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ABSTRACT  

 

    Landsat imagery has been used for the estimation of forest stand-level characteristics with 

various techniques. We reviewed peer-reviewed research that employed Landsat imagery for the 

purpose of estimating forest stand-level characteristics from 1995 to 2012. Particularly, we 

focused on the study areas, forest parameters examined and technologies of classification 

employed. We investigated the trends and changes in using Landsat imagery for the estimation 

of forest stand-level characteristics. In terms of forest stand-level characteristics that have been 

estimated, above ground biomass (AGB) was thoroughly researched, but forest stand height and 

crown closures were estimated less frequently. In techniques employed, various forms of 



 

 

regression analysis seem to be the most used method and k-nearest neighbor followed it, and the 

other techniques were not employed enough but increasingly used.  

 

    Given the proven abilities of Landsat imagery for the estimation of forest structural 

characteristics, we estimated forest structure in the State of Georgia. We estimated premature 

forest areas where the age is 15 or under 15 using Landsat satellite imagery in southeastern 

Georgia. For the estimation of premature forest areas in Georgia, we employed three 

technologies:  maximum likelihood classification (MLC), regression analysis, and k-nearest 

neighbor (kNN). In terms of overall accuracy, MLC and kNN produced relatively high-level 

accuracy. The kappa coefficient shows consistent results with overall accuracy.  

 

    Additionally, to research the implicit value of sale characteristics on the change of stumpage 

price, we developed a regression model with various sale characteristics to have insight into the 

change of timber price. Based on Timber Mart-South data collected from 1998 to 2007 in 11 

southern states, we adopted a hedonic pricing method for the association of stumpage price of 

pine sawtimber with timber sale characteristics. We found that the stumpage price of pine 

sawtimber is positively related to sale size, contract length, sealed bid offering, and the number 

of bidders. It is also found that the presence of above average or excellence in grade, market 

conditions, and logging conditions made huge positive impacts on the stumpage price of pine 

sawtimber.  

 

INDEX WORDS: Forest stand variables, Forest stand-level characteristics, Landsat imagery, 

Premature forest areas, Stumpage price, Hedonic price method 
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CHAPTER 1 

 

INTRODUCTION 

 

    Remote sensing imagery has been used for forest planning intensively (Holmgren and 

Thuresson, 1998). Remote sensing using satellite imagery or aerial photos has brought us broad-

scale forest landscape information and associated land cover maps. Especially for estimating 

forest stand-level conditions across broad landscapes remote sensing imagery has been used 

efficiently to provide valuable information regarding forest structures for ecologists or forest 

managers (Cohen et al., 1995). Stand-level forest structural variables can be used as indicators 

for forest stand characteristics and developmental stages and essential information regarding 

various aspects of forest management including timber inventory, harvest, and disturbance 

management (Franklin et al., 2003). For field inventories, the role of remote sensing imagery has 

been used for the estimation of forest stand-level variables over local or large-scale landscape 

forest areas. These stand-level forest estimates will make forest strategic planning easy in forest 

areas where field work for forest inventories require too much time and money. They also help 

us to resolve a variety of problems and controversies concerning forest conservation and 

management.   

 

    As one type of remote sensing data, Landsat satellite imagery has been used for forest 

management and research purposes. Landsat satellite imagery has been increasingly used to 
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describe broad-scale landscape processes such as land use or disturbances and has become an 

essential source in applications including forest variables at the local and regional scale (Lu, 

2006; Maselli et al., 2011). There were technological problems of linear gaps in Landsat 7 

imagery caused by the scan line corrector’s failure, and the operation of Landsat 5 imagery was 

stopped by the U.S. Geological Survey in November 2011. However, because Landsat imagery 

has the advantages in its cost and popularity, large support groups have joined the processing 

steps. In particular, Landsat satellite imagery helps describe structural conditions for stand-level 

forest areas and has a suitable spatial resolution (30 m x 30 m) for regional mapping (Mäkelä and 

Pekkarinen, 2004). A forest stand can be defined as a tree group which is homogeneous in both 

species composition and structural conditions. Stand-level characteristics in forest areas involve 

the amount of above ground biomass (AGB), the average age, the total volume of timber, the 

average tree height, the average tree diameter at breast height (DBH), the crown closure, and the 

density. The imagery makes strategic planning easier with such stand-level characteristics of 

forested area where forest inventories are not easily accessible (Holmgren et al., 1998). 

Simultaneously, it is important to understand the accuracy and the associated uncertainty in the 

estimation of forest-stand characteristics. In chapter 2, we present a literature review which 

analyzes and summarizes peer-reviewed research regarding the estimation of stand-level forest 

characteristics using Landsat imagery from 1995 to 2012. In doing so, we examine the 

advantages and disadvantages of using Landsat imagery, and describe the challenges and gaps 

that should be addressed in future research. We evaluate the suitability for forest parameters 

estimated, the techniques employed, and auxiliary data used, and we analyze the current trends in 

the use of Landsat imagery to estimate forest stand-level characteristics. This analysis also helps 

us identify gaps in science.     
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    Stand- level forest structural information is important in Earth conservation issues and forest 

management. We can define stands in terms of vegetative characteristics, management approach, 

or management history (Bettinger, 2011). The accurate knowledge with regard to stand-level 

forest characteristics over large-scale landscapes also will be beneficial to make a strategic 

planning in both commercial uses and conservation issues. As one of the stand-level forest 

variables, age structure can be efficiently employed to assess the stages of stand development 

and the degree of tree maturity (Cohen et al., 1995). Particularly, knowing locations or amounts 

about pre-merchantable tree areas will be valuable in that it provides information about the future 

bioenergy potential and timber market investment.  

 

    In chapter 3, we examine FIA data and FIA program tools for the estimation of the amount of 

pre-merchantable trees in Georgia at the county-level. In addition, we classified premature forest 

stands of which age is 15 or under 15 years using Landsat TM imagery in southeastern Georgia. 

We adapted multiple technologies, including  Maximum Likelihood Classification (MLC), 

regression analysis, and k-Nearest Neighbor (kNN), and compared the pros and cons of each 

technique in terms of the accuracy and data application. In doing so, we tried to identify which 

classifiers will be more suitable for the purpose of estimating forest age structure. We added 

research about the estimation of forest stand-level characteristics using Landsat imagery in the 

southern  U.S., where such research was not thoroughly investigated. Typically, we employed 

overall accuracy and the kappa coefficient as standard methods to find which techniques were 

more suitable for estimating forest stand age structure. In addition, in the use of each technique 

we consider which further steps are required to enhance the accuracy, and we consider 

limitations in the use of Landsat imagery for that purpose. Therefore, the usefulness of Landsat 
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imagery in combination with various image processing classifiers were assessed for the purpose 

of identifying premature stands based on the results of the classification processes. 

 

    Given the estimates of forest stand-level structures using satellite imagery, field inventories, 

and various sale characteristics, we can consider various models which are related to forest stand 

development and/or the change of timber market prices. The accuracy for the estimates of forest 

stand-level variables and related sale characteristics will be essential factors for making a better 

model. In chapter 4, we use Timber Mart South (TMS) data from 1998 to 2007 and employ the 

hedonic pricing method on stumpage price changes based on TMS data from 11 southern U.S. 

states. We analyze how the stumpage price of pine sawtimber is influenced by various timber 

sale characteristics. Therefore, we make a multiple regression model of stumpage price to 

estimate the implicit values of sale characteristics from commodity value. Although the hedonic 

pricing method is applied to the timber market many times, there is limited published research 

conducted in the southern U.S. Further, sale characteristics are relatively limited items, which 

make it difficult to investigate how a variety of sale characteristics impact the change of 

stumpage price. We typically adapted the quadratic transformation to estimate parameters of 

threshold models, providing the estimation of inflection points, which are maximized or 

minimized points. Given the requirements for up-to-date stumpage market information, a model 

to estimate timber price in relation to timber sale characteristics will be useful to both timber 

buyers and sellers in that it provides the implicit values of sale characteristics for stumpage price 

changes in southern United States, and thus we can expect to have better insight into the trends 

of stumpage price changes and anticipated demand for each sale input. 
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    In sum, in chapter 2 we present a review of peer-reviewed research regarding the estimation of 

forest parameters using Landsat imagery. In chapter 3 we compare tools for the FIA program to 

estimate the quantitative information of pre-merchantable stand areas, and we classify premature 

forest areas using Landsat imagery with various techniques in southeastern Georgia and compare 

the merits and demerits in each method in terms of overall accuracy and the kappa coefficients. 

In chapter 4, we make a hedonic model for the change of stumpage price to estimate the implicit 

values of sale characteristics for stumpage price in southeastern United States, and finally, in 

chapter 5 we present our conclusions.  
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Abstract 

 

    Considerable attention has been applied to the use of Landsat satellite imagery in estimating 

forest conditions. Here, we focus on the stand-level forest characteristics that have been 

estimated with this imagery, the classification techniques that have been employed, and the 

ancillary data that have been used to assist in the process. Based on the peer-reviewed research 

we located, some gaps in the literature concerning image classification techniques remain. With 

regard to the algorithms employed in the image classification processes, various forms of 

regression analysis seem to be the most often used techniques, while the k-Nearest Neighbor 

(kNN) technique has been increasing in value, yet other classification techniques (e.g., kriging, 

neural networks) have only begun to be explored and may have value in some situations. In 

terms of specific forest conditions, the use of Landsat satellite imagery for estimating above 

ground biomass has been heavily investigated, and opportunities continue to exist for refining 

classification techniques aimed at the classification of forests by discrete age classes, by 

contiguous species groups, and by height classes.  
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1. Introduction 

 

    Satellite imagery can be used to meet, at various scales, the information requirements of forest 

managers (Sayn-Wittgenstein, 1986). In fact, broad-scale forest landscape information and 

associated land cover maps are often developed using data (reflected or emitted electromagnetic 

energy) acquired by a remote sensing device contained in satellites (i.e., satellite imagery) or 

other aerial platforms (e.g., air planes). Satellite imagery has been especially valuable as a source 

of information for estimating forest conditions across broad landscapes (Maselli et al., 2011). 

The spectral reflectance values contained in the smallest component of a digital image (the 

pixel), along with other synthetic combinations of these, can be of value in estimating stand-level 

forest characteristics. These stand-level estimates of forests can then facilitate strategic planning 

of forested areas where field-based forest inventories are too expensive to obtain (Holmgren et 

al., 2000).  

 

    For nearly 40 years, ecologists and forest managers have utilized Landsat satellite imagery for 

Earth observation, natural resource management, and research purposes, and thus this imagery 

has become widely-accepted as a source of landscape information (Mäkelä and Pekkarinen, 

2004; McRoberts, 2011; Loveland and Dwyer, 2012). However, recent technological issues 

cloud the future of the Landsat program (Chen et al., 2011) and currently the imagery captured 

by Landsat 7 sensors contains linear data gaps that stretch across each scene, resulting in about 

22% data loss (Loveland and Dwyer, 2012). This problem is caused by the failure of a 

component called the scan line corrector (SLC) in the satellite (Chen et al., 2011). Methods for 

addressing data gaps in this imagery can include histogram matching (Rulloni et al., 2012) or 



10 

 

 

other advanced techniques (Zhu et al., 2012). In lieu of Landsat 7 satellite imagery, similar (from 

a spectral and spatial resolution point of view) Landsat 5 imagery was available until recently, 

since the SLC had not failed in this system. However, in November 2011 the U.S. Geological 

Survey terminated Landsat 5 imagery collection to investigate a potential failure the data 

retrieval system, and at the time of this review, imagery collection had been paused (U.S. 

Geological Survey, 2012). Although the timeline for operability is unclear, a new Landsat 

satellite (the Landsat Data Continuity Mission, or LCDM) is expected to be placed into service in 

2013 (Irons et al., 2012). Regardless of these operational issues, the advantages of using data 

acquired through the Landsat satellite imagery program include the cost (now freely available) 

and the spatial resolution (30 m x 30 m) of the raster data. Further, a wealth of literature is 

available to assist with data processing issues (a recent keyword search in ScienceDirect using 

"Landsat" yielded over 16,500 papers). And, whether current or historical data are of interest, 

with both Landsat (7 and 5) satellite systems, a few pre-processing issues have been addressed 

prior to acquisition by a user of the information: each scene is radiometrically processed and 

calibrated (Markham and Helder, 2012; Irons et al., 2012), and raw data have been converted 

from radiance (in raw digital numbers (DN)) to reflectance values (measured at the sensor) for 

each band of energy (Chander et al., 2009).  

 

    Landsat satellite imagery has been frequently used to describe broad-scale landscape processes 

occurring on Earth, such as land use or land cover change (e.g., Huang et al., 2009; Lasanta and 

Vicente-Serrano, 2012) and fire extent and severity (e.g., Wimberly and Reilly, 2007; De Santis 

et al., 2010). Of interest to our analysis is the ability of Landsat satellite imagery to help describe 

finer-scale structural conditions of forests, or summaries of tree conditions at a level of what 
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many forest managers consider the stand (1-20 ha) (Mäkelä and Pekkarinen, 2004). A forested 

stand is a uniform collection of trees found in a contiguous area, managed separately, and 

distinguishable from other nearby collections of trees (Nieuwenhuis, 2010). Stands can defined 

by vegetative characteristics (e.g., tree age, tree species), physical features (e.g., roads and 

streams forming a natural edge), management approach (even-aged forest, uneven-aged forest), 

or management history (e.g., previously thinned, previously fertilized) (Bettinger, 2011). Stand-

level forest characteristics are sets of essential information for strategic forest planning purposes, 

for forest sustainability analyses, and for stand-level silvicultural prescription development. 

These include the amount of above ground biomass (AGB), the total timber volume, the average 

tree diameter at breast height (DBH), the average tree height, the average age, the crown closure, 

and the density (basal area or trees per unit area).  

 

    With estimates of forest characteristics, one may be able to develop informed forest 

management schemes (Newton et al., 2011), to accommodate large-scale landscape planning 

processes (e.g., Bettinger et al., 2005), or to simply satisfy a forest landowner’s informational 

interests. However, while estimating stand-level forest characteristics may be the objective of 

many endeavors, understanding the accuracy of the estimates and the associated uncertainty is 

equally important (Miegs et al., 2011; Shupe and Marsh, 2004). Depending on the situation, error 

associated with stand-level forest characteristics may be too high for some planning purposes 

(Mäkelä and Pekkarinen, 2004). Further, the diversity encountered in site quality and forest 

management practices employed across a landscape can introduce unexpected variation into 

remotely sensed data (Kimes et al., 1996), and in some cases the error observed may be difficult 

to overcome at the pixel level (Powell et al., 2010). 
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    In this review paper, we analyze and summarize recently published research related to the 

estimation of stand-level forest characteristics with Landsat satellite imagery. In the course of 

this discussion we outline the advantages and disadvantages of using Landsat satellite imagery 

and identify gaps in knowledge. The broad objectives for this review include describing 

challenges that have been encountered in using Landsat satellite imagery for estimating stand-

level forest characteristics, describing the techniques that have been employed to estimate stand-

level forest characteristics with Landsat satellite imagery, and outlining the usefulness and 

suitability of using auxiliary data to help describe stand-level forest characteristics. In the course 

of this review, we describe trends that are evident in association with these processes, and we 

identify some gaps in knowledge that could be addressed with further research. 

 

2. Methods  

 

    We reviewed published peer-reviewed literature that described processes for estimating stand-

level forest characteristics using Landsat satellite imagery. We acknowledge that some published 

work focused on this subject can likely be located in non-peer reviewed sources. In order to 

remain consistent in our approach, and to avoid cases where similar work has been published in 

both peer-reviewed and non peer-reviewed outlets (e.g., a proceedings paper and a journal article 

both describing same work), we strictly concentrated on peer-reviewed literature from 

international English language journals. If the decision were to have been made to review non-

peer reviewed work, this would likely require a more extensive search of the gray literature. 

Unfortunately, some advances may have been omitted by concentrating on peer-reviewed 

research (e.g., Lee and Nakane, 1997). The time frame of the published literature was 1995 and 
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2012 in order to focus on relatively new trends in research. The geographical scope of the 

analyses described in the literature included any effort, world-wide, that described the 

development of stand-level forest characteristics using Landsat TM or ETM+ satellite imagery. 

In order to locate peer-reviewed published literature, multiple Internet-based search engines were 

employed: Science Direct, Informaworld, SpringerLink, and Google Scholar. The search for 

literature relied primarily on keyword queries (e.g., "Landsat", "forest", "structural parameters"). 

Upon locating published literature, the reference section of each was explored for other sources 

of recently published information. We were interested only in locating published literature that 

described the estimation of certain stand-level forest characteristics: AGB, timber volume, 

average tree height, average age, crown closure, and density (basal area). An omission of 

published literature is possible, and the authors take full responsibility for such problems. 

Literature describing techniques for estimating or detecting forest disturbances were not included 

in this review, nor were literature describing how one might classify land use or land cover 

change. For each piece of literature that met our specifications, we recorded the journal, the 

stand-level forest characteristics that were estimated using Landsat satellite imagery, the study 

area where the research was conducted, and the analytical technique that was employed. 

Discussion and conclusions sections, particularly, were advised to locate areas for improvement 

in forest character estimation procedures. 

 

3. Results 

 

    To suggest that there is a large volume of peer-reviewed literature involving Landsat satellite 

imagery would be an understatement. As we noted, a recent query of the ScienceDirect database 
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using the single keyword "Landsat" yielded over 16,500 articles. Through refinements of the 

search process and after examination of numerous peer-reviewed articles, we narrowed the scope 

of our analysis to a little over one hundred papers that were published in thirty-eight different 

journals. Among the journals, we observed the highest rate of publication of research on this 

subject in the following three: Forest Ecology and Management, International Journal of 

Remote Sensing, and Remote Sensing of Environment. As we found in our search of the 

literature, there has been general increase in publication of peer-reviewed research involving 

stand-level forest characteristics using Landsat satellite imagery over the period 1995 to 2006. 

Since then, however, there has been a slight decrease in the number of peer-reviewed papers 

published on this subject. 

 

3.1 Stand-level forest characteristics typically estimated using Landsat satellite imagery 

 

    Doubt concerning the ability of Landsat TM and ETM+ satellite imagery to sufficiently 

describe forests and adequately inventory forest conditions was expressed nearly 25 years ago 

(Ahern and Horler, 1986). Concern lies partly in the fact that the  

spectral resolution of Landsat TM and ETM+ imagery is confined to seven specific frequencies 

within the electromagnetic energy spectrum, although using these, and synthetic combinations of 

these (e.g., NDVI), a differentiation can be made of main tree species groupings and of the 

general forest health condition. Concern also lies partly in the spatial resolution of the data (30 m 

x 30 m grid cells). However, given the wide coverage of a single Landsat scene (185 km x 171 

km), interest has been strong in the ability of the imagery to further facilitate the development of 

high-quality, broad-scale forest characteristics. Some stand-level forest characteristics, such as 
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timber volume and average tree age, are important for planning and management purposes, while 

others (AGB) are perhaps more important for sustainability and carbon sequestration, carbon 

accounting, and carbon dynamics purposes. Over the last fifteen years, timber volume, stand age, 

forest density, tree crown closure, and average tree height have all been estimated to some 

reasonable degree of accuracy for various parts of the world using Landsat satellite imagery. For 

example, Jakubauskas (1996) found moderate to high correlations between basal area (a measure 

of density), average age, and dominant height of lodgepole pine (Pinus contorta var latifolia) 

trees in Yellowstone National Park (USA) and spectral responses contained in the various bands 

of Landsat satellite imagery. Trotter et al. (1997) described several techniques for reasonably 

estimating timber volume when using Landsat satellite imagery, and discussed the relative 

accuracy of doing so at the pixel-level and larger scales. Reese et al. (2002) also developed 

estimates of timber volume, and while the accuracy of their estimates was relatively low at the 

pixel level, over larger scale areas (aggregates of 100 ha) the error was reduced to about 10% 

RMSE. Further, work performed by Kimes et al. (1996) indicated that the ability to estimate 

average stand age of temperate coniferous forests with root mean squared error of 5 years is 

possible, and Wulder et al. (2004) suggested a process for arriving at stand ages that had an 

associated 2.4 year standard error. However, in tropical forests, stands that are 15 years of age or 

greater may appear spectrally similar to nearby mature forests, suggesting that stand age 

determination may be more challenging (Steininger, 2000). Others (Wulder et al., 2004; 

Sivanpillai et al., 2006) have suggested that normalized difference vegetation index (NDVI) or a 

wetness index were also necessary to more accurately estimate stand ages in certain forests. 

Crown closure of trees is perhaps even more difficult to estimate, given that reflectance values 

are for the upper crown area of a forest, and may likely not account for understory trees. In one 
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analysis of a temperate coniferous forest, when broad crown cover classes were assumed, crown 

closure was underestimated, and when fine (10% intervals) classes were assumed, crown closure 

was overestimated (Gill et al., 2000). Causes of concern relate both to the model used to estimate 

crown cover from Landsat satellite imagery, and the techniques employed to estimate crown 

cover from field validation (inventory) plots. 

 

    Estimating stand-level forest characteristics can be challenging with remotely sensed imagery 

because as some have found, each type of vegetation can emit or reflect different levels of 

electromagnetic energy. Average stand heights, for example, are difficult to estimate with 

satellite imagery alone, and accuracy may vary by forest type for these reasons (De La Cueva, 

2008). Stand-level forest density estimates may be closely related to infrared reflectance values 

of certain forest types, but accuracy can vary between forests of the same density yet possessing 

a different management history (e.g., planted vs. naturally regenerated), and accuracy can vary 

between forests of the same density yet containing a different dominant tree species (Sivanpillai 

et al., 2006; Meng et al., 2009). Stand density is closely related to AGB, and a large set of 

published research from around the world has focused on AGB estimation. Some examples of 

these include work performed for forests in India (Roy and Ravan, 1996), Sweden (Fazakas et 

al., 1999), Brazil, Malaysia, and Thailand (Foody et al., 2003), the United States (Zheng et al., 

2004), China (Zheng et al., 2007), and Canada (Wulder et al., 2008). Some have observed a non-

linear relationship between stand attributes such as AGB and reflectance values from satellite 

imagery, perhaps due to the typical successional growth trend for most tree species (Hall et al., 

2006). In the last few years research regarding forests in Asia, Europe, and North America has 

dominated the literature according to our search criteria. Most of the published work has been 
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performed for North and South American landscapes, northern Europe, and various parts of Asia. 

A limited amount of research from our search has been performed for forests of Africa and 

Oceania. However, recent activity in AGB estimation of African forests has been reported 

(Avitabile et al., 2012). 

