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Abstract

In this thesis, we investigate a variety of stochastic models for volatility prediction in

financial time series. We compare two non-parametric volatility models with the standard

GARCH(1,1) model. In the first nonparametric GARCHmodeling, we consider the functional

gradient descent (FGD) method in Audrino and Bühlmann (2009) to find out the optimal

B-spline structure in order to get the maximum likelihood. In the second nonparametric

GARCH modeling, we consider the additive autoregressive structure (aGARCH) with com-

ponents linked together by a dynamic coefficient proposed in Wang, et al. (2011). B-spline

smoothing method is adopted in both algorithms. The performance of both the parametric

and non-parametric GARCH models is investigated by means of simulation studies and an

application to S&P 500 index return study and Apple stock return study. They both demon-

strate strong improvement in volatility prediction.
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Chapter 1

Introduction

In recent decades, financial volatility has been viewed as an important feature in invest-

ment decision, derivative pricing and risk management, etc. When Engle (1982) introduced

the auto-regressive conditional heteroscedasticity (ARCH) model, a large number of models

were proposed to predict volatility afterward. One of the most popular models is the gener-

alized auto-regressive conditional heteroscedasticity (GARCH) model. Most of the existing

models only involve a small number of parameters and very few lags to keep the model

parsimony. Recently more flexible models have been proposed through non-parametric and

semi-parametric smoothing methods. Among all the smoothing methods, B-spline is simple

and very powerful in terms of computing and also has explicit formula, thus it gains a lot of

popularity in estimating the conditional variance functions.

In this thesis, we compare the non-parametric GARCH models in Audrino and Bühlmann

(2009) and Wang, et al. (2011) with the classical GARCH(1,1) model. We aim to have

some appropriate models that can fit the financial time series when it is nonlinear or if the

conditional variance is highly persistent. One common feature of these two non-parametric

models is that they are cater to high-dimensional non-parametric regression with many

lags. We validate the goodness of fit in terms of volatility testing and prediction on both

simulated data and real data. We compare results with the standard GARCH(1,1) model

which is widely used as a benchmark in financial field.

The rest of the thesis is organized as follows. The background information of this work

is given in Chapter 2. Specifically, Section 2.1 introduces the financial volatility; Sections

2.2, 2.3 and 2.4 describe some basic time series models and the standard ARCH/GARCH

1
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models as well as their non-parametric extension; Section 2.5 presents the B-spline smoothing

which is the key tool used in the non/semi-parametric methods. In Chapter 3, we elaborate

two non-parametric GARCH models in depth with a functional gradient descent approach

in Section 3.1 and a semi-parametric aGARCH method in Section 3.2. In Chapter 4, we

compare them with the simple GARCH(1,1) model using different types of simulated data

and also apply them to the real financial time series data. Conclusion is presented in Chapter

5.



Chapter 2

Time Series

2.1 Financial Volatility

Volatility forecasting in financial markets is a key task to study during the recent decades.

There are around 100 published and working papers (Poon and Granger, 2003) on forecasting

performance of various volatility models, and even more papers about the volatility topic

but without considering forecasting. Volatility can be viewed as a vital role in the financial

performance, especially in the investment strategy, bond valuation, risk management and

asset pricing. For example, we need to estimate the volatility of some options before they

expire in order to do the pricing strategy. Recently, there are a lot of derivatives priced as

volatility and therefore, volatility becomes more and more important and has attracted more

people’s attention. If investors can understand and predict the underlying assets’ volatility

quite well, there’s no doubt that they will benefit greatly during the investment.

However, many investors get confused about the difference between volatility, standard

deviation, and risk. It is worth making a clarification here. Generally, we only say risk for

short. But sometimes risk is different from volatility as we just mentioned above. The risk

we are talking about has a lot of levels in portfolio managements while volatility is the key

input among them when investors make their decision. Thus, a good estimation of volatility

of financial prices is crucial in the investment decision. Usually, in finance, volatility is defined

as the standard deviation, σ, or its variance, σ2. In statistics, we’ve know the σ is computed

as the following:

σ̂2 =
1

N − 1

N∑
t=1

(Yt − Ȳ )2,

3
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where Yt is the return and Ȳ is the mean return.

Usually, if σ follows a standard normal distribution, or a t distribution, it is easy to

derive analytically its probability density and cumulative probability density. In real life,

more cases are that σ has irregular shape and it is difficult to do any calculation and can

only be derived empirically; see Poon and Granger (2003).

2.2 Time Series Introduction

2.2.1 Background

In real life, observations are made sequentially over time, instead of independent on each

other. It means in more cases, values we are interested in the future may rely on the past

observations or observation at present. This provides us the opportunity to predict the

future from the past. Indeed, we are able to describe the underlying dynamics from what

we’ve already had and possibly control the future events. Time Series analysis has been an

important part of statistics; see Chatfield (2009). Time series has a long history and some

of the branches cross the control theory, econometrics and even some fields of physics and

engineering.

Time series analysis deals with records that are collected over time. Examples can be

daily mortality counts, particulate air pollution measurements, and temperature data, etc.

The sequence of data plays important role. A fundamental feature in time series is that the

records are usually dependent on its previous values. The application of time series is very

diverse, while data may be collected hourly, daily, weekly, monthly, or yearly, and so on. We

use notation such as Xt or Yt (t = 1, ..., T ) to denote a time series of length T . The unit

of the time scale is usually implicit in the notation above. In this thesis, we use Yt as the

observations.

