754; [1100,1200),0.11067;
[1200,1300),0.10339; [1300,1400),0.08482; [1400,1500),0.05461; [1500,1600),0.01529;
[1600,1700),0.00655; [1700,1800),0.00036}

y5 {[0,500),0.26261; [500,1000),0.16991; [1000,1500),0.14189; [1500,2000),0.19741;
[2000,2500),0.14284; [2500,3000),0.03877; [3000,3500),0.01001; [3500,4000),0.00000;
[4000,4500),0.00000; [4500,5000),0.02718; [5000,5500),0.00938}

y6 {[0,200),0.03576; [200,400),0.09247; [400,600),0.12334; [600,800),0.14585;
[800,1000),0.12201; [1000,1200),0.12161; [1200,1400),0.11205; [1400,1600),0.07802;
[1600,1800),0.05326; [1800,2000),0.04284; [2000,2200),0.03985; [2200,2400),0.02136;
[2400,2600),0.00535; [2600,2800),0.00213; [2800,3000),0.00311; [3000,3200),0.00098}

y7 {[0,500),0.00073; [500,1000),0.07138; [1000,1500),0.10478; [1500,2000),0.13915;
[2000,2500),0.13725; [2500,3000),0.14222; [3000,3500),0.10731; [3500,4000),0.11355;
[4000,4500),0.11024; [4500,5000),0.03613; [5000,5500),0.03725}
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y Y7=A relative measure of incident sunlight at 09:00A.M. on the summer solstice
y1 {[0,10),0.00002; [10,20),0.00000; [20,30),0.00000; [30,40),0.00000; [40,50),0.00000;

[50,60),0.00005; [60,70),0.00009; [70,80),0.00027; [80,90),0.00043; [90,100),0.00065;
[100,110),0.00107; [110,120),0.00222; [120,130),0.00417; [130,140),0.00645;
[140,150),0.00895; [150,160),0.01431; [160,170),0.02378; [170,180),0.04274;
[180,190),0.06667; [190,200),0.09595; [200,210),0.13396; [210,220),0.17491;
[220,230),0.18921; [230,240),0.14581; [240,250),0.07561; [250,260),0.01265}

y2 {[0,10),0.00002; [10,20),0.00000; [20,30),0.00000; [30,40),0.00000; [40,50),0.00000;
[50,60),0.00005; [60,70),0.00006; [70,80),0.00018; [80,90),0.00034; [90,100),0.00073;
[100,110),0.00120; [110,120),0.00182; [120,130),0.00323; [130,140),0.00566;
[140,150),0.00998; [150,160),0.01522; [160,170),0.02335; [170,180),0.03966;
[180,190),0.05873; [190,200),0.08672; [200,210),0.11880; [210,220),0.16033;
[220,230),0.19822; [230,240),0.17427; [240,250),0.08956; [250,260),0.01187}

y3 {[40,50),0.00003; [50,60),0.00011; [60,70),0.00078; [70,80),0.00159; [80,90),0.00372;
[90,100),0.00554; [100,110),0.01189; [110,120),0.01673; [120,130),0.02363;
[130,140),0.03370; [140,150),0.04128; [150,160),0.04570; [160,170),0.05166;
[170,180),0.05253; [180,190),0.05697; [190,200),0.06699; [200,210),0.07129;
[210,220),0.08318; [220,230),0.11448; [230,240),0.13232; [240,250),0.13464;
[250,260),0.05124}

y4 {[120,130),0.00036; [130,140),0.00291; [140,150),0.00364; [150,160),0.00837;
[160,170),0.01638; [170,180),0.02330; [180,190),0.03058; [190,200),0.05315;
[200,210),0.06516; [210,220),0.10885; [220,230),0.13578; [230,240),0.14161;
[240,250),0.21478; [250,260),0.19512}

y5 {[120,130),0.00042; [130,140),0.00200; [140,150),0.00348; [150,160),0.00737;
[160,170),0.01464; [170,180),0.02770; [180,190),0.04761; [190,200),0.06447;
[200,210),0.07405; [210,220),0.11472; [220,230),0.18951; [230,240),0.19277;
[240,250),0.20299; [250,260),0.05825}

y6 {[0,20),0.00017; [20,40),0.00006; [40,60),0.00012; [60,80),0.00023; [80,100),0.00115;
[100,120),0.01457; [120,140),0.05551; [140,160),0.12006; [160,180),0.16704;
[180,200),0.18426; [200,220),0.20856; [220,240),0.19180; [240,260),0.05649}

y7 {[80,90),0.00005; [90,100),0.00010; [100,110),0.00083; [110,120),0.00122;
[120,130),0.00141; [130,140),0.00254; [140,150),0.00531; [150,160),0.01009;
[160,170),0.01633; [170,180),0.03091; [180,190),0.06724; [190,200),0.10078;
[200,210),0.10843; [210,220),0.13993; [220,230),0.19430; [230,240),0.16568;
[240,250),0.12750; [250,260),0.02735}
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y Y8=A relative measure of incident sunlight at noon on the summer solstice
y1 {[70,80),0.00001; [80,90),0.00003; [90,100),0.00007; [100,110),0.00011;

[110,120),0.00012; [120,130),0.00028; [130,140),0.00058; [140,150),0.00133;
[150,160),0.00278; [160,170),0.00576; [170,180),0.01282; [180,190),0.02866;
[190,200),0.05254; [200,210),0.10000; [210,220),0.17525; [220,230),0.23468;
[230,240),0.21813; [240,250),0.13426; [250,260),0.03260}

y2 {[0,10),0.00002; [10,20),0.00000; [20,30),0.00000; [30,40),0.00000; [40,50),0.00001;
[50,60),0.00001; [60,70),0.00001; [70,80),0.00001; [80,90),0.00002; [90,100),0.00004;
[100,110),0.00006; [110,120),0.00012; [120,130),0.00024; [130,140),0.00040;
[140,150),0.00096; [150,160),0.00253; [160,170),0.00588; [170,180),0.01258;
[180,190),0.02334; [190,200),0.04702; [200,210),0.09411; [210,220),0.16101;
[220,230),0.22437; [230,240),0.20600; [240,250),0.16409; [250,260),0.05717}

y3 {[90,100),0.00011; [100,110),0.00039; [110,120),0.00078; [120,130),0.00336;
[130,140),0.00722; [140,150),0.01491; [150,160),0.02179; [160,170),0.03295;
[170,180),0.04416; [180,190),0.05474; [190,200),0.07585; [200,210),0.10667;
[210,220),0.13260; [220,230),0.14521; [230,240),0.14706; [240,250),0.14605;
[250,260),0.06615}

y4 {[130,140),0.00036; [140,150),0.00218; [150,160),0.00728; [160,170),0.01820;
[170,180),0.03203; [180,190),0.06079; [190,200),0.08518; [200,210),0.13287;
[210,220),0.17510; [220,230),0.22024; [230,240),0.13760; [240,250),0.09028;
[250,260),0.03786}

y5 {[90,100),0.00084; [100,110),0.00053; [110,120),0.00126; [120,130),0.00053;
[130,140),0.00053; [140,150),0.00158; [150,160),0.01338; [160,170),0.03424;
[170,180),0.04245; [180,190),0.05594; [190,200),0.06426; [200,210),0.08311;
[210,220),0.13547; [220,230),0.18224; [230,240),0.17013; [240,250),0.16402;
[250,260),0.04951}

y6 {[90,100),0.00006; [100,110),0.00012; [110,120),0.00046; [120,130),0.00063;
[130,140),0.00432; [140,150),0.01296; [150,160),0.02603; [160,170),0.03501;
[170,180),0.04629; [180,190),0.07186; [190,200),0.10998; [200,210),0.14919;
[210,220),0.18293; [220,230),0.16065; [230,240),0.10520; [240,250),0.07474;
[250,260),0.01958}

y7 {[90,100),0.00020; [100,110),0.00029; [110,120),0.00088; [120,130),0.00200;
[130,140),0.00219; [140,150),0.00293; [150,160),0.00497; [160,170),0.00878;
[170,180),0.01531; [180,190),0.02477; [190,200),0.04993; [200,210),0.12335;
[210,220),0.19083; [220,230),0.21312; [230,240),0.18679; [240,250),0.15110;
[250,260),0.02257}
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y Y9=A relative measure of incident sunlight at 03:00P.M. on the summer solstice
y1 {[0,10),0.00192; [10,20),0.00048; [20,30),0.00108; [30,40),0.00220; [40,50),0.00396;

[50,60),0.00718; [60,70),0.01118; [70,80),0.01809; [80,90),0.02600; [90,100),0.03790;
[100,110),0.05530; [110,120),0.07487; [120,130),0.09748; [130,140),0.11494;
[140,150),0.12035; [150,160),0.10469; [160,170),0.08951; [170,180),0.07779;
[180,190),0.06034; [190,200),0.04186; [200,210),0.02637; [210,220),0.01489;
[220,230),0.00765; [230,240),0.00321; [240,250),0.00074; [250,260),0.00002}

y2 {[0,10),0.00166; [10,20),0.00071; [20,30),0.00151; [30,40),0.00259; [40,50),0.00374;
[50,60),0.00624; [60,70),0.00987; [70,80),0.01631; [80,90),0.02460; [90,100),0.04025;
[100,110),0.06290; [110,120),0.08319; [120,130),0.10640; [130,140),0.11908;
[140,150),0.11900; [150,160),0.09753; [160,170),0.08047; [170,180),0.06765;
[180,190),0.05760; [190,200),0.04247; [200,210),0.02662; [210,220),0.01491;
[220,230),0.00832; [230,240),0.00466; [240,250),0.00159; [250,260),0.00012}

y3 {[0,20),0.01222; [20,40),0.02036; [40,60),0.04072; [60,80),0.06830; [80,100),0.08942;
[100,120),0.11993; [120,140),0.14214; [140,160),0.13716; [160,180),0.11878;
[180,200),0.10751; [200,220),0.08528; [220,240),0.05082; [240,260),0.00736}

y4 {[0,20),0.03240; [20,40),0.04878; [40,60),0.08336; [60,80),0.12887; [80,100),0.13287;
[100,120),0.12523; [120,140),0.13688; [140,160),0.13724; [160,180),0.09902;
[180,200),0.04878; [200,220),0.01929; [220,240),0.00728}

y5 {[0,20),0.01949; [20,40),0.04667; [40,60),0.06342; [60,80),0.09818; [80,100),0.10060;
[100,120),0.11977; [120,140),0.16876; [140,160),0.15548; [160,180),0.10050;
[180,200),0.08501; [200,220),0.03655; [220,240),0.00558}

y6 {[0,20),0.00029; [20,40),0.00846; [40,60),0.02223; [60,80),0.05038; [80,100),0.08315;
[100,120),0.11505; [120,140),0.14833; [140,160),0.14706; [160,180),0.14695;
[180,200),0.13906; [200,220),0.10336; [220,240),0.03512; [240,260),0.00058}

y7 {[0,20),0.01560; [20,40),0.00941; [40,60),0.01760; [60,80),0.04276; [80,100),0.08108;
[100,120),0.14603; [120,140),0.18952; [140,160),0.24334; [160,180),0.15553;
[180,200),0.07782; [200,220),0.01897; [220,240),0.00234}

(Continued)
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y Y10=Horizontal distance to nearest historic wildfire ignition point
y1 {[0,500),0.06696; [500,1000),0.15156; [1000,1500),0.17071; [1500,2000),0.16847;

[2000,2500),0.15370; [2500,3000),0.11807; [3000,3500),0.06625; [3500,4000),0.03612;
[4000,4500),0.02021; [4500,5000),0.01444; [5000,5500),0.01250; [5500,6000),0.00927;
[6000,6500),0.00782; [6500,7000),0.00372; [7000,7500),0.00021}

y2 {[0,500),0.04930; [500,1000),0.13965; [1000,1500),0.18532; [1500,2000),0.17819;
[2000,2500),0.15398; [2500,3000),0.10811; [3000,3500),0.03936; [3500,4000),0.02231;
[4000,4500),0.02521; [4500,5000),0.02623; [5000,5500),0.02261; [5500,6000),0.02341;
[6000,6500),0.02176; [6500,7000),0.00434; [7000,7500),0.00022}

y3 {[0,200),0.03658; [200,400),0.12032; [400,600),0.16658; [600,800),0.15939;
[800,1000),0.15044; [1000,1200),0.11663; [1200,1400),0.08824; [1400,1600),0.05552;
[1600,1800),0.03801; [1800,2000),0.02495; [2000,2200),0.01233; [2200,2400),0.01404;
[2400,2600),0.01133; [2600,2800),0.00464; [2800,3000),0.00098}

y4 {[0,200),0.05934; [200,400),0.14234; [400,600),0.15399; [600,800),0.14379;
[800,1000),0.14671; [1000,1200),0.08118; [1200,1400),0.10339; [1400,1600),0.07972;
[1600,1800),0.06007; [1800,2000),0.02949}

y5 {[0,500),0.06352; [500,1000),0.22891; [1000,1500),0.22332; [1500,2000),0.24302;
[2000,2500),0.17402; [2500,3000),0.02876; [3000,3500),0.00421; [3500,4000),0.00221;
[4000,4500),0.00000; [4500,5000),0.00000; [5000,5500),0.00790; [5500,6000),0.00938;
[6000,6500),0.01475}

y6 {[0,200),0.02148; [200,400),0.07572; [400,600),0.11839; [600,800),0.16946;
[800,1000),0.15679; [1000,1200),0.11816; [1200,1400),0.11338; [1400,1600),0.07071;
[1600,1800),0.03921; [1800,2000),0.03340; [2000,2200),0.02821; [2200,2400),0.01831;
[2400,2600),0.01889; [2600,2800),0.01382; [2800,3000),0.00409}

y7 {[0,500),0.06080; [500,1000),0.13774; [1000,1500),0.13876; [1500,2000),0.17367;
[2000,2500),0.15095; [2500,3000),0.10922; [3000,3500),0.09274; [3500,4000),0.09473;
[4000,4500),0.04096; [4500,5000),0.00044}
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B.2 Transformed Histogram-valued Data