 

3.2 Modeling techniques employed for stand-level forest character estimation  

 

    A number of modeling techniques or analytical tools that can be used in conjunction with 

Landsat satellite imagery to estimate stand-level forest characteristics, and in some cases it may 

be difficult to conclude that one technique is superior to others (e.g., Powell et al., 2010). To be 

of value in estimating stand-level forest characteristics, a modeling technique must be able to 

differentiate forest conditions into categories (strata, classes) or be able to assign a continuous 

value (e.g. timber volume) to each pixel in a manner that these can sufficiently facilitate planning 

or analysis purposes. Correlation analysis and various forms of regression have been widely used 

in conjunction with Landsat satellite imagery for estimating forest characteristics. It seems that 

regression analyses will generally require as independent variables some transformation (e.g., 

logarithmic) of the original Landsat spectral data or synthetic data (i.e., a composite, or a specific 

combination of data) derived from various Landsat spectral bands. For example, Zheng et al. 

(2007) developed regression models to estimate forest biomass in south-central China and noted 

that leaf area index and NDVI were necessary independent variables for the prediction of forest 

biomass. Each of these, of course, was developed from the original set of Landsat spectral 

reflectance values: red and near infrared (NDVI), and red, near infrared, and shortwave infrared 

(LAI). Stand age and forest type were also necessary independent variables, and in this case, 
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stand age was deduced in a round-about manner using biomass as a variable (before development 

of the biomass regression model). Roy and Ravan (1996) developed empirical models with 

multiple linear regression for estimating forest biomass levels. In this early work, they observed 

that brightness and wetness indices (developed from a tasseled cap transformations of several of 

the spectral reflectance values) were strongly positively correlated with forest biomass levels, 

and thus the regression model developed included this type of synthetic data. Mallinis et al. 

(2004) used original Landsat satellite imagery reflectance values along with similar 

transformations of synthetic data to estimate density, basal area, basal volume, and biomass of 

forests in northern Greece. In assessing their multiple linear regression models, Mallinis et al. 

(2004) suggested that forest density and basal area could be better predicted than forest biomass 

or timber volume, and that a vegetation index (a combination of red and near infrared 

reflectances) was necessary to improve the quality of the models developed. These types of 

results are not broadly applicable, however as others (e.g., Lu et al., 2004) have pointed out 

issues of consistency (e.g., shortwave radiation important) and inconsistency (e.g., vegetation 

indices developed from red or near infrared radiation not as important). As these and other 

research results have shown, it may be difficult to select suitable satellite imagery data for a 

specific regression analysis due to variations in forest stand conditions and the complex 

relationships between spectral reflectance values (or the synthetic indices developed from these) 

and select forest characteristics (Lu et al., 2004).  

 

    The k-Nearest Neighbor (kNN) technique of image classification (Moeur and Stage, 1995) and 

assignment of stand-level forest characteristics to raster database pixels has been used 

extensively in Scandinavia for at least 15 years (Gjertsen, 2007), and in North America for 
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nearly a decade (McRoberts, 2012). When employing the kNN technique, stand-level forest 

characteristics for each pixel are predicted as weighted averages of the nearest k reference plots 

(field inventory plots) whose location within the satellite imagery is represented by similar 

spectral reflectance values (Fazakas et al., 1999). The forest characteristics estimated are in some 

cases linear combinations of observations, and in other cases inverse-squared and (or) distance 

weighted. The kNN technique assumes that pixel values of stand-level forest characteristics 

depend only on forest condition, as represented by spectral values of the various bands of 

electromagnetic energy captured by the remote sensor (Fazakas et al., 1999). The classification 

process is based on the similarity in a covariate space between these, and the technique can be 

considered non-parametric and either univariate or multivariate (McRoberts et al., 2007). It is 

suggested that the main reasons a kNN technique is used are the simplicity and flexibility of the 

process, the ability to produce statistical estimates, the ability to use the process with categorical 

data, and the ability to create landscape maps of forest characteristics (Gjertsen, 2007; 

McRoberts, 2012). Although kNN techniques are relatively practical to implement and are 

regarded as suitable techniques for the estimation of stand-level forest characteristics 

(McRoberts et al., 2007; McRoberts, 2009), one problem with the use of kNN techniques is that 

some of the errors associated with the classification process might be considered systematic and 

the associated estimates might be considered biased. These errors may be caused by factors that 

affect the measurements in a certain direction across the sample, in turn influencing the averages 

of forest characteristics across the landscape (Gjertsen, 2007). Other factors causing error include 

(a) forest conditions that are not represented well by the field-based inventory data, and (b) weak 

association between spectral values and forest conditions, particularly in mixed forests (Gjertsen, 

2007). The computational intensity of applying a kNN technique to an entire Landsat satellite 
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image has also been noted as a concern (Finley and McRoberts, 2008; McRoberts et al., 2007), 

yet with advances in computer technology, this will likely be alleviated to some extent. 

However, in order to save computation costs, Meng et al. (2007) suggest that remote sensing data 

reduction techniques (layer combination, principle components analysis, etc.) can be used. 

 

    In conjunction with Landsat satellite imagery, a kNN technique was used to estimate stand-

level timber volume and basal area of forest compartments within a Swedish National Forest 

(Holmgren et al., 2000). Here, high timber volumes per unit area were underestimated and low 

timber volumes per unit area were overestimated (the estimates smoothed out the data), and it 

was noted that the bias could be reduced when ancillary data (site index, age, average height) 

were also included in the estimation of timber volume. Low and high volume estimates were 

found to be less accurate in other studies as well (e.g., Reese et al., 2002). Mäkelä and 

Pekkarinen (2004) employed the kNN technique in order to estimate stand-level timber volumes 

by tree species, and while high levels of accuracy were not achieved, approximate volume 

estimates were derived where no other forest information was available. In addressing the 

selection of k, trials can be conducted, along with assessments of error and bias, and conclusions 

can be drawn as to the k that optimizes a certain decision criterion, such as the root mean squared 

error (McRoberts, 2012). Trotter et al. (1997) suggested that the k (number of neighbors) needed 

to be large ( 15) in order to obtain reasonable accuracy at the pixel-scale, yet this biased the 

outcomes (timber volume) at larger scales. Mäkelä and Pekkarinen (2004) observed that once k 

exceeded ten, the error of timber volume estimates decreased only slightly, thus k = 10 was 

suggested. Kajisa et al. (2008) showed that error in timber volume estimations using a kNN 

approach decreased as k increased up to five, after which the error again increased. Meng et al. 
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(2007) suggest that a non-parametric Kolmogorov-Smirnov (KS) test can be employed to 

determine whether the estimates based on a specific k are significantly different from others. 

 

    A slightly different type of nearest neighbor technique based on canonical correspondence 

analysis, the Gradient Nearest Neighbor (GNN), has also been used in conjunction with Landsat 

satellite imagery to estimate stand-level forest stand characteristics. The GNN technique 

developed by Ohmann and Gregory (2002) utilized relationships between vegetation and 

environmental information that included climatic (precipitation, temperature), topographic 

(elevation, slope, aspect), and geologic data. Stepwise canonical correspondence analysis based 

on the first eight canonical correspondence analysis axes (weighted by their eigenvalues) was 

used to identify a single field-measured inventory plot that was nearest to each pixel in the eight-

dimensional gradient space. Based on predicted basal area, Landsat spectral reflectance 

information explained most of the variance in the canonical correspondence analysis (yet only 

15%), followed by climate, location, and topography. Ohmann and Gregory (2002) observed that 

this technique was comparable to others that had been applied in the area of interest (Pacific 

Northwest, USA), and like other techniques, it predicted poorly at small scales, and very well at 

larger scales. Similar techniques were employed by Powell et al. (2010) to estimate AGB using 

Landsat satellite imagery, and Pierce et al. (2009) to estimate forest fuel levels. 

 

    Various other analytical techniques have been used in an attempt to estimate stand-level forest 

characteristics from the information provided by Landsat satellite imagery. Conversion tables, 

for example, that relate a classification (unsupervised, supervised, etc.) of satellite imagery to 

stand-level forest characteristics, can be employed. Luther et al. (2006) and Labrecque et al. 
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(2006) describe a technique for estimating forest biomass from Landsat satellite imagery. Here, 

an unsupervised classification of NDVI was performed and a large set of spectral clusters were 

developed. Then, using a set of training data developed for each tree species group and forest 

structural class, the dominant tree species group and a forest structure class were assigned to 

each pixel based on the spectral cluster, and forest biomass was then assigned to each pixel based 

on conversion table relationships. Similar to Holmgren et al. (2000), biomass was overestimated 

in younger and more open forest areas, and underestimated in older and more dense forest areas. 

 

    A neural network is a classification technique that has the ability to address non-linear 

problems by learning patterns and relationships, and by generalizing results in light of inherent 

variation in the data (Kimes et al., 1996). A neural network usually contains a large number of 

processing units that are linked by weighted connections, and the weights are adjusted (updated) 

through numerous iterations through the network as the relationships between the remotely 

sensed data and the desired outputs arise (Foody et al., 2001). Spectral reflectance values may 

have a complex or non-linear association with forest characteristics (Ingram et al., 2005), thus a 

neural network may be trained to use various satellite image spectral bands (and their synthetic 

derivatives) and to weight their values (yet not necessarily remove them entirely from the 

analysis) as appropriate to derive predictive relationships (Boyd et al., 2002). As with GNN 

techniques, these processes can utilize climatic, topographic, and geologic data to help inform 

the relationships, and as with a supervised classification processes, a set of training data is 

necessary to learn about these relationships. As an example of the use of this type of process, 

Foody et al. (2001, 2003) employed neural networks for AGB estimation using several 

vegetation indices derived from Landsat spectral bands.  
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    In addition to regression and neural network techniques, Liu et al. (2008) examined the use of 

decision trees to estimate forest ages from Landsat satellite imagery. Decision tree approaches 

select a variable of interest, split the range of valid values of the variable into two groups, and 

assess the quality of both approaches (child nodes) in describing a desired outcome. Further 

exploration along each limb of the tree is then possible. The process continues along this type of 

divide-and-conquer behavior until terminating rules suggest that a suitable model was been 

created. Liu et al. (2008), in estimating forest successional stages, found that decision trees were 

as useful as neural networks in this regard, while also being somewhat easier to understand from 

a conceptual point of view. Alternatively, Foody et al. (1996) used both a maximum likelihood 

classification and an object-based process to assign Landsat satellite image pixels to the forest 

age class within which it had the highest probability of membership based on spectral reflectance 

properties. The maximum likelihood classification process relied solely on spectral information, 

while the object-based process relied on both spectral and spatial information, since groups of 

adjacent pixels were classified together. In the ensuing analysis, Foody et al. (1996) suggested 

that the object-based process, because it employed both spatial and spectral information, was 

slightly better for estimating forest age classes in tropical forests. 

 

    Meng et al. (2009) describe ordinary kriging (linear), universal kriging (polynomial), 

cokriging (incorporating inter-variable correlation), and regression kriging (using simple or 

multiple linear regression) as techniques for using Landsat satellite imagery to estimate basal 

area levels for southern United States pine forests. Kriging is the process of interpolating a 

certain value (perhaps timber volume) of an unknown area based on nearby observations. In 

Meng et al. (2009), regression kriging seemed to display the most promise for spatial 
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interpolation among known data points. Viana et al. (2012) also describe an application of 

ordinary, universal, and regression kriging to the estimation of forest biomass in Portugal, and 

although these were not generally superior to an ordinary least squares regression approach, the 

regression kriging technique was able to generate a spatial map of uncertainty for estimates of 

biomass. As both studies point out, and as with neural networks, more attention needs to be 

applied to these techniques to understand how they can improve upon to regression and nearest 

neighbor imputation techniques for estimating stand-level forest characteristics. 

 

3.3 Combined use of Landsat with ancillary data 

 

    The suggestion that satellite imagery needs to be integrated with ancillary information in order 

to successfully describe forest conditions is an old one (e.g., Sayn-Wittgenstein, 1986). As has 

been mentioned in the description of some of the classification techniques noted above, Landsat 

satellite imagery has often been used for stand-level forest characterization in combination with 

other ancillary data, and in some of these cases, the accuracy of the estimated stand-level forest 

characteristic has subsequently increased. Ancillary data can include field-based forest inventory 

data (plots, points, transects, or other empirical data), or topographic (e.g., slope, aspect, 

elevation), geologic, soils, land ownership, and climatic (e.g., air temperature, precipitation) 

information. Some of these data are represented by continuous surfaces, while others are 

represented by points or small areas. Some of these data are presented as continuous values (e.g., 

timber volume, biomass, tree density), while others are categorical (land owner class, soil type, 

age class). The estimation of AGB seems to benefit greatly with the introduction of field-based 

measurements even though at times the process can be challenging (Hall et al., 2006), and the 
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estimation of timber volume seems to benefit from prior knowledge of average stand heights 

(Magnusson and Fransson, 2005), since tree height is a key component in many equations for 

estimating timber volume. Avitabile et al. (2012) also show that the inclusion of land cover maps 

as ancillary data may be necessary in some areas of the world when estimating biomass levels. In 

mountainous areas, topographic (aspect, slope) information may be necessary in order to better 

differentiate characteristics such as average stand age (Kimes et al., 1996). For areas where field-

based forest inventories are available, Wulder et al. (2008) describe a polygon decomposition 

approach that harmonizes forest inventory estimates of biomass with pixel-based estimates from 

remotely sensed imagery by summing the pixel-based biomass estimates for each pre-defined 

forest stand polygon. However, when using ancillary data such as field-measured inventory plot 

summaries (or tree lists) in conjunction with an image classification process (e.g., kNN, GNN), 

error (whether systematic or random) in the field measurements can contribute to the total error 

observed in the resulting landscape classification (Ohmann et al., 2012).  

 

    Many of the nearest neighbor classification techniques utilize national forest inventory data, or 

field plots collected at specific locations systematically distributed across a given country. This is 

the case perhaps because national forest inventory data is often more freely available (in contrast 

with data collected by private organizations) to researchers through limited arrangements (Smith, 

2002; Reese et al. 2003), perhaps because of the wide coverage of national inventories, and 

perhaps because of the rich information these generally contain. Examples of these efforts 

include Holmgren et al. (2000), Tomppo et al. (2002), McRoberts et al. (2007), Ohmann et al. 

(2012). Some knowledge of the design and analysis procedures of these broad-scale, multi-

resource inventory systems is necessary to utilize the available data. Field data can be used to 
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help in the classification process, and the resulting estimates from a classification process can 

also resemble closely the field data. For example, field data can be used to help estimate forest 

heights for each grid cell that is not represented by field data. 

 

    LiDAR (Light Detection and Ranging) data, which is also remotely sensed, utilizes the same 

range of electromagnetic energy (ultraviolet to near infrared) as does Landsat satellite imagery. 

LiDAR has been assessed for use in stand-level forest characterization in conjunction with 

Landsat satellite imagery. The relationship is complementary because LiDAR data can provide 

fairly accurate estimates of forest characteristics in the vertical plane, while Landsat can provide 

extensive coverage of a landscape in the horizontal plane. Lefsky et al. (1999) combined Landsat 

estimates of stand age and LiDAR estimates of AGB to model forest productivity, and 

subsequently estimated aboveground net primary production of wood based on stand age and 

biomass. Hudak et al. (2002) combined LiDAR and Landsat satellite imagery, then applied four 

types of classification processes in an effort to develop a database of forest heights. In many 

cases, LiDAR data is not as spatially extensive as Landsat satellite imagery, yet stand-level forest 

heights can be fairly accurately estimated with LiDAR data, therefore combining Landsat 

satellite imagery with estimated forest heights can help improve stand height estimates for areas 

not covered by LiDAR data. In essence, LiDAR-derived samples of forest heights could be used 

as training sites for a broader-scale forest classification process. 

 

4. Discussion 

 

    Earlier we noted a general increase in the number of peer-reviewed published papers regarding 
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stand-level forest characterization over the analysis period (1995 to 2006) that were based on the 

use of Landsat satellite imagery. The variety of techniques and applications suggested that 

international interest in developing and reporting techniques for stand-level forest character 

estimation has been increasing. Interestingly, we found most of the related papers in three well 

respected, peer-reviewed journals that were international in scope (International Journal of 

Remote Sensing, Remote Sensing of Environment, and Forest Ecology and Management). 

However, the literature we reviewed was also located in 35 other journals, and other literature 

may have been published in non-English language journals. Further, we primarily used keyword 

queries for locating peer-reviewed papers, and we only concentrated on reviewing work 

published in peer-reviewed scientific journals. Therefore, it is possible that some seminal work 

was omitted from our review. In sum, we consider our work to represent a sample of the 

knowledge regarding stand-level forest character estimation using Landsat satellite imagery 

rather than a thorough and complete assessment of such.  

  

    Through research that has been conducted on multiple stand-level forest characteristics within 

the same or similar geographic area (e.g., Cohen et al., 1995; Jakubauskas, 1996; Fazakas et al., 

1999; Steininger, 2000; Holmgren et al., 2000; Ohmann and Gregory, 2002; Reese et al., 2002; 

Franklin et al., 2003; Reese et al., 2003; Lu et al., 2004; Mallinis et al., 2004; Freitas et al., 

2005), one could attempt to rank the suitability of the modeling techniques by various measures 

of accuracy. However, one cannot conclude which stand-level forest characteristic(s) will be 

more suitably estimated, because accuracy will differ according to research area and technique 

employed, and thus results will likely vary. Likewise, ranking stand-level forest characteristics 

by the ability to accurately describe their level across the landscape would not be consistent 



28 

 

 

because these too differ by study area, classification technique utilized, and ancillary data 

employed. While a number of studies have been employed to determine forest characteristics 

from Landsat imagery, there are few directly comparable studies to allow one to adequately 

ascertain why some relationships are more easily ascertained than others, within an ecoregion or 

across ecoregions. Within this body of research one finds distinct differences in forest types 

studied, image classification methods employed, and management objectives considered that 

make these types of issues difficult to address. In addition to the influence of study objectives on 

the issue of transferability of methods across ecoregions, it remains to be seen whether the 

successes claimed through analyses of the accuracy of predictions will generally be transferable 

to other geographic areas given varying physiographic and vegetative conditions. 

 

    From a pure accounting point of view, of the stand-level forest characteristics estimated using 

Landsat satellite imagery, average tree height, crown closure, and average stand age have been 

addressed relatively less so than others. Landsat satellite imagery can provide a horizontal 

perspective of the landscape, therefore unless correlations are made between spectral responses 

and dominant tree species and forest age (which an association can then be made to average 

height), ancillary data describing vertical relationships (such as LiDAR data) may be necessary. 

Even though there is relatively little research on the estimation of tree heights, the results are 

noteworthy. In one case, when only two classes of heights were estimated from Landsat satellite 

imagery, the accuracy was fairly good (Franklin et al., 2003). Lu et al. (2004) also found the 

correlation between average stand height and vegetation indices derived from Landsat imagery to 

be relatively high. However, the combined use of ancillary data and satellite imagery may 

facilitate a synergistic effect that can overcome some of the disadvantages of using only satellite 
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imagery. Further, ancillary information, such as broad land cover classes, inventory plots, or 

LiDAR data may be of value in increasing the accuracy of stand-level forest characterization, 

particularly in areas that contain a mixture of coniferous and deciduous tree species (McRoberts, 

2009). LiDAR data seems especially useful for estimating forest structures and stand height. 

However, LiDAR data are limited in terms of coverage over large areas.  

 

    Each image classification technique has its limitations, and selection of one is dependent on 

the application and the environment (Boyd et al., 2002). Regression analysis that uses remotely 

sensed imagery and explicit forest measurements has been the most commonly used 

methodology for estimating stand-level forest characteristics with Landsat satellite imagery, yet 

nearest neighbor imputation techniques are gaining in popularity. Regression analysis has an 

advantage: one generally needs less data than is required for kNN techniques, as kNN techniques 

can use both continuous data (typically used in regression) geographical (Bååth et al., 2002) or 

categorical data. Based upon a limited number of reference data, one can develop a regression 

model and use the fitted equation to estimate stand-level forest characteristics for other areas. 

However, when the regression equation(s) contains a high level of variation or when the 

reference data are concentrated within a limited area, estimates of stand-level forest 

characteristics using a regression model could contain more uncertainty. In addition, one will 

likely encounter the problem of extrapolating predictions of stand-level conditions beyond the 

range of data that was used to develop the regression model, and this could result in absurd 

predictions, such as negative timber volumes.  

 

    According to various authors of the literature we reviewed, kNN techniques are considered 
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easy to implement and can be used to develop a reasonable forest inventory. One crucial issue in 

the use of kNN techniques is the assumed number of k. There are several ways in which one can 

obtain the optimal or appropriate k value, such as employing the Kolmogorov-Smirnov (KS) 

tests and examining cumulative distribution functions (CDF) or preliminary trials, or applying 

cross-validation or bootstrapping processes to assess modeling behavior. Unfortunately, the 

accuracy of a kNN technique is strongly influenced by the selection of value k, thus careful 

consideration of k should be based on knowledge generated from tests such as these. Further, 

single-neighbor (k = 1) imputation processes generally result in lower local-scale accuracy than 

what can be obtained with other techniques, as estimates are subject to variability within a 

spectral space (Pierce et al. 2009). Another disadvantage of using kNN is that one needs 

sufficient reference data, distributed across the study area, to adequately estimate stand-level 

forest characteristics, therefore it is challenging to use this approach over large areas without a 

reasonable set of reference data. Thus a wider range of variability across a landscape should be 

sampled for the imputation process to work effectively (Pierce et al., 2009). However, it may be 

erroneous to assume that imputed pixel values can be independent of the geographic location of 

reference data, therefore a sub-set of a Landsat satellite image or geographical constraints on the 

neighborhood have been suggested (Fazakas et al., 1999). 

 

    Even though the accuracy of estimating stand-level forest characteristics by neural networks 

and certain kriging techniques has been shown to be relatively high, these have not been widely 

tested. Further, regression-kriging is thought to be more sophisticated and computationally 

demanding than other techniques (Viana et al., 2012). Therefore, we suggest that this is one area 

for further research to pursue. It is difficult to compare techniques when they have been 



31 

 

 

employed on different landscapes for different purposes. While some research has employed 

several techniques in order to directly compare their efficiency and accuracy, through this review 

we failed to arrive at a consistent ranking in techniques due to non-standard test instances, 

differences in test databases, and differences in approaches employed. However, one can 

conclude that, based on the accuracy of certain stand-level forest character estimates, regression 

analysis, kNN and neural networks are all relatively good image classification techniques in 

certain situations.  

 

    As one of the most important medium-resolution remotely sensed programs, the use of 

Landsat satellite imagery for estimating stand-level forest characteristics has proven practical, 

given tests of overall accuracy (Cohen et al., 1995; Roy and Ravan, 1996; Foody et al., 1996; 

Steininger, 2000). Accuracy tests have involved correlation analysis, and determinations of 

RMSE and bias. Even if results of research have shown high levels of accuracy in estimating 

stand-level forest characteristics, transferring these models to other geographical areas has not 

been assessed. We can also infer that the amount and extent of reference data employed can 

influence the overall accuracy of the classification process. Some issues concerning the use of 

satellite imagery for estimating stand-level forest characteristics remain. The spectral reflectance 

values of pixels near the edges of forests, for example, can be affected by neighboring land use 

conditions, thus the correlation between spectral reflectance values and stand-level forest 

characteristics can increase if edge pixels are excluded from an analysis, however this may 

impart bias into the estimated stand-level forest values (Mäkelä and Pekkarinen, 2004). 