As pointed out in Fan and Yao (2003), a fundamental task for time series analysis is to

reveal the probability law that governs the observed time series. Hence, we can understand
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the underlying dynamics, forecast future events, and control future events via intervention,

which are the three main objectives of time series analysis.

Financial time series analysis is related with the theory and practice of valuation over

time. It is a highly empirical discipline, but like other scientific fields theory forms the

foundation for making inference. To represent the empirical properties observed in real prices

and to estimate and test financial models are the two main motivations to analyze financial

data; see Balbás, et al. (2003). However, one key distinction between financial time series

analysis and other time series analysis is that financial theory and its empirical time series

contain an element of uncertainty. For example, there are various definitions of asset volatility,

and for a stock return series, the volatility is not directly observable. As a result of the

added uncertainty, statistical theory and methods play an import role in financial time

series analysis.

2.2.2 Stationary Time Series

In time series analysis, a variety of techniques can be applied to extract features of interest.

The base line is to find the characteristic of interest that fits a general form which provides

prediction precisely with growing sample size; see Härdel, et al. (1997).

We usually generate a stochastic process in order to analyze a time series. Such stochastic

process can be described as a statistical phenomenon that involves in time. However, sta-

tistical problems concerned with estimating properties of a population from a sample is a

different situation. Since it is impossible to make multiple observations at any single time

this makes the conventional statistical procedures, based on large sample estimates, inap-

propriate. Therefore, stationarity is a convenient assumption that allows us to describe the

statistical properties of a time series.

Loosely speaking, a stationary time series is the one whose statistics properties stay

constant over time, (Nason, 2008) or say, the strictly periodic variations or seasonality do

not exist.
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Suppose a series of observations Y (t1), ..., Y (tn) is stationary, then, the joint distribution

of Y (t1), ..., Y (tn) is the same as that of Y (t1 + h), ...Y (tn + h) for all t1, ..., tn and h. This

implies that the expected value and covariance structure of any two components Y (ti) and

Y (tj) are constant in time, like the following:

E{Y (t)} = µa,

var{Y (t)} = σ2
a,

corr{Y (t), Y (t+ h)} = γ(h).

If h 6= 0, the above function γ(h) is defined as the cross-correlation function, while if h = 0,

it is called the autocorrelation function.

In general, people often adopt stationarity in a less restricted way. In many cases, the

statistical processes can be completely described with the second-order properties of the

above three equations.

2.2.3 AR/MA/ARMA Model

A stochastic process Yt is called white noise, denoted as Yt ∼ WN(0, σ2), if

E(Yt) = 0,

V ar(Yt) = σ2,

Cov(Yi, Yj) = 0, i 6= j.

White noise is only defined as the first two statements. And it is easy to figure out that

a sequence of independent and identically distributed (i.i.d) random variables with mean 0

and finite variance σ2 can be a special white noise process.

A model in which future values are forecast purely on the basis of past values of the time

series is called an autoregressive (AR) process. An AR model of order p ≥ 1 is defined as

the following:

Yt = b1Yt−1 + ...+ bpYt−p + εt,
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where {εt} ∼ WN(0, σ2). By convention, we denote {Yt} ∼ AR(p), and the time series {Yt}

generated from this model is called the AR(p) process. If we take a closer look at this model,

it is easy to see that the current Yt is a linear regression form through its p past values

Yt−1, ..., Yt−p. Because it is easy to implement, it is the most popular time series model in

practice.

Similarly, a model in which future values are forecast purely on the basis of past shocks

(or noise or random disturbances) is called a moving average (MA) precess. An MA process

with order q ≥ 1 is defined as:

Yt = εt + a1εt−1 + ...+ aqεt−q,

where {εt} ∼ WN(0, σ2). By convention, we write {Yt} ∼ MA(q). An MA model indicates a

time series as a moving average of a white noise process, while Yt and Yt−h are uncorrelated

to each other.

We can see AR(p) can be stated as an infinite-order MA process and vice versa. Therefore,

a model that combines AR and MA terms together will be a more parsimonious model; see

Cressie and Wikle (2011). It is called an autoregressive-moving average (ARMA) process.

The ARMA model is defined as:

Yt = b1Yt−1 + ...+ bpYt−p + εt + a1εt−1 + ...+ aqεt−q,

where {εt} ∼ WN(0, σ2), while p, q are integers and (p, q) is viewed as the order of the model.

We denote {Yt} ∼ ARMA(p, q).

ARMA models are commonly used in the time series analysis because of their flexibility

in estimating many stationary processes. But, they don’t have advantages in nonlinear phe-

nomena; see Fan and Yao (2003).

2.2.4 Non-linear Time Series

Based on what we have discussed before, if {εt} is a normal distribution, and conditional

mean of Yt given past Y ’s will be linear, the conditional variance of Yt given old Y ’s will
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be a constant and essentially, the process will be time-reversible (Lawrance, 1991). Many

situations can be realized by that, however, there are more that fail to be fitted. It has been

noticed that in many cases we need to fit a non-constant conditional variance, particularly,

in the finance field, for instance, when econometricians describe the risk in the financial time

series; see Bera and Higgins (1993).

Some researchers proposed extracting non-linear features by non-normal ARMA process,

and these models are not reversible and have a non-linear conditional mean and variance

(Breidt and Davis, 1991). But the drawback is that it is too restrictive to describe different

case of interest.

