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by 

ZHIYONG HU 

This study examines the dynamics of human-induced land use/cover changes, especially 
urban growth, in Atlanta, Georgia metropolitan area. Land use/cover changes of Atlanta between 
1987 and 1997 were observed from LANDSAT TM satellite images and linked with the 
biophysical and socio-economic data using image processing, spatial analysis and modeling 
integrated in the framework of a geographic information system(GIS). Normalized Vegetation 
Difference Index (NDVI) differencing and temporal logic were employed to improve the 
accuracy of land use/cover change detection. A Markov chain model was used to conduct a 
‘what-if’ analysis to predict the quantity distributions and spatial patterns of the future land 
use/cover based on the 1987-1997 land use/cover transition probabilities. In addition, a logistic 
regression model was used to identify the factors governing the process of urban growth and to 
predict the most probable sites of the growth. This study found that from 1987 to 1997 the most 
intense land use/cover change in Atlanta was deforestation for urban development. During the 
ten years, high-density urban area increased 12.94% from 876.78km2 to 990.27 km2; low-density 
urban area increased 42.57% from 2468.62 km2 to 3519.56 km2; and forest decreased 10.62% 
from 9217.04 km2 to 8238.28 km2. The Markov chain simulation revealed that urban use will 
continue to grow at the expense of forest. The proportion of urban area was 20.93% in 1987, and 
it will be 35.45% in 2020. Forest will decrease from 57.67% in 1987 to 43.64% in 2020. Urban 
growth will occur in the rural and urban-fringe areas, taking on a fragmented pattern. It was 
found from the logistic regression model that urban growth tends to occur around existing urban 
areas and close to major roads (road influenced growth), while some new urban clusters located 
at a distance from the existing urban areas can also form(diffusive growth). Whereas the logistic 
regression model can incorporate human dimensions, the Markov chain model is more 
temporally dynamic. Recommendations were made for further exploration of a more realistic 
land use/cover change model that can deal with space, time, and people simultaneously. 
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CHAPTER ONE 

INTRODUCTION 

 

1.0 Research background 

The last century has seen the unprecedented concentration of humans into urban area 

around the globe, creating an extensive urban landscape. In the United States, urban growth rates 

show no signs of slowing. Cities have changed from small, isolated population centers to large, 

interconnected metropolitan regions. Based on a study using Defense Meteorological Satellite 

Program Operational Linescan System (DMSP-OLS) nighttime images, Gallo et al. (2004) found 

that the night-time light increase can be associated with urbanization  (Figure 1.1). It was found 

that over 13% of the land area within the conterminous USA exhibited greater night-time light 

emitted in 2000 compared to 1992/1993. Most of the night-time light brightness increases 

between 1992/1993 and 2000 were located near urban areas. Over the past 50 years, one of the 

dominant geographical trends in the United States has been suburbanization. In 1950, the share 

of metropolitan area residents who lived in central cities was 57 percent of the nation, but by 

1990, had fallen to 37 percent (Mieskowski and Milles 1993). Most metropolitan areas in the 

United States are adding urbanized land at a much faster rate than they are adding population 

(Fulton et al. 2001) (Figure 1.2).  People are increasingly choosing to live in low-density, 

vehicle-dependent suburban areas. For all the American urban areas, population grew by 92.3 

percent while land area increased by 245.2 percent between 1950 and 1990 (Mieskowski and 
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Figure 1.1  Urban growth indicated by night-time light brightness increase from 1992 for the  

                  Conterminous USA. The image was derived from the Defense Meteorological Satellite 

                  Program-Operational Linescan System (DMSP-OLS) nighttime images. Yellow areas 

                  are brightness values greater than 0; red indicates grid cells where 2000 brightness  

                  values were greater than 1992 values. Images obtained from the same sensor have also 

                  been used to detect urban morphology and land use for China (Lo 2002). 
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Figure 1.2  Percentage change in population and urbanized land in the Unite States, 1982-1997, 

                  By census region (Source: Fulton et al. 2001). 
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Figure 1.3  Urban and rural populations of more developed regions and less developed regions, 

                  1950-2030. (Source: United Nations Department of Economic and Social  

                  Affairs/Population Division 11 World Urbanization Prospects: The 2003 Revision). 

 

 

Milles 1993). The trend of rapid urbanization is now global, with urban population in developing 

regions growing faster than developed regions (United Nations report 2003 ) (Figure 1.3). 

Urban growth and the concentration of people in urban areas are creating environmental  

and societal problems world-wide. Urban development has consumed large extents of farmland 

and green space. Pollutants discharged from urban areas lower the quality of air and water.
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Urban growth is stressing ecological systems and leading to the decline in the extent and 

connectivity of wildlife habitats. Urbanization can warm the regional climate. Many 

metropolitan areas are facing problems of traffic congestion. Unchecked urban sprawl has 

brought about many societal problems, such as, increasing spatial segregation of races and 

disparity of incomes, increasing spatial mismatch between low-income residents and jobs, the 

spatial disintegration of labor markets, and increasing threats from natural hazards as urban 

structure becomes more dispersed and internally complex (Knox 1993). 

With the recognition of the impact of urban growth on the environment and society, the 

study of urban growth has gained  interests among social and environmental scientists. 

Urbanization and urban growth has long been studied by social scientists with a focus on 

economic transformation, population and migration, and societal problems. Although the studies 

from the perspective of social science can reveal the socioeconomic process behind the urban 

growth, these studies are not able to show explicit spatial details since they are often conducted 

using survey data or data collected on enumeration data. Recently, urban growth research has 

attracted the attention of  environmental scientists in the broader context of land use/cover 

change study. In their perspective, urbanization is just one form of human-induced land 

use/cover changes. Land use/cover change is increasingly recognized as being an important 

driver of global and regional environmental change. Patterns of landscape modifications are the 

results of complex interactions between physical, biological and social forces (Turner 1987). 

Of critical importance in human-induced land use/cover change study is linking the 

observed changes in land use/cover to the socioeconomic and biophysical driving forces. To 

understand and predict change processes, one needs to monitor and characterize spatial patterns 

of land use/cover change. Land use/cover change models have been used by geographers and 
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environmental scientists to reveal and understand the spatio-temporal dynamics of land use/cover 

changes, to forecast future land use/cover extent and spatial pattern, and to evaluate the impact of 

land use/cover changes. There are various kinds of land use/cover change models. Basically, a 

land use/cover change model can fall into two categories: statistical models or simulation 

models. To best represent the land use/cover system and predict the future, a land use/cover 

change model must take spatial, temporal and human dimensions into account. However, few 

models can deal with the three dimensions simultaneously. It is a necessity to find innovative 

modeling methods or apply different models in a study to cover the full dimensions of the 

processes behind the land use/cover changes.  

Land use/cover change models intended to link land use/cover changes to socioeconomic 

and environmental conditions rely on socioeconomic data and historical temporal observation of 

the changes. Assessment and monitoring of urbanization and other land transformations are 

exceptionally difficult at the regional and global scales (Masek et al. 2000), if only field 

observation data of  land use/cover change can be obtained. However, field studies are generally 

not sufficient to quantify and analyze spatiotemporal patterns of land use/cover changes at an 

aggregated level in a spatially explicit and timely way (Liverman et al. 1998). Remote sensing 

images have offered considerable promise for monitoring land use/cover change. Remote sensing 

has emerged as the most useful data source for quantitatively and spatially measuring land 

use/cover changes.  The dynamics of change processes can be investigated using a temporal 

series of remote sensing data. While census data provide a statistical view of demographics and 

economics, the actual spatial patterns of urban landscape can only be efficiently observed by 

remote sensing.  The frequent revisiting observations by remote sensing updates our view of 

urban landscape, manifesting time series of urban growth, recording the variability of urban 
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development in space and time, thus permitting a rigorous comparison with economic and 

demographic data (Masek et al. 2002).  Thus, historical land use/cover change data obtained 

from remote sensing integrated with socioeconomic data are often used as inputs to land 

use/cover change models.  

The reliability of the results of land use/cover change modeling is not only affected by 

the selected modeling method, but is also highly dependent on the accuracy of land use/cover 

change mapping from remote sensing and the quality of socioeconomic data. Computer-assisted 

production of spatially-detailed and thematically-accurate land use/cover maps from satellite 

images is still a challenge for the remote sensing and photogrammetry research community. How 

to improve the accuracies of land use/cover classification maps for land use/cover change 

detection has been a topic heavily investigated in remote sensing and photogrammetry (Aplin 

and Atkinson 2004; Congalton 1991,1996, 2002). Land use/cover change detection using data 

obtained from the classification of remotely sensed images using a single conventional 

classification method often cannot achieve the best accuracy. It is necessary to explore 

innovative methods or combine existing land use/cover classification methods to improve the 

accuracy. To be integrated with remote sensing data in a monolithic modeling environment, 

socioeconomic data need to be pixelized. Proximate variables are often derived from 

socioeconomic and biophysical data. Integrating remotely sensed, socioeconomic, and derived 

data for proximate variables relies on a common framework. Geographic information systems 

(GIS) can offer an integrative environment for spatial analysis and modeling using 

heterogeneous socioeconomic and environmental data.  
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1. 1 Study area 

The Atlanta, Georgia metropolitan region is the study area for this dissertation. The region is 

defined here to include 13 urban counties: Cherokee, Cobb, Fulton, Gwinnett, Dekalb, Rockdale, 

Clayton, Fayette, Douglas, Henry, Coweta , Forsyth, and Paulding  (Figure 1.4). The first ten 

counties form the planning area of the Atlanta Regional Commission (ARC).  

 

1.1.1 Urban growth in Atlanta: an overview 

In the last half of the 20th century, Atlanta, Georgia has risen as the premier commercial, 

industrial, and transportation urban area of the southeastern United States. The rapid growth of 

the Atlanta area, particularly within the last 25 years, has made Atlanta one of the fastest 

growing metropolitan areas in the United States. The population of the Atlanta metropolitan area 

increased 27% between 1970 and 1980, 33% between 1980-1990, and 39% between 1990-2000 

(Research Atlanta, Inc. 1993; US Census Bureau 2000). Concomitant with this high rate of 

population growth has been an explosive growth in retail, industrial, commercial, and 

transportation services within the Atlanta region. This has resulted in tremendous land cover 

change within the metropolitan region, wherein urbanization has consumed vast acreages of 

forested and agricultural land adjacent to the city proper and has pushed the rural/urban fringe 

farther and farther away from the original Atlanta urban core.  An enormous transition of land 

from forest and agriculture to urban land uses has occurred in the Atlanta area in the last 25 

years. Between 1982 and 1997, Atlanta had the largest  absolute (but not the percentage) increase 

in urbanized land of any metropolitan area in the nation—approximately 571,000 acres, which  
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Study Area: 

Thirteen-county Metropolitan Region of Atlanta, Georgia 

 

 

 

                   

                  Figure 1.4 Study Area: Thirteen-county metropolitan region of Atlanta, Georgia. 
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was far head of New York, Dallas, Los Angeles, and Houston, which ranked second through 

fifth nationally (Fulton et al. 2001). 

Atlanta’s urban growth is characteristic of low-density development with the urban 

growth rate being much greater than the population rate. In 1982, Atlanta had a metropolitan 

population of approximately 2.2 million persons using 701,000 acres of urbanized land — an 

overall metropolitan density of 3.20 persons per urbanized acre. In 1997, Atlanta had a 

metropolitan population of 3.6 million people and 1.27 million acres of urbanized land — a 

metropolitan density of 2.84 persons per urbanized acre (Fulton et al. 2001). The Atlanta 

region’s growth partly conforms to the national trends towards low-density development, 

automobile dependence, decentralized labor markets, and the shift of population towards suburbs 

rather than cities or rural areas. 

 

1.1.2 Unbalanced growth in Atlanta 

There has been an unbalanced and polarizing growth in Atlanta: a dividing line exists 

between the north and the south, strongly corresponding with the long-standing residential racial 

segregation patterns. This unbalanced growth has many dimensions: separation by class and race, 

poverty, job and housing growth, and transportation patterns (BICUMP 2000).  

(1) Population 

Explosive population growth is occurring in the northern and outer suburbs of the Atlanta 

region (BICUMP 2000), with almost 70 percent of the growth from 1990 to 1998 occurring north 

of the region. Southside areas gained about 170,000 people from 1990 to 1998. The population 

growth in southern counties has occurred entirely in exurban bedroom communities.   
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(2) Poverty 

The distribution of poverty in the Atlanta region is also uneven. The poor tend to live in 

the southern parts (south Dekalb, south Fulton, Clayton, Douglas counties), while the northside 

(Gwinnett, Cherokee) has a low poverty rate and almost no areas of concentrated poverty.  

Concentrated poverty “… pushes away businesses and middle-class families, further 

undermining those neighborhoods and fueling sprawl …” (BICUMP 2000, 10).  The serious 

financial burdens serving the poor in those areas has imposed tax rate increases on middle-class 

taxpayers and firms, hence a “white flight” from those areas to the suburb. Higher income 

families live in the region’s northern and far southern areas. 

(3) Race 

Race segregation is also observed from the census statistics. According to the 1998 data, 

the Atlanta region’s overall population was 72 percent white. North of Interstate 20 highway, the 

proportion of  white was over 80%. In the far southern suburban communities, at least 85% of 

the population was white. Fulton and Dekalb counties were home to 74% of the region’s non-

white population. In 1999, almost one-third of the region’s non-white population lived in the city 

of Atlanta.  In some places, particularly the city of Atlanta, the racial divide corresponds to great 

income disparities. In the region, the racial divide and income divide are often related, but not 

identical. The region is becoming increasingly diverse in races. The Atlanta region has become 

home to a growing population of Hispanics and Asians during the 1980s and 1990s. Different 

races have different cultural identities, and location preferences. Repelling or attracting effects 

exist among races. According to a survey conducted by Research Atlanta (Geller et al. 1995), 90 

percent of whites surveyed in metropolitan Atlanta expressed a willingness to move into an area 
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with one black household. As the number of black households increased to eight, however, the 

percentage of whites willing to move into such a neighborhood decreased to 26 percent.  

(4) Employment 

Unbalanced growth of employment also has fueled the urban sprawl. Most new jobs and 

high-paying jobs are on the north side of the region, in north Fulton, north Dekalb, Gwinnett, and 

Cobb Counties. Of  348,000 new jobs added to the Atlanta region between 1990 and 1997, 

almost three-fourths of this job growth had occurred in the northern part of the region (ARC 

1997). Many of the areas of greatest job increases are outside Atlanta’s I-285 perimeter highway.  

The city of Atlanta is slipping overall in its share of jobs despite flourishing commercial areas in 

the north of the city, such as Buckhead, Midtown and Lenox. There is little or no job growth in 

the majority non-white neighborhoods. The declined shares of jobs in central cities and slow-

growing suburbs reflect three forces that work behind the job growth as observed in other 

regions (BICUMP 2000): (1) certain service- and retail- sector jobs are increasing in the suburbs 

in order to serve a growing suburban population; (2) businesses without a primarily residential 

customer base choose to locate in the suburbs because other, similar firms are there; and (3) 

employers choose wealthier suburban locations “pulled” by the residential  suburbanization and 

“pushed” by high taxes, regulatory constraints, and public service inefficiencies in the city and 

aging suburbs. 

(5) Housing 

The spatial distribution of affordable housing is one of the important factors shaping 

metropolitan growth patterns. Although some government policies or laws encourage fair 

housing, such as Federal Fair Housing Act, Atlanta Metro Fair Housing, Discrimination 

Complaint Activity, racial gaps in housing conditions still exist – many blacks, minorities, and 
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the poor are “locked out of the American dream”(Torres et al. 2000). Many middle-class families 

cannot afford to live in the city of Atlanta’s residential areas or in job-rich parts of the suburbs. 

Developments sprawl into the exurban fringe because many families cannot afford the near 

northside houses and avoid the southside (BICUMP 2000). This partly explains why the 

residential area of the Atlanta region is growing at such a fast pace.  

(6) Transportation 

Transportation plays an important role in shaping urban development. Many simulation 

models include distance to roads or “road-gravity” (Clarke and Hoppen 1997) as exogenous 

variables. The bulk of the Atlanta region’s infrastructure funds have been spent on highways, 

particularly in the northern part of the region (ARC 1997). Today many of the largest job centers 

in the region are not served by public transit. Transportation patterns play into the north-south 

divide in the Atlanta Region.  

 

1.1.3 Polycentric structure of metropolitan Atlanta  

 Like other American metropolises, the massive suburbanization of economic activities since the 

1960s contributed significantly to the spatial restructuring of the business landscape of the 

Metropolitan Atlanta, resulting in the clustering of high-order activities in new metropolitan-

level urban centers — ‘suburban downtowns’ (Hartshorn and Muller 1989). The emergence of 

these large multifunctional complexes in the outer suburban city rendered obsolete the three 

classic models of urban structure — the concentric zone, sector, and multiple nuclei models, but 

conformed to the urban realms model.  

Hartshorn and Muller (1989) proposed a four-stage model of suburban economic-spatial 

development. These stages are: (1) bedroom community (pre-1960), dominated by high rates of 
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city-to-suburb migration with dependency on the central business district (CBD); (2) 

independence (1960-1970), characterized by the transformation of suburbs from a dependence 

status to independency with the arrival of regional shopping centers and industrial and office 

parks; (3) catalytic growth (1970-1980), characterized by the agglomeration and clustering 

processes in the forms of corridors (suburban freeway, retail-strip, and high-technology 

corridors)  and various types of clusters (rings of office buildings, diversified office center, large-

scale mixed-use center, old town center and suburban specialty center); and (4) high-rise/high-

technology stage (1980- present) when high-rise buildings surpassed the CBD in office activity, 

distinctive labor markets emerged, and the high-technology corridor matured.  

  The four-stage growth model is applicable to the evolution of suburban business 

landscapes in metropolitan Atlanta with small variations only in the timing of a particular stage 

as demonstrated by two of metropolitan Atlanta’s suburban downtowns, which ranked among the 

largest in the United States: the Cumberland/Galleria suburban downtown (adjacent to the 

interchange of I-285 and I-75 in Cobb County) and the Perimeter Center/Georgia-400 (adjacent 

to the interchange of I-285 and GA-400 in Dekalb County) suburban downtown. The other two 

downtowns present in the area are the traditional CBD in downtown Atlanta, and Buckhead 

/Lenox, referred to as a new downtown in the study by Hartshorn and Muller (1989) (Fujü and 

Hartshorn 1995).  

The polycentric structure can also be seen from the examination of employment data. 

According to Fujü and Hartshorn (1995) in 1990, the total number of workers in the four Atlanta 

downtowns, including the CBD, was 295,000, or 21% of the workers in Atlanta region. The 

largest suburban downtown, Perimeter center/GA-400, had 85,469 employees, close to the 

number of employment in the CBD (97,701).  Forty-three percent of finance, insurance, and real 
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estate (FIRE) employment in the Atlanta region was concentrated in these four downtowns, with 

15% in Perimeter Center/GA-400 and 11% in the CBD. These figures suggest that even for FIRE 

employment, which is the most concentrated of the three types of employment (FIRE, retail and 

services), over one-half occurred outside the major downtown areas. Fujü and Hartshorn(1995) 

also found that corporate office locations occur both in the CBD and in other downtowns. 

The decentralization continues with astonishing rapidity today. Major suburban 

downtowns have developed at the intersections of the major freeways. The ARC counted 22 

existing or emerging major activity centers in metro Atlanta in 1994, 1995 and 1996 (Figure 1.5) 

(ARC 1994, 1995, 1996), 23 in 1997 with the addition of the new Mall of Georgia, and 24 in 

2001 with the emergence of Sugarloaf Mills, nearly all north of I-20 and many north of the I-285 

beltway (ARC 1997, 2001). 

 

1.1.4  Impacts of urban growth in Atlanta 

The continuous urban sprawl has many negative effects. Sprawl affects the quality of life, and 

intensifies economic and racial polarizations. The unchecked growth has caused traffic 

congestion, environment endangerment and spatial mismatch of job locations and living places. 

Atlanta has serious air pollution, especially caused by ground-level ozone. Atlanta ranks eighth 

in the year 2003's 20 most polluted metropolitan areas in the US (MSN news, April 30, 2003). 

The extensive system of natural waterways within the region such as the Chattahoochee River, 

has been endangered. Large quantities of green space have been converted to development, 

which has dramatically increased the urban heat island effect around Atlanta as found by the  

 



 16

 

                      Figure 1.5 Major activity Centers in Atlanta region in 1994,1995 and 1996. 

                                       (Source: Atlanta Regional Commission). 
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Project ATLANTA (Atlanta Land-use Analysis: Temperature and Air-quality) project funded by 

NASA (Quattrochi and Luvall 1999). Low-density settlement increases the cost of maintaining 

roads, streets, sewers, water, storm drains, and schools. The Atlanta people’s recent anxieties 

about sprawl and traffic congestion have resulted in their greater demand for information on the 

area’s growth trends and for responses to some of the negative consequences of the region’s 

growth, so that planning can do something about the urban sprawl.  

 

1.2 Research objectives 

This dissertation research is to model the land use/cover changes, especially urban growth, in the 

Atlanta, Georgia metropolitan area through linking the land use/cover change observed from 

satellite image data with the biophysical and socioeconomic data using spatial analysis and 

modeling supported by GIS. Specific objectives of this study are:   

(1) To develop an accurate and effective method that takes advantage of computer 

automation abilities to characterize quantitatively and spatially, based on historical remotely 

sensed data, the process of land use and land cover change;  

(2) To conduct a ‘what-if’ analysis to predict the quantity of distributions and spatial 

patterns of the future land use/cover based on land use/cover change transition probabilities 

revealed in the historical data analysis using a stochastic dynamic model; and 

(3) To identify and improve our understanding of the socioeconomic and biophysical 

factors that have governed the urban growth and to find the most probable sites of urban growth 

using a statistical model.  

This study will contribute  to the remote sensing and GIS literature in three aspects: 
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             (1)  In the technology and science aspect, this study will demonstrate that the integration 

of GIS with remote sensing, image processing, spatial analysis, and spatial modeling can be used 

to explore the complex dynamics of human-induced land use/cover changes. It will show that the 

suite of geospatial techniques has gone beyond their role as a tool for data collection, inventory, 

and handling toward a disciplinary paradigm — geographical information science, which  

enables information mining from the data,  as well as modeling and prediction of the complex 

human-land interaction system.   

(2) In the theoretic aspect in the context of land use/cover change, particularly, urban 

growth, this dissertation research will advance our knowledge of spatio-temporal dynamics and 

human dimensions in the process of land use/cover change,  provide insights on and 

understanding of the processes behind the changes of urban landscape patterns.  

(3) In the application aspect,  the results from the characterization and modeling of the 

land use/cover changes, especially the urban growth, using remotely sensed images and 

socioeconomic data,  are useful for the guiding of decision making in the management of the 

land resources in the region. The model results can further be used to analyze the impacts of 

urban growth on the environment. The research findings will supply the general public with the 

information of their concerns about urban sprawl, and challenge the urban planning decision-

makers to think broadly and critically about solutions necessary to reduce sprawl, create “smart 

growth” and improve life in the region. It is also expected that the methodology used to monitor 

and model the land use/cover change processes in this region clearly identified as a land 

use/cover change ‘hot-spot’, if tested to be valid, could be applied to other regions experiencing 

a similar urbanization process.  
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1.3 Dissertation structure 

This dissertation is organized into six chapters. Chapter One introduces the research background, 

states study objectives and significance, and gives an introduction of the study area. Chapter Two 

reviews literature on urban morphology models, land use/cover change detection methods, and 

land use/cover change models. Chapter Three presents a new approach to improve the accuracy 

of land use/cover change detection from Landsat TM data using principal components analysis, 

change vector analysis, temporal logic, and a Normalized Difference Vegetation Index (NDVI) 

difference map. Chapter Four uses Markov chain model to characterize temporal and spatial 

changes in land use/cover and predicts the quantities and spatial patterns of land use/cover in the 

near future. Chapter Five uses a logistic regression model to establish the relationship between 

urban growth and the driving forces of the change using historical land use maps derived from 

remote sensing and demographic, biophysical and econometric data. An urbanization  probability 

map is produced to show the spatial patterns of the most probable sites for future urban growth. 

Chapter Six  provides a summary and conclusions of this dissertation research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.0 Introduction 

This chapter gives a review of the theory and methodology that are relevant to the subject of this 

dissertation study. The chapter first gives a review of literature of the basic concepts and theories 

on urban land use/cover system, then a methodology review on land use/cover change detection 

methods and land use/cover modeling.  

 

2.1 Basic concepts and theories on urban land use/cover system and its modeling 

An urban land use system is dominated by human activities with complex spatiotemporal 

dynamics. Modeling such a system needs to be grounded in various scientific concepts and 

theories. The whole process of the dissertation study, from the selection of an appropriate land 

use model, identification of variables, to explanation of modeling results, was implicitly or 

explicitly guided by theoretical considerations. These concepts and theories include some 

philosophical, geographical, and methodological thoughts on space-time-being system, urban 

econometrics, urban morphology models, temporal and scalar dynamics, and the theory of 

complex systems. 
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2.1.1 Space, time, and humans in a land use system 

2.1.1.2 Space 

Space, time, and human being are three formative dimensions of human existence. Space is not 

only a social production; its organization also shapes the social relations with a feedback 

mechanism. When we construct an urban land use model, we must take social factors that shape 

the urban spatial patterns into account. Land use models should contain a feedback mechanism 

so that the effect of the change of spatial pattern on social factors could be considered.  

Marxism links the spatial and environmental with the social and economic. With its 

notion of the social production of nature and space, Marxism links both human and physical 

geographies to society and creates a single understanding by combining the two traditions of 

geography: physical geography and human geography (Soja 1989). These two geographies are 

linked through conceptions of space and time. Spatial entities exist both in physical and human 

geography. Both geographies are sciences about complex spatio-temporal systems in which time 

and space must be thought together. What does this mean to urban land use modeling? It means 

that a spatio-temporally dynamic model is ideal to approach the real problems with urban sprawl. 

 

2.1.1.2  Time 

Geographers incorporate time into their explanations, which seek to recover some temporal 

relationships among phenomena over a longer period. These temporal relationships are the only 

way of referring to historical conditions that shed light on the current situations under thinking 

and investigation. The only way to develop objective measures of time is in terms of some 

processes. In a process, laws govern the mechanism and direct the trajectory of a dynamic 
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system. Geographical dynamic modeling seeks to simulate the process, such as Markov chain 

modeling of land-use change and cellular automata (CA) modeling of urban growth. 

There are four major types of temporal explanations in geography: narrative, reference to 

time and stage, hypothesized process, and reference to actual process (Harvey 1969). In 

explanation by hypothesized process, a particular process is assumed to exist, and, given that 

process, an artificial time scale is produced to locate events and hence explain them. The 

hypothesized processes are thought of as deterministic. In explanation by reference to actual 

process, the actual process is based on empirical evidence. 

Structuralist and realist philosophies argue that explanation for observed patterns cannot 

be discovered through analysis of the patterns themselves, but only by the development of 

theories of the underlying processes that generate the conditions with which human agents can 

create those patterns. Marxism is foremost within this group, which argues that the processes are 

themselves changing, and can be altered by concerted political actions, so that no laws of spatial 

organization are possible (Soja 1989; Curry 1996). The observed urban spatial pattern cannot be 

explained by the pattern itself. It must seek social, economical and environmental explanations. 

 

2.1.1.3 Systems approach and mathematical modeling 

A system is a series of linked elements interacting to form an operational whole. The study of 

systems allows dynamic processes to be incorporated within geographical analysis (Livingstone 

1992). Social systems are open or at most quasi-closed systems producing regularities that are 

only approximate and spatially and temporally restricted. Accurate and reliable explanatory 

prediction for open systems are impossible. The predictive methods dealing with open systems 

are neither non-explanatory nor fully explanatory, but a compromise taking the form of an 
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empirical model in which some of the main processes are summarily represented by variables is 

possible. Whether systems of interest are closed or open has a strong bearing upon the use of 

mathematical models. Theoretical models posit the existence of a hypothetical closed system 

(Hilts 1973). Statistical processes are often said to be probabilistic and involve chance or random 

elements. One of the weaknesses of statistics is that there often exists dependency between 

independent variables.  

 

2.1.2 Urban econometrics 

To develop a spatially explicit land use/cover model, one needs to understand the economic 

process at work, i.e., the human behavioral component that underlies land use change (Irwin and 

Geoghegan 2001). For example, the Von Thünen model relates intensity and type of land use to 

transportation costs and land rent (Von Thünen 1966) .The model involves a homogeneous plain 

within which exists an isolated city. Land-use patterns around this city are a function of travel 

cost to the city. Land uses producing goods with a relatively high transportation cost would be 

produced close to the city, and land uses producing more durable goods with lower 

transportation costs would be produced farther from the city. This arrangement results in a series 

of different land use zones around the city. A Von Thünen-like model can be used to guide the 

identification of determinants of land use and land cover change. Bid-rent theory suggests 

different functions will bid differently for land in various parts of the city (Alonso 1964). It 

suggests that the more accessible the site of land, the higher its value. The relationship between 

development factors and urban structure is conceptualized by bid-rent theory in urban 

econometrics (Wu 2002). The main determinant of land use change, according to mono-centric 

bid-rent theory, is the distance to the city center. This is an elegant but too simplified deduction. 
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With the rapid development of modern transportation, telecommunications, computer and 

networking technologies, and under the situation of globalization of economy, using the distance 

to a single city-center as a main determinant of urban land use is not appropriate. Travel cost is 

no longer determined only by distance; longer distance transportation may not cost more than 

shorter distance. Urban development does not necessarily take on a monocentric form. The 

actual land development is subject to many biophysical, socioeconomic and policy factors. 

 

2.1.3 Models of urban structure 

Both urban econometric factors and social forces help shape the spatial structure of cities. Cities 

are spatially organized to perform their functions as a place of commerce and a place to live (de 

Blij 1993). There are four well-known models of urban structure (Figure 2.1). 

(1) Concentric zone model  (Figure 2.1(a)) 

Burgess (1925) proposed the concentric zone model based on his observations of Chicago 

during the early years of the 20th century. He recognized five concentric zones. The innermost 

zone is the CBD (region 1), containing shops, offices, banks, government buildings, and hotels.  

Surrounding the CBD is a transitional area, a zone of residential deterioration, also marked by 

the encroachment of business and light manufacturing. Region 3 is the zone of workingmen’s 

homes, a ring of closely built but adequate residences of the urban blue-collar labor force. The 

next zone (region 4) consists of middle-class residences, and out-central-city/inner suburban 

areas, characterized by greater affluence and spaciousness. Region 5 is the commuters’ zone 

where residents commute to the CBD to work. An important feature of this model is the positive 

correlation of socioeconomic status of households with distance from the CBD — more affluent 

households were observed to live at  
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                  (a)  Concentric Zone Model 
                        (Burgess 1925) 
 

 
 

1- Central business district   2- Zone of transition 
            3- Zone of independent workingmen’s homes 

4- Zone of better residences  5- Commuter’s zone 

                            (b)  Sector Model 
                                   (Hoyt 1939) 
 

 
 

1- High rent residential   2- Intermediate rent residential 
           3- Low rent residential    4- Education and recreation 
           5- Transportation    6- Industrial   7- Core 

   
           (c) Multiple nuclei model  
                (Harris and Ullman 1945) 
 
 

 
 
1- CBD     2 - Whole sale, light manufacturing 
3- Low-class residential             4- medium-class residential 
5- High-class residential            6- heavy manufacturing 
7- Outlying business district      8- residential suburb 
9- Industrial suburb  

 
                  (d) Urban Realms Model  
                       (Hartshorn and Muller 1989) 
 
 

 
    
     

                                           

Figure 2.1 Models of urban structure. 
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greater distances from the central city. Burgess described the changing spatial patterns of 

residential areas as a process of “invasion” and “succession”. As the city grows and develops 

over time, the CBD would exert pressure on the zone immediately surrounding it (the zone of 

transition) and invade nearby residential neighborhoods causing them to expand outward. The 

process was thought to continue with each successive neighborhood moving further from the 

CBD.  