Steininger (2000) also suggested that precipitation levels may cause between-year differences in 

leaf area of forests, and these could affect near- and middle-infrared canopy reflectance values of 
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forests with similar ages and similar levels of biomass. Thus the issues concerning the temporal 

vintage of Landsat satellite imagery (e.g., collected during a drought or after a tropical cyclone) 

may need to be considered along with changes in the phenology of plants (Lehmann et al., 2012). 

Further, at the pixel scale, the relationship between estimates of forest characteristics can be 

significant, but usually are weak, yet when aggregated to a scale representative of a typical forest 

stand, the accuracy of classification approaches can be acceptable (e.g., Trotter et al., 1997; 

Reese et al., 2002; Gjertsen, 2007).  

 

    Satellite remote sensing technology is of great benefit to humankind, yet the systems are not 

perfect. For example, satellite images are acquired over different Earth surface albedo (water, 

forest, soil, etc.), and satellite sensors need to accommodate the potential observed variation in 

the range of brightness values. How the sensors handle changes in brightness values is therefore 

important. A radiometric sensor is considered saturated when the input signal exceeds the 

maximum measurable signal of the sensor. In the newer ETM+ imagery, when saturation is 

approached due to changes in brightness values, greater radiometric sensitivity is applied by the 

sensor until saturation is reached (Karnieli et al., 2004). At least in one study, it was shown that 

forested areas with complex stand structures could result in reflectance value saturation, making 

biomass estimation, for example, difficult within older forests (Lu et al., 2004). Some have also 

suggested that mathematical correction algorithms may be important for forest classification in 

areas with significant landscape relief (leading to the presence of shadows) or in areas with 

considerable bare soil (Zheng et al., 2007). Land cover types that are relatively homogeneous 

(pure pine stands and shrubland) generally allow high correlations to be observed between 

vegetation characteristics and spectral response, whereas land cover types with high spectral 
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diversity (e.g., mixed species forest stands) generally result in low correlations. At least in one 

case (Mallinis et al., 2004), the spectral resolution and the spatial resolution (30 m x 30 m in 

most cases) of Landsat satellite imagery did not seem adequate for estimating the characteristics 

of forests that were patchy and fragmented. Therefore, stratification of forest cover types may be 

necessary prior to the use of any classification technique (Viana et al., 2012). 

 

5. Conclusions  

 

    Over the last twenty years, Landsat satellite imagery has often been used in an effort to 

estimate stand-level forest characteristics. In this review we described some challenges that have 

been encountered in using Landsat satellite imagery for estimating stand-level forest 

characteristics, and described the techniques that have recently been employed to estimate these. 

In terms of stand-level forest characteristics, relatively speaking, average forest height, crown 

closure, and stand age were less frequently addressed than the others. Average stand age 

determination may require the use of synthetic data derived from Landsat satellite imagery, and 

stand age determination in tropical forests may be very challenging because young and old 

forests share similar spectral signatures, although object-based processes may be of value. 

However, often the concept of stand age is not appropriate in tropical forests that are basically 

uneven-aged. Attention has perhaps been placed more heavily on the estimation of forest 

biomass than other forest characteristics, and some have suggested that synthetic data (measures 

of brightness and wetness) may be necessary in estimating biomass levels as well. Several 

studies have noted that procedures for estimating continuous values at the extreme ends of the 
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valid value spectrum tend to be less accurate and perhaps biased, and that ancillary data (in the 

case of timber volume) might be necessary. 

 

    Regression and kNN imputation techniques seem to be the most widely employed and are 

becoming mature and refined, although other techniques (e.g., neural networks, regression 

kriging) seem to hold promise and further attention should be applied to these as well. Empirical 

data still seems necessary for disentangling the relative differences between classification 

techniques, and for facilitating the ability to estimate certain forest characteristics. In most cases, 

estimation techniques predict forest characteristics poorly at small scales (the pixel) and very 

well at larger scales (40-100 ha). Further, more information is necessary to determine whether 

certain methods employed can be transferable to other geographic areas given varying 

vegetative, climatic, and topographic conditions, and varying objectives. 
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CHAPTER 3 

 

ESTIMATION OF PREMATURE FOREST AREAS IN GEORGIA USING U.S. FOREST 

SERVICE FIA DATA AND LANDSAT IMAGERY 

 

1. Introduction 

 

    Pre-merchantable (or premature) tree area is considered valuable measurement for providing 

future opportunities for both commercial uses and conservation. Using knowledge about pre-

merchantable tree area, bioenergy potential can be estimated, information on current 

merchantable stands can be better updated, and management schemes for young forests can be 

made more efficient, allowing forest managers and investors to better estimate market and 

investment value. Market value is the price for which an asset would sell on a competitive basis, 

and investment value is the value of an asset to a particular investor. Detailed and accurate 

information on pre-merchantable area can be useful fundamental data for anyone interested in 

estimating these values. 

 

    Ever-increasing computer power, geographic information system (GIS) software, and remote 

sensing data enhance the accessibility and accuracy of large-scale spatial data analysis in 

combination with inventory data such as the U.S. Forest Service Forest Inventory and Analysis 

(FIA) data. FIA data are often used to determine the extent, condition, volume, growth, and 
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depletions of timber on the forest land of the United States (e.g., Rosson and Rose 2010). FIA 

personnel and their state partners collect forest inventory data on permanent sample plots within 

each state. FIA data are used as essential sources of information for various analyses of forest 

policies and programs. Using the extensive range of tools developed specifically for FIA data, 

information of interest can be obtained and selected by the public based on the research purpose 

and project hypotheses. In forestry, combining field inventory data with aerial photographs and 

satellite images has revolutionized traditional inventory processes. Typically, Landsat data have 

been used for parameter estimation or as auxiliary data in obtaining information about forest 

resources where such information was not available through field investigation (Reese et al., 

2002; Mäkelä and Pekkarinen, 2004; Chen et al., 2007).  

 

    In this paper, we have two objectives. First, we examine and compare the tools for using FIA 

data such as Forest Inventory Data Online (FIDO) (U.S. Forest Service, 2012) and Forest 

Inventory and Analysis Database (FIADB) - Lite (Miles, 2008), and then pursue the estimation 

of, the amount (number and basal area ) of “pre-merchantable trees” of which DBH is less than 

12.7 cm (5 inches) in every county of the State of Georgia, using FIA data. Secondly, we try to 

classify and specifically identify “premature forest stands” in southeastern Georgia, where the 

age is 15 years or less, using data from Landsat Thematic Mapper (TM) based on the medium 

size spatial resolution of approximately 30-m pixel size with Maximum Likelihood 

Classification (MLC), regression analysis, and k-Nearest Neighbor (kNN) processes. The 

advantages and disadvantages of these methods are then compared. Finally, we examine the 

usefulness of Landsat imagery and various image processing classifiers for the purpose of 

premature stand identification based on the results of the classification processes.    
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2. Review of Approaches  

 

2.1 The U.S. Forest Inventory and Analysis (FIA) program 

 

    The Forest Inventory and Analysis (FIA) program of the U.S. Forest Service provides 

information necessary for studying the transition of America's forests. The FIA program provides 

information that describes the current condition of forests, and enables one to evaluate whether 

forest management practices are sustainable in the long run. Over the last few decades, the FIA 

program has produced various reports on forest status and trends of United States forests, 

including species, size, growth, removals, and production of forestland by using field inventory 

plot data and remotely sensed imagery (U.S. Forest Service, 2012). Some details of these studies 

are presented below. 

 

    A fundamental aspect in the design of the FIA, double sampling for stratification, has been 

adopted to perform basic forest inventories (Chojnacky, 1998). Long ago, Neyman (1938) 

devised double sampling as a theory for sampling human population and Bickford (1952) 

adapted it to the FIA program in the northeastern United States. It was not easy to adapt the 

theoretical sampling design to actual field conditions; thus modifications and assumptions on the 

sampling design should be added to facilitate field sampling. In this approach of double 

sampling, a large first-phase sample from aerial photography is followed by a smaller second-

phase ground sample. The first phase of double sampling includes photo-interpretation of aerial 

imagery using a dot-count method (Wynne et al., 2000). In the second phase, field plots are 

sampled to confirm that the photo-interpretation of the phase was correct. In general, double 



47 

 

 

sampling for stratification is considered a simple but powerful way to describe most attributes for 

FIA inventories. The combined usage of field data and aerial photographs within a double 

sampling effort seems to enhance the ability to locate pre-merchantable stands of trees.  

 

2.2 Estimation of forest parameters using remote sensing imagery and forest inventory data 

 

    Previous research on biomass estimation provides a foundation for methods used in this study 

to determine forest age structures and leaf area index (LAI). Zheng et al. (2007) mapped above-

ground biomass (AGB) of forests by combining remote sensing imagery and forest inventory 

data. They used methods for measuring ecological parameters to process remote sensing images, 

and they developed regression models for estimation of biomass. In the field they measured 

topographic characteristics such as slope, aspect, and coordinates and forest parameters (Leaf 

Area Index, DBH, tree height and forest age). Zheng et al. (2007) selected 60 plots and observed 

parameters used for calculating AGB from 10 trees among 14 plots. They converted the Landsat 

Enhanced Thematic Mapper Plus (ETM+) raw digital numbers into radiance, and then using the 

“6S” model (Vermote et al., 1997) they used radiance to calculate the reflectance of each band. 

They then joined the images and produced a reflectance image for the whole study area. 

Topography can distort remote sensing signals, thus Zheng et al. (2007) used the Sun-Canopy-

Sensor (SCS) sub-pixel removal method (Gu and Gillespie, 1998) to remove the shadow effect. 

 

     Zheng et al. (2007) used three different vegetation indices, simple ratio (SR) (Rouse et al., 

1973; Tucker, 1979; Sellers, 1985), reduced simple ratio (RSR) (Brown et al., 2000), and 

normalized difference vegetation index (NDVI) (Rouse et al., 1973; Tucker, 1979; Jackson et al., 
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1983; Sellers, 1985) from atmospherically corrected ETM+ reflectance images. The RSR map 

with leaf area index (LAI) field measurements produced a LAI map based on statistical analysis, 

and  Zheng et al. (2007) then produced an initial AGB map using the LAI map and forest stand 

age structure. They used vegetation indices, LAI, and forest stand age to make AGB estimation 

models for different forest types using stepwise regression analysis. The model with LAI and 

AGE captured 90% of the variance of the overall AGB. The various forest types, Chinese fir 

(Cunninghamia lanceolata), conifer, broadleaf, and mixed forest, showed high correlation with 

specific combinations of LAI, AGE, NDVI, and SR. Zheng et al. (2007) developed a final AGB 

map with land cover information and derived age information. The forest age came from the 

initial AGB map that they attained from the LAI map and the relationship between AGB and 

age, which are too much complex steps. From their research we can consider a different way to 

estimate forest age structure with diverse combinations between LAI and AGB information, 

which means that it will be a simple method. Another option for the research could be the 

combined usage of diverse satellite sensors with different forest parameters such as crown size, 

with FIA age data to make this model compared in terms of accuracy.  

 

    Landsat TM data is captured over seven bands of electromagnetic energy.  The spatial 

resolution of all bands is 30 m except that of band 6, which is 120 m. Turner et al. (1999) 

researched the relationships between LAI and Landsat TM Spectral Vegetation Indices (SVI) and 

they found out a strong general relationship with SVI’s increasing up to LAI values of 3 to 5 

with relatively high-level of squared R values, all of which are over 0.5. Based upon the strong 

relationship between SVI and LAI, we can gain the ability to map and monitor LAI across large-
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scale area using remote sensing imagery fast and accurately, which provides crucial information 

to estimate biomass and age structure     

 

    Lu et al. (2004) researched the relationship between forest stand parameters and Landsat TM 

spectral responses in the Brazilian Amazon Basin. They produced summary statistics of forest 

parameters of above-ground biomass (AGB), basal area (BA), average stand diameter (ASD) and 

average stand height (ASH) from field data in the three study areas of Altamira, Bragantina, and 

Pedras from June to July in 1991. They employed TM images in July 1991 for Altamira and 

Pedras and for June 1994 for Bragantina in this research. Lu et al. (2004) did geometrical 

rectification and radiometric and atmospheric correction on acquired remote sensing data and 

calculated vegetation indices (Simple ratio, Normalized vegetation indices, Complex vegetation 

indices, and Image transform). They linked geometrically rectified sample data to individual TM 

bands or the vegetation indices. They connected spectral responses with stand parameters using a 

Pearson’s correlation coefficients analysis, and measured the coefficients between two variables. 

Tree species composition, forest stand structures, and associated canopy influenced vegetation 

reflectance, although the sites had similar biomass. To make this approach more applicable, we 

would want to determine how the different characteristics such as age structure are illustrated by 

vegetation reflectance. For example, if we can define the age structure with only the vegetation 

reflectance given constant biomass, we can expect to estimate pre-merchantable stands more 

easily using the relationship.  

 

    The results by Lu et al. (2004) showed that single Landsat TM band 5 and linear transformed 

indices such as PC1 (the first component in a principal component analysis), KT1 (brightness of 
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the tasseled cap transform), and albedo strongly correlate with forest stand parameters when 

using Pearson’s correlation coefficients. The relationship between many vegetation indices using 

Landsat TM band 4 and Landsat TM band 3 data and selected forest parameters was not strong. 

But, the vegetation indices with Landsat TM band 5 showed relatively high correlation with 

forest parameters, even in a complex forest structure. For example, in Altamira the correlation 

coefficients between TM5 and AGB, BA, ASD, and ASH were -0.627, -0.576, -0.794, and -

00.851. Through the study by Lu et al. (2004), we discovered that the best spectral data forms for 

detecting forest stand parameters were Landsat TM band 5, PC1, KT1, albedo, and MID57 (the 

addition of the middle infrared Landsat TM bands). The topographic variation in a study area can 

become an issue. Among three study areas, the topographic variation in two study areas is flat 

and the other is a mixture of flat and rugged terrains. Thus, this research area was mainly flat and 

the authors did not use enough elevation variation. The complexity of forest structure can 

weaken the relationship proposed here; thus, based on the results of various topographic 

conditions, we should consider modification of coefficients and use of additional independent 

variables of the spectral bands sensitive to biophysical environments. One strong point of this 

research is that Lu et al. (2004) collected large amounts of data on all saplings, seedlings, and 

herbaceous vegetation in subplots. We can use this research as a guide for using suitable TM 

bands and vegetation indices and as the basic framework of the relationship between satellite 

data and forest stand parameters. This will provide a variety of options for selection of forest 

parameters for the purpose of verification and more accurate delineation of specific forest 

structure such as pre-merchantable stands.  
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    Remote-sensing based biomass estimation also can involve various methods and data types. 

For example, Thenkabail et al. (2004) used IKONOS data for Biomass estimations and carbon 

stock calculations. At the landscape level, multi-date IKONOS data showed an overall accuracy 

of 88-92% given the ground truth data and based on the fact that IKONOS provides fine spatial 

resolution (1m panchromatic and 4m multispectral 3-band images) with this high accuracy of 

estimation, we can consider this approach suitable for local-scale biomass mapping. As remote 

sensing technologies, The Indian Remote Sensing Satellite (IRS) –1C Wide Field Sensor  (WiFS) 

and Advanced Very High Resolution Radiometer (AVHRR) are employed for per-pixel level by 

the methods based on coarse spatial-resolution data, which is larger than 30 m (Barbosa et al., 

1999; Dong et al., 2003) and those approaches are appropriate for larger scale areas such as a 

national area based on the large spatial resolution (Lu, 2006). Barbosa et al. (1999) obtained the 

uncertainty of 51% for the burned biomass and Dong et al. (2003) compared remote sensing and 

inventory estimates of biomass carbon pool using a t-statistic and the null hypothesis was 

rejected with p-value less than 0.05. In general, we can conclude that the spatial resolutions of 

each satellite are crucial factors to decide which scale of area will be best for the satellite images. 

Based on the comparisons of various satellite data used in biomass mapping, Landsat TM/ETM 

might be suitable for regional scale areas such as counties based on their medium spatial 

resolution of approximately 30-m pixel size (Lu, 2005).   

 

    In this research, we tried to estimate a specific trait of forest stands, the premature forest stage. 

Through this research we assessed if the estimation of such a specific trait can be achieved with 

acceptable accuracy results. We also assessed several image processing classifiers which are 

used for forest cover classification in order to determine which image processing classifier 
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among them will be more suitable in the estimation of premature forest stand in terms of 

accuracy results and its application. We compared the advantages and disadvantages of each 

image processing classifier for the estimation of young forest areas.   

 

3. Data and Materials 

 

    The combination of systematic and random sampling is fundamental to the design of the FIA 

program (Chojnacky, 1998). Each plot and subplot has various features including ownership, 

forest type, stand age, stand origin, site productivity class, site index and base age, land use class, 

basal area per area unit, treatment opportunity class, volume, growth, mortality and removals and 

expansion factors for area. FIA personnel also record multiple variables at the species level. 

These are DBH, total height, quality class, crown ratio and crown class, damage and its cause. 

The data we used in this research about the estimation of pre-merchantable trees we obtained 

from 2008 FIA permanent sample plot surveys of Georgia. 

 

    In the following study, we employed a Landsat Thematic Mapper (TM) 5 image acquired on 

17 July, 2011 with path 017 row 038 which are southeastern parts of Georgia. We used all seven 

TM band. The resolution of 6 120 m × 120 m was resampled to 30-m pixels after February 25, 

2010. Since we used only a single scene at a time and we were not grouping signatures from 2 or 

more scenes, no additional processing for Landsat imagery was conducted (Song et al., 2001). In 

addition, we made training data sets which are used as standard data sets for predicting land 

classes and also made reference data which are kind of ground truth data used for checking 

accuracy tests separately using time-series aerial photos and field inventory data. Specifically, 
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for MLC, training data sets of polygons and points depicting premature forests were obtained 

from FIA plot boundaries and verified recently acquired aerial photographs by visual inspecting.  

 

4. Methods 

 

4.1 Study area 

 

    We have two different ranges of study areas according to two objectives. To meet the first 

objective, to examine the amount of pre-merchantable trees using tools for the use of FIA data, 

159 counties of Georgia were selected as the study area. To meet the second objective, to classify 

premature forest stands, of which the age is 15 years or less using Landsat imagery of 

southeastern Georgia, the study area includes parts of 34 counties falling within the area covered 

by the Landsat image, namely, Appling, Atkinson, Bacon, Ben Hill, Berrien, Brantley, Bryan, 

Bulloch, Camden, Charlton, Chatham, Clinch, Coffee, Dodge, Effingham, Emanuel, Evans, 

Glynn, Irwin, Jeff Davis, Johnson, Lanier, Laurens, Liberty, Long, McIntosh, Montgomery, 

Pierce, Tattnall, Telfair, Toombs, Treutlen, Ware, Wheeler (Figure 3.1).   
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Figure 3. 1: Study area. For the first objective, the study area includes all counties of Georgia 

including white and gray and for the second objective, gray colored areas were studied.   

 

4.2 Estimation of the number and basal area of pre-merchantable trees on timberland of 

Georgia using FIA data 

 

    Pre-merchantable trees are defined as trees whose DBH is less than 5 inches (12.7 cm). Thus, 

in the estimation of pre-merchantable tree area using FIA data, DBH was utilized as the standard 

variable for classification. We used Forest Inventory Data Online (FIDO) (U.S. Forest Service, 
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2012) to generate tables of numbers of pre-merchantable trees in Georgia. In the use of FIDO, 

we can select the following information in a web-based application: 

 Each county of Georgia 

 The number of trees as attribute of interest 

 Filters for pre-merchantable trees – DBH less than five inches 

 Classification variables to be used for pages, rows and columns 

From the information listed above, FIDO produced tables of numbers of pre-merchantable trees 

with diameter classes by each county of Georgia. Employing the relevant regression equations 

we calculated basal area using the average DBH classes and number of trees in each county. 

 

    FIADB-Lite (Miles, 2008) can generate estimates of forest land area and tree biomass, 

volume, growth, removals, and mortality. With modification of queries for pre-merchantable 

stand areas in counties of Georgia, we can estimate various variables depending on the research 

objectives (Table 3.1). 
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Table 3.1: MS-access SQL query for pre-merchantable trees  

SELECT 

     ([COND].[STATECD]*1000+[COND].[COUNTYCD]) AS StCntyID,  

    Sum([EXPCURR]*[CONDPROP_UNADJ]*[ADJ_EXPCURR]) AS [Area of forestland-

acres] 

FROM  

    POP_EVAL_GRP INNER JOIN ((PLOTSNAP INNER JOIN COND ON 

PLOTSNAP.CN=COND.PLT_CN)  

 INNER JOIN TREE ON (COND.PLT_CN=TREE.PLT_CN) AND 

(COND.CONDID=TREE.CONDID)) ON POP_EVAL_GRP.CN=PLOTSNAP.EVAL_GRP_CN 

WHERE  

    ((([COND].[COND_STATUS_CD])=1)) and [POP_EVAL_GRP].[EVAL_GRP]=132008 and 

([tree].[dia] < 5) 

GROUP BY  

    ([COND].[STATECD]*1000+[COND].[COUNTYCD]); 

 

 

4.3 Estimation of premature forest stands using Landsat imagery  

 

    To estimate premature forest stands using Landsat imagery, age structure was used as a 

standard variable. We used 15 years or under as the standard age for premature forest stands, 

which can correspond to premature stands. Three classifiers, MLC, linear regression analysis, 
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and kNN, were employed to classify premature forest areas. Our premise is premature forest 

differs in spectral reflectance from mature forest and its background of grass and bare land.   

     

    A sufficient number of samples per the class of map are required for accuracy assessment to 

be a statistically valid representation. For an error matrix, a multinomial distribution can be 

employed to produce the suitable number of sample size (Congalton and Green, 2008). Based on 

the procedure for developing the proper sample size (Tortora, 1978), we calculated the 

appropriate sample size to be 126 with a desired precision of 0.10 and the sample size to be 87 

with a desired precision 0.12. Therefore, we assumed a sample size of 100 for each class, which 

means the desired precision should range from 0.12 to 0.10. Finally, for accuracy tests, we used 

100 reference data points which corresponds to premature forest areas and 100 additional 

reference data points for others.      

 

4.3.1 Maximum likelihood classification  

 

    MLC is one of the most powerful image processing classifiers and is commonly used for 

estimating forest parameters. The algorithm used by MLC is based on two principles of: (1) the 

cells in each class sample show normal distribution, (2) Bayes' theorem of decision making 

(Lillesand et al., 2008). Based on the assumption that a class sample is normally distributed, the 

mean vector and the covariance matrix can characterize a class. Then, the  MLC method 

calculates a probability for a given pixel from a specific class of training data set based upon 

mean and variance/covariance of pixel reflectance values (or digital numbers) and, then the 

algorithm of MLC assigns the pixel to the class of highest probability (Richards, 1999). Here, I 
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classified the Landsat image into 6 classes, which are premature forest, mature forest, bare land, 

grass, water, and urban as training data, which are standard land classes. However, the accuracy 

assessment involves only 2 classes (premature forest, and the aggregation of all others). MLC 

was conducted using ArcGIS.  