Based on various thoughts, there are two common agreed objectives while dealing with

the non-linear models for univariate series. The first and also the most important is to have

some idea about the structure of the dataset that are being used. A common situation is

when data shows non-linearity, we would like to characterize it by fitting an appropriate

non-linear model. The second objective is to do optimal forecasts. But we need to be careful

since we attempt to use a non-linear model to minimize forecasts errors for the given data

but in a lot of cases there are only a limited number of observations available. Moreover, the

danger of over-fitting also exists. See Tjostheim (1994)

There is no exact definition of non-linear model, people would like to define it into

the following classes: (1) parametric models, (2) non-parametric models, (3) restricted non-

parametric and semi-parametric models. In the parametric models class, it can be subdivided

as parametric models for the conditional mean, parametric models for the conditional vari-

ance, mixed models which means a general model containing both a conditional mean and

a conditional variance component and the regime models. In the restricted non-parametric

and semi-parametric models, people developed additive models, projection pursuit, which

are additive models of linear combinations of past values, and regression trees, splines and

MARS (multivariate adaptive regression splines) methodology. Another way of trying to

eliminate the difficulties in evaluating high-dimensional conditional quantities is to assume
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non-linear and non-parametric dependence in some of the predictors and parametric and

usually linear in others. These are called semi-parametric models; see Hárdle and Lütkepohl

et al (1997).

2.3 GARCH Model

A huge amount of econometrics work use the least squares methods, which, assumes that the

expected value of all error terms, when squared is the same at any given point. This is called

homoscedasticity and however, such assumption will not always hold. We call it heteroscedas-

ticity if the data’s variances of the error terms are not constant. The coefficients from the

regression for the ordinary least squares are still unbiased in that case, however, it will be too

narrow to get the standard errors and confidence intervals by the conventional procedures.

Therefore, ARCH and GARCH model are specially designed to treat heteroscedasticity as a

variance to be modeled. Their applications in finance have been particularly successful, since

the financial decisions are generally based upon the tradeoff between risk and return, and the

econometric analysis of risk is therefore an integral part of asset pricing, portfolio optimiza-

tion, option pricing and risk management. Many economic time series exhibit non-constant

variance, thus, ARCH/GARCH are widely applied in the finance field.

The basic idea of ARCH model is that the conditional variance of the returns at time t,

Yt, depends on those returns before t. For example, if the conditional variance depends on

various q time values of Y 2, then it is called ARCH(q) process and can be written as the

following regression model:

V ar(Yt) = σ2
t = α0 + α1Y

2
t−1 + α2Y

2
t−2 + ...+ αqY

2
t−q.

In real life, we often use the variance as the effects of shocks on the variance of stock market

returns, or the effects of increases in the variance of excess returns of bonds on risk premiums.

Furthermore, if we include lags of σ2
t to ARCH process, we will get:

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1.
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This is widely known as the generalized ARCH process, i.e. GARCH(1, 1); see Bollerslev

(1986).

We can extend GARCH(1,1) to GARCH(p, q) through the following:

σ2
t = α0 +

q∑
i=1

αiY
2
t−i +

p∑
i=1

βiσ
2
t−i, (2.1)

where p refers to the lag on σ2
t and q to the lag on Y 2

t . In the Equation 2.1 , p = 1, and

q = 1 is known as the GARCH(1,1). As discussed in Engle (2001), GARCH(p, q) also has

interpretation for its lag terms. The higher-order models are often useful when it includes a

long span of data, like several decades of daily data or a year of hourly data. Such models

allow both fast and slow decay of information with these lags.

In brief, ARCH/GARCH models don’t consider information on the direction of returns,

instead, they only care the magnitude. However, people have believed that the direction does

affect volatility as well, especially for broad-based equity indices and bond market indices;

see Poon and Granger (2003). It appears that market declines forecast higher volatility

than comparable market increases do. This arises a variety of asymmetric GARCH models,

including EGARCH, TGARCH, etc. These are beyond our topic in this thesis.

2.4 Non-parametric GARCH model

There are a lot of difficulties in modelling the nonparametric GARCH models. The following

sections introduce several methods briefly to overcome some of these limits of the parametric

assumptions in GARCH models and we refer to Linton (2006) for more details.

2.4.1 Error Density

The restrictiveness of the parametric assumptions in Gaussian strong GARCH models is

to define the error density εt is standard normal and then maximizing the (conditional on

initial values) Gaussian likelihood function. Under that assumption, the resulting estimators

are supposed to be consistent and asymptotically normal. However, the error terms don’t
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actually need to be normal or i.i.d, but the resulting estimator will not be efficient without

this condition.

Evidence so that the standardized residuals from estimated GARCH models are not

normally distributed, especially for high frequency financial time series. Thus, study of semi-

parametric models in which εt is i.i.d. with some density f that may be non-normal is

developed:

Yt = σtεt,

σ2
t = α0 + α1Y

2
t−1 + β1ε

2
t−1,

where εt is i.i.d. with density f as unknown function. This provides the standardized residuals

εt = Yt/σt is non-Gaussian.

We can estimate f non-parametrically to improve the efficiency of the parameter estima-

tion. Kernel based estimates is therefore proposed and the semi-parametric efficiency bounds

for parameters are estimated.

2.4.2 Functional Form of Volatility Function

There are other ways to question the form of the volatility function. We define the news

impact curve as the relationship between σ2
t and yt−1 = y, with past values σ2

t constant at

some level. New impact curve is important in the finance study since it indicates how the

volatility is affected by the news information.

So far, there are different ways to model the news impact curve and provide answers

to different practitioners. This is anther motivation of modeling the non-parametric ARCH

model, which has greater flexibility to various data. Some of them consider the case where

σ2
t = σ2(yt−1), where σ(·) is a smooth but unknown function, like σ2

t = σ2(yt−1, yt−2, ..., yt−d).