(2) Sector model (Figure 2.1(b)) 

Hoyt (1939) proposed the sector model of urban structure. Hoyt modified the concentric 

zone model to account for the influence of major transportation routes. Recognizing that 

transportation routes represent lines of greater access, Hoyt theorized that cities would tend to 

grow in wedge-shaped patterns, or sectors, radiating from the CBD (core) and centering on major 

transportation routes. Higher levels of access translate to higher land values. Thus, many 

commercial functions would remain in the CBD, but manufcaturing activity would develop in a 

wedge surrounding transportation routes. Residential land use patterns also would grow in 

wedge-shaped patterns with a sector of lower-income households bordering the manufacturing/ 

warehousing sector and sectors of middle- and higher-income households located away from the 

industrial sites. Major intercity transport lines may be converged so closely together that a 

transportation sector can be recognized. A major university and several schools can also form a 

discrete sector.  

(3) Multiple nuclei model (Figure 2.1(c)) 

Harris and Ullman (1945) proposed the multiple nuclei model in which a metropolis was 

seen as consisting of discrete functional areas, each forming around their own separate nuclei. 

The model suggests that an urban area may grow and develop from not just around one 
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functional focus, but several. While Harris and Ullman (1945) still saw the CBD as the major 

center of commerce, they suggested that specialized cells of activity would develop according to 

specific requirements of certain activities, different rent-paying abilities, and the tendency for 

some kinds of economic activity to cluster together. At the center of their model is the CBD, 

with light manufacturing and wholesaling located along transportation routes. Heavy industry 

was thought to locate near the outer edge of the city, perhaps surrounded by lower-income 

households, and suburbs of commuters and smaller service centers would occupy the urban 

periphery. 

(4) Urban realms model (Figure 2.1(d)) 

The urban realms model was originally developed to reflect the situation in the 1950s in 

the San Francisco Bay Area (Vance 1964).  A key element of the urban realm model is the 

emergence of large centers of diversified economic activities in the suburbs, which represents the 

transition from the single-centered to the polycentric city. Hartshorn and Muller (1989) called 

these suburban centers ‘suburban downtowns’ in the case of Atlanta. The suburban downtowns 

are self-sufficient and independent of the central city. Suburban downtowns provide specialized 

goods and services for a particular realm. At the regional level, the entire metropolis becomes 

reorganized into a set of independent urban realms. 

 

2.1.4 Scale dynamics  

Scale is the spatial, temporal, quantitative, or analytic dimension used by scientists to measure 

and study objects and processes (Gibson et al. 2000). All scales have extent and resolution. For 

each process important to land use and land cover change, a range of scales may be defined over 

which it has a significant influence on the land use pattern (Meentemeyer 1989). Processes and 
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relationships change both with the spatial (temporal) resolution and extent at which they are 

observed. Some social and ecological processes may be associated with a particular scale, while 

other processes might occur across multiple scales. Ecological and social processes may not 

operate at the same scale and linkages may have to be developed to connect across scales 

(Agarwal et al. 2001).  

 

2.1.5 Temporal dynamics 

The process of land use change is dynamic. “Change” itself is a temporal concept. Land use has 

a temporal dimension which is of great importance for land use modeling. The changes are 

nonlinear. We cannot simply interpolate or extrapolate a spatial pattern linearly from a time 

series of satellite images. Non-linear behavior asks for dynamic modeling with relatively short 

time steps. 

Path-dependency of system evolution should be considered. The present land use spatial 

pattern cannot be simply explained as the equilibrium result of the present set of driving forces. 

When considering path-dependency, we are actually incorporating temporal interactions, a 

counterpart of spatial interactions. Path-dependency means that a system’s current state and 

trajectory of change depend on its history, not on current values of driving forces alone. A path-

dependent system may exhibit several properties that must be considered in land use/cover 

change assessments (Arthur 1989): varying predictability; non-ergodicity (historical events are 

not averaged away, and small perturbations may significantly influence long-run development); 

progressive inflexibility(the system is ultimately insensitive to perturbations); and potential 

inefficiency (the outcome is not optimal for society). 
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2.1.6 Theory of complex systems 

A land use system in a rapid sub-urbanization region is a complex system, in which human and 

land interact dynamically. Several important sources of complexity influence land use decisions, 

for example, spatial heterogeneity, spatial interdependencies, scale dependencies. A complex 

system consists of a large number of intelligent, adaptive agents (Battern 2001).  To be more 

realistic, models representing such a system should consider theories of system complexity. 

The main idea in complexity theory is emergence. An emergent phenomenon is defined as the 

collective behavior which does not seem to have any clear explanation in terms of its 

microscopic parts that look chaotic individually. In emergent systems, a small number of rules, 

applied at a local level and among many agents are capable of generating surprising complexity 

and often ordered patterns in aggregate form (Torrens 2001). Large-scale regularities or order 

emerge purely from the micro-dynamics without the direction of a centralized executive. 

Sometimes, this order takes the form of self-similarity at different scales. Segregation and self-

similarity are familiar examples of emergence. Interactions among agents take on nonlinear 

character. Actions of parts constituting a complex system do not sum to the activity of the whole. 

In urban land use systems, macroscopic and regional spatial patterns can be understood to 

operate from local-scale interactive dynamics. Cities show several of the signature characteristics 

of complexity, including fractal dimensionality and self-similarity across scales, self-

organization, and emergence (Batty and Longley 1994; Allen 1997; Portugali at al. 1997). 

 

2.2 Land use/cover change detection methods 

Land use/cover change detection provides a fundamental input for planning management and 

environment studies, such as landscape dynamics or natural risks and impacts (Sommer et al. 
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1998).  Digital change detection based on satellite images is a process of identifying differences 

in the state of an object or phenomena by observing it at different times. The basic premise in 

using remote sensing data for change detection is that changes in land use/cover must result in 

changes in radiance values, and changes in radiance due to land use/cover change must be large 

with respect to radiance changes caused by other factors, such as the differences in atmospheric 

conditions, sun angle, and soil moisture (Singh 1989). Several authors have reviewed and/or 

compared remote sensing change detection techniques in general (Singh 1989) and in particular 

(Coppin and Bauer 1996; Macleod and Congalton 1998; Mas 1999). The major land use/cover 

classification methods are post-classification comparison , image differencing, change vector 

analysis, image ratioing, classification of multi-date image date sets,  and principal components 

analysis. 

In the post-classification comparison change detection method, two dates of images are 

classified independently and registered. The corresponding pixels are compared. A frequency 

matrix is generated to cross-tabulate the specific ‘from-to’ nature of the changes between the two 

dates. A change map is created to label the specific nature. This method is intuitive and direct in 

that it outputs the specific nature of changes. Also this method bypasses the problem of 

radiometric normalization since the two dates images are independently classified (Singh 1989).  

However, the classification errors are compounded in the pixel-by-pixel comparison process, 

resulting in low accuracy of the change detection. For example, in an urban landscape, post-

classification land use/cover change detection could result in the disappearance of urban areas, 

although this is usually impossible.  

In the image differencing method, registered images of two dates are subtracted to 

produce a residual image which represents the change between the two dates. Pixels of no 
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radiance change are distributed around the mean, while pixels of radiance change are distributed 

at the tails of the distribution(Singh 1986).   

Change vector analysis is a change detection procedure that is a conceptual extension of 

image differencing. A two dimensional coordinate space is defined by two spectral variables 

(e.g., the digital numbers from two bands, or derived data values, such as vegetation index). A 

vector for each pixel can be plotted by connecting the time t1 data point to the time t2 data point. 

The magnitude of the vector can be used to determine areas of change using a threshold, and the 

direction of the vector indicates the nature of change (Malila 1980; Michalek et al. 1993). 

Image ratioing for change detection computes the ratio of the images from two dates of 

imaging. Ratios for areas of no change tend toward 1 and areas of change will have higher or 

lower ratio values (Howarth and Wickware 1981). One of the advantages of the image ratioing 

method is that it tends to normalize the data for changes in terms of sun angle and shadows. Both 

image ratioing and image differencing methods need analysts to define a meaningful threshold 

value to differentiate change from no-change.   

In change detection by classification of multi-date image date sets, a single classification 

is performed on a combined data set for the two dates of interest using either supervised or 

unsupervised clustering approaches (Weismiller et al. 1977; Singh 1986). The success of this 

method depends on the extent to which “change classes” are significantly different spectrally 

from the “no-change” classes.  

Principal components analysis is often used to analyze multi-date image composites for 

change detection (Richardson and Milne 1983; Fung and LeDrew 1987). In this approach, two 

images are registered to form a new multi-band image containing all bands from each date. 

Several of the uncorrelated principal components computed from the composite dataset can often 
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be related to areas of change. One disadvantage to this process is that it is often difficult to 

interpret and identify the specific nature of the changes involved.  

 The various land use/change detection approaches explained above were grouped into 

two basic categories of approaches for change detection (Singh 1989). The first category is map-

to-map comparison, which is comparative  analysis of independently produced classifications 

from different dates. The post-classification comparison method belongs to this category.  The 

second category is simultaneous analysis of multi-temporal data, including image differencing, 

change vector analysis, image ratioing, classification of multi-date image date sets, and principal 

components analysis.  

The first category map-to-map comparison  has several sources of uncertainty. Aspinall 

and Hill (1997) emphasize two of them: (1) misregistration of the polygon boundaries (location 

inaccuracy) in the different classifications creates border pixels with false or negative changes. In 

vector format, misregistration can generate slivers; and (2) problems derived from classification 

errors result in false positive changes being recorded when no change has taken place because a 

polygon in one or both of the two maps is misclassified, or false negative changes, when no 

change is identified although a change has taken place.  

 Some problems with the second category  simultaneous analysis of multi-temporal data 

are (Serra et al. 2003): (1) most of these procedures provide little information about the specific 

nature of land use/cover change; (2) the threshold techniques used to differentiate change from 

no-change is not usually clear; and (3) mis-registration between images continues to be a 

problem, and it is not properly considered in the quantification of the land use/cover change 

detection. 
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When multi-sensor images are used, some problems appear for both categories of land 

use/cover change detection methods (Serra et al. 2003): (1) the classifications differ because 

some features are not detected in the coarser resolution images which do appear in the finer 

resolution images; (2) overlaying for land use/cover change analysis is complicated by different 

pixel size and grid origin, resulting in misregistration; and (3) the number of bands, their 

wavelengths (spectral information ), and sensitivity of the sensors are different.  

Recently, some new methods of land use/cover change detection have appeared. One of 

them is cross-correlation analysis (CCA). CCA is a change detection method measuring the 

differences between an existing land use/cover image  and a recent single date multispectral 

image (Koeln and Bissonnette 2000). CCA works by using the class boundaries from land 

use/cover image to derive an expected class average spectral response. This information is used 

to derive a Z-statistic for each pixel falling within a given land use/cover type. The Z-statistic 

describes how close a pixel’s response is to the expected spectral response of its corresponding 

class value in the land cover image. Pixels that have undergone change between the time t1 land 

use/cover image and the time t2 multi-spectral image will produce high Z-statistics values while 

those that have not changes will produce low Z-statistic values. The advantage of this technique 

is that it eliminates the problems associated with radiometric and phenological variations 

between multi-date images. The limitation of this method is that it can only detect a single type 

of change by setting a user-defined threshold of the Z-statistics values. 
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2.3 Land use change models 

2.3.1 Uses of land use models 

Models are used for prediction, explanation and discovery of the unknown through heuristic 

learning (Gross and Strand 2000). Land use change modeling, especially if done in a spatially-

explicit, dynamic, integrated and multiple-scale manner, is an important technique for the 

projection of alternative pathways into the future and for conducting experiments that test our 

understanding of key processes in land use changes (Veldcamp and Lambin 2001). Land use 

models are used to support causal and consequential analyses of land use dynamics and to inform 

land use planning and policy making through their scenario analysis ability. Land use change 

models should represent part of the complexity of land use systems. They offer the possibility to 

test the sensibility of land use patterns to changes in selected driving forces.  

 

2.3.2 A three-dimensional framework to review land use models 

Land use is determined by the interaction in space and time of biophysical factors and human 

factors (such as population, technology, economic conditions, etc.) (Veldcamp and Fresco 1996). 

How to deal with space, time and human dimensions in the modeling of the complex land use 

systems is what land use modelers should consider. Agarwal et al. (2001) proposed a three-

dimensional framework to review land use models. The three critical dimensions are space, time, 

and human decision-making (Figure 2.2). Each axis of the three-dimensional framework 

represents the degree of the complexity with which a model can deal. Based on this framework, 

Agarwal et al. (2001) examined a summary of 250 relevant citations and developed a 

bibliography of 136 papers from which 19 representative land-use models were reviewed. In the 

19 models, 10 modeling methods were identified: Markov, logistic function, regression, 
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Figure 2.2  A Framework for Reviewing Land Use Change Models. (Source: Agarwal et al.  

                  2001).
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econometric, dynamic systems, linear planning, nonlinear mathematical planning, mechanistic 

GIS, cellular automata (CA), and agent-based models. They also provided a list of variables 

regarding social drivers of land use/cover change summarized from the models that have been 

reviewed (Table 2.1). These variables are related to demography, technology, economy, political 

and social institutions, information and its flow, and culturally determined attitudes, beliefs, and 

behavior.  They propose that there is a need for land use models to be able to include the relative 

effects of different social drivers on land use change in the context of space, time, and human 

decision-making. 

 

2.3.3 Classifications of land use models 

Researchers have reviewed and categorized land use models from different points of view. Parks 

(1990) classified economic land use models into three categories. Inventory/descriptive models 

do not employ explicit economic theory. Engineering/optimization models solve for the 

landscape patterns that best achieve quantifiable goals and meet constraints. Multiple criteria 

evaluation (MCE) models fall into this category. Statistical/econometric models of land use 

describe relationships between changes in landscape and various economic, social, policy, or 

environmental variables. 

Irwin and Geoghegan (2001) classify land use models into spatially explicit non-

economic models and economic models by examining if a model uses economic theory to guide 

the model development. Spatially explicit non-economic models use an ad hoc approach to 

identify physical variables that represent the outcomes of economic and social processes, e.g., 

the location of roads and urban centers, without any underlying economic theory to guide the 

choice of variables. This group of models includes simulation (e.g., Cellular Automata model), 
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      Table 2.1 Summary of human drivers reflected in land use/cover change model variables 

          (Source: Agarwal et al. 2001) 

 

Human Drivers or 
Social Patterns and 

Preferences 

Model Variables 

Population Size 
Population Growth 

 

Population Density 
 Returns to Land Use (costs and prices) 
 Job Growth 
 Costs of Conversion 
 Rent 
Collective Rule Making Zoning 
 Tenure 

Relative Geographic Position to Infrastructure: 
Distance from Road 
Distance from Town/Market 
Distance from Village/Settlement 

Infrastructure/Accessibility

Presence of Irrigation 
 Generalized Access variable 
 Village Size 
 Silviculture 
 Agriculture 
 Technology Level 
 Affluence 
 Human Attitudes and Values 
 Food Security 
 Age 
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empirical, and hybrid models that include estimated parameters with simulation. Economic 

models attempt to fit the spatial process of land use change by developing an underlying 

structural model that seeks to explain the human behavior generating these patterns. Economic 

models include non-spatially explicit economic models (such as traditional microeconomic 

models, regional economic models), and spatially explicit economic models. 

Baker(1989) gives a taxonomy of landscape change models based on the criteria of the 

level of aggregation and the use of continuous or discrete mathematics. Landscape models are 

classified as whole landscape, distributional landscape, or spatial landscape models. 

Distributional models are divided into differential equation (time as continuous, including 

continuous state space and discrete space models), and difference equation (time as discrete, 

including Markov chain, semi-Markov chain, and projection models). 

 

2.3.4 Issues in land use modeling  

Several issues are of great importance in land use modeling. These include: the level of analysis, 

scalar dynamics, drivers of land use change, spatial interactions and neighborhood effects, 

temporal dynamics, and level of integration (Verburg 2004). No single modeling method has the 

ability to deal with all these issues. The choice of an appropriate model or a combination of 

models must seek a trade-off balance, subject to data availability, theoretical assumptions and 

research objectives. In the following sections, the ability of the different land use models to deal 

with these important issues inherent in land use modeling will be examined. 
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2.3.4.1 Level of analysis 

Land use modeling has been an active research area both in social sciences and environmental 

science. Social scientists and environmental scientists conduct research on a different level of 

observation and analysis. In the social sciences, land use modeling employs a micro-level 

individual behavior approach. On the other hand, environmental scientists model land use on the 

macro-scale; their models are spatially explicated through the integration of remote sensing and 

GIS, as well as the use of macro-properties of social organization in order to identify social 

factors connected to the macro-scale patterns. 

Two approaches have been used to model land use from the micro-level perspective: 

  (1) Agent-based models (ABM, also known as individual based model). ABMs include 

three basic components: agents, environment (a two-dimensional space in the context of land use 

change modeling), and a set of behavioral rules. Just a few simple micro-level local rules can 

produce richly complex outcomes. The best known ABM development tool for use in the social 

sciences that can be adapted for ecological and land use simulation is the Swarm software 

package developed by the Santa Fe Institute. Most current multi-agent models are only able to 

simulate very simplified, artificial landscapes. Using the Swarm development tool, Rand et al. 

(2003) present and evaluate an agent-based model of land use change at the rural-urban fringe 

for an artificial city represented by a grid of 301 by 301 cells with each cell having two 

exogenous characteristics: a natural beauty score (an index describing how beautiful the natural 

environment of a location is) and the presence or absence of an initial service center. Two kinds 

of agents are modeled: residents and service centers. Agents behave according to their location 

preferences, finally producing a residential spatial pattern. Efforts are currently underway to 

build operational multi-agent models for realistic land use change simulations. One challenge in 
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this area is to obtain sufficient data at the individual, household or land parcel level to develop a 

well-parameterized and validated model of decision-making. There exist several obstructions to 

an agent based model’s successful use in operational urban geographic simulation, particularly 

with regard to the capacity of these methodologies to handle top-down dynamics in urban 

systems (Torrens 2001). In urban contexts there are several systems and mechanisms that operate 

in this manner, including constraints such as planning restrictions.  

(2) Based on the micro-economic theory, as reviewed by Irwin and Geoghegan (2001). 

An individual landowner makes his/her land use decisions with the objective of expecting 

maximum returns or utility. The choice of explanatory variables is guided by economic theory. 

Problems arise when these models are used at a higher aggregation level as often needed because 

at a higher level, individuals cannot be discerned and aggregated data derived from individuals 

do not sum individuals linearly. 

Macro-level analyses are based either on macro-economic theory or the systems 

approach. For example, the IIASA-LUC (Land Use Change project by International Institute for 

Applied Systems Analysis) model developed for China by Fischer and Sun (2001) establishes an 

integrated assessment of the spatial and inter-temporal interactions among various 

socioeconomic and biophysical forces that drive land use and land cover change. This model is 

based on recent advances in applied general equilibrium modeling in macro economics.  Other 

land use models are based on macro spatial structure of land use, such as the CLUE-CR 

(Conversion of Land Use and its Effects – Costa Rica) model (Veldcamp and Fresco 1996) and 

GEOMOD2 (Pontius et al. 2001).  

Traditional urban (simulation) models (spatial interaction or gravity) are macro-level 

models. The minimum of resolution analysis is an aggregate-level enumeration district (ED) 
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(e.g., a census tract, a traffic analysis zone (TAZ)). Their assumptions portray cities as operating 

from the top down. Models are often illustrated as flow diagrams that begin with a regional scale 

and filter to TAZ-level components. The shortcomings of this centralized approach are: a poor 

treatment of dynamics, weak attention to micro-scale detailed phenomena, limited usability, 

reduced flexibility (difficulty in scaling and lack of modularity), and lack of realism (due to the 

‘reductionist’ view of urban systems) (Torrens 2001).  

In urban system modeling, often a single level of analysis is not sufficient to explore the 

urban dynamics. An approach that is based purely on micro-level modeling or purely on macro-

models is weaker than a combined approach. There is a need for developing hybrid models that 

contain mechanisms for linking macrostructure to micro-behavior. Torrens (2001) presents a 

framework for developing a hybrid model for urban geographic simulation. Macro-scale 

dynamics that operate from the top-down are handled by traditional land-use and transport 

models, while micro-scale dynamics that work from the bottom-up are delegated to agent-based 

models and cellular automata. The two methodologies are fused in a modular fashion using a 

system of feedback mechanisms.  

 

2.3.4.2 Scalar dynamics 

The issue of scale is related to the level of analysis, which has been discussed above. To address 

the issues of scalar dynamics, interpreting, merging, analyzing the data, and analyzing the effects 

of multiple spatial, temporal, and hierarchical scales are often needed in land use change 

modeling.  

To date, most land use models are based on one scale or level exclusively.  In these 

models, the resolution of analysis is determined by the measurement technique or data quality 



 42

instead of the processes specified. Of the 19 models reviewed by Agarwal et al. (2001), 11 are 

raster-based, most of which have spatial resolutions of 30 to 80m, mirroring the pixel size of 

remote sensing data, and have spatial extents at or less than the area covered by one Landsat 

scene (185km×185km). Dynamic cellular automaton model calibration is very computation 

intensive, and as a result coarser resolutions are used. For example, Clarke and Hoppen (1997) 

applied a self-modifying cellular automaton model to the analysis of historical urbanization in 

the San Francisco Bay area based on a 300m resolution. 

Although most existing models only take a single scale of analysis into account, some 

models implement multiple scales. These models implement a multi-scale procedure either in the 

quantification of the driving variables or in the structure of the model. 

(1) Multiple-scale quantification of the driving variables 

Different driving forces operate at different scales. Models should explicitly take into 

account of the scale dependency of the quantitative relation between land use and its driving 

forces. There have been three different approaches to quantifying the multi-scale relations 

between land-use and driving forces. The first is to use varying resolution raster layers 

representing driving variables; at each individual resolution the relations between land use and 

driving forces are statistically determined (Walsh et al. 2001; Kok and Veldcamp 2001; Kok et 

al. 2001). The second is to use varying extent data sets to derive the relationship between land 

use change and the determining factors (Kok and Veldcamp 2001). The third approach uses 

multi-level statistics (Goldstein 1995). It has been found recently that the multi-level statistical 

technique for the analysis of hierarchically structured data could also be used to analyze land use, 

taking different driving forces at different levels of analysis into account. Polsky and Easterling 
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(2001) applied this technique to the analysis of the land  use structure in the Great Plains of the 

U.S.. 

(2) Hierarchical model structure 

A number of land use change models take the form of a hierarchical structure, thus taking 

scalar dynamics into account. For example, the total amount of change is determined for the 

study area as a whole using a model at the top of the hierarchy and allocated to individual grid-

cells by adapting a threshold value of a probability surface generated by a model at the lower 

part of the hierarchy. The underlying rationale for this method is the demand-driven nature of 

land use change. In the CLUE-CR model (Veldcamp and Fresco 1996), a top-down allocation 

procedure links a national scale for demand calculations with two spatially explicit lower-level 

scales to take driving forces at different scales into account.   

 

2.3.4.3 Drivers of land use change 

A prerequisite to the development of realistic models of land use change is the identification of 

the most important drivers of change (Veldcamp and Lambin 2001). Traditionally, modelers only 

focus on biophysical attributes (e.g., altitude of terrain, slope, or soil type). However, land use 

change is human-induced, and as a result the incorporation of data on a wide range of 

socioeconomic drivers of change is required.  Land use policies also often determine the land 

conversion. However, incorporation of social, political and economic factors is often hampered 

by a lack of spatially explicit data and by methodological difficulties in linking social and 

biophysical data. Biophysical data used are often extracted from satellite remote sensing data in 

raster format. Socioeconomic data are often collected by censuses or surveys. For the biophysical 

data, the observation unit is cells (pixels); but for the socioeconomic data, the observation unit is 
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artificial enumeration districts (ED) (e.g., census tracts) or sampling points. To link people with 

pixels, socioeconomic data need to be disaggregated to cells upon which modeling is based. 

Another related issue is how best to represent these drivers that cannot be measured directly in a 

model.  Proxy variables are often used, for example, distance to a road or a town as a proxy of 

travel cost.  

For land use modeling, two aspects regarding drivers of land use change are of 

importance and should be considered in the modeling. One is the selection of drivers 

(explanatory variables); the other is how to quantify the relations between land use and driving 

forces. 

Selection of drivers is dependent on the simplification made and the theoretical and 

behavioral assumptions used in modeling land use system. In most economic approaches to land 

use modeling, optimization of utility is the assumed behavior, leading to bid-rent models. In its 

simplest form, the monocentric model, the location of a land parcel relative to a central city or 

the business district is the major determinant of the parcel rent (Irwin and Geoghegan 2001).  

There are three approaches to quantification of relations between land use and driving 

forces: 

(1) Process-based models. These models base relations between land use and driving 

forces directly on the processes involved in the land use conversion, using theories and physical 

laws. Process-based models have sound theoretical basis and can be used for hypothesis 

formulation and identification of variables that should be incorporated into a statistical model 

(Veldcamp and Lambin 2001). Examples are economic models based on economic input-output 

analysis (Fischer and Sun 2001). In an integrative land use change analysis, this method is often 
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not very successful due to the difficulty of quantifying socioeconomic factors without the use of 

empirical data.  

(2) Empirical estimation models. Many econometric (Geoghegan et al. 1997) and non-

econometric models (Veldcamp and Fresco 1996; Pontius and Schneider 2001; Pontius et al. 

2001; Serneels and Lambin 2001) use statistical techniques, mainly regression, to quantify the 

defined models based on the historic data of land use change. Most of these approaches describe 

historic land use conversions as a function of the changes in driving forces and location 

characteristics. Empirical statistical models are easier to implement, and allow for hypotheses 

testing given limitations in data availability. Empirical models often rely on the implicit 

assumption that land-use change processes are stationary (the rate of change keeps constant at 

different time periods) (Veldcamp and Lambin 2001). In many cases, these models fit the spatial 

process and land use change outcome reasonably well (Irwin and Geoghegan 2001). However, 

they are less successful at explaining the human behavior that leads to the spatial process or the 

outcome of land use change because the unit of analysis is either an individual pixel or an 

enumeration district (ED), rather than the individual decision-maker. Empirical models often 

result in a relatively low degree of explanation due to the relatively short time-period of analysis, 

variability over this time period and a relatively small sample size, thus inducing uncertainty 

with respect to the causality of the supposed relations. Little consideration has been given to 

temporal dynamics in these models, most likely due to the lack of data on driving forces, which 

can bias estimation results. 

There are two empirical modeling techniques suitable for each of the two kinds of unit of 

analysis discussed above (either an enumeration district or a pixel). At the level of aggregated 

enumeration districts, traditional multivariate analysis, especially multiple linear regression 
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techniques, are generally used to identify explicitly the proximate causes of land cover changes. 

Since the unit of analysis is coarse (e.g., census tract), this method is not spatially explicit 

enough to portray the spatial pattern of land use change. They are unable to deal with spatial 

variability in the processes of land use change. In most regions, there is a high geographic 

variability in land cover types, biophysical and socioeconomic drivers of land use changes, or 

institutions (including policies). This spatial heterogeneity leads to variability in the causes and 

processes of land use changes.  

Multinomial logit models are often used to empirically and spatially explicitly quantify 

the relationship between land use change and driving forces at the level of a pixel. Discrete 

choice modeling (DCM), sometimes called qualitative choice modeling, is an exciting new 

statistical technique sweeping the world of market research (Train 2003). Discrete choice theory 

was developed in parallel by economists and cognitive psychologists. DCM looks at choices that 

customers make between products (or services). By identifying patterns in these choices, DCM 

models how different consumers respond to a marketplace filled with competing products.  DCM 

allows marketers to examine the market-share impact of product configuration, service bundling, 

pricing and promotion on different classes of customers. Discrete choice theory suggests that the 

specific form is dependent upon the statistical distribution of an error item and that in the context 

of a discrete choice it should be in the form of the binomial logit model or multinomial logit 

model.  

Land development can be modeled through a discrete choice framework. In land use 

models based on discrete choice theory, there are alternative discrete states of land use for a 

particular land parcel. Land development is considered as a process of particular land users 

choosing particular land uses. In a binomial logit model, the choices are dichotomous: there are 
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two states of choice, e.g., urban versus non-urban use. In a multinomial logit model, there are 

more than two choices, such as commercial, residential, forest, agriculture/pasture and bare land.  

Multinomial logit models have also been used at an observation unit other than a pixel, such as a 

land parcel. For example, McMillen and McDonald (1989) uses an empirical  multinomial logit 

model to predict land use in an urban fringe area of Chicago. The observation units are 382 land 

lots.  However, the model is not fully spatially explicit. 

Landis and Zhang (1998) model development and redevelopment in an urban setting 

using a spatially explicit and disaggregate discrete choice approach. The observation unit is a 1-

hectare cell. The choice of explanatory variables includes initial site use, variables to capture 

demand pressures, distance/accessibility measures, costs of development, returns to alternative 

uses, and non-conforming uses.  

Schneider and Pontius (2001) empirically model deforestation in the watershed of the 

Ipswich River in Massachusetts of the US (404 square kilometers, 30m cell size) using a 

multinomial logit model, including elevation, slope and distance to residential area as 

explanatory variables. While the model generates probability maps, the quantity of change is 

calibrated using regression or simple extrapolation of historical data. The model does not have 

complicated dynamics.  

Geoghegan et al. (2001) model tropical deforestation for an area of 1600 square 

kilometers in southern Yucatan peninsular region using a binomial logit model. The unit of 

observation is the Landsat TM pixel (28.5m by 28.5m). The probability of deforestation in a 

specific pixel is estimated as a function of explanatory variables: environmental factors, distance, 

socioeconomic census data and spatial indices of the land uses surrounding a pixel capturing the 

effect of landscape diversity or fragmentation on land cover. The model deals with the census 
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data in an aggregate way: a single average value for each socioeconomic variable is assigned for 

all pixels within each census unit.  

Serneels and Lambin (2001) use a binomial logit model to analyze the proximate causes 

of land use change in Narok, Kenya. The limitations of the model are: the spatial model 

developed allows us to predict where land-cover conversions are most likely to take place in the 

near future, but does not address the question "when are land-cover conversions likely to take 

place?"  A dynamic model that considers the driving forces of change needs to be developed.  

To overcome the shortcomings that empirical stochastic models lack temporal dynamics, 

empirical models are combined with CA models to take advantage of their dynamic nature. Wu 

(2002) develops a stochastic CA model for urban growth in Tianhe district, Guangzhou, China 

(30-meter cell, 546 rows by 629 columns), which derives its initial (global) probability of 

simulation from observed sequential land use data using a binomial logit model. This initial 

probability is updated dynamically through local rules based on the strength of neighborhood 

development.   