Table B.2: Transformed histogram-valued data for forestry cover type data.
Y1 y′

1 y′
2 y′

3 y′
4 y′

5 y′
6 y′

7
[b1k, b1,k+1) p′

11k p′
21k p′

31k p′
41k p′

51k p′
61k p′

71k

[1850, 1900) 0 0 0.00064 0 0 0.00403 0

[1900, 1950) 0 0 0.00579 0 0 0.01134 0

[1950, 2000) 0 0 0.01454 0.00364 0 0.01416 0

[2000, 2050) 0 0 0.02937 0.04951 0 0.01434 0

[2050, 2100) 0 0 0.0389 0.08227 0 0.02326 0

[2100, 2150) 0 0 0.04548 0.13324 0 0.03294 0

[2150, 2200) 0 0.00015 0.04964 0.13069 0 0.02937 0

[2200, 2250) 0 0.00025 0.05415 0.16199 0 0.038 0

[2250, 2300) 0 0.00049 0.0702 0.17692 0 0.0562 0

[2300, 2350) 0 0.00067 0.09384 0.16163 0 0.08637 0

[2350, 2400) 0 0.00083 0.09034 0.07863 0 0.11464 0

[2400, 2450) 0 0.0018 0.09526 0.01311 0 0.13624 0

[2450, 2500) 0 0.00522 0.08393 0.00692 0.00748 0.11182 0

[2500, 2550) 0.0007 0.01775 0.0801 0.00146 0.01243 0.0866 0

[2550, 2600) 0.00169 0.02688 0.08757 0 0.03697 0.07071 0

[2600, 2650) 0.00285 0.03552 0.07227 0 0.0295 0.06213 0

[2650, 2700) 0.00441 0.04405 0.04262 0 0.05667 0.04474 0

[2700, 2750) 0.01005 0.05751 0.02327 0 0.18466 0.03478 0

[2750, 2800) 0.01385 0.0676 0.0139 0 0.19404 0.0171 0

[2800, 2850) 0.02272 0.0728 0.00646 0 0.20931 0.00818 0

[2850, 2900) 0.02643 0.09077 0.00171 0 0.16022 0.00305 0.00117

[2900, 2950) 0.0433 0.1158 0 0 0.08712 0 0.0021

[2950, 3000) 0.06893 0.12553 0 0 0.02096 0 0.00083

[3000, 3050) 0.08873 0.10131 0 0 0.00063 0 0

[3050, 3100) 0.1063 0.06574 0 0 0 0 0.00001

[3100, 3150) 0.12242 0.05454 0 0 0 0 0.00639

[3150, 3200) 0.13729 0.04528 0 0 0 0 0.02374

[3200, 3250) 0.13883 0.03369 0 0 0 0 0.08357

[3250, 3300) 0.09751 0.02581 0 0 0 0 0.13554

[3300, 3350) 0.05452 0.00765 0 0 0 0 0.18649

[3350, 3400) 0.03426 0.0021 0 0 0 0 0.26685

[3400, 3450) 0.01391 0.00026 0 0 0 0 0.17913

[3450, 3500) 0.00518 0 0 0 0 0 0.05471

[3500, 3550) 0.00335 0 0 0 0 0 0.01814

[3550, 3600) 0.00145 0 0 0 0 0 0.01043

[3600, 3650) 0.00095 0 0 0 0 0 0.00449

[3650, 3700) 0.00034 0 0 0 0 0 0.00507

[3700, 3750) 0 0 0 0 0 0 0.00873

[3750, 3800) 0 0 0 0 0 0 0.00507

[3800, 3850) 0 0 0 0 0 0 0.00712

[3850, 3900) 0 0 0 0 0 0 0.00039

(Continued)
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Y2 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b2k, b2,k+1) p′
12k p′

22k p′
32k p′

42k p′
52k p′

62k p′
72k

[0, 20) 0.09491 0.08054 0.05997 0.04186 0.03813 0.11948 0.08947

[20, 40) 0.09745 0.08259 0.05599 0.04951 0.04814 0.11965 0.07084

[40, 60) 0.09417 0.08876 0.05227 0.06953 0.0908 0.0885 0.0705

[60, 80) 0.08232 0.08609 0.05367 0.07499 0.13526 0.05614 0.08279

[80, 100) 0.06844 0.07682 0.06704 0.10193 0.13599 0.04111 0.10336

[100, 120) 0.05998 0.06596 0.07912 0.17801 0.09755 0.03374 0.07587

[120, 140) 0.0487 0.05919 0.07356 0.17546 0.06763 0.02263 0.05661

[140, 160) 0.03875 0.0503 0.06041 0.06225 0.05783 0.01117 0.05022

[160, 180) 0.03167 0.04481 0.05728 0.02912 0.05562 0.01273 0.0706

[180, 200) 0.02961 0.03875 0.04581 0.03386 0.03877 0.0114 0.03784

[200, 220) 0.02648 0.0384 0.04181 0.02039 0.03234 0.01031 0.02613

[220, 240) 0.02211 0.03617 0.03697 0.01857 0.0237 0.0148 0.01638

[240, 260) 0.0244 0.03561 0.02839 0.01602 0.02602 0.0224 0.01253

[260, 280) 0.03581 0.0335 0.03119 0.01383 0.03582 0.03553 0.0157

[280, 300) 0.04797 0.03255 0.04799 0.01129 0.02865 0.05384 0.03374

[300, 320) 0.06106 0.04162 0.06724 0.02657 0.02507 0.10745 0.04924

[320, 340) 0.06893 0.0522 0.07557 0.04077 0.0315 0.14084 0.05987

[340, 360) 0.06723 0.05613 0.0657 0.03604 0.03118 0.09829 0.0783

Y3 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b3k, b3,k+1) p′
13k p′

23k p′
33k p′

43k p′
53k p′

63k p′
73k

[0, 5) 0.11639 0.11125 0.03583 0.07463 0.07342 0.04008 0.08708

[5, 10) 0.27713 0.26495 0.10718 0.17073 0.19973 0.11556 0.23974

[10, 15) 0.28831 0.28129 0.16686 0.16199 0.20573 0.18771 0.31589

[15, 20) 0.17787 0.18366 0.18476 0.166 0.20141 0.2252 0.19488

[20, 25) 0.08703 0.09282 0.18504 0.17037 0.16064 0.21155 0.08406

[25, 30) 0.03578 0.0428 0.16555 0.13724 0.1006 0.13693 0.03788

[30, 35) 0.01267 0.01707 0.1027 0.08664 0.05067 0.06783 0.02116

[35, 40) 0.0034 0.00508 0.04274 0.02585 0.00453 0.01353 0.01365

[40, 45) 0.0011 0.00072 0.00828 0.00582 0.00105 0.00104 0.00405

[45, 50) 0.00029 0.00018 0.00106 0.00073 0.002 0.00029 0.00151

[50, 55) 3e-05 8e-05 0 0 0.00021 0.00029 1e-04

[55, 60) 0 6e-05 0 0 0 0 0

[60, 65) 0 4e-05 0 0 0 0 0

[65, 70) 0 0 0 0 0 0 0

(Continued)
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Y4 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b4k, b4,k+1) p′
14k p′

24k p′
34k p′

44k p′
54k p′

64k p′
74k

[0, 50) 0.14387 0.10166 0.12555 0.57809 0.15596 0.2256 0.11177

[50, 100) 0.11947 0.11049 0.14762 0.06807 0.15596 0.17297 0.11177

[100, 150) 0.11343 0.11885 0.14684 0.06152 0.12235 0.16088 0.07989

[150, 200) 0.08039 0.08855 0.10374 0.04405 0.12235 0.10244 0.07989

[200, 250) 0.09279 0.1071 0.11943 0.05752 0.10086 0.10958 0.07111

[250, 300) 0.08146 0.0949 0.10474 0.05934 0.10086 0.08862 0.07111

[300, 350) 0.0628 0.07191 0.07842 0.04296 0.05283 0.0513 0.05283

[350, 400) 0.0573 0.06516 0.06108 0.03859 0.05283 0.0395 0.05283

[400, 450) 0.05257 0.05442 0.04581 0.02657 0.0316 0.02447 0.04807

[450, 500) 0.04144 0.04157 0.02959 0.0142 0.0316 0.01399 0.04807

[500, 550) 0.0338 0.03371 0.0177 0.00837 0.01712 0.00656 0.04174

[550, 600) 0.03122 0.02987 0.01225 0.00073 0.01712 0.00294 0.04174

[600, 650) 0.02216 0.02104 0.00498 0 0.00864 0.00115 0.02538

[650, 700) 0.01867 0.01645 0.0021 0 0.00864 0 0.02538

[700, 750) 0.01327 0.01096 0.00014 0 0.00437 0 0.01802

[750, 800) 0.01104 0.00893 0 0 0.00437 0 0.01802

[800, 850) 0.00854 0.00691 0 0 0.00321 0 0.01499

[850, 900) 0.00552 0.00474 0 0 0.00321 0 0.01499

[900, 950) 0.00389 0.00324 0 0 0.00179 0 0.0129

[950, 1000) 0.00322 0.00264 0 0 0.00179 0 0.0129

[1000, 1050) 0.00179 0.00194 0 0 0.00126 0 0.01294

[1050, 1100) 0.00095 0.00146 0 0 0.00126 0 0.01294

[1100, 1150) 0.00035 0.00127 0 0 0 0 0.008

[1150, 1200) 8e-05 0.00083 0 0 0 0 0.008

[1200, 1250) 0 0.00071 0 0 0 0 0.00229

[1250, 1300) 0 4e-04 0 0 0 0 0.00229

[1300, 1350) 0 0.00021 0 0 0 0 7e-05

[1350, 1400) 0 7e-05 0 0 0 0 7e-05

(Continued)
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Y5 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b5k, b5,k+1) p′
15k p′

25k p′
35k p′

45k p′
55k p′

65k p′
75k

[−200,−179.76) 0 5e-05 0 0 0 0 0

[−179.76,−159.52) 0 5e-05 0 0 0 0 0

[−159.52,−139.29) 2e-04 0.00031 1e-05 0 1e-05 1e-05 0

[−139.29,−119.05) 0.00038 0.00054 0.00024 0 0.00028 0.00018 0

[−119.05,−98.81) 5e-04 0.00069 0.0011 0 0.00164 0.00037 0.00011

[−98.81,−78.57) 0.00232 0.00299 0.00198 0 0.00237 0.00071 0.00187

[−78.57,−58.33) 0.00232 0.00299 0.00281 0 0.00429 0.00168 0.00187

[−58.33,−38.1) 0.0439 0.0341 0.0048 1e-04 0.00631 0.00275 0.03706

[−38.1,−17.86) 0.07301 0.05588 0.01847 0.04838 0.02683 0.02252 0.06169

[−17.86, 2.38) 0.08846 0.07363 0.09242 0.41359 0.16318 0.15985 0.07273

[2.38, 22.62) 0.20429 0.20677 0.17166 0.14671 0.21091 0.22101 0.15553

[22.62, 42.86) 0.20429 0.20677 0.16107 0.06411 0.13195 0.16372 0.15553

[42.86, 63.1) 0.11934 0.12751 0.13064 0.05469 0.11341 0.12421 0.10438

[63.1, 83.33) 0.07301 0.08428 0.11176 0.05012 0.09733 0.10354 0.07647

[83.33, 103.57) 0.06512 0.0748 0.08789 0.04247 0.07455 0.07812 0.07099

[103.57, 123.81) 0.02832 0.03055 0.06413 0.0423 0.0507 0.0525 0.04543

[123.81, 144.05) 0.02832 0.03055 0.04624 0.04627 0.03522 0.02882 0.04543

[144.05, 164.29) 0.01831 0.01854 0.03496 0.04046 0.02562 0.01713 0.03484

[164.29, 184.52) 0.01414 0.01353 0.025 0.02397 0.01845 0.01091 0.03043

[184.52, 204.76) 0.01217 0.01175 0.01776 0.01311 0.01453 0.00606 0.02732

[204.76, 225) 0.00578 0.00595 0.01284 0.00599 0.01168 0.0034 0.01719

[225, 245.24) 0.00578 0.00595 0.00771 0.00396 0.0076 0.00143 0.01719

[245.24, 265.48) 0.00272 0.00343 0.00424 0.00299 0.00284 0.00064 0.01085

[265.48, 285.71) 0.00178 0.00265 0.00177 0.00079 0.00031 0.00037 0.0089

[285.71, 305.95) 0.00156 0.00216 0.00044 0 0 8e-05 0.0077

[305.95, 326.19) 0.00104 0.00099 6e-05 0 0 0 0.00484

[326.19, 346.43) 0.00104 0.00099 0 0 0 0 0.00484

[346.43, 366.67) 0.00064 0.00041 0 0 0 0 0.00269

[366.67, 386.9) 0.00056 0.00029 0 0 0 0 0.00223

[386.9, 407.14) 0.00041 0.00021 0 0 0 0 0.00151

[407.14, 427.38) 0.00014 8e-05 0 0 0 0 0.00018

[427.38, 447.62) 0.00014 8e-05 0 0 0 0 0.00018

[447.62, 467.86) 2e-05 5e-05 0 0 0 0 2e-05

[467.86, 488.1) 0 5e-05 0 0 0 0 0

[488.1, 508.33) 0 6e-05 0 0 0 0 0

[508.33, 528.57) 0 8e-05 0 0 0 0 0

[528.57, 548.81) 0 8e-05 0 0 0 0 0

[548.81, 569.05) 0 8e-05 0 0 0 0 0

[569.05, 589.29) 0 8e-05 0 0 0 0 0

[589.29, 609.52) 0 4e-05 0 0 0 0 0

[609.52, 629.76) 0 0 0 0 0 0 0

[629.76, 650) 0 0 0 0 0 0 0

(Continued)
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Y6 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b6k, b6,k+1) p′
16k p′