It is necessary to include many lagged variables in σ2(·) to match the data, however, it also

brings out the well-known “curse of dimensionality”. In addition, it is also hard to interpret

the dimension more than two.
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Additive models offer a more flexible but parsimonious alternative to nonparametric

models. Suppose that

σ2
t = α0 +

d∑
j=1

σ2(Yt−j),

where σ2
t is some unknown function, which are allowed to be of general functional form but

only depend on Yt−j. These σ
2(Yt−j) can be estimated by special kernel regression techniques.

2.4.3 Mean and Variance

Some of the views focus on the relationship between risk and return. We consider:

yt = g(σ2
t ; β) + σtεt (2.2)

for linear or log-linear functional forms of g, and β in the Equation 2.2 are parameters to be

estimated with the parameters of the error variances. This has been applied to stock index

return data and the corresponding estimated g function is non-monotonic.

2.4.4 Long Memory

It has been found that traditional models adopt a dependent structure that doesn’t fit the

data well enough. The GARCH model(1,1) with the form:

σ2
t = α0 +

∞∑
j=1

αjY
2
t−j

for the constants αj satisfying αj = γβj−1. These coefficients decay dramatically but some

empirical evidences show that the autocorrelation function function of Y 2
t for high frequency

returns data that suggests a slower decay rate than these coefficients in the model. Therefore,

a single parameter called d which determines the memory properties of the series is proposed:

(1− L)dσ2
t = α0 + βσ2

t−1(ε
2
t−1 − 1),

where (1 − L)d is known as the fractional differencing operator. When d = 1, we have the

IGARCH model.
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2.5 B-spline Smoothing Method

The word “spline” has been originated from the ship building industry, which was a thin

strip of wood which draftsmen would use like a flexible French curve. Metal weights were

placed on the drawing surface and the spline was threaded between the ducks. Thus, a spline

curve in industry is referred to a sequence of curve segments connected to each other to form

a single continuous curve. And Basic-Spline, as known as B-Spline, is spline functions that

has minimal support with respect to a give degree, smoothness, and domain partition.

A curve s(u) is called a spline of degree n with the knots a0, ...am, where ai 6 ai+1 and

ai < ai+n+1 for all possible i. and s(u) is n− r times differentiable at any r− fold knot. (We

call a knot ai+1 the r-fold knot if ai < ai+1... = ai+r < ai+r+1). It is also common to refer to

a spline of degree n as a spline of order n+ 1.

2.5.1 B-spline knots and basis functions

In order to define B-splines, let (aj)
N
j=−1 be a series of knots on interval [a, b], which satisfies

a < a1 < ... < aj < aj+1... < aN < b.

Suppose we have N interior knots and the B-spline is of order d (or degree d − 1), we can

set the following boundary knots

a−(d−1) = ... = a−1 = a0 = a < a1 < ... < aN < b = aN+1 = ... = aN+d,

thus we have N + d knots in total. With the above knots, we define B-spline of order d (or

degree d− 1), Bj,d, using the following recursion formula:

Bj,1(x) =

 1 if x ∈ [aj, aj+1);

0 otherwise.

and

Bj,d(x) =
(x− aj)Bj,d−1(x)

aj+d−1 − aj
+

(aj+d − x)Bj+1,d−1(x)

aj+d − aj+1

.
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For example, suppose we have 5 equally spaced interior knots on the interval [0, 6], then

we have the following constant spline basis functions:

B0,1(x) =

 1 if 0 ≤ x < 1;

0 otherwise.

B1,1(x) =

 1 if 1 ≤ x < 2;

0 otherwise.

...

B5,1(x) =

 1 if 5 ≤ x < 6;

0 otherwise.

Now we can deduce the linear basis functions Bj,2(x) as:

B0,2(x) = (1− x)B1,1(x)

B1,2(x) = xB1,1(x) + (2− x)B2,1(x)

B2,2(x) = (x− 1)B2,1(x) + (3− x)B3,1(x)

B3,2(x) = (x− 2)B3,1(x) + (4− x)B4,1(x)

B4,2(x) = (x− 3)B4,1(x) + (5− x)B5,1(x)

B5,2(x) = (x− 4)B5,1(x)

We can keep doing this until the desired degree. Usually, degree of 3 (cubic spline) is often

used in most cases, since low degree may cause unsmooth curve while too high degree may

result in overfitting.

Next we introduce the definition of B-spline space. Let S
(d)
n be the space of B-splines on

[a, b] of order d ≥ 1. The space S
(d)
n consists of all the functions s satisfying

• s is a polynomial of degree d − 1 which we fix on each of the subintervals [aj, aj+1),

where k = 0, ..., N − 1.

• s is d− 2 continuously differentiable on the interval [a, b], for d ≥ 1.



Chapter 3

Nonparametric Methods For Financial Volatility

3.1 Functional Gradient Descent algorithm

Audrino and Bühlmann (2009) proposed a flexible model that is based on a high dimensional

parameterization from a B-spline basis expansion. Below is a brief introduction of the model

and the algorithm.

3.1.1 Model

Let us denote returns in its logarithm form:

Yt = log(Pt)− log(Pt−1) ≈ (Pt − Pt−1)/Pt−1, (3.1)

where the Pt is the price. In the following, we assume:

Yt = µt + σtεt,

σ2
t = f(Xt−1, σ

2
t−1).

and we also assume that

µt = α0 + α1Yt−1

follows a simple auto-regressive AR(1) model. We consider the squared volatility, i.e. variance,

as a function of Yt−1, and σ2
t−1. Thus, we construct a nonparametric GARCH(1,1) model.