(3) Rule-based models such as CA and agent-based models. These models demonstrate 

how complex structure arises internally from the interactions among individual cells. While these 

models are instructive and offer a practical approach to understanding of how interactions among 

individual agents “aggregate up” over space to determine regional patterns of land use (Irwin and 

Geoghegan 2001),  the theoretical basis for the specification of rules is poor. When the number 

of data layers (variables) increases, the definition of the rule becomes more difficult. As a result, 

most CA models cannot incorporate enough socioeconomic variables in the estimation models. 

The model developed by Clarke and Hoppen (1997) is not capable of linking external parameters 

(such as an economic growth rate) to the self-modification of the CA rules. Rule-based models 
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reveal, but do not always explain, the inherent dynamics (Battern 2001). Conclusions about their 

explanatory power could be misleading and should not be overstated.  

 

2.3.4.4 Spatial interactions and neighborhood effects 

Land use patterns often exhibit spatial dependence.  This can be partly explained by the spatial 

interactions among land use types. Urban expansion often occurs next to the existing urban area, 

especially when scale economy development plays a role in shaping urban forms; in this case, 

attracting effects (e.g., central city, road, public services) among developed parcels result in a 

clustered pattern.  Repelling effects often result in a fragmented pattern found in many US urban-

fringe areas of residential development.  

The models most suitable to incorporate the spatial interaction effect are cellular 

automata models and agent-based models, in which the interaction is often explored and 

specified as behavioral rules applied to a Von Neumann (with four direct neighboring cells) or 

Moore (with 3×3 or 5×5 surrounding cells) neighborhood.  

Econometric land use change models are also increasingly paying attention to 

neighborhood interactions, often by a simple measure of neighborhood composition, e.g., the 

area or percentage of a land use type under investigation in a neighborhood is included in the 

explanatory variables (Geoghegan et al. 1997; Irwin and Bockstael 2002). Irwin and Bockstael 

(2002) estimate the transition probabilities as a function of exogenous variables and an 

interaction term that captures the effect of neighboring land use conversions. The negative 

interaction results in the evolution of a more fragmented land use pattern. 

Another way of taking the neighborhood effect into account is to apply a spatial filter to 

an empirically derived change probability map. Schneider and Pontius (2001) account for the 
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spatial dependence explicitly in the suitability maps by using a spatial filter with a kernel size of 

35 acres, which is the average size of the patches deforested. Thus, the suitability value of each 

cell is changed to a weighted average of the value of itself and the values of the cells in the 

surrounding 35 acres.  

 

2.3.4.5 Temporal dynamics 

Current GISs are good at dealing with static geographic data layers; they still lack the ability to 

explicitly handle the temporal dimension. A realistic dynamic GIS-supported land use model has 

yet to be developed. Considerations on temporal dynamics are often omitted from spatially 

empirical models estimating land use/cover change using remotely sensed data, most likely due 

to data constraints, which can bias the estimation results (Irwin and Geoghegan 2001). 

A number of land use models take temporal dynamics into account. Spatially dynamic 

simulation models are most suitable for handling temporal dynamics. The economic land 

allocation model of the Patuxent landscape (Irwin and Geoghegen 2001) explicitly considers the 

temporal dimension such that the location of change in one year influences the probability of 

change in the subsequent year. The land conversion is determined by an optimal timing decision 

in which a land owner seeks to maximize expected returns from the conversion by choosing the 

optimal time. CLUE-CR model (Veldcamp and Fresco 1996) is fully integrated with a dynamic 

systems model to compute both the quantity and location of land change. 

However, many models do not account for temporal dynamics. While GEOMOD2 model 

(Pontius et al. 2001) is dynamic in that it determines candidates for forest disturbance by 

recomputing which grid cells neighbor a disturbed cell, drivers do not change rapidly over time. 

The model uses one set of relatively stable biophysical variables for all model runs and does not 
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incorporate dynamic social-demographic factors, such as population density, hence the non-

dynamic application of the model.  Traditional urban simulation models, such as spatial 

interaction or gravity models, use cross-sectional or longitudinal data as proxies for dynamics; 

dynamics are not explicit and not in a more realistic manner (Torrens 2001). 

Due to the lack of data in a short-interval series, explanatory variables in empirical 

models are often assigned static values for a longer period, rather than updated dynamically.  

These models simply project land use trend by extrapolation and regression (Schneider and 

Pontius 2001; Serneels and Lambin 2001; Geoghegan et al. 2001). This type of model is not 

suitable for scenario analysis, because they are only valid within the temporal range of land use 

change on which they are based.  

 

2.3.4.6 Level of integration 

Land use systems are groups of interacting, interdependent parts linked together by exchanges of 

energy, matter and information. Land-use change models are often used to assess the impact of 

land use change on biophysical processes, e.g. climate change, land degradation, ecosystem 

stability and diversity. The biophysical response to changes in land-cover themselves feedback 

on drivers of land-use, calling for a dynamic, endogenous coupling between models of land use 

change and biophysical models to achieve integration of the different sub-systems. This research 

area is just emerging (Veldcamp and Lambin 2001). 

Two approaches for integration can be distinguished: loose coupling of sub-systems and 

tight coupling in a holistic way. In loose coupling, interactions among subsystems and feedbacks 

are ignored. Relationships among subsystems are only simple one-direction input-output. Most 

often, land use modeling is done using a loose coupling. In a tightly coupled modeling 
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environment, sub-modules interact with each other; more variables are endogenous to the 

system; causes and consequences are not explicitly distinguished; and the system is integrative. 

An example of a fully integrated model is the IIASA-LUC model (Fischer and Sun 2001). 

Another example is the Patuxent Landscape Model (Geoghegan at al. 1997) in which the 

economic module dealing with land use change and the ecological module simulating 

hydrological and ecological processes are linked so that the output of economic module (land use 

patterns) is used as input for the ecological module whereas the output of the ecological module 

are used as the input of the economic module, allowing for feedbacks within the system.  

 

2.3.5 Land use model validation methods 

Model validation is the overall process of comparing the model and its behavior to the real 

system and its behavior. A model is valid to the extent that it adequately represents the system 

being modeled, i.e., the model is able to correctly answer the questions it was designed to answer 

(Casti 1997). 

An important insight from contemporary philosophy of science is that the relations 

between a model of a given type and its practical use are diverse (Gross and Strand 2000). 

Predictive models aim at a quantitative or qualitative prediction of future states of a specific real 

system; explanatory models seek to elucidate the essential mechanisms or processes; and 

heuristic models are used to invent and discover unknown properties of a system through a 

learning process. 

Validation in the classical logical empiricism philosophy would require verification of a 

one-to-one correspondence between the model output and the real world, but today many 

scientists and philosophers would argue that a model can also be useful when such a strict 
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procedure cannot be completed. An explanatory or heuristic model may help to clarify 

assumptions and inferences in the decision-making process. Under some circumstances it may be 

rational to take a chance and believe in a particular predictive model, even if it cannot be 

properly validated. 

Popper’s philosophy of science has been seen to show that complete verification is 

impossible and that we can approach the truth only negatively, by falsification and elimination of 

error (Popper 1959). Casti (1997) argues that perfect fidelity of a model is neither sufficient nor 

necessary for its successful use. Validation is not an either/or proposition – no model is ever 

totally representative of the system under study (Banks et al. 2000). 

A possible criticism of model validation is that the model has been validated only for the 

one data set used; that is the model has been “fit” to one data set. One way to alleviate this 

criticism is to collect a new set of system data (or to reserve a portion of the original system data) 

to be used at the final stage of validation (Banks et al. 2000).  

Comparison of the model to reality is carried out using a variety of tests – some 

subjective and others objective. Which validation method to use depends on particular modeling 

and analysis objectives. In the context of urban land use modeling, sometimes, though rarely, the 

detailed location of a particular urban area at a micro level is of concern, while at other times the 

goal is to explain or predict macro patterns that are used for general planning. 

When we validate land use models, the first thing we often do is to visually compare the 

predicted map with the actual. Visual comparison is intuitive and direct, and is also facilitated by 

geographic linking and zooming functions of remote sensing and GIS software. However, one 

cannot compare all pixels by naked eye one by one due to a large quantity of pixels. This method 
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only gives a first impression, and it is only qualitative in nature. Quantitative and objective 

measurements are needed.  

A contingency table is often generated by visual inspection of randomly distributed 

number of points, and indices of agreement are calculated. Any index of agreement that is based 

on a contingency table has a weakness: a contingency table is a summary containing no 

information of location. Other indices that share this weakness are percent correct, any chi-

square based statistic such as phi, and any kappa-based statistic such as kappa. When the spatial 

pattern of distribution of errors is needed, these measures are not appropriate. 

Landscape spatial pattern indices - such as core area, edge density, and connectivity -

have long been used by ecologists to characterize certain ecological functions. For example, in 

an urban ecological system, nearest neighbor metrics and evenness indices reflect spatial 

concentration of land area and can be used to measure clustering of similar land uses resulting 

from agglomeration economies, or spatial dispersal of land uses due to monopolistic competition. 

Irwin and Bockstael (2002) use nearest neighbor spatial statistics to validate a spatial simulation 

model predicting patterns of land use change in an urbanizing area, in which the transition 

probabilities are estimated as functions of a variety of exogenous variables and an interaction 

term that captures the effect of neighboring land use conversions. Clarke and Gaydos (1998) 

used four statistical measures to evaluate the model performance. These include a series of R-

squared fits between actual and predicted development and between urban edges, and a modified 

Lee-Sallee shape index. 

Besides spatial pattern indices, there are other methodologies of model validation suitable 

for different uses. Serneels and Lambin (2001) validate a land use change model by graph 

analysis. The model’s output is a probability map. A graph showing predicted probability of 
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change versus percentage of pixels that have actually been converted was generated. The 

percentage is an indicator of model validity: the higher is the percentage, the more valid is the 

model.  

Turner et al. (1989) developed a multiple-resolution fitting method to validate spatial 

simulation models. This is a cell-by-cell comparison method. But the cell size is variable from 

the finest resolution (a pixel) to the whole image. The goodness of fit is calculated on a weighted 

average basis. This method can be used if accurate simulated location is important.  

What has been discussed so far is all about the validation of maps predicted from land use 

change models. It is easy to be confused with accuracy assessment of land use maps produced 

from the classification of remotely sensed images although some approaches to evaluating land 

use change models are drawn from image classification evaluation, such as the statistical 

methods based on contingency tables. However, there have been more recent studies which 

acknowledged that generalized methodologies developed to assess the accuracy of classified 

images may not be appropriate for maps of land use change (Congalton & Macleod 1994), 

especially when, on the change map, change is relatively rare and is also to be concentrated in 

relatively few areas, such as a small amount of urban sprawl in the urban fringe. Under these 

circumstances, for maps of land cover changes, one is confronted with the general statistical 

problem of sampling for a rare event. To overcome this problem, Lowell (2001) developed a 

methodology, based on areal rather than point samples to validate land use change maps. 

The concept of predictability in information theory implies the reduction in uncertainty 

about one variable from knowledge of another. The application of this concept in spatial 

phenomena measures the reduction in uncertainty about the state of a particular pixel obtained 
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from other knowledge about the pattern. In the urban context, Turner et al. (1989) used spatial 

predictability to measure two spatial patterns to see if they match. 

Recently the Relative Operating Characteristic (ROC) method was brought to the field of 

land use change modeling to measure the relationship between simulated change and real change 

(Pontius 2000). ROC curves were developed in the 1950's as a by-product of research into 

making sense of radio signals contaminated by noise. Pontius and Schneider (2001) explain how 

to use the ROC technique to examine how well a suitability map portrays the likely locations of a 

category of new development. Schneider and Pontius (2001) apply the ROC method to compare 

several modeling techniques. ROC method is an excellent method to evaluate the validity of a 

model that predicts the occurrence of an event by comparing a suitability image depicting the 

probability of that event occurring and a binary image showing where that class actually exists. 

 

2.4 Summary 

An urban land use system is dominated by human activities with complex spatiotemporal 

dynamics. The prerequisite for knowing, representing and predicting such a system is scientific 

conceptualization of space and time and systematic approach. Human modifications of urban 

landscapes are a process of  reshaping the structure of urban space over time. To reveal the 

process behind human-induced land use/cover changes, the only way is to characterize and 

recover the temporal relationship between urban spatial patterns over a period in the past. 

Historical remotely sensed dada can be used to reveal the temporal changes of urban landscapes 

using various land use/cover change detection methods. Once the land use/cover change process 

is characterized and recovered, it is possible to represent the system using a collection of land 

use/cover modeling techniques that take into account of the dynamic interactions among space, 

time, and humans. Further, the model, if it is valid, can be used to for prediction. The following 
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chapters will show that the breadth of study will be relevant to many different fields covering 

theory, methodology and techniques, such as philosophy, geographic thoughts, urban economics, 

urban morphology theories, theory of complexity, mapping land use/cover using remote sensing, 

land use/cover change detection, spatial analysis and modeling of land use/cover changes in a 

GIS environment.  
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CHAPTER THREE 

MAPPING THE 1987-1997 LAND USE/COVER CHANGE IN ATLANTA FROM LANDSAT 

TM IMAGES: A NEW APPROACH TO ACCURACY IMPROVEMENT 

 

3.0 Introduction 

Satellite remote sensing has offered considerable promise for characterizing landscape patterns at 

different spatial scales and for monitoring landscape dynamics by detecting changes of landscape 

patterns.  Remote sensing has the advantages of large area coverage, repeated viewing capability 

and ease of integration with GIS. When the environment in a large metropolitan area 

experiencing rapid suburbanization needs to be monitored constantly, the use of remote sensing 

has demonstrated more advantages than the traditional field surveying. In such areas, human-

induced land use/cover changes can be substantial but are difficult to grasp when they occur 

incrementally. Mapping from a time series of satellite data has successfully revealed the 

dynamics of urban land characteristics for large metropolitan areas (Lo and Shipman 1990; Lo 

1998; Masek et al. 2000). The spatial databases derived from remote sensing provide a strong 

visual portrayal of urban growth patterns, and convey how the progress of modern urbanization 

has caused profound changes to the landscape, which in turn have affected the environment, the 

micro-climate and the quality of human life (Lo and Faber, 1997; Lo et al., 1997; Weng 2001; 

Yang and Lo 2002).  

This chapter will explain the detection of land use/cover change from 1987 to 1997 in the 

Atlanta region using Landsat TM images. The land use/cover statistics and spatial patterns of the 
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past land use/cover changes provide the data input to the modeling and prediction of future land 

use/cover patterns to be explained in Chapters 4 and 5.  

Various approaches have been developed to detect land use/cover change from remote 

sensing, such as, post-classification comparison, classification of multi-temporal composite data 

sets, principal component analysis, temporal image differencing, temporal image ratioing, and 

change vector analysis (Lillesand and Kiffer 1999).  In this study, the choice of a land use/cover 

change detection method depends on whether the output information from the detection meets 

the data requirements of the two modeling approaches of this dissertation, the Markov chain 

model and the logistic regression model, in terms of content and accuracy. The requirements are 

accurate land use/cover classification maps, a change/no-change matrix, and an accurate 

historical urban growth map.  

Existing studies have shown that change vector analysis can detect the nature of land 

use/cover change (MacLeod & Congalton 1998; Mas 1999). This study first uses change vector 

analysis to detect land use/cover change. The change vector analysis is based on the 

measurement space defined by the principal components of the Landsat Images. Interpretation of  

the magnitude and direction of the change vectors has shown that in the complex landscape such 

as the rapidly changing urban environment of Atlanta, different land use/cover transformations 

can manifest similar magnitude and direction of spectral change, while different magnitude and 

direction of change may indicate same kind of land use/cover change. Specific ‘from-to’ nature 

of land use/cover change and a change/no-change matrix cannot be derived from change vector 

analysis. Only the post-classification comparison method can effectively detect the specific 

‘from-to’ nature of land use/cover changes and generate a change/no-change matrix. However, 

post-classification comparison change detection compounds the classification errors in the land 
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use/cover maps compared. Thus, to improve the change detection accuracy, the accuracy of land 

use/cover classifications must be improved.  

This study demonstrates the use of an NDVI differencing method combined with 

temporal logic to improve the accuracy of land use/cover maps. This combination method is not 

the same as the conventional NDVI differencing method (Masek et al. 2000), which can only 

differentiate change and no-change by trial and error of a single artificially assigned threshold 

value. In this study,  the NDVI difference map is classified and interpreted to indicate different 

types of land use/cover change, and temporal logic is used to take advantage of the temporal 

information latent in the relationships between vegetation cover changes and land use/cover 

changes. Last, post-comparison of the accuracy-enhanced land use/cover maps is conducted to 

detect land use/cover change. Quantitative land use/cover change information will be obtained 

and spatial patterns of changes will be displayed as land use/cover change maps. 

 

3.1 Satellite data 

Two Landsat TM images were used for land use/cover change detection. One image was 

acquired on June 29, 1987, and the other was obtained on July 29, 1997, for a time span of 10 

years. The technical parameters are shown in Table 3.1. Since the study area spans two rows in 

the Worldwide Reference System (WRS) used for the cataloging and referencing of images 

transmitted from the Landsat sensors, the two images have been center-shifted so that the entire 

area is covered within one whole scene. The two satellite images are shown in Figure 3.1. A 

rectangle area of interest (AOI) bounding the 13-county study area was created to subset the two 

images (Figure 3.2). Both images were re-sampled to a spatial resolution of 25 meters.  
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Table 3.1 Characteristics of the satellite images 

Date 29 June 1987 29 July 1997 
Landsat No. 5 
Sensor Thematic Mapper (TM) 
Nominal Spatial resolution(m) 30 
Quantization Byte (8 bits) 
Resampling NN 
Sun elevation (°) 61.84 61.00 
Sun azimuth (°) 103.71 106.00 
Center-shift The center of the north scene has been  

shifted 50% 
Scene coverage Approximately 185×185km2 
Georeference system Projection: UTM 

Zone: 16 
Earth ellipsoid: GRS 1980  
Horizontal datum: NAD83  

Band designations Band # Wavelength 
(micrometers) 

Band 1 0.45-0.52 
Band 2 0.52-0.60 
Band 3 0.63-0.69 
Band 4 0.76-0.90 
Band 5 1.55-1.75 
Band 6 10.40-12.50 
Band 7 2.08-2.35  
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Figure 3.1  Landsat TM images (Left: June 29, 1987; Right: July 29, 1970). 

 

 

 

 
 
 
 
 
Spatial extent of Area of interest (AOI): 
 
Upper Left X: 679950 m 
Upper Left Y: 3811525 m 
Lower Right X: 796525 m 
Lower Right Y: 3674350 m 
 

Figure 3.2 Image subset to the area of interest. 
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Remotely sensed data used for urban applications in urban environments characterized by 

highly heterogeneous surfaces must meet certain conditions in terms of temporal, spatial, 

spectral, and radiometric characteristics (Lo 1986). When remote sensing images are  

applied to land use/cover change detection, those requirements are especially important. The 

ideal conditions for change detection are the use of data acquired by the same or similar sensor 

and recorded using the same spatial resolution, viewing geometry, spectral bands, radiometric 

resolution, season and time of day (Lillesand and Kiefer 1999). The satellite data of the years 

1987 and 1997 were acquired using the same sensor with the same spatial, spectral, and 

radiometric resolutions (Table 3.1). Both images were acquired in leaf-on season with a 

difference of 31 days, thus it does not strictly meet the anniversary date requirement. The sun-

synchronous orbit of Landsat 5 TM ensures repeatable sun illumination conditions during the 

specific seasons. Repeatable illumination conditions are desirable when comparing annual 

changes in land cover (Lillesand and Kiefer 1999). 

 

3.2 Co-registration of multi-date images 

Whatever land use/cover change detection methods are used, the final discrimination of the 

change relies on the comparison of the pixel pairs (or conjugate pixels) that represent the same 

ground location.  Accurate spatial co-registration of the multi-temporal images is a requirement 

for reliable land use/cover change detection. Land cover change may be overestimated due to 

positional errors. False land use/cover change detected from a 20-class Landsat classification 

could reach more than 33% due to mis-registration (Verbyla 2000). 

If  two images are used for land use/cover change detection, a root mean square error 

(RMSE) of less than 0.5 pixel for each image with reference to true ground locations does not 
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necessarily guarantee the accurate co-registration of the two images. This can be demonstrated in 

Figure 3.3. In Figure 3.3(a), the pixel shifts less than 0.5 pixel relative to its true location 

represented by a red point in the same direction both in the first date image and in the second 

date image. In this case, they are co-registered and change detection can be conducted on the two 

pixels. In Figure 3.3(b), although the pixel shifts less than 0.5 pixel relative to its true location on 

both dates, which certainly meets geometric rectification accuracy requirement, the directions of 

the displacement are opposite. This would result in a less than 50% overlap if the two pixels 

overlay with each other for change detection. The negative impact of the shift in the opposite 

directions is that the left-neighboring pixel under consideration will be compared with the pixel 

of interest on the first date image (Figure 3.3(c)). This would cause overestimation of the change. 

The 1997 Landsat TM image supplied by Space Imaging EOSAT had already been geo-

referenced to the UTM coordinate system (Zone 16 North), NAD 1983 horizontal datum, and 

GRS 1980 ellipsoid. The 1987 image supplied by USGS EROS Data Center was registered with 

the 1997 image using the 1997 image as a reference.  

It was found that after the registration, the two Landsat TM images were still not 

accurately co-registered as revealed by examining the conjugate pixels on the two images. 

Visually finding conjugate pixels on the Landsat TM images with resampled 25m spatial 

resolution is not easy task due to the mixed pixel problem. Only large buildings with distinct 

boundaries on both images can be used to find the conjugate pixels. Most land features, either 

natural or artificial, have fuzzy boundaries. A few large commercial buildings with distinct 

boundaries have been found and their conjugate corners are compared using the geographic 

linking function of ERDAS Imagine software. Figure 3.4 (a) shows a building in the northwest 

Atlanta area displayed in the 1987 (left) and 1997 (right) images. If the two images are  
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(a) Pixel shifts relative to the true location in the same direction: images are co-registered 

accurately. 

 
 

 

 (b) Pixel shifts relative to the true location in the opposite direction: images are not coregistered. 

 

 

(c) The negative impact of mis-registration on change detection: the left neighboring pixel of 

the second date is compared to the pixel under consideration on the first date image. 

 

Figure 3.3 Accurate georeference (RMSE < 0.5 pixel ) does not guarantee co-registration of  

                 multi-date images for land use/cover change detection. 
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(a) A large building used to examine the pixel shift. 

 

(b) Pixel shift of the NW corner of the building. 

Figure 3.4 Examination of pixel shift of the 1997 Landsat TM image relative to the 1987 image.  
 
 
 
 

 

 
Figure 3.5 Pixel shift corrected by offsetting coordinates of the 1997 image: both images become 

                 co-registered. 
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accurately registered to each other, the building’s corners should coincide. Closer examination of 

the two images by zooming into the building area has shown that the 1997 image has shifted 13 

meters eastward and 2 meters to the south (Figure 3.4(b)). Since the shift of 13 meters exceeds 

half a pixel width (12.5 meters), conjugate pixels will not be spatially matched for change 

detection. 

The problem of pixel shift was also examined on the four corner areas and the central part 

of the study area. It was found that the pixel shift is uniform within the whole study area — the 

1997 image has shifted 13 meters eastward and 2 meters southward relative to the 1987 image, 

thus suggesting a systematic error. The uniformity of the shift makes it easy to correct. The shift 

was simply corrected by offsetting the coordinates of the 1997 image by subtracting 13 meters 

from the X coordinates and adding 2 meters to Y coordinates. This operation has resulted in the 

1997 image being exactly co-registered with the 1987 image (Figure 3.5), setting a base for 

reliable pixel comparison for change vector analysis (Section 3.4), NDVI differencing (Section 

3.8), and post-classification comparison for land use/cover change detection (Section 3.9).  

 

3.3 Computer-assisted land use/cover classification 

The land use/cover classification was based on Anderson’s land use/cover classification scheme 

(Anderson et al. 1979) with modifications to adapt to computer-assisted land use/cover mapping. 

A total of six classes of land use/cover will be mapped: (1) high-density urban, (2) low-density 

urban, (3) bare land, (4) cropland or grassland, (5) forest, and (6) water. Detailed explanations of 

the classification scheme are shown in Table 3.1. The classification scheme is one of the most 

important factors affecting the attribute accuracy of image classification. Generally, the larger 

the number of categories in a classification scheme, the more precisely the data can be presented,  
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Table 3.1 Land use/cover classification scheme 

 

Codes Land use/cover 
classes 

Description 

1 High-density 
urban 
 

Central business districts, multi-family dwellings, 
commercial and industrial facilities, high impervious 
surface areas of institutional facilities, large transportation 
facilities, e.g. airports, multilane interstate/state highways 

2 Low-density 
urban  

Single family residential areas, urban recreational areas, 
cemeteries, playing fields, campus-like institutions, parks, 
schools, local roads 

3 Bare land  Areas with sparse vegetation (less than 20%), forest clear-
cut, fallowed cropland, quarries, strip mines, rock outcrop, 
sand beach along rivers and lakes 

4 Cropland or 
grassland 

Row crop agriculture, orchids, vineyards, horticultural 
businesses, pastures, non-tilted grasses, golf courses 

5 Forest Evergreen forest, deciduous forest, and mixed forest 
6 Water Rivers, streams, lakes, and reservoirs 

 
 

but the more difficult it is to achieve high classification accuracy (Lo and Yeung 2002). 

Classification scheme design can also influence land use/cover modeling results.  

 The original land use/cover maps employed in this study were classified by Yang (2000) 

using the unsupervised Iterative Self-Organizing Data Analysis (ISODATA)  classification 

method. The ISODATA clustering method makes use of the minimum spectral distance formula 

to form clusters. It begins with either arbitrary cluster means or means of an existing signature 

set, and each time the clustering repeats, the means of these clusters are shifted.  The new cluster 

means are used for the next iteration. The ISODATA utility repeats the clustering of the image 

until either a maximum number of iterations has been performed, or a maximum percentage of 

unchanged pixels has been reached between two iterations (Jensen 1996). ISODATA is a 

conventional multi-spectral classification technique performing class assignments based only on 

the spectral signatures of a classification unit without referring to contextual information. 
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3.4 Principal components analysis and change vector analysis 

Change vector analysis is one of the land use/cover change detection methods. It is a change 

detection procedure that is a conceptual extension of image differencing (Lillesand and Kiefer 

1999). A certain number of spectral variables define a multi-dimensional coordinate space. Each 

pixel on the satellite images acquired at dates 1 and 2 can be located at a point for each date in 

the coordinate space by its spectral variable values. The vector connecting the two points 

indicates both the magnitude and direction of spectral change between these two dates.  The 

magnitude of the change vector is the Euclidean distance between these two points, indicating 

the intensity of the land use/cover change. The decision that a change has occurred is made if the 

magnitude of the computed spectral change vector exceeds a specified threshold criterion (Singh 

1989). The direction of the change vector indicates the nature of change, for example forest 

clear-cut or re-growth.  In this section, principal components obtained from a PCA which 

accounts for most of the variance in the original Landsat TM images will be used as spectral 

variables to define the coordinate space for change vector analysis.  In multi-temporal studies, 

the principal components for two or more dates are often compared as in image differencing 

(Singh 1989).  

 The technique of PCA can be used to reduce information redundancy in multi-band 

remote sensing images. It allows redundant data to be compacted into fewer bands to achieve the 

reduced dimensionality of the data. The bands of PCA data are non-correlated and independent, 

and are more interpretable than the source data (Jensen 1996). PCA reduces data by deriving a 

new set of orthogonal data axes for the dataset which represents the maximum variance along the 
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first component axis, the next largest variance along the second component axis, and the least 

variance along the last axis.  

 To determine the principal components, the covariance matrix, Cov , of the original TM 

images is calculated. From the covariance matrix, a diagonal matrix E, whose non-diagonal 

elements are equal to zero and diagonal elements are eigenvalues pλ ( p =1,2,…,n,  where n is the 

number of components in the original image), is derived using the following equation : 

0pCov Iλ− =   (3-1) 

where I is the identity matrix. Eigenvalue pλ  is the variance of the pth principal component. 

The eigenvector matrix EV, whose elements are kpa (k=1 to n bands, p=1 to n 

components), is computed such that (Jensen 1996): 

TEV Cov EV E× × =   (3-2) 

where TEV  is the transpose of the eigenvector matrix, EV. 

 The percent of total variance explained by each of the principal components, % p , can be 

computed from eigenvalues as follows (Jensen 1996): 

1

% 100p
n

p
p

p
λ

λ
=

= ×

∑
  (3-3) 

 By computing the correlation of each band k with each component p, it is possible to 

determine how each band “loads” or is associated with each principal component. The equation 

is (Jensen 1996) : 

kp p
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k
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λ×
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 71

where kpR  is the element in a n n×  matrix filled with factor loadings representing the association 

of band k with component p, and kVar  is the variance of band k in the covariance matrix Cov . 

 The principal component images are computed according to the following formula 

(Jensen 1996): 

, , , ,
1

n

i j p kp i j k
i

newBV a BV
=

=∑   (3-5) 

where , ,i j kBV  is brightness value in band k for the pixel at row i and column j.  

 Principal components analysis was conducted using ERDAS Imagine. Table 3.2 shows 

the eigenvalues, the percentage of variance explained by each component, and the cumulative 

percentage of variance explained of the two Landsat images in the study. The first two principal 

components explain 91.48% of the total variance of the 1987 image, and 89.52% of the total 

variance of the 1997 image. Therefore a majority of the scene information is found in the first 

two principal components. This is typically the case with TM data as the first and second 

principal components contain a majority of the total radiance and vegetation greenness 

information (Jensen 1996).  

  

Table 3.2 PCA eigenvalues and percentage of variance explained by each component 

1987 1997 Principal 
component 
# Eigenvalue % Cumulative Eigenvalue % Cumulative

1 1575.67 69.36 69.36 1067.39 67.65 67.65
2 502.53 22.12 91.48 345.02 21.87 89.52
3 135.42 5.96 97.44 112.34 7.12 96.64
4 21.62 0.95 98.40 26.12 1.66 98.30
5 18.93 0.83 99.23 13.81 0.88 99.17
6 13.67 0.60 99.83 10.91 0.69 99.87
7 3.85 0.17 100.00 2.12 0.13 100.00

Total 2271.69 100.00  1577.71      100.00  
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Table 3.3 Factor loadings of each principal component with each band 

(Significant factor loadings are shown in bold type) 

Principal component #  Band # 
1 2 3 4 5 6 7 

1 0.74 -0.42 -0.46 0.18 -0.17 -0.05 -0.03
2 0.83 -0.34 -0.40 0.03 0.07 0.01 0.19
3 0.84 -0.41 -0.30 -0.06 0.16 0.06 -0.05
4 0.40 0.89 -0.21 -0.03 -0.01 0.00 0.00
5 0.97 0.08 0.21 0.06 0.02 0.01 0.00
6 0.56 -0.35 0.05 -0.14 -0.39 0.62 0.02

 
 

TM 
 

1987 

7 0.94 -0.24 0.04 -0.19 -0.09 -0.08 0.00
 

1 0.72 -0.42 -0.52 0.07 -0.12 -0.13 -0.02
2 0.82 -0.35 -0.42 -0.01 0.00 0.10 0.16
3 0.83 -0.42 -0.30 -0.06 0.06 0.18 -0.05
4 0.42 0.88 -0.21 -0.06 0.01 0.00 0.00
5 0.97 0.07 0.21 0.06 -0.04 0.01 0.00
6 0.57 -0.37 0.31 -0.74 -0.28 -0.02 0.00

 
 

TM  
 

1997 

7 0.93 -0.26 0.07 -0.10 0.19 -0.11 0.00
 

 

 Table 3.3 shows the factor loading of each principal component with each band. Factor 

loading values for both image demonstrate the same pattern. The correlations of principal 

component 1 with all the bands except band 4 (NIR band) are high. The first principal 

component contains information from almost all the bands and explains the maximum amount of 

variation in the seven-dimensional space defined by the seven Thematic Mapper bands. The 

image (Figure 3.6(a)) produced from principal component 1 data covering the area of Atlanta 

Hartsfield International Airport resembles an actual aerial photograph. In fact, this is the normal 

character of the first component of Landsat TM images, in that it broadly simulates standard 

black and white photography and it contains most of the pertinent information inherent to a scene 

(Jensen 1996). The second component has high loadings only in the near-infrared (NIR) band
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(a) Principal component 1. 
 