 

4.3.2 Regression analysis 

 

    Ordinary Least Squares (OLS) regression also was used to classify premature forest-stand 

areas. The OLS minimizes the sum of squared differences of the observed data value from the 

estimated. The general equation becomes: 

G = α + βi (Xi) + ε                                                                                         Equation 1 

where, G is dependent variable which is stand age, Xi is an independent variable for the 

reflectance value of Landsat Bands 1 to 7 (i) at each grid cell within a Landsat image,  βi is a 

coefficient for each Landsat band and ε is residual error. The Zonal Statistics tool in ArcGIS was 

used to calculate mean spectral values of each band in the Landsat imagery for each stand 

(polygon) having the same age structure.  

 

4.3.3. k- Nearest Neighbor 

 

    Finally, the kNN method, with training datasets representing age structure, was applied to the 

Landsat imagery. In the same method as regression analysis, I used the Zonal Statistics in 

ArcGIS tool to calculate mean spectral values of each band of the Landsat imagery. To impute 

the kNN method, I used “yaImpute” as the kNN algorithm (Crookston and Finley, 2008). In the 



59 

 

 

yaImpute program, the Y variable is the stand age and the X variables are associated with the 

Landsat imagery. Therefore, the training dataset is composed of Landsat pixels with 

corresponding stand ages, and target observations become Landsat pixels without an age 

assigned. As the method for finding nearest neighbor, I used randomForest (Crookston and 

Finley, 2008), which uses no weighted Euclidean distance among the various options, and k was 

set as 1 in our research.   

 

4.3.4 Method for accuracy assessment 

 

    For assessing the accuracy of classifications results, we developed an error matrix (confusion 

matrix or a contingency table) which is the most widely and commonly used (Lillesand et al., 

2008; Congalton and Green, 2008). Based on the error matrix, we calculated the overall accuracy 

by dividing the sum of the number of pixels that were correctly classified by the total number of 

samples (Reference data). We also derived the percentage correct allocation for premature stands 

and mature stands from the user’s and producer’s points of view (Story and Congalton, 1986). 

The producer’s accuracy refers to the probability that a certain land-cover of an area on the 

ground is classified as such and indicates possible errors of omission, while the user’s accuracy 

indicates the probability that a pixel labeled as a certain land-cover class in the map is really this 

class and indicates errors of commission. Additionally we utilized the kappa coefficient (κ) of 

agreement as a measure of classification confidence because it indicates agreement beyond 

chance agreement (Rosenfield and Fitzpatrick-Lins, 1986).  
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    The equations for the kappa analysis are presented here based on the procedures described in 

Congalton and Green (2008). Let us assume we have n samples in k
2 

cells, and each sample is 

simultaneously assigned to one of k categories in both the map and the reference data set. Let nij 

represent the sample number in category i for the map and category j for the reference data set. 

Then, let 

         

 

   

 

be the samples numbers classified into category i in the classification by remote sensing imagery, 

and  

         

 

   

 

be the samples numbers classified into category j in the reference data set. Then, overall 

accuracy can be computed like this: 

                  
    
 
   

 
 

Producer’s accuracy can be computed as follows: 

                       
   

   
 

and the user’s accuracy can be computed as follows: 

                   
   
   

 

In addition, the kappa coefficient (κ) can be calculated by 
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5. Results and Discussion 

 

5.1 Estimation of pre-merchantable trees in each county of Georgia using FIA 

 

    Using the FIDO and FIA data method proposed in section 4.2, we estimated the number of 

pre-merchantable trees by diameter classes, the number of all pre-merchantable trees, and the 

number of all trees. With those values we calculated the number of pre-merchantable trees per 

county area and the proportion of pre-merchantable trees to all trees on timberland in each 

county of Georgia (Table 3.2). In addition, with relevant equations regarding the relationship 

between DBH and basal area, we calculated the basal area of pre-merchantable trees by different 

DBH classes, total basal area of pre-merchantable trees, and total basal area of all trees. With 

those values, we calculated the basal area of pre-merchantable trees per county area and the 

percentage of pre-merchantable trees on timberland in each county of Georgia (Table 3.2, Figure 

3.2).  

 

    The FIDO estimates indicated Clinch County has the highest number of pre-merchantable 

trees, and the percentage of pre-merchantable trees ranges from 50% to 89% with an average 

76%.  Webster County showed highest percentage of pre-merchantable trees against all number 

of trees. The percentage of basal area of pre-merchantable trees ranges from 7.6% to 37% against 

all trees’ basal area with an average of 21% on timberland in each county. Stewart County 

showed the highest proportion of pre-merchantable tree basal area among all Georgia counties. 

Seminole County had the lowest value of pre-merchantable tree basal area.   

 



62 

 

 

 

 

Figure 3.2:  Pre-merchantable trees in counties of Georgia 
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Table 3.2: Number of pre-merchantable trees in selected counties of Georgia  

County 
Number of trees by 

diameter classifications 

Total 

number of 

pre-

merchantable 

trees 

Total 

number of 

all trees 

% of number of 

pre-

merchantable 

trees against 

number of all 

trees   1.0-2.9 in  3.0-4.9 in  

Appling  78,732,473 26,117,418 104,849,891 146,604,980 72 

Atkinson 43,200,057 17,100,519 60,300,576 83,909,689 72 

Bacon 33,398,882 21,641,749 55,040,631 81,697,884 67 

Ben Hill 27,889,056 18,961,622 46,850,678 71,082,944 66 

Berrien  107,612,574 26,493,379 134,105,953 164,572,981 81 

Bleckley  33,844,304 9,429,931 43,274,235 56,535,354 77 

Bryan  55,456,610 23,460,625 78,917,235 115,227,090 68 

Bulloch  124,304,467 32,833,902 157,138,369 210,882,587 75 

Camden 106,823,729 36,531,255 143,354,984 198,989,944 72 

Charlton  100,038,850 47,233,166 147,272,016 203,098,614 73 

Chatham  29,363,032 14,003,908 43,366,940 60,795,379 71 

Clinch  160,427,737 85,908,689 246,336,426 342,452,999 72 

Coffee  90,668,408 30,230,750 120,899,158 158,099,360 76 

Dodge  94,626,778 28,382,073 123,008,851 161,154,705 76 

Emanuel  139,860,274 34,266,600 174,126,874 230,907,947 75 

Evans  31,460,805 6,716,484 38,177,289 51,439,985 74 

Glynn  53,257,516 19,846,714 73,104,230 95,680,328 76 

Irwin  41,999,883 9,776,132 51,776,015 65,784,736 79 

Jeff Davis  58,157,110 22,557,147 80,714,257 111,689,082 72 

Johnson  46,825,889 9,468,638 56,294,527 79,376,895 71 

Lanier  38,433,749 16,827,458 55,261,207 68,064,791 81 

Laurens  155,595,789 45,749,569 201,345,358 260,731,212 77 

Liberty  76,117,400 18,045,718 94,163,118 129,062,960 73 

Long  114,497,332 28,881,493 143,378,825 180,897,274 79 

McIntosh 73,080,390 16,238,762 89,319,152 118,601,562 75 

Montgomery  55,516,211 18,009,957 73,526,168 92,650,910 79 

Pierce  39,170,167 20,280,572 59,450,739 80,654,426 74 

Tattnall  59,076,482 31,972,145 91,048,627 125,671,650 72 

Telfair  140,614,750 40,133,246 180,747,996 217,852,224 83 

Toombs  58,642,623 15,323,364 73,965,987 96,043,852 77 

Treutlen  29,720,783 8,905,644 38,626,427 54,878,671 70 

Ware  171,371,430 72,967,485 244,338,915 307,585,157 79 

Wheeler  45,102,375 14,407,966 59,510,341 80,914,489 74 
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Table 3.3. Basal area (BA) (ft
2
) of pre-merchantable trees in selected counties of Georgia 

County 
BA by tree diameter 

classification  

Total BA of 

pre-

merchantable 

trees 

Total BA 

of all trees 

% of the BA 

of pre-

merchantable 

trees against 

the BA of all 

trees    1.0-2.9 in  3.0-4.9 in  

Appling  1,717,628 2,279,110 3,996,738 21,868,160 18 

Atkinson 942,452 1,492,260 2,434,712 10,078,836 24 

Bacon 728,630 1,888,546 2,617,176 12,262,848 21 

Ben Hill 608,428 1,654,667 2,263,095 10,706,077 21 

Berrien  2,347,676 2,311,918 4,659,594 15,942,268 29 

Bleckley  738,347 822,893 1,561,241 7,481,654 21 

Bryan  1,209,841 2,047,268 3,257,109 20,808,813 16 

Bulloch  2,711,826 2,865,218 5,577,044 26,683,626 21 

Camden 2,330,466 3,187,863 5,518,330 27,969,625 20 

Charlton  2,182,448 4,121,755 6,304,203 25,810,504 24 

Chatham  640,584 1,222,037 1,862,621 11,921,612 16 

Clinch  3,499,892 7,496,736 10,996,627 41,457,065 27 

Coffee  1,978,022 2,638,056 4,616,078 19,751,422 23 

Dodge  2,064,378 2,476,733 4,541,111 20,708,163 22 

Emanuel  3,051,192 2,990,241 6,041,432 29,331,847 21 

Evans  686,349 586,107 1,272,456 8,707,411 15 

Glynn  1,161,866 1,731,904 2,893,770 12,273,257 24 

Irwin  916,269 853,104 1,769,374 9,273,550 19 

Jeff Davis  1,268,756 1,968,427 3,237,182 14,643,467 22 

Johnson  1,021,554 826,271 1,847,825 10,883,032 17 

Lanier  838,471 1,468,431 2,306,902 7,732,909 30 

Laurens  3,394,478 3,992,290 7,386,768 31,980,782 23 

Liberty  1,660,577 1,574,742 3,235,319 22,061,455 15 

Long  2,497,874 2,520,315 5,018,188 21,390,239 23 

McIntosh 1,594,322 1,417,059 3,011,381 15,022,435 20 

Montgomery  1,211,142 1,571,621 2,782,763 11,207,396 25 

Pierce  854,536 1,769,764 2,624,300 11,387,487 23 

Tattnall  1,288,813 2,790,017 4,078,830 17,843,844 23 

Telfair  3,067,651 3,502,188 6,569,839 21,834,178 30 

Toombs  1,279,347 1,337,178 2,616,525 12,112,052 22 

Treutlen  648,389 777,142 1,425,531 9,096,455 16 

Ware  3,738,639 6,367,435 10,106,074 30,635,798 33 

Wheeler  983,953 1,257,297 2,241,250 14,009,879 16 

 



65 

 

 

    The results from FIDO do not show big differences compared to FIADB-Lite, but we detected 

small differences between the values from U.S. Forest Service FIDO and FIADB-Lite and it is 

inferred that FIDO has more recently updated data than FIADB-Lite. Therefore, if data are 

detailed enough for the purpose of this research project, we can use FIDO to easily access FIA 

data. The percentage of the number of pre-merchantable trees was relative higher than the 

percentage of basal area of pre-merchantable trees in every county of Georgia. We inferred that 

since pre-merchantable trees are young and have small DBHs, the proportion of basal area of 

pre-merchantable trees is relatively lower than the proportion of the number of pre-merchantable 

trees to all trees. This is reasonable in that young plantations have lots of trees, but their stand 

basal area is not relatively high.  

 

5.2 Estimation of premature forest area using MLC, regression analysis, and kNN in 

southeastern Georgia 

 

    MLC was applied to the Landsat images using ArcGIS and 6 classes (premature forest, mature 

forest, bare land, grass, water, and urban) were developed (Figure 3.3). Based on the classified 

image, an error matrix for premature forest stands and the other areas was developed (Table 3.4). 

Among 100 reference data of premature stands area, 69 points were classified into premature 

stands and 31 points were misclassified. Among 31 misclassified points, 22 points were 

misclassified as bare land and 8 points were misclassified as grass. Thus, premature stands had a 

69% producer’s accuracy and a 92% user’s accuracy. Among 100 reference data of other areas, 

only 6 points were misclassified as premature forest area. Thus, other areas except premature 
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stands area showed a 94% producer’s accuracy and a 75% user’s accuracy. The overall accuracy 

was 82 % and the corresponding kappa coefficient was 0.63.   

 

        

Figure 3.3: Premature forest area and mature forest area derived from Maximum Likelihood 

Classification  
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Table 3.4: Error matrix for premature forest stands area and the others by MLC 

 

Classification 

Reference data   

Premature 

forest Others Row Total   

Premature forest 69 6 75 

 Others 31 94 125 

 Column Total 100 100 200 

 

     Producer's accuracy 

  

User's accuracy 

Premature forest 69 

 

Premature 

forest 92 

Others 94   Others 75 

 

    In the estimation of premature forest areas, the error matrices indicate that the overall accuracy 

of MLC performed relatively well. Although, if we investigate some problems in it most errors 

came from confusion with bare land and some errors came from grass. Foody et al. (1996) found 

that a large proportion of the errors using MLC were derived from misallocations between 

neighboring classes and they noticed that 83% of the observed errors in object-based 

classifications were between neighboring classes. Although our research is based on pixel-based 

classifications, bare lands and grass areas can be regarded as neighboring classes to premature 

stands in that it could be previous stages of premature stand, so it seems to be that some errors 

came from the confusion from such neighboring classes. We infer that in the very young forest 

areas the information of spectral reflectance includes the signal of soil of grass to young trees. 
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Such signals mixed with spectral reflectance of soil or grass in premature forest areas seem to be 

less distinctive from bare lands or grass. Even when we initially locate the bare land, grass and 

premature forest areas as training data, it is not easy to classify the classes using only the time-

series aerial photos.  

 

    One notable point is there is only one reference point of premature forest area that was 

misclassified as mature forest area using MLC. When we created training data of premature 

forest area, we tried to select obvious premature forest, which means relatively young stands 

even among premature forest areas. Thus, it seems that such misallocation of premature forest 

area reference points as mature forest area was minimized. If we can create training data more 

evenly ranging from stand year 1 to 14, we realize some errors with premature forest areas being 

misclassified as forest. One more point to be considered is the acquired time gap of almost one 

year between the date when the Landsat imagery was taken and the aerial photos that were used 

to classify premature areas. Since bare land and grass are temporally dynamic classes, such a 

time gap seems to induce the classification errors between bare land (or grass) and premature 

forest area. In the classification for other areas except premature forest areas, only 6 reference 

data points of other areas were misclassified into premature stands area, which makes producer’s 

accuracy for other classes relatively high, resulting in the overall accuracy of MLC relatively 

high although the producer’s accuracy for premature stands was not so high. This also makes 

user’s accuracy for premature forest areas high, which means it is a credible classification map 

for premature forest areas in perspective of map users. 
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    Although many reference points of other classes (94) were classified correctly, the user’s 

accuracy for other areas was not as high due to misclassification in premature forest areas 

reference points as other areas. If one has interests in accuracy for classification regarding both 

premature forest stands and other classes, MLC might be a most suitable option. Foody et al. 

(1996) found dividing the young forests by the successional pathway increased the accuracy of 

classification. Foody et al. (1996) also found that the young forest group showed diversity in its 

composition and spectral response. Such various traits in young forest areas appear to make the 

range of spectral reflectance’s signals diverse and influence misallocations in our error matrix. 

Thus, more detail classification in age ranges, succesional pathway, and general species will 

make training datasets more distinctive and helpful for acquiring higher accuracy results in 

further research. It is likely that the most crucial factor influencing the algorithm used for MLC 

is creating accurate and distinctive training data that cover the entire range of spectral reflectance 

of a class. When we have such training data, the classification results may be more credible and 

can be employed for making an effective forest management scheme. MLC seems to be a useful 

method when used with remotely sensed imagery to search for young forest areas.  

 

    Regression analysis has been used most commonly with field inventory and satellite imagery 

for the estimation of forest stand-level characteristics based on for less data than other methods 

such as kNN (Kim et al., 2012). We used the statistical software R and the result of regression 

analysis was presented in Table 3.5.  
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Table 3.5: Parameter estimates for regression model 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 80.29091 35.77081 2.245 0.0486* 

band1 1.75948 0.99215 1.773 0.1066 

band2 -0.75192 3.31755 -0.227 0.8253 

band3 -3.10559 2.10043 -1.479 0.1701 

band4 -0.77636 0.3128 -2.482 0.0324* 

band5 0.67719 0.29289 2.312 0.0434* 

band6 -0.50899 0.25319 -2.01 0.0721. 

band7 -0.04313 0.02517 -1.713 0.1174 

     
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 2.22 on 10 degrees of freedom 

Multiple R-squared: 0.9019,     Adjusted R-squared: 0.8332  

F-statistic: 13.13 on 7 and 10 DF,  p-value: 0.0002588  

 

Therefore, the multiple regression equation that was developed to estimate premature forest areas 

was:  

G = 1.76 X1 - 0.75 X2 – 3.11 X3 – 0.78 X4 - 0.68 X5 – 0.51 X6 – 0.04 X7 

where, G = Stand age and Xi = ith TM band of Landsat imagery 

The results of stand age which are applied to Landsat imagery are presented in Figure 3.4. Based 

on these results, we developed an error matrix for the estimation of premature forest area (Table 

3.6). Among the 100 reference data points corresponding to premature forest areas, only 54 

reference points were correctly classified into premature forests area, and 46 points were 
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wrongly classified into mature forest based on the classified area by regression analysis. 

Therefore, this process had a 54% producer’s accuracy and a 57% user’s accuracy for premature 

forests. Among the 100 reference data points corresponding to other areas, 40 points were 

misclassified as premature forests and 60 points were classified correctly as other areas. Thus, 

the other areas showed a 60% producer’s accuracy and a 57% user’s accuracy. The overall 

accuracy of this classification process was only 57%. We also had a kappa coefficient 0.14, 

which suggests a poor agreement. 

 

 

Figure 3.4: Premature forest area derived from regression analysis  
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Table 3.6: Error matrix for premature forest stand area and the other areas by regression analysis 

Classification 

Reference data   

Premature 

area Others Row Total   

Premature 

forest 54 40 94 

 Others 46 60 106 

 Column Total 100 100 200 

 

     Producer's accuracy 

 

User's accuracy 

Premature 

forest 54 

 

Premature 

forest 57 

Others 60   Others 57 

 

    Although the relationship developed was statistically significant with an R
2
 of 0.9, the 

regression analysis did not produce suitable accuracy results from the point of view of the error 

matrix (Table 3.6). One issue to note is that the misclassified data in reference points of 

premature forest areas involved many points that ranged in forest age from 16 to 25, which are 

very close to the threshold year 15. It means that such errors which are observed are located near 

a border line of premature stands and those errors are not so severe. Such misallocations near the 

boundary line between premature and mature forest areas seem to make each producer’s 

accuracy relatively low. Therefore, each user’s accuracy for premature forest areas and others 

was so low, which means the classified map of premature areas and other areas are not so much 

credible for users.  
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    In using regression analysis one of the problems related to misallocations near the boundary 

year 15, between premature and mature forests, can be derived from the fact that we did not have 

enough training data to cover the both entire Landsat imagery and the entire time period for 

premature forest areas, although regression analysis can be run with a limited number of training 

data. The training data sets were mainly located in northern areas of Landsat imagery. If we can 

have enough training data we can represent the entire Landsat image which is used for our 

research and cover the entire time period of premature forest, the accuracy results might be 

enhanced. 

     

    Also, it is likely that linear regression analysis is not suitable for classifying young forest areas 

because their relationship between premature age and reflectance seems to be less linear. Brown 

and Lugo (1990) researched the relationship between biomass and forest age and found that there 

is a rapid increase in biomass in young forest areas. Such rapid increase in young forest areas 

appears to make spectral responses more varied. Consequently, it can result in slightly increased 

coefficient values, making a fitted line more upward. Thus, non-linear regression analysis might 

be considered to test if it is more suitable for the estimation of premature forest areas. Because 

we tried to use major and general techniques which were used to estimate forest structure, we 

employed a linear regression. However, in our case to classify premature forest area and mature 

forest area, logistic regression might be considered, and it will be a next further step which is 

essentially required.  
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    In addition, we only made regression analysis between each band of Landsat imagery and age 

structure. Lu et al. (2004) showed that not only single-band but also some linear transformed 

indices are strongly correlated with forest stand parameters when using Pearson’s correlation 

coefficients. They also found the vegetation indices with TM5 showed relatively high correlation 

with forest parameters. Thus, it is strongly suggested that a diverse combination of selected 

bands be tested, and we might find better band combinations to produce more accurate results for 

the estimation of forest stand age. Although it did not produce high accuracy results, we cannot 

conclude that linear regression analysis is not suitable for estimating all ranges of age structures 

because we had a statistical result which is significant and strong (R
2 

equals 0.9), but it seems 

that linear regression can be not suitable for classifying just young forest areas.    

 

    The results for estimating premature forest stands using the kNN method are presented in 

Figure 3.5. Among the 100 reference points corresponding to premature forest stands areas, 74 

points were classified correctly and only 26 points were misclassified. For the 100 reference 

points corresponding to other areas, 48 points were classified into the correct category. 

Therefore, the overall accuracy was 61% and the kappa coefficient was 0.22, which means that 

the kNN method showed a poor accuracy result.  We had user’s accuracy 59% area and 

producer’s accuracy 74% for premature stands area. We can see that 41% of premature stands 

area reference data was misclassified and 26% of samples which is classified as premature stands 

area were wrong. It is also shown that other areas had 48% producer’s accuracy and 65% user’s 

accuracy.   
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Figure 3.5: Premature stand area derived from k-nearest neighbor method 
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Table 3.7: Error matrix for premature forest stand area and the other areas by kNN method  

Classification 

Reference data   

Premature 

forest Others Raw Total   

Premature 

forest 74 52 126 

 Others 26 48 74 

 Column Total 100 100 200 

 

     Producer's accuracy 

 

User's accuracy 

Premature 

forest 74 

 

Premature 

forest 59 

Others 48   Others 65 

    

    Using kNN we had a higher value in producer’s accuracy for premature forest areas than other 

image processing classifiers. However, relatively other areas did not show a high value of 

producer’s accuracy (48%). The user’s accuracy for other areas is higher than the user’s accuracy 

for premature forest areas. Basically, we used a training dataset ranging from 6 to 15 years for 

premature stand area and 16 to 30 years for other areas, which means the range of training 

dataset for other areas is relatively limited considering the whole age range of mature forest areas 

is much wider than that of premature forest area. It is likely that such limited ranges of training 

data in mature forest areas possibly made some reference plots of mature forest areas 

misclassified as premature forest stand areas, causing user’s accuracy for premature forest areas 

and producer’s accuracy for other areas to be relatively low. This matter seems to make the 
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overall accuracy for kNN (61%) relatively low. For efficient non-parametric mapping, the 

availability of sufficient plot samples is essential over a large area (Tokola  et al., 1996; 

Labrecque et al., 2006). Although the kNN method creates reasonable estimation results for 

premature forest areas, here it is confirmed that without enough plot samples in spatial extent of 

Landsat imagery, it is not possible to gain a high-level overall accuracy in forest stand-level 

variables. In conclusion, a relatively limited range of training data sets in our research seemed to 

be the cause of our classification errors in table 3.7.  