26k p′
36k p′

46k p′
56k p′

66k p′
76k

[0, 100) 0.00897 0.01383 0.03615 0.00364 0.05252 0.01788 0.00015

[100, 200) 0.00897 0.01383 0.03615 0.0182 0.05252 0.01788 0.00015

[200, 300) 0.00897 0.01383 0.06566 0.03531 0.05252 0.04624 0.00015

[300, 400) 0.00897 0.01383 0.06566 0.05169 0.05252 0.04624 0.00015

[400, 500) 0.00897 0.01383 0.07325 0.06261 0.05252 0.06167 0.00015

[500, 600) 0.01969 0.02772 0.07325 0.06443 0.03398 0.06167 0.01428

[600, 700) 0.01969 0.02772 0.05942 0.06553 0.03398 0.07293 0.01428

[700, 800) 0.01969 0.02772 0.05942 0.07353 0.03398 0.07293 0.01428

[800, 900) 0.01969 0.02772 0.06173 0.08373 0.03398 0.06101 0.01428

[900, 1000) 0.01969 0.02772 0.06173 0.0881 0.03398 0.06101 0.01428

[1000, 1100) 0.02672 0.03062 0.05697 0.07754 0.02838 0.0608 0.02096

[1100, 1200) 0.02672 0.03062 0.05697 0.11067 0.02838 0.0608 0.02096

[1200, 1300) 0.02672 0.03062 0.04785 0.10339 0.02838 0.05603 0.02096

[1300, 1400) 0.02672 0.03062 0.04785 0.08482 0.02838 0.05603 0.02096

[1400, 1500) 0.02672 0.03062 0.03284 0.05461 0.02838 0.03901 0.02096

[1500, 1600) 0.02562 0.02614 0.03284 0.01529 0.03948 0.03901 0.02783

[1600, 1700) 0.02562 0.02614 0.01796 0.00655 0.03948 0.02663 0.02783

[1700, 1800) 0.02562 0.02614 0.01796 0.00036 0.03948 0.02663 0.02783

[1800, 1900) 0.02562 0.02614 0.01236 0 0.03948 0.02142 0.02783

[1900, 2000) 0.02562 0.02614 0.01236 0 0.03948 0.02142 0.02783

[2000, 2100) 0.02414 0.02084 0.01134 0 0.02857 0.01992 0.02745

[2100, 2200) 0.02414 0.02084 0.01134 0 0.02857 0.01992 0.02745

[2200, 2300) 0.02414 0.02084 0.00931 0 0.02857 0.01068 0.02745

[2300, 2400) 0.02414 0.02084 0.00931 0 0.02857 0.01068 0.02745

[2400, 2500) 0.02414 0.02084 0.00695 0 0.02857 0.00268 0.02745

[2500, 2600) 0.02088 0.01836 0.00695 0 0.00775 0.00268 0.02844

[2600, 2700) 0.02088 0.01836 0.00413 0 0.00775 0.00107 0.02844

[2700, 2800) 0.02088 0.01836 0.00413 0 0.00775 0.00107 0.02844

[2800, 2900) 0.02088 0.01836 0.00185 0 0.00775 0.00155 0.02844

[2900, 3000) 0.02088 0.01836 0.00185 0 0.00775 0.00155 0.02844

[3000, 3100) 0.01972 0.01447 0.0015 0 0.002 0.00049 0.02146

[3100, 3200) 0.01972 0.01447 0.0015 0 0.002 0.00049 0.02146

[3200, 3300) 0.01972 0.01447 7e-04 0 0.002 0 0.02146

[3300, 3400) 0.01972 0.01447 7e-04 0 0.002 0 0.02146

[3400, 3500) 0.01972 0.01447 4e-05 0 0.002 0 0.02146

[3500, 3600) 0.01418 0.01006 4e-05 0 0 0 0.02271

[3600, 3700) 0.01418 0.01006 0 0 0 0 0.02271

[3700, 3800) 0.01418 0.01006 0 0 0 0 0.02271

(Continued)
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Y6 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b6k, b6,k+1) p′
16k p′

26k p′
36k p′

46k p′
56k p′

66k p′
76k

[3800, 3900) 0.01418 0.01006 0 0 0 0 0.02271

[3900, 4000) 0.01418 0.01006 0 0 0 0 0.02271

[4000, 4100) 0.01251 0.00931 0 0 0 0 0.02205

[4100, 4200) 0.01251 0.00931 0 0 0 0 0.02205

[4200, 4300) 0.01251 0.00931 0 0 0 0 0.02205

[4300, 4400) 0.01251 0.00931 0 0 0 0 0.02205

[4400, 4500) 0.01251 0.00931 0 0 0 0 0.02205

[4500, 4600) 0.00994 0.0074 0 0 0.00544 0 0.00723

[4600, 4700) 0.00994 0.0074 0 0 0.00544 0 0.00723

[4700, 4800) 0.00994 0.0074 0 0 0.00544 0 0.00723

[4800, 4900) 0.00994 0.0074 0 0 0.00544 0 0.00723

[4900, 5000) 0.00994 0.0074 0 0 0.00544 0 0.00723

[5000, 5100) 0.00861 0.00801 0 0 0.00188 0 0.00745

[5100, 5200) 0.00861 0.00801 0 0 0.00188 0 0.00745

[5200, 5300) 0.00861 0.00801 0 0 0.00188 0 0.00745

[5300, 5400) 0.00861 0.00801 0 0 0.00188 0 0.00745

[5400, 5500) 0.00861 0.00801 0 0 0.00188 0 0.00745

[5500, 5600) 0.00662 0.0089 0 0 0 0 0

[5600, 5700) 0.00662 0.0089 0 0 0 0 0

[5700, 5800) 0.00662 0.0089 0 0 0 0 0

[5800, 5900) 0.00662 0.0089 0 0 0 0 0

[5900, 6000) 0.00662 0.0089 0 0 0 0 0

[6000, 6100) 0.00233 0.00346 0 0 0 0 0

[6100, 6200) 0.00233 0.00346 0 0 0 0 0

[6200, 6300) 0.00233 0.00346 0 0 0 0 0

[6300, 6400) 0.00233 0.00346 0 0 0 0 0

[6400, 6500) 0.00233 0.00346 0 0 0 0 0

[6500, 6600) 6e-05 0.00083 0 0 0 0 0

[6600, 6700) 6e-05 0.00083 0 0 0 0 0

[6700, 6800) 6e-05 0.00083 0 0 0 0 0

[6800, 6900) 6e-05 0.00083 0 0 0 0 0

[6900, 7000) 6e-05 0.00083 0 0 0 0 0

[7000, 7100) 0 4e-05 0 0 0 0 0

[7100, 7200) 0 4e-05 0 0 0 0 0

[7200, 7300) 0 4e-05 0 0 0 0 0

[7300, 7400) 0 4e-05 0 0 0 0 0

[7400, 7500) 0 4e-05 0 0 0 0 0

(Continued)
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Y7 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b7k, b7,k+1) p′
17k p′

27k p′
37k p′

47k p′
57k p′

67k p′
77k

[0, 10) 2e-05 2e-05 0 0 0 9e-05 0

[10, 20) 0 0 0 0 0 9e-05 0

[20, 30) 0 0 0 0 0 3e-05 0

[30, 40) 0 0 0 0 0 3e-05 0

[40, 50) 0 0 3e-05 0 0 6e-05 0

[50, 60) 5e-05 5e-05 0.00011 0 0 6e-05 0

[60, 70) 9e-05 6e-05 0.00078 0 0 0.00012 0

[70, 80) 0.00027 0.00018 0.00159 0 0 0.00012 0

[80, 90) 0.00043 0.00034 0.00372 0 0 0.00058 5e-05

[90, 100) 0.00065 0.00073 0.00554 0 0 0.00058 1e-04

[100, 110) 0.00107 0.0012 0.01189 0 0 0.00728 0.00083

[110, 120) 0.00222 0.00182 0.01673 0 0 0.00728 0.00122

[120, 130) 0.00417 0.00323 0.02363 0.00036 0.00042 0.02775 0.00141

[130, 140) 0.00645 0.00566 0.0337 0.00291 0.002 0.02775 0.00254

[140, 150) 0.00895 0.00998 0.04128 0.00364 0.00348 0.06003 0.00531

[150, 160) 0.01431 0.01522 0.0457 0.00837 0.00737 0.06003 0.01009

[160, 170) 0.02378 0.02335 0.05166 0.01638 0.01464 0.08352 0.01633

[170, 180) 0.04274 0.03966 0.05253 0.0233 0.0277 0.08352 0.03091

[180, 190) 0.06667 0.05873 0.05697 0.03058 0.04761 0.09213 0.06724

[190, 200) 0.09595 0.08672 0.06699 0.05315 0.06447 0.09213 0.10078

[200, 210) 0.13396 0.1188 0.07129 0.06516 0.07405 0.10428 0.10843

[210, 220) 0.17491 0.16033 0.08318 0.10885 0.11472 0.10428 0.13993

[220, 230) 0.18921 0.19822 0.11448 0.13578 0.18951 0.0959 0.1943

[230, 240) 0.14581 0.17427 0.13232 0.14161 0.19277 0.0959 0.16568

[240, 250) 0.07561 0.08956 0.13464 0.21478 0.20299 0.02824 0.1275

[250, 260) 0.01265 0.01187 0.05124 0.19512 0.05825 0.02824 0.02735
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Y8 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b8k, b8,k+1) p′
18k p′

28k p′
38k p′

48k p′
58k p′

68k p′
78k

[0, 10) 0 2e-05 0 0 0 0 0

[10, 20) 0 0 0 0 0 0 0

[20, 30) 0 0 0 0 0 0 0

[30, 40) 0 0 0 0 0 0 0

[40, 50) 0 1e-05 0 0 0 0 0

[50, 60) 0 1e-05 0 0 0 0 0

[60, 70) 0 1e-05 0 0 0 0 0

[70, 80) 1e-05 1e-05 0 0 0 0 0

[80, 90) 3e-05 2e-05 0 0 0 0 0

[90, 100) 7e-05 4e-05 0.00011 0 0.00084 6e-05 2e-04

[100, 110) 0.00011 6e-05 0.00039 0 0.00053 0.00012 0.00029

[110, 120) 0.00012 0.00012 0.00078 0 0.00126 0.00046 0.00088

[120, 130) 0.00028 0.00024 0.00336 0 0.00053 0.00063 0.002

[130, 140) 0.00058 4e-04 0.00722 0.00036 0.00053 0.00432 0.00219

[140, 150) 0.00133 0.00096 0.01491 0.00218 0.00158 0.01296 0.00293

[150, 160) 0.00278 0.00253 0.02179 0.00728 0.01338 0.02603 0.00497

[160, 170) 0.00576 0.00588 0.03295 0.0182 0.03424 0.03501 0.00878

[170, 180) 0.01282 0.01258 0.04416 0.03203 0.04245 0.04629 0.01531

[180, 190) 0.02866 0.02334 0.05474 0.06079 0.05594 0.07186 0.02477

[190, 200) 0.05254 0.04702 0.07585 0.08518 0.06426 0.10998 0.04993

[200, 210) 0.1 0.09411 0.10667 0.13287 0.08311 0.14919 0.12335

[210, 220) 0.17525 0.16101 0.1326 0.1751 0.13547 0.18293 0.19083

[220, 230) 0.23468 0.22437 0.14521 0.22024 0.18224 0.16065 0.21312

[230, 240) 0.21813 0.206 0.14706 0.1376 0.17013 0.1052 0.18679

[240, 250) 0.13426 0.16409 0.14605 0.09028 0.16402 0.07474 0.1511

[250, 260) 0.0326 0.05717 0.06615 0.03786 0.04951 0.01958 0.02257
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Y9 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b9k, b9,k+1) p′
19k p′

29k p′
39k p′

49k p′
59k p′

69k p′
79k

[0, 10) 0.00192 0.00166 0.00611 0.0162 0.00974 0.00014 0.0078

[10, 20) 0.00048 0.00071 0.00611 0.0162 0.00974 0.00014 0.0078

[20, 30) 0.00108 0.00151 0.01018 0.02439 0.02333 0.00423 0.00471

[30, 40) 0.0022 0.00259 0.01018 0.02439 0.02333 0.00423 0.00471

[40, 50) 0.00396 0.00374 0.02036 0.04168 0.03171 0.01111 0.0088

[50, 60) 0.00718 0.00624 0.02036 0.04168 0.03171 0.01111 0.0088

[60, 70) 0.01118 0.00987 0.03415 0.06443 0.04909 0.02519 0.02138

[70, 80) 0.01809 0.01631 0.03415 0.06443 0.04909 0.02519 0.02138

[80, 90) 0.026 0.0246 0.04471 0.06644 0.0503 0.04157 0.04054

[90, 100) 0.0379 0.04025 0.04471 0.06644 0.0503 0.04157 0.04054

[100, 110) 0.0553 0.0629 0.05997 0.06261 0.05989 0.05752 0.07301

[110, 120) 0.07487 0.08319 0.05997 0.06261 0.05989 0.05752 0.07301

[120, 130) 0.09748 0.1064 0.07107 0.06844 0.08438 0.07416 0.09476

[130, 140) 0.11494 0.11908 0.07107 0.06844 0.08438 0.07416 0.09476

[140, 150) 0.12035 0.119 0.06858 0.06862 0.07774 0.07353 0.12167

[150, 160) 0.10469 0.09753 0.06858 0.06862 0.07774 0.07353 0.12167

[160, 170) 0.08951 0.08047 0.05939 0.04951 0.05025 0.07347 0.07777

[170, 180) 0.07779 0.06765 0.05939 0.04951 0.05025 0.07347 0.07777

[180, 190) 0.06034 0.0576 0.05376 0.02439 0.04251 0.06953 0.03891

[190, 200) 0.04186 0.04247 0.05376 0.02439 0.04251 0.06953 0.03891

[200, 210) 0.02637 0.02662 0.04264 0.00965 0.01828 0.05168 0.00948

[210, 220) 0.01489 0.01491 0.04264 0.00965 0.01828 0.05168 0.00948

[220, 230) 0.00765 0.00832 0.02541 0.00364 0.00279 0.01756 0.00117

[230, 240) 0.00321 0.00466 0.02541 0.00364 0.00279 0.01756 0.00117

[240, 250) 0.00074 0.00159 0.00368 0 0 0.00029 0

[250, 260) 2e-05 0.00012 0.00368 0 0 0.00029 0
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Y10 y′
1 y′