 
(b) Principal component 2. 

 
 

(c) Principal component 7 image. 
 

Figure 3.6  Principal components 1, 2 and 7 from PCA of Landsat 1997 TM image. (a) and (c) 

                  shows the Atlanta Hartsfield International Airport area; (b) shows the whole study  

                  area.
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(band 4). This suggests that this component is an NIR reflectance band (Figure 3.6(b)) with 

water being dark and vegetation being bright. Component 3 is weakly related to MIR band with a 

factor loading value of 0.21. The remaining components provide very little information. For 

example the last component (Figure 3.6(c)) is noise only.  

 Figure 3.7 shows color composite images of the years 1987 and 1997 displaying the first 

three principal components in red, green and blue color combination.  High-density urban and 

cloud show red color.  Areas in purple are residential. Forest clear-cuts are in magenta. Cropland 

or grassland look yellow. Forests take on their natural green color. Water body and cloud shadow 

are blue. The patterns of urban area, especially commercial, industrial, and transportation, are 

easy to perceive.  

Since the first two principal components contain a majority of information, it is logical 

and reasonable to use them for change vector analysis. Plotting the principal component 2 value 

against the principal component 1 value of a pixel for the year 1987, a data point was obtained.  

The data point for the year 1997 for the same pixel was also plotted (Figure 3.8). The vector 

pointing from the 1987 data point to the 1997 point is expected to indicate the intensity and 

nature of land use/cover change. Change vector analysis on the first two principal components 

produces a magnitude image and a direction image. Figure 3.9 shows the detailed images in the 

Mall of Georgia area. It is more intuitive to identify land conversion from the direction image 

than from the magnitude image. In the direction image, white tone indicates deforestation for 

commercial, residential and transportation development; the majority of the area on the image is 

grey, indicating no change of land use/cover. The magnitude image looks more heterogeneous 

and hard to interpret. However, it is still obvious that brighter tone indicates commercial urban 

development. The dark tone is for the forest area with moisture variation between the two years.  
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(a) 1987 (b) 1997 

 
Figure 3.7 Principal components 1, 2,3 composite image displayed in red, green, and blue 

                 color combination. 

 

 

 

Figure 3.8 Change vector defined on the principal components 1 and 2 measurement space. 
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                      (a) TM 1987                        (b) TM 1997 

(c) Magnitude (d) Direction 

Figure 3.9  Land use/cover change magnitude and direction from change vector analysis. White 

                  tone represents change, and grey tone represents no-change. 

 

  

By visual comparison of the magnitude and direction images with the original Landsat 

TM images it was found that in the whole study area, similar tones on the magnitude or direction 

images could indicate different types of land use/cover change, and similar land use/cover 

transformations can have very different spectral changes. A sample of 100 points was generated 

using the stratified random sampling technique. For each point, the magnitude, direction values 
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and the nature of land use/cover change was recorded and portrayed in Figure 3.10. In Figure 

3.10(a), points for different types of land use/cover change are intermingled and a distinct cluster 

cannot be discerned for a kind of change.  It is hard to define a box with upper and lower limits 

of values for each kind of land use/cover change. Therefore in complex landscapes such as the 

study area, where similar land use/cover conversions can have vastly different spectral changes 

and different types of land use/cover transformations can have very similar spectral changes on 

both direction and magnitude, change vector analysis is not an effective way to detect the 

specific nature of the land use/cover change. Although the change vector analysis conducted here 

cannot be used to differentiate the nature of land use/cover change, general land use/cover 

change dynamics can be monitored from Figure 3.10. Of the 100 data points, 22 points represent 

land use/cover change. The percentage value of 22% can be an indicator of land use/cover 

dynamics in the study area. During the 10 years from 1987 to 1997, the study area had 

experienced dramatic land use/cover change. From Figure 3.10(b), it is seen that the major land 

use/cover change is urban development at the cost of deforestation.  

 

3.5 Errors in computer-assisted land use/cover classification from Landsat TM images 

In a previous study of land use/cover changes in Atlanta, Yang (2000) classified Landsat TM 

images by using the unsupervised image clustering method ISODATA followed by manual 

editing with the support of on-screen digitizing, multiple zooming, AOI functionality and other 

GIS tools such as recoding. For the 1997 land use/cover map classified from the 1997 Landsat 

TM image, a total of 488 pixels were selected by a stratified random sampling design and were 

checked against color infrared aerial photos. The overall classification accuracy is 90.10% and 

the overall kappa index of agreement is 87.80% (Table 3.4). Forest and water classification  
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(a) Composite plot 

 

 

                           B = bare land                    C = cropland/grassland       F = forest 
                           H = high-density urban    L = low-density urban         No = no change 

(b) Plots separated by the type of land use/cover change/no-change 

 

Figure 3.10 Change vector magnitude vs. direction and the type of land use/cover change. 
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Table 3.4 Accuracy assessment of the 1997 land use/cover map produced 
 from Landsat TM image (Yang 2000) 

 
Reference Image Classified Image 

1 2 3 4 5 6 Row Total User’s 
Accuracy (%)

1 54 3 3 5 0 0 65 83.31 
2 2 57 2 6 6 0 73 78.08 
3 0 1 41 8 0 0 50 82.00 
4 0 0 1 96 3 0 100 96.00 
5 0 0 0 3 147 0 150 98.00 
6 0 0 1 0 0 49 50 98.00 

Column Total 56 61 48 118 156 49 488  
Producer’s  
Accuracy (%) 

96.43 93.44 85.42 81.36 94.23 100   

Number of pixels correctly classified = 444 
 
Overall classification accuracy = 90.10% 

Class code Kappa 
1 0.809 
2 0.750 
3 0.800 
4 0.951 
5 0.976 
6 0.978 

Overall Kappa Index of Agreement = 
 
                         0.878 

 
 
1 = high-density urban 
2 = low-density urban 
3 = bare land 
4 = cropland or grassland 
5 = forest 
6 = water 
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accuracies are higher than those for high-density urban, low-density urban and bare land. 

Classification of cropland or grassland achieved intermediate accuracy.  

By examining the land use/cover maps and referring to the original satellite images and 

other ancillary air photos, it was found that there are four major types of errors (Figure 3.11). 

The first kind of error is cloud shadows being misclassified as water. The second kind of error is 

that fallow fields were misclassified as high-density urban. The third kind of error is forest clear-

cuts being misclassified as high-density urban or low-density urban. The last type of error is 

forest clear-cuts being misclassified as cropland. These errors are the result of spectral 

confusions among land use/cover classes. The spectral confusions can be seen from the signature 

curves of different land use/cover types in the 1987 TM image in Figure 3.12.  Only in bands 4 

(NIR) and band 5 (MIR) is there some obvious spectral separability. In other bands, the spectral 

curves overlap. Figure 3.13 shows histogram plots that reveal the overlaps in pixel values of the 

1987 Landsat TM image blue band between bare land (band 1) (fallow field or forest clear-cut) 

and high-density urban, low-density urban, or cropland/grassland. 

Although human intelligence can be employed in interpreting images by shape, size, 

pattern, shadow, tone or color, texture, association, and site in developing the land use/cover 

map, very limited spectral confusions could be resolved. A simple calculation will show that 

visual editing can only resolve limited amount of spectral confusion. Suppose two 4-inch by 4- 

inch image viewers are opened and arranged side by side on a desktop computer screen, one for 

displaying a land use/cover classification map to be visually inspected and edited, the other for 

displaying a reference image. From my experience, to effectively find classification errors and 

make on-screen corrections, we need to zoom into the images at least at the scale of 1:10,000.  
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(a) Cloud shadow misclassified as water. 
 
 

(b) Fallowed cropland misclassified as 
              high-density urban (3 → 1). 
  

  

(c) Forest clear-cut misclassified as high- 
          density urban (3 → 1). 

(d) Forest clear-cut misclassified as  
           high- or low-density urban  
           (3 → 1 or 2) 

 

 

(e) Forest clear-cut misclassified as cropland 
      (3 → 4). 

Legend 

 
 
Figure 3.11 Major classification errors in the initial land use/cover classifications. 
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Figure 3.12 Spectral signature curves developed from some AOIs on the 1987 Landsat TM  

                   Image. 
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(a) Bare land (fallowed land) vs. high-density 

       urban. 

 

(b) Bare land (forest clear-cut) vs. high-density  

      urban. 

 

(c) Bare land (forest clear-cut) vs. low-density 

       urban. 

(d) Cropland/grassland vs. bare land. 

 

 
 
 

Figure 3.13 Spectral confusions between land use/cover classes indicated by the overlaps in digital 

                    numbers (pixel values) of band 1, 1987 Landsat TM. 
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The study area dimension is 120 km by 140 km. Then the number of image frames we need to 

examine would be 2,025, thus the labor is intensive. Also frequent zooming in and zooming out 

are needed to get detailed local information and background contexture information for a land 

use/cover feature. Frequent zooming in and out can easily make image analysts lost. People 

probably would not be willing to do such a boring job. Therefore manual editing for relatively 

high-resolution satellite images with a large ground coverage should not be advocated. Computer 

automated approaches to improvement of land use/cover classification accuracy are a necessity. 

In Section 3.8, NDVI differencing and temporal logic will be used to enhance the initial land 

use/cover classification. Below, cloud shadow misclassified as water will be first corrected by a 

very simple but effective temporal logic. 

 

3.6 Correction of classification errors caused by cloud shadows 

To recover the true land use/cover under the cloud shadows, a simple temporal logic can be 

employed. It can be noticed from Figure 3.1 that clouds on the 1987 image are mostly distributed 

on the southeast and clouds on the 1997 image are mainly concentrated on the west. Chances of 

an area being shadowed by cloud on both dates are small. If an area with cloud was classified as 

water for one year, replacing the false water with the land use/cover classes of the other year will 

clear the spectral confusion between cloud shadow and water. To implement this temporal logic, 

first cloud and cloud shadow areas were identified visually on both Landsat TM images. Two 

binary images showing cloud and cloud shadow areas were created manually for both dates and 

combined together using raster GIS ‘union’ (‘OR’ logic) to form a single binary image with 

cloud or cloud shadow on either date being equal to 1 (Figure 3.14). Cloud and cloud shadow 
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coverage accounts for up to 2% of the area of the study area. The pseudo code for the logical 

expression is: 

For ,i jPixel  { 

     If   1CLOUD ==  && 
1t

LANDUSE  = = WATER 

     Then 
1t

LANDUSE  = 
2t

LANDUSE  

}    // ‘&&’ means AND, “= =”  represents “is equal to”, “=” is  

      //  assignment operation.  

  

ERDAS Imagine Spatial Modeling Language (SML) was used to accomplish the above logic 

operation.  

An example of how the temporal logic has cleared the confusion between cloud shadow and 

water is shown in Figures 3.15 and 3.16 for an area near Lake Lanier north of Atlanta. On the 

TM images shown in Figure 3.15, the 1987 image is cloud free, while on the 1997 image, there 

were cloud and cloud shadow. On the original 1997 land use/cover classification map produced 

using the ISODATA clustering method, cloud shadow area was assigned the class name of 

water, leaving  a city island shown in red within the lake (see the left image on Figure 3.16). The 

same area was shown on the 1987 TM image to be mainly forest and some residential use. 

Chances of residential areas converting to water bodies are small. It is very likely that this area 

was still forest and residential. After all, the area of land use/cover change is much less than that 

of no-change area, noticing that the percentage of changed area is 22% from the change vector 

analysis in Section 3.4. This should justify the temporal logic operation that assigns land 

use/cover types of the past year to the area misclassified. The correction result was shown on the 

right image in Figure 3.16 on which the false water has been modified to forest and residential 

and the city island now becomes the waterfront.  
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Figure 3.14 Cloud and cloud shadow (shown in 

                    white) distribution in the 1987 

                    image or the 1997 image. 

 

Figure 3.15 Landsat images for the both dates,  

                      Lake Lanier area. 

  
 
Figure 3.16  The initial classification of the 1997 image (left) and correct classification (right).  

                     Compare this figure with Figure 3.11(a).  Cloud shadow misclassified as water has  

                     been corrected to the land use/cover types of the other year (1987) using temporal 

                     logic. 
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 Since the white-purple tone of cloud is also similar to the tone of high-density urban, 

some clouds have been misclassified as high-density urban. This classification  has caused 

overestimation of high-density urban area. To remove the error on the 1987 land use map, 

similar temporal logic can be used. For a pixel on the 1987 land use/cover map, if it had clouds 

and was labeled high-density urban, and if it was not high-density urban on the 1997 land 

use/cover map, then the pixel value is replaced with that for the year 1997. It is very unlikely that 

an area was not high-density urban in a more recent year but was high-density urban in an earlier 

year since concrete and asphalt cover is often irreversible. However, the temporal logic cannot be 

employed to correct the kind of error on the 1997 land use map by referring to an earlier land use 

map. If a pixel on a more recent image has cloud and is classified as high-density, the true land 

use/cover state cannot be derived from the earlier image since it is likely that this pixel was not 

urban in that past but is urban in the present. The cloud error on the 1997 land use/cover map has 

been corrected by Yang (2000) by referring to a 1998 TM cloud-free image.  

 

3.7 Error propagation in post-classification comparison 

This study uses post-classification comparison method to detect land use/cover change between 

two dates. Post-classification comparison compares land use/cover thematic raster maps created 

from image classification pixel by pixel. The advantages of this approach are that the nature of 

land use/cover change can be detected directly and that radiometric normalization of the multi-

date images is not required since land use/cover classification is performed for each date based 

on its own spectral values independent of the values of different dates.  

 Basically, post-classification comparison change detection is a logical ‘AND’ operation. 

It produces a land use/cover change map with each pixel labeled as “This pixel was land 
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use/cover type A in date t1 AND it is now land use/cover type B in date t2.”  Newcomer and 

Szajgin (1984) developed a categorical data error model for the Boolean AND operator in which 

the accuracy of a given data layer i, P[Ei], is defined as the proportion of the cells in the data 

layer that are correctly classified. So P[Ei] is actually equivalent to the overall accuracy in Table 

3.4. Given two data layers with accuracies of P[E1] and P[E2], the accuracy of the composite 

map resulting from the AND operation, P[Ec], is given by 

1 2 1 2 1[ ] [ ] [ ] [ | ]cP E P E E P E P E E= ∩ = ×   (3-6) 

where the conditional probability 2 1[ | ]P E E  is the proportion of correctly classified cells in data 

layer 1 that are also correctly classified in data layer 2. This can be manifested in Figure 3.17 for 

a 6 by 6 neighborhood extracted from the land use/cover maps of the years 1987 and 1997. 

Veregin (1989) derived from the above formula some general conclusions about 

composite map accuracy for the AND operator. Composite map accuracy will at best be equal to 

the accuracy of the least accurate data layer. The best accuracy can be achieved only when the 

misclassified cells on each layer coincide spatially with those on the least accurate data layer. 

The worst map accuracy will be equal to one minus the sum of the proportion of misclassified 

cells on each layer or to zero if the sum is greater one. This will occur when no misclassified 

cells on each layer coincide with each other. If errors on both layers are independent from each 

other, then the overlay AND operation will generate a composite map with an accuracy of  

P[Ec] = P[E1]*P[E2]  (3-7) 

The errors on multi-date satellite image classification maps should be independent from each 

other because the pixel clustering operation on one date image does not depend on the images of 

other dates. 



 89

 

 
 

L   L H H H H 
L L E H H B 
E E E W B B 
E E W W B B 
C C W W B D 
C C W W D D 

 
    Reference Data 1987 
       

 
 
 
AND 
 

L   L H H H H 
L L E H H H 
L L E W H H 
L L W W H B 
L C W W B H 
C B W W D H 

 
 Reference Data 1997 
 

 
 
 
=

LL   LL HH HH HH HH 
LL LL EE HH HH BH 
EL EL EE WW BH BH 
EL EL WW WW BH BB 
CL CC WW WW BB DH 
CC CB WW WW DD DH 

 
       Actual Land use/cover Change  

L   L H H H B 
L L E H H B 
E W E W H B 
E E W W B B 
H C W W B D 
C C W E D D 

 
Classification Data 1987 
 
 

 
 
 
AND 

B  L H H H H 
L L E H H H 
L L W W B H 
L L W W H B 
L C W W B H 
B B W W D H 

 
Classification Data 1997 
 

 
 
 
=

LB   LL HH HH HH BH 
LL LL EE HH HH BH 
EL WL EW WW HB BH 
EL EL WW WW BH BB 
HL CC WW WW BB DH 
CB CB WW EW DD DH 

 
     Estimated Land use/cover Change 

 
Black body indicates misclassified pixels 

 
   L – Low-density urban     H- High-density urban      E- Evergreen forest 
   W-Water                           B- Bare land                      D- Deciduous forest 

 
P[Ec]= P[E1∩ E2] = P[E1] P[E2|E1] =  (31/36) * ( 28/31) = 28 / 36 

 
Figure 3.17 Error propagation in the boolean AND operation in land use/cover change  
                   detection. 
 

 

 

Thus, post-classification comparison for land use/cover change detection will compound 

the errors from multi-date land use/cover map layers. The accuracy of this change detection 

technique is only as good as the result of the multiplication of the accuracies of each individual 

classification (Singh 1989). For two conjugate pixels under comparison, only when they are 

correctly classified on both images would change/no-change be correctly detected. The overall 

accuracy is 90.10% for the 1997 land use/cover classification. Assuming that the accuracy of the 
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1987 land use/cover classification is the same as that of the 1997, then the land use/cover change 

map accuracy would be the product of the two maps’ overall accuracies, which is equal to 

81.18%. To improve the accuracy of land use/cover change, land use/cover classification 

accuracy must be improved first. The next section will use NDVI differencing and temporal 

logic to achieve this objective. 

 
3.8 Using NDVI differencing and temporal logic to improve land use/cover classification 

       accuracy 

3.8.1 Normalized Difference Vegetation Index (NDVI) 

The reflectance of vegetation varies across the electromagnetic spectrum. We see healthy 

vegetation as predominantly green with our naked eyes because the chlorophyll present in the 

leaf tissue of plants is absorbing blue and red radiation to carry on photosynthesis. Actively 

growing plants are highly reflective in the near-infrared portion of the spectrum (Figure 3.12) 

because of the multiple scattering that takes place between the spongy-mesophyll cells of the 

plant (Lillesand and Kiefer 1999). This contrast of reflectance and absorption by vegetation 

cover allows us to evaluate the amount of vegetation present on the surface. A popular index 

used to characterize the contrast of vegetation’s higher reflectance in the near-infrared (NIR) 

band with lower reflectance in the red band is Normalized Difference Vegetation Index (NDVI).  

NDVI is the ratio of the difference in reflectance between the NIR band and the red band to the 

sum of the reflectance of the two bands. For Landsat 5 TM images, NDVI is measured on band 4 

( ρ 4) ( NIR band with wavelength range of 0.76-0.90µm) and band 3( ρ 3) (red band with 

wavelength range of 0.63-0.69µm): 

NDVI = 4 3

4 3

ρ ρ
ρ ρ

−
+

   (3-8) 
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NDVI takes values between -1 and 1, with values near 1 indicating dense vegetation and 

values less than zero indicating no vegetation.  Vegetated areas will generally yield high values 

for NDVI because of their relatively high near-infrared reflectance and low visible reflectance. In 

contrast, cloud and water have larger reflectance in visible spectral bands than in near-infrared 

band. Bare soil and rock areas have similar reflectance in the two bands and thus have vegetation 

index near zero (Lillesand and Kiefer 1999).  

        The Landsat 5 TM images for the year 1987 and 1997 of the study area were obtained in 

summer when vegetation was actively growing. NDVI images should be able to distinguish 

between vegetated area and non-vegetated area.  Commercial and industrial high intensity urban 

areas covered with asphalt must be distinctive from forest and cultivated cropland or grassland in 

an NDVI image. Multi-date NDVI difference maps could be indicative of urban sprawl at the 

expense of green space in a rapidly suburbanizing region. 

 

3.8.2 NDVI calculation 

By NDVI’s definition in Formula (3-8), the calculation of NDVI values should be based on 

spectral reflectance, not on digital numbers in the Landsat TM near-infrared and red image bands 

(Lillesand and Kiefer 1999). The 8-bit digital numbers for individual pixels in Landsat 5 TM 

images are quantized and calibrated values (QCAL) obtained through radiometric calibration of 

the TM scanners. The radiometric calibration is accomplished by rescaling the raw digital data 

transmitted from the satellite to calibrated digital data. To calculate NDVI, the digital numbers 

should be converted to spectral radiance, then to exo-atmospheric reflectance. These conversions 

provide a basis for more normalized comparison of data in single scenes, or between images 
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taken on different dates and/or by different sensors (Markham and Barker 1986), which is 

important in land use/cover change detection from multi-date satellite images.  

Conversion QCAL to spectral radiance Lλ  is accomplished with the following equation 

by knowing the lower and upper limits of the post-calibrated dynamic range for a specific band, 

namely LMINλ and LMAX λ : 

LMAX LMINL LMIN QCAL
QCALMAX

λ λ
λ λ

−
= + ×   (3-9) 

where   

Lλ                       =    Spectral radiance, in mW•cm-2.•ster-1•µm-1 

        QCAL               =     Calibrated and quantized scaled radiance in units of DN (digital 

                                        numbers) 

        LMINλ               =     Spectral radiance at QCAL = 0, in mW•cm-2.•ster-1•µm-1 

        LMAX λ              =      Spectral radiance at QCAL = QCALMAX, in mW•cm-2.•ster-1•µm-1 

        QCALMAX      =     Range of rescaled radiance in DN , 

  λ                        =     Subscript to indicate the spectral band. 

 The parameters used to calculate the spectral radiance from Landsat TM 1987 and 1997 

images are (Markham and Barker 1986): 

      LMIN3 = -0.12,  LMAX3 = 20.43; 

      LMIN4 = -0.15,  LMAX4 = 20.62; 

      QCALMAX = 255. 

 The Landsat TM images for 1987 and 1997 were captured on June 29 and July 29 

respectively. Therefore, they are not anniversary data. Variation in such factors as scene 

illumination and surface moisture content causes the multi-date images to be incompatible. It is 
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necessary to apply a sun elevation correction to correct for variation in solar illumination angles 

and normalize the angles to the zenith, and an earth-sun distance correction to normalize for the 

seasonal changes in the distances between the earth and the sun (Lillesand and Kiefer 1999). For 

the TM image of June 29, 1987, the sun elevation is 61.84°, and the distance between the sun 

and the earth is 1.01665 astronomical units (USGS document, URL: 

http://landcover.usgs.gov/pdf/image_preprocessing.pdf). For the TM image of July 29, 1997, the 

sun elevation is 61.00°, and the distance from the sun to the earth is 1.01485 astronomical units. 

Mean solar exoatmospheric irradiance of Landsat 5 TM is 155.7mW·cm-2·µm-1 for red band, and 

104.77mW·cm-2·µm-1 for near-infrared band. Given those parameters, the at-satellite reflectance, 

which is the combined surface and atmospheric reflectance,  is given by (Markham & Barker 

1986): 

2

cos
p

s

L d
ESUN

λ

λ

πρ
θ

=   (3-10) 

where    

          ρ p            =    unit-less effective at-satellite reflectance 

            Lλ        =     Spectral radiance  

            d            =     Earth-Sun distance in astronomical units 

            ESUN    =     Mean solar exoatmospheric irradiances  

            θ s          =    Solar zenith angle in degrees 

The conversion of digital number to at-satellite spectral reflectance has achieved a 

reduction in between-scene variability through normalization for solar irradiance. The 

parameters for the computation of at-satellite spectral reflectance are summarized in Table 3.5. 

Based on formula (3-8), NDVI images were calculated using at-satellite spectral reflectance from 

formula (3-10).  
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Table 3.5 Parameters for the calculation of at-satellite spectral reflectance 

Parameters Landsat 5 TM images 
Date 29 June 1987 29 July 1997 
Julian day 180 211 
Earth-sun distance 
in astronomical unit a 

1.01665 1.01485 

Solar zenith angle θ s  
(Solar elevation angle) 

28.16º 
(61.84º) 

29.00º 
(61.00º) 

LMIN3 -0.12 
LMAX3 20.43 
LMIN4 -0.15 

Dynamic range for spectral 
radiances 
(mW•cm-2•ster-1•um-1) b 

LMAX4 20.62 
QCALMAX 255  (=28) 
ESUN3(mW•cm-2•um-1) b 155.7 
ESUN4(mW•cm-2•um-1) b 104.7 
a USGS document, URL: http://landcover.usgs.gov/pdf/image_preprocessing.pdf 
b Markham and Barker (1986) 
 

 

Absolute NDVI values tend to vary temporally in a non-systematic manner, subject to 

many controlling factors, including illumination condition which has been corrected for above, 

and surface moisture. When multi-temporal NDVI images are compared, moisture variation 

between dates degrades the comparability. Scaling of NDVI is necessary when the NDVI images 

for the two years are to be compared. This was accomplished by using the following equation 

(Gillies et al. 1997): 

*N o

s o

NDVI NDVI
NDVI NDVI

−
=

−
  (3-11) 

Where N* is rescaled NDVI, which normalizes exo-rescaling vegetation index obtained from 

equation (3-8) by the NDVI values that are for 0% vegetation cover (NDVIo) and 100% 

vegetation cover (NDVIs). N* is also called fractional vegetation cover, which can effectively act 
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as a surrogate for percent vegetation cover. The two Landsat TM images for the study area 

contain a complete spectrum of vegetation amount. NDVIo values were taken from a completely 

non-vegetated patch on Lake Lanier, and NDVIs values were extracted from several dense forest 

areas, which were used to calculate N*: 

* 87
87

( 0.578352)
1.0 ( 0.578352)

NDVIN − −
=

− −
  (3-12) 

* 97
97

( 0.64776)
0.93087 ( 0.64776)
NDVIN − −

=
− −

   (3-13) 

The rescaled NDVI  values, N*, are in the range of [0,1], which are too small to take full 

advantage of the display capacity of common GIS and remote sensing software. To facilitate the 

interpretation of NDVI images, N* was further rescaled to the range of [0, 100] through 

equation: 

NDVI = N* ×100  (3-14) 

The rescaled NDVI images for the years 1987 and 1997 are shown in Figure 3.18. 

Vegetations look green. The more vegetation cover, the darker the green color is. Water bodies  

do not have vegetation cover, having the lowest NDVI values. Lake Allatooha and Lake Lanier 

take on a tan color. The spatial patterns of high-density urban areas characteristic of asphalt and 

concrete are easy to perceive by brown tone. It is hard to see low-density residential settlements 

stand out from forests because low-density residential buildings and local streets and drives are 

hidden in the forests.  

 

3.8.3 NDVI differencing, classification and interpretation 

To improve the land use/cover classification accuracy using temporal information, an 

NDVI difference image was generated by subtracting the 1987 NDVI image from the 1997 
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(a) 1987 (b) 1997 

 

 
                                                0                                                    100 

Figure 3.18 NDVI Images for the year 1987 and 1997. 
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NDVI image (Figure 3.18). The result is shown in Figure 3.19. White tone represents NDVI 

increase, while dark tone represents NDVI decrease. White tone areas are mostly forest re-

growth or replanting of fallowed cropland.  On the southeast corner, large patches with white 

tone do not actually represent vegetation cover change. Clouds hovered over those areas on the 

first date where it was sunny on the second date, resulting in significant NDVI increase. The dark 

areas on the northwest corner do not indicate true NDVI change. Those areas were covered with 

forest, cropland or grassland on the first date but were covered with clouds on the second date. In 

the whole study area, most of the dark areas are urban development replacing forest or 

agriculture land. Those areas are concentrated in the north-northeast of the study area, 

particularly Gwinnett, north Fulton, south Forsyth, north Cobb, and south Cherokee counties. 

Taking a closer look at an area within Gwinnett county around the intersection of I-85 and I-985 

by enlarging the image, the urban growth patterns manifested by the dark areas where NDVI 

values have dramatically decreased are obvious (Figure 3.20).  

  Different land use/cover change types may lead to different magnitude and direction of 

NDVI change. In order to detect the nature of land use/cover change, the NDVI difference image 

should be classified into a certain number of classes. It is expected that each class of NDVI 

change should be indicative of a certain kind of land use/cover change. 

 The NDVI difference image was classified using the ISODATA unsupervised 

classification method. The initial number of clusters was 20. The classified NDVI difference 

image was compared with the original Landsat TM images for the two years and ancillary air 

photos. Visual interpretation was conducted and each cluster was labeled with the specific nature 

of land use/cover change. Clusters with the same kind of land use/cover change were combined 

to form a single class. Some clusters represent different types of land use/cover change because 
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 Figure 3.19 NDVI difference image for the whole study area. White tone represents NDVI 

                   increase, while dark tone represents NDVI decrease. 
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 Figure 3.20 NDVI difference image, northeast of Atlanta. Urban growth patterns are  

                    Manifested by the dark areas where NDVI values have dramatically decreased. 
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those types of land use/cover change cause equal amount of NDVI change. In this case, all types 

of land use/cover change were recorded for those clusters. Finally, the 20-cluster classification 

was recoded and combined to form a five-class NDVI difference map. The five classes are 

‘dramatic decrease’, ‘moderate decrease’, ‘no change or subtle change’, ‘moderate increase’, and 

‘dramatic increase’ of NDVI values. Figure 3.21 demonstrates the 5-class NDVI  classification 

for the same area as in Figure 3.20. This map demonstrates that this area had experienced rapid 

urbanization from 1987 to 1997. Urban growth causing dramatic loss of green space is shown in 

brown color on the map. Many residential settlements had been developed to accommodate 

“white-flights” who moved from the central city to the suburb and new immigrants from other 

states to pursue new high-tech, white-collar and high-income job opportunities in this area. In the 

meantime, large shopping malls and other commercial facilities were constructed to meet the 

living demands of the new residents.  

 A table recording the different types of land use/cover change for each class of NDVI 

change was generated though the interpretation of the NDVI map (Table 3.6). Urban 

development on the forest and cropland/grassland has caused dramatic decrease of NDVI values. 

Forest change into water has also made NDVI dramatically decrease. Moderate decrease of 

NDVI has been accompanied with forest clear-cut and cropland being put into fallow. There are 

still shrubs or grass left with forest clear-cut and fallow cropland, thus the vegetation index does 

not decrease so dramatically as replacing forest and agriculture land with asphalt and concrete. 