σ2
t = f(Yt−1, σ

2
t−1),

while the unknown function f(·, ·) can be non-linear or even not smooth. Estimating the

unknown function f(·, ·) is our goal. The common non-parametric techniques have the advan-

tages that include generality which is often discounted by decreased or non-improved average

15
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prediction performance. However, non-parametric methods show poor performance at edges

that are of major interest in practical applications. Strong sensitivity of choosing smoothing

parameters is another difficulty.

Audrino and Bühlmann (2009) studied volatility σ2
t as a series of additive components

of simple bivariate B-spline basis functions on a predictor space < × <+ arising from the

lagged values (Yt−1, σ
2
t−1). The reason that we use log-transform on volatility is that we can

avoid positivity restrictions and then freely adopt a convex loss function. In detail, Audrino

and Bühlmann (2009) model:

log{σ2
t (θ)} = log{fθ(Yt−1, σ

2
t−1(θ))}

= gθ0{Yt−1, σ
2
t−1(θ)}+

k1∑
j1=1

k2∑
j2=1

βj1,j2{Yt−1, σ
2
t−1(θ)}

where gθ0(·, ·) is the initial function as a starting point, and is proposed as a logarithm of

a parametric GARCH(1,1) process. The parameter vector θ is composed by {θ0, βj1,j2 , j1 =

1, ..., k1, j2 = 1, ..., k2} and βj1,j2 will be discussed in short. Our main idea is to estimate the

second term
∑k1

j1=1

∑k2
j2=1 βj1,j2{Yt−1, σ

2
t−1(θ)} by constructing the bivariate B-spline basis

functions βj1,j2(·, ·) in order to improve gθ0{Yt−1, σ
2
t−1(θ)}, which is our initial point. We can

state the multivariate B-splines as products of univariate B-splines and estimate them in an

easy way, which means:

Bj1,j2{Yt−1, σ
2
t−1(θ)} = Bj1(Yt−1)Bj2{σ2

t−1(θ)}.

where Bj1 is the j1th B-spline function of value Yt−1 and Bj2 is the j2th B-spline function of

value σ2
t−1(θ). Both of them represent piecewise polynomial functions and can be approxi-

mated a general continuous, non-parametric conditional variance function. Different degrees

of B-spline can lead to flexible shape of the conditional variance function. In our simulation,

we choose the degree of the Bj1(Xt−1) as 3 and the degree of the Bj2(σ
2
t−1) as 2, following

the suggestion of Audrino and Bühlmann (2009). For the number of breaks, we choose the

empirical α-quantiles of the corresponding predictor variables with α = i/mesh, i = 1, ...,

mesh− 1, and mesh ∈ N .
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Suppose εt following the standard normally distribution, then the negative log-likelihood

in the model is shown as:

− log{L(α, θ;Y T
2 )} =

T∑
t=1

1

2

[
log(2π) + log{σ2

t (θ)}+
{Yt − µt(α)}2

σ2
t (θ)

]

=
T∑
t=1

1

2

{
log(2π) + gθ{Yt−1, σ

2
t−1(θ)}+

{Yt − µt(α)}2

exp
[
gθ{Yt−1, σ2

t−1(θ)}
]} ,

where gθ{Yt−1, σ
2
t−1(θ)} = log{σ2

t (θ)} as our initial starting point. We estimate the model by

using the functional gradient descent (FGD for short) algorithm, which includes the following

three components:

• loss function

• its partial derivative

• an initial starting estimate

The loss function can be described as:

λ(y, g) =
1

2

{
log(2π) + g +

y2

exp(g)

}
,

where y = Y − µ, the centered mean. Partial derivative is needed with respect to the g in

order to maximize the negative log-likelihood function:

∂λ(y, g)

∂g
=

1

2

{
1− y2

exp(g)

}
.

The use of a componentwise least squares method is proposed to fit one B-spline basis

function at a time and get the maximum log-likelihood estimation from our initial starting

point, the GARCH(1,1) model.

We describe the co-ordinatewise gradient descent algorithm in Audrino and Bühlmann

(2009) in details:
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• Step 1 (initialization): As stated before, we choose GARCH(1,1) model as gθ0{Yt−1, σ
2
t−1(θ)}

to be the starting point. And α̂ and θ̂ are estimated in Equation 3.2, 3.3

µ̂(t) = α̂1 + α̂2Yt−1, (3.2)

exp{ĝ0(t)} = θ̂0,1 + θ̂0,2Y
2
t−1 + θ̂0,3 exp{ĝ0(t− 1)}. (3.3)

• Step 2 (projection of the gradient to the B-splines): The negative gradient vector is:

Ut = −1

2

[
1− (Yt − µ̂t)

2

exp{ĝm−1(t)}

]
, t = 2, ..., T.

where exp{ĝm−1(t)} is the updated part of logarithm volatility. We use the B-spline

method to get the bivariate basis functions and regress Ut onto the spline basis function

Bd[Xt−1, exp{ĝm−1(t − 1)}], (t = 2, ...T ) in order to get the least squares among the

basis functions.

Ŝm = argmin1≤d≤k

T∑
t=2

{
Ut − β̂dBd[Yt−1, exp{ĝm−1(t− 1)}]

}2

.

where d = (d1, d2) as the bivariate basis index which has the least square among k1, k2.

β̂d is the least squares estimated coefficient. We also use k = (k1, k2) as the bivariate

order of the B-splines, while k1 is the number of univariate B-spline basis functions for

Xt−1 and k2 for σ
2
t−1. As mentioned before, k1 = (mesh−1)+3 and k2 = (mesh−1)+2.