     

    The classification scheme also can be an issue to be considered here. The stand age 15, which 

works as a standard age to decide mature or premature forest areas, should be reconsidered as a 

correct number because trees can grow in different rates of speed and so some trees can be still 

premature after stand year 15. It means that until the age of a stand reaches about 20, the 

variation of biophysical structures such as biomass is large. Then, it notifies that around stand 

age 15 some trees are mature but some still premature. Thus, training data sets of mature forest 

areas and premature forest areas cannot be separated clearly so that reference data near the age 

15 may indicate pixels can be misclassified by the kNN image processing classifier, and we can 

research further which age is more suitable for a standard age to decide premature or mature 

forest areas. In addition, we did not conduct various types of kNN methods with different values 

for weight matrix for euclidean distance to test a simple and standard method of each classifier. 

Presumably, testing diverse values for weight matrix for Euclidean distance can produce better 

accuracy results. However, generally the kNN method was regarded as one of the suitable 

methods for estimating premature forest areas among all the methods we tested in terms of 

overall accuracy, effectiveness in its uses and versatility.  
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    In summary, overall accuracy and the kappa coefficients for each image processing classifier 

are presented in Table 3.8. Overall accuracy of MLC is 82% and the highest among all of them. 

The method of kNN followed with the overall accuracy 61% and the overall accuracy of 

regression analysis is 57%, which is the lowest among all of them. The kappa coefficient of 

MLC is 0.63 and that of kNN becomes 0.22. The kappa coefficient of regression analysis 

becomes 0.14.  

Table 3.8: Overall accuracy and the kappa coefficients for each image processing classifier  

 

Method 

Overall 

accuracy (%) 

The kappa 

coefficient 

Maximum likelihood Classification 82 0.63 

Regression analysis 57 0.14 

k-Nearest Neighbors  61 0.22 

 

    Error (or confusion) matrix is used the most widely for accuracy assessment in land cover 

classification (Foody, 2002). Overall accuracy shows us relative effectiveness of each method 

and represents the accuracy of the entire product. In MLC, there are many correctly classified 

reference points in both premature stands and mature stands and that made the overall accuracy 

highest among them. The kNN method also shows relatively high value of overall accuracy. 

However, considering MLC the number of reference data that are correctly classified as other 

areas was relatively small in the kNN method. Thus, we can see that in MLC the possibility of 

other areas (except premature areas) being misclassified as premature forest stand is not so high, 
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but in the kNN method it is relatively high. As for the results for regression analysis, the overall 

accuracy was relatively low, and we can see that we do not have enough correctly classified 

premature stands.  

 

    Basically the overall accuracy does not show the accuracy of individual categories (Story and 

Congalton, 1986). Producer’s accuracy and user’s accuracy indicate such accuracy of individual 

categories, and interpretation of each value is important.  Producer’s accuracy shows us how well 

a specific area can be mapped, and user’s accuracy indicates how well the map represents what is 

really on the ground (Story and Congalton, 1986). In terms of producer’s accuracy for premature 

forest areas, the kNN method showed the highest value, 74%, and MLC the second with the 

value 69%. Thus, kNN will map premature forest areas more correctly than other methods as a 

producer. Regarding user’s accuracy for premature forest area, MLC was found to be the first in 

ranking among the three methods, followed by kNN. Thus, for users, a classified map using 

MLC among the three methods is more credible than the others.  

 

    Although the overall accuracy with producer’s and user’s accuracy provides valuable 

information, it can be criticized in its uses because in some cases all entities are classified into 

the correct category by chance (Foody, 2002; Congalton, 1991). Foody et al. (2002) noted it is 

likely that there is no a single standardized method of accuracy assessment and reporting. The 

kappa coefficient can compensate for this defect in that an estimate of kappa adds the off-

diagonal elements in the error matrix indirectly when it is compared with the overall accuracy 

that only incorporates the major diagonal elements (Congalton, 1991). Therefore, the amount of 

errors in an error matrix decides the degree of agreement in the two different accuracy tests, 
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which means that as the amount of errors decreases, the results of two different accuracy tests 

agree more with each other. The kappa coefficient of MLC 0.63 can be interpreted as a moderate 

agreement and that of kNN, 0.22, and that of regression analysis, 0.14, can be regarded as poor 

agreement. The accuracy rankings are consistent in both overall accuracy and the kappa 

coefficient. Although there are some errors in the matrix, it was not at a level that warranted 

changing the ranking of accuracy in the overall accuracy and the kappa coefficient method.  

 

    Young forest areas are characterized as lower heights and smaller stems than old forest areas. 

Also, it is likely that the amounts of chlorophyll in young forest areas are less than mature forests 

areas because young forest areas have a relatively smaller number of leaves, and the size of 

leaves are smaller than those of mature forest areas based on the condition that the number of 

trees is the same in stands of the same size. Therefore, LiDAR data will be beneficial to estimate 

young forest areas in that LiDAR data will provide height data in detail. In addition, as we infer 

based on the results of MLC, it is likely that soils between small trees are exposed to Landsat 

imagery more than mature forest areas. Thus, young forest areas probably can show spectral 

signatures including the mixtures of soil, stems, grass, and relatively less chlorophylls of young 

trees while mature forest areas show spectral signatures of relatively more chlorophyll of mature 

trees. Thus, it seems that satellite imagery having smaller spatial resolution will have an 

enhanced ability to capture such spectral signatures of mixtures of soil, stems, grass and the 

characteristics of young trees.  

 

    In addition, because in the edge of premature stand areas can be mixed with other areas like 

mature areas, a smaller pixel size can be beneficial in that small size pixels can minimize such 
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error coming from the edges of premature forest areas. Similarly, mature forest areas having 

small isolated premature forest areas within 30 m × 30 m in size will cause some confusion with 

the spectral signature of other mixed areas using Landsat imagery. Thus, a forest stand in 30 m × 

30 m in size which is classified as mature using Landsat imagery can be divided into some 

premature forest areas and some mature areas by any satellite imagery having smaller spatial 

resolution. However, the satellite imagery having smaller spatial resolutions than Landsat 

imagery can take probably more time and costs to cover the same extent of study areas. 

Therefore, the selection of suitable satellite imagery in terms of spatial resolution must be 

conducted carefully based on the extent of the study area, forest stand level characteristics, 

research time, and budget. In addition, because Landsat imagery only provides a horizontal 

perspective of the landscape, ancillary data describing a vertical image like LiDAR data will be 

more helpful (Kim et al., 2012). Especially in forest areas of mixed stands, ancillary data like 

broad-scale land classes, inventory plots, and LiDAR will be more beneficial in enhancing the 

results.  

 

    Boyed et al. (2003) asserted that each image classification has its limitation, and we need to 

select one of them according to the application and the environment. To have better accuracy, 

diverse image processing classifiers such as decision tree, neural network, and kriging can be 

considered to be tested especially in the estimation of age structure. We might have insight into 

which image processing classifiers might be more suitable for the estimation of forest age 

structures according to the geographic conditions and applications. Further studies in each 

method used in this research are essentially required to overcome the previously discussed 

limitations and can possibly offer a better way to enhance the efficiency or accuracy of each 
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image processing classifier. Although the error matrix has been used the most widely and 

suitably for accuracy assessment, using the error matrix without any doubt can be problematic in 

that the basic assumptions for accuracy assessment sometimes are not satisfied (Foody, 2002). 

Congalton (1991) suggested various perspectives for further considerations such as ground data 

collection, spatial autocorrelation, sample size, and sampling scheme when performing an 

accuracy assessment. Such considerations are strongly suggested to increase assessment 

accuracy in land cover classification.  

 

    As the limitation in our research, we did not consider the stand density. In the case of low 

density of premature forest stand, it would not be easy to be represented as premature forest 

stand. Such premature stand in low density can be confused as the bare land or grass land in the 

interpretation of spectral bands of Landsat images. We think that some premature forest stands 

were misclassified because of this low stand density matter. In addition, according to stand 

density of premature stands, the signals of each band of Landsat images can be influential. Thus, 

stand density might be carefully considered as training data. We did not categorized tree species 

in this research. Labrecque et al. (2006) found out that the mixed stand class showed the largest 

RMSE values than the other species in the estimation of biomass. Lu et al. (2004) also found that 

tree species composition influenced vegetation reflectance. Therefore, even general classification 

of species will be beneficial to enhance the accuracy and compare strong and weak points of 

each method. In this research, we just used age structure as stand-level characteristics because 

basically we tried to estimate young forest area. However, it is suggested to test if other stand-

level characteristics such as biomass or height can be more usefully employed to classify young 

forest area in combination with Landsat imagery. In this research we did not consider topography 
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in our study areas although we can misunderstand the signals of Landsat imagery by distortion 

that came from topography (Zheng et al., 2007). After carefully dealing with the influence on 

Landsat imagery by topography, it is possible to minimize some errors and have better 

classification results.  

 

    Landsat imagery has been practical in the estimation of forest stand-level variables with the 

spectral bands and their combinations in terms of overall accuracy (Cohen et al., 1995; 

Steininger, 2000; Kim et al., 2012). Particularly, Southworth (2004) analyzed Landsat TM band 

6 for land cover classification in the state of Yucaton, Mexico. They found that land cover 

classes are related strongly to band six calculated black body temperatures. Given such research, 

Landsat TM thermal band 6 is also included in our research and it is required to test further if 

only Landsat TM band 6 can be used effectively for the discrimination of young forest areas. 

Vegetation index such as NDVI or EVI seem to improve our results in that NDVI is sensitive to 

chlorophyll so can assess whether the observed image has live green vegetation or not, and EVI 

is designed as an optimized index for vegetation signal (Huete et al., 1997; Zheng et al., 2007).  

 

    Here, we intended to describe very standard methods in each classifier to compare the 

advantages and disadvantages in Landsat data applications for the use of Landsat imagery to 

estimate young forest areas rather than doing our best to enhance the accuracy results in each 

classifier. As further research, given classifiers which seem to be suitable based on the results of 

accuracy, we can investigate how the accuracy can be increased with any possible ways and data 

including diverse satellite combinations, various combinations of spectral bands in used satellite 

data, and diverse approaches in the uses of classifiers. In this research, although there is scope 
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that can be enhanced, it is confirmed that Landsat imagery in combination with some spatial 

analysis image processing classifiers such as MLC can produce reasonable results of estimating 

young forest areas. However, still accuracy must be enhanced (especially in the small pixel scale 

research) and model transference between different geographic areas remains a challenge.    

 

6. Conclusion 

 

    Tools for the use of FIA data were used to estimate the number of pre-merchantable trees in 

Georgia. Among the tools, the results from FIDO showed similar results compared to FIADB-

Lite. FIDO is a web-based program for the use of FIA data and easily runs without the user 

having to understand the underlying data structures and can produce very correct and detailed 

forest stand results. By the results from FIDO, we come to know that the county of Clinch has 

the highest number of pre-merchantable trees and Webster county showed the highest percentage 

of pre-merchantable trees against all number of trees.  

 

     To estimate premature forest stands whose age is 15 or less, we used three image processing 

classifiers: MLC, regression analysis, and kNN. In terms of overall accuracy and the kappa 

coefficients, MLC produced the most accurate results for the estimation of premature forest 

stands and the kNN method ranked second, and the results of regression analysis were the least 

accurate. It is proven that Landsat imagery in combination with image processing classifier MLC 

provide reasonable and credible results for the estimation of premature forest stand area. In MLC, 

more representative training data for each class seems to be essential for better accuracy results, 

and in the kNN method, plot samples as training data covering the entire study area are strongly 
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required to enhance accuracy results. Also, the kNN classification scheme must be reconsidered. 

Linear regression analysis did not produce reasonable accuracy results, thus different types of 

regression analysis such as logistic regression or non-linear regression analysis might be 

considered. Each of the classifiers used in this research can be researched more deeply in diverse 

ways to enhance accuracy results. For example, in MLC we can think about a different 

classification scheme for each class, and in regression analsysis, non-linear regression or logistic 

regression can be considered. For kNN, various k values can be tested to determine which value 

might be suitable using relevant methods. Other satellite data with especially smaller spatial 

resolution than Landsat imagery and various image processing classifiers that are increasingly 

used such as krigging and neural networks can be tested to increase the efficiency and accuracy 

results for estimation of forest age structure.          

 

Reference  

 

Barbosa, P.M., Stroppiana, D., Grégoire, J.-M., Cardoso Pereira, J.M., 1999. An assessment of 

vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric 

emissions. Global Biogeochem. Cycles 13, 933-950. 

Bickford, C.A., 1952. The sampling design used in the forest survey of the northeast. Journal of 

Forestry 50, 290-293. 

Boyd, D.S., Foody, G.M., Ripple, W.J., 2002. Evaluation of approaches for forest cover 

estimation in the Pacific Northwest, USA, using remote sensing. Applied Geography 22, 

375-392. 

Brown, L., Chen, J.M., Leblanc, S.G., Cihlar, J., 2000. A shortwave infrared modification to the 



86 

 

 

simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote 

Sensing of Environment 71, 16-25. 

Brown, S., Lugo, A. E., 1990. Tropical secondary forests. Journal of Tropical Ecology 6, 1-32. 

Chen, X.F., Chen, J.M., An, S.Q., Ju, W.M., 2007. Effects of topography on simulated net 

primary productivity at landscape scale. Journal of Environmental Management 85, 585-596. 

Chojnacky, D.C., 1998. Double sampling for stratification: a forest inventory application in the 

InteriorWest. USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah, USA, 

Research Paper RMRS-RP-7.  

Cohen, W.B., Spies, T.A., Fiorella, M., 1995. Estimating the age and structure of forests in a 

multi-ownership landscape of western oregon, U.S.A. International Journal of Remote 

Sensing 16, 721-746. 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed 

data. Remote Sensing of Environment 37, 35-46. 

Congalton, R.G., Green, K., 2008. Assessing the accuracy of remotely sensed data: principle and 

practices. CRC Press, Boca Ralton, FL.  

Crookston, N.L., Finley, A., 2008. yaImpute: An R package for k-NN imputation. Journal of 

Statistical Software. http://forest.moscowfsl.wsu.edu/gems/yaImputePaper.pdf. Package 

URL: http://cran.r-project.org/src/contrib/Descriptions/yaImpute.html. 

Dong, J., Kaufmann, R.K., Myneni, R.B., Tucker, C.J., Kauppi, P.E., Liski, J., Buermann, W., 

Alexeyev, V., Hughes, M.K., 2003. Remote sensing estimates of boreal and temperate forest 

woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment 84, 393-

410. 

Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of 



87 

 

 

Environment 80, 185-201. 

Foody, G.M., Palubinskas, G., Lucas, R.M., Curran, P.J., Honzak, M., 1996. Identifying 

terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest 

from Landsat TM data. Remote Sensing of Environment 55, 205-216. 

Gu, D., Gillespie, A., 1998. Topographic normalization of Landsat TM images of forest based on 

subpixel sun-canopy-sensor geometry. Remote Sensing of Environment 64, 166-175. 

Huete, A.R., Liu, H.Q., Batchily, K., van Leeuwen, W., 1997. A comparison of vegetation 

indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 

59, 440-451. 

Jackson, R.D., Slater, P.N., Pinter Jr, P.J., 1983. Discrimination of growth and water stress in 

wheat by various vegetation indices through clear and turbid atmospheres. Remote Sensing 

of Environment 13, 187-208. 

Kim, H., Bettinger, P., Cieszewski, C., 2012. Reflections on the estimation of stand-level forest 

characteristics using Landsat satellite imagery. Applied Remote Sensing Journal 2, 45-56. 

Labrecque, S., Fournier, R.A., Luther, J.E., Piercey, D., 2006. A comparison of four methods to 

map biomass from Landsat-TM and inventory data in western Newfoundland. Forest 

Ecology and Management 226, 129-144. 

Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2008. Remote sensing and image interpretation 

(6th edition). New Jersey: John Wiley and Sons, Inc.  

Lu, D., Mausel, P., Brondízio, E., Moran, E., 2004. Relationships between forest stand 

parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest 

Ecology and Management 198, 149-167. 

Lu, D.S., 2006. The potential and challenge of remote sensing-based biomass estimation. 



88 

 

 

International Journal of Remote Sensing 27, 1297-1328. 

Mäkelä, H., Pekkarinen, A., 2004. Estimation of forest stand volumes by Landsat TM imagery 

and stand-level field-inventory data. Forest Ecology and Management 196, 245-255. 

Miles, P.D., 2008. A simplified forest inventory and analysis database: FIADB-Lite. USDA 

Forest Service, Northern Research Station, Newtown Square, PA., General Technical Report 

NRS-30.     

Neyman, J., 1938. Contribution to the theory of sampling human populations. Journal of the 

American Statistical Association 33, 101–116. 

Reese, H., Nilsson, M., Sandstr, P., Olsson, H.a., 2002. Applications using estimates of forest 

parameters derived from satellite and forest inventory data. Computers and Electronics in 

Agriculture 37, 37-55. 

Richards, J.A., 1999. Remote sensing digital image analysis. Springer-Verlag, Berlin. 

Rosenfield, G.H., Fitzpatrick-Lins, K., 1986. A coefficient of agreement as a measure of 

thematic classification accuracy. Photogrammetric Engineering and Remote Sensing 52, 223-

227. 

Rosson, J.F.J., Rose, A.K., 2010. Arkansas' forests, 2005. USDA Forest Service, Southern 

Research Station, Asheville, North Carolina. Resource Bulletin SRS-166. 

Rouse, J.W., Haas, R.H. , Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in 

the great plains with ERTS. Third ERTS Symposium NASA SP-351 I, 309-317. 

Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of 

Remote Sensing 6, 1335-1372. 

Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., Macomber, S.A., 2001. Classification and 

Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? 



89 

 

 

Remote Sensing of Environment 75, 230-244. 

Southworth, J., 2004. An assessment of Landsat TM band 6 thermal data for analysing land 

cover in tropical dry forest regions. International Journal of Remote Sensing 25, 689-706. 

Steininger, M.K., 2000. Satellite estimation of tropical secondary forest above-ground biomass: 

data from Brazil and Bolivia. International Journal of Remote Sensing 21, 1139-1157. 

Story, M., and Congalton, R., 1986. Accuracy assessment: a user's perspective. Photogrammetric 

Engineering and Remote Sensing 52, 397- 399. 

Thenkabail, P.S., Enclona, E.A., Ashton, M.S., Legg, C., De Dieu, M.J., 2004. Hyperion, 

IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of 

Environment 90, 23-43. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment 8, 127-150. 

Tokola, T., Pitkänen, J., Partinen, S., Muinonen, E., 1996. Point accuracy of a non-parametric 

method in estimation of forest characteristics with different satellite materials. International 

Journal of Remote Sensing 17, 2333-2351. 

Tortora, R. 1978. A note on sample size estimation for multinomial populations. The American 

Statistician. Vol. 32, No. 3. Pp. 100-102. 

Turner, D.P., Cohen, W.B., Kennedy, R.E., Fassnacht, K.S., Briggs, J.M., 1999. Relationships 

between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three 

Temperate Zone Sites. Remote Sensing of Environment 70, 52-68. 

U.S. Forest Service. 2012. Forest inventory and analysis national program. USDA Forest Service, 

Washington, D. C., http://www.fia.fs.fed.us/  

U.S. Forest Service. 2012. Forest inventory data online. USDA Forest Service, Washington, D. 

http://www.fia.fs.fed.us/


90 

 

 

C., http://apps.fs.fed.us/fido/    

Vermote, E., Saleous, N.E., Kaufman, Y.J., Dutton, E., 1997. Data pre-processing: Stratospheric 

aerosol perturbing effect on the remote sensing of vegetation: Correction method for the 

composite NDVI after the Pinatubo eruption. Remote Sensing Reviews 15, 7-21. 

Wynne, R.H., Oderwald, R.G., Reams, G.A., Scrivani, J.A., 2000. Optical remote sensing for 

forest area estimation. Journal of Forestry 98, 31-36. 

Zheng, G., Chen, J.M., Tian, Q., Ju, W.M., Xia, X.Q., 2007. Combining remote sensing imagery 

and forest age inventory for biomass mapping. Journal of Environmental Management 85, 

616-623. 



91 

 

 

 

 

CHAPTER 4 

THE ANALYSIS OF PINE STUMPAGE PRICES BASED ON TIMBER SALE 

CHARACTERISTICS OF THE SOUTHERN UNITED STATES 

 

1. Introduction 

 

    Forest landowners often need access to current timber market information. Since timber 

markets basically depend on the supply and demand, timber buyers and sellers need up-to-date 

timber market information. However, it is not an easy task to predict timber price (Mei et al., 

2010). Timber market is a function of the relationship between timber and a variety of factors, 

such as wood consumption, wood supply, production technology, finished product demand, and 

stumpage prices, and also the change in timberland ownership may have had a significant 

influence on timber markets (TMS, 2009). Delivered prices include harvesting, transportation, 

and other markups above the stumpage price, and fuel costs and distances to mills will have 

effect on transportation costs, where wood quality and tract size are the main factors concerning 

harvest costs (TMS, 2009).  

 

    The hedonic price method is an approach which most commonly uses regression analysis to 

estimate the implicit values of characteristics from a value of commodity price (Rosen, 1974). In 

the process of manufacturing, some production inputs could be diverse and have significantly 

different characteristics. In such cases, a hedonic pricing approach is suitably employed for 
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estimating the implicit prices of the various characteristics of an input and the demand for the 

input subsequently (Ladd and Martini, 1976). Thus, a hedonic model can be used to explain 

production factors or the prices of differentiated products. This hedonic price approach has been 

adapted to timber markets with heterogeneous inputs such as species composition, tree size, 

volume, and quality based on the assumption that such characteristics affect the lumber 

production (Puttock et al. 1990). We can efficiently analyze the implicit values of independent 

variables for stumpage price and can bring results about the derived demand of heterogeneous 

inputs for timber markets using hedonic price functions.   

 

    Timber Mart-South (TMS) publishes quarterly southern price reports. They started to report 

timber prices in 1976, and market news in 1996. In this paper, based on the TMS data (TMS, 

various years) and a variety of reports about timber markets in southeast United States, we have 

analyzed the stumpage detail characteristics and their influence on pine stumpage prices using a 

hedonic price function with the objective of providing better insight into the change of stumpage 

prices with related timber sale characteristics and anticipated demand for each input.  

 

2.  Literature review  

 

2.1 Reports and analysis on southern stumpage price  

 

    The southern U.S. has more private ownership than the other major forest areas in the country. 