No change or subtle change of NDVI represents either areas without land use/cover change or 

areas with land use/cover changes that do not cause much NDVI change. Conversions between 

forest and cropland/grassland cause subtle changes of NDVI. Transitions of bare land into urban 
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Figure 3.21 NDVI 1987-1997 difference classification map. Notice the conversion of forest and 

                   agriculture land for urban development in brown color (dramatic NDVI decrease).
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                    Table 3.6 Interpretation of NDVI difference classes 

Code NDVI∆  Nature of land use/cover 
change 
(“ from -to”) 

1 Dramatic decrease 4-1 
4-2 
5-1 
5-2 
5-6 

2 Moderate decrease 5-3 
4-3 

3 No change or subtle 
change 

No land use/cover change 
4-5 
5-4 
3-1 
3-2 
Crop rotation 
Moisture variation 
Other changes 

4 Moderate increase 3-5 
3-4 

5 Dramatic increase 6-5 
 
Land use/cover coding: 
 

1- High-density urban 
2- Low-density urban 
3- Bare land 
4- Cropland or grassland 
5- Forest 
6- Water 
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use and practice of crop rotation (planting different crops in different years) do not bring about 

obvious vegetation index variations. Moisture variations cause subtle NDVI change. For 

example, the sky over Lake Lanier was foggy and wet on the first date while it was clear on the 

second date, resulting in minor variation of the vegetation index values. But the subtle change 

does not indicate any actual land use/cover conversions. Forest re-growth from clear-cut and 

crop plantation on the fallow land have led to moderate increase of NDVI. When small water 

bodies, such as ponds, become dry and are covered with grass, shrub or forest, the vegetation 

index values increase dramatically.  

 

3.8.4 Using NDVI differencing and temporal logic to enhance land use/cover classification  

The temporal logic revealed in Table 3.6 can help improve the accuracy of land use/cover 

classification. In Table 3.6, the second class of NDVI change (“moderate decrease”) indicates 

that if the land use/cover was forest or cropland/grassland in 1987, then the land use/cover type 

in 1997 must be bare land. This would recover bare land from high-density urban, low-density 

urban or cropland misclassified from bare land on the 1997 land use/cover map. The fourth class 

of NDVI change (“moderate increase”) suggests that if land use/cover types in 1997 were forest 

or cropland/grassland, then the land use/cover type in 1987 must be bare land. This would 

recover bare land from urban or cropland/grassland misclassified from bare land on the 1987 

land use/cover map. This “If…then…” logic was implemented using ERDAS Imagine Spatial 

Modeling Language (SML). The original land use/cover classification images from Yang (2000) 

and the NDVI image difference classification image are the inputs to the spatial model. The 

cloud image (Figure 3.14) was used as a mask to exclude clouded areas from analysis since the 
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NDVI change in the clouded areas may not reflect the true vegetation change.  The pseudo codes 

of the spatial model are shown in Table 3.7. 

           One should note that the classification accuracy of the land use/cover types in the IF 

portion of the logic rule must be higher than that of the land use/cover types in the THEN 

portion, otherwise the employment of the temporal logic would lower the land use/cover 

classification, rather than improve it.  The reason is that much uncertainty in the classification of 

the land use/cover types in the IF portion would cause the assertion that “the land use/cover type 

in the other year must be …” unreliable in the THEN portion. Take the first rule in Table 3.7 as 

an example. Since the overall classification accuracies of forest and cropland/grassland are 

97.6% and 95.1% respectively, much higher than that of bare land which is 80.00% (Table 3.4), 

this logic rule doe not  have any problems. If the classification accuracies of forest or 

cropland/grassland were much lower than the accuracy  of bare land, then for a pixel, though its 

cell value is 5 (forest) or 4 (cropland/grassland) in the 1987 land use/cover classification image, 

we are still not very sure if the cell values of 5 or 4 represent the true land use/cover types. If the 

actual land use/cover type is not forest or cropland/grassland, then the IF condition itself is not 

correct, thus the assignment of cell value 3 to the pixel on the 1997 land use/cover classification 

image will not be correct.  

After the use of the two logic rules in Table 3.7 on the original land use/cover 

classification images, the misclassification of bare land as high-density urban, low-density urban, 

or cropland was corrected. Figure 3.22 gives two snapshots of how the temporal logic and NDVI 

differencing method has improved the land use/cover classification. In Figure 3.22(a), on the 

original 1987 land use/cover classification, a large patch of fallow land was misclassified as 

high-density urban. This piece of land was replanted in 1997. The vegetation index had increased  
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Table 3.7 Using NDVI differencing and temporal logic to enhance land use/cover  classifications 

If…Then logic Description 
 

For a pixel { 
    If { 
          CLOUD = = 0 AND           
          NDVI∆  = = 2  AND 
          (LANDUSE87 = = 5   OR    
           LANDUSE87 = = 4 )  
        } 
    THEN 
          LANDUSE97 = 3 
}  
                   

 
 
No cloud 

NDVI∆  is equal to ‘moderate decrease’ 
Land use/cover in 1987 was forest or 
    cropland/grassland 
 
 
Assign code 3 (bare land) to the pixel in the 
     1997 land use/cover classification image 

 
For a pixel { 
    If { 
          CLOUD = = 0 AND           
          NDVI∆  = = 4  AND           
           (LANDUSE97 = = 5 OR 
             LANDUSE97 = = 4 )        
        } 
    THEN 
          LANDUSE87 = 3 
} 

 
 
 
No cloud 

NDVI∆  is equal to ‘moderate increase’ 
Land use/cover in 1997 was forest or 
    cropland/grassland 
 
 
Assign code 3 (bare land) to the pixel in the 
    1987 land use/cover classification image 
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(a) Misclassified high/low-density urban corrected to bare land (forest clear-cut and fallow land). 
 

 

 
 

 
 
 
 
 
 
 

 
 

 
(b) Misclassified cropland corrected to forest clear-cut. 

 
Figure 3.22 Results of the use of temporal logic and NDVI differencing approach to improve the  

                    accuracy of land use/cover classification. 
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moderately. Therefore the second rule in Table 3.7 has taken effect and corrected the high-

density urban to bare land. The same operation was performed on the three regular-shaped forest 

clear-cuts. Those three patches were forest in 1997. It was impossible for them to be high-density 

urban in 1987. In Figure 3.22(b), the patch of forest clear-cut was misclassified as cropland on 

the 1997 land use/cover classification map. It was forest in 1987. NDVI had decreased 

moderately ( NDVI∆ = 2). The first rule in Table 3.7 has taken effect on this piece of land and 

changed it from cropland to bare land. 

 The use of the NDVI differencing and temporal logic on the original land use/cover 

classification images, and the clearance of the confusion between cloud-shadows and water in 

Section 3.6 followed by 3 by 3 majority filtering have led to the final improved land use/cover 

classification maps shown in Figure 3.23. These two maps will serve as inputs to the Markov 

chain model in Chapter 4 and the logistic regression model in Chapter 5. Detection of land 

use/cover change, especially urban growth between 1987 and 1997 will be conducted based on 

these two images in the following section.  

 

3.9 Post-classification comparison for land use/cover change detection 

Pixel-by-pixel comparison of the 1987 and 1997 land use/cover maps (Figure 3.23) in support of 

raster GIS was performed to detect the land use/cover change during the 10 years. The 

quantitative information of land use/cover changes is shown in Table 3.8 and Figure 3.24. In 

terms of  the absolute value of area of change, the four major land use/cover changes are high-

density urban growth, low-density urban growth, decline of forest, and decline of cropland or 

forest land. The most intense land use/cover change is the growth of low-density urban area. 

Low-density urban area was 2468.62 square kilometers in 1987 and 3519.56 square kilometers in  



 108

 

 

  

 

1987 

 

1997 

 

                                       

 
 
   Figure 3.23 Final improved land use/cover maps for years 1987 and 1997. 
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Table 3.8 Quantitative information of land use/cover change 

Land use/cover Type 
Area 1987 
(km2) 

Area 1997 
(km2) 

Change 
area 
(Km2)  

Proportion 
1987(%)

Proportion 
1997(%) 

%Change* 
 

High-density urban 876.78 990.27 113.49 5.49 6.20 12.94
Low-density urban 2468.62 3519.56 1050.94 15.45 22.02 42.57
Bare land 397.37 474.11 76.75 2.49 2.97 19.31
Cropland or grassland 2702.52 2358.03 -344.49 16.91 14.75 -12.75
Forest 9217.04 8238.28 -978.76 57.67 51.54 -10.62
Water 320.87 402.96 82.09 2.01 2.52 25.58

 
* %change = (Area 1997 – Area 1987)/Area 1987 *100 
 

 

 

Figure 3.24 Land use/cover changes from 1987 to 1997. 
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1997, representing an increase of 42.57% in ten years (Table 3.8). High-density urban area 

increased by 12.94% from 876.78 square kilometers in 1987 to 990.27 square kilometers in 

1997, with a net increase of 113.49 square kilometers(Table 3.8). Urban was developed mainly at 

the expense of forest and cropland or grassland. The ten years had seen the loss of 978.76 square 

kilometers of forest and 344.49 square kilometers of cropland or grassland(Table 3.8).  

 To look at where those land use/cover changes had occurred, four change maps were 

created to portray the spatial patterns of the changes (Figure 3.25). These change maps can be 

easily produced using the ‘CONDITIONAL’ statement in ERDAS Imagine Spatial Modeling 

Language (SML). For example, Figure 3.25(a)  was produced using the following statement: 

       Output = CONDITIONAL{ landuse87 = = 1) 100 , landuse97 = = 1 && landuse87 != 1) 200} 

where the first priority of pixel value assignment was given to the first condition ‘landuse87 = = 

1’. The statement can be deciphered as “If a pixel on the 1987 land use/cover map has a value of 

1 (high-density urban), assign a value of 100 to the pixel on the output map; if the pixel value is 

1 on the 1997 land use/cover map AND the pixel value is not 1 on the 1987 land use/cover map, 

assign a value of 200 to the pixel on the output map.” The value of 100 on the output high-

density urban growth map represents the ‘base’ high-density urban in 1987 shown in yellow 

color. The value of 200 indicates the net urban growth depicted in red (Figure 3.35(a)).  

It can be seen that high-density urban growth had mainly occurred on the north and 

southeast and along the transportation arteries I-85, I-75, and GA-400. Contrary to the linear 

concentration of high-density urban along transportation corridors, the low-density urban growth   

has taken on both clustered and dispersed patterns. Clusters of new residential settlements can be 

seen on the northeast corner of Fulton County west of I-85, in the central part of Gwinnett 

County, south of Cherokee County, and along the dividing boundary line between Coweta  
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        (a) High-density urban 

 

 
 

 
(b) Low-density urban 

 

 
 

 
(c) Cropland or grassland 

 

 

 
 

 
(d) Forest 

 
             Figure 3.25 Land use/cover change from 1987 to 1997 for four major land use/cover 

                                 types. 
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and Fayette Counties. Most newly constructed residential settlements were dispersed throughout 

the outer peripherals of the whole region. Comparing the cropland or grassland  change map with 

the high-density and low-density urban growth maps, it was found that the patterns of the red 

areas indicating the cropland/grassland loss does not match well with the patterns of urban 

growth.  This implies that only a small portion of the amount of 344.49 square kilometers of 

cropland/grassland was converted to urban use. Most of the decline was the result of cropland 

fallow as seen in the northwest, southeast and southwest corners. Within the 13-county areas, the 

locations of forest loss match well with the locations of urban growth, which means that urban 

development, especially low-density urban development, took place mainly in forested areas.  

In Chapters 4 and 5, spatial modeling of urban growth does not differentiate high-density 

urban and low-density urban. Thus another urban growth map combing high-density urban and 

low-density urban together was created (Figure 3.26). This map more clearly shows the rapid 

urban growth the Atlanta metropolitan area had experienced during the 1990s.  One can see the 

occurrence of urban growth in the existing edge of the city, as well as filling-in within 

established urban clusters. 

 

3.10 Discussions and conclusions 

Only by knowing the past can we predict the future. The information on historical land use/cover 

change in a rapid suburbanization region not only helps people understand how human activities 

have modified the regional urban and rural landscape, but also assists decision making in the  

regional management and planning. Most people may feel the change in their local environment, 

but they may not be able to realize the regional impact of the landscape change. It is not until we 

study the metropolitan landscapes from a spatial perspective and the time scale of decades that  
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                  Figure 3.26 Urban growth from 1987 to 1997. 
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we can begin to measure the changes that have occurred and predict the changes and their impact 

to come. This study, using Atlanta metropolitan region as a case, has demonstrated that remote 

sensing, particularly Landsat TM images, integrated with image processing and GIS technology, 

is well suitable for providing this land use/cover change information.  

To ensure accurate detection of land use/cover change, some preprocessing steps cannot 

be ignored, such as co-registration of multi-date satellite images. Analysis of change vectors 

defined on the first two principal components of the Landsat images has shown that the major 

changes that have occurred are deforestation for urban development. While the change vector 

analysis is able to reveal the general land use/cover dynamics in the complex landscape of a 

rapid suburbanization region, it cannot differentiate the specific nature of different types of land 

use/cover changes as some existing research asserts (Singh 1989; Lillesand and Kiefer 1999). 

Previous research on change vector analysis was conducted for study areas with only one kind of 

land use/cover change, such as deforestation. Post-classification comparison method can detect 

the nature of different land use/cover changes. However, errors can be compounded in the 

detection process, resulting in a land use/cover change map with low accuracy. Unsupervised 

classification based only on pixel spectral values cannot resolve the confusions between land 

use/cover types with similar spectral responses. Post-classification manual editing is time 

consuming and labor intensive. We need to take advantage of the automated computing ability of 

computer systems to correct for the misclassification errors. 

This study makes use of temporal logic latent in the relationships between NDVI changes 

and land use/cover changes to improve the land use/cover classifications automatically by taking 

advantage of existing GIS functions. The use of NDVI differencing method in this study is not 

new, but it differs from and has advantages over the traditional NDVI differencing methods 
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(Masek at al. 2000; Mas 1999; Macleod and Congalton 1998; Singh 1989). Traditional studies 

on the NDVI differencing approach to detection of land use/cover change first make an NDVI 

difference image, then determine a threshold value and make a binary image. The binary images 

are created such that if the absolute value of NDVI difference of a pixel is greater than the 

threshold value, the pixel is labeled as change, otherwise, it is labeled as no-change. After that, 

the binary image is used as a mask to be applied on the second date original image, and land 

use/cover classification is performed again on those areas identified as change. The selection of 

threshold values is very subjective and needs a lot of  trials and errors. The binary image contains 

only change/no-change information. This dichotomous delimitation may be appropriate for areas 

with simple land use/cover dynamics dominated by a single type of change, but may not be 

suitable for complex urban landscapes where various human-induced land use/cover changes 

have occurred. Also, the binary demarcation causes the loss of useful information within the 

vegetation index. Reclassification of changed areas on the second date image does not have its 

logical foundation.  

In this study, the NDVI difference image was classified into 20 clusters first using the 

ISODATA method. By visual interpretation, these clusters were combined and recoded into five 

classes. The classification let data speak for itself without human subjectivity. The finer grouping 

of NDVI difference values contains more detailed information on the nature of different land 

use/cover changes. Temporal logic rules are developed from the interpretation of the NDVI 

classifications and applied to the original land use/cover maps produced from conventional 

clustering method to improve the classification. This temporal logic is easy to understand and 

implement in most raster GIS software packages. The study has shown that NDVI differencing 

classification combined with the temporal logic can effectively resolve the confusions between 



 116

bare land (forest clear-cuts or fallowed land) and cropland, as well as the confusions between 

bare land (forest clear-cuts or fallowed land) and high- or low-density urban. 

The improved land use/cover change map has detected the vast amount of urban growth 

in the Atlanta region at the edge of the city and around urban clusters from 1987 to 1997 at the 

expense of forest, cropland, and open space. The area of high-density urban had increased by 

12.94%, while low-density urban area had experienced more dramatic growth, increasing by 

42.57%. The land use/cover change maps revealed that urban growth areas coincide spatially 

well with deforested areas. The depletion of green space has given rise to people’s worries about 

the quality of the environment. What would the future environmental quality of Atlanta be like if  

the region continues its urban growth at the same speed as that in the 1990s? The Markov chain 

model and the logistic regression model in the following chapters will attempt to answer this and 

related questions. 
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CHAPTER FOUR 

MARKOV CHAIN ANALYSIS OF LAND USE AND LAND COVER CHANGE 

 

4.0 Introduction 

Markov chains have been used to model plant succession (Usher 1992), to simulate sedimentary 

stratigraphic sequences in geology (Harbaugh and Bonham-Carter 1970), and to characterize 

land use/cover change dynamics (Turner 1987; Muller and John 1994; Wood et al. 1997; Petit et 

al. 2001; Weng 2002). Muller and John (1994) used small-scale (1:50,000) land use/cover maps, 

while Wood et al.  (1997), Petit et al.  (2001), and Weng (2002) used satellite remote sensing 

images. The research by Muller and John (1994) and Weng (2002) studied historical land 

use/cover change but did not predict the future. While Petit et al. (2001) quantified the processes 

of land use/cover change and generated short-term land-cover change projections, they did not 

predict the spatial patterns of land use/cover of the future. Turner (1987) compared three 

different types of spatial simulation using historical aerial photographs to simulate landscape 

changes in Georgia: a Markov chain random simulation based solely on transition probabilities, a 

spatial simulation in which the four nearest neighbors (adjacent cells only) influence transitions, 

and another spatial simulation in which the eight nearest neighbors (adjacent and diagonal cells) 

influence transitions. Turner found that the random Markov chain model simulated a highly 

fragmented landscape that were quite different from the actual landscape because the Markov 

chain model did not capture the contagion effects. The other two spatial models simulated the 

clustering of certain land uses reasonably well. All previous research on Markov chain modeling 
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of land use/cover change has employed first-order Markov chains based on the assumption of 

stationary transition probability. Few research examples have tested Markov properties and the 

assumption of stationary transition.  

This chapter uses Markov chain model to characterize temporal and spatial changes in 

land use/land cover and to predict the quantities and spatial patterns of land use/cover in the 

future in the Atlanta metropolitan region. In this study, the 1987 and 1997 land use/cover maps 

derived from Landsat TM images as explained in Chapter 3 are used as inputs to the Markov 

chain model. The proportions of different land use/cover classes and the spatial patterns for the 

future years are generated from the model. To relate this chapter’s study with the whole 

dissertation’s objective of modeling urban growth, the spatial patterns of urban area simulated. 

The extent of urban growth will also be allocated to the urbanization probability map predicted 

from the logistic regression model to be explained in Chapter 5. 

 
4.1 Markov chain model 
 
Markov processes are named after the work of the Russian mathematician Andrei A. Markov 

(1856-1922) in the twentieth century to describe many natural processes that occur randomly and 

also exhibit an effect in which previous events influence, but not rigidly control, subsequent 

events (Collins 1975). A Markov process can be regarded as a process in which the probability 

of the system being in a given state at a particular time may be deduced from knowledge of the 

immediately preceding state. One form of a Markov process is a Markov chain. Markov chain is 

a sequence or chain of discrete states in time in which the probability of the transition from one 

state to a given state in the next step in the chain depends on the previous state, and not on how 

the process arrived in that state. Such a chain is called a first-order Markov chain. The definition 

of Markov chain can be extended to a higher order. If the probabilities associated with each 
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transition depend on events earlier than the immediately preceding event, the Markov chain is a 

higher-order chain. The Markov property refers to the dependence of probabilities associated 

with each transition on the immediately preceding state for a first-order Markov chain or several 

states for a higher-order Markov chain. The Markov property is one of the important aspects of 

Markov chains. Another important aspect of Markov chains is stationarity, which means, in a 

Markov chain, the probabilities associated with the transitions between states are constant 

throughout the predictive period (Collins 1975). 

Implicit in the Markov property, there is a concept of conditional probability. By 

conditional probability, we mean that the probability of a particular event is conditional on other 

events. Thus, the Markov property of a first-order Markov chain can be expressed formally as: 

1Pr{ | )t
ij t tP X j X i∆

+= = =   (4-1) 

where X = discrete state variable 

          t
ijP∆  = the probability of transition from state i to state j over the time interval t∆ ,and  

          1Pr{ | )t tX j X i+ = =  = the probability of state being j at time t+1, given state i at time t. 

Thus, this expression means that the probability of transition from state i at time t to state j at 

time t+1 is conditional on the state variable X’s value of i at time t. 

Markov chains occupy an intermediate position in the spectrum of dynamic models, 

ranging from classical, deterministic models at one extreme to the purely random models at the 

other. A Markov-chain model is intermediate in that a random component is present, but that the 

state of the system at any point in time or space is not independent of the previous event or 

events (Harbaugh and Bonham-Carter 1970).  
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4.2 Formulation of a Markov chain model of land use/cover change 

For the scope of this study, the process of land use/cover change in the study area is regarded as 

a Markov chain with discrete states in the form of land use/cover categorical classes. The basic 

assumptions are: (1) the land use/cover change is a stochastic process; (2) the land use/cover 

state at time t2 is dependent only on the state at the immediately preceding time t1, i.e., the land 

use/cover change process has first-order dependence; and (3) the probabilities of land use/cover 

state transition are stationary, which means the transition probabilities do not change with time. 

Although the Markov chain model of a land use/cover system has a stationarity 

assumption,  actually it is implausible to expect the land use/cover system to change with a 

stationary transition probability due to complex and versatile social, economic, and biophysical 

factors. Non-stationarity of land use/cover transition probabilities has been observed in previous 

research (Wood et al. 1997; Weng 2002). Even if transitions are in reality non-stationary, 

stationarity can be assumed as a heuristic device to provide answers to ‘what if’ kinds of 

questions (Baker 1989). Thus, the non-stationarity does not compromise the Markov chain 

model’s prediction ability. In this study, the Markov chain model can answer the question “What 

will the future Atlanta be like if the land use/cover transition probabilities remain the same as 

those from 1987 to 1997?” Such projections contribute to an increased awareness of the 

ecological, environmental and societal consequences of the land use/cover change, particularly 

of the continuing urban growth. 

Historical land use/cover maps at the resolution of 25 meters were derived from Landsat 

TM images for the years 1987 and 1997 as described in Chapter 3. The original six classes of 

land use/cover were recoded into five major classes after combining ‘high-density urban’ and 

‘low-density urban’ into a single class ‘urban’. The five classes are urban, bare land, 
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cropland/grassland, forest, and water.  The combination of high-density urban and low-density 

urban into a single class pertains to the major objective of this dissertation research ⎯ modeling 

urban growth, and facilitates the comparison of the Markov chain model with the logistical 

regression model in Chapter 5,  which does not differentiate between high-density urban and 

low-density urban. It should be noticed that the definitions of land use/cover classes and the 

number of classes to be modeled are essentially subjective. The output from such a statistical 

model is bound to be dependent on the choice of states to be modeled. It is known from Chapter 

3 that the major land use/cover change is the clearing of forest for urban use in the study area. 

Thus, a typical segment of the Markov chain for a particular land lot (actually a cell in remotely 

sensed images) would look like Figure 4.1 where the arrows represent first order dependence. 

 The behavior of a Markov chain can be depicted succinctly by a transition matrix. Each 

element in the matrix is the probability of the transition from a particular state pertaining to the 

particular row in the matrix to the next state pertaining to the particular column. The number of 

the rows equals the number of columns, corresponding to the number of states. For this study, 

the number of states is five, the number of land use/cover classes. A transition matrix P of the 

Markov chain of land use/cover change with five states may be written as follows: 

 

                                             1c      2c      3c      4c      5c  

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

c p p p p p
c p p p p p

P c p p p p p
c p p p p p
c p p p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (4-2) 
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Figure 4.1 A segment of Markov chain representing land use/cover change in the 

study area. 

 

 

where the pij (i=1,2,..5;j=1,2,…,5) signifies the probabilities of transition from land use/cover 

category ci to cj. The transition matrix is subject to: 

5

1
1ij

j
p

=

=∑  (i ,j=1,2,…,5)  (4-3) 

which implies in effect that there is absolute certainty of transition from each land use/cover 

class to some class at the next time point in the Markov chain. 

Transition probabilities are calculated based on the frequency distribution of the 

empirical observations. A frequency distribution of transitions is simply a tabulation of the 

number of transitions from each state to each other state, which forms a tally matrix (denoted as 

N) with the same form of the transition probability matrix P shown in Equation 4-2. It is easy to 

generate such a tally matrix by comparison of multi-temporal land use/cover raster thematic 

maps derived from satellite remote sensing images due to the regular grid data structure. Each 

element nij in the tally matrix represents the number of cells that have changed from class i to 
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class j. The marginal distribution of the row i calculated based on the grand total number of cells 

summarizes the percentage of area for land use/cover class i at time t. The marginal distribution 

of the column j calculated based on the grand total number of cells summarizes the percentage of 

area for land use/cover class j at time t+1. Dividing the count of transition nij by the row total 

would yield estimated transition probability value pij: 

1

ij
ij m

ij
j

n
p

n
=

=

∑
  (4-4) 

The diagonal elements of the transition matrix represent the self-replacement probabilities 

whereas the off-diagonal values indicate the probability of change occurring from one land 

use/cover class to another class.  

     The transition matrix P has two important uses. First, it can be used to predict the 

proportions of different land use/cover classes in the future. Post-multiplication of the proportion 

vector at time t by the matrix of transition probabilities yields the state vector at time t+1: 

1t tV V P+ = ×   (4-5) 

where 1 2[ , ,..., ]mV v v v= , and 

          iv  = proportion of  land use/cover class i. 

The second use of P is to investigate when the process of change will stop, or when the Markov 

chain process will converge to a stable equilibrium endpoint. As the Markov chain advances in 

time, the transition matrix is successively powered: 

( ) ( 1)n nP P P−=   (4-6) 

where ( )nP  = the nth step transition matrix. Ultimately the P-matrix will have identical rows, 

which means that the probabilities of passing to a state are independent of the starting state. If 
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this occurs, the Markov chain process is said to culminate in the equilibrium distribution of the 

different land use/cover classes.  

  
4.3 Testing for the Markov property 

Calibration of the Markov chain model over the time period from 1987 to 1997 led to the land 

use/cover transition probability matrix shown in Table 4.1.  

 

Table 4.1 Land use/cover transition probability matrix, 1987-1997 

From \ To 1 2 3 4 5 
1 0.8660 0.0203 0.0812 0.0211 0.0114 
2 0.2586 0.2611 0.3294 0.1461 0.0049 
3 0.2505 0.0597 0.4633 0.2243 0.0021 
4 0.1569 0.0152 0.0760 0.7451 0.0067 
5 0.0350 0.0023 0.0077 0.0337 0.9213 

1- Urban   2- Bare land  3- Cropland/grassland 
               4- Forest   5- Water 

    
 

A statistical test for the Markov property distinguishes between two alternative 

hypotheses that either the successive land use/cover states are independent of each other (the null 

hypothesis) or the land use/cover states are dependent on the immediately preceding states. The 

test uses the tally matrix of land use/cover transitions observed from remote sensing and the 

transition probability matrix calculated from the tally matrix. The test statistic is 

1 1
2 ln 2 ln

m m
ij

ij
i j j

p
n

p
λ

= =

− = ∑∑   (4-7) 

where pij = probability in cell i,j of the transition probability matrix 

            pj = marginal probabilities for the jth column of the tally matrix ( 1

1 1

m

ij
i

j m m

ij
i j

n
p

n

=

= =

=
∑

∑∑
), 
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            nij = transition frequency total in cell i,j of the original tally matrix of observed land  

          use/cover transitions from 1987 to 1997, and 

             m = total number of land use/cover classes. 

Anderson and Goodman (1957) showed that 2 lnλ−  is distributed asymptotically as 2χ  

with 2( 1)m −  degrees of freedom. The calculation of this statistic using the data from Table 4.1 

and the corresponding tally matrix results in the value for 2 lnλ−  being equal to 14022986. The 

number of degrees of freedom is 16. At the level of significance 0.05α = , the 2χ  value from the 

2χ  distribution table is 26.30. The calculated value of 2 lnλ−  = 14022986 is much greater. 

Therefore the null hypothesis that these land use/cover transitions are from an independent 

events process is rejected and the alternative hypothesis that the land use/cover transitions have 

the Markov property is accepted.  

 

4.4 Prediction of land use/cover proportions 

Short-term predictions for years after 1997, starting from 2000, at an interval of 5 years, ending 

at 2020, were made using the transition probability matrix P in Table 4.1 and the 1997 land 

use/cover proportion vector. First the transition rate matrix qij was derived by algebraic 

transformation of the pij matrix. The following equations relate transition probabilities to 

transition rates (Harbaugh and Bonham-Carter 1970):  

iM tpii e− ∆=   (4-8) 

ln ii
i

pM
t

−
=

∆
  (4-9) 

ij
ij i

i

q
p p

M
=  ( i j≠ )  (4-10) 
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ij
ij i

i

p
q M

p
=  ( i j≠ )  (4-11) 

where iM = sum of the off-diagonal elements in the ith row of the qij matrix (
1,

k

ij
j j i

q
= ≠
∑ ),where k  

         is the number of states, 

ip  = sum of the off-diagonal elements in the ith row of the pij matrix (
1,

k

ij
j j i

p
= ≠
∑ ), or  

          [1 ]ijp− , where iip  is the diagonal element, and 

           t∆  = unit time interval pertaining to the rate of transition.  

The probability values associated with multiple-step transitions can be calculated readily 

by powering the transition rate matrix. The Markov chain transition probability matrix P (Table 

4.1) was obtained by comparison of the land use/cover maps in the years 1987(t1) and 1997(t2). 

Annual transition rate matrix qij ( t∆  = 1 year) can be calculated using equations 4-8 through 4-

11.  After n steps (years) of transition from t2, the transition probability matrix ( )n
ijp  describing 

the probability of passing from state i at t2 to state j at t2+n× t∆  would be 

( )n n
ij ijp q=   (4-12) 

The proportion vector at time t2+n× t∆  thus can be calculated using equation: 

2( ) ( )tn nV V P= ×   (4-13) 

where ( ) ( ) ( ) ( )
1 2[ , ,... ]n n n n

mV c c c= , 

2 2 2 2
1 2[ , ,... ]t t t t

mV c c c= , 

ci = the proportion of class i (i=1,2,…m), and 

           ( )nP  = transition probability matrix with elements calculated from Equation 4-12. 
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 The historical and predicted land use/cover proportions are shown in Table 4.2 and 

visualized in Figure 4.2. From Table 4.2 and Figure 4.2, intuitively one can see the general trend 

of land use/cover change. Urban continues to grow at the cost of forest depletion. The proportion 

of urban area was 20.93% in 1987 and will increase to 35.45% in 2020, while forest will 

decrease from 57.67% in 1987 to 43.64% in 2030. 