2 y′
3 y′

4 y′
5 y′

6 y′
7

[b10,k, b10,k+1) p′
1,10,k p′

2,10,k p′
3,10,k p′

4,10,k p′
5,10,k p′

6,10,k p′
7,10,k

[0, 197.37) 0.02643 0.01946 0.0361 0.05856 0.02507 0.02119 0.024

[197.37, 394.74) 0.02643 0.01946 0.11764 0.13937 0.02507 0.07401 0.024

[394.74, 592.11) 0.04202 0.03611 0.16317 0.15165 0.05554 0.1157 0.03817

[592.11, 789.47) 0.05983 0.05513 0.15758 0.1423 0.09036 0.16521 0.05437

[789.47, 986.84) 0.05983 0.05513 0.14894 0.14462 0.09036 0.1554 0.05437

[986.84, 1184.21) 0.06688 0.07195 0.11732 0.08442 0.0883 0.11914 0.05475

[1184.21, 1381.58) 0.06739 0.07315 0.08932 0.10027 0.08815 0.11226 0.05477

[1381.58, 1578.95) 0.06703 0.07203 0.0578 0.08085 0.09126 0.07371 0.06029

[1578.95, 1776.32) 0.0665 0.07034 0.03935 0.06134 0.09593 0.04201 0.06855

[1776.32, 1973.68) 0.0665 0.07034 0.02617 0.03272 0.09593 0.03365 0.06855

[1973.68, 2171.05) 0.06145 0.06206 0.01383 0.00388 0.07232 0.02853 0.06078

[2171.05, 2368.42) 0.06067 0.06078 0.01361 0 0.06869 0.0195 0.05959

[2368.42, 2565.79) 0.05598 0.05475 0.01161 0 0.04958 0.01855 0.05409

[2565.79, 2763.16) 0.04661 0.04267 0.00573 0 0.01135 0.0145 0.04311

[2763.16, 2960.53) 0.04661 0.04267 0.00164 0 0.01135 0.00583 0.04311

[2960.53, 3157.89) 0.03024 0.02097 0.00019 0 0.0036 0.00081 0.03791

[3157.89, 3355.26) 0.02615 0.01554 0 0 0.00166 0 0.03661

[3355.26, 3552.63) 0.02298 0.01374 0 0 0.00145 0 0.03682

[3552.63, 3750) 0.01426 0.00881 0 0 0.00087 0 0.0374

[3750, 3947.37) 0.01426 0.00881 0 0 0.00087 0 0.0374

[3947.37, 4144.74) 0.00965 0.00965 0 0 0.00023 0 0.02183

[4144.74, 4342.11) 0.00798 0.00995 0 0 0 0 0.01617

[4342.11, 4539.47) 0.00752 0.01003 0 0 0 0 0.01297

[4539.47, 4736.84) 0.0057 0.01035 0 0 0 0 0.00017

[4736.84, 4934.21) 0.0057 0.01035 0 0 0 0 0.00017

[4934.21, 5131.58) 0.00519 0.0094 0 0 0.00208 0 6e-05

[5131.58, 5328.95) 0.00493 0.00892 0 0 0.00312 0 0

[5328.95, 5526.32) 0.00476 0.00897 0 0 0.0032 0 0

[5526.32, 5723.68) 0.00366 0.00924 0 0 0.0037 0 0

[5723.68, 5921.05) 0.00366 0.00924 0 0 0.0037 0 0

[5921.05, 6118.42) 0.00332 0.00885 0 0 0.00497 0 0

[6118.42, 6315.79) 0.00309 0.00859 0 0 0.00582 0 0

[6315.79, 6513.16) 0.00298 0.00813 0 0 0.00543 0 0

[6513.16, 6710.53) 0.00147 0.00171 0 0 0 0 0

[6710.53, 6907.89) 0.00147 0.00171 0 0 0 0 0

[6907.89, 7105.26) 0.00073 0.00084 0 0 0 0 0

[7105.26, 7302.63) 8e-05 8e-05 0 0 0 0 0

[7302.63, 7500) 8e-05 8e-05 0 0 0 0 0
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B.3 Dissimilarity Matrices

In order to obtain dissimilarity matrices, first of all, the histogram-valued data for the cover

type dataset shown in Table B.1 should be transformed using the method proposed in Section

3.2. These transformed histogram-valued data for seven objects with ten variables are shown

in Table B.2. By this transformation, observations have the same number and length of

subintervals for each variable as shown in Table B.2. We can calculate dissimilarity matrices

for the transformed histogram-valued cover type data. As mentioned in Section 5.2, for the

cluster analysis, we use four different dissimilarity measures, the extended Gowda-Diday

measure (GD), the city block (CB) and Euclidean distances (EU) (based on the normalized

extended Ichino-Yaguchi measure for γ = 0.25), and the normalized CDF measure (NCDF).

Using Equation (3.8), we can calculate the extended Gowda-Diday dissimilarity measure

as follows: we first have to compute the intersection of y′i1 = y′1 and y′i2 = y′2 using the

transformed histogram-valued data of Table B.2. For the variable Yj = Y1,

p′(i1∩i2)jk = p′(1∩2)11 = min{0, 0} = 0.

where subscripts i1 and i2 are the ith1 and ith2 observations, respectively, j is the jth variable,

and k is the kth subinterval or relative frequency. Similarly,

p′(1∩2)12 = min{0, 0} = 0, . . . , p′(1∩2)1,13 = min{0, 0.00522} = 0,

p′(1∩2)1,14 = min{0.0007, 0.01775} = 0.0007,

p′(1∩2)1,15 = min{0.00169, 0.02688} = 0.00169, . . . ,

p′(1∩2)1,32 = min{0.01391, 0.00026} = 0.00026,

p′(1∩2)1,33 = min{0.00518, 0} = 0, . . . ,

p′(1∩2)1,41 = min{0, 0} = 0.
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Thus, for i1 = 1, i2 = 2, j = 1, y′(i1∩i2)j = y′(1∩2)1 is

y′(1∩2)1 =
{

[1850, 1900), 0; · · · ; [2450, 2500), 0; [2500, 2550), 0.0007;

[2550, 2600), 0.00169; · · · ; [3400, 3450), 0.00026;

[3450, 3500), 0; · · · ; [3850, 3900), 0
}
.

Now, we calculate the mean and standard deviation of y′i1j = y′11. These are, respectively,

Mi1j = M11 =
1

2

{
0 + · · ·+ 0 + (2500 + 2550)0.0007 + (2550 + 2600)0.00169 + · · ·

+ (3600 + 3650)0.00095 + ((3650 + 3700)0.0034 + 0 + · · ·+ 0
}

= 3128.218,

and

Si1j = S11

=

{
0 + · · ·+

(
(−625.218)2 + (−625.218)(−575.218) + (−575.218)2

3

)
0.0007 + · · ·

+

(
(274.782)2 + (274.782)(324.782) + (324.782)2

3

)
0.00026 + 0 + · · ·+ 0

}1/2

= 159.140.

Similarly, Mi2j = M21 = 2920.412, Si2j = S21 = 187.599.

In order to compute S(i1∩i2)j = S(1∩2)1, first of all, we obtain p∗(i1∩i2)jk = p∗(1∩2)1k, k =

1, . . . , 41, and then calculate M∗
(i1∩i2)j = M∗

(1∩2)1 using Equation (3.17). Thus,

41∑
k=1

p′(1∩2)1k = 0 + · · ·+ 0.0007 + 0.00169 + · · ·+ 0.00026 + 0 + · · ·+ 0 = 0.519.

Hence, from Equation (3.18), the standardized relative frequencies p∗(i1∩i2)jk = p∗(1∩2)1k, k =

1, . . . , 41, are

p∗(1∩2)11 =
0

0.519
= 0, . . . , p∗(1∩2)1,13 = 0, p∗(1∩2)14 =

0.0007

0.519
= 0.001,

p∗(1∩2)1,15 =
0.00169

0.519
= 0.003, . . . , p∗(1∩2)1,32 =

0.00026

0.519
= 0.001,

p∗(1∩2)1,33 =
0

0.519
= 0, . . . , p∗(1∩2)1,41 = 0,
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and

M∗
(i1∩i2)j = M∗

(1∩2)1 =
1

2

{
0 + · · ·+ (2500 + 2550)0.001 + (2550 + 2600)0.003 + · · ·

+ (3400 + 3450)0.001 + · · ·+ 0
}

= 3035.174.

Hence, the standard deviation for the intersection of y′i1j = y′11 and y′i2j = y′21 is, from

Equation (3.20),

S(i1∩i2)j = S(1∩2)1

=

{
0 + · · ·+

(
(−535.174)2 + (−535.174)(−485.174) + (−485.174)2

3

)
0.0007

+

(
(364.826)2 + (364.826)(414.826) + (414.826)2

3

)
0.00026 + · · ·+ 0

}1/2

= 105.528.

By using these mean and standard deviation values, the three components of the extended

Gowda-Diday measure between observations y′1 and y′2 for variable Y1 can be obtained as

follows:

D11(y
′
11, y

′
21) =

|159.140− 187.599|
159.140 + 187.599

= 0.082,

D21(y
′
11, y

′
21) =

159.140 + 187.599− 2(105.528)

159.140 + 187.599
= 0.391,

D31(y
′
11, y

′
21) =

|3128.218− 2920.412|
3900− 1850

= 0.101.

Thus,

DGD(y′11, y
′
21) = 0.082 + 0.391 + 0.101 = 0.575.

Similarly, the extended Gowda-Diday measure values between y′i1j = y′11 and y′i2j = y′21 for

variables Y2, . . . , Y10, DGD(y′1j, y
′
2j), j = 2, . . . , 10, are

DGD(y′12, y
′
22) = 0.105, DGD(y′13, y

′
23) = 0.056, DGD(y′14, y

′
24) = 0.073,

DGD(y′15, y
′
25) = 0.053, DGD(y′16, y

′
26) = 0.138, DGD(y′17, y

′
27) = 0.040,

DGD(y′18, y
′
28) = 0.063, DGD(y′19, y

′
29) = 0.030, DGD(y′1,10, y

′
2,10) = 0.208.
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Thus, the extended Gowda-Diday dissimilarity measure between y′1 and y′2 is given by, from

Equation (3.21),

DGD(y′1,y
′
2) = 0.575 + 0.105 + 0.056 + · · ·+ 0.208 = 1.341.

Similarly, we can calculate these dissimilarities DGD(y′i1 ,y
′
i2

) for all i1, i2 = 1, . . . , 7. Hence,

we can complete the dissimilarity matrix. The extended Gowda-Diday dissimilarity matrix

for the data of Table B.2 is given in Equation (5.1).

Now, we calculate the normalized city block and Euclidean distances. To obtain these dis-

tances, we first calculate the extended Ichino-Yaguchi measure of Equation (3.22). To obtain

the extended Ichino-Yaguchi measure, we first compute the union between two transformed

histogram-valued objects y′i1 = y′1 and y′i2 = y2. For the variable Yj = Y1,

p′(i1∪i2)jk = p′(1∪2)11 = max{0, 0} = 0.

Similarly,

p′(1∪2)12 = max{0, 0} = 0, . . . , p′(1∪2)17 = max{0, 0.00015} = 0.00015,

p′(1∪2)18 = max{0, 0.00025} = 0.00025, . . . , p′(1∪2)1,37 = max{0.00034, 0} = 0.00034,

p′(1∪2)1,38 = max{0, 0} = 0, . . . , p′(1∪2)1,41 = max{0, 0} = 0.

Thus, y′(i1∪i2)j = y′(1∪2)1 is

y′(1∪2)1 =
{

[1850, 1900), 0; · · · ; [2150, 2200), 0.00015; [2200, 2250), 0.00025; · · ·

[3650, 3700), 0.00034; [3700, 3750), 0; · · · ; [3850, 3900), 0
}
.

In order to compute S(i1∪i2)j = S(1∪2)1, first of all, we obtain p∗(11∪i2)jk = p∗(1∪2)1k, k =

1, . . . , 41, and then calculate M∗
(i1∪i2)j = M∗

(1∪2)1 using Equation (3.15). Hence,

41∑
k=1

p′(1∪2)1k = 0 + · · ·+ 0 + 0.00015 + · · ·+ 0.00034 + 0 + · · ·+ 0 = 1.481.
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Therefore, from Equation (3.16), the standardized relative frequencies p∗(i1∪i2)jk = p∗(1∪2)1k, k =

1, . . . , 41, are

p∗(1∪2)11 = 0, p∗(1∪2)12 = 0, . . . , p∗(1∪2)17 =
0.00015

1.481
= 0.0001,

p∗(1∪2)18 =
0.00025

1.481
= 0.0002, . . . , p∗(1∪2)1,37 =

0.00034

1.481
= 0.0002,

p∗(1∪2)1,38 = 0, . . . , p∗(1∪2)1,41 = 0,

and

M∗
(i1∪i2)j = M∗

(1∪2)1

=
1

2

[
0 + · · ·+ (2150 + 2200)0.00015 + · · ·+ (3650 + 3700)0.00034 + · · ·+ 0

]
= 3020.512.

Thus, the standard deviation for the union of y′i1j = y′11 and y′i2j = y′21 is, from Equation

(3.19),

S(i1∪i2)j = S(1∪2)1

=

{
0 + · · ·+

(
(−870.512)2 + (−870.512)(−820.512) + (−820.512)2

3

)
0.0001

+ · · ·+
(

(629.488)2 + (629.488)(679.488) + (679.488)2

3

)
0.0002 + · · ·+ 0

}1/2

= 266.255.

From the calculation of the extended Gowda-Diday measure, we know Si1j = S11 = 159.140,

Si2j = S21 = 187.599, and S(i1∩i2)j = S(1∩2)1 = 105.528. Thus, since we assume γ = 0.25, the

extended Ichino-Yaguchi measure φ(y′i1j, y
′
i2j) = φ(y′11, y

′
21) is, from Equation (3.22),

φ(y′11, y
′
21) = 266.255− 105.528 + 0.25(2× 105.528− 159.140− 187.599) = 126.806.