Newman (1987) stated that southern markets have long been major sources of softwood 

stumpage production in the United States. It was found that in 1976 almost half of total softwood 
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timber removals in the country and half of the total additions to softwood inventories were 

produced in the southern area (U.S. Forest Service, 1982). Haynes and Adams (1985) projected 

that the southern region could comprise up to 51% in total removals and up to 61% in total 

growth by 2030 based on various assumptions regarding the stumpage market characteristics. In 

2006, the southern area had 62% of the country’s total growing-stock removals (Smith et al., 

2009). Binkley and Vincent (1988) reported past tendencies and prospects for the future 

regarding timber prices in the U.S. South. They noted that southern pine stumpage prices had 

risen at a real rate 4.6% per year before World War II and since then the real rate of increase was 

decreased into 3.1% per year. They also projected the median estimate from 1990 to 2010 would 

be a real rate 1.9% per year. Given TMS data (TMS, 2009), we found that the stumpage price in 

the southeast U.S. increased rapidly from 1990 to about 1998, and since then it showed a 

tendency of decrease until 2008 with occasional fluctuations.  

 

    Adams and Haynes (1991) researched the future prospect of softwood timber market. They 

projected that nonindustrial ownerships cannot maintain previous growth rates in softwood 

harvest in the period from about 1991 to 2015. However, they asserted that if high planting rates 

during the 1980’s are conducted in next century, it seemed that harvest could be increased 

afterwards. On the contrary, it is noted that industrial harvest will maintain increasing rates, but it 

is likely that it is not enough to offset the shortfalls by nonindustrial ownerships. Wagner et al. 

(1994) estimated economic effects of environmental regulations on southern softwood stumpage 

markets. They analyzed a range of southern softwood changes and found that timber producers 

in aggregate seem to make a positive effect initially in the short run. They also found that the 

environmental regulations produced a net gain for timber producers, while it made stumpage 
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buyers a net loss. Sun and Kinnucan (2001) researched the economic impact of environmental 

regulations on southern softwood stumpage market. Contrary to the research by Wagner et al. 

(1994), they found that environmental regulations produced similar costs for timber producers 

and consumers.  

 

2.2 Methods for the estimation of timber value 

 

    Newman (1987) presented an econometric analysis of the southern softwood stumpage market 

from 1950 to 1980. He used three stage least square regression techniques on both supply and 

demand system of pulpwood and solidwood (combined lumber and plywood) markets. The three 

stage least square regression techniques provided simultaneous parameter estimation of market 

systems. Haight and Holmes (1991) analyzed monthly and quarterly series of stumpage prices in 

terms of stationarity with a test to determine whether a time series variable is non-stationary 

using an autoregressive model for loblolly pine in the southeastern United States. The statistical 

results showed that a non-stationary random walk model can be more suitable for the quarterly 

series of average prices. Otherwise, they showed that stationary autoregressive models can be 

efficiently employed for monthly series and for the quarterly series of opening monthly prices 

which is made by sampling the monthly series in quarterly intervals. Wagner et al. (1994) used 

applied welfare analysis and current stumpage market conditions to compute the estimate of 

economic effects of environmental regulations on southern softwood stumpage markets. G  

Kinnucan (2001) presented an applied welfare analysis method which fixed a flawed procedure 

designed by Wagner et al. (1994) and is easy to apply. Hensyl (2005) examined influences of 

land and ownership characteristics on the price of stumpage in Virginia’s nonindustrial forests. 
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Based on data of timber procurement personnel and sawmills from central Virginia a price 

equation base model and bid equation base model were developed. The effect of the decrease in 

both tract size and the amount of harvest and the behavior of landowners on marginal values of 

sale characteristics was analyzed. They also assessed how the fragmented forest affects the 

competitiveness regarding timber sale. Mei et al. (2010) modeled and forecasted the stumpage 

price of pine sawtimber with various time series models in the U.S. South. In 12 southern timber 

regions, they developed a univariate autoregressive integrated moving average model as a 

benchmark and applied other multivariate time series methods in comparison with a discrete-

time framework. Under the continuous-time framework, they fitted both the geometric 

Brownaian motion and the Ornstein-Uhlenbeck process to the underlying data. They found that 

the vector autoregressive model produced more accurate results in the 1-year period by the mean 

absolute percentage error criterion. They also found that seven among 12 southern timber regions 

played crucial roles in the long-run equilibrium and market risks are well captured by conditional 

variances and covariances from the bivariate generalized autoregressive conditional 

heteroscedasticity model.    

 

    The hedonic pricing method has been used to estimate economic values for environmental 

services that directly have influence on market prices. The hedonic pricing method is based on 

the premise that the price of a marketed good is related to its characteristics, or the services it 

provides. Buongiorno and Young (1984) predicted the market value of sales in Chequamegon 

National Forest. They developed a multiple regression made with 14 independent variables and 

adapted stepwise regression with the independent variables which are relevant to the high bid on 

a competition of timber sale. They found that a simple linear model explained 93% of the 
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variance in high bid for competitive sales using data from 1976 to 1980. Puttock et al. (1990) 

estimated stumpage prices in southwestern Ontario using a hedonic function approach. They 

expected that the stumpage price was influenced by various characteristics of timber used in the 

production of lumber. They estimated hedonic price functions for timber using pooled time-

series cross-section data which are driven by a large sample of timber sales.  

  

   Munn and Palmquist (1997) estimated hedonic price equations using stochastic frontier 

estimation procedures for stumpage prices. They asserted that because the distributions of 

consultant and nonconsultant sales are not normal enough, ordinary least squares (OLS) is not 

adequate for estimating hedonic price equations for a timber stumpage market. Their new model 

and estimator are regarded as more suitable for timber markets than the traditional hedonic 

model and ordinary least squares (OLS) procedures with applied statistical techniques developed 

for stochastic frontier analysis to hedonic price functions. Their model will be more credible of 

such timber markets when there is uncertainty of price on both sides of buyers and sellers, and 

empirical results supported this model. Vasievich (1980) quantified the effect of timber sale 

factors on the costs of conducting timber sales and prices paid for the sales using a linear 

regression model. He used data from timber sale reports by Indiana State Forests and analyzed 

11 site and sale conditions statistically. Leefers and Potter-Witter (2006) estimated hedonic price 

model to gain insights into timber sale characteristics and competition for public lands stumpage. 

They studied Lake States national forests and land managed by the Michigan Department of 

Natural Resources (MiDNR) to give useful information about the stumpage price impacts of sale 

and institutional sale characteristics. Based on empirical results, they found that the models 

within the same geographic region cannot be transferred easily to other regions. Sydor and 
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Mendell (2008) analyzed timber bid transactions using hedonic regression techniques in central 

Georgia. They estimated a regression model of softwood stumpage prices from pay-as-cut 

transactions against timber sale and stand characteristics.  

 

2.3 Variables for timber appraisal methods 

 

    Buongiorno and Young (1984) found the relationship between timber sale areas and bid prices 

are correlated positively. Murray (1995) measured oligopsony power with shadow prices for 

pulpwood and sawlogs markets and found there is more oligopsonistic power in pulpwood 

market than the sawlog market. Puttock et al. (1990) noted that stumpage prices increased as the 

quality of timber improved and found hauling distance to the purchasing mill severely influence 

the stumpage price. Hubbard and Abt (1989) found that logging conditions affect stumpage price 

positively and significantly in Florida, while using logging conditions a dummy variable. Dunn 

and Dubois (2000) found that higher stumpage prices were driven by longer contracts between 

sellers and buyers. Leffler et al. (2003) found that as the percentage of pine sawtimber is greater, 

auctions occur more often on timber tracts. Thomas et al. (2004) examined a bid price equation 

for national forest timber sales in western Arkansas and southeastern Oklahoma. He found that 

the value of per unit volume of sawtimber become greater for larger sales because due to the 

economies of size buyers pay more per unit on large sales. Leefers and Potter-Witter (2006) used 

hedonic price model to provide insights about the significance of variables. For their final model 

of stumpage prices, they focused on species-product composition of sales, number of species and 

products, regional location, administratively set sale contract length, and sale timing, competition, 

and firm size. Sydor and Mendell (2008) found that timber size, timber quality, and stand site 
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characteristics were crucial to the variability for cut pine sawtimber stumpage prices. They found 

that the period from 2002 to 2004 was characterized the lowest relative market risk. Kilgore et al. 

(2010) found that stumpage prices are increased by longer contracts in Minnesota State Forests. 

Therefore, the variables of larger sale size, wood quality, logging conditions, and longer contract 

lengths seem to influence stumpage prices positively.       

 

    Track size has effect on forest management. Hall and LeVeen (1978) examined the 

relationship between farm size and production costs in California. They noticed that the long-run 

average cost curve initially declines rapidly and then became flat as track size got larger. They 

found that relatively modest sized farms (100-320 acres) are in the stable cost area of curve. It 

was also found that as track size was reduced, average costs increased. They detected that the 

costs change in different ways according to the farm types. For example, they have found that the 

highly mechanized crops kept declining costs slowly, but the costs in vegetable and fruit crops 

did not show substantial decline after initial rapid drop. They concluded that not only the 

economies of size but also management, the overall institutional structure, and resource quality 

are so crucial factors as the sources of declining production costs. Olson et al. (1988) developed 

“equations for estimating stand establishment, release, and thinning costs in the Lake States”. 

They investigated how costs per acre change as the size of project area increases. They found 

that in the relationship between cost per acre and size of project area, average manual planting 

costs leveled off and started to stabilize at about 18 acres, machine site preparation costs at about 

40 acres, aerial spraying costs at about 50 acres, manual release costs at about 40 acres, and cost 

of manual thinning at about 50 acres. The cost of prescribed burning was minimized at about 64 

acres. Vasievich (1980) found that in southern national forests the size of burn and age of rough 
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strongly affected cost per acre. He discovered that the burning cost was $4.82 per acre for 50-

acre burns in 12-year rough (years since last burn) and $0.35 per acre for a 2,400-acre burn in a 

4-year rough. Gardner (1981) researched the effect of tract size on the cost of reforestation. He 

found that reforestation costs became lower for relatively large tract sizes of 50 acres and 

increased for smaller tracts sizes as less than 20 acres. The costs were prohibitive for tracts from 

10 to 20 acres. It is noted that relatively small forest landowners have less money and labor 

available for reforestation, and thus it is inferred that that paucity of money and labor increased 

the cost for reforestation (Clawson, 1957; Bhahurothu, 2011). Guldin (1984) researched the 

influence of site characteristics and preparation practices on costs of hand-plating southern pine. 

He found that the hand-planting cost was the most expensive for planting contracts between 140 

and 250 acres. Up to 140 acres, the hand-planting cost keeps increasing, and from 250 acres to 

500 acres, the hand-planting cost decreased.   

 

    Tract size also affects timber harvesting costs. Cubbage (1983) simulated average harvesting 

costs on tracts from 5 to 360 acres, and found average costs increased in tracts below 50 acres. 

They noticed that large moving expenses made highly mechanized systems more sensitive to 

tract size changes, but costs of pre-hauler systems were not so much sensitive to tract size 

changes. He also determined that excessive harvest costs were paid for manual tree length 

systems and highly mechanized full-tree system on tracts less than 60 acres. Cubbage and Harris 

(1986) examined whether tract size was a factor limiting planting, harvesting, management and 

marketing aspects of timber management. Based on their observations, most costs were 

minimized at tract sizes from 40 to 50 acres. They observed that average costs initially decreased 

and at some point it started to stabilize as tract sizes became larger. Greene et al. (1997) 
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researched harvest cost implications of changes in the size of timber sales in Georgia. They 

evaluated three logging systems and made a spreadsheet in the Auburn Harvesting Analyzer. 

They noticed that in Georgia the size of individual forest stands and timber sales are slowly 

decreasing. They concluded that these trends will make the cost per acre increasing considering 

cultural practices for forest tracts and the cost for harvest. Baker et al. (2010) examined the 

impact of timber sale characteristics on harvesting costs. They collected timber sales data in the 

southeastern United States from 2000 to 2008 and examined the changes in harvest tract 

characteristics. They observed an increase in average tract acreage and substantial increase in 

partial harvesting. They found that logging costs increased in small tracts with low harvest 

volumes and these costs decreased if the sale characteristics values increased.       

 

2.4 Stumpage detail reports 

 

    Stumpage Detail Reports from Timber Mart-South described delivered prices for pine 

sawtimber, which have been declining since 2005. They found fuel prices have climbed and 

remained at high levels, therefore stumpage prices have fallen and the amount of pine sawtimber 

available on the timber market was reduced. That made the market demands shifted to pine and 

hardwood pulpwood, hardwood sawtimber, and pine power poles during previous quarters 

before 1
st
 quarter 2009. From 1994 to 2009, highway diesel fuel prices have doubled in the last 

15 years.  It seems to be that diesel prices mainly influence harvesting and transportation costs, 

thus the current rates of pine sawtimber were derived by the change of diesel fuel prices. Volatile 

fuel costs make managing logging and transportation operations more difficult. Because 

stumpage is residual of delivered prices, delivered and stumpage prices change in similar trends 
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or tendencies. Thus, changes in harvest and transportation coast can change the amount of 

stumpage to landowners based on tract size, wood quality, fuel cost, and distance to the mills.  

 

    In detail, Stumpage Detail Reports present the change of delivered pine prices from 1976 4
th

 

quarter to first quarter 2009 (Figure 4.1). Pine sawtimber delivered prices started from about 15 

US$/ton and had been maintained around $25 until 1990 4
th

 quarter. Since then, they increased 

dramatically and peaked in 1998. After that, they went down and up at 50 US$/ton, and from 

2005 they showed the tendency to decrease. Pine sawtimber, chip-n-saw, and pine pulpwood 

showed very similar tendency in the change of delivered pine prices. However, notably from 

2005 the delivery prices of pine sawtimber and chip-n-saw decreased but pine pulpwood kept 

increasing. Highway diesel fuel prices from 1994 2
nd

 quarter to 2008 2
nd

 quarter can found in 

Figure 4.2. It started from 1 US$/gallon and generally showed an increasing tendency and 

peaked in the 2
nd

 quarter 2008. Since then, it has started to show a tendency of decrease. Haul 

rate per ton is calculated by multiplying published minimum haul distances by the minimum haul 

rate, and it ranged from $4.29 to $5.70. Average harvest costs did not show big variance from 4
th

 

quarter 2005. This confirms that delivered and stumpage prices change very similarly (Figure 

4.3). The delivered price and stumpage price of pine sawtimber peaked at 1998 and almost was 

maintained that level until 2005. Since then, it has declined.  
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Figure 4.1: Southeast average delivered pine prices from 1976 to 2009, Pine Sawtimber (PST), 

Chip-N-Saw (CNS), Pine Pulpwood (PPW). (TMS, 2009). 

   

Figure 4.2: U.S. No. 2 diesel retail sales all sellers from 1994 to 2009. (TMS, 2009).  
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Figure 4.3: Southeast average stumpage pine prices from 1976 to 2009 (TMS, 2009).  

  

   After 2008, generally the South-wide stumpage prices kept decreasing, although in 2010 there 

was a little bit increase (Figure 4.4). However, chip-n-saw and pine pulpwood almost maintained 

the level of prices in 2008. We can find that several economic indicators which are related to 

stumpage price showed downward movements through Timber Mart- South Market News 

Quarterly (TMS, 2012). From 2008 up to now, housing remained depressed based on the US 

Census. In addition, US paper and paperboard production started to decline in 2008 and rapidly 

dropped in 2009. From 2009 to 2012, it has shown an increasing tendency. Diesel retail prices 

and crude oil prices have increased from 2007 to the second quarter of 2008. Since then, they 

have dramatically dropped beginning in the second quarter of 2008, and from the second quarter 

of 2009 they generally showed upward movements. Still it is likely that fuel prices affect pine 

sawtimber price changes and plus depressed housing and US paper and paperboard markets 

influenced the continuous tendency of decline in pine sawimber price.  
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Figure 4.4: South-wide pine stumpage prices from 2003 to 2012 (TMS, 2012).  

 

    Based on TMS data, several reports have been produced. Yin and Caulfield (2002) examined 

the intra- and inter- market relationships using data from TMS. Two key parameters of growth 

rate and volatility of a price series were compared. They treated the mean value as the price 

growth rate and the standard deviation as a measure of volatility. They found that markets in the 

southeast vary widely across area, products, and species and also found that these markets have 

experienced two distinct development stages during 1977:1 to 1996:4. They found that deflation 

lowers the growth rate of a price series, but the effect on the volatility is small. It is shown that 

delivered prices for softwood had a slightly lower growth rates as opposed to that of stumpage 

prices, but the volatility of delivered wood prices series was much lower. They also found that 

delivered price of sawtimber traces stumpage prices vary closely; however, the same cannot be 

said for pulpwood. Through this research, they concluded that the assumption that price levels as 
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well as their growth rates are the same across markets and over time is no longer proper and we 

cannot ignore the price volatility completely. 

3. Data  

 

    We used quarterly stumpage prices reported from 1998 to 2007 in southern 11 states (Alabama, 

Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, 

Texas, and Virginia) (TMS, various years). The data included area, county, sale date, sale type, 

sale size, total volume, total price, haul district, length contract, number of bids, high bids, low 

bids, type of cut, grade, market conditions, logging conditions, product type, and product amount 

(Table 4.1). The species and product group were classified into pine pulpwood, pine chip-n-saw, 

and pine sawtimber to be compared as references. 
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Table 4.1: Pine stumpage sales data 

Name Value Unit 

Quarter 1 - 4 

 

Year 1998 - 2007 

 

States 

AL, AR, FL, GA, LA, MS, NC, SC, TN, 

TX, VA  

Area 1- 2 

 

County Counties of each states 

 

Sale size 1 to 3,000 acres 

Length contract 1 - 48 months 

Number of bids 1-  22 

 

Type of cut thinning, clearcut 

 

Grade 

below average, average, above average, 

excellent  

Market conditions poor, fair, good, excellent 

 

Logging conditions poor, fair, good, excellent 

 

Stumpage/delivered stumpage prices $/tons 

Product price 1~70 $/tons 
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3.1 Preliminary analysis on pine stumpage data 

 

    Stumpage prices (TMS, various years) were preliminarily analyzed to process raw data 

initially. The average of 10 years (1
st
 quarter 1998 to 4

th
 quarter 2007) of pine stumpage prices 

were compared to their average prices 4
th

 quarter 2007 in Table 4.2.   

 

Table 4.2: Average of 10 year and average of 4th quarter 2007 of pine stumpage price  

  

Pine pulpwood 

($/tons) 

Pine chip-n-

saw ($/tons) 

Pine sawtimber 

($/tons) 

Average of 10 year 27.19 27.19 43.29 

Average of 4th quarter  2007 8.70 19.16 39.58 

 

4. Methods 

 

4.1 Hedonic price model using multiple regression model for estimating stumpage prices 

 

    We used the hedonic pricing method to estimate the stumpage price of pine sawtimber for 

economic values that affect the stumpage price. The hedonic pricing method is regarded as a 

preference method of estimating demand or value in economics. The fact that good prices in a 

market are influenced by their characteristics becomes a basis for hedonic price method. For 

hedonic price analysis, it is necessary to estimate how the dependent variable (stumpage price) is 

influenced by the independent variable (all various characteristics for stumpage price) and the 

hedonic price (implicit price), which is the change in stumpage price by the change in one of 
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those characteristics, is estimated using the function of linear or non-linear (Boardman et al., 

2011).   

 

    Based on the data analysis, a non-linear regression model was developed to estimate stumpage 

prices because the fitted line versus residuals was non-linear. Thus, we used a quadratic 

transformation. Pine sawtimber stumpage prices was estimated as: 

ys =β0 + β1x1 + β2x2 + ... βixi + ε    for i = 1,2, ... n                                         Equation 1 

where ys = stumpage price,  x1 = quarter2, x2 = quarter3, x3 = quarter4, x4 = year , x5 = sale type, 

x6 = sale size, x7 = sale size squared, x8= length contract, x9 = length contract squared, x10 = 

number of bid,  x11 = harvest type , x12 = grade, x13 = market condition,  x14 = logging condition.   

 

The regression variables used in multiple regression are described with unit of measurement in 

table 4.3.  
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Table 4.3: The description of dependent and independent variables. 

Variable name Unit of measurement and variable description 

stumpage price Pine stumpage price ($/ton) 

quarter 2 Dummy variable, 1 if second quarter of the year, 0 otherwise   

quarter 3 Dummy variable, 1 if third quarter of the year, 0 otherwise   

quarter 4 Dummy variable, 1 if fourth quarter of the year, 0 otherwise   

year The year when the timber is harvested  

sale type Dummy variable, 1 if sealed bid, 0 negotiated 

sale size Total area harvested (ac) 

sale size squared Square of variable sale size 

length contract Contract period (month) 

length contract 

squared Square of variable length contract 

number of bids The number of bid during timber sale auction 

harvest type Dummy variable, 1 if clearcut, 0 otherwise 

grade Dummy variable, 1 if above average or excellent, 0 otherwise 

market conditions Dummy variable, 1 if above average or excellent, 0 otherwise 

logging conditions Dummy variable, 1 if above average or excellent, 0 otherwise 

 

    Quadratic forms were used for the variable sale size and contract length in our regression 

model. Quadratic forms are used to estimate parameters of threshold models, which have 

inflection point or threshold point. As the dependent variable changes in threshold model, 
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quadratic terms help determine maximum and minimum values and help infer information 

related to economies of size. The inflection point is calculated as  

Inflection point = β1/ -2β2                                                                                     Equation 2  

Where: 

 β1 = linear term coefficient 

 β2 = quadratic term coefficient 

 

5. Results and discussion  

 

    The sale sizes of pine stumpage were presented according to each product group in Figure 4.5. 

The largest percentage of sale sizes was in the 1 to 50 acre range. The second largest group of 

sale sizes occurred with tract sizes ranging from 51 to 100 acres. In Figure 4.6, south-wide pine 

stumpage prices were presented by product group and sale sizes. In pine pulpwood, pine chip-n-

saw, and pine sawtimber, the largest percentage of sale size was shown in tracts ranging from 

151 to 200 acres in size.      
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Figure 4.5: Sale size of stumpage pine sales, 1998 – 2007.  

 

Figure 4.6: Average pine stumpage price ($/tons) by product group and sale size (acre), 1998 – 

2007.  

 

    The percentage of harvest type was presented from 1998 to 2007 in Figure 4.7. Clearcuts 

formed 55 percent of the harvests and thinnings accounted for 45 percent. The average stumpage 

price was presented by harvest type and each product group in Figure 4.8. In pine pulpwood and 

33% 

28% 

17% 

8% 

14% 

1-50 ac 

51-100 ac 

101-150 ac 

151-200 ac 

201+ ac 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

1
-5

0
 

5
1
-1

0
0
 

1
0
1
-1

5
0
 

1
5
1
-2

0
0
 

2
0
1
+

 

1
-5

0
 

5
1
-1

0
0
 

1
0
1
-1

5
0
 

1
5
1
-2

0
0
 

2
0
1
+

 

1
-5

0
 

5
1
-1

0
0
 

1
0
1
-1

5
0
 

1
5
1
-2

0
0
 

2
0
1
+

 

Pine pulpwood Pine chip-n-saw Pine sawtimber 

P
ri

ce
 (

$
/t

o
n
s)

 



112 

 

 

pine sawtimber, the average price for thinning was higher but in pine chip-n-saw the price for 

clearcut was higher.  