 

Table 4.2 Land use/cover proportions (%) from 1987 to 2020 

 Land use/cover types 
Year Urban Bare land Crop/Grass Forest Water 
1987 20.93 2.49 16.91 57.67 2.01 
1992 26.22 2.64 14.69 54.32 2.13 
1997 28.22 2.97 14.75 51.54 2.52 
2000 32.26 3.35 14.87 46.41 3.11 
2005 33.54 3.19 14.77 45.64 2.87 
2010 33.64 3.25 14.87 45.13 3.11 
2015 34.14 3.30 14.68 44.50 3.38 
2020 35.45 3.17 14.22 43.64 3.52 

 

 The trend of convergence of urban and forest can also be seen from Figure 4.2(a), which 

means the Markov chain will be approaching equilibrium distribution soon after 2020. This can 

also be judged from Table 4.3 which shows the transition probability matrix for the period from 

1997 to 2020. Compare this table with Table 4.2 which shows the transition probabilities over 

the first five years (1987-1992). It is found that while row vectors in Table 4.2 are very different 

from each other, in Table 4.3 all the row vectors except those in the last row are almost identical, 

indicating the independence of transition probabilities on the starting land use/cover states and 

the Markov chain is becoming to advance to a stable endpoint at which different land use/cover 

classes will distribute in a balance. 
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(a) Series in years, grouped by land use/cover types  

 

(b) Series in land use/cover types, grouped by years 

 
Figure 4.2 Quantitative land use/cover change trends. 
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Table 4.3 Simulated transition probability matrix, 1997-2020 

From \ To  1 2 3 4 5 
1 0.3775 0.0321 0.1416 0.4182 0.0307 
2   0.3790 0.0397 0.1888 0.3743 0.0183 
3 0.3757 0.0396 0.1601 0.4085 0.0161 
4 0.3424 0.0307 0.1419 0.4617 0.0233 
5 0.1269 0.0093 0.0379 0.1374 0.6884 

1- Urban   2- Bare land  3- Cropland/grassland 
             4- Forest   5- Water 

 

 

4.5 Prediction of future urban spatial patterns 

An effective land use/cover change model should not only be able to answer the question of how 

much change has occurred and will occur, but also be able to supply the information on where 

the change has taken place and will take place. Based on the transition probability matrix ( ( )nP ) 

obtained after n steps of Markov chain process and the land use/cover image map at time t2 

(1997), the conditional probability image for the time n years after t2 for class j can be obtained 

such that if a pixel is in state i at time t2, then the conditional probability value of the pixel for the 

time is ( )n
ijp . The conditional probability images report the probability that each land cover type 

would be found at each pixel after the specified number of time units. These images are 

calculated as projections from the later of the two input land cover images used to calibrate the 

Markov chain. 

 To generate the spatial patterns of land use/cover class j at time t2+n× t∆ , first the 

number of cells of class j is calculated according to the proportion values in the state vector ( )nV . 

The conditional probability image for class j is ranked with each cell having a unique rank value. 

Last the ranked image is re-classed to allocate the predicted number of cells for class j to the 
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cells with higher ranks of conditional probabilities. Water bodies and conservation areas are 

excluded from the allocation procedure. All these were carried out using ERDAS Imagine 8.6. 

The simulated urban spatial distribution patterns for each year are shown in Figure 4.3. This 

figure indicates that the successive urban growth will occur in rural and urban-fringe area, 

manifesting itself in scattered and disperse patterns. The spatial patterns are characterized by 

leapfrog development separated from continuous urban development by vacant, low-density, and 

rural land. The result coincides Turner (1987)’s finding that the random simulations based only 

on transition probabilities simulated a highly fragmented landscape. 

 

4.6 Discussions and conclusions  

This chapter has demonstrated that the Markov chains have provided a mathematically simple 

and compact approach by which a dynamic land use/cover system could be modeled. The model 

is easy to implement with empirical historical data obtained from remote sensing. The model 

lends itself well to characterization of past land use/cover change, prediction of future land 

proportions, and simulation of spatial patterns.  

 The Markov chain analysis has shown that, in the study area, land use/cover states at a 

time point depend on the immediately preceding states, thus the land use/cover change process is 

a Markov process.  For the study area, the primary concern is the rapid suburbanization which 

has consumed a large extent of green space. The Markov chain analysis has found that in the 

short-term future, the predominant land use/cover change will lead to the depletion of forest for 

urban development. Urban growth will demonstrate dispersed spatial patterns. Soon after 2020, 

the dynamic land use/cover system will be in a state of balanced distribution of different land 

use/cover categories. The Markov chain model has simulated a highly dispersed urban landscape. 
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Figure 4.3 Historical and Markov chain model predicted urban patterns, 1987-2020. 
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 Markov chain models are not without weaknesses. The major limitations of the models 

are: (1) A Markov chain may not necessarily be a first-order process. A higher order Markov 

chain model is hard to implement, and as a result few land use/cover change models have dealt 

with higher order Markov chains. (2) It may not be appropriate for Markov chain models to use a 

single order of dependence and a single homogeneous transition probability matrix to 

characterize the heterogeneous landscape, since transitions of individual cells in a particular state 

may vary with the location of the cell.  (3) Spatial context and neighborhood effects are not 

accommodated in the model. The land use/cover state of a land lot could be affected by the 

surrounding lots. Land use/cover changes are not strictly Markovian; the change of a cell state is 

not simply a function of its current state, but is influenced by surrounding cells (Turner 1987 and 

1988). Wood et al. (1997) developed a spatial Markov model by tallying frequency of class-to-

class transitions between the grid cells for each pair of adjacent cells using the rook sampling 

pattern (4 neighbors). The combination of cellular automata (CA) model and Markov chain may 

take advantage of the ability of CA models to incorporate neighborhood effects and this has been 

realized in commercial software packages, such as the CA-Markov module in Idrisi Kilamanjaro. 

(4) A Markov chain model is purely a mathematical game, without consideration of exogenous 

or endogenous variables representing social, economic, and biophysical drivers of land use/cover 

change. The use of empirical transition probabilities masks the causality of land use/cover 

change. (5) The results of Markov chain models using remote sensing data are very sensitive to 

land use/cover classifications accuracy. The transition probability matrix is computed from the 

tally matrix obtained by comparison of multi-date land use/cover maps. The errors are 

compounded through the logical “AND” operation in the process of post-classification 

comparison. In an urbanization area, this problem becomes worse. It is common to see large 
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amount of urban areas transforming to other land use/cover categories in the frequency tally 

matrix, leading to high probabilities of such transitions, although urban development is often an 

irreversible process. For Markov chain modeling of land use/cover changes, a high degree of 

accuracy of land use/cover classification is necessary in order to avoid transition probability 

errors.  
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CHAPTER FIVE 

LOGISTIC REGRESSION MODELING OF URBANIZATION PROBABILITY 

 

5.0 Introduction 

A logistic regression model was used to establish the relationship between the probability of 

urban development and its driving forces. The model was first built using 18 predictors and 

multi-resolution modeling was conducted. Fractal analysis assisted the choice of the optimal 

resolution of analysis. Later refined modeling was performed only on the best resolution. Spatial 

autocorrelation analysis was tested and corrected by including two extra spatial coordinates in 

the refined model. After model fitting, significance was tested against the coefficients and a 

reduced model was obtained with only the significant variables. Then goodness-of-fit of the 

model was assessed. The model was used to explain the urbanization dynamics. An urbanization 

probability prediction map was generated using the model and the spatial patterns were analyzed. 

The probability map was validated using the relative operating characteristic (ROC) index to 

determine if the model approximates the reality. The extent of urban growth predicted from the 

Markov Chain model in Chapter 4 was entered into the probability image to generate the spatial 

patterns of urban distribution of the future years. 

 

5.1 Spatial data handling and integration 

This chapter uses socioeconomic, biophysical, and remotely sensed data to conduct logistic 

regression modeling. These data are heterogeneous in terms of data sources, scales, projections, 
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data quality, and data formats. The original data used for this study are listed and described in 

Table 5.1. The Atlanta transportation network in 1990 and the map of the 1990 census block 

groups are shown in Figures 5.1 and 5.2 respectively. The map of major economy centers is 

shown in Figures 1.6, and the 1987 and 1997 land use/cover maps are shown in Figure 3.23. 

Proper handling and integration of heterogeneous spatial data are necessary for 

implementing a GIS-based spatial analysis and modeling. The first step is to georeference the 

original data layers to a common coordinate system. In this study, the common georeferencing 

framework is the UTM coordinate system (Zone 16 North), NAD 1983 horizontal datum, and 

GRS 1980 ellipsoid. The land use/cover maps have already been georeferenced to this coordinate 

system. Geographic to UTM projection transformation was undertaken for the census map, the 

transportation map, and the conservation map (see Figure 5.6). The scanned image of major 

economic centers was imported to a raster GIS and registered to the transportation map in the 

UTM system using an image-to-map rectification procedure with the intersections of interstate 

highways used as ground control points. Points for the major economic centers were digitized on 

screen.  

After georeferencing, raster data layers needed in the logistic regression model were 

derived. Initially all the raster layers were created at a spatial resolution of 25 meters. Raster data 

aggregation for multi-resolution modeling will be described in Section 5.3. A binary raster layer 

showing urban growth from 1987 to 1997 was generated by comparison of the two land 

use/cover maps. Distances to the nearest Department of Transportation (DOT) type one 

(interstate highway and state highway) roads were calculated. Raster maps of distances to the 

CBD, and  to the major economic centers were generated.  To create a map of distances to the 

nearest urban cluster, urban cells on the 1987 land use/cover map were clumped. Clusters 
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Table 5.1 Original data for logistic regression modeling 
 
Data content Source Data format Geo-reference 

system 
Land use/cover maps 
1987, 1997 derived 
from Landsat TM 
images in Chapter 3 

Landsat TM images are for 
the project ATLANTA 
(Atlanta Land-use Analysis: 
Temperature and Air-quality) 
by C.P. Lo. 
Originator:   
1987: USGS EROS Data 
Center; 1997: Space Imaging 
EOSAT 

ERDAS 
Imagine(.img) 

UTM coordinate 
system (Zone 16 
North), NAD 1983 
horizontal datum, 
and GRS 1980 
ellipsoid; resampled 
to 25m resolution 

Census data at the level 
of block groups, 1990 

GeoLytics ESRI shapefile Geographic/Decimal 
degrees 
(Latitude/Longitude)

Map of conservation 
area 

Georgia GIS Clearinghouse 
(http://www.gis.state.ga.us/), 
Originator: Georgia 
Department of Natural 
Resources 

ESRI shapefile Geographic/Decimal 
degrees 
(Latitude/Longitude)

Atlanta transportation 
map, 1990 
 

Georgia GIS Clearinghouse 
(http://www.gis.state.ga.us/), 
Originator: Georgia 
Department of Transportation  

ESRI shapefile Geographic/Decimal 
degrees 
(Latitude/Longitude)

Map of major 
economic centers, 1995 
 

Atlanta Region Outlook, 
Atlanta Regional 
Commission, 1995 

JPEG, scanned 
from paper 
document 

None 

Digital Elevation 
Model 

Georgia GIS Clearinghouse 
(http://www.gis.state.ga.us/); 
Originator: USGS 

USGS DEM Lambert Conic 
Conformal 
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                 Figure 5.1 Atlanta metropolitan transportation network showing DOT road 

                                  type 1 (interstate and state highways), 1990. 
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                        Figure 5.2 Census block groups, 1990, Atlanta metropolitan area. 
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smaller than 25 cells were filtered out and clusters larger than or equal to 25 cells were used to 

calculate the distances. An interaction term, the number of urban cells with a 7 by 7 cell 

neighborhood, was included in the logistic model. To derive a raster layer for this interaction 

variable, first, a binary image showing the 1987 urban distribution, with 1 indicating urban and 0 

non-urban, was generated. Then a focal neighborhood analysis function in Erdas Imagine, 

DENSITY, was applied to the binary image to return the number of occurrences of the center 

pixel value in the focal window around each pixel of the binary image. After this, a logical 

operation was conducted such that if the cell is not urban, then the number of urban cells is set to 

49 minus the density value (49 is the total number of the cells within the 7 by 7 cell 

neighborhood); otherwise the number of urban cells is set to the density value. The DEM raster 

layer was resampled to 25m and the slope (in percent) was calculated from the DEM. 

The process of integrating the census data with the remotely sensed data is essentially a 

process of linking people with pixels. This linkage is bidirectional. On the one hand, the pixel 

values in the remotely sensed images, which are simply records of the spectral reflectance of the 

earth surface, are implanted social meanings by clustering the pixels and labeling the clusters 

with land use/cover class names. On the other hand, the census data, collected at the units 

defined by humans, are tessellated to form a raster grid so that raster-based spatial analysis and 

modeling can be conducted on a common data structure. Six socioeconomic information items 

were extracted from the 1990 census: population count, per capita income, poverty rate, median 

housing rent, percent of white people, and employment rate. Selection of these variables was 

guided by the historical review of urban growth in Atlanta (Section 1.1) and based on the 

hypothesis that changes in socioeconomic conditions affect urban growth. To rasterize the social 
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phenomena, a separate raster layer was created for each of the items using a GIS vector-to-raster 

conversion operation.  

Data completeness is important to GIS applications. Spatial completeness means that the 

data cover the entire area of interest (Lo and Yeung 2002). It was found that the census data are 

not spatially complete. There exist sliver polygons in the original census vector file (Figure 5.3). 

When the census vector file is converted to a raster layer, these sliver polygons can result in cells 

with “No-Data” values if the width or height of the polygons exceed the cell size.  “No-Data” 

values can bring a lot of  trouble to the spatial modeling. Idrisi Kilimanjaro does not accept “No-

Data” values when it performs the logistic regression model. Manual on-screen fixing of the 

holes is impractical since those polygons are too small to inspect and there are large numbers of 

them between the 1910 polygons of census block groups. Fortunately, image processing 

techniques can handle this problem. The objective is to replace the “No-Data” values with their 

neighboring values.  First the raster layers generated from the vector census file were recoded 

such that  the “No-Data”  values were replaced with any one number between zero and the 

maximum value of the information item. Then the raster layers were smoothed using a 9 by 9 

averaging filter to create a separate layer. The size of the filter was determined by trial and error 

to make sure the largest sliver polygon can be filtered out. Last, a logical operation was 

conducted such that if the original cell value was “No-Data”, the output cell value was set to the 

value in the smoothed raster layer, otherwise, the original value was kept.  

The population density raster layer was derived using the pycnophylactic interpolation 

method. Pycnophylactic (or mass-preserving, or volume-preserving) interpolation was developed 

by Tobler (1979) to derive a continuous population density surface map from population count 



 141

collected on enumeration units. The assumption is that there exists a density function, Z(x,y), 

which is nonnegative and has a finite value for every location x,y in the domain of concern.  

 

 

Figure 5.3 Sliver polygons in the census shape file.

 

 

The objective of pycnophylactic interpolation is to find the density function, Z(x,y), such that it 

must have the pycnophylactic (mass-preserving) property defined by 

 
( , )

i

i
R

Z x y dxdy H=∫∫   (5-1) 

where  iR  is the ith region or enumeration unit, Hi is the population count in the ith enumeration 

unit.  

Lam (1983) developed  a numerical algorithm to generate a population surface meeting 

the volume preserving requirement in Equation (5-1). This algorithm is illustrated in Figure 5.4. 

It has five steps. (1) A set of square cells (in this study, the cell size is equal to the modeling 

resolution) is overlaid on top of the enumeration units (Figure 5.4B), and point-in-polygon test is  
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Figure 5.4  Basic steps of pycnophylactic interpolation: (A) three hypothetical enumeration units;  

                  (B) square grid overlaid on the enumeration units; (C) initial density values for each  

                  cell (computed by dividing the raw count for each enumeration unit by the number of  

                  cells in that unit); (D) smoothed cell values(computed by averaging the four non- 

                  diagonal neighbors); (E) smoothed values adjusted so that the sum within an  

                  enumeration unit is equal to the original total sum for that enumeration unit (the mass  

                  is preserved). (Lam 1983, pp 148-149). 

 

 

used to determine which cells fall in each enumeration unit. (2) A raw count for each cell is 

determined by dividing the raw count for each enumeration unit by the number of cells in that 

unit (Figure 5.4C). (3) Each cell is computed as the average of its non-diagonal neighbors 

(Figure 5.4D). (4) The cell counts within each enumeration unit at the end of step 3 are added to 

obtain a total smoothed count value. (5) All cells values within each enumeration unit are 

multiplied by the ratio of the total raw count to the total smoothed count, leading to the result 

shown in Figure 5.4E. Steps 3 to 5 of the algorithm are executed in an iterative fashion. The 

iteration continues until there is no significant difference between the raw and smooth counts for 
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each enumeration unit or there is no significant change in the cell values compared with the last 

iteration.  

 For this study, an ArcView Avenue program obtained from the Environmental System 

Research Institute (ESRI) website (URL: http://www.esri.com ) was used to implement Lam’s 

pycnophylactic interpolation algorithm. The maximum number of iterations was set to 50, and 

the convergence limit is set to 1%. At the resolution of 25 m, it took 40 minutes for the 

interpolation process to generate the population density surface of the Atlanta metropolitan 

region in 1990 as shown in Figure 5.5. 

 

 

 
Figure 5.5  Surface of population density (person/km2), Atlanta, Georgia based on the 1990 
                  census data at the level of census block groups obtained using pycnophylactic 
                  interpolation method. 
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5.2 Statement of model  

A logistic regression model was used to associate the urban growth with demographic, 

econometric and biophysical driving forces and to generate an urban growth probability (or 

suitability) map. In a raster GIS modeling environment, the data layers are tessellated to form a 

grid of cells. The nature of the land use/cover change of a cell is dichotomous: either the 

presence of urban growth or absence of urban growth. If binary values 1 and 0 are used to 

represent urban growth and no urban growth respectively and if it is assumed that the probability 

of a cell changing to urban use follows the logistic curve as described by the logistic function 

(Kleinbaum 1994): 

1( )
1 zf z

e−=
+

   (5-2) 

then the probability of a cell being urbanized can be estimated with the following logistic 

regression model:  

1

1 2
1( 1| , ,..., )

1

kk
i i

i
X

P Y X X X

e
α β

=

⎛ ⎞
− +⎜ ⎟⎜ ⎟
⎝ ⎠

= =
∑

+

          (5-3) 

where: 1 2( 1| , ,..., )
k

P Y X X X= is the probability of the dependent variable Y being 1 given 

( 1 2, ,...,
k

X X X ), i.e. the probability of a cell being urbanized, where 

Xi is an independent variable (or covariate) representing a driving force of urbanization, 

which can be of interval, ordinal or categorical nature; and 

iβ  is  the coefficient for variable Xi. 

 For notational convenience, the probability statement 1 2( 1| , ,..., )
k

P Y X X X= is denoted 

as simply P(X), where X is a shortcut notation for the collection of variables X1 through Xk. 
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The complete list of variables is shown in Table 5.2. These variables have been selected to 

reflect the socioeconomic characteristics of the population and the spatial influences of major 

highways and economic activity centers, all of which could have influenced the land use/cover 

changes. The images for those variables are shown in Figure 5.6. Assuming that the initial land 

use/cover status has effect on the probability of a cell being urbanized, then polynomial land 

use/cover categories should be included in the logistic model. Design variables were generated 

and used to distinguish the different categories of land use/cover. There are six categories of land 

use/cover: high-density urban, low-density urban, bare land, crop or grassland, forest, and water. 

Five design variables denoted as X14 through X18 representing the first five land use/cover 

classes respectively are generated to distinguish among the six categories by recoding the 1987 

land use/cover map into a binary map for each land use/cover category. Table 5-3 gives the 

coding of the design variables for land use/cover. If all the five dummy variables take the value 

of zero, then a cell value in the “water” layer must be one; if any one of the five land use/cover 

classes takes the value of 1, a cell value in “water” layer must be zero. Including a “water” 

variable in the model would be redundant and violate the assumption of no linear relationship 

between independent variables. The initial model uses only the first 18 variables. The last two 

variables will be incorporated into the model in the model refining stage to correct for spatial 

autocorrelation that may exist. 

Since P(X) takes the form of a logistic function, its values fall within the range of [0,1]. 

The logistic regression model above is a nonlinear model. To linearize the above model, and to 

remove the 0/1 boundaries for the original dependent variable Y, logit transformation,  denoted 

as logitP(X), is given by the natural log (i.e., to the base e) of the quantity P(X) divided by one 

minus P(X), where P(X) denotes the logistic model as equation (5-3) defines (Kleinbaum 1994): 
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Table 5.2 List of variables in the logistic regression model 

Variable Meaning Nature of variable 
Dependent      Y 0- no urban growth; 1- urban growth  Dichotomous 

categorical  
Independent X1 

X2 
X3 
X4 
X5 
X6 
X7 
X8 
X9 
X10 
X11 
X12 
X13 
X14 
X15 
X16 
X17 
X18 
E* 
N* 

Population density (person/km2) 
Per capital income ($) 
Poverty rate  
Median housing rent ($) 
Percentage of white people 
Employment rate 
Slope (%) 
Distance to the nearest urban cluster (m) 
Distance to CBD(m) 
Distance to active economy centers (m) 
Distance to the nearest major road (m) 
Number of urban cells within a 7×7 cell window  
1-Conservation area; 0-Not conservation area 
1-high-density urban;0-not high-density urban 
1-low-density urban;0-not low-density urban 
1-bare land;0-not bare land 
1-cropland/grassland;0-not cropland/grassland 
1-forest;0-not forest 
easing coordinate (m)  
northing coordinate (m) 

Continuous 
Continuous 
Continuous  
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Continuous 
Design 
Design 
Design 
Design 
Design 
Design 
Continuous 
Continuous 

* E and N are used to correct for spatial autocorrelation. See section 5.5 and 5.6. 

 

 

                                  Table 5.3 The coding of the design variables for land use/cover,  

                                                  coded at Six Levels 

Land use/cover Design variable 
 
High-density urban 
Low-density urban 
Bare land 
Cropland/grassland
Forest 
Water  

  X14   X15    X16    X17    X18
   1       0        0        0        0 
   0       1        0        0        0 
   0       0        1        0        0 
   0       0        0        1        0 
   0       0        0        0        1 
   0       0        0        0        0 
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Y – Urban growth 1987-1997 X1-Population density 1990 (person/km2) 

  

X2 – Per capita income 1990 ($) X3 - Poverty rate 1990 (%) 

  

X4 – Median housing rent 1990 ($) X5 – Percentage of white people 1990 (%) 

        Figure 5.6 Variables in the logistic regression model, represented by raster layers. 
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X6 – Employment rate 1990 (%) X7 – Slope (%) 

  

X8 – Distance to the nearest 
urban cluster (m) 

X9 – Distance to CBD (m) 

  

X10-Distance to active economy  
center (m) 

X11 – Distance to nearest major road (m) 

Figure 5.6 (continued) Variables in the logistic regression model, represented by  

                 raster layers. 
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X12 – Number of urban cells within a 7 by 7 
cell neighborhood 

X13 – Conservation area 

  

X14 – High-density urban 1987 X15 – Low-density urban 1987 

  

X16 – Bare land 1987 X17 – Cropland or grassland 1987 

Figure 5.6 (continued) Variables in the logistic regression model, represented by raster  

                  layers. 
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X18 -  Forest 1987 

 

  

X19 (E) – UTM easting coordinate (m) X20 (N) – UTM northing coordinate (m) 

Figure 5.6 (continued) Variables in the logistic regression model, represented by raster 
                  Layers. 

 



 151

logit ( )( ) ln
1 ( )

P XP X
P X

=
−

 (5-4) 

After the logit transformation, the logistic regression model becomes a linear regression model 

with logit P(X) being the dependent variable: 

logit
1

( )
k

i i
i

P X Xα β
=

= +∑  (5-5) 

where α  is a constant, andβ i is the coefficient for variable Xi.  

In the above model, logit P(X) can theoretically take any continuous values between 

minus infinity and plus infinity without boundaries while ensuring that the predicted probability 

will be continuous within the range from zero to one. 

 By looking closely at the expression for the logit function in equation (5-4), it is found 

that the quantity P(X) divided by 1-P(X), whose value gives the logit, describes the odds of 

urban development for a cell with independent variables specified by X. In its simplest form, an 

odds, denoted as ψ , is the probability that urban development will occur over the probability 

that urban development will not occur. Thus the logit form of the logistic regression model 

shown in equation (5-5) gives an expression for the log odds of urban development for an 

individual cell with a specific set of X’s.  Suppose coefficients estimates of α̂  and îβ  are 

obtained from model fitting, then given a set of X’s, the estimated odds of urban development is: 

1

ˆˆ

ˆ
k

i i
i

X

e
α β

ψ =

+∑
=   (5-6) 

So the logistic regression model can also be represented as: 

1
ln

k

i i
i

Xψ α β
=

= +∑   (5-7) 
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The parameter α can be interpreted as the logarithm of the background odds. By 

background odds, we mean the odds that would result for the logistic model without any X’s at 

all. The parameter iβ  represents the change in the log odds that would result from one unit 

change in the variable Xi when other variables are fixed. For a continuous variable, controlling 

for other variables, increase 1 unit of the variable value, and the change in log odds will be: 

1ln ln
i iX X iψ ψ β+ − =   (5-8) 

or 

1ln i

i

X
i

X

ψ
β

ψ
+ =   (5-9) 

So iβ  can be interpreted as log odds ratio for an increase of "1" unit in Xi. In this study, 

“1” unit change of a continuous variable may not be meaningful. For example, the effects of an 

increase of 1 meter in distance to highway (X11) or an increase of 1 person per square meter (X1) 

on the ratio of odds of urban development may be too small to be considered important.  It may 

be more appropriate to specify a change of “c” units, such as an increase of 1000 meters or 1000 

persons. Then the relationship between odds ratio and iβ  becomes: 

'

ln icψ β
ψ

=   (5-10) 

 For dichotomous variables (X13, X14,…, X18), there are only two values: either 0 or 1. The 

relationship between the odds ratio and the coefficient conforms to equation (5-9). Controlling 

for other variables, a change of cell value from 0 to 1, for example, non-forest to forest, the odds 

ratio will be: 

1

0

ieβψ
ψ

=   (5-11) 
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 For continuous variable, the odds ratio is given by: 

'
ice βψ

ψ
=   (5-12) 

The odds ratio will be used to interpret the association between the probability of urbanization 

and its driving forces in section 5-8. 

  The assumptions of the logistic regression model are: (1) the dependent random variable, 

Y, is binary, taking only two values, with 0 representing no urban growth and 1 indicating urban 

growth; (2) Y depends on k observable variables 1 2, ,...,
k

X X X , and the relationship is nonlinear 

and follows the logistic curve; (3) the data are generated from a random sample; (4) no important 

variables are omitted; (4) no extraneous variables are included; (5) the independent variables are 

not linear combinations of each other; and (6) the error term of each observation is independent 

of the error term of all other observations. 

 In this study, the logistic regression model will be fitted using spatial data. Attention must 

be paid to possible spatial autocorrelation within spatial data, which may violate the last 

assumption. This is to be discussed and dealt with in Sections 5.4 and 5.5. 

 

5.3 Multi-scale modeling and fractal analysis  

Geographical phenomena and processes are scale dependent. Thus, spatial data depicting the 

phenomena and models representing the process are of multiple scale nature. Research on scale 

effects on spatial data handing, spatial analysis and modeling have been under way in geography 

(Meentemeyer 1989), remote sensing (Quattrochi and Goodchild 1997), cartography (Buttenfield 

and McMaster 1991; Lam and Quattrochi 1992), and spatial statistics (Wong and Amrhein 

1996). Lam and Quattrochi (1992) summarized four connotations of scale as: cartographic scale, 

geographic scale, resolution, and operational scale.  
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The effect of resolution on logistic regression modeling is investigated using series of 

logistic regression models which are calibrated from the resolution of 50 m, then progressively 

scaled down to 250 m at an interval of 25 m. Techniques of GIS have provided the potential to 

generate multi-resolution data sets for scale up modeling. The simple and uniform geometry of 

raster data is convenient for aggregation. 

 Logistic regression models with 18 independent variables (X1 ⎯ X18) are calibrated in 

the support of  Idrisi Kilimanjaro raster GIS program using full data points within the mask of 

the thirteen counties. The reason why the mask is applied is that data on distribution of active 

economic centers used to generate distance to activity centers (X10) are not available for the area 

outside the 13 counties, which causes unreliable values of the variable in some areas outside the 

mask. For example, values of distance to active economic centers for cells close to Gainesville 

actually represent distances to an activity center within the mask since the points for the active 

economic centers for Gainesville were unavailable and thus were not used in distance 

calculation. Model calibration was tried at the resolution of 25 m, but Idrisi Kilimanjaro run on a 

DELL desktop computer failed to accomplish the model calibration due to the intensive 

computation ⎯ noting that there are 16,699,756 data points for each layer and 19 layers in total. 

The raster layers at the resolution of 25m are then aggregated to generate 50 m, 75 m, and so on 

down to 250 m data sets to accommodate the modeling at coarser scales.   

Many existing scale studies rely heavily on the re-sampling methods to generate multi-

scale raster data for analysis. Methods for aggregating regular grids include the average method, 

sampling every Nth cell, and dominant values (Bian 1997). In this study, for the dependent 

variable urban growth (Y), the conservation area (X13), and design variables for land use/cover 

types (X14 ⎯ X18), the method of selecting dominant values for re-sampling was used to generate 
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data with coarser resolution. Multi-resolution slope (X7) data were created from DEM data of 

corresponding resolution. Raster layers for the number of urban cells within a 7×7 cell 

neighborhood (X12) were calculated from urban distribution maps which are the union of high-

density urban (X14) and low-density urban (X15) aggregated from a resolution of 25 meters using 

dominant value re-sampling method. The DEMs of coarser resolutions were generated using 

interpolation function for continuous data in the support of raster GIS.  Existing scale studies 

show that variations of results from multi-scale analysis are not completely due to the ‘real’ scale 

effects, but rather they are artifacts attributable to the use of different resampling methods 

(Weigel 1996). To minimize and account for the effects of data aggregation on modeling, an 

explicit aggregation operation was not applied to raster layers of demographic data (X1⎯X6),  

and distance variables (X8 ⎯X11), rather multi-scale data for those variables were directly 

generated at each resolution.  

Effects of multi-scale modeling are shown in Table 5.4 and Figures 5.7, 5.8, and 5.9. 

These results were obtained from the logistic regression model calibration using Idrisi 

Kilimanjaro. Figure 5.7 shows the general trend of decreasing area of urban growth from high 

resolution to low resolution. This observation coincides with Turner’s research which has shown 

that reducing the resolution of a raster land use/cover map (to larger cells) can increase the 

dominance of the contiguous classes, but decrease the amount of small and scattered classes (like 

wetlands in some locations) in the representation (Turner et al. 1989). It also coincides with the 

findings of Meentemeyer and Box (1987) that heterogeneous landscapes lead to more rapid 

information loss as data are aggregated and analyzed at coarser scales. The relatively sparse 

distribution of heterogeneous patches of urban growth within the study area is very sensitive to 

the aggregation. This effect resulting from data aggregation should be considered and  
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Table 5.4 Effect of multi-resolution modeling 

 50m 75m 100m 125m 150m 175m 200m 225m 250m 
# of data points 4174939 1856514 1043857 668436 463952 341030 260982 206316 167042 
# of 0s for Y 4054460 1797408 1015910 650851 453369 333593 255841 202493 164197 
# of 1s for Y   120479     59106     27947   17585   10583     7437     5141     3823    2845 
0s % for Y           97.11         96.82         97.32         97.37       97.72       97.82       98.03       98.15       98.30 
1s % for Y             2.89           3.18           2.68           2.63         2.28         2.18         1.97         1.85         1.70 
-2lnL0 1091734.8 523801.3 257495.9 162648.0 100941.5 71611.2 50559.5 38069.8 28814.8 
-2ln(likelihood) 961744.9 463777.5 227781.7 143757.7 89016.2 62984.0 44227.1 33247.5 25122.4 
Pseudo R2         0.1191      0.1146       0.1154       0.1161     0.1181     0.1205     0.1252     0.1267    0.1281 
Goodness-of-fit 10781924.0 3127842.3 1952394.5 1216031.1 845741.4 522747.5 429185.0 341499.3 181190.6 
ROC 0.7788 0.7754 0.7808 0.7818 0.7873 0.7900 0.7974 0.7995 0.8027 
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Figure 5.7  Effect of multi-resolution data aggregation on the percentage of urban growth area.
 