• Step 3 (line search): Every time ĝm−1 is updated, we need to seek an optimization for

the step length and the criteria is:

β̂Ŝm
= argminω

T∑
t=2

λ(Yt − µ̂t, ĝm−1(t) + ωBŜm
[Yt−1, exp{ĝm−1(t− 1)}]).

Hence, we update our ĝ function every time by doing:

ĝm(t) = ĝ0(t) +
M∑

m=1

β̂Ŝm
BŜm

[Yt−1, exp{ĝm−1(t− 1)}].

• Step 4 (iteration and stopping): We do loops for steps 2 and 3. We adopt the cross-

validation method and the stopping point (when m = M) is chosen in the training set
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when the testing set gets optimal. Thus, overfitting is avoided. In the end, we get our

final estimation of the ĝ function:

ĝM(t) = ĝ0(t) +
M∑

m=1

β̂Ŝm
[Yt−1, exp{ĝm−1(t− 1)}].

Shrinkage is also introduced in step 3 in order to reduce the variance of the estimated

B-spline components. We update β̂Ŝm
BŜm

by:

κβ̂Ŝm
BŜm

, with 0 < κ ≤ 1.

Empirically, the value is determined within {0.1, 0.2}.

3.2 Semi-parametric aGARCH modeling

As mentioned in the last chapter, flexible non-parametric GARCH models very often outper-

form the standard GARCH models when applied to real data with many lagged variables.

But it also presents great challenges in smoothing high dimensional and strongly correlated

time series data.

Therefore, additive models are proposed to overcome these difficulties. Carroll (2002)

and Yang (2002) introduced a truncated version of the nonparametric GARCH model with

a finite number of lags J :

σ2
t =

J∑
j=1

βj−1
0 m0(Yt−j), β ∈ [β1, β2]

There are various ways are used to estimate m0 and β0, and existing methods include

marginal integration kernel smoothing, backfitting algorithm, etc. Wang, et al. (2011) devel-

oped a semi-parametric method with a well-justified theory and a fast algorithm to implement

the method. They used the polynomial splines to estimate the additive model.

Consider a stationary time series {Yt}Tt=1, with

Yt = σtεt, t = 1, 2, ..., T,
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which satisfies:

Y 2
t = c+

J∑
j=1

mj(Yt−j) + εt,

εt = σ2
t (ε

2
t − 1),

where mj(y) = βj−1
0 m1(y).

Wang, et al. (2011) introduce a least square risk function, denote it as R(β) as:

R(β) = E[

j∑
j=1

{mj(Yt)− βj−1m1(Yt)}2]

=
J∑

j=1

{(βj−1
0 − βj−1)2}E{m1(Yt)

2}.

Their goal is to estimate the m1 function and the coefficient parameter β0 by using the

polynomial spline smoothing.

We consider the estimation of mj based on all bounded measurable function on compact

interval [a, b], where a, b are fixed constants. We define h ≡ (b − a)/(N + 1) as the spacing

between knots next to each other, and space S
(2)
n = S

(2)
n [a, b] as the linear space spanned by

{1, bj,k, j = 1, ..., J, k = 1 − p, ..., N}. We still use the least square method to find out the

coefficients in front of each splines in order that:

(λ̂′
0, λ̂

′
1,1−p, ..., λ̂

′
J,N) = argminR1+J(N+p)

T∑
t=J+1

{Y 2
t − λ0 −

J∑
j=1

N∑
k=1−p

λj,kbj,k(Yt−j)}2.

Let ĉ = nn−1
∑T

t=J+1 Y
2
t , in which n = T − J , be a

√
n− consistent estimator of c by the

Central Limit Theorem. Hence, the centered spline estimator of each component function is

written as:

m̂j(y) =
N∑

k=1−p

λ̂j,kbj,k(y)−
1

n

T∑
t=J+1

N∑
k=1−p

λ̂j−kbj,k(Yt−j)

for 1 ≤ j ≤ J . Next, in order to get the estimated coefficient β0, we simply regress

{m̂2(Yt)}Tt=J+1 on {m̂1(Yt)}Tt=J+1 and try to minimize the term:

T∑
t=J+1

{m̂2(Yt)− βm̂1(Yt)}2.
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Overall, we can improve the performance by averaging over all the components by doing:

R̂(β) =
1

n

T∑
t=J+1

J∑
j=1

{m̂j(Yt)− βj−1m̂1(Yt)}2

where β̂ = argminβ∈[β1,β2]R̂(β).



Chapter 4

Numerical Examples

In this chapter, we provide some numerical examples to illustrate the behavior of the non-

parametric methods, FGD and aGARCH, described in Chapter 3. We use R to realize

all of the results and compare performance from both methods with a simple parametric

GARCH(1,1) fit.

In all simulations below, we generate 3000 observations for each process. We discard the

first 1000 observations which can be treated as warm-up period and use the second 1000

simulated data as in-sample period to estimate the model and the third 1000 data as out-

sample period to test the model. In order to get fair results, we repeat simulations for 100

independent runs and compare their error means and standard deviations.

We quantify the goodness of fit as in-sample error and out-sample error, which are illus-

trated as:

IS-Lp =
1

T

T∑
t=1

|σ2
t − σ̂2

t |p, for p = 1, 2 (in-sample error);

OS-Lp =
1

T

2T∑
t=T+1

|σ2
t − σ̂2

t (X
2T
T+1)|p, for p = 1, 2 (out-sample error).