 

 

Figure 4.7: South-wide stumpage sales by harvest type, 1998 – 2007.  

 

Figure 4.8: Average price of pine stumpage price ($/tons) by harvest type and product group, 

1998 – 2007.  
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     Based on stumpage sales, sale type information was presented in Figure 4.9. Negotiated sales 

accounted for 77 percent and sealed bid sales accounted for another 23 percent. Figure 4.10 

describes the average price of pine stumpage price by sale type and product group.   

 

 

Figure 4.9: Southern stumpage sales by sale type, 1998 – 2007.  

 

 

Figure 4.10: Pine average stumpage price by sale type and product group, 1998 – 2007.     
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    For the regression analysis, we found missing data in 497 samples of sales. Thus the final 

sample size was 2,465 sales. We developed basic descriptive statistics for dependent and 

independent variables. We reported mean, standard deviation, minimum, maximum, and sum for 

variables (Table 4.4) and also reported the percentage of type 1 in each dummy variable (Table 

4.5).        

Table 4.4: Descriptive Statistics of variables 

  Mean 

Standard 

Deviation Minimum Maximum Sum 

stumpage price 44 12 0 70 109,980 

sale size 104 122 2 3,000 258,463 

sale size squared  25,658 193,470 4 9,000,000 63,606,273 

contract length 17 7 1 48 42,702 

contract length squared 341 232 1 2,304 846,441 

number of bids 5 3 0 22 12,901 

 

Table 4.5: The percentage of type 1 in dummy variables 

Variable name % of type 1 

sale type 94.96 

harvest type 56.03 

grade 38.44 

market conditions 17.06 

logging conditions 21.94 
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    Multiple regression analysis was conducted in R statistical software. The regression results are 

presented in Table 4.6. The model R-squared equals 0.1807 and adjusted R-squared 0.1767, 

which indicates that the goodness of fit of the model is relatively low. However, the model is 

globally significant based on the F-statistic. The likely reason for relatively low R-squared can in 

part be explained by the fact that we removed 497 observations of sales from the analysis. In 

addition, during the research period one notable thing is that southeast average pine sawtimber 

stumpage prices peaked in 1998 and have substantially dropped since then, which means there 

were some factors that influence on pine stumpage price severely that were not accounted for in 

this analysis. Particularly, based on the reports regarding stumpage prices (TMS, various years), 

the fuel prices increased from 1998 to 2007 and they seem to affect stumpage price. Puttock et al. 

(1990) found that the hauling distance greatly affects the timber price. It is suggested that such 

variables regarding the fuel prices and hauling distances need to be incorporated to acquire better 

fitted regression results. Although the pine stumpage price showed mainly a decreasing tendency, 

there were some main fluctuations in stumpage price change during the research period. It is 

likely that such a situation have also contributed to relatively low R-squared values, compared to 

other similar research using hedonic price function (Buongiorno and Young, 1984; Puttock et al., 

1990; Leefers and Potter-Witter, 2006; Sydor and Mendell, 2008). Variables describing year, 

contract length, number of bids, harvest type, grade, market conditions, and logging conditions 

are statistically significant based on corresponding probabilities. Variables such as quarter 4, 

sale type, and sale size squared are significant at α = 0.01. Further, quarter 3 and contract length 

are significant at α = 0.0001. Other independent variables except quarter 2 are significant at α < 

0.0001. Only variable quarter 2 is not significant even at α = 0.1.  
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Table 4.6: Parameter estimates for pine sawtimber stumpage price regression model 

Variable 

Parameter 

Estimate 

Standard 

Error t-value Pr(>|t|)  

Intercept 39.73 1.495 26.582 0.000 *** 

quarter2 0.7902 0.559 1.414 0.158 

quarter3 -1.919 0.6085 -3.153 0.002 ** 

quarter4 -1.352 0.6088 -2.221 0.026 * 

year -0.6266 0.07954 -7.878 0.000 *** 

sale type 2.091 1.02 2.051 0.040 * 

sale size 0.008978 0.002664 3.37 0.001 *** 

sale size squared  -0.00000367 0.000001626 -2.257 0.024 * 

contract length 0.4019 0.1287 3.123 0.002 ** 

contract length squared -0.02003 0.003692 -5.425 0.000 *** 

number of bids 0.8403 0.08424 9.975 0.000 *** 

harvest type -3.306 0.4587 -7.207 0.000 *** 

grade 2.606 0.4483 5.813 0.000 *** 

market conditions 3.934 0.6167 6.38 0.000 *** 

logging conditions 2.133 0.5488 3.886 0.000 *** 

Note: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

    To investigate seasonal effects, quarters when sales occurred were represented by dummy 

variables with the quarter 1as the reference. Pine sawtimber prices in quarter 3 decreased by 

$1.92/ton and in quarter 4 decreased by $1.21/ton based on the quarter 1 as the reference 
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variable holding all independent variables constant. Although quarter 2 is not statistically 

significant, it has a high coefficient value, indicating positive influence on timber prices. Quarter 

3 has the largest negative coefficient value among all quarters. Fiery (2012) illustrated the annual 

change of pine sawtimber with more detail information of monthly stumpage price trends in 

South-wide states. Based on the results of stumpage price changes in two different time scales, 

we can see that while mainly the yearly stumpage price maintained a decreasing tendency from 

2010, the monthly changes of stumpage price relatively showed little bit more increasing 

tendency in quarter 1 and 2 than quarter 3 and 4. From their illustration, it looks like that 

although the quarter factors as dummy variables cannot change the main stream of stumpage 

price severely, it induces the minor and temporary changes in timber price. Such a similar 

tendency seems to be shown in our results for stumpage price change during our research period. 

The continuous variable year represents the year in which timber was harvested. This variable 

has a negative impact on stumpage prices which declined during the period 1998 to 2007. Pine 

sawtimber stumpage prices declined by $0.627/ton per year. Most of all, the increase of fuel 

price is considered a major reason for the decreasing tendency of stumpage price as we shown in 

literature review during the research period.  

 

    Basically as the sale size increases by one acre, pine sawtimber stumpage price increases by 

$0.009/ton initially. This result is in agreement with other research regarding sale size 

(Buongiorno and Young, 1984). Based on an interpretation of inflection point of sale size, as the 

sale size increases after reaching the maximum, the stumpage price starts to decline by 

$0.000004/ton with all other independent variables held constant, which means it is not whole lot. 

If logging and hauling costs tend to decrease as tract size increases, stumpage price seems to 
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increase. The reason for such increase of stumpage price is inferred from the fact that delivered 

price equals stumpage price adds logging and hauling costs and based on assumption the 

delivered price should be maintained under other conditions are same, we saved the money in 

logging and hauling costs and can get higher price for stumpage. However, it seems that logging 

and hauling costs start to increase after reaching some point due to diseconomy of size.  

 

    Based on equation 2, we determined stumpage prices were maximized when sale sizes reach 

about 1,223 acres. This does not agree with our preliminary data analysis, which indicated that 

timber prices were maximized when sale sizes ranged from 151 to 200 ac, although the 

calculated inflection point (1,223) is within the range of input data. Basically the sale size results 

of preliminary data analysis are calculated based on all other independent variable are not 

constant. However, the results of inflection point for the sale size are calculated based on the 

assumption that all the other independent variables are constant. We guess that such difference 

seems to make a gap between preliminary results and a calculated inflection point. We infer that 

in real world there were some beneficial factors that influence high stumpage price in the sale 

size range from 151 to 200 ac, but theoretically diseconomy of size seems to work at larger sale 

size than that based on our data. In addition, although the preliminary results show the different 

maximum ranges to our calculated maximum point, the stumpage prices of all ranges in 

preliminary results are very close to each other. As same phenomenon, the coefficients for sale 

size and sale size squared reach almost zero, which means the slopes for sale size and sale size 

squared were extremely small and stumpage prices are very similar within all ranges of 

stumpage price, given our data sets of TMS during our research period (TMS, various years). We 

also infer that although during the research period the stumpage price had been decreased 
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globally, it was almost maintained at a relatively high level, which means demands for stumpage 

consistent and enough not to work diseconomy of size. We need to further investigate whether a 

quadratic model is suitable for estimating a reasonable inflection point in timber markets, and 

which ranges of inflection values are calculated with data of different regions or time periods.  

 

    The contract length has similar impacts on prices as the sale size variable. As contract length 

measured in months increased so did pine stumpage prices by $0.402/ton. This positive 

relationship between contract length and pine stumpage price is also supported by other research 

(Dunn and Dubois, 2000; Kilgore et al., 2010). After reaching the maximum point, pine 

stumpage price decreased by $0.023/ton. The optimum contract length was calculated as 10 

months based on equation 2 to get the highest stumpage price. Basically, it seems that as contract 

length increases loggers will have a more flexible time to harvest based on the market conditions, 

making positive impact on timber price, while as contract lengths last too long loggers cannot 

respond to properly the possible dynamic changes of stumpage market. However, the optimum 

of stumpage prices at 10 months can be a spurious interpolation due to insufficient data, because 

timber stumpage contracts typically run for 6 month periods and have options to extend and 

timber growth would be an important appraisal issue for longer term contracts. We have not 

captured that information in other models.  

 

    Sale type can be classified as a sealed bid sale or a negotiated sale. In our results, sealed bid 

prices tended to exceed negotiated sale prices by $2.09 per ton. It seems that sealed bid sales 

were associated with higher prices because it can provide opportunities to take more bids, thus 

enhance possibility to obtain higher prices. Number of bids also influenced pine sawtimber 
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stumpage prices. As the number of bids increased the pine sawtimber prices increased by 

$0.84/ton per each additional bid. It is inferred that more bids provide more chance to get higher 

price. We conclude that pine sawtimber stumpage prices get higher in the case of sealed bid 

auctions and larger number of bidders. Clearcut as a harvest type had a negative impact on pine 

sawtimber price which is decreased by $3.31/ton than thinning, and the results is in agreement 

with the preliminary analysis in Figure 4.7. In general, we can expect that stumpage prices will 

be lower on thinning because the logging costs are higher. Logging costs for thinning tend to be 

higher since less volume per acre and per tract is being harvested and the trees removed are 

generally the smaller diameter stems in the stand. However, in our preliminary analysis the result 

is reverse in pine sawtimber stumpage price, and showed a positive coefficient on thinning. We 

infer the unexpected result came from the fact that usually the harvest on thinning is more 

focused on pine pulpwood and pine chip-n-saw than pine sawtimber because harvested timbers 

by thinning more tend to be more used for pulpwood and pine chip-n-saw. Thus, the stumpage 

price for pine sawtimber can be not a major issue for in the harvest by thinning, making the 

unexpected results happen specially during our research period. Another idea for the unexpected 

result can be that based on the assumption the demand for pine sawtimber is constant, the supply 

amount by thinning can be more limited than that by clear cut.  

 

As expected, the presence of high quality timber (grade variable) had positive impact on 

stumpage prices. Above average or excellent grade had a positive coefficient 2.61, which 

indicates that above average or excellent quality increased prices by $2.61/ton. The grade 

variable was statistically significant and the impact was relatively large. This result is in 

agreement with other approach about stumpage price for timber using hedonic function (Puttock 
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et al., 1990). In a similar manner, the market conditions variable was statistically significant and 

positively related to stumpage prices with the highest coefficient value 3.934. This means that 

the presence of above average or excellent market conditions have larger impacts than the other 

sale characteristics on pine sawtimber timber prices. The better market conditions imply that the 

demand for timber is bigger by consumption more (Bhahurothu, 2011). Such increased demand 

for timber seems to make stumpage prices higher. The variable logging conditions is statistically 

significant and has a large value. When above average or excellent logging condition are present, 

the prices increased by $2.13/ton. This result corresponds with the analysis by Hubbard and Abt 

(1989). Although grade, market conditions and logging conditions as dummy variable showed 

big impacts on stumpage price, it is not easy to define a clear line between excellent or above 

average and average because the standards can be different according to real market, ground 

conditions, and one’s perspectives. Thus, it is suggested that the coefficients are interpreted as 

values which are not absolute but implicit.            

 

6. Conclusion 

 

    We developed a hedonic model for pine sawtimber based on various sale characteristics in 

non-industrial forest lands of 11 southern states in U.S from 1998 to 2007. A sample size of 

2,465 was used and the model was globally significant. In this study it is evident that as sale size 

increases the price of sawtimber basically increases as well. When sale sizes are small buyers 

tend to pay less for timber because of higher harvesting costs. It was found that when sale size 

reaches 1223.4 acres the stumpage price was maximized through quadratic transformation. As 

contract length increased the pine sawtimber price basically increased, and when the contract 
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length between the buyer and seller reaches 10 months, stumpage prices were maximized using 

quadratic transformation also. In quarter 2 of the year, sellers received higher prices than the 

other quarters. Sealed bid sales were characterized by higher stumpage prices as were the 

number of bids. Selective cuts showed a positive impact on timber price. The presence of 

excellent or above average level in grade, market conditions, and logging conditions made 

significant positive impacts on the price of pine sawtimber stumpage. This study will be useful 

mainly for owners of private forests to promote timber sales and to make more suitable plans for 

timber management in southern United States.          
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CHAPTER 5 

CONCLUSION 

    Landsat satellite imagery has been employed considerably to estimate forest stand-level 

characteristics over the last twenty years. In the estimation of stand-level forest characteristics 

using Landsat imagery we described the trends which have been popular in the recent 20 years 

and challenges which have been encountered. We noted that in general, research regarding the 

estimation of stand-level forest characteristics using Landsat imagery have increased during the 

research period although there were several partial decreases. We focused on the stand-level 

forest characteristics which are estimated using Landsat imagery, and the algorithms employed 

in the image classification processes. Given analysis on the results concerning the forest stand-

level characteristics, we found that average forest height, crown closure, and stand age were less 

frequently addressed than the others, while the estimation of biomass was conducted more often. 

Although we tried to find which stand-level characteristic(s) is more suitable for estimation using 

Landsat imagery, and although one may find a characteristic to be the same or similar in a 

particular geographic area, we cannot conclude this for all areas because geographic traits, 

employed techniques, and ancillary data used differ depending on various research. The synthetic 

data derived from Landsat imagery allows us to clearly enhance the accuracy of results for 

various forest stand variables including age structure and biomass. However, biomass is a more 

dependable variable for the estimation of stand-level characteristics in some cases where very 

similar spectral signatures are shown, such as within young and old tropical forest areas forests. 

Ancillary information such as inventory plots or LiDAR data seems to be useful in increasing the 
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accuracy results especially with forest stands that have more complex structures. With regard to 

the image classification techniques, we found that various types of regression analysis and k-

nearest neighbor (kNN) imputation techniques were employed most widely. Other techniques 

such as neural networks, regression kriging, and maximum likelihood classification are 

increasingly being applied, but further research needs to be followed. Because in most cases the 

estimation of forest stand-level characteristics was poor at small scales and relatively good at 

larger scales (40-100 ha), large scale results should be carefully adapted to small-scale results. 

Although accuracy results show us that they are credible in multiple research areas with various 

combinations of ancillary information, it is not easily transferable to other geographic areas due 

to different types of vegetation, topographic, and climatic conditions. For the estimation of forest 

stand-level characteristics, the Landsat satellite imagery has been proven practical based on 

accuracy results of various research and might be continued as one of most important medium-

resolution remotely sensing programs.  

 

    To provide valuable information about the quantitative knowledge on forest areas and to check 

the efficiency, availability, and pros and cons for each method, we investigated tools for the use 

of FIA data. For doing that, we calculated the quantitative information of pre-merchantable trees 

in the state of Georgia using FIADB-Lite and FIDO and compared the results. The results from 

FIDO and FIADB-Lite showed very similar results in the estimation of pre-merchantable forest 

areas at county-level areas. If one does not have good expertise about data structures in FIADB-

Lite, FIDO is suggested to be used because it is web-based program and runs relatively easily. 
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    As a practical effort for the estimation of forest stand-level characteristics, we estimated 

premature forest areas whose age is 15 or less using Landsat satellite imagery with three 

technologies: maximum likelihood classification (MLC), regression analysis, and kNN. Based on 

the analysis of the accuracy results, we found that MLC showed the highest accuracy results with 

an overall accuracy of 72 % and the kappa coefficient 0.44. The kNN method followed MLC 

with an overall accuracy of 61% and the kappa coefficient 0.249. The results of regression 

analysis were not satisfactory in terms of its accuracy values given an overall accuracy of 45.1% 

and the kappa coefficient -1.105. It seems to be that for MLC to operate efficiently in the 

estimation of forest stand-level characteristics, a training data set which covers each class 

distinctively is strongly required. MLC seems to be one of the efficient methods in the estimation 

of forest age structure according to our accuracy results. We confirmed that the kNN method 

needs a sufficient number of plots for training data to produce reasonable results, and then 

consequently it will enhance the accuracy results. It is likely that linear regression analysis is not 

so suitable especially for estimating the young age structure of stand-level forest areas because 

the relationship between stand age and spectral responses appears to not be consistently linear 

especially in young ages of forest areas. Diverse forms of regression analysis such as logistic 

regression or non-linear regression can be considered to be tested for further research assuming 

they are more proper for the estimation of young forest areas. Although there is room for further 

research, we confirmed that Landsat imagery can be employed efficiently in combination with 

some related technologies such as MLC and kNN for the estimation of young forest areas.         

 

    Given the information about stand-level forest conditions which are estimated using diverse 

satellite imagery, technologies, and field inventories, various types of models can be considered 
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for estimating the change of forest stand-level variables, the stage of stand developments, or 

related timber prices. In particular, stumpage price changes have become a crucial issue for both 

timber buyer and seller. We have developed a hedonic model for the change of pine sawtimber 

stumpage price with diverse sale characteristics based on Timber Mart-South data of 11 southern 

states in United States reported from 1998 to 2007. It was shown that the model is globally 

statistically significant although the used sample size (2,465) is relatively small due to missing 

observations (497). To investigate seasonal effects, quarters when sales occurred were included 

as dummy variables. We found that quarter 1 and quarter 2 showed more positive impacts on 

stumpage price than quarter 3 and quarter 4. Based on quadratic forms in variable sale size and 

contract length in our regression model, inflection points were estimated. As the sale size 

increased pine sawtimber stumpage price generally increased and sale size was maximized at 

1,123 acres through the quadratic transformation. We also found that there is a positive 

relationship between contract duration and pine stumpage price, and the optimum contract length 

was calculated as 10 months using quadratic transformation. Sealed bid sale showed a positive 

impact on timber price and selective cut is characterized by higher stumpage price. Most of all, 

the presence of excellent or above average level in grade, market condition, and logging 

condition made huge positive impacts in pine sawtimber stumpage price. These results provide 

insight into the implicit meaning of sale characteristics, helping timber manager to develop a 

proper plan for timber management and to promote timber sales especially in southern United 

States.        
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APPENDIX 

 

Number of trees of pre-merchantable trees in selected counties of Georgia 

County 

Number of PMT byTree 

Diameter Classifications 

Total 

Number of 

PMT 

Total Number of 

all tree 

% of 

Numbe

r of 

PMT 

against 

number 

of all 

trees   1.0-2.9 in (1) 3.0-4.9 in (2) 

Appling (1) 78,732,473 26,117,418 104,849,891 146,604,980 72 

Atkinson (3) 43,200,057 17,100,519 60,300,576 83,909,689 72 

Bacon (5) 33,398,882 21,641,749 55,040,631 81,697,884 67 

Baker (7) 15,679,426 3,635,676 19,315,102 29,952,026 64 

Baldwin (9) 50,791,173 14,250,238 65,041,411 85,056,270 76 

Banks (11) 31,912,950 6,553,470 38,466,420 49,175,406 78 

Barrow (13) 15,225,175 2,800,585 18,025,760 23,707,777 76 

Bartow (15) 117,773,648 34,819,616 152,593,264 183,639,942 83 

Ben Hill (17) 27,889,056 18,961,622 46,850,678 71,082,944 66 

Berrien (19) 107,612,574 26,493,379 134,105,953 164,572,981 81 

Bibb (21) 33,060,691 7,123,056 40,183,747 50,353,789 80 

Bleckley (23) 33,844,304 9,429,931 43,274,235 56,535,354 77 

Brantley (25) 71,189,993 40,949,309 112,139,302 155,569,615 72 

Brooks (27) 61,868,356 20,319,928 82,188,284 108,338,811 76 

Bryan (29) 55,456,610 23,460,625 78,917,235 115,227,090 68 

Bulloch (31) 124,304,467 32,833,902 157,138,369 210,882,587 75 

Burke (33) 100,791,969 38,727,959 139,519,928 205,021,483 68 

Butts (35) 41,203,326 11,293,539 52,496,865 63,429,150 83 

Calhoun (37) 29,089,836 8,543,399 37,633,235 46,863,054 80 

Camden (39) 106,823,729 36,531,255 143,354,984 198,989,944 72 

Candler (43) 44,115,456 13,022,949 57,138,405 68,731,972 83 

Carroll (45) 105,561,914 25,696,535 131,258,449 168,888,214 78 

Catoosa (47) 6,782,504 1,356,501 8,139,005 12,044,435 68 

Charlton (49) 100,038,850 47,233,166 147,272,016 203,098,614 73 

Chatham (51) 29,363,032 14,003,908 43,366,940 60,795,379 71 

Chattahoochee 35,128,795 13,339,001 48,467,796 65,930,475 74 
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(53) 