Similarly, for variables Y2, . . . , Y10, respectively,

φ(y′12, y
′
22) = 8.815, φ(y′13, y

′
23) = 0.344, φ(y′14, y

′
24) = 16.411,

φ(y′15, y
′
25) = 4.231, φ(y′16, y

′
26) = 176.315, φ(y′17, y

′
27) = 1.169,

φ(y′18, y
′
28) = 1.291, φ(y′19, y

′
29) = 1.299, φ(y′1,10, y

′
2,10) = 225.443.
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Now we compute the normalized extended Ichino-Yaguchi measure for φ(y′11, y
′
21). First,

from Equation (3.24),

A1j = A11 = 18502 + 19002 + 38502 + 39002 = 37065000,

A2j = A21 = 1850× 1900 + 3850× 3900 = 18530000,

A3j = A31 = 1850× 3850 + 1850× 3900 + 1900× 3850 + 1900× 3900 = 29062500.

Thus,

Vj = V1 =

√
5× 37065000 + 2× 18530000− 6× 29062500

24
= 1414.361.

Therefore, substituting into Equation (3.23), we obtain

φ∗(y′11, y
′
21) =

126.806

1414.361
= 0.090.

Similarly, for variables Y2, . . . , Y10, respectively,

φ∗(y′12, y
′
22) = 0.037, φ∗(y′13, y

′
23) = 0.007, φ∗(y′14, y

′
24) = 0.017,

φ∗(y′15, y
′
25) = 0.007, φ∗(y′16, y

′
26) = 0.034, φ∗(y′17, y

′
27) = 0.007,

φ∗(y′18, y
′
28) = 0.007, φ∗(y′19, y

′
29) = 0.007, φ∗(y′1,10, y

′
2,10) = 0.044.

The complete results for the normalized extended Ichino-Yaguchi dissimilarity matrices for

each variable (i.e., Yj, j = 1, . . . , 10), φ∗j , are as follows:

φ∗1 =



0 0.090 0.340 0.425 0.154 0.328 0.109

0.090 0 0.242 0.325 0.067 0.230 0.205

0.340 0.242 0 0.084 0.184 0.017 0.455

0.425 0.325 0.084 0 0.263 0.096 0.541

0.154 0.067 0.184 0.263 0 0.171 0.268

0.328 0.230 0.017 0.096 0.171 0 0.443

0.109 0.205 0.455 0.541 0.268 0.443 0



,
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φ∗2 =



0 0.037 0.043 0.102 0.098 0.072 0.036

0.037 0 0.054 0.072 0.067 0.105 0.038

0.043 0.054 0 0.091 0.097 0.099 0.052

0.102 0.072 0.091 0 0.041 0.174 0.080

0.098 0.067 0.097 0.041 0 0.173 0.094

0.072 0.105 0.099 0.174 0.173 0 0.095

0.036 0.038 0.052 0.080 0.094 0.095 0



,

φ∗3 =



0 0.007 0.099 0.071 0.045 0.073 0.021

0.007 0 0.092 0.065 0.039 0.066 0.018

0.099 0.092 0 0.028 0.054 0.025 0.077

0.071 0.065 0.028 0 0.028 0.027 0.051

0.045 0.039 0.054 0.028 0 0.030 0.037

0.073 0.066 0.025 0.027 0.030 0 0.057

0.021 0.018 0.077 0.051 0.037 0.057 0



,

φ∗4 =



0 0.017 0.065 0.120 0.039 0.094 0.076

0.017 0 0.066 0.124 0.043 0.099 0.074

0.065 0.066 0 0.058 0.035 0.033 0.138

0.120 0.124 0.058 0 0.078 0.024 0.200

0.039 0.043 0.035 0.078 0 0.055 0.115

0.094 0.099 0.033 0.024 0.055 0 0.173

0.076 0.074 0.138 0.200 0.115 0.173 0



,
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φ∗5 =



0 0.007 0.025 0.029 0.022 0.025 0.035

0.007 0 0.024 0.030 0.021 0.025 0.035

0.025 0.024 0 0.025 0.012 0.023 0.035

0.029 0.030 0.025 0 0.020 0.026 0.050

0.022 0.021 0.012 0.020 0 0.014 0.043

0.025 0.025 0.023 0.026 0.014 0 0.055

0.035 0.035 0.035 0.050 0.043 0.055 0



,

φ∗6 =



0 0.034 0.226 0.252 0.152 0.219 0.061

0.034 0 0.217 0.245 0.145 0.210 0.088

0.226 0.217 0 0.043 0.074 0.020 0.227

0.252 0.245 0.043 0 0.112 0.035 0.250

0.152 0.145 0.074 0.112 0 0.077 0.153

0.219 0.210 0.020 0.035 0.077 0 0.219

0.061 0.088 0.227 0.250 0.153 0.219 0



,

φ∗7 =



0 0.007 0.074 0.056 0.041 0.071 0.021

0.007 0 0.076 0.052 0.036 0.076 0.019

0.074 0.076 0 0.109 0.094 0.046 0.082

0.056 0.052 0.109 0 0.018 0.125 0.036

0.041 0.036 0.094 0.018 0 0.109 0.020

0.071 0.076 0.046 0.125 0.109 0 0.087

0.021 0.019 0.082 0.036 0.020 0.087 0



,
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φ∗8 =



0 0.007 0.046 0.024 0.032 0.050 0.013

0.007 0 0.045 0.030 0.031 0.057 0.016

0.046 0.045 0 0.032 0.020 0.023 0.038

0.024 0.030 0.032 0 0.022 0.028 0.026

0.032 0.031 0.020 0.022 0 0.031 0.030

0.050 0.057 0.023 0.028 0.031 0 0.043

0.013 0.016 0.038 0.026 0.030 0.043 0



,

φ∗9 =



0 0.007 0.078 0.114 0.085 0.051 0.041

0.007 0 0.076 0.113 0.085 0.052 0.043

0.078 0.076 0 0.099 0.068 0.044 0.070

0.114 0.113 0.099 0 0.032 0.127 0.078

0.085 0.085 0.068 0.032 0 0.095 0.059

0.051 0.052 0.044 0.127 0.095 0 0.061

0.041 0.043 0.070 0.078 0.059 0.061 0



,

φ∗10 =



0 0.044 0.159 0.172 0.064 0.141 0.058

0.044 0 0.194 0.206 0.081 0.175 0.090

0.159 0.194 0 0.021 0.106 0.019 0.150

0.172 0.206 0.021 0 0.118 0.034 0.162

0.064 0.081 0.106 0.118 0 0.090 0.106

0.141 0.175 0.019 0.034 0.090 0 0.130

0.058 0.090 0.150 0.162 0.106 0.130 0



.

By using φ∗(y′1j, y
′
2j), j = 1, . . . , 10, the normalized city block distance of y′1 and y′2 can

be computed, from Equation (3.28) with q = 1, as follows:

D1
NM(y1,y2) =

[
0.090 + 0.037 + 0.007 + · · ·+ 0.007 + 0.044

]
= 0.257.
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Similarly, the normalized city block distances for all i1, i2 = 1, . . . , 7 can be calculated. Hence,

the normalized city block distance matrix is given in Equation (5.2).

From the normalized extended Ichino-Yaguchi measure values, φ∗(y′1j, y
′
2j), j = 1, . . . , 10,

the normalized Euclidean distance between y′1 and y′2 can be calculated, from Equation (3.28)

with q = 2, as follows:

D2
NM(y1,y2) =

[
0.0902 + 0.0372 + 0.0072 + · · ·+ 0.0072 + 0.0442

]1/2
= 0.114.

Similarly, the normalized Euclidean distances for all i1, i2 = 1, . . . , 7 can be calculated. Hence,

the normalized Euclidean distance matrix is given in Equation (5.3).

From the transformed histogram-valued data of Table B.2, we calculate the normalized

CDF dissimilarity measure for seven cover types. First of all, the cumulative relative fre-

quencies for y′i1j = y′11 are obtained by

Fi1jk = F111 = p′111 = 0,

Similarly,

F112 = F111 + p′112 = 0 + 0 = 0, . . . ,

F11,13 = F11,12 + p′11,13 = 0 + 0 = 0,

F11,14 = F11,13 + p′11,14 = 0 + 0.0007 = 0.0007,

F11,15 = F11,14 + p′11,15 = 0.0007 + 0.00169 = 0.00239, . . . ,

F11,37 = F11,36 + p′11,37 = 0.99966 + 0.00034 = 1, . . . ,

F11,41 = F11,41 + p′11,40 = 1 + 0 = 1.

Similarly, cumulative relative frequencies for y′i2j = y′21 are

F211 = 0, . . . , F21,13 = 0.00942, F21,14 = 0.02717,

F21,15 = 0.05405, . . . , F21,37 = 1, . . . , F21,41 = 1.
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Thus, since Tj = T1 = b1,k+1 − b1k = 50 for k = 1, . . . , t1 from Equation (3.30), the CDF

dissimilarity measure of y′11 and y′21 is obtained by

DCDF (y′11, y
′
21) = 50

[
0 + · · ·+

∣∣0− 0.00942
∣∣+
∣∣0.0007− 0.02717

∣∣
+ · · ·+

∣∣1− 1
∣∣] = 207.805.

Since Ψj = Ψ1 = b1,t1+1 − b11 = 3900 − 1850 = 2050, the normalized CDF measure of y′11

and y′21 is calculated as follows:

DNCDF (y′11, y
′
21) =

DCDF (y′11, y
′
21)

Ψ1

=
207.805

2050
= 0.101.

Similarly, for variables Y2, . . . , Y10, respectively,

DNCDF (y′12, y
′
22) = 0.029, DNCDF (y′13, y

′
23) = 0.006, DNCDF (y′14, y

′
24) = 0.010,

DNCDF (y′15, y
′
25) = 0.005, DNCDF (y′16, y

′
26) = 0.032, DNCDF (y′17, y

′
27) = 0.007,

DNCDF (y′18, y
′
28) = 0.007, DNCDF (y′19, y

′
29) = 0.006, DNCDF (y′1,10, y

′
2,10) = 0.021.

Thus, from Equation (3.31), the normalized CDF dissimilarity measure of y′1 and y′2 is

DNCDF (y′1,y
′
2) = 0.101 + 0.029 + 0.006 + · · ·+ 0.006 + 0.021 = 1.112.

Similarly, we can calculate these distances DNCDF (y′i1 ,y
′
i2

) for all i1, i2 = 1, . . . , 7. Hence,

we can complete the normalized CDF dissimilarity measure for the histogram-valued data

of Table B.2, and this dissimilarity matrix is given in Equation (5.4).
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B.4 Cluster Analysis

Table B.3: Objects sorted by mean values for each variable.

Sort y1
(1) y1

(2) y1
(3) y1

(4) y1
(5) y1

(6) y1
(7)

Y1 Object y4 y3 y6 y5 y2 y1 y7

Mean 2223.6 2394.2 2418.8 2786.8 2920.4 3128.2 3361.7
Sort y2

(1) y2
(2) y2

(3) y2
(4) y2

(5) y2
(6) y2

(7)

Y2 Object y4 y5 y2 y7 y1 y3 y6

Mean 136.8 138.9 151.7 152.9 155.8 176.0 180.1
Sort y3

(1) y3
(2) y3

(3) y3
(4) y3

(5) y3
(6) y3

(7)

Y3 Object y1 y2 y7 y5 y4 y6 y3

Mean 12.6 13.1 13.8 16.1 18.1 18.6 20.3
Sort y4

(1) y4
(2) y4

(3) y4
(4) y4

(5) y4
(6) y4

(7)

Y4 Object y4 y6 y3 y5 y1 y2 y7

Mean 115.5 160.1 209.3 216.3 270.3 279.2 358.4
Sort y5

(1) y5
(2) y5

(3) y5
(4) y5

(5) y5
(6) y5

(7)

Y5 Object y4 y1 y6 y2 y5 y3 y7

Mean 37.1 42.0 44.2 46.1 49.6 61.7 68.6
Sort y6

(1) y6
(2) y6

(3) y6
(4) y6

(5) y6
(6) y6

(7)

Y6 Object y4 y3 y6 y5 y2 y1 y7

Mean 912.8 942.9 1037.3 1354.8 2429.6 2614.4 2738.4
Sort y7

(1) y7
(2) y7

(3) y7
(4) y7

(5) y7
(6) y7

(7)

Y7 Object y6 y3 y1 y2 y7 y5 y4

Mean 192.4 201.5 211.5 213.3 216.5 223.0 228.0
Sort y8

(1) y8
(2) y8

(3) y8
(4) y8

(5) y8
(6) y8

(7)

Y8 Object y6 y3 y4 y5 y7 y1 y2

Mean 209.3 215.4 216.5 218.6 221.3 223.0 224.9
Sort y9

(1) y9
(2) y9

(3) y9
(4) y9

(5) y9
(6) y9

(7)

Y9 Object y4 y5 y7 y3 y2 y1 y6

Mean 110.9 121.3 134.6 139.9 142.5 143.4 147.7
Sort y10

(1) y10
(2) y10

(3) y10
(4) y10

(5) y10
(6) y10

(7)

Y10 Object y4 y3 y6 y5 y1 y7 y2

Mean 860.9 911.4 1056.2 1572.1 2009.1 2068.8 2168.0
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Table B.4: Decrement values for the first stage.
Variable (C1

1 , C2
1 ) I(C1

1 ) I(C2
1 ) I(C1)− I(C1

1 )− I(C2
1 )

({y4}, {y3,y6,y5,y2,y1,y7}) 0.00 9.44 3.09
({y4,y3}, {y6,y5,y2,y1,y7}) 1.16 6.85 4.52

Y1 ({y4,y3,y6}, {y5,y2,y1,y7}) 1.91 2.85 7.77
({y4,y3,y6,y5}, {y2,y1,y7}) 4.03 1.12 7.38
({y4,y3,y6,y5,y2}, {y1,y7}) 7.38 0.62 4.52
({y4,y3,y6,y5,y2,y1}, {y7}) 9.86 0.00 2.67
({y4}, {y5,y2,y7,y1,y3,y6}) 0.00 9.44 3.09
({y4,y5}, {y2,y7,y1,y3,y6}) 1.66 8.30 2.57