When p = 1, it is known as the mean absolute errors, and p = 2 is the squared volatility

error.

In Sections 4.1, 4.2 and 4.3, we compare the nonparametric GARCH models, with stan-

dard GARCH(1,1) models using four different sets of simulations. The first and second

datasets are generated using the standard GARCH(1,1) process. The third is generated using

an asymmetric GARCH model, called the GJR model (Glosten, Jaganathan, and Runkle,

22
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1993), and the fourth one is generated with more complicated models. We will continue to

apply three models in the real financial data to see their performance in different situations.

4.1 simple GARCH(1,1) data example

We generate a time series as the following:

Yt = σtεt

σ2
t = α0 + α1Y

2
t−1 + β0σ

2
t−1 (4.1)

where εt follows the standard normal distribution, and α0 = 0.05, α1 = 0.20 and β0 = 0.75

for dataset A and α0 = 0.20, α1 = 0.30 and β0 = 0.45 for model B. The news impact curve

in the above model, m(y) = α0 + α1y
2, is symmetric.

We generate the above two processes and compare three models: GARCH(1,1), aGARCH

and FGD. The results are provided in Tables 4.1 and 4.1, respectively. The first value in each

cell is the mean of the errors based on 100 runs and the second value is the corresponding

standard deviation. The last column provides the computing time for each method.

Table 4.1: Performance results for dataset A

IS-1 IS-2 OS-1 OS-2 CPU time

GARCH(1,1) 0.3226±0.1681 0.7749±1.1507 0.3487±0.3357 0.7749±1.1508 <5min

aGARCH 0.3493±0.130 1.0647±1.3990 0.5491±0.3540 1.0681±1.1919 <5min

FGD 0.3934±0.2010 0.8972±0.7645 0.4755±0.4139 0.9294±0.8768 almost 2 hours

Table 4.2: Performance results for dataset B

IS-1 IS-2 OS-1 OS-2 CPU TIME

GARCH(1,1) 0.204±0.0279 0.329±0.309 0.2050±0.046 0.3049±0.4146 <5min

aGARCH 0.2157±0.026 0.337±0.3229 0.3229±0.0414 0.4021±0.1351 <5min

FGD 0.2274±0.034 0.4021±0.2908 0.2425±0.073 0.5219±0.2376 almost 2 hours
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Since the true underlying model is the standard GARCH(1,1) model, clearly, simple

GARCH(1,1) will be good enough to fit these data. Tables 4.1 and 4.2 show that GARCH(1,1)

outperforms the two non-parametric models in terms of both volatility estimation and predic-

tion. We can see both in-sample L1 and L2 error of GARCH(1,1) is smaller than those of FGD

and aGARCH, hence non-parametric models may not be the perfect choice. But the non-

parametric methods aGARCH and FGD perform quite close to GARCH(1,1) model, which

shows the validity of all three models. Out-of sample error measures the predictability of

model. Similarly, aGARCH and FGD model present similar results as classical GARCH(1,1)

model does.

4.2 GJR data example

In this section we generate dataset C based on the following GJR model:

Yt = σtεt

σ2
t = α0 + α1Y

2
t−1 + δ0Y

2
t−1I(Yt−1 < 0) + β0σ

2
t−1 (4.2)

where εt is standard normal, with α0 = 0.2, α1 = 0.06, δ0 = 0.03, and β0 = 0.90. The news

impact curves, m(y) = α0 +α1y
2 + δ0y

2I(y < 0), is asymmetry in terms of y, and we regard

it as an GJR model. Hence, the standard GARCH(1,1) model can not catch the character

of data.

Table 4.3: Performance results for dataset C

IS-1 IS-2 OS-1 OS-2 CPU time

GARCH(1,1) 0.6573±0.1132 0.7526±0.2204 0.7351 ± 0.1590 0.7834 ± 0.6381 <5min

aGARCH 0.6766±0.1056 0.7722±0.2197 0.6540±0.2183 0.6284± 0.4696 < 5min

FGD 0.6858±0.2036 0.8115±0.2197 0.7754±0.3163 0.7974± 0.4026 almost 2 hours

Table 4.3 shows the performance of the three models. Not surprisingly, since the under-

lying news impact curve is asymmetric in the above model, GARCH(1,1) no longer shows
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its advantages. FGD model also fails to do well compared to GARCH(1,1) indicating that

non-parametric method may not appropriate in the simple data structure. aGARCH is the

best of the three, due to the reason that it has the nonparametric part for Yt while the

parametric for σt, which is cater to the data above.

4.3 More complicated data example

We generate the processes using a more complicated non-parametric GARCH model and

consider the following squared volatility function

σ2
t = f(Yt−1, σ

2
t−1),

where

f(y, σ2) =

 0.12 + 0.3σ2 + {1− 0.3L− (1− 10−6L)(1− L)d}y2, if y ≤ 0;

(0.4 + 0.28Y 3
t−1) exp(−0.15Y 2

t−2), if y > 0.

In the above equations, L stands for the backshift operator and the expression (1−L)d is the

binomial expansion and usually it is stated as the hypergeometric function; see Baillie, et al.

(1996). In this simulation, we fix d = 0.4. Thus, the whole dataset will be a non-parametric

GARCH process with long memory and asymmetric effects in volatility. We show our results

in Table 4.4.