 

 

Figure 5.8  Effect of resolution on logistic regression model pseudo R square.
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Figure 5.9 Effect of resolution on logistic regression model validation index 
                  relative operating characteristic (ROC). 

 
 

differentiated from the true scale effect caused by the geographical process under the spatial 

patterns. Since urban growth serves as the dependent variable in the logistic regression model,  

the small amount of area of urban growth also tends to be under-sampled if only a portion of the 

data points are sampled for modeling, which will be discussed and handled in Sections 5.4 and 

5.5. 

From Figure 5.8, it can be seen that as the resolution of modeling becomes coarser, 

pseudo R square, which is an indicator of model fit, first decreases as the resolution changes 

from 50m to 75m, then continuously increases. A similar trend was observed for relative 

operating characteristic (ROC) index (Figure 5.9). The ROC index is used to validate the logistic 

regression model. It indicates the degree of spatial agreement between the actual urban growth 

map and the predicted probability map; a higher ROC value indicates higher validity of the 

model (for ROC, see Section 5.10.2). Another index indicating the model fit is called goodness-
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of-fit. The smaller of a goodness-of-fit value, the better model fit it indicates. It shows a trend of 

decrease as the resolution becomes coarser (Table 5.4). The model fits better and approximates 

realty more closely at coarser resolutions. The probable reason is that at the finer resolutions, the 

model would suffer individualistic fallacy. 

The process of urban growth is controlled by many demographic, socioeconomic, 

econometric and biophysical factors. Although the modeling is based on regular grid cells which 

serve as the framework for integration of heterogeneous data, not all the actual data describing 

the reality are observed at the unit of cells. Whereas land use/cover data are derived from 

Landsat TM images which collect average spectral reflectance over a pixel, and econometric 

distance data are obtained in the support of raster GIS, socioeconomic data are collected at 

census units and then disaggregated into regular raster grids. Certainly phenomena and processes 

represented by these explanatory variables operate at different scales. For a certain phenomenon 

or process, its scaling behavior may not be linear. This implies that in order to characterize the 

pattern or process at a scale other than the scale of observation, some knowledge of how the 

pattern or process changes with scale is needed so that the scaling process can be adjusted 

accordingly. In the multivariate model, trying to capture all the processes in a single unit 

(resolution) of analysis is impossible. The model behavior must be the compromised outcome of 

all the processes operating at various scales. Thus, there must exist an optimal scale at which the 

model best performs in its explanation and prediction functions. Fractals have long been thought 

to be an effective way to characterize multi-scale effects through mathematically relating 

complexity and scale (Lam and Quattrochi 1992; De Cola 1989; Goodchild and Mark 1987). 

This study uses fractal analysis to determine the optimal scale of modeling. Fractal 

dimensions were calculated for the logistic regression model predicted probability surface maps 
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from the resolution of 50 m to 250 m. The triangular prism surface area method (Clarke 1986; 

Jaggie et al. 1993) was used to calculate the fractal dimensions. This method estimates lumped 

fractal dimension values from the predicted probability surface. The method takes the probability 

values at the corners of a square grid, interpolates a center value of the square by averaging, 

extends the cell values vertically, and divides the square into four triangles to form a triangular 

prism surface (Figure 5.10). The surface areas of the imaginary prisms resulting from raising the 

triangles to their given ‘elevations’ are calculated. This calculation is repeated for different 

square sizes, yielding the relationship between the total area of the surface and the spacing of the 

squares (resolution). The calculation will stop if the size of the square is too big to fit on the 

whole image. The computed surface area will decrease with increasing square size (decreasing 

resolution). A double log curve was then plotted to show the relationship between the log total 

surface area and the log of the step size. The fractal dimension is calculated by performing a 

regression on the pair of the variables, and fractal dimension D is equal to 2.0 minus the slope of 

regression. The fractal dimensions were calculated using the software package Image 

Characterization and Modeling System (ICAMS) (Quattrochi et al. 1997 ). Table 5.5 shows the 

number of steps used for calculation of fractional dimension for the predicted probability surface 

of each resolution. Figure 5.11 shows the R-square values obtained through regressing log 

surface areas on log spatial resolutions, which take values from 0.741 to 0.869, indicating a tight 

fit of  calculation of fractal dimension for all the probability surfaces, with the maximum R-

squared value for the predicted probability surface at the resolution of 225 m.  

Figure 5.12 shows the change of fractional dimension with the resolution of modeling. 

Fractal dimension increases almost linearly with the change of resolution from 50 m to 225 m, 

then decreases at the turning point of 225 m. This suggests that the urbanization probability  
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Figure 5.10 Coordinate structure for triangular prism method. (Source: Jaggie et al. 1993).

 

 

Table 5.5 Number of steps for calculation of fractal dimensions of 

predicted probability surfaces using triangular prism surface area method 

Resolution (m) No. of rows No. of 
column 

No. of 
steps 

50 2744 2332 <213 12 
75 1830 1555 <213 12 
100 1372 1166<213 12 
125 1098 933<212 11 
150 915 778<212 11 
175 784 667<212 11 
200 686 583<212 11 
225 610 519<212 11 
250 549 467<211 10 
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Figure 5.11 R-square values against resolutions. A R-square value is for the regression analysis 

                   at a resolution which  regresses the log total surface area on the log of the step size. 

                   A fractal dimension D is equal to 2.0 minus the slope of this double log regression. 

 

 

Figure 5.12  Lumped fractal dimension of logistic regression model predicted probability surface 

                     plotted against resolution. 
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surface does not demonstrate the property of self-similarity of real fractals since self-similar 

objects must have constant fractional dimension. Previous studies have demonstrated that true 

fractals with self-similarity at all scales are uncommon (Lam and Quattrochi 1992) and most 

real-world curves and surfaces are not pure fractals with a constant fractal dimension at all 

scales. The change of fractal dimension across scale, though controversial to the strict sense of  

fractal dimension as defined by Mandelbrot (1983), can be interpreted positively and used to 

summarize the scale changes of the spatial phenomena. The scale at which the highest fractal 

dimension is measured may be the scale at which most of the processes operate (Goodchild and 

Mark 1987; Lam and Quattrochi 1992; Cao and Lam 1996), and hence is the optimal scale of 

analysis. Thus the resolution of 225 m is selected as the optimal scale at which the logistic model 

best represents the dynamics of urbanization and the underlying controlling processes. The cell 

size of 225 m should be the best resolution for the study which avoids both individualistic fallacy 

and ecological fallacy. In the following sections, modeling and analysis will be based on the 

resolution of 225 m. 

 

5.4 Testing logistic regression residual for spatial autocorrelation 

In the previous sections, the logistic regression model was calibrated using the full data set 

comprising all cell values within the 13 county study area. The model calibration resulted in a 

predicted urbanization probability surface map and a residual map indicating the difference 

between the predicted and the observed probability.  

The logistic regression model assumes that observations are independent of each other 

and the residuals are mutually independent. But this assumption may be violated due to the 

spatial autocorrelation. Spatial autocorrelation is the propensity for data values to be similar to 
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neighboring data values. The model has not taken spatial components into account, although the 

variable X12 (number of urban cells within a 7 by 7 cell neighborhood) has captured some spatial 

interaction effects.  Spatial autocorrelation can occur in the residuals for several reasons: (1) a 

linear model has been used for a nonlinear relationship; (2) other causal variables have been 

excluded in the model; and (3) both the interactive and reactive processes have occurred 

(Goodchild 1987).  

If present, spatial autocorrelation will violate the assumption of independence of residuals 

and call into question the validity of hypothesis testing. The main effect of such violation is the 

underestimation of the error sum of squares (ESS) which inflates the value of the test statistic. 

An inflated test statistic increases the chance of an incorrect rejection of a null hypothesis (Type 

I error in statistics terms). For example, spatial autocorrelation can lead to bias in the estimation 

of residual variance and therefore in pseudo R2 and other measures of the success of the model, 

and hence the inefficiency in the estimation of the logistic regression coefficients —the β ’s. 

Therefore it is necessary to examine and determine if spatial autocorrelation exists in the 

residuals which would violate the assumption of independent observations. If there is spatial 

autocorrelation, measures have to be taken to reduce it to achieve a more powerful model.  

To test the logistic regression residual for spatial autocorrelation, Moran’s I for the 

King’s case was calculated under a normality assumption that the cell values represent 

independent drawings from a single normally distributed population, hence a null hypothesis that 

there is no spatial autocorrelation. The King's case (Figure 5.13) examines the cells diagonally 

connected to each cell as well as those cells to the left, right, above and below each image cell. 

The calculation of Moran’s I was only limited to the cells within the 13-county study area by  
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                                Figure 5.13 King’s case in determining spatial autocorrelation. 

 

specifying a Boolean mask image. The Boolean mask image contains 1's in all cells that should 

be considered and 0's for those to be ignored. 

Assume that there are n observations of the residuals, with each residual value 

represented by zi, and the mean residual values being z . Moran’s I was calculated by the 

following equation (Goodchild 1987): 

2

ij ij
i j

ij
i j

w c
I

s w
=
∑∑
∑∑

            (5-13) 

where I is Moran’s I index. Its values range from –1 to +1, with positive values indicating nearby 

areas being similar in attributes, negative values suggesting dissimilar attributes in nearby areas, 

and zero value for randomly and independently arranged attribute values. The cij term is the 

residual similarity measure: 

( )( )ij i jc z z z z= − −        (5-14) 

s2 denotes the sample variance: 

2 2( ) /i
i

s z z n= −∑        (5-15) 
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The term wij is the spatial proximity between cell i and j. In this study, diagonal cells are 

given a weight of only 0.707 equal to 2 /2 relative to a weight of 1.0 for those vertically or 

horizontally adjacent because diagonal distance between the centers of two diagonally 

neighbored cells is equal to the distance between the immediately neighboring cells times 2 . 

Table 5.8 shows the spatial proximity matrix for the cells shown in Figure 5.13. 

 

Table 5.8. Spatial Proximity matrix for King’s case in Moran’s I calculation 

 a b c d e f g h i 
a 0 1 0 1 0.707 0 0 0 0 
b 1 0 1 0.707 1 0.707 0 0 0 
c 0 1 0 0 0.707 1 0 0 0 
d 1 0.707 0 0 1 0 1 0.707 0 
e 0.707 1 0.707 1 0 1 0.707 1 0.707 
f 0 0.707 1 0 1 0 0 0.707 1 
g 0 0 0 1 0.707 0 0 1 0 
h 0 0 0 0.707 1 0.707 1 0 1 
i 0 0 0 0 0.707 1 0 1 0 

 

 

To test  the statistical significance of Moran's I obtained under the normality assumption, 

first the variance of  I (VarN(I)) is given as (Goodchild 1987): 

2 2 2
1 2 02 2
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1 ( 3 ) ( )
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where subscript N denotes normality assumption; 

N = number of observations, 
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= ∑∑ , the sum of the spatial proximity weight matrix elements, 
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The standard deviation of Moran’s I was then calculated as: 

( ) ( )N NSD I Var I=   (5-17) 

Last, the z-score was computed as: 
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=   (5-18) 

From the z-score, we get p value, the probability that the null hypothesis is true given the 

observed sample. The smaller the p value, the less likely the null hypothesis, and the greater the 

confidence with which we can reject the null hypothesis, i.e., no spatial autocorrelation.  

For the 13-county area within the residual image at the resolution of 225 meters, the King’s case 

Moran’s I and its statistics are calculated using Idrisi Kilimanjaro and are shown in Table 5.9. 

 

         Table 5.9 Spatial autocorrelation statistic 

Statistics Value 
Number of cells included                     206316 
Mean of cells included 0.0000 
Standard Deviation of cell values    0.0003 
Spatial autocorrelation(Moran’s I) 0.2826 
Expected value of I if not autocorrelated    -0.0000 
Variance of I (normality assumption)         0.0000 
z test stat   (normality assumption)         252.2894* 

 

          *p = 2.22e-6 
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The p value is much less than 5%, which leads to the conclusion that the null hypothesis 

of no spatial autocorrelation in the residuals can be rejected. In other words, spatial 

autocorrelation is present among the residual values. 

Urban development is spatially autocorrelated. In the logistic regression model, the 

phenomena represented by the response variable (urban growth) and the explanatory variables 

could not occur independent of location. The closeness in attributes across space is related to 

spatial proximity. Urban growth has shown spatial autocorrelation due to the ‘push’ and ‘pull’ 

effects in the urban development process. For example, commercial development may be 

clustered around an existing commercial land lot to take advantage of scale economy, and may 

also be scattered to compete for customer sources. The status of the dichotomous variable of 

urban growth in a place is affected by the neighboring places. Cliff and Ord (1981) referred to 

this type of spatial dependence as interactive. Spatial autocorrelation may also be reactive in 

Cliff and Ord (1981)’s terms. The value of the response variable at a place may be determined by 

some other variable at the same place which is itself autocorrelated. Taking the causal variable 

population density for example, if it is spatially correlated, urban growth must show reactive 

spatial autocorrelation. 

 

5.5 Correcting for spatial autocorrelation 

The statistical methodology for considering spatial autocorrelation is not as well developed for 

logistic regression models as it is for the least squares regression models. Logistic regression 

models belong to the family of generalized linear models. Spatial forms of such models are not 

well developed. This study uses three steps to correct for the effects of space. 
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The first step is to use raster GIS data aggregation and pixel thinning functions, such as 

the DEGRADE function for continuous data and the AGGIE function for categorical data in 

ERDAS Imagine, and CONTRACT function for thematic pixel thinning and continuous value 

interpolation function in Idrisi Kilimanjaro. This was done in Section 5.3 where multi-scale  

data sets were created and multi-scale modeling was conducted. The multi-resolution modeling 

process from 25 m cell size to 250 m cell size is a process of alleviating the spatial effect by 

considering a series of spatial lags from the first order to the tenth order. The effect of spatial 

dependence at the resolution of 225 m must be weaker than that at 25 m since the attribute 

similarity becomes weaker as spatial lags progress from the first order to a higher order. 

The second step is to include spatial coordinates of data points into the independent 

variable set. Spatial autocorrelation can be alleviated to some extent by attempting to introduce 

location into the link function to remove any such effects present (Bailey and Gatrell 1995). For 

example, spatial coordinates of observations might be introduced as additional covariates, or to 

classify regions in terms of their broad location and treat this classification as an extra 

categorical explanatory factor in the model. This assumes of course that one can “explain away” 

spatial dependence in terms of a first-order spatial trend, i.e., the first-lag autocorrelation. The 

following refined logistic regression model will include the UTM coordinates (eastings and 

northings) as two extra independent variables. 

The last strategy is sampling. A stratified random sample image was generated and used 

as the feature definition file to extract cell values of dependent and independent variables on 

which the refined logistic regression model will be fitted. The spatial distances between sampling 

data points are larger than those between neighboring data points in the full data set, thus the 

spatial autocorrelation effects on modeling would be smaller than those by using the full data set. 
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5.6 Refining the model at the resolution of 225 m 

5.6.1 Data preparation 

Stratified random sampling was applied to the area covered by the rectangle (see Figure 3.2) 

bounding the 13-county study area to generate a vector point file in a GIS environment. There 

are two purposes for taking a sample of the full data set. The first purpose is to correct for spatial 

autocorrelation as explained in Section 5.5. The second purpose is to reserve non-sampled data 

points for model validation using the Relative Operating Characteristic (ROC) method that will 

be done in Section 5.10.2. The results of model validation using the full data sets on which 

model calibration is based would be biased and unreliable. 

Stratified random sampling is thought to perform well when it is necessary to make sure 

that small, but important, areas are represented in the sample (Congalton 1988). The sampling 

percentage is around 10%. Since logistic regression model fitting will be performed within the 

13-county study area, only those points within the study area were extracted using point-in-

polygon GIS operation. At the resolution of 225 m, the number of cells within the study area is 

206,316, of which 20,389 cells have been sampled. Within the study area, the number of cells 

that have changed from non-urban to urban, i.e, the number of 1s for variable Y (1= urban 

growth), is 20,631, accounting for 1.85% of the total number of cells. Of the 20,389 sample 

points, there are 370 points whose cell values are 1 in the Y variable layer. The percentage of 1s 

in the sample is 1.82%, matching very well with the percentage of 1.85% for the full data set, 

which demonstrates the accuracy of the stratified random sampling. 

The UTM coordinates (eastings, denoted as E, and northings, denoted as N) for the 

sample points were retrieved using raster GIS and were used as two additional independent 

variables. Raster cell values of the sampled cells for the 18 independent variable layers were 
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extracted and exported to form an integrated text file together with (E, N) coordinates, which 

then were imported into the STATA software, a statistical software package (STATA 2003). The 

beginning and ending parts of data values are shown in Table 5.10. Model fitting was conducted 

with STATA. 

 

5.6.2 Model fitting: maximum likelihood estimation 

Fitting the logistic regression model requires that estimates of the parameters 

1 2 19 20( , , ,..., , )α β β β β be obtained. A maximum likelihood estimator is used to fit the model. The 

method of maximum likelihood yields values for the unknown parameters which maximize the 

probability of obtaining the observed set of data ⎯ the urban growth from 1987 to 1997 detected 

from remote sensing. In order to apply this method, a likelihood function was first constructed 

(modified from Hosmer et al. 1989): 
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where 

    L  is the likelihood; 

    iµ  is the predicted value of the dependent variable for sample i: 
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     yi is the observed value of the dependent variable for sample i, and 

     n is the number of observations, which equals to 20,389. 
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Table 5.10 Data Values for Logistic Regression Model 

      ……                    ……                                                                                                             ……     
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 The likelihood function expresses the probability of the observed data as a function of  

the unknown parameters. The maximum likelihood estimators of these parameters are chosen to 

be those values which maximize the function. Thus the resulting estimators are those which 

agree most closely with the observed data. To maximize the likelihood function requires the 

solution for the following simultaneous nonlinear equations (Hosmer et al. 1989): 

1
( ) 0

n

i i ij
i

y Xµ
=

− ∗ =∑   (5-21) 

where ijX  is the observed value of the independent variable j (j=1,2,…,20) for sample i 

(i=1,2,…,20389). 

 The results of fitting the logistic regression model to the data shown in Table  5-9 are 

given in Table 5.11. The estimated logit is given by the following expression: 

 

       ˆlogit(P)  = 13.52805 - 0.0006117X1 - 0.0000132X2 + 0.0039253X3 + 0.0001885X4 
                         - 0.0003437X5 + 0.0101019X6 - 0.0178212X7 - 0.0009621X8 + 0.0000177X9 
              - 0.0000834X10 - 0.0007265X11 + 0.0172993X12 - 0.1838858X13 - 2.529919X14 
              -1.513311X15 + 0.922617X16 + 0.7312305X17 + 0.3742606X18 
              + 0.000000258E – 0.00000454N      (5-22) 

 

The fitted values, P̂ , representing the probability of urban growth, were then obtained using the 

estimated logit — ˆlogit(P) , based on equation (5-4).  

 

5.7 Testing for the significance of the Model 

The assessment of the significance of the variables in the model fitted above involves 

formulation and testing of a statistical hypothesis to determine whether the independent variables  
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              Table 5.11 Estimated Coefficients and Odds Ratio for the Logistic Regression Model  

                                Using the 20 Independent Variable (M20) 

 

Y Coefficient 
Standard 

error Odds Ratio 
Standard 

error 
Z P>|Z| 

X1 -0.000611 0.000216 0.9993884 0.0002156 -2.84 *0.005 
X2 -1.3E-05 8.87E-06 0.9999868  8.87E-06 -1.49 0.135 
X3  0.003925 0.008132 1.003933 0.0081635 0.48 0.629 
X4  0.000189 0.000263 1.000188 0.0002626 0.72 0.473 
X5 -0.00034 0.00298 0.9996563 0.0029785 -0.12 0.908 
X6  0.010102 0.015917 1.010153 0.0160788 0.63 0.526 
X7 -0.01782 0.031064 0.9823367 0.0305149 -0.57 0.566 
X8 -0.00096 0.000129 0.9990383 0.0001293 -7.44 *0.000 
X9  1.77E-05 8.92E-06 1.000018  8.92E-06 1.98 *0.047 
X10 -8.3E-05 1.13E-05 0.9999166 0.0000113 -7.36 *0.000 
X11 -0.00073 0.000119 0.9992738 0.0001191 -6.1 *0.000 
X12  0.017299 0.007073 1.01745 0.0071968 2.45 *0.014 
X13 -0.18389 0.522982 0.8320308 0.4351372 -0.35 0.725 
X14 -2.52992 0.812327 0.0796655 0.0647144 -3.11 *0.002 
X15 -1.51331 0.747177 0.2201799 0.1645132 -2.03 *0.043 
X16  0.922617 0.76884 2.515866  1.934298     1.2 0.230 
X17  0.731231 0.733594 2.077636  1.524141  1 0.319 
X18  0.374261 0.722887 1.453916  1.051016 0.52 0.605 
E  2.58E-07 2.65E-06 1  2.65E-06     0.1 0.922 
N -4.54E-06 2.72E-06 0.9999955  2.72E-06 -1.67 *0.095 
_const 13.52805 10.68137 N/A N/A 1.27 0.205 

 

Y= 
X1= 
X2= 
X3= 
X4= 
X5= 
X6= 
X7= 
X8= 
X9= 
X10= 

Urban growth 
*Population density (person/km2) 
Per capital income ($) 
Poverty rate(%) 
Median housing rent ($) 
Percentage of white people(%) 
Employment rate(%) 
Slope (%) 
*Distance to the nearest urban cluster(m) 
*Distance to CBD(m) 
*Distance to active economy centers(m) 

 
X11=
X12=
X13=
X14=
X15=
X16=
X17=
X18=
E = 
N= 

 
*Distance to the nearest major road  
* # of urban cells within a 7×7 cell window  
Conservation area 
*High-density urban 
*Low-density urban 
Bare land 
Cropland/grassland 
Forest 
Easing coordinate (m)  
*Northing coordinate (m) 

 

* These variables are significant at the α = 0.10 level 
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in the model are significantly related to the outcome variable Y. The significance test is 

performed by comparing the observed values of the response variable to those predicted by the 

full (or saturated) model denoted as M20 (the subscript represents the number of independent 

variables) and a reduced model (M0) without the variables in question.  

 

5.7.1 Likelihood ratio test  

A likelihood ratio (LR) test is used to assess the overall significance of variables in the full 

model with 20 independent variables. The likelihood ratio test is based on log likelihood statistic 

ˆ2ln L− , where L̂ is the maximized likelihood value obtained from equation (5-19) by plugging 

the estimated parameters into the equation. The higher the L̂  value, the better the fit of the 

model. The log likelihood statistic is used for the calculation of likelihood ratio statistic (LR) 

(Kleinbaum 1994): 

1 2
ˆ ˆ( 2 ln ) ( 2 ln )LR L L= − − −   (5-23) 

Its equivalent equation is: 

1

2

ˆ
2 ln 2 ln( _ )ˆ

LLR likelihood ratio
L

= − = −   (5-24) 

where 

    1̂L  is estimated likelihood for the full model, and 

    2L̂ is estimated likelihood for the reduced model. 

The likelihood ratio statistic yields a value that lies between 0, when extreme non-

significance occurs, and +∞, when there is extreme significance of the contribution of variables 

to response. Provided that the number of observations n in the study is large and under the null 
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hypothesis: 0H : 1β  = 2β =…= kβ  = 0, LR follows the chi-square ( 2χ ) distribution with k 

degrees of freedom (k= number of parameters). 

In this study, 2 ln fL−  for the full model is equal to 3111.839, and 02 ln L−  is 2523.589 

( 0L is the likelihood value for the model in which coefficients for all the 20 independent 

variables are hypothesized to be zero). The LR is thus obtained using equation (5-24) and is 

equal to 588.25. The observation number is 20,389, which is large and justifies the 2χ  

distribution of LR with 20 degrees of freedom. The p-value for the test is 2[ (20)] 0p χ ≈  which is 

significant at the 0.05α =  level. The null hypothesis should be rejected. It may be concluded 

that at least one, and perhaps all the 20 coefficients are different from zero. We are confident that 

at least one variable, and perhaps all 20 variables, are significantly associated with the 

probability of urbanization. 

 

5.7.2 Univariate Wald test 

To test the significance of an individual variable, the Wald test statistic is computed by dividing 

the estimated coefficient of interest by its standard error (Kleinbaum 1994): 

ˆ

i

i
jZ

sβ

β
=   (5-25) 

The Z values calculated are shown in Table 5.11. Under the hypothesis that an individual 

coefficient is zero, these statistics will follow the standard normal distribution in large samples 

(n=20,389). Thus, the values of these statistics may indicate which of the variables in the model 

may be significant. At the 0.05α = level, population density (X1), distance to the nearest urban 

cluster (X8), distance to CBD (X9), distance to active economy centers (X10), distance to major 

roads (X11), number of urban cells with a neighborhood defined by a window of 7 by 7 cells 
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(X12), design variables high-density urban area (X14) and low-density urban area (X15) are 

significant. At the 0.10α = level, the variable UTM coordinate N (X20) is significant. 

Following the significance test, it is logical to construct a reduced model  which excludes 

those variables thought to be insignificant. Of the five design variables for land use/cover, only 

two (X14 and X15) are significant. The other three (X16, X17 and X18) are insignificant. Thus 

confusion arises since we are not sure about the contribution of land use/cover as a single 

variable to the model when only part of the design variables are significant. Statisticians suggest 

that we must be careful in our use of the Wald statistics to assess the significance of the 

coefficients and that whenever a categorically scaled independent variable is included (or 

excluded) from a model, all of its design variables should be included (or excluded) (Hosmer and 

Lemeshow 1989). Strict adherence to the 0.05α =  level of significance would justify excluding 

land use/cover from the model. However, the probability of urbanization of a land lot should be 

influenced by its initial land use/cover status and initial land use/cover should be considered 

important in land use/cover change dynamics in a biophysical and cultural sense. Thus all the 

five design variables for land use/cover are kept in the reduced model. The reduced model has 12 

independent variables, denoted as M12. The results of fitting the reduced logistic regression 

model M12 is shown in Table 5.12. 

 To ensure meaningful interpretation of odds ratios for population density (X1), distance to 

the nearest urban cluster (X8), distance to CBD (X9), distance to active economy centers (X10), 

and distance to the nearest major road (X11), odds ratios were re-calculated for 1000 units of 

change of these variables using equation (5-12). The odds ratio values are shown in Table 5.13. 
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        Table 5.12 Estimated Coefficients and Odds Ratio for the Logistic Regression Model Using  

                           the 12 Independent Variable (M12) 

 

Y Coefficient 
Standard 

error Odds Ratio 
Standard 

error 
Z P>|Z| 

X1 -0.0005622 0.0002110 0.9994380 0.00021090 -2.66 0.008
X8 -0.0009631 0.0001289 0.9990374 0.00012880 -7.47 0.000
X9  0.0000216 0.0000691 1.0000220 0.00000690 3.12 0.002
X10 -0.0000842 0.0000105 0.9999158 0.00001050 -8.03 0.000
X11 -0.0007321 0.0001188 0.9992682 0.00011870 -6.16 0.000
X12  0.0187475 0.0069979 1.0189240 0.00713040 2.68 0.007
X14 -2.0443720 0.8098608 0.0868372 0.07032600 -3.02 0.003
X15 -1.4689880 0.7457362 0.2301583 0.17163730 -1.97 0.049
X16  0.9592659 0.7679655 2.6097800 2.00422100 1.25 0.212
X17  0.7909088 0.7322479 2.2054000 1.61490300 1.08 0.280
X18  0.4215078 0.7216335 1.5242580 1.09995600 0.58 0.559
N -0.0000574 0.0000026 0.9999943 0.00000259 -2.22 0.027
Const 18.804220 9.6770990  1.94 0.052

 

Y= 
X1= 
X8= 
X9= 
X10= 
X11= 
X12= 

Urban growth 
Population density (person/km2) 
Distance to the nearest urban cluster(m) 
Distance to CBD(m) 
Distance to active economy centers(m) 
Distance to the nearest major road  
# of urban cells within a 7×7 cell window  

 
X14= 
X15= 
X16= 
X17= 
X18= 
N= 

 
High-density urban 
Low-density urban 
Bare land 
Cropland/grassland 
Forest 
Northing coordinate (m) 

 

 

Table 5.13 Odds ratios provided that variable values increase by 1000 units 

Variable  Meaning  Odds ratio 
X1 Population density (person/km2) 0.56995 
X8 Distance to nearest urban cluster (m) 0.38171 
X9 Distance to CBD (m) 1.02183 
X10 Distance to active economy centers (m) 0.91924 
X11 Distance to major roads (m) 0.48090 

  

 



 179

The fitted model in the logit from is expressed as: 

ˆlogit(P) = 18.804220 - 0.0005622 X1 - 0.0009631X8 + 0.0000216X9 -0.0000842X10 
                  -0.0007321X11 + 0.0187475X12 -2.0443720X14 -1.4689880X15  
                  + 0.9592659X16 + 0.7909088X17 + 0.4215078X18 -0.0000574N (5-26) 
 

The difference between the full model M20 and the reduced model M12 is the exclusion of the 

eight variables X2, X3, X4, X5, X6, X7, X13, and X19. The likelihood ratio test comparing the  

two models is obtained using the definition of LR given in equation (5-24). It will have a chi-

square distribution with 8 degrees of freedom under the hypothesis that the coefficients for the 

eight excluded variables are equal to zero: 

0 2 3 4 5 6 7 13 19: 0H β β β β β β β β= = = = = = = =  

The value of the log likelihood statistic 122 ln L− is 3116.584, and 202 ln L− is 3111.839, 

yielding a likelihood ratio test value equal to 4.7446, which, with 8 degrees of freedom, has a p-

value of p[ 2χ (8)> 4.7446] = 0.7845. Since the p-value is large, far exceeding 0.05, the null 

hypothesis is accepted, which leads to the conclusion that the reduced model is as good as the 

full model. Thus there is no advantage to including the eight variables in the model. Later 

predictions of urbanization probability and spatial pattern of urban areas as well as model 

validation will be based on the reduced model. However, we must not base the assessment of the 

model entirely on the test of statistical significance and ignore the explanatory power of those 

variables thought to be insignificant and excluded from the full model. It will be seen in section 

5-8 that interpretation of these variables will also render meaningful pictures of the association 

between them and urban growth. 

 
5.8 Assessment of goodness of fit  

The purpose of assessing goodness of fit of the model is to examine whether the predicted 

urbanization probability values are an accurate representation of the observed values in an 
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absolute sense. The model fits if (1) summary measures of the distance between the observed 

sample values of the outcome y ( '
1 2 3( , , ,..., )ny y y y y= ) and predicted values ŷ  

( '
1 2 3ˆ ˆ ˆ ˆ ˆ( , , ,... )ny y y y y= ) are small and (2) the contribution of each pair ˆ( , )i iy y , 1, 2,3,...,i n= to 

these summary measures is unsystematic and is small relative to the error structure of the model 

(Hosmer and Lemeshow 1989). The Pearson Chi-Square statistic and the Hosmer-Lemeshow 

statistic were used to assess the model fit in this study. Goodness of fit was assessed over fitted 

values of covariate patterns, not the total collection of covariates. The observations with the same 

set of data values for the covariates form a covariate pattern. So each covariate pattern has a 

unique set of data values. Let J denotes the number of covariate patterns and mj represents the 

number of observations with X=Xj, it follows that the sum of mj (j=1,2,…J) is equal to the total 

number of observation n.   