Y2 ({y4,y5,y2}, {y7,y1,y3,y6}) 4.32 7.06 1.14
({y4,y5,y2,y7}, {y1,y3,y6}) 6.39 4.11 2.02
({y4,y5,y2,y7,y1}, {y3,y6}) 7.47 0.31 4.75
({y4,y5,y2,y7,y1,y3}, {y6}) 10.24 0.00 2.28
({y1}, {y2,y7,y5,y4,y6,y3}) 0.00 10.70 1.83
({y1,y2}, {y7,y5,y4,y6,y3}) 0.13 8.31 4.08

Y3 ({y1,y2,y7}, {y5,y4,y6,y3}) 1.12 4.03 7.38
({y1,y2,y7,y5}, {y4,y6,y3}) 2.85 1.91 7.77
({y1,y2,y7,y5,y4}, {y6,y3}) 7.47 0.31 4.75
({y1,y2,y7,y5,y4,y6}, {y3}) 10.49 0.00 2.03
({y1}, {y2,y7,y5,y4,y6,y3}) 0.00 10.70 1.83
({y4}, {y6,y3,y5,y1,y2,y7}) 0.00 9.44 3.01
({y4,y6}, {y3,y5,y1,y2,y7}) 1.39 6.64 4.50

Y4 ({y4,y6,y3}, {y5,y1,y2,y7}) 1.91 2.85 7.77
({y4,y6,y3,y5}, {y1,y2,y7}) 4.03 1.12 7.38
({y4,y6,y3,y5,y1}, {y2,y7}) 7.62 0.92 3.98
({y4,y6,y3,y5,y1,y2}, {y7}) 9.86 0.00 2.67
({y4}, {y1,y6,y2,y5,y3,y3}) 0.00 9.44 3.09
({y4,y1}, {y6,y2,y5,y3,y7}) 3.81 8.15 0.56

Y5 ({y4,y1,y6}, {y2,y5,y3,y7}) 5.39 5.77 1.36
({y4,y1,y6,y2}, {y5,y3,y7}) 7.39 4.53 0.60
({y4,y1,y6,y2,y5}, {y3,y7}) 8.30 3.54 0.68
({y4,y1,y6,y2,y5,y3}, {y7}) 9.86 0.00 2.67
({y4}, {y3,y6,y5,y2,y1,y7}) 0.00 9.44 3.09
({y4,y3}, {y6,y5,y2,y1,y7}) 1.16 6.85 4.52

Y6 ({y4,y3,y6}, {y5,y2,y1,y7}) 1.91 2.85 7.77
({y4,y3,y6,y5}, {y2,y1,y7}) 4.03 1.12 7.38
({y4,y3,y6,y5,y2}, {y1,y7}) 7.38 0.62 4.52
({y4,y3,y6,y5,y2,y1}, {y7}) 9.86 0.00 2.67
({y6}, {y3,y1,y2,y7,y5,y4}) 0.00 10.24 2.28
({y6,y3}, {y1,y2,y7,y5,y4}) 0.31 7.47 4.75

Y7 ({y6,y3,y1}, {y2,y7,y5,y4}) 4.11 6.39 2.02
({y6,y3,y1,y2}, {y7,y5,y4}) 5.93 4.69 1.90
({y6,y3,y1,y2,y7}, {y5,y4}) 8.30 1.66 2.57
({y6,y3,y1,y2,y7,y5}, {y4}) 9.44 0.00 3.01
({y6}, {y3,y4,y5,y7,y1,y2}) 0.00 10.24 2.28
({y6,y3}, {y4,y5,y7,y1,y2}) 0.31 7.47 4.75

Y8 ({y6,y3,y4}, {y5,y7,y1,y2}) 1.91 2.85 7.77
({y6,y3,y4,y5}, {y7,y1,y2}) 4.03 1.12 7.38
({y6,y3,y4,y5,y7}, {y1,y2}) 8.31 0.13 4.08
({y6,y3,y4,y5,y7,y1}, {y2}) 10.80 0.00 1.73
({y4}, {y5,y7,y3,y2,y1,y6}) 0.00 9.44 3.09
({y4,y5}, {y7,y3,y2,y1,y6}) 1.66 8.30 2.57

Y9 ({y4,y5,y7}, {y3,y2,y1,y6}) 4.69 5.93 1.90
({y4,y5,y7,y3}, {y2,y1,y6}) 6.69 3.89 1.95
({y4,y5,y7,y3,y2}, {y1,y6}) 8.75 2.88 0.90
({y4,y5,y7,y3,y2,y1}, {y6}) 10.24 0.00 2.28
({y4}, {y3,y6,y5,y1,y7,y2}) 0.00 9.44 3.09
({y4,y3}, {y6,y5,y1,y7,y2}) 1.16 6.85 4.52

Y10 ({y4,y3,y6}, {y5,y1,y7,y2}) 1.91 2.85 7.77
({y4,y3,y6,y5}, {y1,y7,y2}) 4.03 1.12 7.38
({y4,y3,y6,y5,y1}, {y7,y2}) 7.62 0.92 3.98
({y4,y3,y6,y5,y1,y7}, {y2}) 10.80 0.00 1.73
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Table B.5: Decrement values at the second stage.
Variable Cluster (C1

u, C2
u), u = 1, 2 I(C1

u) I(C2
u) I(Cu)− I(C1

u)− I(C2
u)

C1 ({y4}, {y3,y6}) 0.00 0.31 1.60
({y4,y3}, {y6}) 1.16 0.00 0.75

Y1 C2 ({y5}, {y2,y1,y7}) 0.00 1.12 1.73
({y5,y2}, {y1,y7}) 1.08 0.62 1.15
({y5,y2,y1}, {y7}) 1.69 0.00 1.16

C1 ({y4}, {y3,y6}) 0.00 0.31 1.60
({y4,y3}, {y6}) 1.16 0.00 0.75

Y2 C2 ({y5}, {y2,y7,y1}) 0.00 1.12 1.73
({y5,y2}, {y7,y1}) 1.08 0.62 1.15
({y5,y2,y7}, {y1}) 2.42 0.00 0.43

C1 ({y4}, {y6,y3}) 0.00 0.31 1.60
({y4,y6}, {y3}) 1.39 0.00 0.52

Y3 C2 ({y1}, {y2,y7,y5}) 0.00 2.42 0.43
({y1,y2}, {y7,y5}) 0.13 1.63 1.10
({y1,y2,y7}, {y5}) 1.12 0.00 1.73

C1 ({y4}, {y6,y3}) 0.00 0.31 1.60
({y4,y6}, {y3}) 1.39 0.00 0.52

Y4 C2 ({y5}, {y1,y2,y7}) 0.00 1.12 1.73
({y5,y1}, {y2,y7}) 1.32 0.92 0.61
({y5,y1,y2}, {y7}) 1.69 0.00 1.16

C1 ({y4}, {y6,y3}) 0.00 0.31 1.60
({y4,y6}, {y3}) 1.39 0.00 0.52

Y5 C2 ({y1}, {y2,y5,y7}) 0.00 2.42 0.43
({y1,y2}, {y5,y7}) 0.13 1.63 1.10
({y1,y2,y5}, {y7}) 1.69 0.00 1.16

C1 ({y4}, {y3,y6}) 0.00 0.31 1.60
({y4,y3}, {y6}) 1.16 0.00 0.75

Y6 C2 ({y5}, {y2,y1,y7}) 0.00 1.12 1.73
({y5,y2}, {y1,y7}) 1.08 0.62 1.15
({y5,y2,y1}, {y7}) 1.69 0.00 1.16

C1 ({y6}, {y3,y4}) 0.00 1.16 0.75
({y6,y3}, {y4}) 0.31 0.00 1.60

Y7 C2 ({y1}, {y2,y7,y5}) 0.00 2.42 0.43
({y1,y2}, {y7,y5}) 0.13 1.63 1.10
({y1,y2,y7}, {y5}) 1.12 0.00 1.73

C1 ({y6}, {y3,y4}) 0.00 1.16 0.75
({y6,y3}, {y4}) 0.31 0.00 1.60

Y8 C2 ({y5}, {y7,y1,y2}) 0.00 1.12 1.73
({y5,y7}, {y1,y2}) 1.63 0.13 1.10
({y5,y7,y1}, {y2}) 2.38 0.00 0.47

C1 ({y4}, {y3,y6}) 0.00 0.31 1.60
({y4,y3}, {y6}) 1.16 0.00 0.75

Y9 C2 ({y5}, {y7,y2,y1}) 0.00 1.12 1.73
({y5,y7}, {y2,y1}) 1.63 0.13 1.10
({y5,y7,y2}, {y1}) 2.42 0.00 0.43

C1 ({y4}, {y3,y6}) 0.00 0.31 1.60
({y4,y3}, {y6}) 1.16 0.00 0.75

Y10 C2 ({y5}, {y1,y7,y2}) 0.00 1.12 1.73
({y5,y1}, {y7,y2}) 1.32 0.92 0.61
({y5,y1,y7}, {y2}) 2.38 0.00 0.47
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Table B.6: H(i) values for C1
1 = {y1,y2,y3,y5,y6,y7} and C2

1 = {y4}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y1 ({y2,y3,y5,y6,y7}, {y1,y4}) 8.15 3.81 -2.52
y(2) ≡ y2 ({y1,y3,y5,y6,y7}, {y2,y4}) 8.25 3.74 -2.55
y(3) ≡ y3 ({y1,y2,y5,y6,y7}, {y3,y4}) 6.85 1.16 +1.16
y(4) ≡ y5 ({y1,y2,y3,y6,y7}, {y5,y4}) 8.30 1.66 -0.52
y(5) ≡ y6 ({y1,y2,y3,y5,y7}, {y6,y4}) 6.64 1.39 +1.41
y(6) ≡ y7 ({y1,y2,y3,y5,y6}, {y7,y4}) 7.12 3.76 -1.44

Table B.7: H(i) values for C1
1 = {y1,y2,y3,y5,y7} and C2

1 = {y4,y6}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y1 ({y2,y3,y5,y7}, {y1,y4,y6}) 5.77 5.39 -3.13
y(2) ≡ y2 ({y1,y3,y5,y7}, {y2,y4,y6}) 5.86 5.30 -3.13
y(3) ≡ y3 ({y1,y2,y5,y7}, {y3,y4,y6}) 2.85 2.91 +3.27
y(4) ≡ y5 ({y1,y2,y3,y7}, {y5,y4,y6}) 5.47 3.31 -0.75
y(5) ≡ y7 ({y1,y2,y3,y5}, {y7,y4,y6}) 4.94 5.96 -2.87

Table B.8: H(i) values for C1
1 = {y1,y2,y5,y7} and C2

1 = {y3,y4,y6}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y1 ({y2,y5,y7}, {y1,y3,y4,y6}) 2.42 6.27 -3.93
y(2) ≡ y2 ({y1,y5,y7}, {y2,y3,y4,y6}) 2.38 6.09 -3.71
y(3) ≡ y5 ({y1,y2,y7}, {y5,y3,y4,y6}) 1.16 4.03 -0.39
y(4) ≡ y7 ({y1,y2,y5}, {y7,y3,y4,y6}) 1.69 6.98 -3.91

Table B.9: H(i) values for C1
1 = {y1,y2,y7} and C2

1 = {y5}.
y(i) ≡ yi′ (TC1, TC2) I(TC1) I(TC2) H(i)

y(1) ≡ y1 ({y2,y7}, {y1,y5}) 0.92 1.32 -1.13
y(2) ≡ y2 ({y1,y7}, {y2,y5}) 0.62 1.08 -0.59
y(3) ≡ y7 ({y1,y2}, {y7,y5}) 0.13 1.63 -0.64



Appendix C

Program Code in R software

###############################################################

# #

# Cluster Analysis for Histogram-valued Data #

# By Jaejik Kim #

# R : version 2.5.0 #

# #

###############################################################

#==== Create a Histogram-valued Dataset from Classical Dataset.=====

histdata=function(x,v,c)

# x : data frame

# v : columns to be histogram-valued data

# c : column for a category variable

{

a=levels(factor(x[,c]))

m=length(a)

p=length(v)

nm=colnames(x)[v]

# Function to make ( , , , ) ------------------

addc=function(q)

# q : vector

{

k=length(q)

f=q[1]

if (k>=2)

{

for (i in 1:(k-1))

{

f=paste(f,",",q[i+1])

}

}

f=paste("(",f,")")
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return(f)

}

#-----------------------------------------------

br=matrix(nrow=m,ncol=p)

rf=matrix(nrow=m,ncol=p)

for (i in 1:m)

{

y=x[x[,c]==a[i],]

for (j in 1:p)

{

z=hist(y[,v[j]],plot=FALSE)

b=z$breaks

r=z$counts/sum(z$counts)

br[i,j]=addc(b)

rf[i,j]=addc(r)

}

}

colnames(br)=nm

rownames(br)=a

colnames(rf)=nm

rownames(rf)=a

result=list(br,rf)

names(result)=c("br","rf")

return(result)

}

#=================== Data Transformation ====================

hist.data = function(dt,fq,ls="M")

# dt : Break points data for intervals

# fq : Relative frequency for intervals

# ls : the type of the length of transformed subintervals

# (M :minimum length, A : Average length)

{

dt=as.matrix(dt)

fq=as.matrix(fq)

nc1=nchar(dt)

nc2=nchar(fq)

dt=substr(dt,2,nc1-1)

fq=substr(fq,2,nc2-1)

rn=rownames(dt) # rn : name of obs.

cn=colnames(dt) # cn : name of variables

m=length(dt[,1]) # m : number of observations
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p=length(dt[1,]) # p : number of variables

q=vector(length=p) # q : maximum number of intervals

SINTV=vector(length=p) # SINTV : minimum or average length

# of intervals

for (i in 1:p) # Detect the maximum number of intervals

{ # for each variable

g=0 # g : initial value for maximum number

# of intervals

INTV=vector(length=m)

for (j in 1:m)