Chattooga (55) 100,368,072 25,361,864 125,729,936 155,631,482 81 

Cherokee (57) 56,054,572 15,245,255 71,299,827 95,921,542 74 

Clarke (59) 15,953,383 3,437,075 19,390,458 23,733,252 82 

Clay (61) 32,017,010 9,429,931 41,446,941 52,663,627 79 

Clayton (63) 7,360,696 1,288,903 8,649,599 10,767,201 80 

Clinch (65) 160,427,737 85,908,689 246,336,426 342,452,999 72 

Cobb (67) 9,510,588 2,503,151 12,013,739 16,020,994 75 

Coffee (69) 90,668,408 30,230,750 120,899,158 158,099,360 76 

Colquitt (71) 35,529,284 8,456,592 43,985,876 63,124,954 70 

Columbia (73) 33,192,417 11,128,882 44,321,299 59,581,725 74 

Cook (75) 42,313,788 13,321,976 55,635,764 69,479,687 80 

Coweta (77) 103,411,519 24,475,326 127,886,845 159,454,075 80 

Crawford (79) 80,823,150 24,962,475 105,785,625 127,255,652 83 

Crisp (81) 39,009,441 9,169,271 48,178,712 58,222,305 83 

Dade (83) 14,785,213 3,690,112 18,475,325 30,055,939 61 

Dawson (85) 35,127,992 12,863,253 47,991,245 63,386,028 76 

Decatur (87) 52,724,754 14,932,361 67,657,115 88,972,353 76 

Dekalb (89) 13,887,461 3,235,088 17,122,549 24,162,577 71 

Dodge (91) 94,626,778 28,382,073 123,008,851 161,154,705 76 

Dooly (93) 22,569,052 9,255,911 31,824,963 44,012,607 72 

Dougherty (95) 34,718,484 6,220,070 40,938,554 55,797,701 73 

Douglas (97) 9,635,241 5,664,447 15,299,688 26,559,886 58 

Early (99) 35,322,016 11,438,225 46,760,241 68,728,978 68 

Echols (101) 116,797,747 46,778,209 163,575,956 202,783,151 81 

Effingham (103) 87,512,196 35,158,158 122,670,354 169,783,991 72 

Elbert (105) 68,645,504 17,842,656 86,488,160 110,086,184 79 

Emanuel (107) 139,860,274 34,266,600 174,126,874 230,907,947 75 

Evans (109) 31,460,805 6,716,484 38,177,289 51,439,985 74 

Fannin (111) 71,685,470 23,060,514 94,745,984 124,773,413 76 

Fayette (113) 12,775,983 3,096,379 15,872,362 23,158,559 69 

Floyd (115) 79,150,415 30,248,416 109,398,831 139,846,872 78 

Forsyth (117) 16,181,031 4,410,167 20,591,198 27,455,889 75 

Franklin (119) 16,456,486 15,445,991 31,902,477 42,629,417 75 

Fulton (121) 48,827,446 9,297,142 58,124,588 77,785,108 75 

Gilmer (123) 79,568,013 26,590,324 106,158,337 150,945,324 70 

Glascock (125) 40,703,909 10,619,753 51,323,662 60,949,426 84 

Glynn (127) 53,257,516 19,846,714 73,104,230 95,680,328 76 

Gordon (129) 50,040,358 13,564,814 63,605,172 78,079,852 81 

Grady (131) 28,033,803 11,063,264 39,097,067 60,725,932 64 

Greene (133) 103,789,659 41,788,030 145,577,689 182,788,683 80 

Gwinnett (135) 41,512,252 9,612,953 51,125,205 66,322,916 77 

Habersham 28,743,217 10,581,089 39,324,306 57,855,081 68 
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(137) 

Hall (139) 39,449,251 12,086,674 51,535,925 65,384,486 79 

Hancock (141) 142,428,246 41,171,113 183,599,359 229,277,226 80 

Haralson (143) 41,191,929 11,015,680 52,207,609 72,797,007 72 

Harris (145) 99,495,701 41,901,239 141,396,940 185,120,652 76 

Hart (147) 17,408,153 6,128,705 23,536,858 33,373,443 71 

Heard (149) 60,552,657 21,492,771 82,045,428 103,829,695 79 

Henry (151) 37,649,045 11,227,081 48,876,126 64,483,583 76 

Houston (153) 23,824,990 11,945,426 35,770,416 53,914,384 66 

Irwin (155) 41,999,883 9,776,132 51,776,015 65,784,736 79 

Jackson (157) 54,791,210 18,531,189 73,322,399 90,394,670 81 

Jasper (159) 98,331,302 30,415,533 128,746,835 164,600,905 78 

Jeff Davis (161) 58,157,110 22,557,147 80,714,257 111,689,082 72 

Jefferson (163) 71,783,516 33,008,501 104,792,017 144,384,943 73 

Jenkins (165) 61,697,514 12,583,130 74,280,644 92,660,955 80 

Johnson (167) 46,825,889 9,468,638 56,294,527 79,376,895 71 

Jones (169) 126,244,988 33,573,922 159,818,910 187,370,053 85 

Lamar (171) 64,272,189 11,126,820 75,399,009 87,283,094 86 

Lanier (173) 38,433,749 16,827,458 55,261,207 68,064,791 81 

Laurens (175) 155,595,789 45,749,569 201,345,358 260,731,212 77 

Lee (177) 27,087,496 7,312,625 34,400,121 49,475,302 70 

Liberty (179) 76,117,400 18,045,718 94,163,118 129,062,960 73 

Lincoln (181) 57,231,473 9,871,135 67,102,608 83,234,613 81 

Long (183) 114,497,332 28,881,493 143,378,825 180,897,274 79 

Lowndes (185) 97,966,277 22,191,746 120,158,023 144,633,570 83 

Lumpkin (187) 41,147,191 15,373,676 56,520,867 80,950,064 70 

McDuffie (189) 40,421,199 18,363,085 58,784,284 77,768,041 76 

McIntosh (191) 73,080,390 16,238,762 89,319,152 118,601,562 75 

Macon (193) 78,335,129 14,580,295 92,915,424 111,365,151 83 

Madison (195) 34,252,443 14,184,117 48,436,560 62,007,759 78 

Marion (197) 52,979,970 21,447,384 74,427,354 100,388,214 74 

Meriwether 

(199) 118,715,823 34,022,618 152,738,441 192,724,560 79 

Miller (201) 27,964,119 6,242,312 34,206,431 44,446,464 77 

Mitchell (205) 29,058,955 15,103,646 44,162,601 64,350,309 69 

Monroe (207) 88,377,851 17,414,815 105,792,666 137,982,064 77 

Montgomery 

(209) 55,516,211 18,009,957 73,526,168 92,650,910 79 

Morgan (211) 72,438,951 31,656,803 104,095,754 129,816,854 80 

Murray (213) 37,095,200 11,344,689 48,439,889 69,130,928 70 

Muscogee (215) 33,353,715 12,175,946 45,529,661 56,912,868 80 

Newton (217) 56,163,061 8,197,028 64,360,089 74,704,893 86 

Oconee (219) 15,965,070 5,162,754 21,127,824 29,312,060 72 
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Oglethorpe 

(221) 114,962,343 28,003,613 142,965,956 181,771,401 79 

Paulding (223) 71,613,522 21,990,584 93,604,106 115,530,905 81 

Peach (225) 18,530,548 3,088,425 21,618,973 25,940,071 83 

Pickens (227) 66,742,499 16,278,010 83,020,509 102,602,999 81 

Pierce (229) 39,170,167 20,280,572 59,450,739 80,654,426 74 

Pike (231) 47,531,903 19,165,214 66,697,117 82,298,299 81 

Polk (233) 76,546,823 23,114,365 99,661,188 123,514,242 81 

Pulaski (235) 32,955,733 7,984,884 40,940,617 51,937,006 79 

Putnam (237) 93,473,195 19,064,357 112,537,552 132,881,181 85 

Quitman (239) 32,659,350 12,363,988 45,023,338 65,016,908 69 

Rabun (241) 58,054,553 22,923,023 80,977,576 120,779,495 67 

Randolph (243) 55,317,136 26,133,903 81,451,039 108,825,753 75 

Richmond (245) 45,324,376 23,300,703 68,625,079 85,255,707 80 

Rockdale (247) 10,201,084 4,335,513 14,536,597 18,278,008 80 

Schley (249) 57,442,157 12,518,356 69,960,513 87,806,350 80 

Screven (251) 101,301,540 40,067,685 141,369,225 198,841,718 71 

Seminole (253) 5,234,314 1,303,318 6,537,632 13,042,778 50 

Spalding (255) 28,955,828 9,604,949 38,560,777 52,990,447 73 

Stephens (257) 57,956,616 13,875,460 71,832,076 82,514,458 87 

Stewart (259) 130,431,843 50,131,035 180,562,878 217,171,029 83 

Sumter (261) 56,098,710 22,257,765 78,356,475 109,641,792 71 

Talbot (263) 108,994,276 36,435,952 145,430,228 184,257,951 79 

Taliaferro (265) 74,818,595 18,748,716 93,567,311 107,949,818 87 

Tattnall (267) 59,076,482 31,972,145 91,048,627 125,671,650 72 

Taylor (269) 124,014,715 27,570,600 151,585,315 180,352,520 84 

Telfair (271) 140,614,750 40,133,246 180,747,996 217,852,224 83 

Terrell (273) 67,051,112 19,489,107 86,540,219 107,789,251 80 

Thomas (275) 15,858,031 12,781,432 28,639,463 48,200,692 59 

Tift (277) 40,025,487 3,990,035 44,015,522 58,705,478 75 

Toombs (279) 58,642,623 15,323,364 73,965,987 96,043,852 77 

Towns (281) 10,060,584 6,879,666 16,940,250 28,087,351 60 

Treutlen (283) 29,720,783 8,905,644 38,626,427 54,878,671 70 

Troup (285) 77,135,167 24,649,831 101,784,998 132,712,273 77 

Turner (287) 17,136,382 6,712,311 23,848,693 32,161,500 74 

Twiggs (289) 97,425,487 32,736,798 130,162,285 155,656,373 84 

Union (291) 55,529,008 19,031,527 74,560,535 97,020,856 77 

Upson (293) 80,655,074 20,862,103 101,517,177 127,975,684 79 

Walker (295) 108,764,540 18,652,136 127,416,676 152,350,898 84 

Walton (297) 33,711,560 8,390,701 42,102,261 57,387,050 73 

Ware (299) 171,371,430 72,967,485 244,338,915 307,585,157 79 

Warren (301) 67,943,833 20,554,688 88,498,521 119,618,088 74 

Washington 111,233,683 35,217,324 146,451,007 201,999,278 73 
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(303) 

Wayne (305) 104,618,675 38,795,910 143,414,585 200,911,479 71 

Webster (307) 45,485,121 7,962,242 53,447,363 60,363,123 89 

Wheeler (309) 45,102,375 14,407,966 59,510,341 80,914,489 74 

White (311) 35,375,059 13,783,717 49,158,776 67,422,421 73 

Whitfield (313) 29,487,632 9,059,469 38,547,101 49,568,993 78 

Wilcox (315) 58,462,495 19,039,282 77,501,777 104,899,172 74 

Wilkes (317) 118,466,108 36,415,373 154,881,481 202,246,009 77 

Wilkinson (319) 126,844,859 35,006,640 161,851,499 197,150,159 82 

Worth (321) 51,214,985 13,791,886 65,006,871 85,711,406 76 

      

Totals: 9,609,121,900 

3,061,288,92

2   3,061,288,922   

 

 

Basal area (BA) of pre-merchantable trees in selected counties of Georgia 

 

County 

BA by Tree Diameter 

Classification 

Total BA of 

PMT 

Total BA of 

all trees 

% of 

the 

BA of 

PMT 

again

st the 

BA of 

all 

trees  

 

1.0-2.9 in (1) 3.0-4.9 in (2) 

   Appling (1) 1,717,628 2,279,110 3,996,738 21,868,160 18 

Atkinson (3) 942,452 1,492,260 2,434,712 10,078,836 24 

Bacon (5) 728,630 1,888,546 2,617,176 12,262,848 21 

Baker (7) 342,062 317,264 659,326 6,977,636 9 

Baldwin (9) 1,108,060 1,243,533 2,351,593 11,078,575 21 

Banks (11) 696,213 571,882 1,268,095 7,311,891 17 

Barrow (13) 332,152 244,390 576,543 4,700,981 12 

Bartow (15) 2,569,350 3,038,499 5,607,849 18,260,617 31 

Ben Hill (17) 608,428 1,654,667 2,263,095 10,706,077 21 

Berrien (19) 2,347,676 2,311,918 4,659,594 15,942,268 29 

Bibb (21) 721,252 621,586 1,342,838 6,533,609 21 

Bleckley (23) 738,347 822,893 1,561,241 7,481,654 21 

Brantley (25) 1,553,081 3,573,401 5,126,481 19,364,098 26 
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Brooks (27) 1,349,720 1,773,198 3,122,918 14,432,926 22 

Bryan (29) 1,209,841 2,047,268 3,257,109 20,808,813 16 

Bulloch (31) 2,711,826 2,865,218 5,577,044 26,683,626 21 

Burke (33) 2,198,878 3,379,557 5,578,434 33,274,312 17 

Butts (35) 898,892 985,519 1,884,411 6,733,339 28 

Calhoun (37) 634,624 745,531 1,380,155 6,026,060 23 

Camden (39) 2,330,466 3,187,863 5,518,330 27,969,625 20 

Candler (43) 962,423 1,136,435 2,098,857 6,910,931 30 

Carroll (45) 2,302,939 2,242,382 4,545,321 21,991,871 21 

Catoosa (47) 147,967 118,374 266,341 2,672,245 10 

Charlton (49) 2,182,448 4,121,755 6,304,203 25,810,504 24 

Chatham (51) 640,584 1,222,037 1,862,621 11,921,612 16 

Chattahoochee (53) 766,370 1,164,015 1,930,384 10,386,654 19 

Chattooga (55) 2,189,630 2,213,178 4,402,808 17,750,677 25 

Cherokee (57) 1,222,887 1,330,362 2,553,248 17,249,133 15 

Clarke (59) 348,039 299,933 647,972 2,591,302 25 

Clay (61) 698,483 822,893 1,521,377 7,076,285 21 

Clayton (63) 160,581 112,475 273,056 1,703,883 16 

Clinch (65) 3,499,892 7,496,736 10,996,627 41,457,065 27 

Cobb (67) 207,483 218,435 425,918 3,525,622 12 

Coffee (69) 1,978,022 2,638,056 4,616,078 19,751,422 23 

Colquitt (71) 775,107 737,956 1,513,063 11,783,894 13 

Columbia (73) 724,126 971,151 1,695,277 10,782,886 16 

Cook (75) 923,118 1,162,529 2,085,647 8,704,934 24 

Coweta (77) 2,256,026 2,135,815 4,391,841 19,500,055 23 

Crawford (79) 1,763,238 2,178,325 3,941,563 12,602,119 31 

Crisp (81) 851,030 800,147 1,651,177 6,907,176 24 

Dade (83) 322,554 322,014 644,568 7,183,607 9 

Dawson (85) 766,352 1,122,499 1,888,851 10,112,519 19 

Decatur (87) 1,150,243 1,303,058 2,453,301 13,420,271 18 

Dekalb (89) 302,969 282,307 585,276 4,622,455 13 

Dodge (91) 2,064,378 2,476,733 4,541,111 20,708,163 22 

Dooly (93) 492,366 807,708 1,300,074 7,128,353 18 

Dougherty (95) 757,418 542,788 1,300,207 10,738,790 12 

Douglas (97) 210,202 494,302 704,505 7,735,148 9 

Early (99) 770,585 998,145 1,768,730 12,353,110 14 

Echols (101) 2,548,060 4,082,054 6,630,113 19,445,918 34 

Effingham (103) 1,909,166 3,068,041 4,977,208 23,420,652 21 

Elbert (105) 1,497,570 1,557,022 3,054,592 14,272,375 21 

Emanuel (107) 3,051,192 2,990,241 6,041,432 29,331,847 21 

Evans (109) 686,349 586,107 1,272,456 8,707,411 15 

Fannin (111) 1,563,890 2,012,353 3,576,243 19,934,648 18 

Fayette (113) 278,721 270,202 548,923 3,784,803 15 
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Floyd (115) 1,726,745 2,639,598 4,366,343 19,327,951 23 

Forsyth (117) 353,005 384,849 737,854 4,587,741 16 

Franklin (119) 359,015 1,347,879 1,706,894 7,733,561 22 

Fulton (121) 1,065,220 811,306 1,876,525 14,765,141 13 

Gilmer (123) 1,735,856 2,320,378 4,056,234 28,218,130 14 

Glascock (125) 887,996 926,722 1,814,719 6,103,463 30 

Glynn (127) 1,161,866 1,731,904 2,893,770 12,273,257 24 

Gordon (129) 1,091,680 1,183,720 2,275,400 8,701,801 26 

Grady (131) 611,585 965,425 1,577,010 11,616,895 14 

Greene (133) 2,264,275 3,646,591 5,910,866 21,493,917 28 

Gwinnett (135) 905,631 838,865 1,744,496 10,209,972 17 

Habersham (137) 627,062 923,348 1,550,410 13,606,211 11 

Hall (139) 860,625 1,054,732 1,915,356 9,677,287 20 

Hancock (141) 3,107,215 3,592,756 6,699,971 24,792,468 27 

Haralson (143) 898,643 961,272 1,859,915 11,764,281 16 

Harris (145) 2,170,598 3,656,470 5,827,068 22,900,019 25 

Hart (147) 379,776 534,815 914,592 6,153,954 15 

Heard (149) 1,321,017 1,875,545 3,196,562 12,012,420 27 

Henry (151) 821,352 979,720 1,801,072 10,003,201 18 

Houston (153) 519,766 1,042,406 1,562,172 12,059,331 13 

Irwin (155) 916,269 853,104 1,769,374 9,273,550 19 

Jackson (157) 1,195,325 1,617,106 2,812,431 11,114,810 25 

Jasper (159) 2,145,196 2,654,181 4,799,377 21,718,630 22 

Jeff Davis (161) 1,268,756 1,968,427 3,237,182 14,643,467 22 

Jefferson (163) 1,566,029 2,880,454 4,446,483 20,732,854 21 

Jenkins (165) 1,345,993 1,098,054 2,444,047 10,747,880 23 

Johnson (167) 1,021,554 826,271 1,847,825 10,883,032 17 

Jones (169) 2,754,161 2,929,795 5,683,955 19,239,519 30 

Lamar (171) 1,402,162 970,971 2,373,133 7,771,919 31 

Lanier (173) 838,471 1,468,431 2,306,902 7,732,909 30 

Laurens (175) 3,394,478 3,992,290 7,386,768 31,980,782 23 

Lee (177) 590,941 638,129 1,229,070 9,422,750 13 

Liberty (179) 1,660,577 1,574,742 3,235,319 22,061,455 15 

Lincoln (181) 1,248,562 861,395 2,109,957 9,930,797 21 

Long (183) 2,497,874 2,520,315 5,018,188 21,390,239 23 

Lowndes (185) 2,137,232 1,936,541 4,073,773 15,259,272 27 

Lumpkin (187) 897,667 1,341,568 2,239,236 17,285,494 13 

McDuffie (189) 881,829 1,602,436 2,484,265 12,282,024 20 

McIntosh (191) 1,594,322 1,417,059 3,011,381 15,022,435 20 

Macon (193) 1,708,959 1,272,335 2,981,294 13,696,996 22 

Madison (195) 747,251 1,237,763 1,985,014 8,210,365 24 

Marion (197) 1,155,811 1,871,585 3,027,396 12,423,662 24 

Meriwether (199) 2,589,904 2,968,950 5,558,854 22,535,600 25 
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Miller (201) 610,065 544,729 1,154,794 5,866,275 20 

Mitchell (205) 633,950 1,318,005 1,951,955 10,073,280 19 

Monroe (207) 1,928,051 1,519,686 3,447,738 18,599,794 19 

Montgomery (209) 1,211,142 1,571,621 2,782,763 11,207,396 25 

Morgan (211) 1,580,328 2,762,499 4,342,827 16,140,583 27 

Murray (213) 809,269 989,983 1,799,252 11,978,884 15 

Muscogee (215) 727,645 1,062,522 1,790,166 6,644,553 27 

Newton (217) 1,225,253 715,305 1,940,559 9,203,000 21 

Oconee (219) 348,294 450,523 798,817 5,522,269 14 

Oglethorpe (221) 2,508,018 2,443,707 4,951,726 23,603,254 21 

Paulding (223) 1,562,321 1,918,986 3,481,307 13,815,746 25 

Peach (225) 404,262 269,508 673,771 2,533,267 27 

Pickens (227) 1,456,054 1,420,484 2,876,539 13,037,690 22 

Pierce (229) 854,536 1,769,764 2,624,300 11,387,487 23 

Pike (231) 1,036,956 1,672,433 2,709,389 10,441,809 26 

Polk (233) 1,669,945 2,017,052 3,686,997 13,986,168 26 

Pulaski (235) 718,962 696,793 1,415,755 6,548,959 22 

Putnam (237) 2,039,211 1,663,632 3,702,843 12,558,646 29 

Quitman (239) 712,496 1,078,931 1,791,427 9,684,075 18 

Rabun (241) 1,266,518 2,000,355 3,266,873 26,748,924 12 

Randolph (243) 1,206,799 2,280,549 3,487,348 15,091,688 23 

Richmond (245) 988,797 2,033,313 3,022,109 11,156,422 27 

Rockdale (247) 222,547 378,334 600,881 2,872,018 21 

Schley (249) 1,253,158 1,092,402 2,345,560 8,433,148 28 

Screven (251) 2,209,994 3,496,466 5,706,461 32,564,451 18 

Seminole (253) 114,192 113,733 227,925 2,987,289 8 

Spalding (255) 631,700 838,166 1,469,867 9,280,346 16 

Stephens (257) 1,264,382 1,210,828 2,475,210 7,935,043 31 

Stewart (259) 2,845,501 4,374,635 7,220,136 19,485,811 37 

Sumter (261) 1,223,849 1,942,302 3,166,151 15,896,915 20 

Talbot (263) 2,377,819 3,179,547 5,557,366 19,489,037 29 

Taliaferro (265) 1,632,242 1,636,088 3,268,330 9,283,699 35 

Tattnall (267) 1,288,813 2,790,017 4,078,830 17,843,844 23 

Taylor (269) 2,705,505 2,405,921 5,111,426 16,163,647 32 

Telfair (271) 3,067,651 3,502,188 6,569,839 21,834,178 30 

Terrell (273) 1,462,787 1,700,697 3,163,484 12,403,272 26 

Thomas (275) 345,959 1,115,359 1,461,318 13,039,400 11 

Tift (277) 873,196 348,186 1,221,382 9,321,120 13 

Toombs (279) 1,279,347 1,337,178 2,616,525 12,112,052 22 

Towns (281) 219,482 600,347 819,829 6,725,997 12 

Treutlen (283) 648,389 777,142 1,425,531 9,096,455 16 

Troup (285) 1,682,781 2,151,043 3,833,824 18,454,568 21 

Turner (287) 373,847 585,743 959,590 4,148,530 23 
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Twiggs (289) 2,125,434 2,856,744 4,982,178 16,287,202 31 

Union (291) 1,211,421 1,660,767 2,872,188 15,732,148 18 

Upson (293) 1,759,571 1,820,511 3,580,082 15,860,523 23 

Walker (295) 2,372,807 1,627,660 4,000,467 17,276,311 23 

Walton (297) 735,451 732,206 1,467,658 11,935,870 12 

Ware (299) 3,738,639 6,367,435 10,106,074 30,635,798 33 

Warren (301) 1,482,263 1,793,684 3,275,947 16,792,694 20 

Washington (303) 2,426,674 3,073,205 5,499,879 26,629,832 21 

Wayne (305) 2,282,361 3,385,486 5,667,847 28,041,282 20 

Webster (307) 992,303 694,817 1,687,120 4,671,169 36 

Wheeler (309) 983,953 1,257,297 2,241,250 14,009,879 16 

White (311) 771,742 1,202,822 1,974,565 11,879,083 17 

Whitfield (313) 643,302 790,566 1,433,868 8,025,992 18 

Wilcox (315) 1,275,418 1,661,444 2,936,862 15,160,366 19 

Wilkes (317) 2,584,457 3,177,751 5,762,208 24,721,051 23 

Wilkinson (319) 2,767,247 3,054,819 5,822,067 23,161,266 25 

Worth (321) 1,117,306 1,203,535 2,320,841 13,789,348 17 

      

Totals: 

15,731,699,7

44 

28,402,110,5

66 

28,402,110,5

66 

44,133,810,3

10   

 