 

5.8.1 Pearson chi-square statistic 

 The Pearson chi-square statistic is based on Pearson residuals. For the jth covariate 

pattern, the Pearson residual is defined as follows (Hosmer and Lemeshow 1989): 

ˆ
ˆ( , )

ˆ ˆ(1 )
j j j

j j
j j j

y m
r y

m
µ

µ
µ µ

−
=

−
 (5-27) 

The summary Pearson chi-square statistic is: 

2 2

1

ˆ( , )
J

j j
j

X r y µ
=

=∑  (5-28) 

The statistics 2X  under the assumption that the fitted model is correct in all aspects follows chi-

square distribution with degrees of freedom equal to ( 1)J p− + , where p is the number of 

independent variables (covariates).  
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For the reduced model M12, the Pearson 2X  goodness of fit test shows that the number of 

covariate patterns is equal to the number of observations, which means that each observation has 

a unique set of values for the variables and no observations share the same set of variable values. 

This may be due to the inclusion of the continuous distance (X8,X9,X10, and X11), coordinate(N), 

and population density(X1) variables in the model. Pearson chi-square is 31864.39 with 20376 

degrees of freedom, yielding a p value p[ 2χ (20,376)] of zero. This would lead to the conclusion 

that the model does not fit at all. However, this conclusion is not reliable because the number of 

covariate patterns J is equal to the number of observations n. When J n≈ , p-values calculated 

for Pearson chi-square statistic using 2 ( 1)J pχ − − distribution are incorrect (Hosmer and 

Lemeshow 1989).  In this case, the Hosmer-Lemeshow test (see the following section) is 

preferred.  

 

5.8.2 Hosmer-Lemeshow test 

In the Hosmer-Lemeshow (1989) test, the observations are first sorted in increasing order 

of their estimated event probability. The observations are then divided into g groups based on the 

percentiles of the estimated probabilities. This results in the first group containing the 

'
1 /n n g= observations having the smallest estimated probabilities, and the last group containing 

the ' /gn n g= observations having the largest estimated probabilities. Then the Hosmer-

Lemeshow goodness-of-fit statistic, Ĉ , is obtained by calculating the Pearson chi-square from a 

summary table of observed and estimated expected frequencies of the presence and absence of an 

event: 

' 2

'
1

( )ˆ
(1 )

g
k k k

k k k k

o nC
n

µ
µ µ=

−
=

−∑  (5-29) 
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where 

       '
kn  is the total number of observations in the thk group, 

      
1

kc

k j
j

O y
=

=∑  is the number of responses among the kc covariate patterns, 

      '
1

ˆkc
j j

k
j k

m
n
µ

µ
=

=∑  is the average estimated probability, and kc is the number of covariate patterns 

in the thk group. 

 When J=n and the fitted logistic regression model is correct, the distribution of the 

statistic Ĉ  approximates the chi-square distribution with g-2 degrees of freedom, 2 ( 2)gχ − . Ĉ ’s 

value range is [0,1]. The bigger the p value, the better the model fits. 

 Table 5.14 shows the observed (Obs) and the expected (Exp) frequencies with each decile 

(g=10) for each outcome Y=1 or Y=0 using the fitted reduced logistic regression model M12 as 

expressed in equation (5-25). The value of the Hosmer-Lemeshow goodness-of-fit statistic 

computed from the frequencies in Table 5.14 is Ĉ =10.47, and the corresponding p-value 

computed from the chi-square distribution with 8 degrees of freedom is 0.2334. This indicates 

that the model seems to fit, but weakly.    

 

5.8.3 Pseudo R-square test 

Logistic regression does not have an equivalent to the R-square that is found in ordinary least 

square (OLS) regression; however, many people have tried to come up with one. There are a 

wide variety of pseudo R-square statistics. Because this statistic does not mean what R-square 

means in OLS regression (the proportion of variance explained by the predictors), it is suggested  
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    Table 5.14 Hosmer-Lemeshow goodness-of-fit test for the  

                      reduced Model M12 

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0002 
0.0008 
0.0024 
0.0049 
0.0079 
0.0118 
0.0180 
0.0297 
0.0526 
0.2494 

1 
1 
2 
9 
9 
16 
29 
52 
86 
165 

0.1 
0.9 
3.1 
7.3 
12.9 
19.8 
29.7 
47.3 
81.6 
167.4 

2038 
2038 
2037 
2030 
2030 
2023 
2010 
1987 
1953 
1873 

2038.9
2038.1
2035.9
2031.7
2026.1
2019.2
2009.3
1991.7
1957.4
1870.6

2039 
2039 
2039 
2039 
2039 
2039 
2039 
2039 
2039 
2038 

Number of observations:  n=20389 
Number of groups:           g = 10 
Hosmer-Lemeshow:        Ĉ =10.47 
Probability > 2 (8)χ :        p[ 2 (8)χ ]=0.2334 

 

 

to interpret this statistic with great caution. Hosmer and Lemoshow (1989) do not advocate the 

use of pseudo R-square statistics.  

This study used McFadden’s pseudo R-square to test the goodness of fit of the model. 

This statistic measures adjusted 2ln( )likelihood− for sample size and is calculated using the 

following formula (McFadden 1973): 

0

ln( )1
ln( )

likelihood
L

−  (5-30) 

where 0L  is the value of the likelihood function if all coefficients except the intercept are zero. 

Pseudo R square greater than 0.2 is considered a good fit (Clark and Hosking 1986). The pseudo 

R2 values for the full model M20 and the reduced model M12 are 0.159 and 0.158 respectively, 

thus again indicating that the model fit is weak. 
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5.9 Model interpretation 

The purpose of the interpretation of the above logistic regression models M12 and M20 is to 

address the questions: (1) what do the estimated coefficients in the model tell us about the 

association between urbanization probability and the driving forces?  and (2) what are the 

processes controlling the dynamics of urban growth? To answer these questions requires us to 

draw practical inferences from the estimated coefficients of the model. 

The coefficients iβ ’s for the predictor variables measure the change in the log odds of 

urban growth that would result from a one unit change in the predictor variables. Since the iβ  

coefficients are in log units, their meaning cannot be directly interpreted as a measure of change 

in the probability of urban growth. However, when the iβ  coefficient is used as a power to which 

the natural log (2.71828) is raised, the result represents an odds ratio as shown in equation (5-

11), or the ratio of the probabilities that urban growth will occur divided by the probability that 

urban growth will not occur with or without iβ . If a coefficient is positive, its transformed log 

value will be greater than one, meaning that the event is more likely to occur with one unit 

increase in the explanatory variable. If a coefficient is negative, its transformed log value will be 

less than one, and the odds of the event occurring decrease with one unit increase in the 

explanatory variable. A coefficient of zero (0) has a transformed log value of 1.0, meaning that 

this coefficient does not change the odds of the event one way or the other.  Since the odds ratio 

is a measure of association, the following interpretation will be based on the odds ratios. 

Interpretation will be first given to significant variables as shown in the model M12. 

Urban development tends to occur in area of lower population density (X1). The 

estimated odds ratio is 0.999438, or 1/1.000562, which is less than one, which indicates that the 

probability of urban growth in area of higher population density is less than the probability of 
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urban growth in area of lower population density. In particular, with an increase of one person 

per square kilometer, the odds of urban growth is estimated to decrease by 0.000562.  An 

increase of one person may not make any sense. For more practical interpretation, it would be 

more appropriate to specify the change of population density in 1,000 units. If the population 

increases by 1000 persons per square kilometer, according to equation (5-12), the odds ratio will 

be 1000 ( 0.0005622)e × − , or 0.56995, or 1/1.7542 (see Table 5.13), which means that the odds of urban 

development would decrease by 0.7542 if population density increases by 1000 persons per 

square kilometer. Like most other American cities, urban sprawl and sub-urbanization in the 

study area are characteristic of low-density urban development, which replaces farmland, forest 

and open space with single-family homes on large lots. In developing countries, this may not be 

the case. For example, in Chinese cities that are experiencing rapid urbanization, new 

commercial and industrial facilities and residential subdivisions housing middle-class people 

often replace slums and villages populated with large number of the poor and lower-class 

workers living in peripheral areas, old towns, or city centers.  

Urban areas tend to grow close to the nearest urban cluster. Distance to the nearest urban 

cluster (X8) has a coefficient of –0.0009631. The odds ratio is equal to 0.3817, or 1/2.6198 if a 

land lot is 1000 meters further away from an existing urban area. In particular, the probability of 

urban development in an area is estimated as 2.6198 times as large as the probability of urban 

development in an area 1000 meters further away from the nearest urban area. This demonstrates 

that pulling force has taken effect in the scale economy where commercial facilities tend to 

cluster together in a localized area. The influence of distance to the nearest urban cluster 

corresponds to Clarke’s ‘edge growth’ rule in his cellular automata model of urban growth 

(Clarke and Hoppen 1997). 
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The decentralized, polycentric sub-urbanization trend in the metropolitan Atlanta area is 

evidenced by the interpretation of the odds ratios for the two predictors: distance to CBD (X9) 

and distance to active economy centers (X10). The odds of urban development in an area 1000 

meters further away from the CBD is estimated as 1.000562 as large as that in area closer to 

CBD. The odds ratio for a 1000-unit increase of distance to active economic centers is 0.91924, 

or 1/1.0878, which means that the odds of urban development in area close to active economy 

centers is estimated as 1.0878 times as large as that in area 1000 meter further away from active 

economic centers. Like other American metropolises, the massive suburbanization of economic 

activities since the 1960s contributed significantly to the spatial restructuring of the business 

landscape of the Metropolitan Atlanta, resulting in the clustering of high-order activities in new 

metropolitan-level urban centers — ‘suburban downtowns’ (Hartshorn and Muller 1989). The 

emergence of these large multifunctional complexes in the outer suburban cities rendered 

obsolete the three classic models of urban structure — the concentric zone, sector, and multiple 

nuclei models, but conformed to the urban realms model, in which the closer it is to major 

activity centers, rather than to CBD, the more probable a land lot will be developed for urban use 

(Hartshorn and Muller 1989). 

The model also demonstrates that urban development has been controlled by road 

accessibility. The odds ratio resulting from an increase of 1000 meters in distance to major roads 

(X11) is 0.48090, or 1/2.079443. The odds of urban development in an area closer to major roads 

is estimated as 2.079443 times as large as the odds of urban development in an area 1000 meters 

further away from major roads. The road influence contributes to the spatial patterns of ribbon 

and strip development as can be discerned in the urban growth map obtained from land use/cover 

change detection from remote sensing in Chapter 3 (Figure 3.26). Similar observations can be 
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found in other urban growth models. The road influence is also one of the growth rules in 

Clarke’s cellular automata model. 

A land lot with more neighboring areas that are urban is more likely to be developed for 

urban use. The variable number of urban cells within a neighborhood of 7×7 cell size (X12) has 

an odds ratio equal to 1.018924. With an increase of 1 urban cell within the neighborhood, the 

odds of development will increase 0.018924. The use of a land lot is often influenced by the land 

use/cover status of the adjacent area. Land managers and real estate developers have some 

propensity of imitating the land use/cover behaviors in the neighborhood. This neighborhood 

effect, along with the ‘edge growth’ rule captured by the distance to the nearest urban cluster, 

have acted to create a clustered pattern of urban development.  

Of the five land use/cover types, only high-density urban (X14) and low-density urban 

(X15) areas have negative coefficients, resulting in odds ratio of less than 1. The odds of urban 

development in the existing urban area is estimated only as 0.08684 times for high-density urban 

use and 0.23016 times for low-density urban use respectively as large as the odds of urban 

development in non-developed area. Urban development has shown irreversibility. The 

irreversibility of high-density urban area is more obvious than that of low-density urban use as 

evidenced by the much lower odds ratio value of high-density urban use.  Certainly the cost of 

redeveloping commercial and industrial areas is much higher than that in redeveloping 

residential areas. New urban development has occurred mainly in undeveloped peripheral urban-

rural fringe areas or open space within established urban areas.  

The probability of urban development in bare land area is larger than the probability of 

urban development in areas covered with cropland or grassland. The probability of  transition 

from cropland or grassland to urban use is larger than that of deforestation for urban use. This 



 188

can be seen from the odds ratio values of 2.61, 2.21 and 1.52 in a decreasing order  for bare land, 

cropland or grassland, and forest, respectively. All values are greater than one, indicating a 

higher probability of urban development in those areas. It should be noted that in the study area 

much bare land is forest clear-cut area. So it can be said that urban development has taken place 

mainly at the expense of the depletion of green space.  

 It is interesting to notice that the UTM coordinate northing (N) is a significant predictor 

while the UTM coordinate easting (E) is not significant and has an odds ratio value of 1. The 

variable N is originally intended to correct for spatial autocorrelation. The interpretation of its 

odds ratio has shown that it not only acts as a spatial autocorrelation corrector, but also indicates 

an unbalanced growth along the north-south direction, since its odds ratio is not equal to 1. There 

has been an unbalanced and polarizing growth in Atlanta: a dividing line exists between the 

north and the south, strongly corresponding with the long-standing residential racial segregation 

patterns. This unbalanced growth has many dimensions: separation by class and race, poverty, 

job and housing growth, and transportation patterns (BICUMP 2000).  

  

5.10 Prediction and validation  

5.10.1 Prediction 

Prediction of the spatial patterns of the future urban area is the main objective of this study. The 

probability of urbanization was predicted by plugging the coefficients obtained from the logistic 

regression model containing the 12 significant predictors (M12) and the cell values in the raster 

layers representing these predictors into equation (5-3). This was done using map algebra 

functions within raster GIS package Idrisi Kilimanjaro. The original predicted probability of 

urbanization is shown in Figure 5.14(a).To better perceive the spatial patterns of the probable 
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sites of urbanization, the original probability image was classified into ten classes based on equal 

intervals of  the probability values (Figure 5.14(b)). The darker red areas indicate higher 

probabilities of urban growth. Some new clusters far from existing urban areas can be discerned 

from this map. Most probable areas for urban development are closer to major highways and 

existing urban clusters. 

 

5.10.2 Model validation – ROC method 

This study uses ROC method to validate the logistic regression model. ROC curves were 

developed in the 1950's as a by-product of research into making sense of radio signals 

contaminated by noise. ROC is widely used in engineering, meteorology, psychology, and 

medical science to measure the relationship between a signal and reality (Egan 1975; Swets 

1988; Swets 1996). Recently the ROC method was brought to the field of land use/cover change 

modeling to measure the relationship between simulated change and real change (Pontius 2000). 

Pontius and Schneider (2001) explained how to use the ROC technique to examine how well a 

suitability map portrays the likely locations of a category of new development.  Schneider and 

Pontius (2001) applied the ROC method to compare several modeling techniques. ROC method 

is an excellent method to evaluate the validity of a model that predicts the occurrence of an event 

by comparing a suitability image depicting the probability of that event occurring and a binary 

image showing where that class actually exists.  

 In this study, ROC was used to compare the image of probability of urban development 

(Figure 5.14 ) predicted from the logistic regression model against the image of actual urban 

growth (reference image) (Y variable in Figure 5.6). The ROC method offers a statistical  
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Figure 5.14 Urbanization probability maps of Atlanta, Georgia. Darker red areas indicate higher  

                    probabilities of urban growth. 
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analysis that answers one important question: “ How well is urban growth concentrated at the 

locations of relatively high suitability for urban growth?” Basically, ROC assesses how well the 

pair of maps agrees in terms of the location of cells being urbanized.  Model validation using 

ROC reports a summary ROC value, a ROC curve as well as the coordinates of the points on the 

curve that are used to calculate the ROC value. A ROC value of 1 indicates that there is a perfect 

spatial agreement between the actual urban growth map and the predicted probability map. A 

ROC value of 0.5 is the agreement that would be expected due to chance, i.e., the cells values on 

the predicted probability image were assigned to random locations.  

To conduct the model validation, first the ranked image of probability of urbanization 

was sliced at a series of threshold levels. A threshold refers to the percentage of cells in the  

probability image to be reclassed as 1 in preparation for comparison with the reference image. In 

this study, the series of thresholds are specified at an equal interval of 5%. The threshold values 

are cumulative, therefore setting the equal interval thresholds 5, 10, 15, …, 95 would yield 20 

threshold intervals 0-5%, 0-10%, 0-15%, … and 95-100%.  ROC will begin with the cell ranked 

the highest for probability, reclassify it as 1 and continue down through the ranked cells until 5% 

of the cells have been reclassified as 1. The remaining 95% will be classified as 0. This slice 

image was then compared with the reference image. Then ROC continues for the successive 

threshold. For each slice generated from each threshold, a two-by-two contingency table was 

created based on the comparison of the predicted probability image with the reference image 

(Table 5.15). In the table, A represents the number of true positive cells which are predicted as 

urban growth and are actually urban growth in the reference image. B is the number of false 

positive cells. C is the number of false negative cells. D is the number of true negative cells.  
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From each contingency table for each threshold, one data point (x,y) was generated where x is 

the rate of false positives (false positive %) and y is the rate of true positives (true positive %): 

true positive % = A
A C+

  (5-31) 

false positive % = B
B D+

  (5-32) 

 
 

         Table 5.15 Contingency table showing the comparison of predicted probability image with 

                           the reference image 

Reference Image  
Urban growth (1) No urban growth (0)

Urban growth (1) A (true positive) B (false positive) Predicted Image 
No urban growth (0) C (false negative) D (true negative) 

 

 

 These data points were connected to create  a ROC curve from which the ROC value is 

calculated. The ROC statistic is the area under the curve that connects the plotted points. The 

area was calculated using the trapezoidal rule: 

1 1
1
[ ] [ ( ) / 2]

n

i i i i i
i

AreaUnderCurve x x y y y+ + +
=

= − × + −∑   (5-33) 

where ix  is rate of false positives for threshold i , iy  is the rate of true positives for threshold i , 

and 1n +  is the number if thresholds.  

 Table 5.16 gives the number of true positive cells A, true positive %, the number of false 

positive cells B, and false positive % for each threshold. The ROC curve is shown in Figure 5.15. 

The ROC value is 0.85. This indicates the model matches the reality quite well and is valid 

enough to predict the probability of urbanization.  
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        Table 5.16 True positive % and false positive % for each threshold for validation of the 

                          logistic regression model using ROC method 

 
No.   Thresholds(%)           A     True positive(%)                 B        False positive(%)

    1                        0            0                       0.000                  0                          0.000 
    2                        5      1414                     33.699          14417                          4.615 
    3                      10      2197                     52.359          29463                          9.431 
    4                      15      2689                     64.085          44800                         14.341 
    5                      20      3019                     71.949          60300                         19.303 
    6                      25      3263                     77.765          75886                         24.292 
    7                      30      3434                     81.840          91544                         29.304 
    8                      35      3519                     83.866        107288                         34.344 
    9                      40      3590                     85.558        123047                         39.388 
   10                     45      3626                     86.416        138841                         44.444 
   11                     50      3659                     87.202        154637                         49.501 
   12                     55      3676                     87.607        170449                         54.562 
   13                     60      3682                     87.750        186273                         59.628 
   14                     65      3693                     88.012        202092                         64.691 
   15                     70      3694                     88.036        217920                         69.758 
   16                     75      3697                     88.108        233746                         74.824 
   17                     80      3701                     88.203        249572                         79.890 
   18                     85      3772                     89.895        265331                         84.935 
   19                     90      3960                     94.376        280972                         89.942 
   20                     95      4100                     97.712        296661                         94.964 
   21                   100      4196                   100.000        312394                       100.000 
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             Figure 5.15  ROC curve. 

 

5.11 Prediction of spatial patterns of urban distribution 

The logistic regression model can only generate a probability map (Figure 5.14). It cannot 

predict the proportions of land use/cover classes. However, any quantitative data on the future 

total areas of urban distribution, including land use planning data or information output from 

other land use/cover change models, can be allocated to the suitability map. In this study, the 

proportions of urban area in the future were predicted using the Markov chain model in Chapter 

4. These are allocated to the probability map and urban spatial patterns from 1987 to 2020 are 

generated and shown in Figure 5.16. The series of maps do not obviously show the urban growth 

because the amount of urban growth predicted from the Markov chain model is not large enough 

to reveal itself from the small scale map series and most newly urbanized cells are located in 

urban peripheries or fills in un-urbanized cells within existing urban areas.  
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Figure 5.16 Spatial patterns of urban area in the Atlanta region, 1987-2020. 
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  Unlike the Markov chain model which is temporally dynamic, the logistic regression 

model is not dynamic in terms of time. The probability map from the logistic regression model 

can only tell where urbanization will occur, it cannot tell when it will happen. In other words, 

from the probability map alone, one cannot generate the temporal series (or order) of urban 

growth. However, from the probability map the spatial order of urbanization can be presented by 

creating a series of maps showing the location order of urban growth. To this end, the classified 

probability map was reclassed in an accumulative way such that the number of cells to be 

urbanized are accumulated from the class of the highest probability to the class of the lowest. 

Outcomes were a series of urban growth maps. These growth maps were combined with the 1987 

urban base map and masked with water bodies and conservation areas. Figure 5.17 shows only 

seven maps of the series. The tenth map should indicate that the whole area is urban. From 

Figure 5.17, it can be seen that urban growth will occur around existing or newly formed urban 

clusters or along the major roads. 

 

5.12 Conclusions 

This chapter first examined the multi-scale effects of the logistic regression modeling of 

urbanization probability using fractal analysis. It was found that the resolution of 225 m is the 

optimal scale at which the model performs best. Later spatial autocorrelation was corrected by 

using data aggregation, and sampling, as well as inclusion of spatial coordinates into the model.  

by a fractal analysis. Spatial autocorrelation was corrected by data aggregation, sampling, and 

the inclusion of spatial coordinates into the model. 

The model results have demonstrated that, in the Atlanta metropolitan region: (1) Urban 

development tends to take place in areas with lower population density, indicating low-density  
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   Figure 5.17 Spatial order of urban growth. The percentage values represent the percent of  

                      urban area. 

 



 198

development at urban peripheries or rural areas, leading to a scattered pattern; (2) New urban 

areas tend to be close to the nearest existing urban cluster, leading to the edge growth or filling-

in, and hence, a compact pattern; (3) Urban development tends to occur father from the CBD, but 

closer to the active economy centers, manifesting the decentralized, polycentric suburbanization 

trend of Atlanta; (4) Roads have gravity effects on urban development, contributing to the ribbon 

and strip patterns of urban growth along the transportation arteries; (5) It is more probable for a 

land lot to be converted to urban use if its neighbors are in urban use, thus contributing to the 

edge growth or filling-in of undeveloped areas within the urban areas; (6) Existing urban areas, 

especially high-density urban, resist redevelopment; (7) Urban development tends to occur on 

bare land, cropland/grassland, or forest; and (8) Urban development had taken place 

predominantly along the north-south direction, rather than east-west. The predicted spatial 

patterns of the future urban areas are the compromised outcomes of the above driving forces. 

Urban growth areas are found mainly around existing urban areas and close to major roads, while 

some new clusters located at a distance from the existing urban areas can also form.  
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CHAPTER SIX 

SUMMARY AND CONCLUSIONS 

 

The primary objective of this dissertation study is to characterize and model the human-

induced land use/cover changes, especially urban growth, in Atlanta, Georgia metropolitan 

region that has been experiencing rapid suburbanization. The objective has been achieved 

through measuring quantitatively and spatially the historical land use/cover changes observed 

from remote sensing and linking the changes with the biophysical and socioeconomic driving 

forces using image processing, spatial analysis and modeling integrated in the framework of a 

GIS. The collection of geospatial techniques, as well as spatial analysis and modeling are loosely 

integrated . The study has demonstrated that the strategy of loose integration can effectively 

accomplish a study aiming to explore a complex human-land interaction system. This strategy 

can take full advantage of various proprietary data handing, analysis and modeling functions 

supplied by different software packages. 

The specific objectives have been addressed by using different combinations of the 

geospatial techniques, analysis and modeling methods in three phases. The first phase is mapping 

land use/cover change from Landsat TM data using a new approach.  Principal components 

analysis and change vector analysis are used to reveal the general land use/cover change 

dynamics. The analyses have found that during the ten years from 1987 to 1997, Atlanta had 

experienced rapid modifications of its landscape and that the most intense land use/cover change 

is deforestation for urban development. Next, an NDVI difference map was created, classified 
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and interpreted. The NDVI difference map has shown that rapid urbanization had caused a 

massive loss of green space. Then temporal logic was applied on the NDVI difference 

classification map and the land use/cover maps produced from unsupervised ISODATA 

classification. The temporal logical operation successfully improved the land use/cover mapping 

by resolving the confusions between urban areas and bare land or cropland/grassland.  It was 

found from the land use/cover change detection by comparison of the accuracy-enhanced land 

use/cover maps that  a large extent of forest had been converted to urban use. It was also found 

that low-density urban areas had grew much faster than high-density urban areas. While high-

density urban growth had mainly taken place linearly along the transportation corridors on the 

north and southeast of the study area, low-density urban had taken on both clustered and 

dispersed patterns. 

In the second phase, the accuracy-enhanced land use/cover maps provided land use/cover 

transition probabilities as input to a Markov chain model to predict the quantities and spatial 

patterns of land use/cover in the future. A statistical test has shown that, in the study area, 

successive land use/cover states are dependent on the immediate past. Assuming that the land 

use/cover transition probabilities are constant over time, the simulation of the Markov chain 

model revealed that urban use will continue to grow at the expense of forest. The proportions of 

urban use and forest show the trend of convergence after 2020, indicating that the Markov chain 

will approach an equilibrium distribution. The successive phases of urban growth will occur in 

the rural and urban-fringe areas, taking on a dispersed pattern. In this study, the Markov chain 

model is dynamic in the temporal dimension, but not in the spatial dimension. Spatial context 

and neighborhood effects were not accommodated in the Markov chain model. It did not deal 

with the human dimensions at all, and thus, did not incorporate exogenous variables. In the 
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Markov chain model, it was assumed that urban growth has not been controlled by demographic 

variables and econometric variables that are the outcomes of economic and social processes. 

Without the incorporation  of  those variables, the predicted patterns from the Markov chain 

model are dispersed and fragmented, an outcome caused by the stochastic nature of the Markov 

chain model. 

In the third phase, a different land use/cover change model, a logistic regression model, is 

used to identify and improve our understanding of the socioeconomic and biophysical forces that 

have driven the urban growth and to find the most probable sites of urban growth in Atlanta. The 

scalar dynamics was examined by multi-resolution modeling. The optimal scale of modeling is 

found by a fractal analysis. Spatial autocorrelation was corrected by data aggregation, sampling, 

and the inclusion of spatial coordinates into the model. Findings from the model results for the 

Atlanta region are:  (1) Urban development tends to take place in areas with lower population 

density, indicating low-density development at urban peripheries or rural areas, leading to a 

scattered pattern; (2) New urban areas tend to be close to the nearest existing urban cluster, 

leading to the edge growth or filling-in, and hence, a compact pattern; (3) Urban development 

tends to occur father from the CBD, but closer to the active economy centers, manifesting the 

decentralized, polycentric suburbanization trend of Atlanta; (4) Roads have gravity effects on 

urban development, contributing to the ribbon and strip patterns of urban growth along the 

transportation arteries; (5) It is more probable for a land lot to be converted to urban use if its 

neighbors are in urban use, thus contributing to the edge growth or filling-in of undeveloped 

areas within the urban areas; (6) Existing urban areas, especially high-density urban, resist 

redevelopment; (7) Urban development tends to occur on bare land, cropland/grassland, or 

forest; and (8) Urban development had taken place predominantly along the north-south 



 202

direction, rather than east-west. The predicted spatial patterns of the future urban areas are the 

compromised outcomes of the above driving forces. Urban growth areas are found mainly 

around existing urban areas and close to major roads, while some new clusters located at a 

distance from the existing urban areas can also form. The logistic regression model is made 

spatially explicit partially by the incorporation of a neighborhood effect variable. The model is 

good at dealing with the human dimensions by including socioeconomic, biophysical, and 

econometric variables. However, the logistic regression model is not temporally explicit. Its 

output probability map can only answer where urban development will occur, but cannot answer 

when it will take place. The model uses only one set of explanatory variables for all the 

predictions, hence a lack of temporal dynamics. Further research should include more recent data 

on the predictors in the model or seek a self-modifying  approach so that the model variables can 

update themselves automatically after each model run. 

In terms of methodologies, this dissertation research has found that:  

(1) Remote sensing and GIS can be used to model land use/cover changes in general and 

urban growth in particular, in a complex urban landscape. In particular, the integration of remote 

sensing and GIS with Markov chain and logistic regression provides a deeper understanding of 

the driving forces and the spatio-temporal dynamics of land use/cover changes, which stimulates 

the interests of the social scientists to pursue the “spatial turn” in their research (Goodchild 

2004). 

(2) Temporal information behind the changes of  NDVI combined with logic rules can be 

a valuable approach to improving the land use/cover classification accuracy, and hence, the land 

use/cover change detection accuracy. 
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(3) Different land use/cover change modeling methods deal with spatial-temporal 

dynamics and human dimensions behind the land use/cover patterns in different ways. A single 

model usually cannot handle space-time-being simultaneously. This dissertation has 

demonstrated that it is useful to employ different modeling approaches to reveal the land 

use/cover change processes.  

 This study has also revealed some limitations of the Markov chain modeling. First, it was 

based only on first-order dependence and did not take into account the spatial context and 

neighborhood effects. Second, it did not accommodate any exogenous variables in the 

simulation. Although the logistic regression model has incorporated spatial econometric 

variables (distances), neighborhood effects, as well as biophysical and socioeconomic driving 

forces, it adopted a single set of static values of the predictors without dynamic updates. While 

the optimum resolution was determined by the fractal dimensions analysis for the logistic 

regression, the modeling based on the single scale could not capture the multi-scale dynamics 

behind the land use/cover change drivers.  

Future research will have to overcome these modeling limitations by creating a more 

realistic land use/cover change model that can deal with space, time, and people simultaneously. 

To achieve this goal, one has to adopt the following approaches:  First, develop a spatial Markov 

chain model with higher-order dependence. Second, to overcome the shortcoming of the lack of 

temporal dynamics in the empirical logistic model, explore a hybrid model that combines an 

empirical model with a dynamic simulation model, so that the probabilities of land use/cover 

changes predicted from the empirical model can be used as one of the rules in the simulation 

model and the probabilities can be updated dynamically to reflect the changes in spatial contexts 

as simulated from the dynamic model. Third, address the multi-scale characteristics of land 
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use/cover systems by using multi-level statistics or a hierarchical modeling structure so that the 

scalar dynamics of the land use/cover change driving forces operating from bottom-up (micro-

behavior) and top-town (such as regional planning policies) can be handled. Fourth, develop a 

holistic model that tightly couples different sub-modules, so that the whole model contains a 

feedback or cycling mechanism, which means that the model can not only simulate land 

use/cover changes, but also evaluate the societal and environmental impacts of the changes, and 

assess the feedback of the impacts on the land use/cover systems.  
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