{ z1=unlist(strsplit(dt[j,i], ",", fixed = TRUE))

z1=as.numeric(z1)

n1=length(z1)

if (n1 > g) g=n1

INTV[j]=abs(z1[2]-z1[1])

}

q[i]=g

if (ls=="M") SINTV[i]=min(INTV)

if (ls=="A") SINTV[i]=mean(INTV)

}

cq=cumsum(q) # Assign the data to matrix

dt1=matrix(nrow=m,ncol=sum(q))

fq1=matrix(nrow=m,ncol=sum(q)-p)

for (i in 1:p)

{ for (j in 1:m)

{ z1=unlist(strsplit(dt[j,i], ",", fixed = TRUE))

z1=as.numeric(z1)

n1=length(z1)

z2=unlist(strsplit(fq[j,i], ",", fixed = TRUE))

z2=as.numeric(z2)

n2=length(z2)

n3=n1-1

if (n3!=n2) # Error massage : check the data out!

stop ("The number of break points and relative

frequencies do NOT match")

if (i==1)

{dt1[j,1:n1]=z1

fq1[j,1:n2]=z2}

if (i>1)

{cq1=cq[i-1]+1

cq2=cq1+n1-1

dt1[j,cq1:cq2]=z1

cq3=cq[i-1]-i+2

cq4=cq3+n2-1
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fq1[j,cq3:cq4]=z2}

}

}

min1=vector(length=p) # min1 : minimum value of

# histogram-valued variable

max1=vector(length=p) # max1 : maximum value of

# histogram-valued variable

for (i in 1:p)

{ if (i==1)

{min1[i]=min(dt1[,1:cq[i]],na.rm=T)

max1[i]=max(dt1[,1:cq[i]],na.rm=T) }

if (i>1)

{cq1=cq[i-1]+1

min1[i]=min(dt1[,cq1:cq[i]],na.rm=T)

max1[i]=max(dt1[,cq1:cq[i]],na.rm=T) }

}

nq=round(abs(max1-min1)/SINTV)+1

# Number of new intervals for each variable

cnq=cumsum(nq)

new=0

for (i in 1:p) # Construct new intervals

{ new1=seq(min1[i],max1[i],length=nq[i])

new=append(new,new1)

}

new=new[2:length(new)]

cfq=cumsum(q-1)

for (j in 1:m)

{ new.fq1=0

for (i in 1:p)

{ if (i==1)

{z1=dt1[j,1:cq[i]]

z2=fq1[j,1:cfq[i]]

z3=new[1:cnq[i]] }

if (i>1)

{cq1=cq[i-1]+1

cq2=cfq[i-1]+1

cq3=cnq[i-1]+1

z1=dt1[j,cq1:cq[i]] # z1 : Old break points

z2=fq1[j,cq2:cfq[i]] # z2 : Old relative frequencies

z3=new[cq3:cnq[i]] } # z3 : New break points

n1=length(z3)-1

n2=length(na.omit(z1))
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z4=vector(length=n1) # z4 : New relative frequencies

n=1

for (k in 1:n1)

{if (n==1)

{if (z1[n]>=z3[k+1]) z4[k]=0

if (z1[n]>=z3[k] & z1[n]<z3[k+1] & z1[n+1]>=z3[k+1])

{z4[k]=(abs(z3[k+1]-z1[n])/abs(z1[n+1]-z1[n]))*z2[n]}

if (z1[n]>=z3[k] & z1[n+1]<z3[k+1])

{

if (z1[n2]>z3[k+1])

{t=n

while (z1[t+1]<z3[k+1] & t<=n2)

{t=t+1}

z4[k]=sum(z2[n:(t-1)])+(abs(z3[k+1]-z1[t])

/abs(z1[t+1]-z1[t]))*z2[t]}

if (z1[n2]<=z3[k+1]) z4[k]=sum(z2[n:(n2-1)])

}

if (z1[n]<z3[k] & z1[n+1]>=z3[k+1])

{z4[k]=(abs(z3[k+1]-z3[k])/abs(z1[n+1]-z1[n]))*z2[n]}

if (n>1 & n<n2)

{

if (z1[n]>=z3[k] & z1[n]<z3[k+1] & z1[n+1]>=z3[k+1])

{z4[k]=((abs(z1[n]-z3[k])/abs(z1[n]-z1[n-1]))*z2[n-1])

+((abs(z3[k+1]-z1[n])/abs(z1[n+1]-z1[n]))*z2[n])}

if (z1[n]>=z3[k] & z1[n+1]<z3[k+1])

{

if (z1[n2]>z3[k+1])

{t=n

while (z1[t+1]<z3[k+1])

{t=t+1}

z4[k]=((abs(z1[n]-z3[k])/abs(z1[n]-z1[n-1]))*z2[n-1])

+sum(z2[n:(t-1)])+(abs(z3[k+1]-z1[t])

/abs(z1[t+1]-z1[t]))*z2[t]}

if (z1[n2]<=z3[k+1])

{z4[k]=((abs(z1[n]-z3[k])/abs(z1[n]-z1[n-1]))*z2[n-1])

+sum(z2[n:(n2-1)])}

}

if (z1[n]<z3[k] & z1[n+1]>=z3[k+1])

{z4[k]=(abs(z3[k+1]-z3[k])/abs(z1[n+1]-z1[n]))*z2[n] }

}

if (n==n2)

{if (z1[n]>z3[k]) z4[k]=(abs(z1[n]-z3[k])/abs(z1[n]-z1[n-1]))*z2[n-1]

if (z1[n]<=z3[k]) z4[k]=0 }
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if (n>n2 | is.na(z1[n])) z4[k]=0

# Count for real interval values(z1)

if (n==n2) n=n+1

if (n<n2 & k<n1)

{if (z1[n]>=z3[k]&z1[n]<z3[k+1]&z1[n+1]>=z3[k+1]&z1[n+1]<z3[k+2])

{n=n+1}}

if (n<n2)

{if (z1[n]>=z3[k] & z1[n+1]<z3[k+1] & z1[n2]>z3[k+1]) n=t+1

if (z1[n]>=z3[k] & z1[n+1]<z3[k+1] & z1[n2]<=z3[k+1]) n=n2}

if (n<n2 & k<n1)

{if (z1[n]<z3[k] & z1[n+1]>=z3[k+1] & z1[n+1]<z3[k+2]) n=n+1}

} # End of for (k)

new.fq1=append(new.fq1,z4)

} # End of for (i)

if (j==1) new.fq=new.fq1

if (j>1) new.fq=rbind(new.fq,new.fq1)

} # End of for (j)

n=ncol(new.fq)

new.fq=new.fq[,2:n]

rownames(new.fq)=rn

names(cnq)=cn

result=list(new,new.fq,cnq)

names(result)=c("bp","rfq","cnq")

return(result)

}

#===================== Dissimilarity Measure =====================

dissim <- function

(hdata,measure="E",gamma=0.5,Normal=TRUE,weight=FALSE,wj)

# hdata : object of fuction "hist.data"

# measure : Dissimilarity measures

# (Gowda-Diday(GD),city block(CB),Euclidean(E),CDF)

# gamma : Coefficient for Ichino-Yaguchi measure.(Default=0.5)

# Normal : Whether it gives a normalized value for Ichino-Yaguchi

# or CDF measure or not(Default=TRUE)

# weight : Whether it gives weights

# wj : weight for I-Y measure

# (Default: weight=TRUE -> wj=1/p, weight=FALSE -> wj=1)

{

bp=hdata$bp

rfq=hdata$rfq

cnq=hdata$cnq
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m=nrow(rfq)

p=length(cnq)

cq=cnq-1:p

d.temp=array(0,dim=c(m,m,p)) # Distance matrix for each variable

MU=array(0,dim=c(m,m,p)) # Mean of Union

rn=rownames(rfq)

# (To obtain cut points in Monothetic algorithm)

cn=names(cnq)

mean.hv <- function (bp,f) # Mean of Histogram for an obs.

{ n=length(bp)

a=bp[1:(n-1)]

b=bp[2:n]

m1=sum(((b+a)*f)/2)

return(m1) }

sd.hv <- function (bp,f) # Standard deviation for an histogram obs.

{ n=length(bp)

a=bp[1:(n-1)]

b=bp[2:n]

sf=sum(f)

if (sf!=0) f1=f/sum(f)

if (sf==0) f1=f

M=sum(((b+a)*f1)/2)

v=sqrt(sum((((a-M)^2+(a-M)*(b-M)+(b-M)^2)/3)*f))

return(v) }

for (i in 1:m)

{for (j in 1:m)

{if (j>i)

{

for (k in 1:p)

{if (k==1)

{f0=rfq[,1:cq[1]]

f1=rfq[i,1:cq[1]]

f2=rfq[j,1:cq[1]]

z=bp[1:cnq[1]] }

if (k>1)

{cq1=cq[k-1]+1

cq2=cnq[k-1]+1

f0=rfq[,cq1:cq[k]]

f1=rfq[i,cq1:cq[k]]

f2=rfq[j,cq1:cq[k]]

z=bp[cq2:cnq[k]] }
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t=length(f1) # The number of subintervals

Psi=z[t+1]-z[1] # The length spanned by obs

fx=cbind(f1,f2)

fu=apply(fx,1,max)

fi=apply(fx,1,min)

# Mean of Union for cut points______________________

fu.cut=fu/sum(fu)

MU[i,j,k]=mean.hv(z,fu.cut)

MU[j,i,k]=MU[i,j,k]

# _______________________________________________End

if (measure!="CDF")

{

s1=sd.hv(z,f1) # Standard deviation for A

s2=sd.hv(z,f2) # Standard deviation for B

su=sd.hv(z,fu)

si=sd.hv(z,fi)

}

# Calculation for Measures(GD, CB, E, CDF)

if (measure=="GD") # Gowda-Diday Dissimilarity Measure

{

d.temp[i,j,k]=abs(s1-s2)/(s1+s2)+(s1+s2-2*si)/(s1+s2)

+abs(mean.hv(z,f1)-mean.hv(z,f2))/Psi

d.temp[j,i,k]=d.temp[i,j,k]

if (k==p) D=apply(d.temp,c(1,2),sum)

}

if (measure=="CB" | measure=="E" | missing(measure))

{

phi=su-si+gamma*(2*si-s1-s2)

# Ichino-Yaguchi(r=0.5, 0=<r=<0.5)

if (Normal==T) # Normalized Ichino-Yaguchi measure

{

a1=z[1]

b1=z[2]

at=z[t]

bt=z[t+1]

V=sqrt((5*(a1^2+b1^2+at^2+bt^2)+2*(a1*b1+at*bt)

-6*(a1*at+a1*bt+at*b1+b1*bt))/24)
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phi=phi/V

}

if (weight==F) wj=rep(1,p)

if (weight==T & missing(wj)) wj=rep(1/p,p)

if (measure=="CB") # City Block Distance

{

d.temp[i,j,k]=wj[k]*phi

d.temp[j,i,k]=d.temp[i,j,k]

if (k==p) D=apply(d.temp,c(1,2),sum)

}

if (measure=="E" | missing(measure))

{ # Normalized Euclidean Distance

d.temp[i,j,k]=wj[k]*phi^2

d.temp[j,i,k]=d.temp[i,j,k]

if (k==p) D=sqrt(apply(d.temp,c(1,2),sum))

}

}

if (measure=="CDF") # CDF Distance

{b=length(z)

z1=z[1:(b-1)]

z2=z[2:b]

fa=cumsum(f1)

fb=cumsum(f2)

d.temp[i,j,k]=sum(abs(z2-z1)*abs(fa-fb))

d.temp[j,i,k]=d.temp[i,j,k]

if (Normal==T)

{

d.temp[i,j,k]=d.temp[i,j,k]/Psi

d.temp[j,i,k]=d.temp[j,i,k]/Psi

}

if (k==p) D=apply(d.temp,c(1,2),sum)

}

}

}

}

}

dp=apply(d.temp,3,sum)

dp=dp/sum(dp)

rownames(D)=rn

colnames(D)=rn

names(dp)=cn

dp=sort(dp,decreasing=TRUE)
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result=list(D,d.temp,MU,dp)

names(result)=c("dsm","dmv","MU","impt")

# dsm : distance matrix

# dmv : distance matrix for each variable

# MU : mean matrix of union (cut points)

# impt : relatively important degree for each variable

return(result)

}

#============= Divisive Clustering Method (Monothetic)============

mdivclust <- function(hdata, dsmty)

# hdata : object of fuction "hist.data"

# dsmty : object of fuction "dissim"

{

bp=hdata$bp

rfq=hdata$rfq

cnq=hdata$cnq

dsm=dsmty$dsm

dmv=dsmty$dmv

MU=dsmty$MU

m=nrow(dsm) # # of obs.

rn=rownames(dsm)

cn=names(cnq)

p=length(cnq)

cq=cnq-1:p

mn=1:m

# Mean function for Histogram-valued data____________________

mean.hv <- function (bp,f) # Mean of Histogram for an obs.