Table 4.4: Performance results for dataset D

IS-1 IS-2 OS-1 OS-2 CPU time

GARCH(1,1) 0.2255±0.0561 0.3665±0.358 0.2197±0.0751 0.3041±0.3601 1.5 hours

aGARCH 0.2059±0.049 0.3442±0.2443 02121±0.092 0.2492±0.301 1.5 hours

FGD 0.1802±0.042 0.1912±0.208 0.1846±0.039 0.1704±0.176 5∼6 hours

This time, both aGARCH and FGD perform better than GARCH(1,1) model since the

original simulated data is more complicated and can not be simply explained by GARCH(1,1)
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model. FGD shows better results than aGARCH, based on the fact that the latter is semi-

parametric GARCH model and might not do well on fitting the non-parametric part on

σ2.

4.4 Real Data

4.4.1 S&P 500 weekly return

Standard & Poor 500, referred as S&P 500 is the free-float capitalization-weighted index

focusing on 500 U.S. companies, which have large-cap common stocks. It is viewed as the

important signal of U.S. economy, thus, studying its volatility is many investors’ interest.

We collect 1000 weekly S&P 500 index from February 20, 1973 up to May 18, 1992 and

consider their log-returns in percentages. We truncate Yt by 0.005 and 0.995 quantiles during

the fitting. Table 4.5 shows the plot of both S&P 500 index and S&P 500 return. Table 4.6

is the data description of S&P 500 dataset. We define the definition of return as in Equation

3.1:

Table 4.5: Data plot about the weekly S&P500 index and S&P500 return
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Table 4.6: Data summary of S&P 500 weekly log-return in percentage

Mean Standard deviation Maximum Minimum

S&P500 weekly return 0.121 2.234 14.116 -12.197

Note that we cannot calculate the true volatility based on the real dataset, hence we

choose these two criteria to judge our results:

Prediction Error =
1

n

T∑
t=J+1

(σ̂2
t − Y 2

t )
2 (4.3)

−Log-likelihood = −
T∑

t=J+1

log

{
σ̂tφ(

Yt

σ̂t

)

}
(4.4)

where J is the optimal lag chosen from the aGARCH model.

Table 4.7: Fitting S&P 500 weekly returns

−Log-likelihood Volatility prediction error

GARCH(1,1) 2139.646 44.7886

aGARCH 2120.896 42.7434

FGD 2085.704 42.0431

4.4.2 Apple stock returns

We also investigate on some famous US stocks to compare three models. We select Apple

company’s daily stock from August, 1991 to August, 1995, which are 1000 observations in

all. Again, we plot the Apple daily stock index and its return in Table 4.8 and present the

data summary of the Apple stock in Table 4.9:
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Table 4.8: Data plot about the weekly S&P500 index and S&P500 return

Table 4.9: Data summary of Apple daily log-return in percentage

Mean Standard deviation Maximum Minimum

Apple Daily Return 0.041 2.696 18.891 -23.032

Table 4.10: Fitting Apple stock daily returns

−Log-likelihood Volatility prediction error

GARCH(1,1) 2365.124 118.9165

aGARCH 2302.773 115.2463

FGD 2145.569 107.8452
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Table 4.10 provide the −log-likelihood and volatility prediction error from three models.

Both aGARCH and FGD model show significant improvement compared to GARCH(1,1)

model. Note that in the previous simulated data, nonparametric models may not outperform

GARCH model sometimes if the processes are generated using the parametric volatility

models. In real life, most of the time series data is non-parametric and our two methods

then show up their advantages. FGD is even a little better than aGARCH in some situations

which may be the reason that aGARCH is semi-parametric model while if coefficient in front

of σ2 is not constant, it will not capture its character as well as FGD model does.

4.5 Remarks on the non-parametric mothods

The above results demonstrate that both aGARCH and FGD model is a good choice when

fitting the non-parametric financial volatility. FGD is even more flexible when it comes

to estimating a high dimension of unknown parameters. However, it is also stated in the

tables that the computing time for FGD method is extremely longer than both GARCH

and aGARCH model due to the fact that it needs to find an optimal structure in a high

dimension every time and update the loss function by a fix length. It needs to repeat it until

find the maximum likelihood. Therefore, computing efficiency will be a big problem for FGD

method and how to optimize the algorithm will be further study’s interest.



Chapter 5

Conclusion

In this thesis, we compare two non-parametric GARCH models with the simple GARCH(1,1)

model for financial time series. The FGD method constructs an optimal tensor B-spline

structure to get the maximum likelihood in a high dimension context. The aGARCH method

uses polynomial spline smoothing on the news impact curve to obtain a nonparametric part

in GARCH(1,1) model. Both non-parametric methods are more flexible and powerful for

analyzing highly persistent financial time series data. We compare their performance with

the GARCH(1,1) model by first using the GARCH(1,1) simulated data. Results show both

non-parametric models do not outperfrom the simple GARCH(1,1) model, since the data

are generated from the GARCH(1,1). Although the standard GARCH model is sufficient in

that case, our results still present the validity of using both non-parametric models. We then

applied three methods to datasets generated from a GJR model. Our results demonstrate

the advantages of the non-parametric GARCH methods over the simple GARCH(1,1) model

in these cases. aGARCH is a relatively simple semi-parametric GARCH model, and its in-

sample error is close to that of the GARCH(1,1) but it predicts better in terms of out-sample

errors. FGD method does not show any advantages among the three simply because the non-

parametric method might not be the best choice for this dataset. Our last simulated data

are generated from a complicated GARCH model. Both FGD and aGARCH improve the

prediction performance compared to the simple GARCH(1,1) model. Later, we apply them

into the real financial time series data. We choose to fit the S&P 500 weekly return and Apple

stock daily return. Results indicate noticeable improvement compared to the GARCH(1,1)

model.
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