{ n=length(bp)

a=bp[1:(n-1)]

b=bp[2:n]

m1=sum(((b+a)*f)/2)

return(m1) }

#____________________ End of Mean Function

### Mean for each obs and variable ###

hmean=matrix(nrow=m,ncol=p)

for (j in 1:p)

{ for (i in 1:m)

{if (j==1)

{f=rfq[i,1:cq[1]]

z=bp[1:cnq[1]]}

if (j>1)
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{cq1=cq[j-1]+1

cq2=cnq[j-1]+1

f=rfq[i,cq1:cq[j]]

z=bp[cq2:cnq[j]] }

hmean[i,j]=mean.hv(z,f)

}

}

rownames(hmean)=mn

colnames(hmean)=cn

### Divisive clustering(Monothetic) ###

#___________Function for the part of the Within-Cluster variance

# dsm : Dissimilarity matrix, sn : elements of cluster

WCV <- function (dsm,sn)

{ mk=length(sn)

m=nrow(dsm)

if (mk==1) IC=0

if (mk>1)

{ IC=0

for (i in 1:mk)

{ for (j in 1:mk)

{ if (j>i)

{ t1=sn[i]

t2=sn[j]

IC=IC+(dsm[t1,t2])^2 } } }

IC=IC/(m*mk) }

return(IC) }

# End of the function WCV __________

m1=2*(m-1)+1

clus=matrix(nrow=m1,ncol=m) # Record for grouping

clus[1,]=mn # 1st row = all the observations

div=matrix(0,nrow=(m-1),ncol=6)

# column 1 : origin, column 2-3 : divided cluster

# column 4 : Total within-cluster variation

# column 5 : Total between-cluster variation

# column 6 : total variation explained by

# the differences between clusters

group=1 # Rows of matrix ’clus’

question=vector(length=(m-1))

WE=WCV(dsm,mn) # Total within-cluster variance for set E

for (i in 1:(m-1)) # i : Total number of steps

{ r=length(group)
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WCk0=0

for (j in 1:p) # j : Total number of variables

{ hm=hmean[,j]

for (k in 1:r) # k : Total number of clusters at each step

{ a1=group[k]

a2=na.omit(clus[a1,])

a3=length(a2)

if (a3 > 1)

{ hmp=0 # Sorting for the mean

for (b in 1:a3)

{ hmp=rbind(hmp,hm[names(hm)==a2[b]]) }

hmp=hmp[2:(a3+1)]

names(hmp)=a2

sn=as.numeric(names(sort(hmp)))

IC=WCV(dsm,sn)

for (l in 1:(a3-1))

{ sn1=sn[1:l]

sn2=sn[(l+1):a3]

IC1=WCV(dsm,sn1)

IC2=WCV(dsm,sn2)

WCk=IC-IC1-IC2

if (round(WCk0,8) == round(WCk,8))

{

dv1=dmv[snl1,snl2,vr]

dv2=dmv[sn[l],sn[l+1],j]

if (dv2 > dv1)

{

clus1=sn1

clus2=sn2

div1=a1

div2=2*i

div3=2*i+1

vr=j

snl1=sn[l]

snl2=sn[l+1]

dv1=dv2

grp=append(group,c(2*i,2*i+1),after=k)

locat=which(grp==a1)

grp=grp[-(grp=locat)]

variable=cn[j]

cut=MU[snl1,snl2,vr]

cut=round(cut,4)
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}

}

if (round(WCk,8) > round(WCk0,8))

{ clus1=sn1

clus2=sn2

div1=a1

div2=2*i

div3=2*i+1

WCk0=WCk

vr=j

snl1=sn[l]

snl2=sn[l+1]

grp=append(group,c(2*i,2*i+1),after=k)

locat=which(grp==a1)

grp=grp[-(grp=locat)]

variable=cn[j]

cut=MU[snl1,snl2,vr]

cut=round(cut,4)

}

}

}

}

}

l1=length(clus1)

l2=length(clus2)

clus[(2*i),1:l1]=clus1

clus[(2*i+1),1:l2]=clus2

div[i,1]=div1

div[i,2]=div2

div[i,3]=div3

question[i]=paste(variable,"<=",round(cut,2))

group=grp

WP=0

r=length(group)

for (o in 1:r)

{

a1=group[o]

a2=na.omit(clus[a1,])

WP=WP+WCV(dsm,a2)

}

div[i,4]=WP

div[i,5]=WE-WP

div[i,6]=(WE-WP)/WE
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}

colnames(div)=c("Origin","YES","NO","Within","Between","Explained")

rownames(div)=paste("step",1:(m-1))

names(rn)=mn

result=list(div,clus,rn,question)

names(result)=c("div","cluster","obs","question")

return(result)

}

#========= Divisive Clustering Method (Polyhetic)=============

pdivclust <- function(dsmty)

# dsmty : dissimilarity matrix

{

dsm=dsmty$dsm

m=nrow(dsm) # # of obs.

rn=rownames(dsm)

mn=1:m

### Divisive clustering(Polythetic) ###

#___________Function for the part of the Within-Cluster variance

# dsm : Dissimilarity matrix, sn : vector for elements of cluster

WCV <- function (dsm,sn)

{ mk=length(sn)

m=nrow(dsm)

if (mk==1) IC=0

if (mk>1)

{ IC=0

for (i in 1:mk)

{ for (j in 1:mk)

{ if (j>i)

{ t1=sn[i]

t2=sn[j]

IC=IC+(dsm[t1,t2])^2 } } }

IC=IC/(m*mk) }

return(IC) }

# End of the function WCV __________

#___________Function getting average dissimilarity or distance

# dsm : Dissimilarity matrix, sn : vector for elements of cluster

MAVD <- function (dsm,sn)

{

n=nrow(dsm)
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mk=length(sn)

if (mk==1)

{

mavd=0

seed=1

}

if (mk>1)

{

dsm1=dsm[sn,sn]

avd=apply(dsm1,1,sum)/((mk-1)*n)

mavd=max(avd)

seed=which(avd==mavd)

seed=sn[seed[1]]

}

result=list(mavd,seed)

names(result)=c("maxd","seed") # maxd : maximum average distance

return(result) # seed : object that has maxd

}

# End of the function MAVD______

m1=2*(m-1)+1

clus=matrix(nrow=m1,ncol=m) # Record for grouping

clus[1,]=mn # 1st row = all the observations

div=matrix(0,nrow=(m-1),ncol=6)

# column 1 : origin, column 2-3 : divided cluster

# column 4 : Total within-cluster variation

# column 5 : Total between-cluster variation

# column 6 : total variation explained

# by the differences between

clusters

group=1 # Rows of matrix ’clus’

WE=WCV(dsm,mn) # Total within-cluster variance for set E

for (i in 1:(m-1)) # i : Total number of steps

{

r=length(group)

maxg=1:r

lmax=1:r

for (k in 1:r)

{

a1=group[k]

sn=na.omit(clus[a1,])

ma=MAVD(dsm,sn)

maxg[k]=ma$maxd

lmax[k]=ma$seed

}
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id=which(maxg==max(maxg))

id=id[1]

mg=group[id] # mg : cluster which has maximum average distance

a1=na.omit(clus[mg,])

a2=length(a1)

if (a2>1)

{

C2=lmax[id] # C2 : Splinter group

a3=which(a1==C2)

C1=a1[-a3] # C1 : Main group

}

if (a2>2)

{

MIC12=1

while(MIC12>0)

{

b=length(C1)

DIC=vector(length=b)

IC=WCV(dsm,C1)+WCV(dsm,C2)

for (j in 1:b)

{

TC2=c(C1[j],C2)

TC1=C1[-j]

DIC[j]=IC-WCV(dsm,TC1)-WCV(dsm,TC2)

}

MIC12=max(DIC)

if (MIC12>0)

{

a4=which(DIC==MIC12)

C2=c(C1[a4],C2)

C1=C1[-a4]

}

}

}

l1=length(C1)

l2=length(C2)

clus[(2*i),1:l1]=C1

clus[(2*i+1),1:l2]=C2

div[i,1]=mg

div[i,2]=2*i

div[i,3]=2*i+1

group=append(group,c(2*i,2*i+1),after=id)

locat=which(group==mg)
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group=group[-(group=locat)]

WP=0

r=length(group)

for (o in 1:r)

{

a1=group[o]

a2=na.omit(clus[a1,])

WP=WP+WCV(dsm,a2)

}

div[i,4]=WP

div[i,5]=WE-WP

div[i,6]=(WE-WP)/WE

}

colnames(div)=c("Origin","Main","Splinter","Within",

"Between","Explained")

rownames(div)=paste("step",1:(m-1))

names(rn)=mn

result=list(div,clus,rn)

names(result)=c("div","cluster","obs")

return(result)

}

#=================================================================

# Calculate a Validity Index(DB*, DI)

CVI <- function(clus, dsmty)

# dsmty (object) : dissimilarity measure

# clus (object) : Monothetic Method

# pclus (object) : Polythetic Method

{

dsm=dsmty$dsm

clust=clus$cluster

merge=clus$div[,1]

yn=clus$div[,2:3]

obs=clus$obs

m=length(obs)

#___________Function for the part of the Within-Cluster variance

# dsm : Dissimilarity matrix, sn : vector for elements of cluster
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WCV <- function (dsm,sn)

{ mk=length(sn)

m=nrow(dsm)

if (mk==1) IC=0

if (mk>1)

{ IC=0

for (i in 1:mk)

{ for (j in 1:mk)

{ if (j>i)

{ t1=sn[i]

t2=sn[j]

IC=IC+(dsm[t1,t2])^2 } } }

IC=IC/(m*mk) }

return(IC) }

# End of the function WCV __________

# Calculate Cluster Validity Indeces (DB, DB*, DI, CS, Vsv)

result=matrix(nrow=2,ncol=(m-2))

rownames(result)=c("DB", "DI")

colnames(result)=2:(m-1)

for (k in 1:(m-2))

{

# Elements of each cluster at each stage

a=yn[k,]

temp=clust[a,]

rownames(temp)=a

if (k==1) Pr=temp

if (k>=2)

{

Pr=rbind(Pr,temp)

a1=which(rownames(Pr)==merge[k])

Pr=Pr[-a1,]

}

r=nrow(Pr)

IC=vector(length=r)

for (i in 1:r)

{

temp0=na.omit(Pr[i,])

IC[i]=WCV(dsm,temp0)

}
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t=1

ID=matrix(nrow=sum((r-1):1),ncol=2)

ICU=vector(length=sum((r-1):1))

T.DB=vector(length=sum((r-1):1))

T.DB1=vector(length=sum((r-1):1))

for(i in 1:r)

{

for(j in 1:r)

{

if (i<j)

{

ID[t,]=c(i,j)

Ci=na.omit(Pr[i,])

Cj=na.omit(Pr[j,])

iUj=c(Ci,Cj)

ICU[t]=WCV(dsm,iUj)-IC[i]-IC[j]

T.DB1[t]=IC[i]+IC[j]

t=t+1

}

}

}

ID1=ID[,1]

ID2=ID[,2]

DB1=vector(length=r)

DI=vector(length=r)

mxIC=max(IC)

for (i in 1:r)

{

t1=which(ID1==i)

t2=which(ID2==i)

t=c(t1,t2)

DB1[i]=(max(T.DB1[t]))/(min(ICU[t]))

DI[i]=min(ICU[t]/mxIC)

}

result[1,k]=(sum(DB1))/r

result[2,k]=min(DI)

}

return(result)
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}

#========================== Dandrogram==============================

divplot <- function(clus,method,tsize=1,tit)

# clus : object for function "divclust"

# mehtod : "M" monothetic , "P" : polythetic

# tsize : text size in the plot.

# tit : title of the plot

{

clust=clus$cluster

merge=clus$div[,1]

yn=clus$div[,2:3]

obs=clus$obs

if (method=="M") qs=clus$question

m=length(obs)

m1=m-1

### Get the order for the observations in the dandrogram ###

for (i in 1:m1)

{

if (i==1)

{ a1=na.omit(clust[(2*i),])

a2=na.omit(clust[(2*i+1),])

odr=append(a1,a2) }

if (i>1)

{ a1=na.omit(clust[(2*i),])

a2=na.omit(clust[(2*i+1),])

temp=append(a1,a2)

m2=length(temp)

loc=0

for (j in 1:m2)

{ a3=which(odr==temp[j])

loc=rbind(loc,a3) }

loc=loc[2:(m2+1)]

b1=min(loc)

b2=max(loc)

odr[b1:b2]=temp }

}

########## Drow the plot ##########

x=c(0,0)

y=c(0,0)

plot(x,y,xlim=c(-10,115),ylim=c(-15,110),type="l",
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axes=FALSE,xlab="",ylab="")

xy=seq(0,100,length=m)

vert=m:2

node=matrix(0,nrow=m1,ncol=2)

for (i in m1:1)

{ a1=na.omit(clust[yn[i,1],])

a2=na.omit(clust[yn[i,2],])

if (length(a1)==1 & length(a2)==1)

{

b1=which(odr==a1)

b2=which(odr==a2)

x1=xy[b1]

x2=xy[b2]

h1=xy[vert[i]]

lines(c(x1,x1),c(0,h1))

lines(c(x2,x2),c(0,h1))

lines(c(x1,x2),c(h1,h1))

}

if (length(a1)==1 & length(a2)>1)

{

b1=which(odr==a1)

b2=which(merge==yn[i,2])

x1=xy[b1]

x2=node[b2,1]

h1=xy[vert[i]]

h2=node[b2,2]

lines(c(x1,x1),c(0,h1))

lines(c(x2,x2),c(h2,h1))

lines(c(x1,x2),c(h1,h1))

}

if (length(a1)>1 & length(a2)==1)

{

b1=which(merge==yn[i,1])

b2=which(odr==a2)

x1=node[b1,1]

x2=xy[b2]

h1=xy[vert[i]]

h2=node[b1,2]

lines(c(x1,x1),c(h2,h1))

lines(c(x2,x2),c(0,h1))

lines(c(x1,x2),c(h1,h1))

}

if (length(a1)>1 & length(a2)>1)

{
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b1=which(merge==yn[i,1])

b2=which(merge==yn[i,2])

x1=node[b1,1]

x2=node[b2,1]

h1=xy[vert[i]]

h2=node[b1,2]

h3=node[b2,2]

lines(c(x1,x1),c(h2,h1))

lines(c(x2,x2),c(h3,h1))

lines(c(x1,x2),c(h1,h1))

}

node[i,1]=(x1+x2)/2

node[i,2]=h1

}

lines(c(node[1,1],node[1,1]),c(node[1,2]+5,node[1,2]))

odrname=vector(length=m)

for (i in 1:m)

{ odrname[i]=obs[odr[i]] }

y=rep(-3,m)

text(x=xy,y=y,labels=odrname,cex=tsize)

node1=node[,1]

node2=node[,2]+3

if (!missing(tit)) title(main=tit)

if (method=="M")

{

text(x=node1,y=node2,labels=qs,cex=tsize,col=2)

legend(x=30,y=-10,legend="Left : YES , Right : NO",cex=0.7)

}

if (method=="P") legend(x=30,y=-10,

legend="Right : Splinter group",cex=0.7)

}


